EXAMPLE SHEET 1: NONLINEAR WAVE EQUATIONS

Throughout this example sheet, we take $\Box = -\partial_t^2 + \Delta$.

(1) (Solving Maxwell’s equations as wave equations) Given vector fields $E_0, B_0 : \mathbb{R}^3 \to \mathbb{R}^3$ which are divergence free. Show that the solution (E, B) to

$$\Box E = 0, \quad \Box B = 0$$

with initial data

$$E|_{t=0} = E_0, \quad B|_{t=0} = B_0,$$

$$\partial_t E|_{t=0} = \nabla \times B_0, \quad \partial_t B|_{t=0} = -\nabla \times E_0$$

is indeed a solution to the Maxwell’s equations.

(2) (Compressible irrotational Euler equations) Recall from lecture that the for irrotational fluid flow, the Euler equations reduce to

$$\eta^{-2} \partial_t^2 \phi - 2n^{-2} \sum_{i=1}^3 \partial_i \phi \partial_i \phi + \eta^{-2} \sum_{i,j=1}^3 \partial_i \phi \partial_j \phi \partial_i \phi - \sum_{i=1}^3 \partial_i^2 \phi = 0.$$

Find the metric associated with the equation. When is it Lorentzian?

(3) Show that $\Box \phi = (\partial_t \phi)^2$ has a blow up solution. (Hint: consider initial data independent of x.) Now, can you construct a blow up solution with compactly supported initial data? (Hint: use finite speed of propagation.) Given $\epsilon > 0$, can you moreover construct a blow up solution with compactly supported initial data (ϕ_0, ϕ_1) such that its $H^1 \times L^2$ norm $\leq \epsilon$? (Hint: use scaling.)

(4) (The wave map equation) Recall that the wave map equation is given by

$$\Box \phi = \phi(\partial_t \phi^i \partial_i \phi - \sum_{i=1}^n \partial_i \phi^i \partial_i \phi),$$

where $\phi : I \times \mathbb{R}^n \to S^m := \{ x \in \mathbb{R}^{m+1} : |x| = 1 \}$.

(a) Suppose that $|\phi_0|^2 = 1$ and $\phi_0^i \phi_1 = 0$. Then, if a solution ϕ exists in $I \times \mathbb{R}^n$, then $|\phi|^2 = 1$, i.e., ϕ is indeed a map to the sphere.

(b) Show that the inverse stereographic projection $\mathbb{R}^2 \to \mathbb{S}^2$ is a time-independent wave map.

(5) Given smooth and compactly supported initial data to the linear wave equation in any dimensions. Use the Fourier representation formula to show that the H^k norm is uniformly bounded in time for any $k \geq 1$.

(6) (Decay for Klein-Gordon equation) Suppose ϕ satisfies the Klein-Gordon equation, i.e.,

$$\Box \phi - \phi = 0$$

on $\mathbb{R} \times \mathbb{R}^n$ with initial data given by

$$(\phi, \partial_t \phi)|_{t=0} = (\phi_0, \phi_1) \in C^\infty_c \times C^\infty_c.$$

(a) First, show using the Fourier transform that if the solution is sufficiently regular, it is given by the formula

$$\hat{\phi}(t, \xi) = \hat{\phi}_0(\xi) \cos(\sqrt{\frac{4\pi^2}{\xi^2}} + 1)t) + \frac{\hat{\phi}_1(\xi)}{\sqrt{\frac{4\pi^2}{\xi^2}} + 1} \sin(\sqrt{\frac{4\pi^2}{\xi^2}} + 1)t).$$

(b) For the $n = 1$ case, prove that $\sup_{t \geq 0} |\phi(t)| \leq \frac{C}{(1+t)^2}$, where $C = C(\phi_0, \phi_1) > 0$ is independent of t. Note that it suffices (why?) to show that

$$| \int e^{it\frac{2\pi^2x}{t} + \frac{4\pi^2}{\xi^2} + 1})\hat{\phi}_0(\xi)d\xi | \leq \frac{C}{t^2}$$

for t large. Let

$$\varphi := \frac{2\pi x}{t} + \sqrt{\frac{4\pi^2}{\xi^2} + 1}.$$
Show that
\[\frac{\partial}{\partial \xi} \varphi = 0 \implies \xi^2 = \frac{x^2}{4\pi^2(t^2 - x^2)}. \]

Show also that
\[\left(\frac{\partial}{\partial \xi} \right)^2 \varphi \geq \frac{4\pi^2}{(4\pi^2|\xi|^2 + 1)^{\frac{3}{2}}}. \]

Now, split the integral into \(\int_{|\xi^2 - \frac{x^2}{(4\pi^2|\xi|^2 + 1)^{\frac{3}{2}}} \leq \delta} + \int_{|\xi^2 - \frac{x^2}{(4\pi^2|\xi|^2 + 1)^{\frac{3}{2}}} \geq \delta} \), estimate each part with the above observations and optimized in \(\delta \) to obtain the desired decay result.

(c) Finally, can you prove that
\[|\varphi| \leq \frac{C}{(1 + t)^\frac{n}{2}} \]
holds for some \(C = C(\phi_0, \phi_1) > 0 \) for arbitrary dimensions?

