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Aspects of constructivity in mathematics

by J.M,E., Hyland

81 The aim of this paper is to indicate points of contact between
the followlin ¢ three topilcs which fall under the general heading of
constructivity in mathematics:

(a} continuity of solutions in parameters;

(b) topological models for intuitionistic analysis;

(c¢) functional interpretations of analysis.

My interest in these matters arose from two sources,

1) In Kreisel 1959, a classical (or not specifically intuitionistic)
notion of constructive resuit is discussed and specifically related
to the notion of continuity in barameters ( there £hought of as typi-
cally real number generators). There was a clear need for a system-—
atic treatment of the way in which constructive proofé give rise to
continuity in parameters, though the main tool which is used in this
paper to make the connection (viz. topic (b} above) did not begin to
emerge until Scott 1968, 1870,

2} In a seminar on sheaves and logic organized by Scott in Oxford
1975-76, some time was spent proving results constructively and
interpreting them in sheaf models over topological spaces, It he-
came apparent to me that if one was interested only in truth in the
topological models (as opposed to ones over arbitrary complete
Heyvting algebras), then one could dispense with the, at times, rather
complex constructive proofs; the truth in topological medels depen-
ded on simple considerations of continuity.

The main results of:this paper are contained in §§7;8: those related
to 2) above in §7 and those related to 1) in §8. §§2-6 contain a
variety of preliminary material ideas; it seems likely that some of
these may have a réle to play in other areas, for example in the
development of construgtive analogues to classical model theory.

The overall level of detail in this paper is very low. This will
certainly frustrate some, but I did not want the ideas to become

obscured by theé presentation.

Of the three topics in constructivity menticned above, the one
which receives least explicit discussion is (¢}, Here there is con-
tagt with an issue alluded to by Kreisel in his contributicn to this
volume: the lack of significant returns for functional interpretations.
The inceonclusive remarks about Dialectica and modified realizahility
interpretations at the close of §7 and §8, indicate at least why it
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is that the classical mathematician has not used functicnal inter-
pretations to formalize his constructive intuitions, Interesting
results can be obtained using less subtle ideas: gspecifically with-
out using constructive information from premises of implications.

Tt would certainly be of interest to find branches of mathematics
where applications of functional interpretations along the lines of

§87,8 were needed,

We apply notions of continuity in parameters to parameters of
various types: natural numbers (N), reals (R), continuous maps
R to R (R~ R), continuous maps from R >+ R to R, and s0 on. All
this takes place in a suitable cartesian closed category (F1L of
Hyland 1977 say). We describe the topelogical models for these
types, However sheaves on topological spaces model much more than
finite types; there is a cumulative hierarchy of sheaves which models
intuitionistic Zermelo-Fraenkel set theory (IZF) together with Zorn's
Lemma (ZL). Then the topological models which we introduce can all
be defined ih the intuitionistic set theory; in particular R is
modelled as the Dedekind (not Cauchy) reals. Rather than introduce
any particular constructive theory for the fypes which we do consi-
der, we take as our basic notion of intuitionistic or constructive

proof whatever may be proved in IZF + 4L.

The direct use of R (as opposed to a zero-dimensional space of
real number generators) is an innovation not only for topic (c),
but also {for logicians) for topic (a). But it certainly coincides

with the usual interest of mathematicians.

§2. Some important classes of formulae. The basic language which

we are considering in this papér is that of finite type theory over
two basic types N and R. Thus we have types for all products and
mapping spaces over N and R, together with application, functional
abstraction, pairing and unpairing of all appropraite types. In
addition we mayv allow constant function and relation svmbols for
arbitrary elements of, continuous functions on and open relations on
the basic types. Also in accordance with usual mathematical prac-
tice, we have maps to allow elements of N to be taken as elements of
R, Particular classes of formulae from this language will play an

important rdle in this paper.

