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Abstract—We prove the following discrete generalised Entropy
Power Inequality (EPI) for isotropic log-concave sums of inde-
pendent identically distributed random vectors X1, . . . , Xn+1 on
Zd:
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where o(1) vanishes as H(X1) → ∞. Moreover, for the o(1)-
term we obtain a rate of convergence O

(
H(X1)e

− 1
d
H(X1)

)
,

where the implied constants depend on d and n. This generalises
to Zd the one-dimensional result of the second named author
(2023). As in dimension one, our strategy is to establish that the
discrete entropy is close to the differential entropy of the sum
after adding n independent and identically distributed uniform
random vectors on [0, 1]d and to apply the continuous EPI.
However, in dimension d ≥ 2, more involved tools from convex
geometry are needed. One of our technical tools is a dimensional
analogue to a result of Bobkov, Marsiglietti and Melbourne
(2022), which bounds the maximum probability of a log-concave
p.m.f. in terms of the inverse of the determinant of the covariance
matrix and may be of independent interest.

A full version of this paper is available at:
arxiv:2401.15462.

I. INTRODUCTION

A. The Entropy Power Inequality
The differential entropy of an Rd-valued random vector X

with density f is defined as h(X) = −
∫
Rd f(x) log f(x)dx,

if the integral exists. When X is supported on a strictly lower-
dimensional set than Rd (and hence does not have a density
with respect to the d-dimensional Lebesgue measure), we set
h(X) = −∞. The entropy power of X is defined by N(X) =
e2h(X)/d.

Let X1, . . . , Xn be i.i.d. continuous random variables. A
generalisation of the classical EPI of Shannon [1] and Stam
[2] is due to Artstein, Ball, Barthe and Naor [3] and states
that
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Later, other proofs and generalisations were given by
Shlyakhtenko [4], Tulino and Verdú [5] and Madiman and
Barron [6] among others. The generalised EPI can also be
interpreted as the monotonic increase of entropy along the
Central Limit Theorem [7].

Let A be a discrete (finite or countable) set and let X
be a random variable supported on A with probability mass
function (p.m.f.) p on A. The discrete (Shannon) entropy of
X is H(X) = −

∑
x∈A p(x) log p(x). An exact analogue of

(1) cannot be true for discrete random variables as can be
seen by taking n = 1, d = 1 and considering deterministic
or even close to deterministic random variables. Nevertheless,
Tao [8], using ideas from additive combinatorics, proved
that for any independent and identically distributed random
variables X1, X2 taking values in a finite subset of a torsion-
free (abelian) group

H(X1 +X2) ≥ H(X1) +
1

2
log 2− o(1), (2)

where o(1) → 0 as H(X1) → ∞. For n = 1, this can be seen
as a one-dimensional discrete analogue of (1).

Besides (2), discrete versions of the EPI have been studied
by several authors. In [9], [10] a discrete EPI similar to (2)
was proved, with a worse constant than 1

2 log 2, but with sharp
quantitative bounds for the o(1)-term (see also [11] for a
detailed discussion on connections with that work). An EPI
for the binomial family was proved in [12]; in [13, Theorem
4.6] it was shown that e2H(X) − 1 is superadditive with
respect to convolution on the class of uniform distributions
on finite subsets of the integers (see also [14] for extensions
to Rényi entropy and [15] for dimensional extensions). Finally
the constant 1

2 log 2 was shown to be improvable for the class
of uniform distributions in [16]. Discrete Gaussians, which can
informally be seen as “extremisers” of our main result, have
been studied in the context of differential privacy in [17].

In addition to (2), Tao conjectured that for any independent
and identically distributed random variables X1, . . . , Xn+1

taking values in a finite subset of a torsion-free group
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as H(X1) → ∞ depending on n. A special case of this
conjecture was recently proven in [18], where it is shown that
(3) is satisfied by log-concave random variables on the integers
with explicit rate for the o(1) that is exponential in H(X1):

Theorem 1 ([18]): Let X1, . . . , Xn be i.i.d. log-concave
random variables on Z. Then
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,

as H(X1) → ∞.
This statement can be interpreted as a type of “approximate"
monotonicity in the discrete entropic CLT [19], [20]. We recall
here that an integer valued random variable X with p.m.f. p
is said to be log-concave if, for every k ∈ Z,

p(k)2 ≥ p(k − 1)p(k + 1). (4)

Our goal is to provide a d-dimensional extension of Theo-
rem 1 (see Theorem 3). In dimension d > 1, it is not obvious
what the suitable definition of log-concavity should be. We
discuss this in Section I-B.

