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Abstract—We show that the Entropy Power Inequality can be
improved in dimension n > 1 under the assumption that the two
random variables have the same entropy along some marginal.
This is an analogous improvement to Bergström’s inequality
for determinants and Bonnesen’s inequality for volumes. In fact
we establish a more general inequality, whose proof generalizes
an information-theoretic proof of Bergström’s inequality due to
Dembo, Cover and Thomas (1991). Moreover, we characterize
the equality case in our main inequality. Finally, we provide a
similar inequality for the Fisher information.

A full version of this paper is available as: arXiv:2501.10309.

I. INTRODUCTION

The differential entropy of a Gaussian can be expressed in
terms of the logarithm of the determinant of the covariance
matrix. Thus, several properties of the entropy transfer to log-
arithms of determinants of symmetric, positive semi-definite
matrices and a number of determinant inequalities may be
proved using entropy [1], [2].

Furthermore, the exponential of the entropy can be thought
of as the volume of the typical set. Therefore, entropy behaves
in many ways similar to volume. This analogy between
entropy and volume has been observed at least as early as
in the work of Costa and Cover [3], where the connection
between the Entropy Power Inequality (EPI) and the Brunn-
Minkowski inequality is examined (see [1] for an extensive
review and a common proof of these inequalities).

Motivated by these connections, we will prove analogues
of the Bergström and Bonnesen inequalities for entropy and
Fisher information, which can be seen as refinements of
certain inequalities for determinants and volumes respectively.
The classical matrix form of the Bergström inequality is the
following:

Theorem 1: [4] Let A and B be two n×n positive definite
real symmetric matrices, and denote by Ai and Bi the two
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(n−1)× (n−1) matrices resulting from A and B by deleting
the i-th row and the i-th column. Then we have

det(A+B)

det(Ai +Bi)
≥ det(A)

det(Ai)
+

det(B)

det(Bi)
,

for every i ∈ {1, . . . , n}.
The above theorem is, by setting A = λS and B = (1 −

λ)T , equivalent to the statement that det (A)
det (Ai)

is concave in
A. A proof of this statement using entropy was given in [1],
by considering the entropy of Gaussian random vectors with
covariances A and B and observing that conditioning reduces
entropy.

The first question that motivated the current work is whether
an entropic analogue of Theorem 1 can be obtained. That is,
can we derive an inequality is true for any random variables
and generalizes the inequality obtained in the proof of [1,
Theorem 30] for Gaussians? Our first main result, Theorem 4
provides such an inequality (inequality (7)).

The concavity of det (A)
det (Ai)

directly implies that if det(Ai) =

det(Bi) for some i, then

det(λA+ (1− λ)B)) ≥ λ det(A) + (1− λ) det(B). (1)

It is well known that A 7→ det(A)
1
n is a concave functional of

the matrix A, i.e. det(λA+(1−λ)B)
1
n ≥ λ det(A)

1
n +(1−

λ) det(B)
1
n . Inequality (1) is an improvement of the latter

(by concavity of x → x
1
n ) and can fail in general without

the assumption that the matrices obtained by removing some
column and the corresponding row have equal determinants.

Another theorem due to Bonnesen implies linear refine-
ments of the Brunn-Minkowski inequality and can be seen as
a weaker volume-analogue of (1). Here and in what follows,
we denote with |K|n the volume of a set K in Rn.

Theorem 2: [5] Let A and B be convex bodies in Rn and
let θ ∈ Sn−1 then

|A+B|n(
|Pθ⊥A|

1
n−1

n−1 + |Pθ⊥B|
1

n−1

n−1

)n−1 ≥ |A|n
|Pθ⊥A|n−1

+
|B|n

|Pθ⊥B|n−1
,



where P⊥
θ A denotes the orthogonal projection of A onto the

hyperplane with normal vector θ.
Let K and L be two convex bodies in Rn such that
|Pθ⊥K|n−1 = |Pθ⊥L|n−1 for some θ ∈ Sn−1. Then, applying
Bonnesen’s inequality above to A = (1 − λ)K and B = λL
we deduce that

|(1− λ)K + λL|n ≥ (1− λ)|K|n + λ|L|n, (2)

which is the linear improvement of Brunn-Minkowski’s in-
equality. It would be natural to conjecture that a stronger
Bonnesen’s inequality in the form

|A+B|n
|Pθ⊥(A+B)|n−1

≥ |A|n
|Pθ⊥A|n−1

+
|B|n

|Pθ⊥B|n−1
(3)

holds for any convex bodies A and B in Rn but, in [6], it was
disproved in general for n ≥ 3 and proved for A and B being
zonoids in R3.