First we describe two ways of defining new classes of formulae.
Letr ' and A he classes of formulae. We define PR(T:A) to be the

:
I
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least class of formulae containing all of A, closed under w,a, V¥, 3,
and such that if ¢ ¢ T and ¥ e PR(T;A) then (¢ =+ W) is in PR(T;A).
Similarly we define HPR(I';A) to he the least class of formulae con=
taining all of A, closed under A, V, and such that if ¢ ¢ I' and

W e HPR{(T;A), then (¢ - V¥) is in HPR(T;A). In case A is the collec-
tion of atomic formulae, we write (H)PR(T) for (H)PR(I';A). PR(I;4)
is the collection of formulae built up from A with premises restric-
ted to T and HE&{F;A) the collection of Harrop formulae so built up.
These ways oﬁﬁgéfining collections of formulae have alféady been
used in Troelstra 1973 (§3.6.3).

We define the class COH of coherent formulae to be the closure

of the class of atomic formulae under a,v, 3 . For some applications
one can extend this definition: for example 1f all atomic formulae
are decidable, then quantifier~free formulae may be treated as ato-
mic in the definition of COH. There is a precise sense in which

COH is the intuitionistic analogue of the existential formulae cof
classical model theory. We define the class POS of positive formu-
iae to be the closure of the class of atomic formulae under A,v,

V,H . Again under sone circumstances one can extend this defini-
tion,

We define STRICT the class of strict formulae to be PR (COH),
and LOC the class of local formulae to be HPR(STRICT; COH). The
intersection of STRICT and LOC is SLOC, the class of gtrictly local
formulae; SLOC is HPR (COH; COH) .

We now discuss an important way of extending the language which
we introduced at the beginning of this section. This extension is
needed for many of the applications which we give in §7 and §8. If
¢ (x) is strictly local with 7just x free then we can introduce a
new type to our language, for {x|¢(x)}. This means in particular
that universal quantification over {x|¢{x)} is no longer regarded
as involving an implication. This essentially expands the various
classes of formulae defined above. In particular it expands SLOC;
and that allows vet further expansion. It would be tedious to go
into detail about all this. We simply stipulate that there be some

convention for the introduction of strictly local types.

§3 Sheaf models for intuiticonism.

Sheaves over topological spaces generalize both the Xripke
and Beth models for intuitionism: they are themselves a special

case of sheaves over a site. Let T he a topological space: we use
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its complete Heyting algebra 7 (T) of open sets as truth values. We
have the usual definitions of the propositional operators {(here [¢7

- denotes the value of ¢ in £ (T)):

Propositional logic Fd A wl = [l n Tyl
T v I = [al v Tul
fe - Y] = Interior ({T\ [o1 ) v Tyl )
Tl " = the empty set.

For ease of exposition we restrict attention to structures of the

form

Xn = {x| % maps U e 0(T) continuously into X}.

XT is the sheaf of continuous X-valued functions on T. “The case when
¥ is N the natural numbers with the discrete topology is atypical.

A more typical case is when X is R the reals with the usual topology.
But X need not be tonological: our higher types will be modelled

using X's which are non-topological filter spacesr(see §5).
Define an existence predicate {or predicate of extent} ¥ by,
[ Ex] = dom{x) for all x ¢ Lo e

The quantifiers V and 4, respectively presuppose‘énd imply exis-

tence, so we bring E into their definition:

Interior (f){ﬂﬁx > o (x)] [x ¢ X, 1)

ULTEx » ¢(x)7|x e X1,

il

Predicate logic [ (¥x)é (x)1
[ &) ()1

q:l

T
The relations and functions on our structures are required to
be extensional not just with respect to the ordinary equality = in

the sheaf, bhut with respect to strong equivalence =. TFor us,
v 1 = Interior {t|x(t) = y(t)}, while

Il

[ x

1t

P x v1 =[Bx v Ey »x=y1 : thus Ix = v 1 inciludes the open
sets where neither x nor y are defined. Then l-ary relatioas

Rz Xy 9 (T) must satisfy.

TR(x) 0 [x 2V S R(¥),

while a l-ary function f = Xp XT must satisfy

fx =yl = T£(&x) = £ 1.
Of particﬁlar interest for us are relations and functions

o ; . . . n
arigsing in the following way. Let R be an open set in X°; then we

also denocte by R the n=—ary relation on X, defined hy,

R(Xyreeer® ) = {tl(xl(t),,..,xngt)) ¢ R}.
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Let £ he a continuous function from Xx? to X; then we also denote by

f the n-ary functiocn on X, determined by the stipulation

(£(xy,e0erx )) () = £y (B)onerx (L),
(In the above definitions, on the right hand side we have the ori=-

ginal and on the left the defined meaning of the symhols R and £

respectively).

