Convergence of percolation on random quadrangulations

Jason Miller
Cambridge

Ewain Gwynne (MIT)

May 22, 2017
Outline

Part I: Introduction — percolation and random planar maps

Part II: SLE$_6$ on Brownian surfaces

Part III: Proof ideas
Part I: Introduction
Percolation review

- Graph $G = (V, E)$, $p \in (0, 1)$.
Percolation review

▶ Graph $G = (V, E)$, $p \in (0, 1)$.
▶ Keep each $e \in E$ based on the toss of an independent p-coin

Graph $G = (V, E)$, $p \in (0, 1)$. Keep each $e \in E$ based on the toss of an independent p-coin.
Percolation review

- Graph $G = (V, E)$, $p \in (0, 1)$.
- Keep each $e \in E$ based on the toss of an independent p-coin
- Interested in connectivity properties of the resulting graph:

![Graph Diagram]
Percolation review

- Graph $G = (V, E)$, $p \in (0, 1)$.
- Keep each $e \in E$ based on the toss of an independent p-coin.
- Interested in connectivity properties of the resulting graph:
 - Critical value p_c:
 - $p > p_c \rightarrow$ there exists an infinite cluster
 - $p < p_c \rightarrow$ all clusters are finite
Graph $G = (V, E)$, $p \in (0, 1)$.

Keep each $e \in E$ based on the toss of an independent p-coin.

Interested in connectivity properties of the resulting graph:

- Critical value p_c:
 - $p > p_c \rightarrow$ there exists an infinite cluster
 - $p < p_c \rightarrow$ all clusters are finite

- Crossing probabilities
Percolation review

- Graph $G = (V, E)$, $p \in (0, 1)$.
- Keep each $e \in E$ based on the toss of an independent p-coin
- Interested in connectivity properties of the resulting graph:
 - Critical value p_c:
 - $p > p_c \rightarrow$ there exists an infinite cluster
 - $p < p_c \rightarrow$ all clusters are finite
 - Crossing probabilities
 - Scaling limits
Percolation review

- Graph $G = (V, E), p \in (0, 1)$.
- Keep each $e \in E$ based on the toss of an independent p-coin
- Interested in connectivity properties of the resulting graph:
 - Critical value p_c:
 - $p > p_c \rightarrow$ there exists an infinite cluster
 - $p < p_c \rightarrow$ all clusters are finite
 - Crossing probabilities
 - Scaling limits

Variants: site percolation, face percolation, etc...
Critical bond percolation on a box in \mathbb{Z}^2 with side-length 1000, conformally mapped to D. Shown are the clusters which touch the boundary.
Results on planar lattices

- **Kesten**: $p_c = \frac{1}{2}$ for bond percolation on the \square-lattice

- **Smirnov**: The exploration path between open and closed sites in critical site percolation on the \triangle-lattice converges to SLE$_6$ as the mesh size tends to 0.

Big open problem: Is there any universality? Does the convergence of the percolation exploration path converge on any other planar lattice?

This talk is about proving the convergence of percolation on random planar maps.
Results on planar lattices

- **Kesten**: $p_c = \frac{1}{2}$ for bond percolation on the \Box-lattice

- **Kesten**: $p_c = \frac{1}{2}$ for site percolation on the \triangle-lattice
Results on planar lattices

- **Kesten:** $p_c = \frac{1}{2}$ for bond percolation on the \square-lattice
- **Kesten:** $p_c = \frac{1}{2}$ for site percolation on the \triangle-lattice
- **Smirnov:** The exploration path between open and closed sites in critical site percolation on the \triangle-lattice converges to SLE_6 as the mesh size tends to 0.
Results on planar lattices

- **Kesten**: $p_c = \frac{1}{2}$ for bond percolation on the \square-lattice

- **Kesten**: $p_c = \frac{1}{2}$ for site percolation on the \triangle-lattice

- **Smirnov**: The exploration path between open and closed sites in critical site percolation on the \triangle-lattice converges to SLE_6 as the mesh size tends to 0.
Results on planar lattices

- **Kesten:** $p_c = \frac{1}{2}$ for bond percolation on the \square-lattice

- **Kesten:** $p_c = \frac{1}{2}$ for site percolation on the \triangle-lattice

- **Smirnov:** The exploration path between open and closed sites in critical site percolation on the \triangle-lattice converges to SLE_6 as the mesh size tends to 0.

Big open problem: is there any universality? Does the convergence of the percolation exploration path converge on any other planar lattice?

This talk is about proving the convergence of percolation on random \square-s.
Results on planar lattices

- **Kesten**: $p_c = \frac{1}{2}$ for bond percolation on the \square-lattice

- **Kesten**: $p_c = \frac{1}{2}$ for site percolation on the \triangle-lattice

- **Smirnov**: The exploration path between open and closed sites in critical site percolation on the \triangle-lattice converges to SLE_{6} as the mesh size tends to 0.

Big open problem: is there any *universality*?
Results on planar lattices

- **Kesten**: $p_c = \frac{1}{2}$ for bond percolation on the \square-lattice
- **Kesten**: $p_c = \frac{1}{2}$ for site percolation on the \triangle-lattice
- **Smirnov**: The exploration path between open and closed sites in critical site percolation on the \triangle-lattice converges to SLE_6 as the mesh size tends to 0.

