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THE THEORY OF CONSTRUCTIONS:
CATEGORICAL SEMANTICS AND TOPOS-THEORETIC MODELS

J.Martin E. Hyland and Andrew M. Pitts

ABSTRACT. A syntactically rich version of the Coquand-Huet theory of
constructions is described as a theory of dependent types involving expressions
at three different levels (Terms, Types and Orders) together with indexed sums
and products of various kinds. Two extensions of the theory involving universal
types are also discussed. A complete category-theoretic explanation of the
meaning of the theory is built up, based upon a careful analysis of the
categorical semantics of Martin-Lof's theory of dependent types. Finally, two
particular models of the theory of constructions are described (modelling the
two extensions of the theory mentioned above). In these models, the Orders
and Types are denoted by particular kinds of Grothendieck topos, namely
algebraic toposes (toposes of presheaves on small categories with finite limits)
and algebraic-localic toposes (toposes of presheaves on meet semi-lattices).
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Introduction

The Theory of Constructions is the very high level functional programming language due to
Coguand and Huet [CHI; it contains Girard's higher order lambda calculus [G1]1 and the
core of Martin-Lof's theory of dependent types [M-L2] as subsystems. In this paper we
describe a syntactically rich version of this theory, introduce a general class of models for
it and give two particular models. Category theory comes into our work in two distinct
ways which it is as well to distinguish here.

In the first place, in obtaining our general notion of model we give an explanation in
terms of category theory of what constitutes a semantics for the various parts of the
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138 J. MARTIN E. HYLAND and ANDREW M. PITTS

theory of constructions. We certainly believe this is the right approach. For one thing, the
descriptions of semantics (even for a simple subsystem like the second order lambda
calculus) appear mathematically uncivilized when couched in non-categorical terms. What is
more, the categorical concepts we use in defining the semantics have (we think) a
remarkable degree of simplicity and elegance—especially in comparison with the syntactic
complexities of the theory of constructions itself. For another thing, the category-theoretic
perspective provides all kinds of valuable insights into the underlying meaning of the formal
constructs of the theory. The main mathematical ideas which underlie our explanation of
the semantics are those of (locally) cartesian closed category, Grothendieck's fibrations and
Lawvere's hyperdoctrines. (These are part of the category theorist's inheritance from the
1960s.)

Secondly, the objects that we use to model the types (and "orders”) of the language
are not simply sets, or domains, or objects in some category—as in earlier work. They
are themselves categories. (Hence they are objects in a 2-category, although we do not
exploit this extra level of structure in this paper.) This is in line with an old idea of
Lawvere that the structures of mathematical interest can not only be organized into
categories, but also often are (usefully seen as) categories. The categories we use are
certain kinds of Grothendieck topos. So the main mathematical ideas we use to develop
our models are those of classifying topos, of the internal logic of toposes and of
relativization to an arbitrary base topos of mathematical constructions and proofs. (These
are for the most part the category theorist's inheritance from the 1970s.)

We would be the first to admit that this puts rather large demands on the
understanding of those readers who are not topos-theorists. (We hope there are many.)
Since there are equivalent, more concrete descriptions of our models (which we give
briefly in 4.20 and 5.11), it seems worth saying something in justification of our chosen
treatment. Certainly some aspects of the models can be developed in a way which is a
straight forward imitation and generalization (from the order-theoretic to the fully
category-theoretic) of ideas from domain theory. However, other aspects are really very
much simpler from the topos-theoretic viewpoint. To give just one example, the existence
of an Order of Types (see 2.11) in the models is an easy consequence of the notion of
classifying topos. Indeed, there are delicate points involving variations on the notion of
“internal category with finite limits” in a topos which it would be hard to steer through
without some understanding of the internal logic. So our advice to computer scientists has
to be not to try to avoid topos theory, but to try to learn it!

Ours are not the first models for the theory of constructions. First of course there is
the term model, features of which we understand well in view of the strong normalization
theorem [Coq1] which holds for the system. Then there is a whole class of models which
are based on sufficiently complete, internal categories in realizability toposes (see [HRR,
section 8). Here incidentally category theory provided the kind of insight we referred to
above in showing how to extend what were known models of higher order polymorphic
lambda calculus to models for the theory of constructions. Finally, there are models based
on models of a system of types with "Type:Type" and fixpoint recursion (see [Cd] and
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the references therein); these are derived from variants of the closure operator model
described by Scott in [Scl. It is these models which we feel that Girard was most
justified in criticising in [G2] for their ad hoc nature. We claim that our models can be
seen as “natural” substitutes (i.e. relatively free of coding) for the ad hoc models. (In
particular, it is the case that our models satisfy a version of “Type:Type" and support
initial fixpoint recursion both for Operators (including Types) and for Terms: we will
describe the modelling of "Type:Type" quite fully, but leave the discussion of recursion to

another occasion.)
The structure of the paper is as follows:

In section 1 we give a detailed description of the theory of constructions. The system
is presented in two tiers, each of which is a theory in the style of Martin-Lof, with rules
for sums and products of dependent types and also with unit type (which plays a crucial
role in the theory as we formulate it and is not there merely for aesthetic reasons). The
types of the top layer are called "Orders” and their elements (terms) are called
"Operators”, whilst those of the lower layer are "Types" and their elements "Terms". If
you will, the top layer consists of the "large” types and the bottom layer of the "small"
ones—although we will see through the models that the theory actually does not carry any
import of size. The connection between the two layers is provided by a particular Order
Type whose Operators are precisely the Types: in other words Type is the "Order of all
Types”. So far this amounts to a restricted version of Martin-Lof type theory (no equality
types, no finite sum types, no natural number type) with a single Martin-Lof universe. On
top of this we require not only the closure of Orders under Type-indexed products and
sums, but also the closure of Types under Order-indexed products and sums. The latter
property requires careful formulation (for the sum clauses) and is the aspect which makes
finding models rather hard. We enrich the basic theory of constructions by allowing
constants of various kinds and consider equational theories extending the basic theory. In
particular, at the end of the section we describe two extensions of the basic theory, one
with an "Order of all Orders” (1.11) and one where the Types and Orders are essentially
the same (1.12).

In section 2 we build up a description of the categorical structures needed to model
the theory of constructions: see 2.13 for a summary of what we require. it should be
emphasised that the aim (which we achieve) is to give a notion of model which is truly
general: the criterion for success is the familiar one in categorical logic—to have an
equivalence between a 2-category of theories (over the basic theory of constructions) and
a 2-category of suitable categorical structures. A fundamental part of this work is an
account (2.2) of a general category-theoretic semantics for the pure notion of "dependent
type” with no closure assumptions other than that of substitutivity. The semantics of sums
and products is then considered on top of this (2.4), leading to the notion of relatively
cartesian closed category (2.7 et seq.), taken from [Tal and which we see (in Proposition
2.6) generalizes that of locally cartesian closed category. We believe that this material is
of interest in its own right. It unifies previous work in this area by Seely [Sell, by
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Cartmell [Cal and more recently by Taylor [Tal. (We believe also that it encompasses
Obtutowicz's recent work [Obl, by applying an iterated version of the Grothendieck
construction to one of his hierarchies of indexed categories to obtain one of our relatively
cartesian closed categories. It is important for Obtutowicz that his structures are
(essentially) algebraic; however, ours are models of a particular lim theory and the latter
are in many respects just as well behaved as algebraic theories.)

The rest of the paper is devoted to describing our particular examples of the general
structure which emerged in section 2. These examples involve properties of internal
categories with finite limits in toposes (and the special case of internal meet semilattices).
In order to develop some of these properties we employ the "lim theories” of M.Coste
[Coll; the necessary material is reviewed in section 3. Then in section 4 we present the
model of the theory of constructions in which both Orders and Types are denoted by
algebraic toposes—by definition these are the Grothendieck toposes which are equivalent
to a category of presheaves on a small category with finite limits. The topos theory
needed to verify that we have a model is nearly all standard; the exception to this comes
when we prove (in 4.16) that the geometric morphisms which determine relative algebraic
toposes are closed under exponentiation by algebraic toposes—our proof requires some
work on “strictifying" lex fibrations (see 4.1 et seq.). Finally in section 5 we describe a
model in which the Orders are still denoted by algebraic toposes, but the Types are now
denoted by algebraic toposes which are also /ocalic. With one exception, the material we
need for this model is part of the well-developed theory of localic toposes. The exception
has once again to do with closure under exponentiation. We prove a purely topos-theoretic
result (Proposition 5.6) which as far as we know is new—namely that for each
exponentiable topos, exponentiation preserves geometric inclusions and localic geometric

morphisms.

Clearly this paper is only a beginning. Some extensions of the models, for example to
injective toposes and continuous lattices, appear quite straightforward. Others, such as
extensions to more general classes of toposes and domains, seem more problematic.
Frustratingly, we are still unable to use topos-theoretic machinery (such as the theory of
atomic toposes) to extend the Girard style models of polymorphism [G2]. There are also
problems with understanding the proper rules for weak equality types (it seems that there
is more than one notion), some of which are certainly interpretable in our models. Having
only weak equality types (and weak finite sum types) is an inevitable consequence of a
facet of our models which we have not addressed at all here, namely that they support
the interpretation of recursive Terms and Types. We believe that the proper handling of
these aspects of the models is part of the bigger problem, which we intend to address in
further work, of understanding how the 2-categorical (in fact, bicategorical) structure of

the models should be reflected in a richer syntax than the present one.

This paper emerged from the authors' joint interest in the “natural” model for
polymorphism given by Girard [G2]. We owe an important stimulus to Thierry Coquand
who, in the course of his work with Gunter and Winskel [CGWI on extensions of Girard's
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idea to more general "Berry domains”, noticed that by relaxing the definitions slightly, the
same idea worked for Scott domains. Coquand has since pushed these ideas further in a
concrete fashion—as has Lamarche [Lal, independently. A general notion of indexed
products for Scott domains had been considered by Paul Taylor in his thesis [Tal, but he
did not explicitly extend the notion to products over a base category. Thus in the air was
a model for the theory of Types (but not Orders) corresponding to the localic component
of the model described in section 5. Initially, the first author developed this part of the
model via the notion of internal aigebraic lattices in toposes. The second author took the
step of formulating things entirely in terms of the relevant toposes, from which the full
model (of Orders as well as of Types) emerged quite rapidly.

Finally we would like to pay tribute to the open atmosphere and spirit of co-operation
created by the mathematicians (Johnstone, Moerdijk, dePaiva, Robinson, Rosolini) and
computer scientists (Coquand, Gunter, Winskel) in Cambridge during 1986-87. All of them
commented in various ways on early versions of the ideas presented here; and they

contributed crucially to our understanding of what we were trying to model and how.

1 The theory of constructions

1.1. Introduction. in this section we are going to describe a syntactically rich version of the
theory of constructions of Coquand and Huet [CHI. This language is a natural amalgam of
Martin-Lof's predicative theory of dependent types [M-L2] and Girard's impredicative higher
order lambda calculus [G1l. We do not assume familiarity with these languages. Many
readers, whom we hope to interest in our semantics, will be familiar only with the syntax
of the predicate calculus and simple type theory. Hence we give a fairly leisurely account
of the formal syntax. We also refer the reader to Troelstra's careful account of the
syntax of Martin-Lof type theories [Trl.

In the interests of clarity, the well-formed expressions of the language are divided into
three levels: Terms, Operators and Orders. This is the practice in Edinburgh LF [HHPI,
which is a predicative fragment of the theory of constructions: there the corresponding
terminology is Terms, Types (misieadingly, as most expressions of the middie level are not
of kind “Type”) and Kinds. Coquand and Huet see their theory as (an extension of) the
proof theory of Church's theory of types [CIl. So their terminology is Proofs, Terms
(including Propositions) and Types. This interpretation is based on the idea that Propositions
are some special 7Types (but not all Types are Propositions).

To describe the syntax, we use metavariables K,L,M,... for Orders, metavariables
S,T,U,... for Operators and metavariables st,u,... for Terms. Types are Operators of
Order "Type” and we use metavariables A,B,C,... for them. In the Coquand-Huet
interpretation, their Propositions (= our Types) are explicitly a special case of their Types
(= our Orders). We find it conceptually helpful to keep the syntax for Orders and
Operators distinct from the syntax for Types and Terms. The similarities are such

however as to make it useful to have a generic notation. We will use P,Q,R,... to denote
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things which are either Orders or Types and correspondingly p,q,r,... to denote things
which are either Operators or Terms.

The system we describe has Operator variables XY, Z,... (which run over suitable
Orders) and Term variables z,y,z,... (which run over suitable Types). The notion of free
variable is standard and we assume the reader can supply the definitions as the syntax is
presented. We write FVIK), FVIS) and FWs) for the finite sets of free variables in an
Order K, an Operator S and a Term s respectively. As a generic notation for variables we
use £€,7,(,... .

We also assume we have a suitable notion of substitution of Operators and Terms for
free variables of given Orders and Types. We use the notation E (p/€) for the result of
substituting p for ¢ throughout the expression E.

The basic theory and extensions of it by axioms consist of sets of Judgements J,

made in contexts I'. We write these as
J 1.

All the variables free in a given judgement must be "declared” in the context T in which
the judgement is made. The well-formed expressions of the three levels, the judgements
involving them and the contexts (containing the variable declarations) in which the
judgements are made, are all defined together by a mammoth simultaneous recursive
definition. Such a definition presents problems of exposition. We explain the forms of
judgement and the notion of a context outside the recursive definition, and then give the
basic clauses of the definition in the style used by Martin-Lof [M-L21. So the general

form of a clause is:

U7 IR s o
J I

and its meaning is that if judgements of the form Jy ,....d, 5,1 are in our set, then

so is J [I'l. (Usually the reference to the contexts will be supressed.)

1.2. Forms of judgement. We adopt the conceptual framework of Martin-Lof type theory
M-L2]1. Thus a theory will consist of judgements (structural judgements) of the form

KeORDER, SeK, or seA
and judgements (equality judgements) of the form
K=LeORDER, S=TeK, or S=te A,

all made in suitable contexts. Part of the force of the structural judgements is that the
expression to the left of "e" is well-formed. indeed an expression is well-formed just by
virtue of appearing to the left of "€ in a structural judgement. Of course seA
presupposes that A is weli-formed, that is, that we already have the judgement Ae Type.
Similarly, SeK presupposes that K is well-formed, that is, that we already have the
judgement Ke ORDER.

A judgement of form KeORDER has no further force than that K is well-formed.
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Similarly a judgement of form K=LeORDER plays a relatively weak role in the theory.
There are no ORDER variables (as there is no level of syntax above that of ORDER) and
hence no question of “"the substitution of equals for equals”. In giving the formal rules of
the language we will write "K" for "Ke ORDER" and "K=L" for "K=Le ORDER".

However the "e" has greater force in the other judgements—generically of the form
peP and p=qeP. The judgement peP states not only that p is well-formed, but also that
P has a member (namely p). Thus in the Coquand-Huet interpretation, where A is a
proposition, the judgement se A presents a proof of A. It is worth stressing that while
equality judgements seern familiar, p=qeP is not an atomic proposition appearing in more
complicated ones in the theory of constructions. Equality judgements play a lively role in
the production of new judgements by "the substitution of equals for equals" and have the
force of "definitional” equality—for which see [M-L21. In extensions of the basic system
we may have the quite distinct notion of equality Types or Propositions: these will appear
in complex expressions. In the pure theory, equality judgements are generated by
“reductions”. That is, there is a direction to them and they form a rewrite system. A

strong normalization theorem can be proved (compare [Coqll).

1.3. Variable declarations. All judgements are made in a context which, as we will shortly
describe, is a structure on judgements of the form XeK or zeA, where X and z are

variables. Judgements of these forms, that is, judgements of the general form
§eP

are called variable declarations. If the judgement J is a variable declaration, we write ¢ J
for the variable to the left of "e"—the variable declared by J—and P, for the Order or
Type to the right of "e"—the kind of the declaration.

The need for variable declarations as an integral part of the language comes about as

follows. In a calculus of dependent types we have to consider judgements of the form
yeB(z) [reAl,

that is, y a free variable of type B(z) varying as z varies over A. Suppose now we wish
to substitute ae A for . We should obtain a free variable of type B(a). It is pointless to
attempt to mangle or decorate "y". After substituting, we must have yeB(a). Thus type
expressions can not be provided with their own inviolate collection of variables. An
expression must involve variables which have been declared to be of given type.

tn our version of the theory of constructions we are taking variables X.,Y.Z,... which
may be declared to be of given Order, and variables z,y,z,... which may be declared to be
of given Type. From the clauses of the recursive definition, the reader will see that the
variables of either level may depend on (that is, be declared in the context of) variables of
either level. (As mentioned in 1.1, Coquand and Huet regard their Propositions as special
cases of their Types and so do without this distinction between the variables at the two
levels.)

Once a variable has been declared it can be used to build up compiex expressions
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which appear in further judgements. The variable declaration forms part of the context for

these further judgements.

1.4. Contexts. We describe here a notion of context slightly more general than that used
by Martin-Lof [M-L2] or Coguand and Huet [CHI. For us contexts are certain partial
orders < on finite sets T' of variable declarations. We read "J<J," as "J; is a prerequisite
for J", or "J; is presupposed by J,", or “J; precedes J,".

If ©'=(I,) is a poset and JeI', write I'| ,=(T'|;,<) for the restriction of the partial

order < to
I ,=4) ={J'| J'sJ}

If JgT' write (ST)=((HT),¢) for the poset obtained by adding J as a greatest element
above all of I'; more generally, if ' and I are disjoint posets (I">I') will denote their
union, ordered so that everything in I'" is greater than anything in I'. Finally we write (J.I"
for a poset with J as a maximal element whose removal leaves the poset I.