We can now begin to describe the interpretation of the basic
lanquage of §2 over a topological space T. The basic types N and R
are interpreted by the structures MT and RT. Then we interpret the
function and relation symbols in the way described above. Thus for

example
Tx <y 1 = {t]=z(t) < y()}.

We call the models we have just introduced the models of sheaves

over topological spaces, or the topological models., The reader can

now interpret any formula of the basic language which does not in-
volve higher tvpes, in the topological models. For a sentence ¢,
we shall say that ¢ holds over T iff [gl = T.

RemarkgAl) A full exposition of the theory of sheaf models sketched
above is to appear in the eagerly awaited paper of Scoti, Fourman
1957?2. The reader should also consult the pioneering papers Scott
1968, 1¢70, though the structures theré are not guite sheaves but
f=sets for 0 = 0(T).

2) There is a formulation of the above semantics (so~called
Kripke~Joyal semantics ~ . a misnomer as thé notion of covering is
used in the Beth models) closer to the familiar intuitionistic
semantics. But the treatment we have sketched is far better for
higher order logic.

3) Note that NT is the standard model of the natural numbers
in the topos of sheaves on T: an arithmetical sentence ig true in
the model iff it is true. BRut for analysis the standard structures

differ from their classical counterparts,.

§4 Truth in fibres and truth in the model

In this section we consider, onlv the language of the 1ntu1tlon—
istic first order predicate calculus for our base type R; we allow
constants feor elements of Reoe The discussion would be trivial for
N. TFor higher tvypes even o;er N, the discussion‘becomes intéﬁesting,
and §5 ig devoted to showing how the discussion can be made to go

through unchanged for higher types.
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suppose ¢(§) is closed with the constants x = XygooarXy axhilb-
ited. We say that ¢(§)is true (in the fibre) at t e T iff
o {xy () youerx (£)) (henceforth written ¢ (%(t))) is true. (Note the
conventicn used without comment in §3, that if ¢(§(t)) is true then
t e fEX] = PEX(A.on BX I ). The relation between TEX A ¢(§) i

and {t[¢(§(t))} can be complex. But the following theorem is easy

to estahlish (refer to §2 for definitions).,

Theorem 4.1l. Let ¢(§) be closed with cconstants exhibited in the lan-

guage for R.

Then (a) if ¢ is‘coherent, HE§ A ¢(§) I o= {t|¢(§(t))};
{b) if ¢ is strict, TE% A ¢ (%) 1 < {t]¢(§(t))};
(e) if ¢ is local, [EX A ¢(§) I > Interior ({t|¢{§(t})});

(d) if ¢ is strictly local, [EX A ¢ (%X}] = Interior ({t|e(X(£))}).

Preocof:= By a routine induction on the definition of cocherent,

strict, local and strictly local formulae. (Needless to say, the
gsame proof goes through for any X in place c¢f R so long as the ato-

mic formulae hehave as the cocherent ones do in (a) above,

(4.1) {d) shows that strictlyv local *types {x

#(x)} are interpre-
ted as the sheaf of continucus maps from T to {x|é(x)}. Thus (4.1}
goes through even with the convention for the introduction of
strictly local types. This will again be true of results which use
{(4.1) and we will not always commert on this.

It follws from (4.1)(c) that if a local formula is locally true ;: L
in the fibres, then it is locally true in the sheaf model. In par- : |
ticular if a leocal sentence is true, it is wvalid in all sheaf models
over topclogical spaces. Not many interesting formilae are local so
this resuli is rather uninspiring. (It shculd not he underestimated

hoewever: for example the principle that for anyv Dedekind real it is

not the case that it is apart from every Cauchy real, is local when
properly formulated in the higher tvpes. However {(as observed by
Fourman) it is provable in the internal logic). Fortunately con-

structive interpretations of formulae are much more likelv to be

local than the formulae themselves, and this fact can bhe exploited

to give interesting results.