Big open problem: is there any *universality*? Does the convergence of the percolation exploration path converge on any other planar lattice?
Results on planar lattices

- **Kesten**: $p_c = \frac{1}{2}$ for bond percolation on the \Box-lattice.
- **Kesten**: $p_c = \frac{1}{2}$ for site percolation on the \triangle-lattice.
- **Smirnov**: The exploration path between open and closed sites in critical site percolation on the \triangle-lattice converges to SLE_6 as the mesh size tends to 0.

Big open problem: is there any universality? Does the convergence of the percolation exploration path converge on any other planar lattice?

This talk is about proving the convergence of percolation on *random planar maps.*
A planar map is a finite graph together with an embedding in the plane so that no edges cross.
Random planar maps

- A **planar map** is a finite graph together with an embedding in the plane so that no edges cross.
- Its **faces** are the connected components of the complement of its edges.
Random planar maps

- A **planar map** is a finite graph together with an embedding in the plane so that no edges cross.
- Its **faces** are the connected components of the complement of its edges.
- A map is a **quadrangulation** if each face has 4 adjacent edges.
Random planar maps

- A **planar map** is a finite graph together with an embedding in the plane so that no edges cross.
- Its **faces** are the connected components of the complement of its edges.
- A map is a **quadrangulation** if each face has 4 adjacent edges.
- A quadrangulation corresponds to a **metric space** when equipped with the graph distance.
Random planar maps

- A **planar map** is a finite graph together with an embedding in the plane so that no edges cross.
- Its **faces** are the connected components of the complement of its edges.
- A map is a **quadrangulation** if each face has 4 adjacent edges.
- A quadrangulation corresponds to a **metric space** when equipped with the graph distance.
- Interested in **uniformly random quadrangulations** with n faces — **random planar map** (RPM).

First studied by Tutte in the 1960s while working on the four color theorem.

Combinatorics: enumeration formulas

Physics: statistical physics models: percolation, Ising, UST...

Probability: “uniformly random surface,” Brownian surface.
A planar map is a finite graph together with an embedding in the plane so that no edges cross.

Its faces are the connected components of the complement of its edges.

A map is a quadrangulation if each face has 4 adjacent edges.

A quadrangulation corresponds to a metric space when equipped with the graph distance.

Interested in uniformly random quadrangulations with \(n \) faces — random planar map (RPM).

First studied by Tutte in 1960s while working on the four color theorem.

- Combinatorics: enumeration formulas
- Physics: statistical physics models: percolation, Ising, UST ...
- Probability: “uniformly random surface,” Brownian surface
What is the structure of a typical quadrangulation when the number of faces is large? How many are there?

Tutte:
\[2 \times 3^n \left(n + 1 \right) \left(n + 2 \right) \left(2^n \right). \]
What is the structure of a typical quadrangulation when the number of faces is large?
What is the structure of a typical quadrangulation when the number of faces is large? How many are there? **Tutte:**

\[
\frac{2 \times 3^n}{(n+1)(n+2)} \binom{2n}{n}.
\]
Random quadrangulation with 25,000 faces

(Simulation due to J.F. Marckert)
Topologies for quadrangulations

It is natural to consider □’s with different topologies
Topologies for quadrangulations

It is natural to consider □’s with different topologies

- □ of the sphere with n faces
Topologies for quadrangulations

It is natural to consider □’s with different topologies

- □ of the sphere with n faces
- Infinite volume local limit: uniform infinite planar quadrangulation (UIPQ)
It is natural to consider □’s with different topologies

- □ of the sphere with n faces
- Infinite volume local limit: uniform infinite planar quadrangulation (UIPQ)
- □ of the disk with ∂-length 2ℓ
Topologies for quadrangulations

It is natural to consider □’s with different topologies

- □ of the sphere with n faces
- Infinite volume local limit: uniform infinite planar quadrangulation (UIPQ)
- □ of the disk with ∂-length 2ℓ
- Infinite ∂-length local limit: uniform infinite half-planar quadrangulation (UIHPQ)
Gromov-Hausdorff topology

The **Hausdorff distance** between closed sets A_1, A_2 in a metric space is

$$d_H(A_1, A_2) = \inf\left\{ \epsilon > 0 : A_2 \subseteq A_1(\epsilon) \quad \text{and} \quad A_1 \subseteq A_2(\epsilon) \right\}.$$
Gromov-Hausdorff topology

The **Hausdorff distance** between closed sets A_1, A_2 in a metric space is

$$d_H(A_1, A_2) = \inf \{ \epsilon > 0 : A_2 \subseteq A_1(\epsilon) \text{ and } A_1 \subseteq A_2(\epsilon) \}.$$

The **Gromov-Hausdorff distance** between compact metric spaces X_1, X_2 is

$$d_{GH}(X_1, X_2) = \inf \{ d_H(\iota_1(X_1), \iota_2(X_2)) \}$$

where the infimum is taken over all metric spaces W and isometric embeddings $\iota_j : X_j \to W$ for $j = 1, 2.$
Gromov-Hausdorff topology

The Hausdorff distance between closed sets A_1, A_2 in a metric space is

$$d_H(A_1, A_2) = \inf\{\epsilon > 0 : A_2 \subseteq A_1(\epsilon) \text{ and } A_1 \subseteq A_2(\epsilon)\}.$$

The Gromov-Hausdorff distance between compact metric spaces X_1, X_2 is

$$d_{GH}(X_1, X_2) = \inf\{d_H(\iota_1(X_1), \iota_2(X_2))\}$$

where the infimum is taken over all metric spaces W and isometric embeddings $\iota_j : X_j \to W$ for $j = 1, 2$.