Moreover, we prove a d-dimensional analogue (Theorem
5) of the following result, due to Bobkov, Marsiglietti and
Melbourne [21], who also studied discrete versions of the EPI
(up to multiplicative constants) for Rényi entropies of log-
concave distributions and which is an important tool in the
one-dimensional case:

Theorem 2: [21, Theorem 1.1] If a random variable X
follows a discrete log-concave p.m.f. f on Z, then

max
k∈Z

f(k) ≤ 1√
1 + 4σ2

, (5)

where σ2 = Var(X).

B. Notations and definitions

Big- and small-O notation. Let f be a real-valued function
and g another strictly positive function. We write f = O(g) if
there exist positive absolute constants N,C such that |f(x)| ≤
Cg(x) for every x ≥ N . If N,C are absolute up to a parameter
d, we write f = Od(g). Analogously, we write f = Ω(g), if
|f(x)| ≥ Cg(x) for every x ≥ N . If f = Ω(g) and f = O(g),
we write f = Θ(g) (with the analogous definitions for Ωd and
Θd). When it is more convenient, we will write f ≲d g for
f = Od(g) and f ≃d g for f = Θ(g). We write f(x) =

o(g(x)) if limx→∞
f(x)
g(x) = 0.

Log-concavity in Zd. For d > 1 there are more than one
definitions of log-concavity that have been used in different
contexts. We will use the following:

Definition 1 (Discrete log-concavity): A function p : Zd →
R ∪ {+∞} is said to be log-concave if it is log-concave
extensible [22], that is there exists a continuous log-concave
function f : Rd → R given by f(x) = e−V (x) where V :
Rd → R∪{+∞} is convex, such that f(k) = p(k) ∀k ∈ Zd.
We refer to f as the extension of p.

We say that a random vector X with values in Zd and p.m.f.
p : Zd → [0, 1] is log-concave if p is log-concave.

Definition 1 is quite general as it implies several other
notions of log-concavity. For a detailed study of convex
extensible functions the reader is referred to Murota [22]. We
also note that for d = 1, this definition is equivalent to the
usual definition (4) [21].

Isotropic functions. The covariance matrix, Cov(f), of an
integrable function f : Rd → R+ is defined by

[Cov(f)]ij :=

∫
Rd xixjf(x)dx∫

Rd f(x)dx
−
∫
Rd xif(x)dx

∫
Rd xjf(x)dx(∫

Rd f(x)dx
)2

for 1 ≤ i, j ≤ d. We say that f is isotropic if Cov(f) = σ2Id,
for some σ > 0, where Id is the d×d identity matrix. Let K be
a convex body in Rd. Then its covariance matrix is Cov(K) :=
Cov(1K). The convex body K is called isotropic if 1K is
isotropic. In the discrete case p : Zd → R+, the covariance
matrix Cov(p) is defined analogously with the integrals being
replaced by sums.

Definition 2: A family {fσ}σ∈R+
of non-negative functions

on Rd is almost isotropic if, as σ → ∞,

Cov(fσ)i,j = σ2 +O(σ) for i = j,

= O(σ) for i ̸= j.

We are interested in log-concave densities f , for which
detCov(f) → ∞. Thus, when we write that f is almost
isotropic, it is meant that f represents a family of functions
with underlying parameter σ := detCov(f)

1
2d .

When its not clear from the context, we write CovR(f) and
CovZ(f) to distinguish between the continuous and discrete
covariance matrix of f .

C. Main results and paper outline

Our first main result is the following:
Theorem 3: Let n ≥ 1. For any i.i.d. random vectors

X1, . . . , Xn on Zd such that the sums X1 + · · · + Xn and
X1 + · · · + Xn+1 are log-concave with almost isotropic
extension, we have as H(X1) → ∞,
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e
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.

Theorem 3 readily follows from the next theorem together
with the generalised EPI in Rd.