§5 Models for the hicgher tvpes

In this section we give a uniform definition of sheaves at all

higher tvpes over our basilc types W and R. We do this in the first
place because we wish to consider applications to higher type para- 3 5

meters., Of secondary importance 1s the fact that the Dialectica and
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and modified realizability interpretations involve higher tvpes even
for simple formulae; we wish to make sense of these interpretations
in the sheaf models even though we do not seem to he able to make
much use of them.

The main nroblem which we solve here is that Qf ensuring that
the consgiderations of §4 go over to the higher types. In the first
place this means that we must take as sheaves at higher types,
sheaves cf maps froﬁf(open sets in) ¥ to suitable spaces of higher
types. To see what éﬁese should in general be, consider a simple
example. Let f be in our (still to be defined) sheaf of type R = R,
x and v of type R (i.e. members of RT) and suppose that-all of £, %
‘and v have their full extent. Now we know that

T£(x) <y 1 = {t]E{x)) () < yv(t)l,
and we want that to be equal to
{t] (F(e)) (x(t)) < y(£)}.
Thus £ must map T tO RR, and for x in RT,f(x) is defined by
(F{x))(t) = (£(£))(x(t)).

But f cannot be an arbitrary map from T to RB, as f(x) is required
to be in RT, that is to say f£(x) must be continuous. The obvicus
way to ensure this is to insist that )t.f(t) and application (or the
evaluation map) he continuous. 1In general, though not in this par-
ticular‘example, this will take us outside the category TOP of topo=-
logical spaces; we need to consider a cartesian closed category in
which TOP embeds fuli and faithfully. Many such categories are
known; the convergence spaces of Choquet, limit spaces ox more gene-
rally filter spaces FIL (Hyland 1977). It makes no difference here
which the reader chooses to consider.

Oour sheaves at higher types over W and R are defined as follows:
we take sheaf of continuous (in the sense of ¥IL) maps from T to be
the space of appropriate type over N and R in the category FIL.

This ensures-that all the consiﬁerations of 84 go through unchanged
when higher types are introduced.

Remarks 1) We are interpreting the finite types over N by sheaves of
continuous (in the sense of FIL) maps into the continucus function-
als of Kleene 1959 and Kreisel 1959. Tor an account of the relation
hetween theée original treatments and FIL see Hvland 1977. Occasion-
ally hereafter we use the phrase continuous functionals to refer to

the higher types in FIL over both N and R.
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2) Though we don't need this fact, it is amusing to note that
the spaces we are defining externally at higher types are also the
spaces internally defined using FIL, using the intuitionistic set
theory (IZP) wvalid in our topological models.

56 Functional Tnterpretations

Both the modified realizability and Dialectica 1nterpretat10ns

(¢MR and ¢ respectivelv} of a formula ¢ can be regarded as being

derived from a crude constructive interpretation (¢ ) by 51mp1v

I
varying the treatment of implication in the inductive definition. f_ i
All these interpretations can be given in the finite type structure
(of total objects) over the basic tvpes: for us the basic tvpes are |
¥ and R, the tvpes of natural and real numhers respectivelv. Let T
e an arbitrary one of our interpretations C, MR, D; and assume con-
ventionally that ¢I is (3 %) V\ﬂq) (%,v), and wI is (3'5)(\i%)w1(§,f),
where x,y s f are strings of varlables, Then the interpretations are
defined by the following inductive clauses:
(1) if ¢ is atomic ¢~ is o,
(11) (6 A )T is (IR (TH (VYD (67 » vy,
(131) (¢ v )T ds (An) (TR (IB) (VD (VE) (=0 > ¢ 4 nfo > ),
or () (%) (IB) (VI (VB (220 » o » z<l > ),
(iv) ((‘#z)@)l s (%) (V2) (V9o K(2),3),
(v) (o)t ds (32) (T (V¥ Do, LT,
(vi) (a} I =.C:
6> 0° 1s (I3)(YEH (0 » v,

(b) I = MR: ‘ o
(6 = 9" s (T (VR (VD (VD oy > v, B0, E), -
(¢} T = D:

(0 » »P 15 (AH AV VD (0, KT D) v, B, D).

