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Introduction:

A number of authors (in particular Day & Kelly [ 11} have
observed that the topological spaces X which have function spaces

(i.e. such that () * X has a right adjoint in Top the category of

topological spaces) are just those whose lattice @ (X) of open

sets is a continuous lattice. The main result of this paper is

an extension of this characterization to the category Log of
locales. Many similar results (one might say "everything Eut

the result in this éaper") are given in Isbell [5], and I imagine
that others will have considered thé prqblem. But I have never
seen an exposition of the material.

This paper is written for those who like their abstract
mathematics concrete. In particular, the proofs are entirely
constructive, and so the results are available for applications
in categorical logic. Indeed, two examples of function spaces
considered here, Cantor space N and Baire space NN, can be used
to analyze the constructive force of completeness theorems
(-an account should appear in Fourman [2]). Note that by [5],

classically a locale which is a continuous lattice is spatial;

so we do not change the.objects with function spaces when
passing from the category EE of gober spaces to Log. Construc-
tively the situation is very different, but I will not go into
that here.

This paper'é dual intellectual debt is to André Joyal and
Dana Scott whose insights into locales and continuous lattices,
respectively, are fundamental to it. Special thanks are due to
Peter Johnstone, who both encourage me to write this paper and
exposed me to a civilized treatment of locales which will

appear in his forthcoming book [61].
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Preliminaries:

All the information needed to understand this paper is
contained in Johnstone [ 61 Ch. 2 (for locales) and in Gierz,
Hofmann &&&& Scott [4] Chs. 1 & 2 (for continuous lattices).

What follows is a brief sketch.

The category Logg of locales is the opposite of the category
with objects complete Heyting algebra‘'s and with A,\/—preserving
maps. The category of sober spaces is embedded-(fully and
faithfully) in Log, and this embedding has a right adjoint.

Loc”P '
theofies, where the maps correspond to interpretations: for a
locale A, the theory on the elements of A is generated by the
axioms +T (T top element), a+a' whenever a<a' in A, a Aa'+a"
whenever a' is the meet of a and a' and ai~\/ai whenever a is

the join of the ai's in A, To obtain the product . A x B of two
locales in Log; we take their sum in QQEOP and sc amalgamate

the two theories and take the corresponding {(classifying) complete
Heyting algebra. Thus A x B consists of ideals in the lattice
product "closed under the axioms for A and B" (i.e. in Johnstone's
terminclogy, C-ideals for a suitable coverage C). Write aAb,

for the pair (a,b) in the lattice product and also for the
corresponding principle ideal. Then the elements aAb are dense

in Ax B and for an arbitrary element % of A x B,
aAbz<x if and only if aAbe x.

An important part is played in the following by two locales:
the terminal object 1 in Loc which is the locale corresponding
to the one point space, and the cogenerator 8§ which is the locale
corresponding to Sierpinski space. Classically 1 is the two
element totally-ordered set and S is the three element totally-
ordered set. Constructively, 1 is P(l) as a lattice and can be
identified with the ideals of the two element totally~-ordered
set: similérly, 8 is the lattice of (8cott) open sets of the

continuous lattice (and sober space} P(l) and so can be

would be thought of as the category ©f geometric propositicnal




266

identified with the ideals of {1 <m<T} the three element
totally-ordered set. It follows from this last observation
that an A\/"map S$—+A from S to an arbitrary locale A, is
completely determined by image of m = ideal generated by m.
In a complete lattice (or more generally) the relation

way below, <<, defined by

a«bif and only if whenever a directed union

VSZb, then for some s €8 s>a

(equivalently if and only if for any ideal I,\ﬁIZ b implies a e I}.

A continuous lattice 1is a complete lattice in which every element

is the sup of the (directed) set of elements way below it. As
with many arguments involving this concept, we will make
considerable use of the density property of the relation « in

a continuous lattice:

if a<b then for some c. a<c<bhb,

A locale is locally compact if and only if it is a continuous
lattice.

Function Spaces:

Tn a category, an object A is said to have function spaces

if and only if the functor () *xA has a right adjoint. There

is a function space BA for two objects A and B if and only if

the function Hom ( xA,B) is representable.
We can now state our

(Main) Theorem 1: The folldWing are equivalent for a locale A;

(i} A i1s locally compact;
(i1} A has function spaces in Loc;
(iii) The function space sP exists in Loc.
Clearly (ii) implies (iii). We will show (iii) implies (i} and

(i) implies (ii): since both proofs are rather long, we give

the results as separate propositions.