Define I'=(I',<) to be a context if and only if:

(i) the elements of I' are all variable declarations and distinct variables are declared by
distinct declarations;
(#19) if Jel, then J (I, (the judgement J in the context [I'| 1) is a judgement of the
theory.
(It will be a consequence of the definitions that—in line with the discussion in 1.1 and
1.2—if T is a context and JeTI', then FWVIP,)C{& | J <J})

A context in Martin-Lof's sense is a linearly ordered context in ours. Given one of our
contexts (I',<), any extension of < to a linear order on I' will provide a more or less
equivalent context in Martin-Lof's sense. Martin-Lof's procedure is in harmony with the
way in which the lambda calculus reduces functions of many variables to functions of one.
As such it seems well-adapted to implementation. However, we have reasons for preferring
a more liberal notion, as we now explain.

Firstly, if one imagines the clauses of the recursive definition as providing natural
deduction trees leading to judgements, then the relevant variable declarations will sit at
nodes of the tree and a partial order will be induced in a natural way. This suggests
adopting the idea familiar from the predicate calculus that we can always regard an
expression as involving extra free variables. If a judgement can be made in a context, it
can always be made in a wider context. (So the notation J [I'] corresponds here to the
predicate calculus notation ¢(z) for a formula whose free variables appear in the list T.)
Secondly, we wish to allow for the introduction of constant Orders (Order constructor
symbols) with free variables. (Also we have constant Types with free variables, but as we
could in principle do without them, they are not so pressing.) It is natural then to have

constant Orders

K(& ..’ )

which depend on discrete contexts
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Lre Fbne Fpl.

(Compare with the introduction of predicate symbols in the predicate calculus.) In particular
there is no natural choice of total order on such a set of variable declarations.

However one regards contexts, one should think of the clauses in the recursive
definition as  defining the central notiom—namely the set of (correct)
judgements-in-contexts. When giving the clauses however, we will supress mention of the

contexts as far as possible.

1.5. General rules. In this section we display those clauses of the recursive definition which
do not involve particular operators on Orders and Types. We use notation from 1.1 and
1.2.

e scA Sek K
- 3 't S — —_—
eflezivity e S=Sek K=K

8 s=teA S=TeK =L
. t — —_

ymmetry t=scA T=SekK L-K

. s=teA t-ucA S=TeK T=UeK K=L L=M
c itivit S

ranstutty — S-UeK K=M

e seA A=BeType SeK K=L
. it

quanty scB Sel

s=teA A=BeType S5=TeK K=L
— S=Tel

We condense the next collection of rules by using our notation peP, p=geP for

judgements where P may be either an Order or a Type.

peP Il qeQ [T§eP>T]1  p=p'eP (I q=q'eQ (T'€ eP>I]

gp/€)eQ(p/€) M (p/€)>T1  g(p/€)=q"(p'/¢) eQp/€) (T(p/€)>T]

peP [Tl K [I"€eP>I1 p=p'eP [T K=K'[I'€eP>Il
K(p/€) (T"(p/€)>T1 K(p/€)=K'(p'/€) T"(p/€)>T1

- Substitution

Finally we give the rules for the declaration of variables and extension of contexts.

AeType [TI'] K [
zeA [ze A>T XeK [XeK>I']

(under the assumption z and X respectively do not appear in I')

+ Assumption

AeType Il J [IT">I'] Kl Jm»rnl
J zeA>T] J M, XeK>T
(under the assumption = and X respectively do not appear in I' or I

- Weakening

Remark. The Substitution, Assumption and Weakening clauses give rise to a general
principle of substitution which we now describe.

An interpretation of a context I’ in a context A consists of a function p associating
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to each judgement J in ' an Operator or Term p, (as appropriate) such that for each
Jell

pre PApy /&, 1 J'<J) [A]
is a judgement of our theory.

General principle of substitution. Whenever
J Il

is a judgement of our theory and p is an interpretation of T' in A, then
Jpy/& | J'el) [A]

is also a judgement of our theory.

1.6. Constant Orders. There is a distinguished constant Order, Type, the Order of Types,
and any number of other constant Orders which may be introduced at various stages of
the recursive definition. These latter partly determine the signature of the theory. A
constant Order has an "arity” given by Orders and Types for its (free) variables. The

collection of atomic Orders is formed from the constant Orders by general substitution.

o IR : Ord
ype is an Order Tupe

(That is, we make the judgement Type e ORDER outright.)

- Constant Ord
onstan raers L(§1,---r€n) (rl

(where all the variables §; are declared in IT')

Remarks.
(i) It is possible that in the Constant Orders clause, I' declares more variables than
appear in the list &;,....6,.
(i) Serious substitutions may make no visible difference to the main judgement. For

example, if we introduce
L(y) LyeB(z)>ze Al
and a is a closed term of Type A, then by substitution we get

L(y) LyeB(a)l.

1.7. The structure of Orders and Operators. Clauses giving the closure properties of
Orders (formation clauses) are naturally associated with clauses which give Operators or
Terms of respectively the Orders or Types involved (introduction and elimination clauses);
and these are naturally associated with clauses giving the fundamental equality judgements
associated with the Operators or Terms (equality clauses). So we simultaneously give
closure properties of Orders, of Operators and of Terms.

Orders are closed under "quantification” (that is, indexed sums and products) over

both Types and Orders. We give first the clauses relating to "quantification” over Types.
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- Unit clauses:

- formation —_—
1o
- introduction
()OEIO
l't TG.ZO
st T=Upelp
+ Sum clauses:
K [zeAT] A=AeType (Tl K=K [zecAT]
- t' ————
formation =T TzcA K= YzeA K [T
seA SeK(s/z) s=s'eA S=S'eK(s/z)
- introduction
(s,SYed.zeA . K (5,5)=(s",S"VeXxecA K
; TeYzeA.K T=T'eYzeA.K
. 1 y t' —_—
SHTHRANON T e A fst(D) =fst(T) c A
TeYzeA.K T=T'eYzeA.K
Snd(T) e K(fst(T) /) Snd(T) =Snd(T") e K(fst(T)/x)
l seA SeK(s/z) seA SeK(s/z)
. it
equanty fst((s,5)) =sec A Snd((s,5)) =Se K(s/z)
TeYzeA.K
(fst(T),Snd(TN =TerzeA.K
« Product clauses:
" K (zeATl] A=AeType (Tl K=K [zeATIl
formation T K T TlzeA K = [IzeA . K (T]
4 SeK [ze AT] A=A'eType [T'1 S=S'eK [zeATl]
- int ti
TUTOGUCEION N A . SellzeA.K I AzeA.S=AzeA S'ellzeA.K I']
; TellzeA. K seA T=T'e[lzeA. K s=gcA
. eliminati
SEIAECE 2R TseK(s/z) Ts=T's'eK(s/z)
; seA [Tl SeK [zeATIl] TellzeA.K
. 't
equaitty (AzeA.S)s=S(s/z)eK(s/x) AzeA.Tz=TellzcA.K

Now we consider the analogous clauses giving the closure of Orders under

"quantification" over Orders.

« Sum clauses:

L [XeKIT L=L' [T1 K=K [XeKTII
o t' —— e
formation SN Y XeK.L =3 XeK.L' (T]
SeK TeL(S/X) S=S'eK T=T'eL(S/X)
- introduction

(STreX XeK .L (STY=(S'TYeX XeK .L
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 UeXXeK.L U=U'e X XeK.L
'+ elimination  — T r Fst(U) =Fst(U") e K
UeY. XeK.L U=U‘eY.XeK.L
Snd(L) eK(Fst(@)/X)  Snd(L) =Snd(U") e K(Fst L)/ X0)
SeK TeL(S/X) SeK TeL(S/X)
"+ equality Fst(S,T)) =SeK Snd((S.T)) =Te L(S/30
Ue¥ XeK .L

(Fst(U),Snd(UN)=Ue Y. XeK.L

« Product clauses:

y L [XeKT] K=K' (Tl L=L' [XeKT]
Y CAR e NIX<K .L (I TIXeK.L = [IXeK'.L' (1
., Tel [XeKT] K=K' (Tl T=T'el [XeKTI
- int t1
T OGUCtOn ek . TeIIXeK.L I AXeK T=AXeK .T'e[IXeK.L (T
l UellXeK.L SeK UsU'e[IX<K.L S=S'cK
. climinati
ehrmination USeL(S/X) US=U'S'e L(S/X)
. SeK (Il Tel [XeKITI UellXeK.L
| equality (AXeK.T)S=T(S/3) e L(S/3) AXeK UX = UelXeK .L
Remarks.

(i) The only way in which we have varied the presentation from that of Martin-Lof
(M-L2] is in the elimination and equality rules for sum types. There we have followed
Seely [Sell and used constants for first and second projection rather than

“elimination” constants. The latter would involve using the following rules:

SeLzeA.K (T1 peP(z,X)/2) [XeK,zeA,Il
E(S,(z.X).p) e P(S/2) [T1]

S=S'eY.zeA.K [T p=p'ePUz,XV/Z) [XeK,zeA,T1I
E(S,(z,X).p) =E(S" (z,X).p) e P(S/Z) [I"]

seA Il SeK(s/z) [T] peP(z,X)/Z) [XeK,zeA,I']
E(s,S),(z,X).p) =pls/z,5/X) e P({s,S)/2Z) [I']

SeXzeA. K [T] peP [ZeXYzeA.K,I'
E(S(zX).p(x,X)/Z))=p(S/Z) e P(S/Z) [T]

for sums of Orders over Types and similar rules for sums of Orders over Orders.
This formulation is equivalent to the one we have given as regards equalities (though
not as regards reductions): in one direction we can define E(S,(z,X).p) to be
p(fst(S)/z,5nd(S)/X) and derive the above rules from the Sum clauses: and in the
other direction we can define fst(S) to be E(S/(z.X).z), Snd(S) to be E(S,(z.X).X)

and derive the Sum clauses from the above rules. (The first three of the above rules
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appear in [M-L21, where they are used to derive the rules involving “fst" and “Snd" in
the presence of rules for equality types. We do not introduce equality types here
because the models we are going to consider in sections 4 and 5 do not support

them—or at least do so only with very weak rules.)

(i1) As in [M-L2], we can have notations AxK and A-K for YzeA.K and [[zeA.K
respectively when z is not free in K; and notations KxL and K- L for Y. XeK.L and
[IXeK.L respectively when X is not free in K. Note that for any Type A, the Order
Axlp is “essentially equivalent” to A: up to provable equality, there is a bijective
correspondence between Terms of Type A and Operators of Order AXIn.

(iti) Strictly speaking, the notation (s,S),(S,T) for members of sum Orders, is not
satisfactory because of the ambiguity involved in K(s/z), K(S5/X). An unambiguous

notation is preferred by computer scientists (see [MiPI] for example).

1.8. Constant Operators. We can introduce any number of constant Operators of various
Orders at appropriate stages of the recursive definition. These partly determine the
signature. A constant Operator has “arity” given by Orders and Types for its (free)
variables. The collection of atomic Operators is formed from the constant Operators by

general substitution.

K 7
T(&;,....€,) €K [T

(where all the variables §; are declared in I')

- Constant Operators

Remark. It is worth noting however that there is no real call for constant Operators with

arities. For example, instead of introducing
T(z)eK(z) [zeAl

we can introduce
Te[lzeA.K .

Then the elimination clause for products will enable us to recapture T(z) as Tz. (Note
however, that there is one problem with this procedure. If ' declares more variables than
appear in T(§,....6,), we will want to declare explicitly that T is constant in some

arguments. We have to do this by adding appropriate equality axioms—see 1.10.)

1.9. The structure of Types and Terms. As for Orders and Operators in 1.7, so for Types
and terms here we have formation, introduction, elimination and equality clauses.

Just as for Orders, Types are closed under “quantification” (indexed sums and
products) over both Types and Orders: there is an important difference however in the
treatment of sums indexed over Orders. We treat first the clauses relating to

“quantification” over Types.
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- Unit clauses:

- formation m
- introduction —
ntroauctiion ()7~51T
! tELr
- .t —
sy t=Opely

« Sum clauses:

BeType [ze AT

A=AeType [T] B=FeType [zecAT]

- t'
formation & BeType (I YzeA.B = S.zeA’ BeType (T
J seA teB(s/zx) s=s'eA t=t'eBls/z)
- int ti
O~ eSzeA B (s.00=(st) e SzeA. B
o ue)reA.B u=u'eyzeA.B
clination fstiu)eA fst(u) =fst{u) e A
ueYzeA.B u=u'erzreA.B
snd(u) e B{fst(u)/x) snd(u) =snd(w’) e B(fst(u)/z)
l seA teB(s/z) seA teB(s/zx)
- 't
cquaity fst{{s,t)) =se A snd{(s,t)) =te B(s/z)
uey.xeA.B

{fst(u),snd(u))=ue.zecA.B

- Product clauses:

BeType [zeAT]

A=A'eType [Tl B=BeType [ze ATl

[IzeA.B=T]zeA". BeType [T]

A=A'eType t=t'eB [zecATl
AzeA.t = AzeA'.t'e]lzeA.B [I']

u=u'el[lreA.B s=s'cA

us=u's'e B(s/x)

uellzeA.B

. t‘

formation [lzeA.BeType (']

S—— teB [ze AT

HTHTOGUCTION N 7eA tellzeA . B T

: uellrzeA.B seA

. eliminati

elimination wocBo/ D)

seA Tl teB [ze AT

- equality

(AzeA.t)s=t(s/z)eB(s/T)

AzeA.ux =uellzeA.B

Now we treat the clauses giving the closure of Types under "quantification”

Orders.
- Sum clauses:

AeType [XeKT1]

K=K [Tl A=AeType [XeKI]

- formation

2 XeK.AeType (I']

2 XeK. A=Y XeK . A [T

over
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SeK seA(S/X) S=S'eK s=s8'eA(S/X)
(S,s) et XeK.A (S,5)=(S",shet XeK. A

- introduction

ser.XeK. A [T] teBUX,z)/2) [zeA XeK I
E(s,(X,x).t) e B(s/z) [T']
s=s'e)XeK.A[T] t=teBUX,x)/z) [zeA XecK I
E(s,(X,z).t) =E(s",(X,z) .t) e B(s/2) [T']

- elimination

SeK [T] seA(S/X) [T] teBUX,x)/2z) [zeA XeK I']
E(S,s),(X,x).t) =t(5/ X,s/ x) e B{S,8)/2z) [T']

ser XeK.A[T] teB [ze) XeK.AT1]

E(s,(X,z).t((X,z)/2)) =t(s/z) e B(s/z) [I']

- equality

» Product clauses:

AeType [(XeK I1] K=K [Tl A=A'eType [(XeK II]
- formation
[IXeK.AeType [T [IXeK.A=]XeK'. A'eType [I']
7 seA [XeK I} K=K [I'l s=seceA [XeKTI]
- int ti
ITUTOGUCHION N XeK .sel1XeK .A [T] AXeK .5 = AXeK'.§ e[IXeK . A [T]
; te[[XeK.A SeK t=te[[XeK.A S=S'e¢K
- y 1 t'
EHTTINAOn T S e AS/20) tS=t'S'c A(S/X)
seA[XeKT] SeK (I'] te[lXeK.A

: lit
equaiity (AXeK.8)S=-8S/X) e AS/X) [T1 AXeK.tX =tellX<K.A

Finally, we can introduce any number of constant Terms at appropriate stages of the
recursive definition. These partly determine the signature. A constant Term has "arity”
given by Orders and Types for its (free) variables. (The remark we made in 1.8 about
constant Operators with arities applies equally well here to constant Terms.) The collection

of atomic Terms is formed from the constant Terms by general substitution.

AeType [T']
J&,....6n) e A [I']

- Constant Terms

Remarks.

(i) In the formulation of "quantification” over Orders, the clauses for sum elimination and
equality resemble those famiiiar from Martin-Lof's presentations (with the exception of
the last equality rule—cf. Remark (i) in 1.7). But the two different levels of "types"
(Types and Orders) introduce a subtle distinction at this point. We are referring to
the fact that in the elimination and equality clauses for sums of Types over
Orders, B is only a Type and not an Order. Consequently it is not even possible to
define a first projection "Fst" as we did in Remark (i) of 1.7, so that the rules given
are no longer equivalent to a formulation involving projections. (We will discuss in 1.1
what happens if one strengthens the rules by replacing B by an Order K.

Nevertheless, the sum rules we have given are still strictly stronger than those in
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Girard's original formulation of higher order lambda calculus (and so also stronger than
the eguivalent formulation in [MiPID): we will explain why when we discuss their

category theoretic interpretation in 2.12.

(i1) Just as in the case of quantification of Orders, we writt AxB and A-B for
2zeA.B and JlzeA.B respectively when z is not free in B; and similarly write KxA
and K-+ A for Y XeK.A and [[XeK.A respectively when X is not free in B. In
particular, we can associate to any Order K a Type Kxl- Unlike the situation in 1.7
for Types (where the stronger Sum clauses imply that the Type A is essentially
equivalent to the Order AXIp), it is not the case that K is essentially equivalent to
K'x 1. Rather, the process of sending K to KxIr sets up a reflection of Orders into
Types: this will be discussed further in 2.12.

(ii1) Occurences of the variables X,z in t are bound in the elimination term
E(s,(X,x).t)—that is, FVE(s,(X,x).t))=FVt)\{X,z}UFV(s). The notation we use for

this elimination term is Martin-Lof's; it is sometimes written as
let (X,z)be sint

which conveys its intended meaning better, but is a less convenient notation in

compound expressions.