Can augment the Gromov-Hausdorff metric by considering further additional structure.
Gromov-Hausdorff topology

The **Hausdorff distance** between closed sets A_1, A_2 in a metric space is

$$d_H(A_1, A_2) = \inf\{\epsilon > 0 : A_2 \subseteq A_1(\epsilon) \text{ and } A_1 \subseteq A_2(\epsilon)\}.$$

The **Gromov-Hausdorff distance** between compact metric spaces X_1, X_2 is

$$d_{GH}(X_1, X_2) = \inf\{d_H(\iota_1(X_1), \iota_2(X_2))\}$$

where the infimum is taken over all metric spaces W and isometric embeddings $\iota_j : X_j \to W$ for $j = 1, 2$.

Can augment the Gromov-Hausdorff metric by considering further additional structure.

- **Gromov-Hausdorff-Prokhorov**: metric space + measure

 $$d_{GHP}(X_1, X_2) = \inf\{d_H(\iota_1(X_1), \iota_2(X_2)) + d_P(\iota_1^*\mu_1, \iota_2^*\mu_2)\}$$
Gromov-Hausdorff topology

The **Hausdorff distance** between closed sets A_1, A_2 in a metric space is

$$d_H(A_1, A_2) = \inf\{\epsilon > 0 : A_2 \subseteq A_1(\epsilon) \quad \text{and} \quad A_1 \subseteq A_2(\epsilon)\}.$$

The **Gromov-Hausdorff distance** between compact metric spaces X_1, X_2 is

$$d_{GH}(X_1, X_2) = \inf\{d_H(\iota_1(X_1), \iota_2(X_2))\}$$

where the infimum is taken over all metric spaces W and isometric embeddings $\iota_j : X_j \to W$ for $j = 1, 2$.

Can augment the Gromov-Hausdorff metric by considering further additional structure.

* Gromov-Hausdorff-Prokhorov: metric space + measure
 $$d_{GHP}(X_1, X_2) = \inf\{d_H(\iota_1(X_1), \iota_2(X_2)) + d_P(\iota_1^*\mu_1, \iota_2^*\mu_2)\}$$

* Gromov-Hausdorff-Prokhorov-uniform: metric space + measure + path
 $$d_{GHPU}(X_1, X_2) = \inf\{d_H(\iota_1(X_1), \iota_2(X_2)) + d_P(\iota_1^*\mu_1, \iota_2^*\mu_2) + d_\infty(\iota_1(\gamma_1), \iota_2(\gamma_2))\}$$
• RPM as a **metric space**. Is there a limit?

(Simulation due to J.F. Marckert)
Large scale structure of random quadrangulations

- RPM as a **metric space**. Is there a limit?
- **Diameter** is $n^{1/4}$ (Chaissang-Schaefer)

(Simulation due to J.F. Marckert)
Large scale structure of random quadrangulations

- RPM as a **metric space**. Is there a limit?
- **Diameter** is $n^{1/4}$ (Chaissang-Schaefer)
- Rescaling by $n^{-1/4}$ gives a tight sequence of metric spaces (Le Gall)

(Simulation due to J.F. Marckert)
Large scale structure of random quadrangulations

- RPM as a \textit{metric space}. Is there a limit?
- \textbf{Diameter} is $n^{1/4}$ (Chaissang-Schaefer)
- Rescaling by $n^{-1/4}$ gives a tight sequence of metric spaces (Le Gall)
- Subsequently limiting space is a.s.:
 - 4-dimensional (Le Gall)
 - homeomorphic to the 2-sphere (Le Gall and Paulin, Miermont)

(Simulation due to J.F. Marckert)
RPM as a **metric space**. Is there a limit?

Diameter is $n^{1/4}$ (Chaissang-Schaefer)

Rescaling by $n^{-1/4}$ gives a tight sequence of metric spaces (Le Gall)

Subsequently limiting space is a.s.:

- 4-dimensional (Le Gall)
- homeomorphic to the 2-sphere (Le Gall and Paulin, Miermont)

There exists a unique limit in distribution: **the Brownian map** (Le Gall, Miermont)
Convergence results toward Brownian surfaces

General principle: Uniformly random planar \Box’s with n faces with distances rescaled by $n^{-1/4}$ converge to Brownian surfaces in the Gromov-Hausdorff-Prokhorov topology (metric space + measure).
Convergence results toward Brownian surfaces

General principle: Uniformly random planar \square's with n faces with distances rescaled by $n^{-1/4}$ converge to Brownian surfaces in the Gromov-Hausdorff-Prokhorov topology (metric space + measure).

- \square of the sphere \rightarrow Brownian map (Le Gall, Miermont)
Convergence results toward Brownian surfaces

General principle: Uniformly random planar \square’s with n faces with distances rescaled by $n^{-1/4}$ converge to Brownian surfaces in the Gromov-Hausdorff-Prokhorov topology (metric space + measure).