In view of the improvements (1) and (2) and the close con-
nection between the Brunn-Minkowski and EPI, it is natural
to ask under which assumptions one can improve the EPI in
an analogous manner.

Recall that the differential entropy h(X) and the entropy
power N(X) of a random vector X in Rn with density f are
defined as

h(X) = −
∫
Rn

f(x) log f(x)dx and N(X) = e
2
nh(X),

whenever the integral makes sense and we put conventionally
h(X) = −∞ otherwise.

Let X and Y be two independent random variables in Rd

such that the entropies h(X), h(Y ) and h(X + Y ) exist. One
of the equivalent formulations of the EPI states that

N(X + Y ) ≥ N(X) +N(Y ),

i.e.
e

2
nh(X+Y ) ≥ e

2
nh(X) + e

2
nh(Y ).

In Corollary 6 we show that if two n-dimensional random
vectors have some n− 1-dimensional marginal with the same
entropy, then the EPI can be improved by removing the 1

n
factor from the exponent.

Moreover, we characterize the equality case, which turns
out to be if and only if X,Y are Gaussians with the same
covariance matrix up to the last element of the diagonal. As
expected, the latter condition on the covariance matrices is the
same as in the equality case in (1) (see [7]).

The Fisher information of X is defined as

I(X) =

∫
Rn

∥∇f(x)∥2

f(x)
dx,

when the integral is well-defined and I(X) = ∞ otherwise.
As an analogue to the Fisher information inequality

I(X + Y )−1 ≥ I(X)−1 + I(Y )−1,

which holds for any independent X,Y , Dembo, Cover,
Thomas [1] asked whether the inequality

|K + L|
|∂(K + L)|

≥ |K|
|∂K|

+
|L|
|∂L|

(4)

holds true for convex bodies. More generally, it was asked by
Millman, for which values of k is

Vk(K + L)

Vk−1(K + L)
≥ Vk(K)

Vk−1(K)
+

Vk(L)

Vk−1(L)
, (5)

where Vk(K) denote the k-th mixed volumes, i.e. the coeffi-
cient of tn−k in the polynomial expansion of |K + tBn

2 | in
t > 0 where Bn

2 is the Euclidean ball in Rn. Inequality (5)
was shown to hold true [8] if and only if k = 1, 2, implying
that (4) is not true in general.

In view of the analogy between entropy and volume, our
entropic Bergström inequality (7) also serves as an entropic
analogue of (4). Moreover, it is in the analogous form of
the volume inequality (3), which is not true in general, i.e.
the entropic analogue is always true even though the volume
version fails in general. This should not be surprising, since
entropy usually serves as a more flexible analogue of volume.
This is often the case in discrete settings as well; it was
recently highlighted by the breakthrough proof of Marton’s
conjecture by Gowers, Green, Manners and Tao [9]–[11],
where the observation that entropy behaves well under group
homomorphisms, in contrast to cardinality, turned out to be
crucial.

Outline. In Section II we prove and discuss our main
inequalities for entropy powers.

As a corollary of our main result we also obtain an analo-
gous improvement of the isoperimetric inequality for entropies
in Section III.

Finally, in view of the different forms of the Bergström
and Bonnesen inequalities, we establish a different analogue
for the Fisher information. To that end, in Section IV we
define a conditional version of the Fisher information and
prove an inequality, which resembles Bergström’s inequality.
This turns out to be stronger than (in the sense that it implies)
the convolution inequality for Fisher information, sometimes
referred to as Blachman-Stam inequality. We do not know
whether our Fisher information inequality implies our entropic
Bergström inequality.

Notation. We write capital letters X,Y for random variables
(resp. vectors) and small letters x, y for specific realizations
of these. If X = (X1, . . . , Xn) ∈ Rn we write Xn−1 :=
(X1, . . . , Xn−1) to denote the first n−1 coordinates. When it
is not clear from the context, we will write hn(X) and Nn(X)
for the entropy and entropy power respectively, to emphasize
that the integral in the definition of entropy (see Section II) is
with respect to the Lebesgue measure in Rn.