1.10. Theories. We have now described the basic theory of constructions. A theory over

this basic one is obtained essentially by adding as axioms equality judgements of the kind
S=TeK or s=teA

(but not of the kind "K=L"——see the Remark below). Thus if we have for example
seA [Tl and teA [TJ in the basic theory, then

s=teA [I']

is a possible axiom. However, the recursive definition of judgements means that the
situation is more complicated. By adding equality judgements as axioms, one generates new
structural judgements which lead to the possibility of new equality judgements as axioms.
So a theory T should consist of an ordinal indexed family Tq Of sets of judgements such

that for each
p=qeP [T]
in T,, the judgements
peP [I'] and geP [T]

are derivable from the basic theory of constructions plus the axioms in LK 81 Bcal.

Remark. Note that we are specifically excluding the possibility of having equality judgements
of the form "K=LeORDER" in our theories. This means that the weak, definitional role

played by this form of judgement in the basic theory is carried over to equational
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extensions. What we gain by this restriction is the possibility (outlined in 2.7 and 2.13) of
a perfect correspondence between theories and instances of the kind of categorical
structure to be described in the next section. Moreover, there is littie loss of expressive
power since the equality "K'=L" can be simulated by an isomorphism K=[—by introducing
Operators Se(K-L), Te(L-K) together with axioms saying that S and T are mutually

inverse. This technique is used in the following extension of the basic theory:

1.11. Theory of constructions with "Ordere ORDER". We introduce a constant Order
Order together with rules that make it a universa/ Order, or "Order of all Orders".

Specifically we introduce constant Orders and constant Operators as follows:

K Il
Order O(X) [XeOrder] T3(&) e Order (I']
K Il K I

where £=¢£,,....§,, are the variables in the maximal declarations of I'. Then whenever

K [T'] is derivable, we introduce the axioms:

Jie () I (©)X) = X e OTyl D)) [X e O(Tyl&)), T
and Y = (8) (U (§)Y)eK [YeK,I1.

Thus Order is an Order of "names” of Orders: O(X) is the Order named by
XeOrder and for each Order K there is a name TxeOrder whose corresponding Order
O(Tg) is isomorphic to K via Ix and Jg.

Of course this extension to the theory of constructions has some very odd
consequences. For one thing we can carry out Girard's Paradox in it (see [Coq2]) and
hence in particular every Order possesses a closed Operator. However, the system is very
far from being contradictory (in the sense of all Operators of any particular Order being
provably equal). Iindeed the topos-theoretic models which we present in sections 4 and 5
are both very rich models of the theory of constructions with "Ordere ORDER". Moreover
it is possible to make an even more radical extension of the theory without entailing

contradiction:

1.12. Theory of constructions with "Type «ORDER". We now consider what happens if we
strengthen the basic theory of constructions by replacing the Type B by an Order X in the
elimination and equality clauses for sums of Types indexed over Orders in 1.9. The
resulting system does extend the original one because of the correspondence of Terms of
Type B with Operators of Order Bx], noted in Remark (i) of 1.7. We call the
strengthened system the theory of constructions with "Type ~ORDER" for reasons which
we now explain:
First note that Remark (i) of 1.9 no longer applies and we can now define

Fst(s) = E(s,(X,x).X) and snd(s) =E(s,(X,z).x)
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and derive elimination and equality rules for YXeK A entirely analogous to those for
YzeA.K in 1.7. As a consequence we get a bijective correspondence up to provable
equality between Operators of Order K and Terms of Type KxIr. In fact the collections
of Types and of Orders can essentially be identified, since the operations

AeType — AxlpeORDER ~ and  KeORDER > Kx lr-e Type

establish an equivalence between Types and Orders: A is naturally isomorphic to
(Axlp)xk and K is naturally isomorphic to (KxIr)xIls. One consequence of this
identification of Types and Orders is that there is a wuniversal Order, namely
Order =Type. In other words the theory of constructions with "Type ~ORDER" manages
to model (in a very strong way) the theory of constructions with "Order e ORDER".

Note also that the Type (TypexIr)eType acts as a “type of all types" since the
Terms of Type Type X Ir correspond bijectively up to equality to Operators of Order Type,
that is, to Types. So the theory of constructions with "Type ~ORDER" also models a
theory “"typeeType" of a universal Type which is like 1.11 "moved one level down" and
which we do not give explicitly here.

Despite its strength, the theory of constructions with "Type~ORDER" is not
contradictory. We will see in section 4 that the algebraic toposes provide a highly

non-trivial model of this theory.

2 Categorical interpretations of type theories

2.1. Introduction. Our aim in this section is to give a plausible explanation of what
categorical models of the theory of constructions look like. The fundamental idea behind
categorical models of simple type theories is that the objects of a category will model the
types of a theory, while the morphisms will model the terms. (One of the simplest
significant cases is the well-known connection between the typed lambda calculus and
cartesian closed categories; this is explained very fully in the book of Lambek and Scott
(LS].) When one attempts to model more complicated type theories, especially those
involving dependent types, then this fundamental idea of objects for types and morphisms
for terms needs some elaboration. Therefore we first give a description of categorical
models for calculi of dependent types.

This serves to describe models for the pure theory of Orders and Operators and for
the pure theory of Types and Terms. However, Orders and Types are not independent of
each other. In the first place we can take sums and products of each indexed over the
other; and secondly, Type is an Order. Therefore we successively add on features required
to model these ways in which Orders and Types interact, finally obtaining a complete
description of categorical models for the theory of constructions.

Whilst our explanation of categorical models for the theory of constructions is based
upon a categorical explanation of Martin-Lof type theory, there are many other interesting

fragments of the theory of constructions whose categorical models we do not consider
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separately. (Explaining the models for a stronger system does not entail explaining the
models for a weaker one.) In particular we regret not being able to comment usefully on
models for the second and higher order lambda calculus. The reader will find accounts of
categorical models for these calcuii in [Se2] and [Pi2].

in the final part of this section we indicate what is required to model the extensions

of the basic theory of constructions considered in 1.11 and 1.12.

2.2. Dependent types. Martin-Lof type theory is a calculus of dependent types, so before
we can consider the rules for unit, sums and products we must explain how that notion is
to be modelled categorically. So let us restrict our attention to that part of the theory
presented in section 1 which is concerned with the pure theory of Types and Terms,
without unit, sums or products. This leaves the general rules for Types and Terms (part
of 1.5), together with rules for introducing constant Types (special case of 1.6) and
constant Terms (last part of 1.9). We could just as well restrict to the pure theory of
Orders and Operators. To use Cartmell's terminology [Cal, this is the "generalized
algebraic” fragment of Martin-Lof's theory of dependent types.

Cartmell [Cal, Obtutowicz [Ob] and Seely [Sell have given accounts of categorical
models for calculi of dependent types. As we will explain shortly, Cartmell's notion of
“contextual category” is too rigid for our purposes; and Obtuiowicz's notion (involving a
hierarchy of indexed categories) is for us unnecessarily general. The notion we need can
be obtained by adapting the analysis in [Sell. We consider the following category-theoretic

structure:

A category B with finite products. (The product of objects [/ and J in B will be
denoted IxJ with projection morphisms w,:/xJ——[ and w,:[/xJ——J; the terminal
object in B will be denoted 1.)
A collection A of morphisms of B satisfying the following condition:

Stability. /f a:A— 1 is in A, f:J—[ is in B and

B——A

_
b a

J—1

f

is a pullback square in B, then b:B——J is in A; moreover there is a pullback

square for each such a and f.

Note that we are not assuming that B has a// pullbacks. A should be regarded as the
class of objects of a full subcategory, A—B2, of the arrow category B2. Composing with
the codomain functor cod:B2——B we obtain a functor A——B which is a categorical
fibration (cf. [B21). If B does in fact have all pullbacks then cod:B2——B is itself a

fibration and we have a full and faithful cartesian functor over B:
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e

From this point of view A determines a "full subcategory of B as seen from B"—although
not necessarily a "definable” full subcategory in the sense of [B2]. Even if cod:B2——B
is not a fibration, it is convenient to say when A satisfies the Stabllity assumption above
that

A is a full subcategory of BZ over B.

We need some notation related to the category-theoretic structure just described.
Recall that the slice of B by an object I, denoted B/I, is the category whose objects are
morphisms in B with codomain [ and whose morphisms are commutative triangles in B with

vertex [. For each object / in B, we write
Al

for the full subcategory of B// whose objects are the morphisms with codomain / which lie
in A; this is precisely the fibre over [ of the fibration A——B. Note in particular that we
can identify B/7 with B, in which case A(!) becomes a full subcategory of B in the usual
sense: its objects are those /eB for which the unique morphism [——1 is in A. Given

f:J—>I in B, we write
5A—A)

for the pullback functor. We are tacitly assuming that a choice of such pullback functors
is given along with the information specifying A (which is to say, in the language of
fibrations, that A——B is a "cloven” fibration); but note that the way we have phrased the
Stability condition implies that we can compose a morphism in A with an isomorphism on
either side and still remain in A. We use the above notation for pullback functors rather
than the more usual " f* " only because in sections 4 and 5, f will be a geometric
morphism between toposes, in which case " f* " conventionally denotes the inverse image
part of f. However, applying the functor f* to an object A——1 of A(l), the domain of
the resulting object of A(J) will as usual be denoted by Jx;A; in other words our
standard notation for a pullback square in B is:

JxgA—— A
_

fAa) a

J——7

f

We now indicate in general terms how a category B with finite products equipped with
a full subcategory A——B2 over B in the above sense, serves to interpret the calculus of
dependent types. The interpretation is based upon having a “structure” in B for the
language—in other words, having a particular choice of interpretation for the constant

Types and Terms: a constant Type of arity n is interpreted by a morphism in the class A
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of the form J—>[ x..x I, ; and a constant Term of arity n is interpreted by a morphism
in B of the form [, x..x[,—J. (In case n=0, this means that a constant Type which is
dependent on no variables is essentially interpreted as an object J of B, but one for which
the unique morphism J—1 is in A; and a constant Term depending upon no variables is
interpreted as a global section I——J of an object in B.)

As formulated in section 1, the calculus consists of a collection of rules for deriving
judgements (in contexts) about certain expressions. These judgements-in—context not only
assert the typing and the equality of expressions, but also tell us which expressions are
well-formed; moreover, these three kinds of assertion are built up simultaneously by mutual
recursion. Therefore, it is not possible first to give a recursive definition of the
denotations of well-formed expressions as objects and morphisms of B and then to give a
recursive definition of when the various kinds of judgement are satisfied by the categorical
structure. Instead one has to give a single definition by recursion on the derivation of a
judgement of its satisfaction and (depending on the form of judgement) of the denotations
of its constituent expressions which are used to express this satisfaction. We consider
what is involved for each form of judgement in turn:

A judgement of the form AeType [I'] has the force that, in the context I', A is a
well-formed Type. Its satisfaction then amounts to having built up a morphism in A of the

form
[Al— =4, I:[,I[AJ]]

where the codomain is a (finite) product indexed by the maximal elements J of the context
I’ and A; is the Type of the variable declared in J.

A judgement of the form A=BeType [I']l has the force that, in the context I', A and
B are equal (well-formed) Types. It is satisfied if LAJ——[I'1 and [B1—[I'] are equal
morphisms in A.

A judgement of the form se A [I'] has the force that s is a (well-formed) Term of
Type A. As all relevant variables appear in the context I', the satisfaction of the

judgement amounts to having built up a morphism
Ls):[r1— LAT

in B which is a section of the A-morphism [A1——II'1 (that is, whose composition with
this morphism is the identity on [I'l.)

Finally, a judgement of the form s=teA [I'] has the force that s and t are egual
Terms of Type A. It is satisfied if [sI:[T1T—LAJ and [t1:IT3——L[AT are equal
morphisms in B.

The actual clauses of the recursive definition of satisfaction of judgements are rather
straightforward for the pure theory of dependent types which we are considering at the
moment: the only significant rule is that for Substitution and this is handled using the
pullback functors f“. (Contexts and variable declarations are handled by finite products and

projections, as above.)
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2.3. Remarks.
(1) The idea of using a special class of morphisms closed under (at least) pullback is not

new. For exampie Bénabou's notion of a "catégorie calibrée” in [B1l is the above
notion with the addition of the condition for Sums from 2.4 and a further condition
(his (P3)) which makes the special class of morphisms like a class of local
homeomorphisms. Our approach was inspired by the notion of "display map" in Taylor's
thesis [Tal, which is essentially our notion with the addition of the Unit and Sums
conditions from 2.4 and the Display condition from 2.7.

(i1) The idea of a special class of maps is also the basis for Cartmell's contextual
categories in [Cal. Cartmell has a canonical choice of morphisms in A to represent
the dependent types. Up to equivalence of categories, there is not much to choose
between the two approaches. A contextual category gives rise to one of our
subcategories (also satisfying the Unit, Sums and Display conditions below) just by
closing the set of canonical morphisms under isomorphism. On the other hand, one of
our subcategories (satisfying Unit, Sums and Display) can be "unravelled" to give an

equivalent contextual category with the necessary canonical choices.

(1i9) The version of Martin-Lof type theory which Seely models has equality types and
strong rules for equality as in [M-L1], as well as strong rules for sums. Equality is

interpreted via equalizers in the category. It follows that every morphism
[s1:LCT—> AT

in B interpreting a term s can be thought of as also representing an indexed family
B(z) [zeAl

of types over A: one simply takes B(zx) to be
2yeC. L(s(y),z) .

where I, is the equality type for A. (See Sublemma 3.2.3.2 of [Setl.) So in this case
every morphism of B should be in A. Without strong equality types—which we
emphatically do not have in the topos-theoretic models presented in sections 4 and
5—one does not have this phenonomen. On the other hand, as we explain below, we

are still able to model indexed families
Blz) [zeAl

by morphisms [B(z)3——LAl1 (in A) which also represent terms (“first projection” in

this case).

2.4. Martin-Lof type theory. We take the basic rules of Martin-Lof type theory to be the
Unit, Sum and Product clauses for "quantification" of Types over Types as given in 1.9.
(in his usual presentation, Martin-Lof has the unit ruies appearing amongst the rules for
finite types. We regard them as an essential part of the system: they denote an essential

part of the semantics—cf. 2.8.)



THE THEORY OF CONSTRUCTIONS 159

The theory of constructions contains two instances of these basic rules: one in 1.7 for
the pure theory of Orders and one in 1.9 for the pure theory of Types. We now consider
what properties of a full subcategory A of B2 over B (as introduced in 2.2) are needed to
model the basic rules.

For the Unit clauses, firstly formation gives us an object [#-1 in B for which the
unigue morphism [HFI——>1 is in A; and introduction gives us a morphism
[O7d:1— L1 in B which is a section of [4-1—1, i.e. is a right-sided inverse for it;
but finally, equality implies that it is actually a two-sided inverse—since we can apply the
clause in the context I'=[xeld (for which [ErI=[#1), to conclude that
7 :[FIx[i-1—II'] has a wunique section and hence that [H1——1—[i1 is the
identity. So we conclude not only that [/-1 is isomorphic to the terminal object of B, but
also that A contains an isomorphism with codomain 1. Because of the Stabllity condition in

2.2, this is equivalent to requiring:
Unit. A contains all the isomorphisms of B.

Turning to the Sum clauses, categorically, indexed sums provide (stable) left adjoints
to pullback functors. Suppose that f:[B(z)1I——LA] is the morphism in A interpreting
B(z) [zeAl. Then the left adjoint f, to f* corresponds to taking

Clz,y) [yeB(z)>zeAl
to
2yeB(z).Clz,y) [zeAl .

So we need left adjoints
Fi:AJ)—>A(])

to the pullback functor f*:A(l)—A(J) for all morphisms f:J——] which are in A.
However, the rules for sums give something more. We have of course the unit of the

adjunction, which syntactically is essentially
zeClz,y) — (y,z) e LyeB(z) .Clz,y)
and makes the diagram

[C(z,y)1I—> [ XyeB(z) .Clz, ¥

[B(z)}——[A]

commute. “"Snd” provides an inverse for this map, so it is an isomorphism. Consequentiy
the indexed sums in A should be the standard ones given by composition. (If the puliback
functor f¥:B/[—>B/J exists, then it automatically has a left adjoint given by composing
with f:J—1.) Then the expected "Beck-Chevalley” condition comes for free—namely
that if
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is a pullback square in B with f (and hence also k) in A, then the canonical natural
transformation k;eh® ——g®: f, is an isomorphism. So the Sum clauses are covered by

the assumption:
Sums. A is closed under composition.

Categorically, indexed products provide (stable) right adjoints to pullback functors. Thus

as we argued above, we expect to have right adjoints
Su:A(J)—A(D)

to f¥ for all morphisms f:J—] which are in A. We will write
Ix(B)

for the domain of the object of A(/) resulting from the application of S« to an object
B——J of A(J). In contrast to the case for sums, we have to give an explicit condition

for stability (which is needed to model the behaviour of products under substitution):

Beck-Chevalley condition. /f (2.1) is a pullback square in B with S (and hence
also k) in A, then the canonical natural transformation g%e fa——keoh® is an

isomorphism.
Thus the assumption needed to model indexed products is as follows:

Products. For all f in A, we have a right adjoint f. to ¥ which satisfies the
Beck-Chevalley condition for pullbacks in B (along arbitrary morphisms).

It is useful both conceptually and technically to have an equivalent formulation of this

condition. First we give a preliminary result:

2.5. Lemma. Suppose that A is a class of maps in a category B satisfying the above
conditions of Stabllity, Unit, Sums and Products. Then the functor [« preseves morphisms

which are in A.