267

Propesition 2: If SA exists in Loc, then A is locally compact.

Proof: - A point p:l-~ SA of SA correspends to a locale map
p:A~+ 8 and hence is determined by the Ay map p*:S5+ A and so
by element p* (m) of A. Conversély an element a say of A gives
rise to a locale map 'pa:A—>S where ﬁa* (m) =a and thence to a

A of SA. There is an obviocus partial order on the

point P, * 1+5
points of SA, the pointwise order on mapE: between lattices (it
makes no difference whether we co-n.sidér the p:l-~ SA or its

left adjoint.p*:SA+ 1l). We c¢laim first under the above bljection
between points of gh and elements of A, the order -on the points

corresponds to that on A.

Sublemma 2.1 P, < Pos if 'and only if a<a'.

Proof: - One way round is easy. Given p:l- SA, the map

p:A-+ S, must be the composite

A= lXA—>:SAxA-——--—> s
px 1 ev

where ev:SAx A+ 5 is the "exponential transpose" of id:SA-a. SA.
Hence if PSPt + then j;’)a s'pa, and so a=i§a* {m) sﬁa? (m) =a'.

For the converse, suppose a < a' and consider the element of SxA
{TAa, mAa']l,

the ideal generated by TAa and mAa‘'. Since aca', this
consists of just those elements in .the lattice product below one
or other of TAa and mA a'. Now consider the maps h:Sx A+ 5

and t, f:17* 8 where h*{m) ={TAa, mAaa'] and £*¥(m) =T, £*(m) =X%.
{The reader should be able to identify the latter two as maps
of spaces and as the maps true and geis_e in any topog). Now

by our characterization of [TA a, maa'], the composites

A= 1XA ——> SxA —=> §
tx1 h
and AE1xA—> SxA ——> 8

Fx 1 h

are p.. and Pa respectively. Taking "exponential transpose”

again we see that the composites
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t h
A
and 11— § — &5
£ h

are p_« and Py respectively (h is the "transpose" of h). Since
f<+t, it follows immediately that P, =Py- This cémpletes the
proocf of (2.1).

It is now natural to identify a and Pyt and when d is an
element of B write ae¢ d rather than pe d for pa* {d) =T.

Sublemma 2.2 For any element d of S*, {a|acd} is upwards

closed in A.
Proof: - If aza' and acd then pa*(d)==T and Po< P by (2.1)
s0 pa,*(d)==T, that is a' e d.

We next show that the sets {alaed}, d an element of SA,
satisfy Scott's broperty of inaccessibility to directed joins
{so they are Scott open in 3a).

Sublemma 2.3 Let d be an element of SA, and ¥ an ideal in A

such that V Ie d. Then for some a in I, ae d.

Proof: - (We use ¢ both to denote ordinary set membership and
as above to denote the "membership" of points in elements of
locales. The context should prevent confusion). Consider T (I)
the upward closed sets of I under inclusion. This clearly forms

a locale and in_view of (2.2) we define f:T(I)-—)-SA by setting
A
£%:57 > T(I); @+ {acI|acd}

Each element a of I gives rise to a point qa:l-+T(E) of T(I)
determined by

- qa*:T(I)-’*l; U ”'V{T[ae ul,
(i.e. g,* (U) is T if and only if ac U). A simple deduction
shows that foqa==pa.

Define a point g:1l » T(I) of T(I) by setting

g7 15 > ViT|dacI. acU),
(i.e. g*{U) is T if and only if U has a number).
S
Clearly for each a in I, 9, <9 so pa'sfoq and so a.g(foq)*(m).

ﬂmsVIStQ@*mL
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Now if VI €d, then (fog)*(m) e d whence (foq)*(d) =T that is
g¥f* (d) =T; but this implies dacI. aecf*(d) so that for some
acI, aecd., This completes the proof of (2.3).

Sublémma 2.4 as= V{a*[ dd.dAa* <ev¥(m) & acd} where as

above ev is the "exponential transpose”" of id:SA+SA.
Proof: — As in the proof of (2.1) we have E’a='evo(Pa x 1), and
by properties of the product in Loc we have

(p, * L) *(d'Aa’) = V{T|aed'}/\a‘ = V{a'|aed‘}.