Throughout the above, variables are supposed to be sensibly typed.
In (iii), n is of type N and r of type R; the interpretation simply
uses the definability of v with respect to elementary intuitionistic
theories of natural or real numbers. %(z)}%g{ﬁ), ?(%,%) are inter-
preted in the chviocus way; e.q. §(§) stands for some sequence
Sl(ﬁ),...,sn{§). Finally (vi) (b) is an intuitionistically ecuivalent
variant on the usual formulation of MR; it brings out the analogy with
the other two interpretations.

Giving an inductive definition of ¢C is rather artificial;
essentially it can be obtained using the notion of the strictly pos-

itive parts (s.p.p.'s) of a formula as follows:




CONSTRUCTIVITY IN MATHEMATICS 447

(i) replace v's in the s.p.p.'s of the formula by a definitien
using YV, &, > ;

(ii) systematically move all guantifiers acting on the S.D.p.'S
of the formula to the front;

(iii) bring to the required form by replacing
3 (T %) (oneksyen) ™ by " (W) (¥5) (eoux,¥{x)eun)  (i.c. using
Skolem functions). This brings out the fact that ¢C deoes not make
much use of higher types; if ¢C is (?T%)(¥’§)¢C then thesmaximum
level (in the usual sense) of the types of % is at most one greater
than the maximum level of the types appearlng in ¢.

We cloge this Sectlon by glVlng some lnformatlon about the re-
lation between, ¢, ¢ P ¢MR and ¢ . We deflne classes T and A of
the formulae to be the least classes such that (i) I' » PR(A) and
(ii) A 2 HPR(I'). In the following theorem F denotes derivation in
a system of intuitionistic logic, which can be much weaker than the

consequences in our basic language, of TZF.
Theorem 6.1, (a) For all ¢, F ¢C + .
() If ¢ e T, then F o' % » ¢€ ana k¢ » ¢ °
(c) If 6 ¢ PR(EPR(COH)), then kol + ¢ and Fo¢” > o.

Remark Some of (6.1) is a simple extension of Troelstra 1973 (see
his §3.6.5).

§7 From continuity in parameters to truth in topological models

In this section we consider various notions of continuity in
parameters, and use them to establish that certain propositions hold
in all topological models. The crudest notion of continuity in
parameters used, depends on the interpretation ¢C introduced in §6.
We consider briefly why as vet we have not found a use for ¢ (in
a case where it differs from ¢ ) to establish results about topolo-
gical medels. ‘

The possibility of applying interpretations to the studv of
sheaf models arises out of the idea that the interpretation ¢
(H:{)(V y)q)I expresses nmore explicitly the constructive content of
4. The result of this is that ¢I is much more likely to be local
than ¢ is.

Lemma 7.l. (a) If ¢ e PR(STRICT), then ¢G_is local.
(b)Y If ¢ ¢ PR{(PR(P(GS)), then ¢MR and ¢D are intuitionis-

tically equivalent to local formulae.
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Proof:=~ Straightforward. For (b}, ¢MR and ¢D need not bhe local;
but they can be made so by replacing some v's which have been de-

fined away by the interpretation,

Given a sentence ¢, where ¢C is (3 %) (V §)¢C, the string v is

the string of parameters (or more exactly positive parameters) of ¢.

These are the parameters arising in our various notions of continu-
ity in parameters.
We discuss our crudest notion first. We say that ¢ holds with

global continuity in paraneters iff ¢C is true when the higher types

are interpreted as spaces of appropriate type in FIL (see §3). This
corresponds to saying not only that ¢ is true but that in transfor-

ming ¢ to ¢C (as described in §6), the Skolem functions needed can

be chosen continuous.

Proposition 7.2. If a sentence ¢ holds with global continuity in

parameters, and ¢ ¢ PR(STRICT) then ¢ holds in all sheaf models over

topeolegical spaces.

Proof:- By assumption (\#§)¢F(§r§) is true for a fixed choice of
continuous gy and so by (4,l)vand (7.1), it holds over T (where now
Ee represents the segquence of constant maps from T with values 3).
Thus ¢C holds over T and since ¢c + & (by (6.1)), ¢ holds over .