Proof. Suppose we are given the following commutative diagram of morphisms in A:
c—< 5
N ‘/)

J——F>] .

f
We have to show that IIs(g) dI(C)——>TI(B) is in A. Form the pullback squares
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1J el -
C’T——> B falb)

|

J—————— 1

f

where €:f%f.(b)—b is the counit of the adjunction f¥ 4 f, at b. Note that p and A are
both in A (because f and g are): hence we can form pa(h) :I(D)—II+(B) in A(T1,(B)).
We claim that p.(h) is isomorphic to Hs(g) in B/IIx(B), which is sufficient to show that
the latter is in A, bearing in mind our remark in 2.2 about the closure of A under
composition with isomorphisms.

Whilst it is possible to prove this claim purely categorically, it is both easier and more

iluminating to argue type-theoretically. So suppose that

f:J—1 denotes the type J(@) Ciell
b:B—>J denotes the type Bli,j) [jeJ(i)>iel]
and g:C—B denotes the type Clij.b) [beB(ij)>jeJ(i)>iel] .
Then fa®):I(B)—>I  denotes [[jeJ(i).B(i,j) [iel],
and fale) :IAC)—I  denotes
(2.2) [ljeJ(i) . XbeB(i,j) .Cli,5,b) [iell .

Moreover, II¢(g) is the morphism corresponding to
(2.3) ze[ljeJ(i) . XbeB(i,5) .Cli,j,b) — AjeJ(i) .Fst(z(j)) e [IjeJ (i) . B(4,5).

By construction  h:D——Jx/I«(B) denotes C(i,j't(j") [j'e J(i),telljet(i).B(i,j)>ie]],
so that Paolh) M (D)——I1x(B) denotes [lj'eJ(i).C(i,j't(;) [tellje(i).B(i,5)>iel]
and hence the composition f,(b)ep,(h) denotes

(2.4) Ste([ljeJ®) . B)) . ljeJd) .CH7, tG") Tiell

But by Martin-Lof's form of the Axiom of Choice, the types in (2.2) and (2.4) are

isomorphic over [; indeed the isomorphism is given in one direction by

(2.5) ze[ljeJ() . ZbeB(i,) . C(i,j,b) > (A\jeJ(i) .Fst(z(j)) , A\j'eJ(i) .Snd(z()))

(cf. IM-L11, page 173) and in the other by

(2.6) w e Yite([ljeJ(d) . B, ) . Tl 'eJ(i) .C(i,5,t(j ) —— Aje(d) . (Fstw)j, (Sndw)j).

Since the composition of (2.5) with the first projection is the map in (2.3), the
interpretation of (2.5) and (2.6) give the required isomorphism between He(g) and p.(h)
over Il#(B).

a

2.6. Proposition. Suppose that A is a class of maps in B satisfying Stablility, Unit and
Sums. Then the condition Products /s equivalent to the combination of the following
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conditions:

(1) each A(D) is cartesian closed;
(i{) for each f in B, f* preserves the cartesian closed structure;
(1)) for any a:A——1 in A, the exponential functor (a-;-):AI)——A(l) preserves

morphisms which are in A.

Proof. First note that if A satisfies the Stabllity and Sums conditions, then each A(J) has
binary products given by pullbacks over [; and if A satisfies the Unlt condition, then
idy:[— [ is a terminal object in A(/). If A also satisfies the Products condition, then we
can calculate the exponential (a-;b):(A~;B)——>] of a:A——7] and b:B——7] in All) as
a.(a®(®)) :II;(Ax;B)—> I, so we have (i). Moreover, the Beck-Chevalley condition ensures
that these exponentials are preserved under pullback, so we have (ii). Finally, since A
satisfies the Sums condition, then by Lemma 2.5 (a-;-) = a.(a®(-)) preserves morphisms
in A (since the pullback functor a® always does).

Conversely, suppose that A satisfies Stabllity, Unit, Sums and conditions (i) to (ii{).
Given f:J——I and b:B——J in A, then by the Sums condition fb is also in A and we
can regard b as a morphism fb——f in A(I). Then by (iif), (f-;b): (f2rfO)—>(f~>,f) is
given by a morphism which is also in A. Hence we can form the following pullback square

in B:
nf(Bil ———(J~B)
l J(J—*,b\(f—:, £b)

[ —— (> )]
Tz ¢ (f=rf)

where m;:id——(f~/f) in A(]) is the exponential transpose of the isomorphism
w,:idyXpf 2 f. Thus the morphism He(B)—/is in A and a simple calculation shows that
it has the correct universal property to be fe(b). The fact that these right adjoints to
pulling back satisfy the Beck-Chevalley condition foliows from this recipe for their
construction together with condition (i{).

a

When A consists of all the morphisms in B, then the above proposition reduces to the
equivalence of two well known characterizations of locally cartesian closed categories. This

justifies the following terminology, which we have borrowed from [Tal:

2.7. Definltion. A relatively cartesian closed category (or rccc, for short) is a category B
with finite products equipped with a distinguished class of morphisms (called the display
morphisms of B) satisfying the conditions Stabllity of 2.2 and Unit, Sums and Products of
24. A morphism of rccc's is a finite product preserving functor which sends display
morphisms to display morphisms, preserves pullbacks of display morphisms along arbitrary
morphisms and preserves the right adjoints to pulling back display morphisms along display
morphisms. We will iet RCCC denote the 2-category whose objects are rccc's, whose

morphisms are rccc morphisms and whose 2-cells are natural transformations.
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The situation for rccc's is almost analogous to that in [Sell, where an equivalence is
established between locally cartesian closed categories and theories (in the sense of 1.10)
over Martin-Lof type theory with unit, products and strong rules for sums and equality
types. Here we are considering theories without equality types. A model of such a theory
T in an rccc B is given by an assignment of display morphisms to the constant Types and
morphisms to the constant Terms in such a way that the judgements which comprise the
axioms of the theory are all satisfied in the rccc; this is a sound notion since one can
show that any judgement derivable from the axioms using the rules is also satisfied.
Defining an appropriate notion of homomorphism of models, we get a category Mod(T,B) of
models of T in B. If F:B——B' is an rccc morphism, then it sends T-models in B to
T-models in B’ and gives a functor F, :Mod(T,B)——>Mod(T,B’); similarly each natural
transformation ¢:F——F' between rccc morphisms induces a natural transformation
& :F,—F, . In this way we get a 2-functor Mod(T, -} from RCCC into the 2-category
of categories, CAT. The fundamental observation is that, in an appropriately bicategorical

sense, this 2-functor is representable:

Theorem. for each theory T there is an rccc B(T), called the classifying category of T,
and a model M~ of T in B(T), called the generic model of T, with the property that for

any rccc B the functor
(-), (M) : RCCC(B(T) ,B)——> Mod(T,B)

is an equivalence of categories.
a

The construction of B(T) is simplified by the presence of the rules for dependent
sums, since as we remarked in 2.3(iii), it follows that we can take every morphism to be
represented by a term. So we can take the objects of B(T) to be the closed types in T
and the morphisms to be egivalence classes of closed terms, under the equivalence relation
of provable equality in T; the display morphisms are those which are isomorphic to first
projections, Fst:XaeA.Bla)— A.

Classifying categories enable us to give a very general notion of interpretation of one
theory in another—by defining an interpretation of T in T' to be a model of T in B(T’);
similarly we can give a notion of modification between interpretations in terms of
homomorphisms between models in the classifying category. This gives the collection of
theories the structure of a bicategory (cf. [B31), MLTT, in such a way that
B(-):MLTT——RCCC is a fully faithful homomorphism of bicategories. The essential image
of this bicategory homomorphism consists of those rccc's which are equivalent to the
classifying category of some theory: this does not include every rccc for the following
trivial reason. Suppose that B is an rccc and A is the class of display morphisms in B. If
for each nelN we introduce symbols for n-ary constant Types for each morphism
A—>[x--xL, in A and symbols for n-ary constant Terms for each morphism
Ix-xL,——J in B, then there is an evident theory Tg whose derived judgements are just

those satisfied in the rccc. The canonical model of this theory in B induces a full (because
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of Remark 2.3(ii{)) and faithful rccc morphism B(Tg )—B. Its image consists of those
objects of B which denote closed types: these are the objects B for which the unique
morphism B—=1 is in A. We therefore impose a further condition on A, namely:

Display. For each object B of B, the unique morphism B——1 is in A.
For the rccc's satisfying this added condition we have that B(Tg) ~ B and thus have:

Corollary. The classifying category construction B(-) induces an equivalence of bicategories
between MLTT and the 2-category of rccc's which satisfy the Display condition.
O

Remark. The condition Display in the presence of Stability, renders redundant some of our
other assumptions about B and A. For one thing it implies that B has binary products,
since these are given by pullbacks over the terminal object. It also says in particular that
the unique morphism I—1 is in A: but that morphism is necessarily the identity on I
and so by Stability, all isomorphisms are in A—in other words the Unit condition holds

automatically.

2.8. Absoluteness of indexed products. In our discussion of indexed sums we justified the
assumption that these sums should agree with the corresponding sums in B2——B (j.e. be
given by composition in B). We will shortly consider a case (in 2.12) where this assumption
is not justified. It is instructive to see why the corresponding question does not arise for
indexed products.

Suppose that B has finite products and that

A1\ / i
B
is a full embedding of full subcategories of B2 over B which contain the terminal object
(so that A, and A, as classes of morphisms of B contain the isomorphisms). Suppose also
that C is a class of morphisms in B satisfying the Stabllity condition of 2.2. (Thus,

although we do not wish to look at it this way, C——B is also a full subcategory of B2

over B.) Then we have:

Proposition. /n the above situation, if A, and A, both have indexed products along maps in
C satisfying the Beck-Chevalley condition for pullbacks along arbitrary morphisms in B, then

these indexed products agree (up to isomorphism) on A,.

Proof. For f:J—1 in C, let fala) : Me(A)—>I and “fula) :ZI(A)—>1 respectively
denote the value at a:A——J of the right adjoints to the pullback functors
oA —>AL) and A —A(]). |

Suppose that y:Y——J is in A,(J). Then we have a natural comparison morphism

K2 MA(Y)— 2IL(Y)

such that for all z:Z——/ in A(I), composition with & induces a bijection
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B/I(z, fuly) = B/ Kz,3f .(y).

Let us write h:?I(Y)——I for %f.(y) and form the pullback square:

—3 521

Jl
h

I .

We deduce from the Beck-Chevalley condition that h®(k) is (isomorphic to) the comparison

~

p

“EeEe——

_—
f

morphism
T (p*Y) — 7 (p"Y) .

Hence for all w:W—— ZII(Y) in A(®II,(Y)), composition with h*™K) induces a bijection
B/ZIL (V) (w, h*fut) = B/AY)(w, h*(3fuy)),

that is, composition with K induces a bijection
B/(hw, f.(y) = B/I(hw,?f(y)) .

Taking w to be the identity on zl'lf(Y) (which is in A, by hypothesis), we deduce that there

is a morphism

,\:Zl'If(Y)——> 'I{f(Y)
such that seX =id. Now pull the situation back along k= f(y) :'l'If(Y)———>[. We find
similarly that for v:V—> T.(Y) in A,('IIf(Y)), composition with & induces a bijection

B/I(kv, fuly)) = B/Ikv,2fs(y) .

Taking v to be the identity, we find that both id and Aok correspond to &k under this
bijection, whence Ae.r=id.

a
2.9. Remarks.

(i) The result we have just proved is an "absoluteness” result for indexed products. The
situation should be contrasted with that for indexed sums where no such absoluteness
holds. (We will see an example of this in section 5, where the left adjoints (5.9) to
pulling back localic-algebraic toposes differ from the left adjoints (4.9) to pulling back

algebraic toposes.)

(i7) Constructions of a similar (right adjoint) kind—such as finite limits and stable

exponentials—are also absolute by essentially the same argument.

2.10. Sums and products of Orders and Types indexed over Types. Let us start by
assuming that we are modelling Orders and Operators by a relatively cartesian closed
category B whose class of display morphisms is denoted by A and satisfies the Display

condition (see 2.7 et seq.).
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As we remarked in 1.7, the rules giving the closure of Orders under sums indexed
over Types ensure that there is a bijective correspondence between Terms of Type A and
Operators of Order AxIp. It follows that we may take Types to be special Orders and
model them by a distinguished class of morphisms R contained in A and also satisfying the
Stability condition (so that we have a cartesian embedding R A of fibrations over B).

We note at once that given this set up, the closure of Orders under sums and
products indexed over Types becomes a special case of the closure under sums and
products indexed over Orders—which we already have. In order to satisfy the Unit, Sum
and Product clauses for "quantification” of Types over Types (which are the same as
those for quantification of Orders over Orders) we apply the analysis of 2.3 to the class
R itself. Combining this with the absoluteness of products proved in 2.4, we require the

following conditions:
Unit'. R contains all isomorphisms.
Sums’. R is closed under composition.

Products’. For all f:J——1I in R, the right adjoint f.:A(J)—>A(l) to b
restricts to a functor f.:R(J)——R(/).

2.11. Type as an Order. To explain the special role of the Order Type, we need to explain

the connection between A as it appears in the judgement

AeType
(A as an Operator of Order Type) and A as it appears in the judgement

acA

(A as a Type). To do this consider the generic case of the free Type variable X. In the
usual way "XeType" will be interpreted by the identity function id :[Typel— [Typel.
On the other hand, to interpret "se X", we must regard X as a Type (indexed over the
Order Type) and interpret s as a morphism with that codomain.

This leads to the following situation. We have an object U of B which is to interpret
Type (and so must satisfy that U——1 is in A—which is automatic, since we are
assuming A satisfies the Display condition); and we have a morphism G——U in R
interpreting the Type X indexed over Type. Now for any context I'

Type (I']
is interpreted by the projection UxII'I——II'T and hence
AeType [T]

is interpreted by a section IPF——UXII'T of this projection—and this is equivalent to

giving a morphism
A ITI—U.

Then to interpret A in
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aeA Il ,
that is, as an object LAT— LT} of the category R(IT'D), we form a pullback square:

[A}—G

‘[J j

In particular the free type variable X is interpreted either as the identity on U, or as the
object G—U of R(U). Since every Type is obtainable from X by substitution and the
latter is modelled by pullbacks, we can see that taking Type as an Order amounts to the
following assumption on our distinguished class R of morphisms in B:

Generic type. There /s a morphism G——U in R which generates the class
under pullback: every morphism in R is obtainable from G——U by pullback

along some (not necessarily unique) morphism in B.

2.12. Sums and products of Types indexed over Orders. We now consider what properties

of
R;—éA;)Bz

are needed to model the "quantification” of Types over Orders. The main problem is to
understand the relevant rules in 1.9 for sums. Of course we still expect indexed sums to
provide a left adjoint to substitution. And as in 2.2 we can extract a morphism from the

unit of the adjunction: for if we have
AXY)eType [YeL(X)>XeK]

then we have zeA(X,)Y)H—(Y,x)eXYel(X).A(X)Y), whose interpretation makes the

foliowing diagram commute:

[AX.Y)I—> [2Yel(X) . A(X,Y)]

LX) }—— KT .

The morphism LA(X,Y)I——EL(X)T is in R and the map [L(X)I—IKI is in A: so their
composition LAX,Y)I—>IK1 is in A. It follows that the left adjoint is providing a best
possible factorization of morphisms in A through morphisms in R.

We next have to deal explicitly with substitution: the Beck-Chevalley condition does not
come for free anymore (since the left adjoints are not given simply by composition). But it
is a standard result that this condition amounts to requiring that the factorization be
stable under pullback.

It is tempting to think that that is all, but it is not. What we have suceeded in
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modelling so far are the Sum clauses for Types over Orders from 1.9 with the following
restrictions: in the elimination and equality clauses the B that appears does not
depend on ze)XeK.A. These are essentially the rules given in [MiPI1, which are
equivalent to the sum rules in Girard's original version of higher order typed lambda
calculus—the system F, of [G1l. (We say ‘“essentially” because neither Mitchell and
Plotkin, nor Girard give a "second" equality rule.) What then is the added nuance in the
Martin-Lof style rule we give in 1.9?7 It amounts to a condition on the other morphism in

the factorization. If the morphism S:L—K in A has best factorization
L~ FXel .t —T5K

with r in R, then s is orthogonal to R in the familiar categorical sense: that is, for any
g:B——A in R and commutative square

L—=2 ¥ xel 1

F—"p—A

in B, there is a unique morphism Y. Xel .l—— B making the diagram

L—E ¥ Xel .1

Py 4

commute. It is easy to see that any factorization of J as a morphism orthogonal to R
followed by a morphism in R is necessarily the universal factorization of [ through a
morphism in R. Thus the categorical version of the rule for sums of Types over Orders is

as follows:

Big Sums. Any morphism S in A factors as f=res, where r is in R and s is
orthogonal to R. Moreover this factorization is stable under pullback along

arbitrary morphisms in B.

The orthogonality condition in Big Sums remains slightly mysterious. The rest of the
condition can be understood as providing a reflection of the fibration A—>B into the
firbration R—B: that is, a cartesian left adjoint to the inclusion R—A. In the models
of sections 4 and 5 we get the orthogonality condition for free, since for these there is a
finite limit preserving inclusion from B into a category G having all pullbacks (so that
cod:G®——G is a fibration) and the reflection of A into R is the restriction to A of a
reflection from G2——G into some full subfibratiom—for which situation orthogonality is
automatic.

Turning finally to the case of products of Types indexed over Orders, in view of
Proposition 2.8 it is comparatively easy to explain what is needed to interpret the relevant
clauses in 1.9. We already have an interpretation of indexed products of Orders over
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Orders and since we are interpreting Types as special kinds of Order, the case of

products of Types over Orders is necessarily a restriction of this:

Blg Products. For all f:J——1 in A, the right adjoint f.:A(J)—A(l) to r

restricts to a functor f,:R(J)—R(I).

