Michaelmas 2005 J. M. E. Hyland

The Basic Questions are cover examinable material from the course. The Additional Questions are for those wishing to take things a bit further. The questions are not all equally difficult; I have tried to ensure that the hardest appear amongst the Additional Questions.

The sheet is a minor modification of last year's sheet, itself based on sheets prepared for an earlier version of this course by Gabriel Paternain.

I welcome both comments and corrections which can be sent to m.hyland@dpmms.cam.ac.uk.

Basic Questions

1. Define $f_n:[0,2]\to\mathbb{R}$ by

$$f_n(x) = 1 - n|x - n^{-1}|$$
 for $|x - n^{-1}| \le n^{-1}$,
 $f_n(x) = 0$ otherwise.

Show that the f_n are continuous and sketch their graphs. Show that f_n converges pointwise on [0,2] to the zero function. Is the convergence uniform? (How does this example differ from that discussed in lectures?)

- **2**. Suppose that $f:[0,1] \to \mathbb{R}$ is continuous. Show that the sequence $x^n f(x)$ is uniformly convergent on [0,1] if and only if f(1)=0.
- **3.** Consider the sequence of functions

$$f_n(x) = \frac{x}{1 + nx^2} \,.$$

- (i) Show that f_n is uniformly convergent on $(-\infty, \infty)$.
- (ii) Is f'_n uniformly convergent on [0,1]?
- (iii) What are $\lim_{n\to\infty} f'_n(x)$ and $(\lim_{n\to\infty} f_n)'(x)$?
- **4.** Let f and g be uniformly continuous real-valued functions on a set $E \subseteq \mathbb{R}$.
- (i) Show that the (pointwise) sum f+g is uniformly continuous on E, as also is the scalar product λf for any real constant λ .
- (ii) Is the product fg necessarily uniformly continuous on E? Give a proof or counter-example as appropriate.
- **5.** Which of the following functions f are (a) uniformly continuous, (b) bounded on $[0,\infty)$?
 - (i) $f(x) = \sin x^2$.
 - (ii) $f(x) = \inf\{|x n^2| : n \in \mathbb{N}\}.$
 - (iii) $f(x) = (\sin x^3)/(x+1)$.
- **6.** Suppose that f is continuous on $[0, \infty)$ and that f(x) tends to a (finite) limit as $x \to \infty$. Is f necessarily uniformly continuous on $[0, \infty)$? Give a proof or a counterexample as appropriate.

- 7. (i) Show that if (f_n) is a sequence of uniformly continuous functions on \mathbb{R} , and $f_n \to f$ uniformly on \mathbb{R} , then f is uniformly continuous.
- (ii) Give an example of a sequence of uniformly continuous functions f_n on \mathbb{R} , such that f_n converges pointwise to a continuous function f, but f is not uniformly continuous.

[Hint for part (ii): choose the limit function f first, and take the f_n to be a sequence of 'approximations' to it.]

- **8.** Consider the functions $f_n: [0,1] \to \mathbb{R}$ defined by $f_n(x) = n^p x \exp(-n^q x)$ where p,q are positive constants.
 - (i) Show that f_n converges pointwise on [0,1], for any p and q.
 - (ii) Show that if p < q then f_n converges uniformly on [0, 1].
- (iii) Now suppose that $p \ge q$. Show that f_n does not converge uniformly on [0,1]. Take $0 < \epsilon < 1$. Does f_n converge uniformly on $[0,1-\epsilon]$? Does f_n converge uniformly on $[\epsilon,1]$? Justify your answers.
- **9**. Let $f_n(x) = n^{\alpha} x^n (1-x)$, where α is a real constant.
 - (i) For which values of α does $f_n(x) \to 0$ pointwise on [0,1]?
 - (ii) For which values of α does $f_n(x) \to 0$ uniformly on [0,1]?
 - (iii) For which values of α does $\int_0^1 f_n(x) dx \to 0$?
 - (iv) For which values of α does $f'_n(x) \to 0$ pointwise on [0,1]?
 - (v) For which values of α does $f'_n(x) \to 0$ uniformly on [0,1]?
- **10**. Consider the sequence of functions $f_n: (\mathbb{R} \setminus \mathbb{Z}) \to \mathbb{R}$ defined by

$$f_n(x) = \sum_{m=0}^{n} (x-m)^{-2}$$
.

