
ANALYSIS II EXAMPLES 1

Michaelmas 2005 J. M. E. Hyland

The Basic Questions are cover examinable material from the course. The Additional Questions are
for those wishing to take things a bit further. The questions are not all equally difficult; I have tried
to ensure that the hardest appear amongst the Additional Questions.

The sheet is a minor modification of last year’s sheet, itself based on sheets prepared for an earlier
version of this course by Gabriel Paternain.

I welcome both comments and corrections which can be sent to m.hyland@dpmms.cam.ac.uk.

Basic Questions

1. Define fn : [0, 2] → R by

fn(x) = 1 − n|x − n−1| for |x − n−1| ≤ n−1,

fn(x) = 0 otherwise.

Show that the fn are continuous and sketch their graphs. Show that fn converges pointwise on [0, 2]
to the zero function. Is the convergence uniform? (How does this example differ from that discussed
in lectures?)

2. Suppose that f : [0, 1] → R is continuous. Show that the sequence xnf(x) is uniformly convergent
on [0, 1] if and only if f(1) = 0.

3. Consider the sequence of functions

fn(x) =
x

1 + nx2
.

(i) Show that fn is uniformly convergent on (−∞,∞).

(ii) Is f ′

n uniformly convergent on [0, 1]?

(iii) What are limn→∞ f ′

n(x) and (limn→∞ fn)′(x)?

4. Let f and g be uniformly continuous real-valued functions on a set E ⊆ R.
(i) Show that the (pointwise) sum f +g is uniformly continuous on E, as also is the scalar product

λf for any real constant λ.
(ii) Is the product fg necessarily uniformly continuous on E? Give a proof or counter-example

as appropriate.

5. Which of the following functions f are (a) uniformly continuous, (b) bounded on [0,∞)?
(i) f(x) = sin x2.
(ii) f(x) = inf{|x − n2| : n ∈ N}.
(iii) f(x) = (sin x3)/(x + 1).

6. Suppose that f is continuous on [0,∞) and that f(x) tends to a (finite) limit as x → ∞. Is f
necessarily uniformly continuous on [0,∞)? Give a proof or a counterexample as appropriate.
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7. (i) Show that if (fn) is a sequence of uniformly continuous functions on R, and fn → f uniformly
on R, then f is uniformly continuous.

(ii) Give an example of a sequence of uniformly continuous functions fn on R, such that fn con-
verges pointwise to a continuous function f , but f is not uniformly continuous.

[Hint for part (ii): choose the limit function f first, and take the fn to be a sequence of ‘approxi-
mations’ to it.]

8. Consider the functions fn : [0, 1] → R defined by fn(x) = npx exp(−nqx) where p, q are positive
constants.

(i) Show that fn converges pointwise on [0, 1], for any p and q.
(ii) Show that if p < q then fn converges uniformly on [0, 1].
(iii) Now suppose that p ≥ q. Show that fn does not converge uniformly on [0, 1]. Take 0 < ǫ < 1.

Does fn converge uniformly on [0, 1−ǫ]? Does fn converge uniformly on [ǫ, 1]? Justify your answers.

9. Let fn(x) = nαxn(1 − x), where α is a real constant.

(i) For which values of α does fn(x) → 0 pointwise on [0, 1]?
(ii) For which values of α does fn(x) → 0 uniformly on [0, 1]?

(iii) For which values of α does
∫ 1

0
fn(x) dx → 0?

(iv) For which values of α does f ′

n(x) → 0 pointwise on [0, 1]?
(v) For which values of α does f ′

n(x) → 0 uniformly on [0, 1]?

10. Consider the sequence of functions fn : (R \ Z) → R defined by

fn(x) =

n
∑

m=0

(x − m)−2 .

(i) Show that fn converges pointwise on R \ Z to a function f .
(ii) Show that fn does not converge uniformly on R \ Z.
(iii) Why can we nevertheless conclude that the limit function f is continuous, and indeed differ-

entiable, on R \ Z?

11. Suppose fn is a sequence of continuous functions from a bounded closed interval [a, b] to R, and
that fn converges pointwise to a continuous function f .

(i) If fn converges uniformly to f , and (xm) is a sequence of points of [a, b] converging to a limit
x, show that fn(xn) → f(x). [Careful — this is not quite as easy as it looks!]

(ii) If fn does not converge uniformly, show that we can find a convergent sequence xn → x in
[a, b] such that fn(xn) does not converge to f(x).

12. (i) Suppose f is defined and differentiable on a (bounded or unbounded) interval E ⊆ R, and
that its derivative f ′ is bounded on E. Use the Mean Value Theorem to show that f is uniformly
continuous on E.

(ii) Give an example of a function f which is (uniformly) continuous on [0, 1], and differentiable at
every point of [0, 1] (here we interpret f ′(0) as the ‘one-sided derivative’ limh→0+((f(h) − f(0))/h),
and similarly for f ′(1)), but such that f ′ is unbounded on [0, 1].