Note that this condition directly entails the condition Products’ of 2.10.

2.13. Summary. We have now dealt with the categorical interpretation of all parts of the
syntax of the basic theory of constructions presented in section 1. Let us summarize what

we require (at the same time eliminating some of the redundancies we have noted):

({) A category B with a terminal object.

(1) Distinguished collections A and R of morphisms in B, with R contained in A.

(iii) The pullback along an arbitrary morphism in B of a morphism in A (respectively R)
exists and is again in A (respectively R).

(iv) R contains all the isomorphisms in B.

(v) R and A are both closed under composition.

(vi) For each f:J—— in A, the pullback functor f*:A(/)——A(J) has a right adjoint,
fa:A(J)—>A(]). Moreover, these right adjoints satisfy the Beck-Chevalley condition
for pullbacks of f along arbitrary morphisms in B; and they send morphisms in R(J)
to morphisms in R(/).

(vii) Every morphism in A factors as the composition of a morphism orthogonal to the
class R followed by a morphism in R. Moreover, this factorization is preserved under
pullback along arbitrary morphisms in B.

(viii) There is a morphism G——U in R from which all other morphisms in R can be
obtained by pullback.

(iz) For each object B in B, the unique morphism from B to the terminal object is in A.

The equivalence between MLTT and RCCC mentioned above extends to one between
theories over the basic theory of constructions (as in 1.10) and an appropriate 2-category
of categorical structures satisfying (i) to (iz). It is worth pointing out that the only
structure required to specify a model is essentially only that of a category B and two
distinguished classes of morphisms A and R in B—all the other requirements amount to
categorical properties of this structure. Thus if (B,AR) is a model and [:B~B' is an
equivalence of categories, then (B',A’R’) is also a model if we define A’ to consist of

morphisms isomorphic (in B2) to ones in the image of A under [ and similarly for R’.

We conclude this section by considering the interpretation of the two extensions of
the basic theory of constructions given in 1.11 and 1.12.

2.14. Models with “OrderceORDER". The categorical explanation of the theory
"Ordere ORDER" is similar to that given in 2.11 for the modelling of "Type" in the basic
theory. We have to have an object V in B to interpret Order and a morphism h:H——V
in A to interpret O(X) [XeOrderl. Then for any k:K——1[ in A (interpreting
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K(§) [€ell say) there is a morphism "K':[—V (interpreting Til€)) so that
("K)®(h) 2=k in A() (the isomorphism interpreting x{€) and its inverse interpreting Jgl€)).

The condition on A is therefore:

OrdereORDER. There is a morphism H——V in A from which all other

morphisms in A can be obtained by pullback.

2.15. Models with "Type~ORDER". Turning to the theory "Type~ORDER", our analysis
of the interpretation of sum rules in this section shows that if we strengthen the rules
for sums of Types indexed over Orders as indicated in 1.12, then in the categorical models

we must have:

when f:J——1 is in A, the left adjoint fi:R(J/)—R(U) to f* (whose
existence is guarenteed by 2.13(vii)) is given by composition with f; in other

words, fer is in R whenever f is in A and r is in R.

But taking r=id, we get that A is contained in R and therefore that A and R are egual.
This assumption renders some of the assumptions in 2.13 redundant, and we arrive at the
following requirements for a categorical model of the theory of constructions with
"Type ~ORDER":

(i) A category B with a terminal object.

(i1) A distinguished collection A of morphisms in B.

(i41) The puliback along an arbitrary morphism in B of a morphism in A exists and is
again in A.

(iv) A is closed under composition.

(v) For each f:J—Iin A, the pullback functor f*:A(/)—>A(J) has a right adjoint,
Se :A(J)—A(l). Moreover, these right adjoints satisfy the Beck-Chevalley condition
for pullbacks of f along arbitrary morphisms in B.

(vi) There is a morphism G——U in A from which all other morphisms in A can be
obtained by pullback.

(vii) For each object B in B, the unique morphism from B to the terminal object is in A.

3 Lim theories

in this section we will review those parts of (more traditional) categorical logic which we
will need in the next two sections to present our topos-theoretic models of the theory of
constructions. In specifying these models along the general lines indicated in the previous
section, we will use several constructions on categories with finite limits—or lex
categories as we will call them. In order to see that these constructions can be carried
out, we need a way of presenting lex categories in terms of "generators and relations”.
There are a number of ways in which this can be done. For example, one could use finite

projective sketches : see [BW, 4.41. Alternatively one could use theories over a fragment
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of Martin-Lof type theory, such as the generalized algebraic theories of [Cal (see also
[Pol). Instead we choose to use the /im theories of M.Coste, since their syntax and
semantics are part of the familiar formalism of the first order predicate calculus. The
following account stresses model-theoretic aspects; for a fuller picture, see the original
work of M.Coste [Col, Co2]1 on the subject.

For the purposes of this section, a /anguage L is specified by:

A collection of sort symbols, S,S',S",...

A collection of function symbols of specified types. The type of such a function symbol
f. is given by a non-empty list of sort symbols S;,...,.S,,S, and this will be indicated
by writing f:5;xxS,—S. (This includes the case n=0, when f is more usually
called a constant symbol of type S.)

A collection of relation symbols of specified types. The type of such a relation symbal
R, is given by a (possibly empty) list of sort symbols S,....S,,, and this will be

indicated by writing R>—S1x-X Sn,.

Starting with countably infinite sets of variables for each sort symbol, the terms of L and

their associated types are defined recursively in the usual way:

Each variable = of type S is a term of type S.
If ty,...t, are terms of type S;,...S, and f:S;x--xS,—S is a function symbol,

then f(ts,....tn) is a term of type S.

(We write t:S to indicate that a term t has type S.) We next define the basic formulas

over L recursively as follows:

If t,t' are terms of the same type, then t=t' is a basic formula.

If ty,....t, are terms of type S;,....S, and R S;x---xS,, is a relation symbol, then
R(tz'"”tn) is a basic formula.

The symbol T ("true”) is a basic formula.

If ¢ and % are basic formulas, then so is (¢A¥).

Basic formulas of the first two kinds are usually called atomic formulas. Thus a basic
formula is a finite (possibly empty) conjunction of atomic formulas.

We now define a /im theory T to be given by a language L and a set of /im sentences
(the axioms of T): such a lim sentence is specified formally by two disjoint lists T,y of
distinct variables and two basic formulas ¢,%, the variables involved in the first all
appearing in the list z and the variables involved in the second appearing either in Z or in

y. The lim sentence will be written as
(3.1) VZ($(Z)-Iyy(zy))

to indicate that its intended meaning is: "for all T such that #(Z) holds, there exist unigue
Yy so that %(Z,y) holds”. In the case that ¥ does not depend on y, then (3.1) will be

abbreviated to

Yz (¢(Z)-»9(T))
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and if furthermore ¢ is T, then (3.1) will be written as
Yzy(z).
Clearly every (many-sorted) algebraic theory can be regarded as a lim theory. Here are

two simple examples of non-algebraic lim theories:

3.1. Example: the lim theory cat of categories.
The underlying langage of cat has two sorts, Ob and Mor, three function symbols
dom:Mor——Ob
cod : Mor— Ob
id : Ob— Mor,
and one relation symbol
comp —>Mor x Mor x Mor,
whose intended meaning is the graph of the composition partial function on morphisms in
a category. Thus the axioms of cat are:
Vz:0b(dom(id(z))=z A cod(id(z))=z)
Vf,g,h:Mor( comnp(f.g,h) > (dom(f)=dom(h) A cod(f)=domlg) Acod(g)=cod(h) ))
Vf.g:Mor(cod(f)=dom(g) - I'h:Mor comp(f,g,h))
Vf.g.h.k.lmn:Mor(comp(f.g.k) Acomp(g,h,l) Acomp(k,h,m) Acomp(f.l,n) » m=n)
Vf:Mor(comp(f id(cod(f)).f) Acomplid(dom(f)).f.f)).

3.2. Example: the lim theory lex of categories with finite limits.

We axiomatize the property of having finite limits via those of having a terminal object
and pullbacks. Thus lex is obtained from cat by adding a constant symbol T of type Ob, a
new relation symbol pb>——Mor x Mor x Mor x Mor and new axioms:

Yz:0b3\f:Mor (dom(f)=z Acod(f)=T)

Vf,g,h,k:Mor( pblf.g.h.k) = :Mor(comp(f.g.)) Acomp(h,k,D) )

Vg.k:Mor(cod(g)=cod(k) - 3\f ,h:Mor pb(f.g.h.k))

Vf,f’,g,h,h’,k:,l:Mor'(pb(f,g,h,k) Acomp(f',g.l) Acomp(h',k,l) -

tm:Mor(comp(m,f.f") Acomnp(m,h,h")) )

3.3. Structures and satisfaction. Given a set-valued structure for a fanguage L (i.e. an
assignment of sets for the sorts, functions for the function symbols and relations for the
relation symbols, all satisfying the evident typing requirements), the intended meaning of the
lim sentence (3.1) mentioned above amounts to an informal definition of the notion of
satisfaction of a lim sentence in a structure. In giving the formal definitions of "structure
for a language” and “satisfaction of a lim sentence by a structure" one only needs to use
set theoretic operations of a very simple kind: in fact formation of finite limits in the
category of sets and functions is all that is needed. Accordingly these definitions can be
given for an arbitrary category with finite limits and as such, are a fragment of the
categorical interpretation of first order logic given by Makkai and Reyes in [MR, Chapter 2,
section 3]1. We recall from there the foliowing definitions:
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If L is a language and C is a category with finite limits, then an L-structure M in C

assigns

to each sort symbol S, an object M(S) in C,

to each function symbol f:Syx:-S,—S, a morphism M(f):M(S)x--xM(S,,)—>M(S)
in C, )

to each relation symbol R>—S;x---xS,,, a subobject M(R)>— M(S))x---xM(S,,} in C.

If z=z4,....z, is a finite list of distinct variables with xz; of type S; say, and if t is a
L-term whose variables all occur in T, then a morphism L[t(z)1:M(S))x---xM(S,,)—>M(S)

in C is defined by structural induction, as follows:

If tis x; then Lt(Z)I=m;, the i*" product projection.
If £ is flt.ty), then EHEI=M(P)olt DT, ..It (DD (where [t(D1,...Lt (DD is

the unique morphism whose composition with each w; is Lt;(z)1).

Similarly, if ¢ is a basic L-formula involving variables from the list z, then a subobject
Lo() B—MI(S))x---xM(S,,) in C is defined by structural induction, as follows:

If ¢ is t=t’, then [¢(z)] is the equalizer of the pair of morphisms Lt(z)1,Lt'(Z)1.

if ¢ is Rlt,...t,,), then EH(z)T is the pullback of the subobject M(R) along the
morphism ([t,(2)1,...,Lt,.(T) D).

if ¢ is T, then [é(z)] is the greatest subobject of MI(Spx--xM(S,,), i.e. that given by
the identity morphism for M(S))x:--xM(S,,).

If ¢ is Yn@, then Ld(z)1 is the meet of the subobjects [¥(z)1 and [B(z)1, ie. is

given by forming a pullback from monomorphisms representing these subobjects.

Now given a lim sentence as in (3.1), define the objects XY of C to be M(S)x---xM(S,,)
and M(S)x---xM(S;,) repectively (where S; is the type of z; and Sj the type of y;);
suppose also that the subobject [¥(z,y)1 is represented by the monomorphism
(a,b):[Y(z,y)I—XxY. Then we say that the L-structure M satisfies the sentence (3.1),

and write
M e VZ((D) gz, ),

if on forming the pullback square

[H()Ir—X

in C, the morphism a’ is an isomorphism.

3.4. Definition. If T is a lim theory with underlying language L, a mode/ of T in a category
C with finite limits is an L-structure in C which satisfies all the axioms of T. Let T(C)
denote the category whose objects are such models and whose morphisms are

homomorphisms of L-structures in C. Such a homomorphism h:M—N is specified by a
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family hg:M(S)—>N(S) of morphisms in C indexed by the sort symbols S of L such that:
for each function symbol f:S;x--xS,;—S in L the square

M(Spe-xMiS, -2 )
hS,X"'thn hs

N(S,)X---XN(SH)—WN(S)

in C commutes; and for each relation symbol R>—S;x--xS,, in L there is a commutative

square in C of the form

M(R) >——M(S)x---xM(S,,)

J'hsl)("')(hsn
N(R) ——N(S)x---xN(S,,) .
Composition and identities in T(C) are given componentwise from those in C.

Let us apply this definition to the two examples of lim theories given above. In the
case of 3.1 and when C =Set the category of sets, evidently cat(Set) is just the category
Cat of small categories and functors; and in general, cat(C) is the category of internal
categories and functors in C, as defined in [J1, Chapter 2] for example. In the case of
3.2 the situation is more subtle. The objects of lex(Set) are small categories equipped with
operations specifying terminal object and pullbacks; and the morphisms are functors which
exactly preserve these operations. As is well known, the operation of taking a finite limit
of any particular shape can be given as a derived operation from terminal object and
pullbacks: thus we will refer to the objects of lex(Set) simply as small categories with
finite limits, or small lex categories. But whilst a morphism in lex(Set) is necessarily a lex
functor (that is, one which preserves finite limits in the usual sense of sending finite limit
cones to finite limit cones), the converse is not generally the case since a lex functor
need not preserve the given operations for terminal object and pullbacks up to equality. We
will call the morphisms in lex(Set) strict lex functors.

3.5. Classifying categories. Consideration of the models of a lim theory T in aff lex
categories rather than just in the category of sets opens up the possibility of constructing
a most general, or generic model of T. First note that models of T in different lex
categories can be compared by transporting them along lex functors: given lex categories
C.D and a model M of T in C, then for any lex functor F:C—D there is a model F(M)
of T in D, obtained by applying F to the objects, morphisms and subobjects which comprise
the structure M. (That F(M) is a structure follows just from the fact that F preserves
finite products and monomorphisms; to see that it is a T-model one needs that the
satisfaction of lim sentences is preserved by F and this follows precisely from the
preservation of finite limits.) Similarly, if ¢:F—G is a natural transformation between lex

functors, we get a homomorphism ¢(M):F(IM)—G(M) of T—models in D whose component
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at a sort symbol S is @pss). In this way one obtains a functor
(=)(M) :LEX(C,D)—— T(D)

from the category of lex functors and natural transformations from C to D into the
category of T-models in D. We can now state the fundamental result linking lim theories

and lex categories:

Theorem. For each lim theory T there is a small lex category Cy (called the classifying
category of T) and a mode/ Gr of T in Cy (called the generic model of T) such that for
any lex category D the functor (-)(Gyp):LEX(C+,.D)—T(D) /s an equivalence of categories.

O

Note that the above property of Cy and Gy uniquely determines the former up to
equivalence of categories and the latter up to isomorphism of T-models. There are at least
two ways of constructing the classifying category. The more elementary way is in terms of
the syntax of T: see [Col, 2.3]. The second way is model theoretic and depends upon the
fact that T(Set) is a (typical) locally finitely presentable category in the sense of Gabriel
and Uimer [GUI (see also [MP1). Thus the full subcategory T(Set) ., T(Set) of finitely
presentable set-valued T-models is equivalent to a small Category and its opposite category

is equivalent to the classifying category:
Ct = (T(Set) fp)"P.

Any small lex category D can be presented, up to equivalence, as the classifying
category of some lim theory. First define the internal language L of D to have a sort
symbol "X for each object X of D, a function symbol X %X Xp—" X" for each
morphism f:Xx---xX,,—X and a relation symbol "R'o—" X% x'X,, for each subobject
R:>——Xx---xX,,. There is an evident L-structure M in D given by erasing " . Let T be
the lim theory with underlying language L and whose axioms are all those lim sentences of
L which are satisfied by M. Then M is by definition a T-model in D; hence by the
universal property of the classifying category of T, there is a lex functor F:Cy+—D and
an isomorphism M=F(Gy) in T(D). Finally one can prove that the functor F is necessarily
an equivalence, so that D>~Cy, as required.

The construction of classifying categories of lim theories provides a useful way of
constructing lex categories with specified properties. We illustrate this with two examples

which we will need later:

3.6.Example: copower of a lex category by a category.

Let Cat denote the 2-category of small categories, functors and natural
transformations; and let Lex denote the 2-category of small lex categories, lex functors
and natural transformations. Given C in Cat and D in Lex, we wish to construct a small
lex category C-D, called the copower of D by the category C, with the property that there

is a natural equivalence:

Cat(C,Lex(D, -)) ~ Lex(C-D, - ).



176 J. MARTIN E. HYLAND and ANDREW M. PITTS

This amounts to giving a functor (-)-(-):CxD——C-D with the properties:

(1) (-)-(-) is lex in its second variable, i.e. for each XeC, X+(-):D—>C-D is a lex
functor;

(id) if B(-,-):CxD—E is any functor into a lex category which is lex in its second
variable, then there is a lex functor B:C-D—E, uniqgue up to unique isomorphism,

and a natural isomorphism B((-)- (-)) 2 B(~,-).
Therefore to construct C:-D we define a language L as follows:

For each XeC and YeD take a sort symbol X-Y. For each f:X—X' in C and
g:Y—Y" in D take a function symbol f-g:X:Y—X"Y". There are no relation symbols.

