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Linear Algebra: Jordan Normal Form

One can regard the concrete proof of the existence of Jordan Normal Form (JNF) as consisting of three parts.
First there is the decomposition into generalised eigenspaces. Then there is an analysis of (bases for) nilpotent
endomorphisms. Finally we put things together to get the JNF

1 Generalised Eigenspaces

The following decomposition is relatively straightforward to establish. (Essentially it depends on the Chinese
Remainder Theorem.) Suppose that a : V' — V is an endomorphism of a finite dimensional complex vector
space V; and suppose that its minimal polynomial is

m(t) = (t — )Pt — X)) (t — M)
so we have k distinct eigenvalues A1, Ao, ..., \g. Then V is the direct sum
V=VA)aVA) @ - dV(\)
of the generalised eigenspaces
V(\) = ker((a — A\ 1)) fori=1,2,... k.

Furthermore each generalised eigenspace V();) is a-invariant, that is o maps V(\;) to V();), and the endo-
morphism

a; V() = V(A v—a(v)
has minimal polynomial (¢ — /\i)di. In particular we see that each a; — A; is nilpotent, so we are reduced to
constructing a good base for a nilpotent endomorphism.

2 Nilpotent Endomorphisms

Now suppose that we have a nilpotent endomorphism « of a finite dimensional vector space V', so that there
is a natural number d with a?~! # 0 but a? = 0. Then we have a manifestly increasing sequence

{0} =Ky<K1<Ky<...<Kq1<Ks=V

of subspaces K; = ker(a') with a(K;11) < K;. Note that this must be a strictly increasing sequence of
subspaces as generally ker(a?) = ker(a’*!) implies ker(a‘™!) = ker(ai*?) and so on. In particular it follows
easily that e < dim(V) = n. (It is easy to see just by looking at exponents that the minimal polynomial must
divide characteristic polynomial; this gives yet another argument for the Cayley-Hamilton Theorem.) What
we are about to do confirms that the JNF is determined by the various nullities in question.

Conceptually our first task is to find the cyclic blocks of size d. There are two essentially equivalent methods.
1) Look at Ima“d~!. (It is a space of eigenvectors.) Take a basis fi,...,f., and let a?"!(e;) = f;. We see
readily that

V=Ki 186 W4 where Wi =(e1,...,e.).

For we clearly have K41 N Wy_1 = {0}; and if x € V we can write a?~1(x) = 3_ z;f; and then

x=(x— Z xie;) + Z TiX; with (x — Z xie;) € Kg_1 and Z rie; € Wy_1.



2) Take a complement V' = Ky 1®Wy_q for K41 in V. Take a basis ey, ..., e, for W;_;. Since Kq_1NWy_1 =
{0} it follows that setting a?~!(e;) = f; we get a basis i, ..., f. for Ima?~!,
Either way we get cyclic subspaces

(ei)a = (€5, a(€;), ..., 0% (ey)) ;
and a little argument will show independence so that we have a direct sum
<e1>oz D---D <er>oz

This gives us r cyclic subblocks of size d.

Now we seek the cyclic subblocks of size d — 1. Again there are two ways to look at things.

1) Look at Ima?~2. We already have independent elements a?~2(e;), a?~!(e;), the latter being eigenvectors.
We can extend this to a basis of Ima?~2 by elements which are also eigenvectors; and we find elements which
go to these new elements under a®~2. These together with the a(e;) will be the basis for a space Wy_o with
K; 1=Ki 5®Wy_o; and on their own they will give the cyclic subspaces of size d — 2.

2) Just take a complement Wy_o for K45 in K41 which includes a(Wy_1). Extending a basis for a(Wy_1)
to one for W;_s provides elements which will give the cyclic subspaces of size d — 2.

So we continue in this way. A succinct explanation is as follows. We show inductively (starting with Wy_1,
and working downwards) that there are subspaces Wy_1, Wy_s, ..., Wi, Wy which satisfy

Kipw=K,eW, and Oé(WiJrl) cW;

fori =0,1,2,...,d— 1.