Thus a p_*(m)

a

(pa x 1) *ev* {m)

Vi xn*@aafdaar<evsm}

V{a*| Ja.dAra* <ev¥(m)gacdl.

This .proves (2.4).

We now complete the proof of Proposition 2 by showing
a = V{a"|a°<< al,

for any a in A.
In (2.4) we see that

dAa*cev¥(m) and ae d implies a*=sa | (Ty.
We claim that in fact such an a* is way below a. Let I be an
ideal such YIza; since acd, by (2.2) ¥ Ied; hence by (2.3)
da'eI. a"ecd; now since dAa* <ev*(m), we can apply (t) to
a" to obtain a* £a'; thus a* ¢ I.

This shows that

dAa* <ev*(m) and aed implies a*«x a,

and so0 by (2.4) we have’

a = V{a'la'« al,
and A is locally compact.

To show that (i} implies (ii), we exhibit a présentation
of the locale BA for A locally compact and B arbitrary. As
in the proof of Proposition 2, the points of BA correspond
to locale maps A to B, that is to f\v -maps from B to A. The

presentation of BA which we give is the theory of such I\V—maps.




270

Proposition 3: If A is a loecally compact locale, then A has

function spaces in Loc.

Proof: - Consider a geometric theory based on propositions
"a<« £% (b)" for acA, beB; of course "ax £¥(b)" is regarded as

a single syntactic entity; the notation indicates how the points
of the locale we aré gonstructing give rise to ﬁﬁf—maps from

B to A. The theory is given by the axioms:
a« f*(b) pa'< £%(b')  (a'<a,bsb');

Py« F*(b); ax £*(b), a'< f*(b)rava'« f*¥(b);

Ratw £%(T) (a'«< T); a«x £f*{b), ax f*(b')ta'<x f*(bAb')(a"«x a);

a< £% (b) V' a'« £%(b); _
a<at |

a< £ (bl \/ (Aay«< £%(b2)) ({ba!a e I} covers b).
. 3 o

finite covexr's .
{a,lacd) of a
for which J=1I

The locale BA is the propositional (Lindenbaum) algebra associated
to this theory. Concretely, # is a preorder on the Qeoﬁeéric
formulae (it is sufficient to consider arbitrary disjunctions
of finite conjunctions of the a«x f£*(b) and B is obtained by
factoring out by the corresponding equivalence relation to
give a partial order. Thus the elements [a< £* (b} ] (equivalence
class of a< f%*(b)) are subbasic - any element is an arbitrary
join of finite meets of éuch - so“aAIA\/-map from B will be
determined by its value on the [a< £%(b)1's.

In this proof,gfor locale maps F, G ... we let F*, G*
denote the inverse image map which is an A\/—map in the

opposite direction (the "logical" direction). First suppose

we are given G:C x A+ B; we define E:C-*BA by setting

S* ([ax £%(b)1) = Vic|Ja'>a, cha' sG*(b)}

To check that G extends to a {unigue) A\/—map B C, it suffices
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to check that G* preserwves the axioms for BA. ‘These are all

trivial except the last, for which we need some Lemmas,

Sublemma 3.1 Let A be locally compact and {x |o eI} a directed

set of elements (C-ideals) in C xA: then

\f{xu]ae 1} = {ca a[Va'« a. c is a union of c' such

that ¢'Aa' is in some ch}'

Proof: - It suffices to show that { } is closed Vunder the

axioms for CXA. {(i.e. is a C-ideal).

Suppose cgAac{ }; then clearly \/cai\ae_{ }.'

Suppose ¢ Aag e{ }; to show cAVaG e{ }, pick a'wa = Vas; we
'

find a finite set F of &§'s and a‘(S «ag §eF withv a'e3 =a'; now
‘ F
for each 6 ¢ 7,

¢ = Vic <clc'A a's is in some xé},

whence taking finite intersections we get

c= Yics cle'Aa’y is in some x, for each §eF}

Vier sclc'A a' is in some xs} using the fact

that {x.|6 e I} is directed;

this shows cAVaS ¢ { } as required.