- \square of the sphere \rightarrow Brownian map (Le Gall, Miermont)
- \square of the plane (UIPQ) \rightarrow Brownian plane (Curien-Le Gall)
Convergence results toward Brownian surfaces

General principle: Uniformly random planar □’s with n faces with distances rescaled by $n^{-1/4}$ converge to Brownian surfaces in the Gromov-Hausdorff-Prokhorov topology (metric space + measure).

- □ of the sphere \rightarrow Brownian map (Le Gall, Miermont)
- □ of the plane (UIPQ) \rightarrow Brownian plane (Curien-Le Gall)
- □ of the disk (general boundary) \rightarrow Brownian disk (Bettinelli-Miermont)
Convergence results toward Brownian surfaces

General principle: Uniformly random planar \(\square \)'s with \(n \) faces with distances rescaled by \(n^{-1/4} \) converge to Brownian surfaces in the Gromov-Hausdorff-Prokhorov topology (metric space + measure).

- \(\square \) of the sphere \(\rightarrow \) Brownian map (Le Gall, Miermont)
- \(\square \) of the plane (UIPQ) \(\rightarrow \) Brownian plane (Curien-Le Gall)
- \(\square \) of the disk (general boundary) \(\rightarrow \) Brownian disk (Bettinelli-Miermont)
- \(\square \) of the half-plane (UIHPQ) \(\rightarrow \) Brownian half-plane (Bauer-Miermont-Ray, Gwynne-M.)
Convergence results toward Brownian surfaces

General principle: Uniformly random planar \(\square \)'s with \(n \) faces with distances rescaled by \(n^{-1/4} \) converge to Brownian surfaces in the Gromov-Hausdorff-Prokhorov topology (metric space + measure).

- \(\square \) of the sphere \(\rightarrow \) Brownian map (Le Gall, Miermont)
- \(\square \) of the plane (UIPQ) \(\rightarrow \) Brownian plane (Curien-Le Gall)
- \(\square \) of the disk (general boundary) \(\rightarrow \) Brownian disk (Bettinelli-Miermont)
- \(\square \) of the half-plane (UIHPQ) \(\rightarrow \) Brownian half-plane (Bauer-Miermont-Ray, Gwynne-M.)
- \(\square \) of the disk (simple boundary, random area) \(\rightarrow \) Brownian disk (Gwynne-M.)
Percolation on random planar maps

- **Angel:** $p_c = \frac{1}{2}$ for site percolation on a random \triangle

Open faces are adjacent if they share an edge. Closed faces are adjacent if they share a vertex.

Percolation thresholds for many other types of maps have been computed (c.f. Angel-Curien, Menard-Nolin, Richlier...)

We will consider critical $p = p_c = \frac{3}{4}$ face percolation on a random \square.

Jason Miller (Cambridge)
Convergence of percolation on random \squares
May 22, 2017
14 / 28
Percolation on random planar maps

- **Angel**: $p_c = \frac{1}{2}$ for site percolation on a random \triangle

Open faces are adjacent if they share an edge. Closed faces are adjacent if they share a vertex.

Percolation thresholds for many other types of maps have been computed (c.f. Angel-Curien, Menard-Nolin, Richlier...)

We will consider critical $p = p_c = \frac{3}{4}$ face percolation on a random \square.
Percolation on random planar maps

- **Angel:** $p_c = \frac{1}{2}$ for site percolation on a random \triangle
- **Angel-Curien:** $p_c = \frac{3}{4}$ for face percolation on a random \square

Open faces are adjacent if they share an edge. Closed faces are adjacent if they share a vertex. Percolation thresholds for many other types of maps have been computed (c.f. Angel-Curien, Menard-Nolin, Richlier...)

We will consider critical $p = p_c = \frac{3}{4}$ face percolation on a random \square.

Jason Miller (Cambridge)
Convergence of percolation on random \squares
May 22, 2017 14 / 28
Percolation on random planar maps

- **Angel**: $p_c = \frac{1}{2}$ for site percolation on a random \triangle
- **Angel-Curien**: $p_c = \frac{3}{4}$ for face percolation on a random \square
Percolation on random planar maps

- **Angel:** $p_c = \frac{1}{2}$ for site percolation on a random \triangle
- **Angel-Curien:** $p_c = \frac{3}{4}$ for face percolation on a random \square
 - Open faces are adjacent if they share an edge. Closed faces are adjacent if they share a vertex.

Percolation thresholds for many other types of maps have been computed (c.f. Angel-Curien, Menard-Nolin, Richlier...). We will consider critical $p_c = \frac{3}{4}$ face percolation on a random \square.

Jason Miller (Cambridge)

Convergence of percolation on random \squares

May 22, 2017 14 / 28
Percolation on random planar maps

- **Angel**: $p_c = \frac{1}{2}$ for site percolation on a random \triangle
- **Angel-Curien**: $p_c = \frac{3}{4}$ for face percolation on a random \Box
 - Open faces are adjacent if they share an edge.
 - Closed faces are adjacent if they share a vertex.

Percolation thresholds for many other types of maps have been computed (c.f. Angel-Curien, Menard-Nolin, Richlier...)

Percolation on random planar maps

- **Angel**: $p_c = \frac{1}{2}$ for site percolation on a random \triangle
- **Angel-Curien**: $p_c = \frac{3}{4}$ for face percolation on a random \square
 - Open faces are adjacent if they share an edge.
 - Closed faces are adjacent if they share a vertex.