Theorem 4: Let n ≥ 1. For any i.i.d. random vectors
X1, . . . , Xn on Zd such that the sum X1 + · · · + Xn is
log-concave with almost isotropic extension, we have as
H(X1) → ∞,

h
( n∑
i=1

Xi+

n∑
i=1

Ui

)
= H

( n∑
i=1

Xi

)
+Od,n

(
H(X1)

e
1
dH(X1)

)
, (6)

where U1, . . . , Un are i.i.d. continuous uniforms on [0, 1]d.
Remark 1: Let X1, . . . , Xn be i.i.d. random vectors on

Zd such that their sum is log-concave with almost isotropic
extension. Then, since Cov

(∑n
i=1 Xi

)
= nCov(X1), X1 is

also almost isotropic. Denote the covariance matrix of X1 by



KX1
, and let U1 a uniform on the open box [0, 1]d. Then, using

that the Gaussian distribution maximises the entropy under
fixed covariance matrix,

H(X1) = h(X1 + U1) ≤
d

2
log

(
det (KX1

+
1

12
Id)

1
d 2πe

)
,

which is ≃ d
2 log (det (KX1

)
1
d 2πe). Thus, H(X1) → ∞

implies det (KX1
) → ∞ and therefore it suffices to prove

(6) with o(1) → 0 as det (KX1
) → ∞.

In the one-dimensional version (Theorem 1), Theorem 2 of
[21] is used. Our last main result is Theorem 5 below, which
gives a generalisation to dimensions d > 1 of that result.

Theorem 5 may also be seen as a discrete analogue of a
dimensional upper bound on the isotropic constant Lf :=(

maxRd f∫
Rd f

) 1
d

det(Cov(f))
1
2d . The study of Lf is a subject of

central importance in convex geometry. A lower bound on
Lf can be deduced from maximum entropy property of the
Gaussian distribution and the fact that e−h(X) ≤ max(f):
Lf ≥ e−

h(X)
d det(Cov(f))

1
2d ≥ 1√

2πe
. It is well known

that a dimensional upper bound also exists and we denote
by Ld the maximum of the isotropic constants Lf among
log-concave functions f in Rd. The latter is related to the
famous hyperplane conjecture (or slicing problem), one of the
central questions in this field, as the hyperplane conjecture is
equivalent to the isotropic constant conjecture [23, Theorem
3.1.2], which states that there exists a universal constant C
such that for any dimension d, one has Ld ≤ C. A recent
result of Klartag [24] gives the best known constant depending
on the dimension d for the slicing problem and thus also the
best upper bound known for Ld:

Ld ≤ C
√
log d , (7)

for some absolute constant C.
The upper bound (7) together with the general lower bound

give maxx∈Rd f(x) ≃d det
(
Cov(f)

)− 1
2

. Our discrete ana-
logue of (7) (and dimensional analogue of (5)) reads:

Theorem 5: Suppose p is a log-concave p.m.f. on Zd with
almost isotropic extension and covariance matrix Cov(p).
Then there exists a constant C ′

d depending on the dimension
only, such that

max
k∈Zd

p(k) ≤ C ′
d

det
(
CovZd(p)

) 1
2

,

provided that det (CovZd(p)) is large enough depending on d.
Our method for proving Theorem 5 is to use the correspond-

ing continuous result. To this end and in order to exploit (7),
we obtain the approximations∣∣∣∫Rd f −

∑
Zd f

∣∣∣ = od(1),
∣∣∣∫Rd xf −

∑
k∈Zd kf(k)

∣∣∣ = Od(1),

and
∣∣∣det(CovZd(f)

)
− det

(
CovRd(f)

)∣∣∣ = Od(σ
2d−1),

as σ → ∞. This is done in Section II. Although our results
hold under the more general almost isotropicity assumption,
for better illustration of the ideas, we assume first that the con-
tinuous extension f is isotropic. In Remark 3, we describe how

to remove this extra assumption. The proofs of Theorems 3 and
4 are analogous to their one-dimensional counterparts from
[18]. We describe the key differences in Section III. For the
missing details, the reader is referred to the full version of
our paper. Finally, in Section IV we conclude with a brief
discussion of our assumptions and of some open questions.

II. THEOREM 5 FOR ISOTROPIC f

A. Ball’s bodies
A family of convex bodies was introduced by Ball [25].

We refer to the book [23] for the definition and properties of
these bodies. Using some of their fundamental properties ( [23,
Proposition 2.5.3] and the inclusion relations [23, Proposition
2.5.7]), as well as [26, Theorem 4.1], we obtain the following
technical lemma, whose proof we omit.

Lemma 1: Let d ≥ 1 be an integer. There exist two constants
0 < C ′

d < Cd such that for any f : Rd → R+ centered,
isotropic, log-concave density and for every θ ∈ Sd−1,

C ′
d ≤

(∫ ∞

0

drd−1f(rθ)dr

) 1
d

≤ Cd, (8)

where Cd and C ′
d are constants depending only on d.