And over this language we take the lim theory T with the following axioms:

(1) For each XeC and YeD, the axiom Vz:X:Y(idy-idy(z)=2).
(#1) For f:X—X', f:X-—X" in C and g:Y—>Y, g:Y—>Y" in D, the axiom
V2: X-Y(f'f-g'glz)=f-g'(f-g(2) ).
(1ii) For each XeC, the axiom 3iz:X-1(z=z) (where I denotes the terminal object in D).
(iv) For each XeC and each pullback square

p—L sy

]

Vg b

in D, the axiom

Vz:X-Yiz': X Y'idy g(2)=idy- g'(z") » Ju: X Plidy - plu)=z Aidy - p'w)=z")).
Clearly an L-structure in a lex category E satisfying the lim sentences of types (i) and
(i) is precisely a functor CxD—E; and this functor is lex in its second variable if and
only if the structure satisfies the lim sentences of types (iii) ("preserves terminal object
in its second variable”) and (iv)(“preserves pullbacks in its second variable"). Note also
that a homomorphism of L-structures is precisely a natural transformation between the
corresponding functors; and the functor transporting T-models along a lex functor
F:E—E' is given by composing the corresponding functors with F. Thus
T(-) = Cat(C,Lex(D,-)) and hence the copower C-D in Lex is given by the classifying
category Cr.

3.7. Example: oplax colimits of lex categories.
Let C be a small category. A pseudofunctor D:C°P—lex is specified by the

following information:

for each object U of C, a small lex category D(U),
for each morphism a:U——V in C, a lex functor a*:D(V)——D(U),
for each UeC, a natural isomorphism t,:idp(, = (id;)*,

for each composable pair of morphisms a:U—V,8:V—W in C, a natural
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isomorphism Ko g:a®ef* = (B-a)*,

satisfying the coherence conditions that the diagrams

x ok X a*nﬂ:”’ * * . *
a Y a ('Yﬁ) de(ma = o = a* idD(V)
* * - *
KRa,gY Rayp and ya id a*iy,
Ba)*y* ——— (yBa)™ (id p*a*—— a* ——a*(id ) *
5 v R’,Ba,'y ’Y'B &7 Kid,a na,ida (i ‘/)

commute.

If Eclex, then an oplax cone M under D:C°P——Lex with vertex E is specified by:

for each UeC, a lex functor M;,:D(U)—E,
for each a:U——V in C, a natural transformation M : My—— M;,-a*,

satisfying the coherence conditions
M‘ga = (Muﬁa’3)° (Maﬁ*)°M5 and M’idU = MULU .

Then the oplax colimit of the pseudofunctor D:C°P——Lex, denoted oplazcopD, is the
small lex category which is the vertex of a universal oplax cone [ under D—that is, [
should have the property that for any other oplax cone M with vertex E there exists a lex
functor M:op_l_q:ccopD—>E unique up to unique isomorphism with the property that there

are natural isomorphisms pg;:Mel ;= M;, (UeC) satisfying
Mge py = (prra*)e (MI,) (a:U—>V in C).

One can construct the oplax colimit opkz):zcopD as the classifying category of a

suitable lim theory T. The underlying language of T has

sort symbols U-X for each UeC and XeD(U)
function symbols a-f :V:Y——U-X for each a:U——V in C and f:a*Y— X in D)

and no relation symbols. The axioms of T are:

(i) For each sort symbol U-X, the axiom Vz:U-X(id-.(2)=z).
(i) For a:U—>V, B:V—>W in C, f:a*Y—X in D(V) and g:8*Z—Y in DW),
the axiom Vz:W-Z(Ba- (fea*ge k™) (2) = a f(B-g(2)) ).
(i11) For each UeC and pullback square

p—E sy

|k

Y————X

f

in D(U)), the axiom

Vz:U-Y,z':U- Y (id- fu(2) =id- £z » 3u:U- Plid- pri(w=z A id- po(w)=z") ).
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If G denotes the generic model of T in its classifying category opngOPD, then the

colimiting oplax cone cone [ is given by
/X)) =GU-X) , I){f) =Glidyy fu") and (Iy) 5 = Glar idy).

The proof that this works is a similar, but more complicated version of the argument in
3.6. Indeed the copower C9P-D is a special case of the oplax colimit construction, since
we can take C°P-D = oplazcopD where Delex is regarded as the constant pseudofunctor
CoP—— Lex with value D.

We will see in 4.20(ii) that for one form of the model of the theory of constructions
developed in section 4, the constant Orders K are denoted by small lex categories
EKlelex and that more generally Orders L dependent on XeK are denoted by
pseudofunctors [LI:LKI1°P——Llex. Then the lex category denoting the product [[XeK.L
is in fact obtained by taking the oplax colimit of [L1:[KI1°P——>Llex; hence in particular

the lex category denoting K=K’ is given by the copower LK1°P-[K'].

4 Algebraic toposes

In this section we will describe the first of our topos-theoretic models of the theory of
constructions. For what follows, the basic reference is Johnstone's book [J11, especially
chapters 2 and 4. We will denote the 2-category of Grothendieck toposes, geometric
morphisms and natural transformations (between inverse image functors) by GTOP. Given a
Grothendieck topos E, GTOP(E) will denote the (pseudo)slice 2-category whose objects are
Grothendieck E-toposes, f:F——E, whose morphisms are triangles in GTOP commuting up to
a given isomorphism and whose 2-cells are 2-cells in GTOP compatible with the given
isomorphisms. In the case E=Set, since Set is terminal in GTOP we can identify
GTOP(Set) with GTOP; however, even in the general case we will often confuse a
Grothendieck E-topos with its domain topos F when the particular geometric morphism
f:F—E is clear from the context.

GTOP(E) is the same as the 2-category BTOP/E of [J1, Chapter 41. Just as in that
reference, we will loosely refer to certain contructions in GTOP(E) as (finite) limits even
though they are actually bilimits, i.e. given by universal properties which involve eguivalences
rather than isomorphisms of hom-categories. Thus for example, we said in the previous
paragraph that Set is terminal in GTOP, meaning that for any EcGTOP the category of
geometric morphisms GTOP(E,Set) is equivalent to 1 (the one object, one morphism
category) rather than isomorphic to it.

If EeGTOP and C is an internal category in E, then the E-topos of (internal)
presheaves on C will be denoted [C®P,E]. Thus the objects of [C°PE] are essentially the
discrete fibrations over C in E: see [J1, 2.15]1. Lifting the name from Johnstone's paper
(U231, we make the following definition:

4.1. Definition. An E-topos f:F—E is algebraic if it is equivalent in GTOP(E) to [C°P,E]
for some internal lex category C, i.e. for some model in E of the lim theory lex of 3.2.
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ATOP(E) will denote the full sub-2-category of GTOP(E) whose objects are the algebraic
E-toposes. (And in case E=Set, we speak simply of algebraic toposes and write ATOP for
the corresponding full sub-2-category of GTOP.)

4.2. Proposition. Algebraic E-toposes are stable under change of base: if SF—E is a
geometric morphism between Grothendieck toposes and A—E is an algebraic E-topos,

then on forming the pullback square

_

A
_‘ J
E

_—

Mm——m

in GTOP, jt is the case that B—F is an algebraic F-topos.

Proof. Suppose that A~[C°P,E] with Celex(E). The inverse image functor fHE—F
certainly preserves finite limits and hence as in 3.5 applying it to C yields F*(C), a model
of lex in F. But by [J1, Corollary 4.351 there is a pullback square in GTOP of the form

L(f*C)°P,F1——[C°PE]
-

e

(4.1

F———E .

Hence B~[(f*C)°P,F] is an algebraic F-topos.

4.3. Notation. If f:F—E is a geometric morphism between Grothendieck toposes, then
f7.GTOP(E) — GTOP(F)

will denote the operation of change of base, i.e. of pulling back E-toposes along f. (As we
remarked above, pullbacks of toposes are strictly speaking "bipullbacks” and consequently
f% is a bicategory homomorphism—it preserves identities and composition only up to
coherent isomorphism.) By the previous proposition, we can restrict f* along the full
inclusions ATOP(-)——GTOP(-) to get f*:ATOP(E)—ATOP(F).

4.4. Classifying toposes. For any smali lex category C and Grothendieck topos E there is a

natural equivalence of categories:
(4.2) GTOP(E,LC °ESet]) ~ LEX(C,E)

where the right hand side denotes the category of lex functors and natural transformations
from C to E. This equivalence is given in one direction by sending a geometric morphism
f:E—IC°P Set] to the lex functor obtained by restricting f* along the Yoneda embedding
C—IC°P.Set]; and it is given in the other direction by sending a lex fuctor F:C—E to

the geometric morphism whose inverse image part is the left Kan extension of F along the
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Yoneda embedding; see [J1, Proposition 7.131.
If T is a lim theory with classifying lex category Ct , we can combine (4.2) with the

equivalence of 3.5 to obtain:
GTOP(E,(C{°P Set]) ~ T(E).

Thus [Cy°P,Set] is the classifying topos for the lim theory T—meaning that the category
of E-points of the topos is naturally equivalent to the category of T-models in E. As we
noted in 3.5, any small lex category is the classifying category of some lim theory. Thus
the algebraic toposes are precisely the toposes which classify lim theories.

Applying the Yoneda embedding H:Cy+<—[C+°P,Set]l to the generic model GreT(Cy),
we obtain a T-model Ur=H(Gy) in the classifying topos which is generic amongst models
of T in Grothendieck toposes. This means in particular that for any MeT(E) there is a
geometric morphism m:E-—[Cy°P,Set] with m*(Up) =M in T(E). As we mentioned in 3.5,
Cr is equivalent to (T(Set),, )P, the opposite of the full subcategory of T(Set) whose
objects are the finitely presentable T-models. Using this fact, we can identify Uy

concretely: since limits are calculated pointwise in functor categories
- TCC{°PSet] x CAT(C{°P, T(Set)) ~ CAT(T(Set}fp . T(Set))

and under this equivalence, Ut corresponds to the inclusion T(Set) s, T(Set).
Lim theories and small lex categories correspond via the classifying category
construction; but as we saw in 3.2, the latter are themselves the models of the particular

fim theory lex and we can apply the above considerations to this theory:

4.5. Proposition. There is a Grothendieck topos T and an algebraic T-topos T—T with
the property that for any other Grothendieck topos E and any algebraic E-topos A—E
there is a pullback square in GTOP of the form:

A—Z
4

o

E———T.

Moreover, T is itself an algebraic topos.

Proof. Define T to be [Ci,SF,Setl, the classifying topos of the lim theory lex. Then T is
certainly an algebraic topos. The generic model Ugy is an internal lex category in T:
define ¥ to be the algebraic T-topos [ SE T1. If E is a Grothendieck topos and A—E an
algebraic E-topos, then A~[C°PE] for some Celex(E). Let f.E—T be a geometric
morphism classifying the model C, i.e. for which there is an isomorphism C=f*({q,) in
lex(E). Then by (4.1), A=~f*(E) in GTOP(E), as required.

a

We now turn our attention to the cartesian closed structure of algebraic toposes.

Recall that the exponential in GTOP(E) of two E-toposes F,G if it exists is an E-topos,
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denoted F-gG, together with a geometric morphism evi(F-gG)xgF—G inducing

equivalences
GTOP(E)(-, F»gG) ~ GTOP(E)((-)xgF,G).

F is called exponentiable if F>gG exists for all G. Not every topos is exponentiable; we
refer the interested reader to the paper of Johnstone and Joyal [JJ1 for a detailed analysis
of this property. Luckily for us, the situation for algebraic toposes is quite simple: [J1,
Remark 7.49] implies that every algebraic topos is exponentiable. Moreover, as the next
proposition shows, ATOP is closed in GTOP under exponentiation:

4.6. Proposition. /f C and D are small lex categories, then the exponential of [D°P Set] by
[C°P.Set] in GTOP is [(C°P-D)°P,Set], where C°P-D is the copower in Lex of D by the
category C°P (as defined in Example 3.6).

Proof. Let E be a Grothendieck topos and let A:Set—E denote the constant-sheaf functor
(the inverse image part of the (essentially) unique geometric morphism from E to Set).
Then from (4.1), the product of E and [C°PSetl in GTOP is [(AC)°P,E]l. An internal
presheaf on the constant internal category AC can be identified with an external presheaf
valued in E: thus Ex[C?P,Set] is the functor category CAT(C®P,E). A geometric morphism
out of CAT(CPE) is determined by its inverse image part—which is precisely a functor
preserving finite limits and small colimits. Then since limits and colimits in such a functor

category are calculated pointwise from E, we have
(4.3) GTOP(Ex[C®°P, Setl, - ) ~ CAT(C°P,GTOP(E, - )).

Combining (4.3) with (4.2) and using the universal property of the copower C°P.D
(which we note from its construction in Example 3.6, is valid for lex functors valued in

any lex category and not just a small one), we have:

GTOP(EX[C°ESet1,[D°F Set1) ~ CAT(C®P,GTOP(E,(D°P Set1))
~ CAT(C®F LEX(D,E))
~ LEX(C®P- D ,E)
~ GTOP(E,[(C°P: DPP,Set]).

These equivalences are natural in E and show that [(C°P-D)°P Set] has the correct
universal property to be the exponential [C°P Setl-[D°P,Set].
O

The proof of Proposition 4.6 is constructive and in a form admitting relativization to
the category theory of any topos E with natural number object (and in particular to any
Grothendieck topos), where the internal categories of E play the role of small categories
and categories fibred over E play the role of large ones. (See [B21 for a general
discussion of category theory relative to a base other than Set and [PS] for a
development of aspects of this theory using indexed categories (pseudofunctors) rather

than fibrations.) We therefore have:
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4.7. Proposition. For any Grothendieck topos E, the algebraic E-toposes are exponentiable
objects of GTOP(E) and ATOP(E) /s closed in GTOP(E) under exponentiation: for
C.Delex(E) the exponential of [D°PE] by [COPE] js [(C°P-D)°P,E] where COP-D is the
copower of the internal lex category D by the internal category C°P.

g

4.8. Corollary. £ach ATOP(E) /s a cartesian closed bicategory and finite products and
exponentials are preserved by the inclusion ATOP(E)——GTOP(E). They are also preserved
by the operation f*:ATOP(E)—ATOP(F) of pullback along a geometric morphism f:F—E.

Proof. In view of the previous proposition, for the first sentence of the corollary we just
have to see that ATOP(E) is closed in GTOP(E) under finite products. Proposition 4.2
implies that ATOP(E) is closed in GTOP(E) under taking binary products; indeed by [J1,
Corollary 4.361, we can take the product [C°PE1Ixg[D°PE] to be L(CxD)°PE]. The
terminal object of GTOP(E) is certainly algebraic, since E~[1°PE]1 where 1 is the trivial
internal lex category.

For the second sentence, we just have to show that f* preserves exponentials, since
clearly it preserves finite limits. Since the inclusions ATOP(-)~—GTOP(-) preserve
exponentials, it is sufficient to prove that f*:GTOP(E)—GTOP(F) preserves any existing
exponentials. This is so because f® has a left adjoint f1:GTOP(F)—GTOP(E) ("compose
with f") satisfying the condition of “Frobenius reciprocity”: for GeGTOP(E) and
HeGTOP(F), simple properties of pullbacks give that f(Hxgf"G) =~ (f H)xgG. Thus if the
exponential G-gG’ exists in GTOP(E), then

GTOP(F)(- , F¥G~gG’)) ~ GTOP(E)(f,(-) ,G~gG’)
~ GTOP(E)(f,(-)xgG,G")
~ GTOP(E)(f (- xg £*G) , G')
~ GTOP(F)(-xg f*G,f*G") ,

so that the exponential (f*G)-g(f“@) exists in GTOP(F) and is given by f*(G-g@).
a

In the case that f:F—FE is algebraic, the left adjoint f, mentioned in the above proof
restricts to give a left adjoint to f*:ATOP(E)—ATOP(F), as we now show:

4.9. Proposition. /f f:F—E is an algebraic E-topos and g:G—F is an algebraic F-topos,
then gf:G—E is an algebraic E-topos.

Proof. Consider first the special case when f is an equivalence. Then G—F=~E is the
pullback of G—F along the inverse equivalence E=F; hence the composition is algebraic by
Proposition 4.2.

Now in the general case, suppose that F~[C°P,E] with Celex(E). Then by the previous
paragraph, G—F~[C°P,E] is an algebraic [C°P,E]l-topos; hence G~[D°P,[C°PE]] for
some  Delex(CC°P,E]). By [J1, Exercise 2.71, [D°P[C°PEI]~[(GrD)°P,E] where
GrDecat(E) is the result of applying the Grothendieck construction to Decat(CC°P,EJ). In
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the case E=Set, this construction can be described as follows: identifying D with a functor
CoP—Cat, then GrD is the category whose objects are pairs (U,X) with UeC and
XeD(U), and whose morphisms (U, X)—V)Y) are pairs (a,f) where a:U—V in C and
f:X—D(a)(Y) in D). For a general (Grothendieck) topos E, the construction is just that
obtained by translating the above recipe for GrD into the internal logic of E. It is
straightforward to show that when DecatlC°PE] is actually an internal /ex category, then
so is GrD. Therefore G~[(GrD)°P,E] is an algebraic E-topos.

O

4.10. Corollary. /f f:F—E is an algebraic E-topos, then the left adjoint  to
f*:GTOP(E)— GTOP(F), viz. the operation of composing with [, restricts to give a left
adjoint to f*:ATOP(E)— ATOP(F), denoted f,:ATOP(F)— ATOP(E).

These left adjoints satisfy a Beck-Chevalley condition with respect to pullback squares
in GTOP: if

—49 ,q
J

H
hl = g
F

_—)E

f

is a pullback with f (and hence also q) algebraic, then the canonical natural transformation

qeh®—g®f, is an equivalence.