Percolation thresholds for many other types of maps have been computed (c.f. Angel-Curien, Menard-Nolin, Richlier...)

We will consider critical $p = p_c = \frac{3}{4}$ face percolation on a random \square.
Percolation exploration path

- Work on □ of the disk
Percolation exploration path

- Work on \(\square \) of the disk
Percolation exploration path

- Work on □ of the disk
- $p = p_c = 3/4$
Percolation exploration path

- Work on \square of the disk
- $p = p_c = 3/4$
- Open/closed ∂-conditions
Percolation exploration path

- Work on □ of the disk
- $p = p_c = 3/4$
- Open/closed ∂-conditions
- There is a unique interface separating open/closed clusters attached to the boundary
Percolation exploration path

- Work on \square of the disk
- $p = p_c = 3/4$
- Open/closed ∂-conditions
- There is a unique interface separating open/closed clusters attached to the boundary

Perspective: It is a *random path* on a *random metric space*
Main result

Theorem (Gwynne-M.)

The exploration path for critical face percolation on a random \(\square \) of the disk with boundary length \(2\ell \) converges as \(\ell \to \infty \) to a random path on a random metric space with respect to the Gromov-Hausdorff-Prokhorov-uniform topology.

The limit is SLE\(_6\) on a Brownian disk.

Comments:
▶ Universal strategy: works for any random planar map model provided one has certain technical inputs.
▶ Works for other topologies (sphere, plane, half-plane).

Jason Miller (Cambridge)
Main result

Theorem (Gwynne-M.)

The exploration path for critical face percolation on a random \square of the disk with boundary length 2ℓ converges as $\ell \to \infty$ to a random path on a random metric space with respect to the Gromov-Hausdorff-Prokhorov-uniform topology.

The limit is SLE$_6$ on a Brownian disk.

Comments:
Main result

Theorem (Gwynne-M.)

The exploration path for critical face percolation on a random boundary of the disk with boundary length 2ℓ converges as $\ell \to \infty$ to a random path on a random metric space with respect to the Gromov-Hausdorff-Prokhorov-uniform topology.

The limit is SLE_6 on a Brownian disk.

Comments:

- Universal strategy: works for any random planar map model provided one has certain technical inputs.
Main result

Theorem (Gwynne-M.)

The exploration path for critical face percolation on a random \(\square \) of the disk with boundary length \(2\ell \) converges as \(\ell \to \infty \) to a random path on a random metric space with respect to the Gromov-Hausdorff-Prokhorov-uniform topology.

The limit is SLE\(_6\) on a Brownian disk.

Comments:

- Universal strategy: works for any random planar map model provided one has certain technical inputs.
- Works for other topologies (sphere, plane, half-plane).
Part II: SLE_6 on a Brownian surface
Schramm-Loewner evolution (SLE)

- Random fractal curve in a planar domain

Critical percolation, hexagonal lattice
Schramm-Loewner evolution (SLE)

- Random fractal curve in a planar domain
- Introduced by Schramm in ’99 to describe limits of interfaces in discrete models

Critical percolation, hexagonal lattice
Schramm-Loewner evolution (SLE)

- Random fractal curve in a planar domain
- Introduced by Schramm in ’99 to describe limits of interfaces in discrete models

Critical percolation, hexagonal lattice
Schramm-Loewner evolution (SLE)

- Random fractal curve in a planar domain
- Introduced by Schramm in ’99 to describe limits of interfaces in discrete models
- Characterized by conformal invariance and domain Markov property

- Indexed by a parameter $\kappa > 0$
- Simple for $\kappa \in (0, 4]$, self-intersecting for $\kappa \in (4, 8)$, space-filling for $\kappa \geq 8$

- Dimension: $1 + \kappa/8$ for $\kappa \leq 8$

- Some special κ values:
 - $\kappa = 2$ LERW
 - $\kappa = 8/3$ SAW
 - $\kappa = 3$ Ising
 - $\kappa = 16/3$ FK-Ising
 - $\kappa = 4$ GFF level lines
 - $\kappa = 6$ Percolation
 - $\kappa = 12$ Bipolar orientations
 - …

Critical percolation, hexagonal lattice
Schramm-Loewner evolution (SLE)

- Random fractal curve in a planar domain
- Introduced by Schramm in '99 to describe limits of interfaces in discrete models
- Characterized by conformal invariance and domain Markov property
- Indexed by a parameter $\kappa > 0$

Critical percolation, hexagonal lattice
Schramm-Loewner evolution (SLE)

- Random fractal curve in a planar domain
- Introduced by Schramm in ’99 to describe limits of interfaces in discrete models
- Characterized by conformal invariance and domain Markov property
- Indexed by a parameter $\kappa > 0$
- Simple for $\kappa \in (0, 4]$, self-intersecting for $\kappa \in (4, 8)$, space-filling for $\kappa \geq 8$

Critical percolation, hexagonal lattice
Schramm-Loewner evolution (SLE)