II. ENTROPY INEQUALITIES

In the proof of our main result we need a conditional form
of the EPI, the proof of which is essentially due to Stam
[12], although we express it in a slightly more general setting
(see also Bergmans [13, Lemma II] and [14] where quantum
versions are of interest).

Let X,Z, Y be three random vectors with densities. We
say that X → Z → Y form a Markov chain if, given on



Z, X and Y are conditionally independent, i.e. for a.e. z,
f(x, y|z) = f(x|z)f(y|z), where f(x, y, z) is the joint density
of X,Y, Z and for any z, f(x, y|z) = f(x,y,z)

f(z) = f(x,y,z)∫
f(u,v,z)dudv

is the conditional density of (X,Y ) given Z = z, defined for
a.e. z, and analogously f(x|z) = f(x,z)

f(z) =
∫
f(x,v,z)dv∫

f(u,v,z)dudv
.

Lemma 3 ( [12], [13]): Suppose X,Y ∈ Rn and Z taking
with values in some space Ω are such that X → Z → Y
form a Markov chain and, given Z, X and Y have conditional
densities on Rn. Then

N(X + Y |Z) ≥ N(X|Z) +N(Y |Z),

where for any random vectors U, V such that U has a
conditional density given V in Rn, N(U |V ) := e

2
nh(U |V ).

Moreover, there is equality, if and only if for almost every
z, the conditional densities given Z = z of X and Y are
Gaussian with proportional covariances.
Proof: See Stam [12]. The equality case follows from the
equality case in this form of the EPI [1], X̃|Z=z and Ỹ |Z=z are
Gaussian with the same covariance matrix. By the definitions
of X̃ and Ỹ , X,Y are also Gaussian having as covariance
matrix each a different multiple of the common covariance of
X̃ and Ỹ . □

Theorem 4 (Entropy analogue of Bergström’s inequality):
Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) be two inde-
pendent random vectors in Rn. Let Xn−1 = (X1, . . . , Xn−1)
and Y n−1 = (Y1, . . . , Yn−1). Then, the following inequalities
hold true and are equivalent:

e2h(
√
1−λXn+

√
λYn|

√
1−λXn−1+

√
λY n−1)

≥ (1− λ)e2h(Xn|Xn−1) + λe2h(Yn|Y n−1) (6)

and
N(X + Y )n

Nn−1(Xn−1 + Y n−1)n−1

≥ N(X)n

Nn−1(Xn−1)n−1
+

N(Y )n

Nn−1(Y n−1)n−1
. (7)

Proof: Inequality (6) can be seen to be equivalent to

e2h(Xn+Yn|Xn−1+Y n−1) ≥ e2h(Xn|Xn−1) + e2h(Yn|Y n−1)

by setting X̃ =
√
1− λX (and analogously for Y ) and

scaling.
The latter is equivalent to (7) by the definition of entropy

power and the chain rule for differential entropy.
We prove (6). Since conditioning reduces entropy,

h
(√

1− λXn +
√
λYn |

√
1− λXn−1 +

√
λY n−1

)
≥ h

(√
1− λXn +

√
λYn | Xn−1, Y n−1

)
.

Thus,

e2h(
√
1−λXn+

√
λYn|

√
1−λXn−1+

√
λY n−1)

≥ e2h(
√
1−λXn+

√
λYn|Xn−1,Y n−1)

≥ (1− λ)e2h(Xn|Xn−1,Y n−1) + λe2h(Yn|Xn−1,Y n−1) (8)

= (1− λ)e2h(Xn|Xn−1) + λe2h(Yn|Y n−1),

where in (8) we have used the conditional EPI, Lemma 3, with
Z = (Xn−1, Y n−1), after noting that by the independence of
X and Y , Xn and Yn are conditionally independent given
(Xn−1, Y n−1).