Sublemma 3.2 Let A be locally compact and {x&|oa e I} a finite

set of elements of C xA: then

V{xa|ue:[} = {cI\a|Va'<< a. ¢ is a union of c¢'
such fhat there is a' = V{a&me I}

with c'Aa) ¢ 2., o e I}.

Proof: - Again it suffices to show that.{ }is closed under
the axioms for C xA.

Suppose cGAae{ }; then clearly VCSA ae{ }.

Suppose cAag e{ }; to show c/s\/a(S e{ }, pick alwas= Va(s;
find a finite set F of &'s and a.'(S «ag § ¢ F with

V{a"s [ eFl=a'; now for each 8 ¢ F,

c = V{c’ sc | there is al; = V{a'5 o ¢ I} with

|r0f'1

ctA a‘alaexa},
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so taking finite intersections we have
c = V{c' <c| for each & ¢ F, there is a'g= V{a'dmwel}

with c'aa’y ch}’
7

whence setting a' v'{alﬁ oala‘ c Fl we see that
F

Q
i

Vi{c' <c| there is a' = V{a'a |o e I} with

c'A a' ex I;
o oz}'

this shows cAVa(S e{ } as required.

Sublemma 3.3 Let A be locally compact and {xa|o¢ ¢ I} a set of

elements of C xA: then
\/{xa]rxel} = {C4 a[Va'« a. ¢ = VYie'=s¢c| 3 finite
JeT and a' = {a'alueJ}, c'A a' ex . oeJr}.

Proof: - Sublemmas 3.1 and 3.2 give
chac V{xu[a,e 1} iff Ya'wa ¢ = Vic' <cl 3 finite Je1.
Var«a'., ¢ = Vien|Ja= V{a"Ob joe T} & cmAA e x
' aeJr},

ul

Clearly cAae{ } of (3.3) impiies the condition on the right.

Conversely if caac V{,xd|o¢ € I}, then for any a'<«a pick a'«wa'«a

& we get ¢ = V{c'sc| JEin. T<1I &

et = Vien

whence ¢ = VY{c'sc|3fin. J&I & a' =V{a'u|asJ} & cTAal, €x ks

A

c‘|3a' = V{a'a[aeJ} & c"A al exd}},

8

this shows cAac{ } of (3.3).
{Alternatively, one caﬂ give a dlrect proof along the lines of
(3.1) & (3.2)1. |
Now suppose ¢ is such that Ja'»a cAa' <G*(b) where b=V{bu|<x e T}:
then pick a" . axa'" «<a'; by (3.3),

c = V{c' < ¢ Efinité J&I andg a"= V{az"OL |o e T}

with ¢'A aNOL e G¥ (bu) , acJr;

but we can find a «a' aeJ with a= V{aalu ¢ J} for any
ar =V{a"u | e T}; so

¢ = V{c' <¢c| for some finite J€I and a= V{aa|o¢ ¢ J}

3 7 : L] W * 3
there is a « & and ‘c'A a’ e G (bu)' oe Jb;

but this shows that




273

Gr(la< £x (b)) <V A G (fa £*(b)1).
finite JeI J
& a= {aa|aeJ}
Remark The last axiom is equivalent to the following two:

a< t* (o= V ax £* (b)) {bd|oceI} a directed set With>
ael _
V{ba|u eIl = b

a<< £* (b) = V l\ (aa« .f* (ba) ({bu|ueI} a finite set)

finite covers T ) i
{au|ou-:I} of a with {bu|0t€I}—b .

Sublemma 3.1 shows that the first of these is preserved and
Sublemma 3.2 does the second.
Now suppose that we are given F:C ~+ BA; we define F:C xA~+B

by setting

Il

F*(b) = [{caalc<F*(ax £4(b))}] (i.e. C-ideal

generated by { })

Vicaa|c<F*lax £x(b)}.
We check that F* “is an A.V map. We need a Lemma identifying F* (h).

Sublemma 3.4 F*(b) = {c a|Va'<<a c<Fla'«< £* (b))},

Proof: - Again as { } is generated by the caalc <F*{ax £*(b)),

it suffices tb show that { } is closed under the axioms for CxA.