B. Sum of maxima of isotropic log-concave functions
The following lemma, whose proof is also omitted, is a

consequence of Lemma 8 and shows that log-concave isotropic
densities have exponential tails.

Lemma 2 (Concentration Lemma): Let cd := 3
1
dCd, where

Cd is the constant from (8). Then, for every log-concave,
isotropic, centered density function f and for every x ∈ Rd

such that ∥x∥2 ≥ cd/f(0)
1
d ,

f(x) ≤ f(0)2
−∥x∥2

f(0)
1
d

cd . (9)

The following lemma bounds the sum of the maxima of a
log-concave density using our previous concentration result.

Lemma 3: Let f be a centered, isotropic, log-concave
density on Rd with covariance σ2Id. Then, as σ → ∞,∑

l∈Zd−1

max
k∈Z

f(k, l) = Od

( 1
σ

)
. (10)

Proof: Set λ = cdf(0)
−1/d, with cd as given by Lemma 2.

Then, from the definition of Lf , its bounds and the inequality
f(0) ≥ e−d max(f) from [27], we have λ ≃ σ. Thus, we have∑

l∈Zd−1

max
k∈Z

f(k, l)

=
∑

l∈Zd−1,∥l∥∞≤λ

max
k∈Z

f(k, l) +
∑

l∈Zd−1,∥l∥∞>λ

max
k∈Z

f(k, l),

where the first sum can be trivially bounded above by Od(
1
σ ).

Using the tails estimates of Lemma 2 and the fact that for
l ∈ Zd−1, one has ∥l∥2 ≥ ∥l∥∞ and ∥l∥2 ≥ ∥l∥1√

d−1
≥ ∥l∥1√

d
the

second sum can be bounded above as∑
∥l∥∞>λ

max
k∈Z

f(k, l) ≤ f(0)
∑

∥l∥∞>λ

2
− ∥l∥1

λ
√

d ,

which can be calculated to be Od(
1
σ ). □



C. Discrete approximation of the integral, mean and covari-
ance

In this section, we will approximate the isotropic constant
of an isotropic, log-concave density f ∈ Rd by its discrete
analogue. The following proposition allows us to approximate
the integral of an isotropic log-concave function by its sum.

Proposition 1: Let f : Rd → R be a log-concave isotropic
density function with covariance matrix of the form σ2Id. Then∣∣∣∣∣∣

∫
Rd

fdx−
∑
k∈Zd

f(k)

∣∣∣∣∣∣ = Od

( 1
σ

)
.

Proof: Consider the one dimensional case first. Let f : R → R
be an isotropic log-concave function and let suppose that the
maximum of f is attained at x0 ∈ R. Let k0 ∈ Z such that
k0 ≤ x0 < k0 + 1. Then, we have∫

R
f =

∑
k∈Z

∫ k+1

k

f(x)dx

≥
∑
k<k0

f(k) +
∑

k≥k0+1

f(k + 1) + min{f(k0), f(k0 + 1)}

=
∑
k∈Z

f(k)−max
Z

f .

The reverse inequality is analogous and we get∣∣∫
R f −

∑
k∈Z f

∣∣ ≤ maxR f . We have maxR(f) =
Lf

σ ≤ 1
σ

[28] and the one-dimensional result follows.
By considering F (y) :=

∫
R f(x, y)dx, an inductive argu-

ment can be used to prove the result in any dimension.
□

Remark 2: The hypothesis of isotropicity is necessary.
Indeed, taking for instance d = 2, one can easily construct
(essentially one-dimensional) convex sets that do not contain
integer points but whose volumes are increasingly large.

The proofs of Propositions 2 and 3 are similar to that of
Proposition 1 and omitted.

Proposition 2: Let f : Rd → R be a centered, isotropic,
log-concave density. Then∑

k∈Zd

kif(k) =

∫
Rd

xif +Od(1) = Od(1).

Proposition 3 below shows that a (continuous) isotropic, log-
concave density in Rd is almost isotropic in the discrete sense,
meaning that its discrete covariance matrix has O(σ) off-
diagonal elements and σ2 +O(σ) diagonal elements.

Proposition 3: For every centered, isotropic, log-concave
density f : Rd → R with Cov(f) = σ2Id,∑

k∈Zd

f(k)k2i = σ2 +Od

(
σ
)
, for every 1 ≤ i ≤ d.

and for all i ̸= j ∑
k∈Zd

f(k)kikj = Od(σ).