□
Remark 5:
1) Defining the map

f : λ 7→
N

(√
λX +

√
1− λY

)n

Nn−1

(√
λXn−1 +

√
1− λY n−1

)n−1 , (9)

it can be seen from the proof of Theorem 4 that the
following form is also equivalent to (7):

f(λ) ≥ λN(X)n

Nn−1(Xn−1)n−1
+

(1− λ)N(Y )n

Nn−1(Y n−1)n−1
(10)

= λf(1) + (1− λ)f(0). (11)

Ball, Nayar and Tkocz [15] conjectured that the map
λ → h(

√
1− λX +

√
λY ) is concave for i.i.d. log-

concave X,Y in dimension 1. A partial result in a
different direction was given in [16], [17], where it was
shown that this entropy-map is concave for Gaussian
(scale) mixtures.
In view of the above conjecture and the partial answer
for Gaussian mixtures it is natural to ask for which class
of random variables (if any) is the map defined in (9)
concave.
Note that, in contrast to these works, when restricting
to n = 1, we are asking for concavity of the entropy
power, rather than the entropy itself, which is stronger,
since concavity implies log-concavity.
When one of the two random vectors is Gaussian, by
homogeneity, concavity of the map defined above is
equivalent to concavity of

f : λ 7→
N

(
X +

√
λZ

)n

(
Nn−1(Xn−1 +

√
λZn−1)

)n−1 ,

analogously to [18, Proposition 2.2]. The latter is known
to hold true in dimension 1 [19].

2) Inequality (7) implies the EPI, N(X + Y ) ≥ N(X) +
N(Y ), for n > 1, in the sense that the latter can be
deduced from the former via the following inductive
argument:
Assume (7) and the EPI for n = 1. By the EPI for n−1,
Nn−1(X

n−1+Y n−1) ≥ Nn−1(X
n−1)+Nn−1(Y

n−1),
and therefore (7) implies

N(X + Y )n ≥ θ
N(X)n

θn
+ (1− θ)

N(Y )n

(1− θ)n

≥ (N(X) +N(Y ))n,

where θ = Nn−1(X
n−1)

Nn−1(Xn−1)+Nn−1(Y n−1) , by convexity of
x → xn, x ≥ 0, and the EPI follows. Note that in the
proof we only used the EPI in n = 1.



3) The steps in the proof of Theorem 4 are generalizations
of the proof of [1], which restricted to Gaussian ran-
dom variables. Taking X,Y Gaussian in our result, we
recover Bergström’s inequality, Theorem 1, for determi-
nants.

4) Although we state Theorem 4 for simplicity using
Nn−1(X

n−1) and Nn−1(Y
n−1), it can be generalized,

via a change of axes, in the sense that the same con-
clusion holds with Nn−1(AX) and Nn−1(AY ) instead,
for any projection A : Rn → Rn−1.

5) The same proof also works to obtain the following
entropic analogue of Ky-Fan’s Theorem [20], which gen-
eralizes (6): for X = (X1, . . . , Xn) and I ⊂ {1, . . . , n},
write XI = {Xi}i∈I . For I with |I| = k, we have

e
2
kh(

√
1−λXI+

√
λYI |

√
1−λXIc+

√
λYIc )

≥ (1− λ)e
2
kh(XI |XIc ) + λe

2
kh(YI |YIc ).

Theorem 4 implies an entropic version of Bonnesen’s in-
equality (2), Corollary 6 below. In view of the concavity of
x → x

1
n , x ≥ 0, it shows that, under the assumption that

some n−1–dimensional subvectors of X and Y have the same
entropy, the EPI can be improved. Again, although we state it
for simplicity under the assumption h(Xn−1) = h(Y n−1), the
latter can be relaxed via a change of axes to h(AX) = h(AY )
for some projection A : Rn → Rn−1.

Corollary 6 (Improved EPI under marginal assumptions):
Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) be two inde-
pendent random vectors in Rn. Let Xn−1 = (X1, . . . , Xn−1)
and Y n−1 = (Y1, . . . , Yn−1) and suppose that h(Xn−1) =
h(Y n−1). Then, for all λ ∈ [0, 1],

e2h(
√
1−λX+

√
λY ) ≥ (1− λ)e2h(X) + λe2h(Y ). (12)

Moreover, there is equality if and only if X and Y are
Gaussians having the same covariance matrix except the last
element of the diagonal.

Proof: This follows by applying the EPI on the denom-
inator of the left-hand side in (10) and simplifying, since
Nn−1(X

n−1) = Nn−1(Y
n−1).