If CgAaE{ Y, clearlchaAae{ T

If cAag e{ }; to show C/\«Vas e{ } pick a'<<a_=Va6; find a

finite set F of d's and a'y « a, with “\f{_a'&S |6 eFl =a'; so for

each & e'F, csF¥(a' «f*(b)); so by one of the axioms for BA,
c<F*(a'« f*(b)); h

but this ‘shows cls\/a(S e{ )} as required.

Let {bi|i e I} be a finite set; we wish to show

AiF* (b)) |1 e T} s F* (Aib, |1eThH;
but /\{E*(bi)]ie I} = {cAa} for each i eI c=<F*(a'« £*(b;))
each a'« a};
but if a'«a we can pick a'« a"« a, deduce from

c<F*¥(a"« g* (bi) } each ie1




274

that csP¥{a'< £% (. bi)); s0

/\{E*(bi)|iel}s{cna|Va'«a cSF*(a'«f*(/\bi))}=F*(/\bi),
Let {bulu e I} be any set in B; we wish to show
V{f‘*(bu”czel}Zf*(V{ba[(st});

bue % (Vb ) = Vicaalesrra« e (Vb )} ana

if csFr(ax £5 (Vb)) < V A rr@a«erm)),
JeI finite -

& {au|aeJ}=a
c = V{c‘ < ¢| there is finite J<I & a = V{aulueJ} with

c' a, Sf"*(bu)}

so that chas VIF*(b,)|a eI} by (3.3).

If we start with G:Cx A+ B, we have (in view of (3.4))

{cAaI,Va'<<a c< V{c"| Ha"» a'. c'Aa" =G*(b)}

il

G* (b)

V{cAalcs V{c‘l Jar»a. c¢'Aa" G*(b)}.

Clearly if cAa < G*(b) then cA a=G*(b) by top line: so G* < G*.
Conversely using bottom line, we wish to show that

if cAa is such that ()} c< V{c'| Ja">»> a.c'Aa" s G*(b)},

then cAa = G*(b);

but ( ) implies c= V{c'|c'l\as G* (b) } whence cAa=zG*(b).
This shows G* < G* so we have G=a.
Oon the other hand if F:C+BA, we have {in view of (3.4))
E‘*([a-« fx (b)) = V{clga'»am Va"« a'. c<F*([a"«< £%(b)1)}.
Clearly if ¢ e { }of RHS then csF*([ax £*¥(b)]1): so %* < F¥, ri:f:- ,
Conversely since [ax £¥(b}] = V [a'«< £* (b} ], ' :—

ax<a'

P ([ax £5(0)1) = V Frla'« £5(b)).
axafl
put if a« a' then ¢ = F*(a'« £¥ (b)) is such that
3a'>>a s.t. Va"<€a' c<P{[a"« £*{b)1),

whence c < B* (a< £* (b)) .

This shows F* < F* 50 we have F =F.
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It remains to check naturality of the isomorphism

Loc (CxA,B) 2 Loe (C,B™).

It suffices to show that for any G:C x &+ B,

B commutes,

where ev : BA><A-+B, the evaluation map, is the exponential

transpose of the identity so that

evt (b) = V {fa<f%(b)IAalts
a

V {V{cl da'>>a. caa' sG*(b)}Aal,

a

Then ({(G* x 1*)ev* (b)

V{cna|3a5>a.cﬂa'sG*w)L

Thus clearly (é*Xl*iev*(b):SG*(b).

Conversely, if cl\a:zé*(b), take any a*« a: we have

c Aa* = (é* x 1*¥)ev* (b); but cAa= V{c Aa*|a*« a}, so we have
cAa <(G*x1*)ev(b). This shows G*(b) < G* x l*ev* (b), so indeed

evo(éx 1) = G.

This completes the proof of Proposition 3.
Propositions 2 and 3 immediately give our main result
which we restate.
Thecorem 1. The following are equivalent for a locale A;
(i) A i1s locally compact;
{ii) A has function spaces in Loc;

(iii) The function space P exists in Loc.

Let us compare our result with those obtained by earlier
authors. Their results were that in the category‘of To-spaces
(and in certain reflective subcategories} a space X has
function spaces if and only if it is locally compact. First
let us derive the constructive version of the characterization
for the category of sober spaces or equivalently the category

EE of spatial locales (locales with enough points}.

i
:
L
b
P
i
i
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Corollary 4. The following are equivalent for a spatial locale
Aj
(i) A iz locally compact;
{11} A has function spaces in Sp;
Potal

(111) " exists in Sp.