- (i) Show that f_n converges pointwise on $\mathbb{R} \setminus \mathbb{Z}$ to a function f.
- (ii) Show that f_n does not converge uniformly on $\mathbb{R} \setminus \mathbb{Z}$.
- (iii) Why can we nevertheless conclude that the limit function f is continuous, and indeed differentiable, on $\mathbb{R} \setminus \mathbb{Z}$?
- 11. Suppose f_n is a sequence of continuous functions from a bounded closed interval [a, b] to \mathbb{R} , and that f_n converges pointwise to a continuous function f.
- (i) If f_n converges uniformly to f, and (x_m) is a sequence of points of [a, b] converging to a limit x, show that $f_n(x_n) \to f(x)$. [Careful this is not quite as easy as it looks!]
- (ii) If f_n does **not** converge uniformly, show that we can find a convergent sequence $x_n \to x$ in [a,b] such that $f_n(x_n)$ does not converge to f(x).
- 12. (i) Suppose f is defined and differentiable on a (bounded or unbounded) interval $E \subseteq \mathbb{R}$, and that its derivative f' is bounded on E. Use the Mean Value Theorem to show that f is uniformly continuous on E.
- (ii) Give an example of a function f which is (uniformly) continuous on [0,1], and differentiable at every point of [0,1] (here we interpret f'(0) as the 'one-sided derivative' $\lim_{h\to 0^+}((f(h)-f(0))/h)$, and similarly for f'(1)), but such that f' is unbounded on [0,1].

[Hint: last year you probably saw an example of an everywhere differentiable function whose derivative is discontinuous; you will need to 'tweak' it slightly.]

Additional Questions

13. Let f be a bounded function defined on a set $E \subseteq \mathbb{R}$, and for each positive integer n let g_n be the function defined on E by

$$g_n(x) = \sup\{|f(y) - f(x)| : y \in E, |y - x| < 1/n\}$$
.

Show that f is uniformly continuous on E if and only if $g_n \to 0$ uniformly on E as $n \to \infty$.

14. Show that the series

$$\zeta(s) = \sum_{n=1}^{\infty} 1/n^s$$

converges for s > 1, and is uniformly convergent on $[1 + \varepsilon, \infty)$ for any $\varepsilon > 0$. Show that ζ is differentiable on $(1,\infty)$. (First think what its derivative ought to be!)