Corollary 1: Let f be a centered, isotropic, log-concave
density in Rd, with Cov(f) = σ2Id. Then

det
(
CovZd(f)

)
= σ2d +Od(σ

2d−1).

Proof: By Proposition 3

det
(
CovZd(f)

)
=
∑
τ

sgn(τ)

d∏
i=1

CovZd(f)iτ(i)

= σ2d +O(σ2d−1),

since for τ being the identity permutation

sgn(τ)
∏d

i=1 CovZd(f)iτ(i) =
(
σ2 + O(σ)

)d
and for

any other permutation τ,
∏d

i=1 CovZd(f)iτ(i) = Od(σ
2d−2).

□
Finally, Corollary 2 below is a version of Theorem 5 with

the assumption that the continuous function f is isotropic. It
can be observed from the proof that the dependence of of C ′

d

on d can be taken to be the same as in the continuous case
(cf. (7)). It can also be seen that due to use of Corollary 1,
σ needs to be taken at least Ω(d!). We do not know whether
this is the best (lowest) rate.

Corollary 2 (Theorem 5 for isotropic f ): Let p be log-
concave p.m.f. on Zd, whose continuous log-concave exten-
sion, say f , is isotropic. Then there exists a constant C ′

d that
depends on the dimension only, such that

max
k∈Zd

p(k) ≤ C ′
d

det
(
Cov(p)

) 1
2

provided that σ := det
(
CovR(f)

)
is large enough depending

on d.
Proof: Since p is extensible log-concave, there exists a
continuous log-concave function f (not necessarily a density)
such that f(k) = p(k) for all k ∈ Zd and by assumption f is
isotropic. Thus

max
k∈Zd

p(k) ≤ max
x∈Rd

f(x) =
Ld
f

∫
Rd f

σd
≤

Cd

∫
Rd f

σd
, (11)

where Cd is an upper bound of Ld
f . But by Proposition 1

and Corollary 1 applied to f(·)∫
f

,
∫
f = 1 + Od(

1
σ ) and

σd =
(
det
(
Cov(p)

)
+Od(σ

2d−1)
) 1

2

, provided that σ is large
enough depending on d. □

Remark 3: The assumptions of Lemma 1 can be relaxed:
using convex geometric tools to bound the inradius and
circumradius of convex bodies in not necessarily isotropic
position, we can show that

∫∞
0

rd−1f(rθ)dr can always be
bounded below by ≳d f(0)

(√
λmin(Cov(f))

)d
and above

by ≲d f(0)
(√

λmax(Cov(f))
)d
. Then

∫∞
0

rd−1f(rθ)dr =
Θd(1), as σ := det (Cov(f)) → ∞.

The isotropicity assumption was only used in Lemma 1,
which in turn allowed us to prove the concentration Lemma 2
which was repeatedly evoked in this section to bound the sums
of maxima of log-concave functions and thus also the error



terms. By the previous remarks, a version of Lemma 2 holds
true for almost isotropic densities, although with possibly
different constants and for large enough σ. Therefore, all the
results of Section II hold true under this assumption as well
and therefore also Theorem 5.

III. DISCRETE EPI IN Zd

The proof of Theorem 4 makes use of a different gener-
alisation of Theorem 2, Lemma 4 below, which is a direct
consequence of Lemma 3.

Lemma 4: Fix d ≥ 1 and let p be a log-concave p.m.f. on
Zd with almost isotropic extension. Then, for every 1 ≤ i ≤ d,

∑
k∈Zd

|p(k)− p(k − ei)| = Od

(
1

det (Cov(p))
1
2d

)
,

where ei ∈ Zd is defined as the vector with the i-th coordinate
1 and all the other coordinates 0.
Proof: This follows by the observation for any one-
dimensional unimodal non-negative real sequence (an)n∈Z,
one has

∑
n∈Z |an − an−1| ≤ 2maxn∈Z an and (10). □

The following result is a dimensional generalisation of [18,
Lemma 2].

Lemma 5: Fix n, d ≥ 1 and let S be a log-concave random
vector on Zd with almost isotropic extension. Let U1, . . . , Un

be i.i.d. continuous uniforms on the unit cube. Let fn denote
the density of S +

∑n
i=1 Ui and pS the p.m.f. of S. Then,

for each k ∈ Zd, x ∈ k + [0, 1)d if we define g(k, x) =
fn(x)− pS(k), then∑

k∈Zd

sup
x∈k+[0,1)d

g(k, x) = Od

( 1

det
(
Cov(pS)

) 1
2d

)
.