- Random fractal curve in a planar domain
- Introduced by Schramm in ’99 to describe limits of interfaces in discrete models
- Characterized by conformal invariance and domain Markov property
- Indexed by a parameter $\kappa > 0$
- Simple for $\kappa \in (0, 4]$, self-intersecting for $\kappa \in (4, 8)$, space-filling for $\kappa \geq 8$
- Dimension: $1 + \kappa/8$ for $\kappa \leq 8$

Critical percolation, hexagonal lattice
Schramm-Loewner evolution (SLE)

- Random fractal curve in a planar domain
- Introduced by Schramm in ’99 to describe limits of interfaces in discrete models
- Characterized by conformal invariance and domain Markov property
- Indexed by a parameter $\kappa > 0$
- Simple for $\kappa \in (0, 4]$, self-intersecting for $\kappa \in (4, 8)$, space-filling for $\kappa \geq 8$
- Dimension: $1 + \kappa/8$ for $\kappa \leq 8$
- Some special κ values:
 - $\kappa = 2$ LERW, $\kappa = 8$ UST
 - $\kappa = 8/3$ SAW
 - $\kappa = 3$ Ising, $\kappa = 16/3$ FK-Ising
 - $\kappa = 4$ GFF level lines
 - $\kappa = 6$ Percolation
 - $\kappa = 12$ Bipolar orientations
 - …

Critical percolation, hexagonal lattice
Loewner's equation: if η is a non self-crossing path in H with $\eta(0) \in \mathbb{R}$ and g_t is the Riemann map from the unbounded component of $H \setminus \eta([0, t])$ to H normalized by $g_t(z) = z + o(1)$ as $z \to \infty$, then

$$\partial_t g_t(z) = \frac{2}{g_t(z) - W_t} \quad \text{where} \quad g_0(z) = z \quad \text{and} \quad W_t = g_t(\eta(t)).$$
Loewner's equation: if \(\eta \) is a non self-crossing path in \(\mathbb{H} \) with \(\eta(0) \in \mathbb{R} \) and \(g_t \) is the Riemann map from the unbounded component of \(\mathbb{H} \setminus \eta([0, t]) \) to \(\mathbb{H} \) normalized by \(g_t(z) = z + o(1) \) as \(z \to \infty \), then

\[
\frac{\partial_t g_t(z)}{g_t(z) - W_t} = 2,
\]

where \(g_0(z) = z \) and \(W_t = g_t(\eta(t)) \).

\((\star)\)

SLE\(_\kappa\) in \(\mathbb{H} \): The random curve associated with \((\star)\) with \(W_t = \sqrt{\kappa}B_t \), \(B \) a standard Brownian motion.
SLE$_\kappa$

\[\eta(t) \quad \eta(s) \]

\[g_t \]

\[g_t(\eta(s)) \]

\[W_t = g_t(\eta(t)) \]

Loewner's equation: if η is a non self-crossing path in \mathbb{H} with $\eta(0) \in \mathbb{R}$ and g_t is the Riemann map from the unbounded component of $\mathbb{H} \setminus \eta([0, t])$ to \mathbb{H} normalized by $g_t(z) = z + o(1)$ as $z \to \infty$, then

\[\partial_t g_t(z) = \frac{2}{g_t(z) - W_t} \quad \text{where } g_0(z) = z \text{ and } W_t = g_t(\eta(t)). \] \hspace{1cm} (\star)

SLE$_\kappa$ in \mathbb{H}: The random curve associated with (\star) with $W_t = \sqrt{\kappa}B_t$, B a standard Brownian motion. Other domains: apply conformal mapping.
Simulations due to Tom Kennedy.
What about SLE_6 on a Brownian surface?

- SLE is a random curve defined \textit{on a simply connected domain in} \mathbb{C}.
What about SLE_6 on a Brownian surface?

- SLE is a random curve defined on a simply connected domain in \mathbb{C}
- A Brownian surface (i.e., scaling limit of a random quadrangulation) is an abstract metric measure space
What about SLE_6 on a Brownian surface?

- SLE is a random curve defined \textit{on a simply connected domain in } \mathbb{C}
- A Brownian surface (i.e., scaling limit of a random quadrangulation) is an abstract metric measure space
- A priori, it does not come with an embedding into \mathbb{C}
What about SLE_6 on a Brownian surface?

- SLE is a random curve defined \textit{on a simply connected domain in \mathbb{C}}.
- A Brownian surface (i.e., scaling limit of a random quadrangulation) is an abstract metric measure space.
- A priori, it does not come with an embedding into \mathbb{C}.
- This is necessary to define SLE_6 on a Brownian surface.
Embedding Brownian surfaces into \mathbb{C}

- It is conjectured that if one takes a uniformly random planar map and then embeds it "conformally" into \mathbb{C} (using, e.g., circle packing) then the maps will converge to an embedding of the limiting Brownian surface into \mathbb{C}.

\[\psi \]
Embedding Brownian surfaces into \mathbb{C}

- It is conjectured that if one takes a uniformly random planar map and then embeds it "conformally" into \mathbb{C} (using, e.g., circle packing) then the maps will converge to an embedding of the limiting Brownian surface into \mathbb{C}.

- Embeddings of Brownian surfaces into \mathbb{C} were constructed directly in the continuum (M., Sheffield) using a process called $\text{QLE}(8/3, 0)$. Should be the same as the limit of the discrete embeddings.
Embedding Brownian surfaces into \mathbb{C}

- It is conjectured that if one takes a uniformly random planar map and then embeds it “conformally” into \mathbb{C} (using, e.g., circle packing) then the maps will converge to an embedding of the limiting Brownian surface into \mathbb{C}.