Tt is an immediate result of (7.1) that suitable formulaticns
of the following are valid in sheaves over any topological space:

(1) everv continucus function has a least upper bound and is
uniformly continuous on closed intervals;

(ii) the fan theorem (expressing compactness of Cantor space).
The above examples express pure compactness phenomena in analysis,
and can be extended to many others (in general one will need to
make heavy use of the conventibn described in §2 for the intrcduc-
tion of strib@}y local typeé), It appears that such propositions
cannot be proved in IZF together with Zorn's Lemma. Realizability
interpretations do not seem to have been extended te such strong
svstems, but I helieve that I have a complete Heyting algebra over
which the fan theorem fails.

One rather obvious defect of the rotion of global continuity
in parameters, is that {even with the use of the convention concer-
ning the use of definable strictly local types), we are asking for
continuity over an unnecessarily wide range of the parameters.
Given a sentence ¢, we can (up to trivial intuitionistic equivalence)

take ¢C tc beée a conjunction cof the form
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(wl+xl)A"a.—=°.A(1!Jn+Xn)’
where the X3 are atomic. Then we can give a definition of the

parameter space of ¢ as

{§| for some i, lsis<n, (Eﬂﬁ)wi(§,§)},

where as usual o° is (3% (V)¢ If ¢ is in PR(STRICT), then the

b, are strict. Hence using the ;roperty'(éal)(b} of strict, one
can readily see that to make (7.1) go through, it is sufficient
that the Skolem functions x be defined (and continuousf.on enough
of their domain to ensure that ¢C(§,§) is true {(and so in particu-
lar has a truth value) for all § in the parameter space for ¢.

What we have just sketched is a notion of glcbal continuity in

the parameter space. We do not pursue it further but turn to our

weakest notion local continuity in parameters. To show the need

for this notion consider the sentence expressing the existence of

a root for the cubic x3—3x~y,

(Vy) (3x) (x7-3x = y).
Obviously there ia no total continuous function giving X in terms
of yv. But for any y there will be an open neighbourhood U of y and
a continuous function giving a root x(z) for each z in U, BSo the
sentence does hold with local continuity but not glokal continuity
in parameters. Another simple but illuminating example of a sen-

tence of this kind ig
(Yx)(x >0+ (In)nx > 11),

where x is of type R and n is of tvpe IN.

First we define ¢(§) ig {(locally) continuous in parameters

from A cR", where 41l free variables in ¢ are indicated, and the
length of % is equal to n (for the induction to be smooth we must
allow dumrmy free variables = the restriction to real parameters is
one of convenilence}:
(1) if ¢ is atonic, ¢(§) is continucus in parameters from A iff
A is included in {§|¢(§)};
(ii) oAV is continuous in parameters from A iff bhoth ¢ and ¢ are
continuous in parameters from A;
(iid) (V;x)¢(x,§) is continuous in parameters from A iff ¢(x,§) is
continuous in parameters from RxA;
{iv) ¢(§) > w(?) igs continucus in parameters from A iff ¢ is con-
tinuous in parameters from An{§|¢(§)};
(v) @vy 1s continucous in parameters from A iff there are rela-

tively open B,C such that A = BuC and ¢,9 are continuocus in para-

i
I
i
I
I
i
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meters from B, respectivelyv C;
{vi) (?ﬂx)¢(x,§) is continuous in parameters from A 1ff there are

continuous maps fi:Ai + R on relatively open Ai covering A such that

. A= ; . .
for each 1 ¢(fi(y),y) is continuous in parameters in Ai.

If n sentence ¢ is (locally) continuous in parameters from R (i.e.

the one point space), then we say that ¢ 1s continuous in parameters.

This is our notion of local continﬁity in parameters - but we drop
the "local".

Unfortunately the above definition is cumbersome. Despite this
T claim that it does represent the natural notion of (local) contin-
uity in parameters. What is more, if a sentence is sufficiently
simple for one to be able tc read through and understand it, then
with little further effort, one can read through and understand
what it is for it to be continuous in paraméters.