Proof: - (ii) implies (iii) is trivial.
For {iii) implies (i), note that S is spatial and the whole
argument for Proposition 2 takes place in Eg'if A is in §£ﬁ
(Since 8 is locally compact, S xA is spatial by the general and
constructive result (cf. Johnstone [6])

"C,A spatial and A locally compact implies CxA (in Loc)

spatial, and so equal to the product in Sp".
For (i) implies (i1), use Theorem 1 to deduce that A has function
spaces in Log. Now let B, C be in §E° Then we have natural

isomorphisms indicated by

CxA+B in ER as CxA is the same in Loc as

in Sp as A locally compact
CxA-+B in Loc '

c~8" in Log (by Theorem 1)

C—+ pts (BA) in Sp where pts is the right
adjoint to the inclusion of

sober spaces in locales

This identifies pts (B") as the function space in Sp.

We leave it to the reader to deduce in a similar fashion,
the characterization for (To) topological spaces.

Corollary 5. The following are equivalent for a (To) space X;

(i) (%) is locally compact (R(X), the locale of opens
of X);
(ii) ”X has function spaces in Top (TO— spaces);
(1ii) SX exists in Top (To—spaces).
Note that eclassically,

1 if a locale is 1locally compact, then it is spatial, and

2 if a locale is locally compact, then its space of points is locally
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compact in the sense natural for topological spaces that every
point has a neighbourhood base consisting of compact sets.

" S0 by 1, our main theorem says that the function spaces in
Loc and Sp coincide, while by 2, Corollaries 4 and 5 identify
function spaces in the appropriate category as the locally

compact spaces. Of course 1 is wildly non-constructive, and the

formulations of this paper are needed for constructive results:
for example, constructively, it is not the case that A locally
compact implies pts (A) has function spaces in.EB' Less
obviously, the usual proof of 2-is non—gonstructive, and I do
not know if "X is locally compact" can be censtructively
substituted for " (X) locally compact" in Corollary 5.

Finally in this paper we discuss some examples of function
spaces. We can usually simplify the construction in thé proof

of Proposition 3. In particular we often make do with an

axiomatization in terms of bases for A and B. First we consider
the function space gt which played a major role in Theorem 1.

Curiously, though Proposition 2 was proved solely by reference

to the points of SA, we did not need to know that SA was spatial.
But it is.

Proposition 6: If A is locally compact, then SA {(which classifies

the open sets in / elements of the locale A) is spatial (has

enough points}. 7 ‘
Proof: ~ By the construction in Proposition 3, we see that SA

is given by the following theory on propositions a« O (for a

way below the generic open) [a« 0 is the same as a« f£* (m), where

m is the distinguished middle element of the lattice S]:
i ax 0Oka'«0 (a‘s a);

FL«<0; ax0, a'<Okava'«O,

|

a<« Ot V a'« 0.
a'=» a .

|

From this we get a A-semi-lattice = aA°P with coverages (in the

gense of Johnstone [6] ).
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{a'« O|a'» a} covers a« O.
Now a point a' is in a« O if and only if a«x a'. Let K=={(aa« o)}
be downward closed (or an ideal) in the A-semi-lattice such that
for all points a' in (a«x 0), a' is in some (au« 0) in K; then
{a'« 0 a'» a} < R,
and K covers (a<0). Thus if K covers all points in (a« 0}, it
covers {a« 0) in the sense of the theory. Thus SA has enough
points.

Next we consider some properties of discrete spaces and
their function spaces. Obviously any discrete space is locally
compact. For each natural number n let n denote the discrete
space or locale with just n points. Let N be the discrete
space or locale of all natural numbers.,

our first result .ls very simple.

Proposition 7: For any natural number n and locale B,

fe
B

112

B ...x B (n times}).

Proof: - By adjointness, it is sufficient to show that

1Y

cxn = C+...+C (n times).
We indicate the argument for n=2.
The locale 2 is P(2) and has a basis (& classically is) consisting
of T={0,1}, {0}, {1}, L=¢. Then a typical element of Cx 2 is
the ideal
[{(cy, cy)AT, c a{Ol}, cl“{l}’ TAll
Which is completely determined by the pair Cor Cq-
This sets up the isomorphism
Cx2 & C+¢C,
as C+ C is simply the lattice product of C with itself.

our next observation concerns the familiar Cantor space.