- Embeddings of Brownian surfaces into \mathbb{C} were constructed directly in the continuum (M., Sheffield) using a process called QLE($8/3, 0$). Should be the same as the limit of the discrete embeddings.

- Define SLE_6 on a Brownian surface using the QLE($8/3, 0$) embedding.
Embedding Brownian surfaces into \mathbb{C}

- It is conjectured that if one takes a uniformly random planar map and then embeds it “conformally” into \mathbb{C} (using, e.g., circle packing) then the maps will converge to an embedding of the limiting Brownian surface into \mathbb{C}.

- Embeddings of Brownian surfaces into \mathbb{C} were constructed directly in the continuum (M., Sheffield) using a process called QLE$(8/3, 0)$. Should be the same as the limit of the discrete embeddings.

- Define SLE_6 on a Brownian surface using the QLE$(8/3, 0)$ embedding.

- Is this the right definition? It is if it is the scaling limit of percolation ...
Part III: Proof ideas
Proof overview

Proof has two steps:

- Construct subsequential limits of the percolation exploration
- Characterization theorem which singles out SLE_6 on a Brownian surface
Peeling exploration

A “peeling” of a map is a Markovian “exploration” in which faces are revealed one at a time.

Always know the law of the unexplored region.
A “peeling” of a map is a Markovian “exploration” in which faces are revealed one at a time.

Always know the law of the unexplored region.
Peeling exploration

A “peeling” of a map is a Markovian “exploration” in which faces are revealed one at a time.

Always know the law of the unexplored region.
Peeling exploration

A “peeling” of a map is a Markovian “exploration” in which faces are revealed one at a time.

Always know the law of the unexplored region.
Peeling exploration

A “peeling” of a map is a Markovian “exploration” in which faces are revealed one at a time.

Always know the law of the unexplored region.
Peeling exploration

A “peeling” of a map is a Markovian “exploration” in which faces are revealed one at a time.

Always know the law of the unexplored region. Impose open/closed \(\partial \)-conditions.

Holes cut out from \(\infty \) are independent □ of the disk given their \(\partial \)-length.

Have a hole □ of \(\partial \)-length \(k \) with probability \(\approx k^{-5/2} \).

The left/right \(\partial \)-length processes converge to independent stable-3/2 Lévy processes.

Always know the law of the unexplored region. Impose open/closed \(\partial \)-conditions.
Peeling exploration

A “peeling” of a map is a Markovian “exploration” in which faces are revealed one at a time.

Always know the law of the unexplored region. Impose open/closed ∂-conditions. Choose \square’s to reveal so as to explore the percolation interface.
Peeling exploration

A “peeling” of a map is a Markovian “exploration” in which faces are revealed one at a time.

Always know the law of the unexplored region. Impose open/closed \(\partial \)-conditions. Choose \(\square \)'s to reveal so as to explore the percolation interface. Keep track of left/right boundary lengths of cluster.
Peeling exploration

A “peeling” of a map is a Markovian “exploration” in which faces are revealed one at a time.

Always know the law of the unexplored region. Impose open/closed ∂-conditions. Choose □’s to reveal so as to explore the percolation interface. Keep track of left/right boundary lengths of cluster.
Peeling exploration

A “peeling” of a map is a Markovian “exploration” in which faces are revealed one at a time.

Always know the law of the unexplored region. Impose open/closed ∂-conditions. Choose $□$’s to reveal so as to explore the percolation interface. Keep track of left/right boundary lengths of cluster.
Peeling exploration

A “peeling” of a map is a Markovian “exploration” in which faces are revealed one at a time.

Always know the law of the unexplored region. Impose open/closed ∂-conditions. Choose \Box’s to reveal so as to explore the percolation interface. Keep track of left/right boundary lengths of cluster.

Holes cut out from ∞ are independent of the disk given their ∂-length. Have a hole of ∂-length k with probability $\approx k^{-5/2}$. The left/right ∂-length processes converge to independent stable-$3/2$ Lévy processes.
Peeling exploration

A “peeling” of a map is a Markovian “exploration” in which faces are revealed one at a time.

Always know the law of the unexplored region. Impose open/closed ∂-conditions. Choose □’s to reveal so as to explore the percolation interface. Keep track of left/right boundary lengths of cluster. Holes cut out from ∞ are independent □ of the disk given their ∂-length.
Peeling exploration

A “peeling” of a map is a Markovian “exploration” in which faces are revealed one at a time.

Always know the law of the unexplored region. Impose open/closed ∂-conditions. Choose \square’s to reveal so as to explore the percolation interface. Keep track of left/right boundary lengths of cluster. Holes cut out from ∞ are independent \square of the disk given their ∂-length. Have a hole of ∂-length k with probability $\asymp k^{-5/2}$.

The left/right ∂-length processes converge to independent stable-3/2 Lévy processes.
Peeling exploration

A “peeling” of a map is a Markovian “exploration” in which faces are revealed one at a time.