[Hint: last year you probably saw an example of an everywhere differentiable function whose deriv-
ative is discontinuous; you will need to ‘tweak’ it slightly.]
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Additional Questions

13. Let f be a bounded function defined on a set E ⊆ R, and for each positive integer n let gn be
the function defined on E by

gn(x) = sup{|f(y) − f(x)| : y ∈ E, |y − x| < 1/n} .

Show that f is uniformly continuous on E if and only if gn → 0 uniformly on E as n → ∞.

14. Show that the series

ζ(s) =

∞
∑

n=1

1/ns

converges for s > 1, and is uniformly convergent on [1 + ε,∞) for any ε > 0.

Show that ζ is differentiable on (1,∞). (First think what its derivative ought to be!)

15. (Dirichlet’s Test) Let an and bn be real-valued functions on E ⊆ R. Suppose that the partial
sums sn(x) =

∑n

0 ak(x) are uniformly bounded in the sense that there is a constant K with |sn(x)| ≤
K for all n and all x ∈ E. Suppose further that the bn(x) are a monotonically decreasing sequence
converging uniformly to 0 on E. (That is, bn(x) ≥ bn+1(x) ≥ 0 in E and bn → 0 uniformly on E.)
Show that the sum

∑

∞

0
an(x)bn(x) is uniformly convergent on E.

16. Suppose that gn are continuous functions with gn(x) ≥ gn+1(x) ≥ 0 for all x ∈ R, and with
gn → 0 uniformly in R.

(i) Show that both
∑

∞

n=0
gn(x) cos nx and

∑

∞

n=0
gn(x) sin nx converge uniformly on any interval of

the form [δ, 2π − δ], where δ > 0. (Note what this tells you about Fourier series.)

(ii) Give an example to show that we do not necessarily have convergence uniformly on [0, 2π].

17. (i) (Abel’s Test) Let an and an be real-valued functions on E ⊆ R. Suppose that
∑

∞

0
an(x) is

uniformly convergent on E. Suppose further that the bn(x) are uniformly bounded on E, and that
bn(x) ≥ bn+1(x) ≥ 0 for all x ∈ E. Show that the sum

∑

∞

0 an(x)bn(x) is uniformly convergent on
E.

(ii) Deduce that if
∑

∞

0
an is convergent, then

∑

∞

0
anxn is uniformly convergent on [0, 1]. (But note

that
∑

∞

0
anxn need not be convergent at −1; you almost certainly know a counterexample!)

18. Let fn : [0, 1] → R be a sequence of continuous functions converging pointwise to a continuous
function f : [0, 1] → R on the unit interval [0, 1]. Suppose that fn(x) is a decreasing sequence for
each x ∈ [0, 1]. Show that fn → f uniformly on [0, 1].

[If you have done Metric and Topological Spaces then you may prefer to find a topological proof.]

19. Define ϕ(x) = |x| for x ∈ [−1, 1] and extend the definition of ϕ(x) to all real x by requiring that

ϕ(x + 2) = ϕ(x).

(i) Show that |ϕ(s) − ϕ(t)| ≤ |s − t| for all s and t.

(ii) Define f(x) =
∑

∞

n=0

(

3

4

)n
ϕ(4nx). Prove that f is well defined and continuous.

(iii) Fix a real number x and positive integer m. Put δm = ± 1

2
4−m where the sign is so chosen

that no integer lies between 4mx and 4m(x + δm). Prove that
∣

∣

∣

∣

f(x + δm) − f(x)

δm

∣

∣

∣

∣

≥
1

2
(3m + 1).

Conclude that f is not differentiable at x. Hence there exists a real continuous function on the real
line which is nowhere differentiable.
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20. A space-filling curve (Exercise 14, Chapter 7 of Rudin’s book). Let f be a continuous real
function on R with the following properties: 0 ≤ f(t) ≤ 1, f(t + 2) = f(t) for every t, and

f(t) =

{

0 for t ∈ [0, 1/3];
1 for t ∈ [2/3, 1].

Put Φ(t) = (x(t), y(t)), where

x(t) =

∞
∑

n=1

2−nf(32n−1t), y(t) =

∞
∑

n=1

2−nf(32nt).

Prove that Φ is continuous and that Φ maps I = [0, 1] onto the unit square I2 ⊂ R
2. In fact, show

that Φ maps the Cantor set onto I2.
Hint: Each (x0, y0) ∈ I2 has the form

x0 =

∞
∑

n=1

2−na2n−1, y0 =

∞
∑

n=1

2−na2n

where each ai is 0 or 1. If

t0 =

∞
∑

i=1

3−i−1(2ai)

show that f(3kt0) = ak, and hence that x(t0) = x0, y(t0) = y0.