Clearly if ¢ holds with global continuity in parameters, then

¢ is continuous in parameters, Further, we can extend (7.2).

- Proposition 7.3. If a sentence ¢ is continuous in parameters and
¢ ¢ PR{STRICT), then ¢ holds in all sheaf models over topological

spaces.

Proof:- Use induction on the definition of continuity in para-
meters.

(7.3) allows us to improve the formulation of the compactness
properties which follow from (7.1). OCne can use it to show many
other things for example that an appropriate formulation of Dini's
Theorem holds in all topological models., One can also use (7.3) to
analyxe the general question of the existence of solutions to odd
degree polynomials in one variable, in the topological models. One
cannot find even a locally continuous soiution in the neighbourhocd
of a point in the parameter space which gives rise to repeated
roots; so by {(8.2) in general such polynomials are not soliuble in
the topological models. But it is possible to write down a coherent
fornula in terms of the coefficients of a polynomial, which expres-
ses the fact that the polynomial has at least one non-repeated real
root, Thus there is a non-trivial formula which expresses that
separable polyvnomials of odd degree have roots; this does hold for
all topological models in virtue of (7,3},

We close this section by considering the possibility of using
more usual functicnal interpretations to establish facts about the

sheaf models, The following proposition is an analogue of (7.2).

-
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Proposition 7.4.(a) If the sentence ¢ is in PR(HPR(POS)) (which is
the intersection of T' of §6 and PR(PR(POS))) and ¢~ holds (i.e.

classically over the continuous functionals) then ¢ holds in all

sheaf models over topological spaces.

() If the sentence ¢ is in PR(HPR(COH)) (and soc
in PR(PR(POS))) and ¢D holds (i.e. classically over the continuous
functionals) then ¢ holds in all sheaf models cver topological

spaces.
Proof:- As for (7.2) using (6.1) and (7.1).

Let me say Ffirst that I know of no example interesting or otherwise
where (7.4) can be used to show that a proposition ¢ of analysié
hoids‘in the topological models, and where this could not be decne
by applving (7.2) or (7.3) to some ¥ which trivially implies ¢.

In fact for the Dialectica interpretation no such example could
exist using (7.4)(b) in its present form: one would need signifi-
cantly to strengthen the result by weakening the hypotheses. How-
ever the present position is not so hopeless for modified réaliéa—
bility, and it seems reasonable to raise the following open prob=
lems.,

1}y If ¢ is in T, then by (6.1) if ¢ML holds so does ¢L; are there

propositions ¢ such that ¢MR implies ¢ with intuitionistic logic,
but ¢MR does not imply ¢C classically over the continuous function-
als?

2) Even if the answer to 1) is negative, there is still a difference
between the apparent range of applicability of (7.2) and (7.4) {(a):
PR(HPR(POS)) neither includes nor is included in PR{STRICT). Are

there any interesting formulae in PR(HPR(POS)) not in PR{STRICT)?

58 ¥rom truth in topological models to continuity in parameters

Tn this section we describe the most significant aspect of
this work for classical mathematics: a simple way of obtaining
continuity in parameters as a direct result of the constructivity
of proofs. As we shall indicate, for strict formulae, truth over
the parameter space (see §7) implies continuity in parameters; in
fact by (7.3) it amounts to the same thing. Of course for diffexr-
ent prepositions the parameter space will be different. However,
if a proposition has a constructive proof (see §l) then it 1is valid
over any topological space, in particular over the parameter space;
if in addition it is strict, it will thus be continuous in para-

meters. If, as I claim, what it means for a proposition to be con-—
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tinucus in parameters can be easily read of from the proposition,
then the classical (or otherwise) mathematician has information ' o ;
immediately available to him arising out of the constructive nature J |

of his proof. Particular features of a problem may enable him to

improve this information to obtain some form of global continuity in
parameters, 7 |
In order to formulate the basic proposition of this section we

define the parameter space of a formula ¢(E) with free variables %

and with bound parameters § {i.e. where ¢C is (H.§)(¥’§)¢C(§,§p§)),
~We already described this for sentences ¢ in §7, and in general we
may take the parameter space of ¢(§) to bhe that of the universal
closure of ¢(;), This parameter space can be defined inductively

on the structure of ¢, in an cbvious way; but the details are

messy and we omit them here.

