Number Theory: Example Sheet 3

The first 12 questions are intended for the supervisions. Further questions are designed to encourage mathematical investigation without any examination emphasis.

Throughout this sheet, ϕ denotes the Euler totient function, μ the Möbius function, $\tau(n)$ the number of positive divisors of n, and $\sigma(n)$ the sum of the positive divisors of n.

1. (i) Define Liouville's function λ by $\lambda(p_1^{a_1}\cdots p_k^{a_k})=(-1)^{a_1+\cdots+a_k}$. Can you find a product expansion for the Dirichlet series

$$\sum_{n=1}^{\infty} \frac{\lambda(n)}{n^s}?$$

What is its product with the Riemann Zeta-function? What combinatorial identity does that give?

(ii) Find a product expansion for the Dirichlet series

$$\sum_{n=1}^{\infty} \frac{|\mu(n)|}{n^s}.$$

Find an expression for it in terms of the Riemann Zeta-function. What combinatorial identity can you derive?

2. Suppose that for $\Re(s) > 1$, we have

$$\zeta^k(s) = \sum_{n=1}^{\infty} \frac{\tau_k(n)}{n^s}.$$

Identify the arithmetic function $\tau_k(n)$.

3. Suppose that for $\Re(s) > k+1$, we have

$$\zeta(s-k)\zeta(s) = \sum_{n=1}^{\infty} \frac{\sigma_k(n)}{n^s}.$$

Identify the arithmetic function $\sigma_k(n)$.

- 4. Find all natural numbers n for which $\sigma(n) + \phi(n) = n\tau(n)$.
- 5. Use Legendre's formula to compute $\pi(207)$.
- 6. Let N be a positive integer greater than 1. Prove the inequality $N! > (\frac{N}{e})^N$. Deduce that

$$\sum_{p \leqslant N} \frac{\log p}{p-1} > \log N - 1.$$

- 7. Prove that every non-constant polynomial with integer coefficients assumes infinitely many composite values.
- 8. Prove that every integer N > 6 can be expressed as a sum of distinct primes.
- 9. Prove that for every $n \ge 1$, the set of numbers $\{1, \dots, 2n\}$ can be partioned into pairs $\{a_1, b_1\}, \dots, \{a_n, b_n\}$ so that the sum $a_i + b_i$ of each pair is prime.
- 10. Let a be a positive integer. Determine explicitly the real number whose continued fraction is $[a, a, a, \dots]$.
- 11. Determine the continued fraction expansions of $\sqrt{3}$, $\sqrt{7}$, $\sqrt{13}$, $\sqrt{19}$, $\sqrt{46}$.
- 12. Calculate $a_0, ..., a_4$ in the continued fraction expansions of e and π .

That ends the official part of the sheet. As ever the remaining questions are intended to encourage investigation so don't bother your supervisor with them.

- (A) Give direct combinatorial proofs of the identities which you discovered in Question 1.
- (B) A Theorem of Mertens states that

$$\sum_{p \leqslant x} \frac{\log p}{p} = \log x + O(1)$$

Try proving this.

(C) Investigate the class of continued fractions of the form [a, b, a, b, ...] where b|a. At least compute some examples and find out what generally is the real represented.

Email any comments, suggestions and queries to m.hyland@dpmms.cam.ac.uk.