Always know the law of the unexplored region. Impose open/closed ∂-conditions. Choose □’s to reveal so as to explore the percolation interface. Keep track of left/right boundary lengths of cluster. Holes cut out from ∞ are independent □ of the disk given their ∂-length. Have a hole of ∂-length k with probability $\asymp k^{-5/2}$.
Peeling exploration

A “peeling” of a map is a Markovian “exploration” in which faces are revealed one at a time.

Always know the law of the unexplored region. Impose open/closed ∂-conditions. Choose \Box’s to reveal so as to explore the percolation interface. Keep track of left/right boundary lengths of cluster. Holes cut out from ∞ are independent \Box of the disk given their ∂-length. Have a hole of ∂-length k with probability $\asymp k^{-5/2}$.
Peeling exploration

A “peeling” of a map is a Markovian “exploration” in which faces are revealed one at a time.

Always know the law of the unexplored region. Impose open/closed ∂-conditions. Choose □’s to reveal so as to explore the percolation interface. Keep track of left/right boundary lengths of cluster. Holes cut out from ∞ are independent □ of the disk given their ∂-length. Have a hole of ∂-length k with probability $\approx k^{-5/2}$.
Peeling exploration

A “peeling” of a map is a Markovian “exploration” in which faces are revealed one at a time.

Always know the law of the unexplored region. Impose open/closed ∂-conditions. Choose \square’s to reveal so as to explore the percolation interface. Keep track of left/right boundary lengths of cluster. Holes cut out from ∞ are independent \square of the disk given their ∂-length. Have a hole of ∂-length k with probability $\approx k^{-5/2}$.
Peeling exploration

A “peeling” of a map is a Markovian “exploration” in which faces are revealed one at a time.

Always know the law of the unexplored region. Impose open/closed ∂-conditions. Choose \square’s to reveal so as to explore the percolation interface. Keep track of left/right boundary lengths of cluster. Holes cut out from ∞ are independent \square of the disk given their ∂-length. Have a hole of ∂-length k with probability $\asymp k^{-5/2}$.

The left/right ∂-length processes converge to independent stable-3/2 Lévy processes.

Jason Miller (Cambridge)
Peeling exploration

A “peeling” of a map is a Markovian “exploration” in which faces are revealed one at a time.

Always know the law of the unexplored region. Impose open/closed ∂-conditions. Choose \Box’s to reveal so as to explore the percolation interface. Keep track of left/right boundary lengths of cluster. Holes cut out from ∞ are independent \Box of the disk given their ∂-length. Have a hole of ∂-length k with probability $\asymp k^{-5/2}$. The left/right ∂-length processes converge to independent stable-3/2 Lévy processes.
A subsequential limit of the percolation exploration is a random path on a Brownian surface with the following properties:

- Its left/right boundary lengths evolve as independent $3/2$-stable Lévy processes.
- The holes it cuts out are conditionally independent Brownian disks.
- The unexplored region is a Brownian surface.

It turns out that these three properties characterize SLE$_6$ on a Brownian surface.

Proved using the connection between Brownian surfaces and Liouville quantum gravity / GFF.
Continuum characterization

- A subsequential limit of the percolation exploration is a random path on a Brownian surface with the following properties:
 - Its left/right boundary lengths evolve as independent $3/2$-stable Lévy processes
Continuum characterization

- A subsequential limit of the percolation exploration is a random path on a Brownian surface with the following properties:
 - Its left/right boundary lengths evolve as independent $3/2$-stable Lévy processes
 - The holes it cuts out are conditionally independent Brownian disks

- Proved using the connection between Brownian surfaces and Liouville quantum gravity / GFF
A subsequential limit of the percolation exploration is a random path on a Brownian surface with the following properties:

- Its left/right boundary lengths evolve as independent $3/2$-stable Lévy processes
- The holes it cuts out are conditionally independent Brownian disks
- The unexplored region is a Brownian surface
Continuum characterization

- A subsequential limit of the percolation exploration is a random path on a Brownian surface with the following properties:
 - Its left/right boundary lengths evolve as independent $3/2$-stable Lévy processes
 - The holes it cuts out are conditionally independent Brownian disks
 - The unexplored region is a Brownian surface
- It turns out that these three properties characterize SLE_6 on a Brownian surface
 - Proved using the connection between Brownian surfaces and Liouville quantum gravity / GFF
Where are we now?

Convergence results for planar maps (RPM) decorated with a statistical physics model to SLE on a random surface.
Where are we now?

Convergence results for planar maps (RPM) decorated with a statistical physics model to SLE on a random surface.

Gromov-Hausdorff topology

- Self-avoiding walks on RPM (Gwynne, M.)
- Percolation decorated RPM (Gwynne, M.)
Where are we now?

Convergence results for planar maps (RPM) decorated with a statistical physics model to SLE on a random surface.

Gromov-Hausdorff topology
- Self-avoiding walks on RPM (Gwynne, M.)
- Percolation decorated RPM (Gwynne, M.)

Peanosphere sense (Duplantier, M., Sheffield)
- FK-weighted RPM with $q \in (0, 4)$
 - Infinite volume (Sheffield)
 - finite volume (Gwynne, Mao, Sun and Gwynne, Sun)
- Bipolar orientation decorated RPM (Kenyon, M., Sheffield, Wilson)
- Active spanning tree decorated RPM (Gwynne, Kassel, M., Wilson)
- Schnyder woods (Li, Sun, Watson)
Thanks!