Proof. The first paragraph is a consequence of Propositition 4.9; and the second follows
from the fact that the Beck-Chevalley condition holds for the left adjoints to pulling back in
GTOP, due to the usual elementary properties of pullbacks with respect to composition.

O

So far, the results in this section have all been obtained by marshalling well known
facts about presheaf toposes and classifying toposes. We are now going to show that the
dual of Corollary 4.10 holds, namely that f*:ATOP(E)}—ATOP(F) possesses a right adjoint
when f:F—E is an algebraic E-topos (and that these right adjoints satisfy the
Beck-Chevalley condition). The method we employ is (the bicategorical version of) that in
Proposition 2.6: we show that exponentiation by an algebraic topos preserves geometric
morphisms which are algebraic, and then construct the right adjoints to pulling back using
exponentials. To carry out this plan we have to delve a little more deeply into the

structure of internal lex categories.

4.11. Definition. A lex functor P:C—B between (small) lex categories is a Jex fibration over
B if it possesses a right adjoint P,:B—C and the counit of the adjunction, €:PP,—1g, is
an isomorphism. (Note that B, is necessarily a lex functor.)

If Q:D—B is another lex fibration, then a morphism
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a
RN
B
in Lex/B is cartesian if the natural transformation FeP,—Q, (obtained from a by

transposing across the adjunctions P4P,, Q4Q,) is an isomorphism.

4.12. Remark. A notion of (cloven) fibration can be given in any bicategory with finite
(bilimits: see Street [SI. When the bicategory is Lex, this notion reduces to the above,
particularly simple one. (Cf. [RW1] and [RW21.) Because it is the bicategorical rather than
2-categorical notion of fibration, it is not the case that a lex fibration is the same thing
as a cloven fibration of categories (in the classical sense [Grl, [B2]) all of whose fibres
and pullback functors are lex. However the two concepts only differ up to equivalence in
Lex/B. To see this, note that each lex fibration P:C—B determines a pseudofunctor
C(-)B°P—lex (cf. 3.7), where each C(U) (UeB) is the full subcategory of C/P,(U)
whose objects are those z:X—PF,(U) with P(z) an isomorphism; and for a:U~—V in B,
a*:C(V)—C(1) is given by pullback in C along P,(a). Applying the Grothendick construction
(cf. the proof of Proposition 4.9) to C(-):B°P—lex, one obtains a cloven fibration in the
classical sense which is equivalent over B to the original functor P.

It is not hard to show that the above assignment of pseudofunctors to lex fibrations
extends to give an equivalence between the 2-category of lex fibrations over B, cartesian
lex functors and natural transformations on the one hand and the 2-category of
pseudofunctors B°P—lex, pseudonatural transformations and modifications on the other.
Note that if D:B°P—lex is a pseudofunctor, then the corresponding lex fibration
P:Gr(D)—B has P equal to the projection (U.X)+——U, with right adjoint P, sending UeB
to (U.,1) where 1eD(U) is the terminal object.

4.13. Notation. If C is a small lex category, we will denote by C the algebraic topos
[C°PSet]l. The assignment C——C extends to a bicategory  homomorphism
():Lex°P—GTOP via the natural equivalence of (4.2). In particular a lex morphism
F:C—D determines a geometric morphism F:D—C whose inverse image functor is left

Kan extension along F and whose direct image functor is precomposition with F.

4.14. Proposition. Let B be a small lex category. A Grothendieck ﬁ-topos E—B is
algebraic iff it is equivalent to R :€—B for some lex fibration P:C—B.

Proof. Suppose E is an algebraic B-topos—say E~[D°P,B] with Delex(B). Then just as in
the proof of Proposition 4.9, we can regard D as a functor B®P—lex(Set), hence as a
functor B°P—lex, apply the Grothendieck construction to it and obtain E=x~[(GrD)°P Set]
in GTOP(B). The geometric morphism which defines [(GrD)°P,Set] as a topos over
[(B°P.Set] is just that whose inverse image functor is precomposition with the projection
P:Gr(D)—B; but as we noted above, P is indeed a lex fibration and
(-)-P:[B°P,Set]1—[(GrD)°P,Set] is naturally isomorphic to the functor given by left Kan
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extension along the right adjoint P,, ie. to the inverse image part of the geometric
morphism 15; .

Conversely, given a lex fibration P:C—B, to show that @ is an algebraic ﬁ—topos we
have to find a functor D:B°P—lex(Set) with Gr(D)—B equivalent to P:.C—B in Lex/B.
Using the correspondence between lex fibrations over B and pseudofunctors BPP—sLex

remarked upon in 4.12, this amounts to proving:

4.15. Lemma. Every pseudofunctor B®P—slex s pseudonaturally equivalent to a functor

B°P—slex whose value at any morphism of B is a strict lex functor.

Proof. The lemma can be viewed as a corollary of recent work of G.MKelly and J.Power
showing how to turn ‘“pseudo” structures in 2-categories into equivalent “strict"
structures. Here we shall give a direct proof of this particular result.

With notation as in Remark 4.12, we can assume that the pseudofunctor is of the
form C(-):B°P—lex for some lex fibration P:C—B. For each a:/—V in B, et
Ra:C/F.U—C/R.V denote the functor between slice categories given by composition with
Fea. Then because we can calculate limits in categories of presheaves pointwise from Set,
we get that (—)o(R.a)"P:[(C/P,.,V)"P,Set]——>[(C/.P,.,U)°P,Set] is a strict lex functor.
Moreover, the assignment a—(-)o(R.a)®P preserves identities and compositions. Thus we

have a functor
C-) =45 [(C/R.(-))°P Set1:BoP — L EX

whose values at morphisms are strict lex. The composition of the inclusion
CN—C/E () with the Yoneda embedding yields a full and faithful lex functor
IS ——&W) which is pseudonatural in U (because the functors Ra:C/R,U—C/RV
are left adjoint to the pullback functors (FBea)*:C/E.V—C/EU). Then defining
CW——CW) to be the least full  subcategory containing all objects of the form
Cl@(FAY)) and closed under the given operations for terminal object and pullbacks
(inherited from those for Set), we get a functor C'(-):B°P—lex whose values on
morphisms are strict; and / restricts to a pseudonatural transformation C(-)-—C‘(-) whose
components are not only full and faithful but also essentially surjective (since C(L) and Iy
are lex)~—and hence I yields a pseudonatural equivalence, as required.
O
Using the above lemma, we can complete the second half of the proof of Proposition
4.14: starting with a lex fibration P:C—B, form C':B°P—sjex(Set) as in 4.15; then since
C(-)~C'(-), the Grothendieck construction yields C~Gr(C") in Lex/B and hence
é'—V(GrC')A'xE(C')"P,B] in GTOP(B) with C'clex(B—so that € is indeed an algebraic
ﬁ—topos.
O

4.16. Corollary. Let E be a Grothendieck topos and f:F—E an algebraic E-topos.
Exponentiating by any  algebraic topos G yields an algebraic (G-E)-topos,
(G-[):(G-F)—(G-E).
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Proof. Consider first the case in which E is itself algebraic—say E=B with Belex. Then
by Proposition 4.14, we can take f to be ﬁé-—*ﬁ with P:C—B a lex fibration. Supposing
that G=D with Delex, then we have from Proposition 4.6 that (G-E) is (D°P. B)" and
that (G-F) is (D°P-C)". Moreover the calculations in the proof of that proposition imply
that (G-f) is the geometric morphism (D°P P*)A. But D°9P-(-):lex—lex is a
homomorphism of bicategories; therefore D®P- P, is right adjoint to D®P- P with counit an
isomorphism, i.e. D°P-P is a lex fibration. Hence by Proposition 4.14 again,
(G-f):(G~F)—(G~E) is an algebraic (G-E)-topos.

Now consider the general case in which E is an arbitrary Grothendieck topos. We can
always find a small site of definition for E whose underlying category has finite limits (see
0J1, Corollary 0.461). in other words, we can find Belex and a geometric inclusion
i E<—B. Since F—E is algebraic there is Celex(E) with F~[C°PE] in GTOP(E). The
direct image functor i*:E——>§ is lex and so we can transport C along it to get
i*(C)eIex(ﬁ). Then as in (4.1) there is a pullback square in GTOP of the form:

[(i*i,C)°P, E1<—[({ ,C)°P B]

"

Eci—)g.

Since i is an inclusion, i*{,C2=C in lex(E); hence there is a pullback square of the form

F— 5H

7]

E———8

with B algebraic and h:H—B an algebraic ﬁ—topos. Now (G- -):GTOP-—GTOP preserves
pullbacks (since it has a left (bi)adjoint). Applying it to the above square therefore gives
that (G-f) is the pullback of (G-h) along (G-i); but (G-h) is algebraic by the special
case considered above and hence by Proposition 4.2, the pullback (G-f) is also algebraic.
d

As with the previous results on exponentiation, the above corollary admits of

relativization from Set to the category theory of an arbitrary Grothendieck topos E:

4.17. Corollary. /f F—E is a Grothendieck E-topos, A—E an algebraic E-topos and
b:B—F an algebraic F-topos, then (A-gb):(A»gB)—(A-gF) is an algebraic (A-gF)-topos.
a

We are now in a position to prove the dual version of Corollary 4.10:

4.18. Proposition.
(i) If fF—E is an algebraic E-topos, then f*:ATOP(E)—ATOP(F) has a right adjoint,
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denoted f.-ATOP(F—ATOP(E).

(i9) The adjoints of (i) satisfy a Beck-Chevalley condition: given a pullback square

—1 g

H

_I
h[ > g
F

—_)E

in GTOP with f (and hence q) algebraic, the canonical natural transformation

Fofu—>q,.°h" is an equivalence.
g q

Proof. We construct the right adjoint as in Proposition 2.6. Thus given b:B—F in
ATOP(F), define f,(B)—E via the pullback

fuBT——(FeB)

= (F"’Eb)

E—— (F—’E F

=

in GTOP(E), where "I denotes the exponential transpose of FxEEmF%F. Combining
Corollary 4.17 with Proposition 4.2, we certainly have that f,B is an algebraic E-topos. To
see that it has the right universal property, first note that from the universal property of

pullbacks, morphisms

H--—--f.B

1’4

E

in GTOP(E) correspond to diagrams in GTOP of the form

Transposing such a diagram across the exponential adjunction gives

F*H--——--—>B
F——F

1

in GTOP(F). Thus GTOP(E)(H,f.B) ~ GTOP(F)(f*H,B) and the equivalence is evidently
natural in H—E. This proves not just (i), but in fact something slightly more, namely:
when f is algebraic then the value of the right adjoint to f*:GTOP(E)}—GTOP(F) exists at
any algebraic E-topos. This also suffices to prove (ii), since whenever both f,BeGTOP(E)
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and q.(h*B) e GTOP(G) are defined, then elementary properties of pullbacks with respect to
composition imply that g*(f.B) and g.(h®B) are canonically equivalent in GTOP(G).
O

4.19. Algebraic topos model of the theory of constructions. Collecting together the results
of this section, we present our first example of an instance of the categorical structure
set out in section 2. In fact it is an example of the theory of constructions with
"Type ~ORDER" (see 1.12) and so we show how to fulfil the conditions listed in 2.15:

(1) The category B is obtained from the 2-category ATOP (cf 4.1) by taking isormorphism
classes of 1-cells. Thus B has for its objects the algebraic toposes and for its
morphisms isomorphism classes of geometric morphisms: in other words we identify
two geometric morphisms f,g:F——E between algebraic toposes if they are
isomorphic objects in GTOP(F,E). Composition and identities in B are those inherited
from GTOP. This category B certainly has a terminal object, namely Set—-cf. 4.8.

(i1) The class of morphisms A is that determined by the geometric morphisms f:F——E
between algebraic toposes which make F an algebraic E-topos.

(i11) Note that by Proposition 4.9, if E is in B and f:F——E is an algebraic E-topos,
then F is also in B. Consequently Propositions 4.2 implies that the pullback of a
morphism in A along an arbitrary morphism of B exists and is again in A.

(iv) A is closed under composition by Proposition 4.9.

() If f:F—E is in A, then the pullback functor f*:A(E)——>A(F) has a right édjoint
satisfying the Beck-Chevaliey condition by Proposition 4.18.

(vi) The topos T of Proposition 4.5 is in B and the algebraic T-topos E——7T of that
proposition determines a morphism in A with the property that any other morphism in
A can be obtained from it by pullback.

(vii) Finally, for each object E in B, the unique morphism E——Set is in A because we

chose B to consist only of algebraic toposes.

4.20. Equivalent descriptions of the model. We state without proofs two examples of the
categorical structure in 2.15 which are both equivalent to that given in 4.19. These
equivalent versions (especially the second) have advantages when it comes to making
calculations in the model. As we remarked in 2.13, we can specify these equivalent forms
of the model by giving equivalent versions of the underlying category B (and taking the

essential image of the class A under the equivalence).

(1) A version In the style of domain theory. Instead of looking at the algebraic toposes E
themselves, we can look at their categories of points, GTOP(Set,E). Supposing that
E~[C°P,Set] with Celex, then by (4.2) this category of points is equivalent to
LEX(C,Set), which is a typical Jocally finitely presentable (ifp) category. (See [GUI and
IMP1.) If F~[D°P,Setl is another algebraic topos, then it is the case that a functor

GTOP(Set,E) ~LEX(C, Set) — LEX(D, Set) ~ GTOP(Set , F)
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is induced by composition with a geometric morphism if and only if the functor preserves
filtered colimits. In this way we get an equivalence between ATOP (defined in 4.1) and the
2-category consisting of Ifp categories, functors preserving filtered colimits and natural
transformations. Using this eguivalence we get an alternative description of the structure in
4.19 in terms of Ifp categories and filtered colimit preserving functors. The class of display
morphisms is perhaps most simply described as comprising those functors between Ifp
categories which preserve limits and filtered colimits and have filtered colimit preserving
right adjoints with counit of the adjunction an isomorphism.

The model in this form has been studied by Coquand (see [CE, section 51), although
not in terms of the systematic framework developed in section 2. From the point of view
of domain theory, it is very natural to approach the model in this way, since Ifp categories
directly generalize algebraic lattices and filtered colimit preserving functors generalize
continuous maps beteen cpo's. Perhaps the main advantage of the topos-theoretic
treatment we have given in this section is the extremely simple way in which the existence
of a generic family of Orders (4.19(vi)) is demonstrated using standard properties of
classifying toposes; we hope that the use of this technique will lead to the discovery of

other models.

(i) A version in the style of Scott's information systems. Instead of dealing with Ifp
categories, we can work directly with the (essentially) small lex categories which determine
them. (Recall that an Ifp category A is equivalent to LEX(C,Set) when Cx~(Arr)°P.) Our
calculations in the proof of Proposition 4.6 imply that specifying a filtered colimit
preserving functor LEX(C, Set)—— LEX(D, Set) is equivalent to giving a functor
COPxD— Set which is lex in its second variable (cf. 3.6(i)): we will call such a thing a
lex module from C to D. Recall that a module (or profunctor or distributeur) from C to D
is a functor C°PxD—— Set; modules can be composed and small categories, modules and
natural transformations form a bicategory—see [J1, section 2.4] and [CKWI] for example.
Restricting the objects to be lex categories and the morphisms to be lex modules, we
obtain a sub-bicategory which we call Lexmod. Then it is the case that ATOP and Lexmod
are equivalent bicategories. This forms the basis for a second equivalent description of the
model in 4.19—one that has similarities with the "information system" approach in domain
theory. The (opposites of) small lex categories are to Ifp categories as information
systems are to domains; lex modules are to filtered colimit preserving functors as
“approximable maps” are to continuous maps between domains.

With a little calculation (which we do not give here) the structures in Lexmod which
witness the fact that it is a model of the theory of constructions with "Type ~ORDER"
take a rather pleasant form. First note that the terminal object 1 in Lexmod is given by
the trivial lex category; and the product of C and D is given by their product in Lex. The
class of display morphisms A in Lexmod corresponding under the equivalence to that in
4.19(i1), consists of those lex modules of the form C(P(-),+):E®PxC——Set where
P:E—C is a lex fibration (cf. 4.11). Thus for each C, these are the objects of the
category A(C) (notation as in 2.2); the morphisms from P:E——C to Q:F—>C in A(C)
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are (isomorphism classes of) lex modules M:E°PxF——Set for which the composition
with  C(Q(-),+) is isomorphic to C(P(-),+), that is, for which we  have
M(=,Q.(#) 2 E(-, B, (+)).

We can use the remarks in 4.12 to describe the objects of A(C) equivalently as
pseudofunctors C°P—Lex. Further calculation shows that from this point of view, a
morphism in A(C) between pseudofunctors E:C°P——Llex and F:COP—|[ex is specified

by the following data:

a lex module My/(-,+) :E(L)°PxF(U)—> Set for each UeC,
a natural transformation Mg : MyA-,+)—— M A{a*(-),a*(+)) for each a:U——V in C.

satisfying the coherence conditions
MidU=M[j‘(L—’,L) and M,Ba = Mu(ﬁ,n—’)“(Ma)ﬁ*xﬁ*"Mﬁ

(where ¢ and K are the canonical isomorphisms for pseudofunctors defined in 3.7).

We next describe the adjoints M, and M, to the pullback functor M* :A(C)——> A(D)
for a morphism M:D——C in A. First consider the special case when C is the terminal
object 1. We can identify A(1) with Lexmod and M™ with the functor Ap :Lexmod—— A(D)
which sends a lex category to the constant pseodofunctor with that value and acts

similarly on modules. Then it is the case that

the left adjoint to Ap sends a pseudofunctor E:D°P—lex to the lex category Gr(E)
obtained by performing the Grothendieck construction (cf. 4.9) on E;

the right adjoint to Ap sends a pseudofunctor E:D°P——lLex to the Jex category
oplaxpopE obtained by taking the oplax colimit of E (cf. 3.7).