- 15. (Dirichlet's Test) Let a_n and b_n be real-valued functions on $E \subseteq \mathbb{R}$. Suppose that the partial sums $s_n(x) = \sum_{i=0}^n a_k(x)$ are uniformly bounded in the sense that there is a constant K with $|s_n(x)| \le$ K for all n and all $x \in E$. Suppose further that the $b_n(x)$ are a monotonically decreasing sequence converging uniformly to 0 on E. (That is, $b_n(x) \ge b_{n+1}(x) \ge 0$ in E and $b_n \to 0$ uniformly on E.) Show that the sum $\sum_{n=0}^{\infty} a_n(x)b_n(x)$ is uniformly convergent on E.
- **16**. Suppose that g_n are continuous functions with $g_n(x) \geq g_{n+1}(x) \geq 0$ for all $x \in \mathbb{R}$, and with $g_n \to 0$ uniformly in \mathbb{R} .
- (i) Show that both $\sum_{n=0}^{\infty} g_n(x) \cos nx$ and $\sum_{n=0}^{\infty} g_n(x) \sin nx$ converge uniformly on any interval of the form $[\delta, 2\pi - \delta]$, where $\delta > 0$. (Note what this tells you about Fourier series.)
- (ii) Give an example to show that we do not necessarily have convergence uniformly on $[0, 2\pi]$.
- 17. (i) (Abel's Test) Let a_n and a_n be real-valued functions on $E \subseteq \mathbb{R}$. Suppose that $\sum_{n=0}^{\infty} a_n(x)$ is uniformly convergent on E. Suppose further that the $b_n(x)$ are uniformly bounded on E, and that $b_n(x) \ge b_{n+1}(x) \ge 0$ for all $x \in E$. Show that the sum $\sum_{n=0}^{\infty} a_n(x)b_n(x)$ is uniformly convergent on
- (ii) Deduce that if $\sum_{n=0}^{\infty} a_n$ is convergent, then $\sum_{n=0}^{\infty} a_n x^n$ is uniformly convergent on [0, 1]. (But note that $\sum_{n=0}^{\infty} a_n x^n$ need not be convergent at -1; you almost certainly know a counterexample!)
- 18. Let $f_n:[0,1]\to\mathbb{R}$ be a sequence of continuous functions converging pointwise to a continuous function $f:[0,1]\to\mathbb{R}$ on the unit interval [0,1]. Suppose that $f_n(x)$ is a decreasing sequence for each $x \in [0,1]$. Show that $f_n \to f$ uniformly on [0,1].

[If you have done Metric and Topological Spaces then you may prefer to find a topological proof.]

19. Define $\varphi(x) = |x|$ for $x \in [-1, 1]$ and extend the definition of $\varphi(x)$ to all real x by requiring that

$$\varphi(x+2) = \varphi(x).$$

- (i) Show that $|\varphi(s) \varphi(t)| \le |s t|$ for all s and t. (ii) Define $f(x) = \sum_{n=0}^{\infty} \left(\frac{3}{4}\right)^n \varphi(4^n x)$. Prove that f is well defined and continuous.
- (iii) Fix a real number x and positive integer m. Put $\delta_m = \pm \frac{1}{2} 4^{-m}$ where the sign is so chosen that no integer lies between $4^m x$ and $4^m (x + \delta_m)$. Prove that

$$\left| \frac{f(x + \delta_m) - f(x)}{\delta_m} \right| \ge \frac{1}{2} (3^m + 1).$$

Conclude that f is not differentiable at x. Hence there exists a real continuous function on the real line which is nowhere differentiable.

20. A space-filling curve (Exercise 14, Chapter 7 of Rudin's book). Let f be a continuous real function on \mathbb{R} with the following properties: $0 \le f(t) \le 1$, f(t+2) = f(t) for every t, and

$$f(t) = \begin{cases} 0 & \text{for } t \in [0, 1/3]; \\ 1 & \text{for } t \in [2/3, 1]. \end{cases}$$

Put $\Phi(t) = (x(t), y(t))$, where

$$x(t) = \sum_{n=1}^{\infty} 2^{-n} f(3^{2n-1}t), \qquad y(t) = \sum_{n=1}^{\infty} 2^{-n} f(3^{2n}t).$$

Prove that Φ is continuous and that Φ maps I = [0,1] onto the unit square $I^2 \subset \mathbb{R}^2$. In fact, show that Φ maps the Cantor set onto I^2 .

Hint: Each $(x_0, y_0) \in I^2$ has the form

$$x_0 = \sum_{n=1}^{\infty} 2^{-n} a_{2n-1}, \quad y_0 = \sum_{n=1}^{\infty} 2^{-n} a_{2n}$$

where each a_i is 0 or 1. If

$$t_0 = \sum_{i=1}^{\infty} 3^{-i-1} (2a_i)$$

show that $f(3^kt_0) = a_k$, and hence that $x(t_0) = x_0$, $y(t_0) = y_0$.