Proof: The proof is a dimensional adaptation of argument
from [18]. We omit the details. □

Proof of Theorem 4: The proof is analogous to [18, The-
orem 1], the difference being that we apply the dimensional
analogues; Lemma 5 now bounds the error term when ap-
proximating the density with the p.m.f. and Theorem 5 shows
that the maximum probability as well as the maximum of the
density are bounded by Od,n(

1
σd ). □

Proof of Theorem 3: Follows directly by the continuous EPI
(1), and by Theorem 4 applied to the differential entropies on
both sides. □

Remark 4: Applying the generalised EPI of [6] we can also
obtain the following generalisation:

For n ≥ 1, let X1, . . . , Xn be i.i.d. random vectors. Let C
be an arbitrary collection of subsets of {1, . . . , n} and r be the
maximum number of sets in C in which any one index appears.
Suppose that all the sums

∑
j∈S Xj : S ∈ C ∪ {1, . . . , n} are

log-concave with almost isotropic extension. Then,

e
2
dH(

∑n
i=1 Xi) ≥ 1

r

∑
S∈C

e
2
dH(

∑
j∈S Xj)−Od,n

(
H(X1)

e
1
d
H(X1)

)
. (12)

IV. CONCLUDING REMARKS AND OPEN QUESTIONS

1) For d = 1 discrete log-concavity is preserved under
convolution (e.g. [29]). However, for d > 1 log-concavity
may not be preserved in general. Indeed, note that the
support of a discrete log-concave function is Zd-convex,
i.e. conv(A) ∩ Zd = A, the support of a convolution is
the Minkowski sum of the supports and consider two log-
concave distributions supported on S1 = {(0, 0), (1, 1)}
and S2 = {(0, 1), (1, 0)} respectively [22, Example 3.15].
In this case, the Minkowski sum S1+S2 is not Z2-convex.
However, it is elementary to show that

∑n
i=1 A is Zd-

convex for any Zd-convex set A. We do not know if
our definition of log-concavity is preserved under self-
convolution. It is therefore natural to ask the following
question:
Question 1: Let X1, X2 be i.i.d. log-concave random
vectors on Zd. Is X1 + X2 log-concave? Furthermore,
is
∑n

i=1 Xi log-concave for every n?
If the answer to Question 1 is positive, a sufficient
condition for the assumptions of Theorems 3 and 4
would be that X1 is log-concave. Answering Question
1 even for quantised multivariate Gaussians seems to be
non-trivial. Nevertheless, the following simple example
shows that the answer is positive for quantised isotropic
multivariate Gaussians, yielding an example that satisfies
the assumptions of Theorems 3 and 4.
Example 1: Let X1 be a random variable with p.m.f.

on Zd proportional to e−
|k|2

2σ2 ; that is X1 is a mul-
tivariate centered isotropic Gaussian quantised on Zd.
Then X1 has the distribution of (Z1, . . . , Zd), where Zi

are i.i.d. one-dimensional quantised centered Gaussians
with variance σ2. Note that if p is a p.m.f. on Zd

which is a product of log-concave p.m.f.s {pi}di=1 on Z,
p(k) =

∏d
i=1 p

(i)(ki), k = (k1, . . . , kn) ∈ Zd, then p
is clearly log-concave on Zd.
Therefore, since log-concavity is preserved under con-
volution in dimension one [21] and the coordinates of∑n

i=1 Xi are independent, it follows that
∑n

i=1 Xi is log-
concave for every n.

2) For Theorem 5 and therefore for Theorems 3 and 4 as
well, we have assumed that there exists a continuous
extension f , which is almost isotropic. We have then
shown that f is also almost isotropic in the discrete sense.
It would be more natural to start with the assumption that
the discrete p.m.f. is isotropic. However, in this case we
would not be able to use the continuous toolkit to prove
our concentration lemma. Nevertheless, we suspect that if
the discrete p.m.f. is isotropic, then there exists an almost
isotropic continuous extension and therefore our results
would still hold under this assumption:
Question 2: Let X be a log-concave random vector with
p.m.f. p on Zd. Assume that p is isotropic (respectively
almost isotropic). Is there a continuous log-concave ex-
tension of p on Rd, which is isotropic (respectively almost
isotropic)?
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