The Beck-Chevalley condition implies that we can calculate the adjoints to an arbitrary
morphism in A fibrewise using the above special case. Thus if M:D—C in A is given as
C(P(-),+) with P:D——>C a lex fibration, we have:

(MEXU) = Gr(E|)
and (ML)(U) = oplazppnop(El)

where D(U) is the fibre of P over UeC (cf. 4.12) and El¢s is the restriction of E to that
fibre.

The last part of the structure of Lexmod which needs describing is that corresponding
to T—T in 4.19(vi), namely the interpretation of Order and the generic family of
Orders. The lex category underlying T is the classifying category Ciex Of the lim theory
lex, which we saw in 4.4 can be described equivalently as the opposite of the category of
finitely presented lex categories and strict lex functors, (Iex(Set)fp)oP. The generic family
in A(Cygy), regarded as a pseudofunctor Iex(Set)fp—>Lex, is just the forgetful functor

(not an inclusion because the morphisms in lex(Set) are strict lex).
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5 | _ocalic algebraic toposes

We now describe a second topos-theoretic model of the theory of constructions—and
moreover one in which the classes A and R required in 2.13 are distinct. The underlying
category and the class A are as in 4.19, but we restrict R by imposing the condition of
being localic. In terms of the alternative description 4.20(i), this corresponds to modelling
(families of) Orders by (continuous fibrations of) locally finitely presentable categories, but

modelling (families of) Types by (continuous fibrations of) algebraic lattices.

A geometric morphism f:F—E is /ocalic if the terminal object 1eE is an object of
generators for F over E, i.e. if for every YeF there is some XeE and a diagram of the

form
(5.1 o &y

in F with m a monomorphism and e an epimorphism. An alternative characterization, and
the one which gives rise to the name "localic”, is: f:F—E is localic iff F is equivalent in
GTOP(E) to an E-topos of sheaves on an internal locale of E. We refer the reader to
0J31 and [JT] for expositions of the basic properties of localic toposes. In particular we
will need to use the fact that the localic geometric morphisms form one half of a
factorization system on GTOP. The other half is given by the hyperconnected
morphisms—those f:F—E for which f* is faithful and such that the objects in the image
of f* are closed under taking subobjects in F. These morphisms are orthogonal to the
localic morphisms (cf. 2.12). An arbitrary geometric morphism f:F—E factors uniquely up
to equivalence as f2elch:F—L—E, with h:F—L hyperconnected and &:L—E localic. (L
can be taken to be the E-topos of sheaves on the internal locale f,(Qg), where Qg is the
subobject classifier in F; more elementarily, it is equivalent to the full subcategory of F
whose objects are those Y for which there exists a diagram of the form (5.1) with m

mono and e epi.)

5.1. Meet semilattices. These are the models of the lim theory msl having a single sort

Ob, a constant symbol T:0b, a function symbol A:0bxOb—0Ob and axioms

Vz,y,2:0b(zA(YyAz) = (zAY)AZ)
Vz,y:0b(zAy=yAz)
Yz:0b(zAT=x)
Yz:0b(zAz=z).

Clearly a model of msl is a partially ordered set (via the relation: z<y iff zAy=z) with all
finite meets (including the empty one, T)—and hence can be regarded as a lex category;
similarly a homomorphism of meet semilattices is in particular a strict lex functor. Thus
msl(Set) is a full subcategory of lex(Set). indeed it is a reflective subcategory: the left
adjoint to the inclusion mslSet)—lex(Set) sends a lex category C to the meet semilattice
PoC obtained by first forming the pre-order reflection (i.e. the set ObC pre-ordered via:
X<Y iff C(XY) is inhabited) and then quotienting by the associated equivalence relation
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(X=Y iff X<Y and Y<X) to get a poset.

Relativizing the above to any Grothendieck topos E, the internal meet semilatices in E,
msl(E), form a full reflective subcategory of lex(E), the left adjoint Po :lex(E)—> msi(E)
being given by the internal version of the poset reflection of a category. The unit of the
adjunction at Celex(E), the quotient functor C—PoC, is full and surjective on objects;
hence by [J3, Proposition 3.1(i)1 the geometric morphism [C°P,E]I—[(PoC)°P,E] it
induces is hyperconnected. Similarly, since PoC is an internal poset, the unique internal
functor PoC-—1 is faithful and hence by [J3, Proposition 3.1(ii)1, the induced geometric
morphism [(PoC)°P,E1—[1°P,E1~E is localic. Therefore these two geometric morphisms
give the hyperconnected-localic factorization of their composition, which is the geometric
morphism [C°P,EJ—E defining the topos of internal presheaves as an E-topos. If the
algebraic E-topos [C°P,E] is already known to be localic, then it is equivalent to its localic
factorization and so [C°P,E] ~ [(PoC)°P,E] in GTOP(E). We have thus proved:

5.2. Proposition. A Grothendieck E-topos F—E is both localic and algebraic iff it is
equivalent in GTOP(E) to LM°P E1—E for some internal meet semilattice M.
a

In view of this result we can use the material in 4.4 on classifying toposes applied to

the lim theory msl rather than to lex to obtain analogues of Propositions 4.2 and 4.5:

5.3. Proposition.
(1) Geomnetric morphisms which are both localic and algebraic are stable under pullback
in GTOP.
(11} There is an algebraic topos Y' and a localic-algebraic T'-topos T'—T' with the
property that any other F—E in GTOP which is both algebraic and localic can be
obtained from L'—Y' by pullback.

Proof. For (i) we can either use the proof of 4.2 applied to internal meet semilattices or
recall that localic morphisms are pullback stable—cf. [J3, Proposition 2.11 or [JT,
Proposition VI.41.

For (ii), take T'=[C3,.Setl, the classifying topos of the Iim theory msl and
L' =LUsET 1, where UZBiemsl(T’) is the generic meet semilattice—then argue as in the
proof of 4.5,

O

S5.4. Remark. In Proposition 4.5, the “generic” algebraic topos is defined over a topos T
which is itself algebraic. On the other hand, in Proposition 5.3 the generic localic-algebraic
topos is defined over a topos T' which is algebraic, but is not localic; for if it were, then
Cms) Wwould have to be equivalent to PoCng and hence be a preorder—but Cnsl is
equivalent to the opposite of the category of finitely presented meet semilattices, which is
certainly not preordered.

However, the property 5.3(ii) does not determine E'—T’ uniquely. Perhaps there is
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another choice of localic-algebraic E"—T" satisfying 5.3(ii) but with T"—Set itself both
algebraic and localic? In fact no such choice is possible. For if we had such, then we

could find pullback squares in GTOP of the form

EI_—)EII 2"—ﬁzl
_l |

l = l and l 2 ‘l

T’—>i T" T = "

Composing these two squares to give a single pullback and recalling the definition of X,
we must have (re))*UmpngiZUmg in mMsl(T’); but T' is the classifying topos of meet
semilattices and under the equivalence msl(T‘) ~GTOP(Y',T") this isomorphism corresponds
to some isomorphism reixjy.. Therefore i and r make YT’ a retract of T" in
GTOP—from which it follows easily that T' is localic if T" is. But we observed above

that T’ is not Jocalic; so no such B'"—T" can exist.

5.5. Notation. For each Grothendieck topos E, let LATOP(E) denote the full sub-2-category
of GTOP(E) whose objects are those A—E which are both localic and algebraic. Given a

geometric morphism f:F—E,
S :LATOP(E) — LATOP(F)

will denote the restriction to localic-algebraic toposes of the operation of pulling back

(which by Proposition 5.3(i), is well defined).

We next examine how the additional assumption of being localic effects the properties
of algebraic toposes with respect to exponentiation and right adjoints to change of base.
To do so, we use the following topos-theoretic result which as far as we know has not

appeared elsewhere:

5.6. Proposition. Let A—E be an exponentiable E~topos. Then (A-g - ):GTOP(E)—GTOP(E)

preserves localic morphisms.

Proof. We make use of the following characterization of localic geometric morphisms,
which is proved in [Pil, Proposition 3.51 (for the case E=Set, but in a way that relativizes
to arbitrary E):

Given g:G—F in GTOP(E), form the pullback of g against itself

GxpG—2 G

_l
Po g

G———F

R

and let d:G—GxgG be the diagona/ geometric morphism, i.e. the morphism for which
there are natural isomorphisms 6;:p;ed = Ig (i=0,1) satisfying gépemd =gé,. Then: g is

localic iff d is an inclusion.
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Since (A-g - ):GTOP(E)—GTOP(E) has a left biadjoint, it preserves the above pullback
square and diagonal geometric morphism. Consequently to prove the proposition it is
sufficient to prove that (A~g -) preserves geometric inclusions. This is the case because
inclusions can be characterized using limits in the bicategory GTOP(E) (and these are
preserved by (A-g-)). Indeed, the geometric inclusions are precisely the inverters in
GTOP(E), i.e. those i:F—G for which there are g,h:G—H and ¢:g—h with the property
that for any K, the functor ie(-):GTOP(E)(K,F)— GTOP(E)(K,G) is full and faithful with
essential image those k:K—G for which ¢k:gk—hk is an isomorphism. We briefly indicate
why this is the case, giving the argument for E=Set, but in a form admitting relativization:

First note that inverters can be constructed as sheaf subtoposes: if (Hyluel) is a
small family of generators for H and j is the least Lawvere-Tierney topology on G which
forces each ¢, :g* (H,)—h*(H,,) to be iso, then sh(@ <G is necessarily the inverter
of ¢. Conversely, if i:F—G is an inclusion—say F=sh(G)—then define H to be the full
subcategory of the arrow category G2 whose objects are those a:X—Y in G which are
J-bidense. One can show that H is a Grothendieck topos. (This is just a question of
exhibiting generators, since it has the right exactness properties automatically.) Then the
inclusion H—>G2 is the inverse image part of a geometric surjection q:GZ-—H. The two
functors and non-identity natural transformation in Cat(1,2) induce geometric morphisms
lo,,-G—G2 and a natural transformation A:lg—1,. Then the definition of H and the
characterization [J1, 3.41 of sheaf subtoposes in terms of categories of fractions imply
that sh (G <~—G is the inverter of g\:qgl,—ql, .

O

5.7. Corollary.

(1) If a:A—E is an algebraic E-topos and b:B—E a localic-algebraic E-topos, then their
exponential (A-gB)—E is Jocalic-algebraic. So in particular each LATOP(E) Js
cartesian closed and for each geometric morphism SFF—E, the pullback operation
f7LATOP(E)—LATOP(E) preserves the cartesian closed structure.

(41) If f:F—E is algebraic and b:-B—F is a localic-algebraic F-topos, then the algebraic
E-topos fu(B) of Proposition 4.18 is also localic. So when f is algebraic, f, gives a
right adjoint for f*LATOP(E)}—LATOP(E) satisfying the Beck-Chevalley condition.

Proof. in view of Corollary 4.8, for (i) we just need to see that (A-gB)—E is localic; but
this  morphism is the composition of the equivalence  (A-gE) ~E  with
(A~gb):(A-gB)—(A-gE), which is localic by Proposition 5.6.

For (ii), note that the construction of fAB) in 4.18 is in terms of exponentiation and
pullbacks—so that the result follows from 5.6 and the fact that localic morphisms are
pullback stable.

a

5.8. Remark. Using Proposition 5.2 and the formula for exponentials of algebraic toposes
given in 4.7, we can rephrase 5.7(i) in more concrete terms: if Celex(E) and MemslE),
then the copower CP- Melex(E) is equivalent to an internal meet semilattice and hence is
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an internal preorder.

We now turn to the construction of left adjoints to pulling back localic-algebraic
toposes. In contrast to the case for exponentials and right adjoints (for which we have the

absoluteness result 2.8), the left adjoints are not the same as in the algebraic case:

5.9. Proposition. /f f:F—E is an algebraic E-topos, then f*LATOP(E)—LATOP(F)
possesses a left adjoint, denoted [f:LATOP(F)—LATOP(E), which satisfies the
Beck-Chevalley condition (cf. 4.10).

Proof. Let LTOP(E) denote the full sub-2-category of GTOP(E) whose objects are localic
E-toposes. (The morphisms of LTOP(E) are also localic since B—A is localic when both
A—E and B—A—E are) For an arbitrary geometric morphism f:F—E, the
hyperconnected-localic factorization of geometric morphisms mentioned at the beginning of
this section provides a left adjoint f:LTOP(F)I—LTOP(E) to the pullback operation
FZ:LTOP(E)—LTOP(F). Indeed, given b:B—F in LTOP(F), fi(B—E is the localic
factorization of the composition feb:B—E. These left adjoints satisfy the Beck-Chevalley
condition for pullback squares in GTOP simply because both localic and hyperconnected
morphisms are stable under pullback: see [JT, VI.5] and [J3, section 21.

Therefore the proposition will be proved if we can show that f,:LTOP(F)——LTOP(E)
takes algebraic toposes to algebraic toposes in the case that f is itself algebraic. In view
of 4.9, this amounts to showing that the localic part of an algebraic E-topos is again
algebraic. But we saw above that for Celex(E), the localic factorization of [C°P,E]—E is
[{(PoC)°P,E]—E, where PoCemsl(E) is the poset reflection of C.

0O

5.10. Localic—algebraic model of the theory of constructions. We now organize the results
of this section to give a second topos-theoretic model of the theory of constructions. It is
a model of the theory "OrdercORDER" of 111 (but not of the stronger theory
"Type ~ORDER" of 1.12). So we will show how to fulfil the conditions in 2.13 and the

condition in 2.14.

For (i), we take the category B to be just as in 4.19(i): so B consists of algebraic
toposes and isomorphism classes of geometric morphisms.

For (i7), we take A as in 4.19(i%): so it is determined by those geometric morphisms
f:F—E making F an algebraic E-topos; and for the subclass R we take those
morphisms determined by geometric morphisms which are not only algebraic but also
localic.

(111) follows from 4.19(iii) and 5.3(i).

(iv) holds because of the fact that equivalences between toposes are trivially
localic-algebraic.

(v) holds because of 4.19(iv) and the fact (easily deduced from the definition at the

beginning of this section) that the composition of localic geometric morphisms is again
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localic.

(vi) holds because of 4.19(v) and 5.7(i1).

(vii) follows as in 5.9: the hyperconnected-localic factorization is pullback stable,
hyperconnected morphisms are orthogonal to localic ones and the factorization applied to
an algebraic geometric morphism yeilds a localic-algebraic morphism.

(viii) is a consequence of 5.3(if).

(iz) holds by definition of B.

Finally, the condition Ordere ORDER of 2.14 is just 4.19(vi).

S5.11. Equivalent descriptions of the model. In 4.20 we gave two equivalent forms of the
category B. The first was in terms of locally finitely presentable Categories and functors
preserving filtered colimits. The second was in terms of small lex categories and lex
modules. We explain briefly what the class of morphisms R looks like in these equivalent
formulations.

Recall from 4.20(i) that a filtered colimit preserving functor P:F——E between Ifp
categories is in the class A if it preserves limits (this is equivalent to its having a left
adjoint) and has a right-adjoint-right-inverse which also preserves filtered colimits. in
particular P is a fibration with Ifp fibres; and then P is in R simply if its fibres are in
fact pre-ordered. Note that pre-ordered Ifp categories are equivalent to algebraic lattices.
Thus the category R(1), whose objects model the constant Types, is equivalent to the
category of algebraic lattices and continuous (i.e. directed sup preserving) maps. More
generally, one can show that for E locally finitely presentable, R(E) is equivalent to a
category whose objects are filtered colimit preserving functors from E into the Ifp category
of meet semilattices, msl(Set). The latter category is equivalent to the category of
algebraic lattices and continuous maps possessing continuous right adjoints—so each
object of R(E) in particular determines a functor into algebraic lattices and continuous
maps; then the morphisms in R(E) are given by "lax natural" families of continuous maps.
This is the form in which Coguand, Gunter and Winskel have studied the model—see [CE,
section 51].

Turning to the formulation of the model in terms of lex categories and lex modules,
the modules D——C which are in R are those induced by lex fibrations P:D——C whose
fibres are pre-ordered and hence are equivalent to meet semi-lattices. Thus we can take
the objects of R(C) to be those pseudofunctors C°P——Lex which are in fact functors
CoP—— msl(Set). Restricting the description in 4.20(ii) of the morphisms of A(C) to
these objects, we find that specifying a morphism from E:CoP—— msl(Set) to
F:C°P——msl(Set) in R(C) amounts to giving a family of relations Mg, < E(U) xF(L)
(UeC) satisfying:

z'sz and MyAz,y) and y<y > Mylz’,y)
Mz, 7)

MiAz,y) and MpAz,y) = Mydz,yAy)
a:U—>V and Mydz,y = M la*(z),a*(y).
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(One can use relations, since if M:C°PxD——Set is a lex module and D is a meet
semilattice, then y<7 induces a monomorphism M(X,y)—M(X,T) 21, so that each
M(X,y) has at most one element.) Describing the categories R(C) in this way also makes
it easy to describe the reflection of R into A (i.e. 5.10(vii)): it is given on objects of A(C)
by composing a pseudofunctor COP——Llex with the poset reflection functor
Po:Lex—> msl(Set) of 5.1. Finally, Type is modelled in this setting simply by the opposite
of the category of finite meet semilattices (since finitely presentable implies finite in this
case); and the generic family of Types is modelled by the inclusion of this category into
msl(Set).
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