For the equality case, note that if there is equality in (12),
all inequalities used in its proof have to be equalities. Thus,
the use of the EPI suggests that Xn−1 and Y n−1 are Gaus-
sians with proportional covariances. Since, by assumption,
h(Xn−1) = h(Y n−1), the covariances of Xn−1 and Y n−1

have in addition the same determinant. Therefore, they have
to be equal to each other.

Moreover, we must have equality in (8). By the equality
case in Lemma 3 the conditional distributions Xn and Yn given
Xn−1 and Y n−1 respectively, are Gaussian. Therefore, X and
Y are both Gaussian.

The fact that the elements of the last rows (respectively
columns) of the covariances are the same follows from linear
algebraic considerations. We skip the details and refer to the
full version of the paper.

□

III. ISOPERIMETRIC INEQUALITIES

The isoperimetric inequality for entropies asserts that

I(X)N(X) ≥ 2πen, (13)

is due to Stam [12] (see also [1, Theorem 16]) and is a
consequence of the EPI. By our strengthened EPI, we obtain a
sharpening of the isoperimetric inequality, Corollary 7 below.

Corollary 7: Let X be a random vector in Rn. Then, the
following inequality is satisfied:

I(X)N(X)

2πe
≥

(
N(Xn−1)

N(X)

)n−1

+
(n− 1)N(X)

Nn−1(Xn−1)
. (14)

Proof: Let X be a random vector in Rn, Z be a standard
Gaussian vector independent of X and note that N(Z) = 2πe.
By Theorem 4 and a first-order Taylor expansion of the convex
function t 7→ (Nn−1(X

n−1) + tNn−1(Z
n−1))n−1, t ≥ 0, we

obtain

N(X +
√
tZ)n

≥
(
Nn−1(X

n−1)n−1 + 2πet(n− 1)Nn−1(X
n−1)n−2 + o(t)

)
×

(
N(X)n

Nn−1(Xn−1)n−1
+ 2πet

)
.

Therefore,

N(X +
√
tZ)n ≥ N(X)n

+ 2πet

(
Nn−1(X

n−1)n−1 + (n− 1)
N(X)n

Nn−1(Xn−1)

)
+ o(t).

(15)

This implies, as t → 0,

lim
t→0

N(X +
√
tZ)n −N(X)n

t

≥ 2πe

(
Nn−1(X

n−1)n−1 + (n− 1)
N(X)n

Nn−1(Xn−1)

)
.

We recall de Bruijn’s identity [1, Theorem 14]

d

dt
h(X +

√
tZ) =

1

2
I(X +

√
tZ). (16)

Therefore the term on the left-hand side of (15) corresponds
to d

dtN(X +
√
tZ)n |t=0, which by (16) equals I(X)N(X)n

and the claimed inequality follows.
□

To see that (14) is indeed stronger than the usual isoperimet-
ric inequality for entropies, note that by letting a = N(Xn−1)

N(X)
in (14) and noting that the arithmetic-geometric mean inequal-
ity implies 1

na
n−1 + n−1

n
1
a ≥ 1, the isoperimetric inequality

(13) follows.
A result of similar spirit was proved by Courtade [21,

Theorem 4], which can be seen as an improvement of the
isoperimetric inequality of different kind, namely under an
entropy jump assumption on self-convolution.



IV. FISHER INFORMATION INEQUALITIES

In what follows we write I(f) = I(X) for the Fisher
information of X when the latter has density f . We recall
that a sufficient condition for the Fisher information, defined
in the Introduction, to be well-defined and finite is that

√
f

belongs to the Sobolev space W 2
1 (Rn) [22].

The Blachman-Stam or Fisher information inequality, as-
serts that for any pair of independent random vectors X and
Y in Rn,

I(X + Y )−1 ≥ I(X)−1 + I(Y )−1.

We define

IPn
(X) :=

∫
Rn

⟨∇f, en⟩2

f(x)
dx, (17)

whenever the integral is well-defined and we call IPn the
projective Fisher information of X .