Proposition 8: The function space iN is compact and locally

compact. (In fact, it is compact regular which is stronger).
Proof: - An axiomatization, equivalent to that obtained from

Proposition 3, is based on propositions "u" where u is finite




279

binary sequence (u is the initial segment of a map from N to 2):

<>, v (if u extends v},
upEpu*Ovu¥l {where * denotes concatenation),
u, v .k (if uy # v, some i).

It is easy to see that an extension-closed collection {Vu} covers

u if and only if for some finite k all length k extensions of
u are in {va}. But this shows that [ul« [u] in gF which gives
the result. (Special case u = <> gives compacthess).

- The statement that gw is -spatial is equivalent to the

intuitionists' Fan Theorem (K&nig's Lemma) - see Fourman & Hyland

[3]. The function space mmihas a similar axiomatization to

that for EN above., It is not locally compact and the statement

that it is spatial is equivaleént to the intuitionists' Monotonic

Bar Induction. We close with a pair of results which account
for the well-known implication
“Monotonic Bar Induction implies Fan Theorem".

Proposition S: Let A be locally compact and have at least one

point. Then for any B,

BA gpatial implies B spatial.

Proof: - . There are maps B+BA (constant map - i.e. exponential

transpose of the projection B x A - B} and BP B {evaluate at a
_ A _

point of A), making B into a retract of B . The result is
immediate.
Proposition 10:
N
- N, (2
W2 2D
proof: - By use of adjointness, it is clearly enough to show

L@

N.

0
This falls into three parts: showing that 2 = ) has enough

points, showing that the points are discrete and showing that

the points are enumerable. By the construction of Proposition 3
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(M
and our description of EIN in Proposition 8, 3(3 ) can be given
by the following theory on propositions u € Po' ue P1 (implicitly

u« £*% ({0}) ané u« £* ({1})) where u runs over binary sequences:

uePil—VEPi (v extends © i.e. [v]=[ul in ZN)
ukQ e P,, u*leP.pucb,
i i i

uePo, uePl I—'J..

= V (/\ vePO)A /\ vePl).
finite sets Fo’ Fl Ve FO V€ Fl _

of binary sequences

with FO U Fl covers

<> J‘.n2jN

Thus we get a A-semi-lattice consisting {more or less) of pairs
(FO, Fl) of f:Lni‘te sets of binary sequences such that (i) if
ue FO and v e Fl then u and v are incompatible (3 i.ui#vi) , and
(ii) if u*0 and u*l are in F, then u is in Fi. The order is

given by

(F s Fq) s (Gy, G} if and only if everything in

'Gi extends something in Fi‘

(or course this is really only a pre-order) .
N
Then g(?- ) is obtained (cf. Johnstone [61) by using the coverages:
. N
{(FO, Fl)] (F Fl) < (G s Gy) and F uF, covers<>in 271

* P - .- N
(*) COVErS (Go' Gl).

Now from the axioms a point of the locale constructed iS given
by a pair (PO, Pl) of disjoint, extension-closed sets of binary
sequences such that u*O e Pi and u*le Pi implies « Pi and whose .
union P v P, covers <> in ZIN By the compactness of g‘N, for any
point (PO, Pl) there exists 'finite FO < PO, Fl < Pl with FO U Fl
covering <> in _2__IN and (Fo, Fi).in our A-semi-lattice. But then
P, is the extension-closure of F; so that [(FO, Fl)] is the

jattice element consisting just of the point (PO, Pl) and then

{*) above says that any [(GO, Gl)] ig covered by the points in




(I

[2]

[3]

[4]

[5]

ré6]
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it. Thus Z(éN) has enough points and is discrete. To enumerate

)

N
the points of 2(2 ;, note that given (Fo’ Fl) as just above we

can uniquely compute the extension-least elements of (FO, Fl)

obtaining (F_, ﬁl) independently of the choice of (F_, Fy). But
it is simple to enumerate the (fo, fl)'s. (If the reader is not
worried about constructivity he could prove this result more
simply by’ taking M o be a compact space).

With the above curious connection between Cantor and Baire

space we end this paper.
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