Propositicn 8,1. Let ¢(E) be in STRICT, and let A be an open sub-

get of the range of the paraneters E; suppose that over the para-
meter space of ¢, E¢(§) I e {tlz(t)eA}; then ¢ is continuous with

parameters in A,

Indication of proocf:- By induction on the structure of ¢, The only
real interest is in the steps for v and 3 where Use can be made of
"generic" free parameters, and the homogeneity of the parameter

space.

Our main interest is in the immediate corollary:

Proposition 8.2, If a sentence ¢ is strict and ¢ holds over its

parameter space, then ¢ is continuous in parameters,

Remark. As the reader will realize in (8.1) and (8.2) we are treat-
ing the parameter space not just as a set but as a topological space.
For higher type parameters of level two and above, this space will
not immediately hawve the stfuctﬁre of a topological space; it will
be a more general filter space. So to make sense of (8.1} and (8.2)
one has to take the induced topology or what here amounts to the same
thing, regard the continuous functionals as being in the caﬁegory of
sequential spaces (see Hyland 1977). As a result there are some
subtle points in the proofs for higher tvpe parameters, but we are
not going into details about that here.

More interesting than a general proof of (8.1}, is the consgid-
eration of a special case. Let ¢ and ¥ be coherent and consider
(Y x)(?iy){¢(x,y) » ¥({%,v)). For this formula, the parameter space

X is the space over which X ranges. The generic element x of X is
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the identity on X (considered as an element of XX)a If the formula
considered holds over X, then sc does (3 v){¢(%,v) » ¥ (X,v)). Thus
X is covered by sets U and elements Y, of Yo (where the variable y
ranges over Y) with extent U such that ¢(x,yU) - w(x,yU holds over
U. But yU:U -+ ¥ is then such that ¢(x,yUx)) -+ w(XrYU(X)) is true
for all x in U (since ¢ = ¥ is strict). If this information is
unravelled it amounts to the fact that (V) (dy)y (e (x,y) = wix,v))
is continuous in parameters.

The way (8.2) is applied is expressed in the following propo-

sition.

Proposition 8.3. If the sentence ¢ I1s strict and has a consktructive

proof (possibly using special axioms valid over the parameter space),

then ¢ is continuous in parameters.

Proof:- By (8.2) and the remark in §1 that IZF+2L holds over any

topological space (and constitutes our notion of constructive proof).

Remark. Among the special axioms which can often be used are bar
induction (which is valid over all complete metric and compact
Hausdorff spaces) and the axiom of choice from numbers to sets
(valid if parameters are restricted to the higher types over ).

(8.3) has immediate application to differential and integral
equations. This is because

(i) such statements as "g is the derivative of f" can be expressed
by strict formulae, and so statements that particular equations are
soluble turn out to be strict, and

(ii) a large hody of elementary work on differential and integral
equations (the use of contraction mappings and Arzela's theorem for
example) is constructive. 8o continuity of solutions to differen-
ltial and integral equations in parameters, is an immediate conse-
quence of the constructive way in which the existence of solutions
is established. Of course where we have unique existence of a sol-
ution, we get global continuity.

One advantage of the method sketched ahove, over possible
realizability methods, seems worth mentioning. In the constructive
proofs considered, propositions (about sets of reals for example)
for which we have no notion of continuity in parameters may OCCur.
But this does not matter as all. In contrast with realizability,
we do not need to establish continuity in parameters at each stage
in a pfoof. ;

It is clearly not possible to use the modified realizability

of Dialectica interpretations to establish continuity of real
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parameters. Too many propositions which we will meet in the course
of proofs have only local continuitv in parameters, and modified
realizability and Dialectica interpretations use total not partial
realizing objects. (This is not true for the higher types over N,
but we do not discuss the possibility for them here). 2an approp-
riate form of realizability using partial realizing objects needs
to be developed over R, before a proper general cemparison between
the traditional ideas of interpretations and the sheaf theoretic
methods of this paper, can he made.‘
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