Definition 8 (Conditional Fisher Information): For two ran-
dom vectors X ∈ Rn, Y ∈ Rm, such that the conditional
density of X given Y , say fX|Y (·|·), exists a.s. with respect
to the Lebesgue measure on Rk for some 1 ≤ k ≤ n, we
define the conditional Fisher Information of X given Y as the
expected Fisher Information of the conditional density, that is

I(X|Y ) :=

∫
Rm

fY (y)I
(
fX|Y (·|y)

)
dy,

whenever the integral is well-defined, and the Fisher Informa-
tion of the conditional distribution is to be understood as an
integral in Rk.

Two properties of the projective and conditional Fisher
information of a random vector X = (X1, . . . , Xn) ∈ Rn

are straightforward from the definitions:
1)

IPn(X) = I(Xn|Xn−1). (18)

This is just by expanding the joint density as a product
of the marginal and the conditional density and using
Fubini’s theorem.

2) By (18) and since for any vector u, ⟨u, en⟩2 ≤ ∥u∥2, we
have,

I(Xn|Xn−1) = IPn
(X) ≤ I(X). (19)

Applying the Fisher information inequality to a particular
operator, we obtain the following conditional Fisher informa-
tion inequality:

Theorem 9: Let X,Y be two random vectors in Rn with
finite Fisher informations. Then

IPn(X + Y )−1 ≥ IPn(X)−1 + IPn(Y )−1, (20)

or, equivalently,

I(Xn + Yn|Xn−1 + Y n−1)−1

≥ I(Xn|Xn−1)−1 + I(Yn|Y n−1)−1,

provided that the conditional Fisher informations exist.
Proof: Let Tm : Rn → Rn be the linear operator

Tm = In +

(
1

m
− 1

)
ene

T
n ,

where In denotes the identity matrix. Then, writing f for the
density of X , Tm(X) has density

fTm
(x) :=

1

|detTm|
f(T−1

m x), x ∈ Rn.

Thus, the Fisher information I(Tm(X)) is given by

I(Tm(X)) =

∫
Rn

∥∇fTm
(x)∥2

fTm(x)
dx =

∫
Rn

∥(T−1
m )T∇f(y)∥2

f(y)
dy

=

∫
Rn

∑n−1
i=1 (

∂
∂yi

f)2 +m2( ∂
∂yn

f)2

f(y)
dy.

Therefore, using the finiteness of the Fisher information of
X ,

lim
m→∞

I(Tm(X))

m2
=

∫
Rn

( ∂
∂yn

f)2

f(y)
dy = IPn(X).

Analogously, limm→∞
I(Tm(Y ))

m2 = IPn
(Y ) and

limm→∞
I(Tm(X+Y ))

m2 = IPn(X + Y ).
Now the result follows by applying the Blachman-Stam

inequality to the independent random variables Tm(X) and
Tm(Y ), after dividing by m2 and letting m tend to infinity. □

Remark 10: An examination of the proof shows that the
same inequality can be obtained for the more general func-
tional IPu :=

∫
Rn

⟨∇f,u⟩2
f(x) dx, u ∈ Sn−1. Using the identity∫

Sn−1

⟨u, v⟩2dσ(u) = ∥v∥2

n
, (21)

where dσ denotes the uniform measure on the sphere and
which holds for any vector v, we recover the Blachman-Stam
inequality. Indeed, by Minkowski’s inequality for p = −1,

I(X + Y ) = n

∫
Sn−1

IPu(X + Y )) dσ(u)

≤ n

∫
Sn−1

(
IPu(X))−1 + IPu(Y ))−1

)−1
dσ(u)

≤
(
I(X)−1 + I(Y −1)

)−1

.

V. CONCLUSION

Inspired by classical inequalities for determinants and vol-
umes, we established an entropic inequality that strengthens
the EPI when two independent random vectors share a com-
mon marginal entropy. As a corollary, we derived an improved
isoperimetric inequality for entropy. In addition, motivated by
the projective nature of our entropic inequality and the quest to
fully understand the role of Fisher information in this analogy,
we proposed a conditional version of the Fisher information
and established a convolution inequality.

The connection between entropy and volume, although very
fruitful, does not yield a one-to-one correspondence. One task
that remains elusive is to identify an appropriate analogue
of mixed volumes. We believe that the results of the present
work and especially (7) could hind towards possible entropic
counterparts. This will be the subject of future work.
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