Then we can organise bases for these spaces to give a basis (un,)n,_; for V with a(u,,) equal to either u,,_;
or 0 for every m. We have then decomposed V into a direct sum of cyclic subspaces on each of which « acts
as in question 4 of example sheet 3. (There are more abstract ways to do all this!) In view of the answer to
question 4, the matrix for « looks like

¢¢ 0 0 ... O
0 Cy O 0
0 0 Cs 0
0 0 0 ... Cy

where each C; is a matrix of form K with 1s down the subdiagonal, and m is the dimension of the eigenspace.

3 Jordan Normal Form

Having analysed the nilpotent case, we return to the case of a general « as in Section 1. We apply what we
have learnt about nilpotent endomorphisms in Section 2 to the nilpotent endomorphisms a; — A;. The matrix
we get for « is of the form

B 0 0 ... O

0 By O 0

0 0 Bs 0

0O 0 0 ... Bg

where the blocks B corresponding to the generalised eigenspaces V' (A), are themselves of form

ci 0 0 ... O

0 Cy 0 ... 0

0o 0 Cs ... 0

0 0 0 ... Cpn



when we take the bases for each V(\) found in Section 2, so that the C; are of the form AI 4+ K. This gives
the Jordan Normal Form for a.

4 Worked example

Consider the matrix

3 01 0 1 0
1 31 -1 0 1
-1 01 0 -1 0
4= 1 1 1 1 0 1
0 0 0 O 2 0
1 01 0 0 2

One can easily check that the characteristic polynomial is (t — 2)%, so there is just one eigenvalue 2. So we
consider

1 1 1 -1 0 1
-1 0 -1 0 -10
A_21_111—101’
0O 0 0 0 0 0
1 0 1 0 0 0
then
00 0O0O0O0
1 01000
opn2_|0 00000
(A2I)_101000’
000000
000000
and
(A—21)®=0.

Just by looking at the nullities we can see that there will be cyclic subspaces of dimensions 3, 2 and 1 in the
JNF.

0
1
First we find a generator for a cyclic subspace of dimension 3. We either see that (1) € Im(A —2)? and
0
0
1 1
0 0
take a preimage 8 say; or we pick perhaps less obviously 8 to generate a complement to ker(A — 2)2.
0 0
0 0
So for a cyclic subspace of dimension 3 we get a basis
1 1 0
0 1 1
0 1 1
0 0 0
0 1 0

with the last an eigenvector.



Next we find a generator for a cyclic subspace of dimension 2. Either we look in Im(A — 2) where we already
have two linearly independent vectors one an eigenvector; we seek a further vector which is also an eigenvector

and get most obviously

together with the vector

a cyclic subspace of dimension 2 we get a basis

1 0
0 0
_01 , with preimage 8 Alternatively we find the same vector generating,
0 1
0 0
1
1
_11 which we already have, a complement to ker(A — 2) in ker(A — 2)? . So for
0
1
0 1
0 0
0 . -1
0 0
1 0
0 0

with the last an eigenvector.

Finally we seek a generator for a cyclic subspace of dimension 1. So we either look in F® where we already
have five independent vectors and find a sixth which is an eigenvector; or else we look for a complement to

0 1
1 0
{0} in ker(A — 2) and a basis for it including the two eigenvectors (1) and _O we already have. Much
0 0
0 0

the same either way,

o= O OO

1

seems indicated. It generates a cyclic subspace of dimension 1.

In summary we have a basis (with A — 2-action indicated)

S o oo

1 0 0 1 0
1 1 0 0 0
. -1 . 0 0 . -1 0
1 1 0 0 1
0 0 1 0 0
1 0 0 0 1

with respect to which A has matrix

OO OO N
SO oo~ NO
OO O N OO
O R, N O OO
OO O OO
N O OO OO