(7) (Precise constant for the forward fundamental solution) Recall from the lectures that the forward fundamental solution to the wave equation in \(\mathbb{R} \times \mathbb{R}^n \) is given by
\[E_+ = -c_n 1_{\{t \geq 0\}} \chi_+^{-\frac{n-1}{2}}(t^2 - |x|^2). \]

We now show that the precise constant \(c_n \) is given by \(c_n = \frac{2^{\frac{1-n}{2}}}{\pi} \). Let \(r = |x|, u = t - r, v = t + r \). Let \(f \) and \(g \) be rotationally symmetric, smooth, compactly supported functions in \(\mathbb{R} \times \mathbb{R}^n \), i.e., \(f, g \) are functions of \(t \) and \(r \) alone. Begin by proving the identity
\[< \Box f, g > = \omega_{n-1} \int \int (\partial_u f \partial_v g + \partial_u g \partial_v f) \left(\frac{v - u}{2} \right)^{-\frac{n-1}{2}} \ du \ dv, \]
where
\[\omega_{n-1} = \text{Area of } n - 1 \text{ dimensional sphere.} \]

Apply this to \(f = E_+ \) and \(g = 1_{\{t + r \leq 1\}} \) (Why is this allowed?). Show therefore that
\[c_n^{-1} = 2^{-n+1}(n - 1)\omega_{n-1}(\chi_+^{-\frac{n-1}{2}} * \chi_+^{-\frac{n-1}{2}})(1). \]

Now conclude using the following facts:
\[\chi_+^a * \chi_+^b = \chi_+^{a+b+1}, \quad \chi_+^a(1) = \frac{1}{\Gamma(a + 1)}, \]
\[\omega_{n-1} = \text{Area of } n - 1 \text{ dimensional sphere} = \frac{2\pi^{\frac{n}{2}}}{\Gamma\left(\frac{n}{2}\right)}, \]
\[\Gamma\left(\frac{n}{2}\right)\Gamma\left(\frac{n + 1}{2}\right) = 2^{-n+1}\sqrt{\pi}(n - 1)! \]

(I learnt this proof from P. Isett and S.-J. Oh.)

(8) We used in class the forward fundamental solution to solve the homogeneous wave equation
\[\Box \varphi = 0. \]

In fact, this can also be used to solve the equation \(\Box \varphi = F \) for given \(F \in C^\infty \). Show that if \(E_+ \) is the forward fundamental solutions, then
\[\varphi = -E_+ * (F1_{\{t \geq 0\}}) \]
is a solution to \(\Box \varphi = F \) with zero data, i.e., \((\varphi, \partial_t \varphi) \mid_{\{t = 0\}} = (0, 0) \).

(9) Show that the bound \(\sup_{x,t} |\partial\varphi| \leq C \) for the solutions to the wave equation in \(\mathbb{R} \times \mathbb{R} \) with smooth and compactly supported data is sharp in the following sense: Suppose the initial data are given by \((\varphi, \partial_t \varphi) \mid_{\{t = 0\}} = (\varphi_0, \phi_1) \in C^\infty \times C^\infty_c \). Then if there exists a non-increasing function \(A(t) \) such that \(\lim_{t \to \infty} A(t) = 0 \) and
\[(\sup_x |\partial\varphi|)(t) \leq A(t), \]
then \(\phi_0 = \phi_1 = 0 \).
(10) Consider the linear wave equation in \(\mathbb{R} \times \mathbb{R}^3 \). First, show that spherically symmetric (smooth, compactly supported) data lead to spherically symmetric solutions. Moreover, the wave equation becomes \(\partial_t \partial_s (r \phi) = 0 \). Then, use this to construct solutions such that \[(\sup_x |\phi|)(t) \geq \frac{C}{1 + t} \]
for some \(C > 0 \).

(11) Construct solutions to the linear wave equation in \(\mathbb{R} \times \mathbb{R}^3 \) with smooth (and necessarily non-compactly supported!) initial data satisfying \(\lim_{|x| \to \infty} |\phi_0(x)| + |\phi_1(x)| = 0 \) such that
\[(\sup_x |\phi|)(t) \to \infty \]
as \(t \to \infty \).

(12) Show using the fundamental solution that that solutions to the linear wave equation in \((1 + 1) \)-dimensions, i.e., \(\mathbb{R} \times \mathbb{R} \) satisfy
\[\sup_{t,x} |\partial \phi| \leq C \sup_x |\partial \phi|(0, x) \]
for some \(C > 0 \) independent of \(\phi \). Show that the corresponding estimate fails in \(\mathbb{R} \times \mathbb{R}^3 \) (in fact all dimensions \(n \geq 2! \)), i.e.,
\[\sup_{\{(\phi_0, \phi_1) : \sup_x |\phi(0, x)| = 1\}} (\sup_{t,x} |\partial \phi|) = \infty. \]
This shows that unlike the \(L^2 \) norm for the derivatives of \(\phi \), which is propagated by the equation in all dimensions, the \(L^\infty \) norm for the derivative of \(\phi \) is not propagated.

(13) Show that the solutions to the linear wave equation in any dimensions with initial data \((\phi_0, \phi_1) \in H^1 \times L^2 \) satisfy the estimate
\[\sum_{|\alpha| = 2} \|\partial_{xt}^\alpha \|_{L^2(\mathbb{R}^n)} \leq C \|\phi_0, \phi_1\|_{H^1(\mathbb{R}^n) \times L^2(\mathbb{R}^n)} \]
for any interval \(I \) and for some \(C > 0 \). (Hint: integrate by parts.) (I learnt this from Exercise 2.25 in Nonlinear dispersive equations by T. Tao.)

(14) (Finite speed of propagation for non-constant coefficient wave equations) Consider the equation
\[-\partial_t^2 \phi + \partial_i ((h^{-1})^{ij} \sqrt{h} \partial_j \phi) = 0, \]
where \(h_{ij} \) is a positive definite matrix such that
\[\sum_{i,j=1}^n |h_{ij} - \delta_{ij}| \leq \frac{1}{2}. \]
Fix \(x_0 \). Suppose there is a smooth solution to
\[\sum_{i,j=1}^n (h^{-1})^{ij} \partial_i q \partial_j q = 1, \quad q(x_0) = 0 \]
in \(B(x_0, R) \) such that \(q > 0 \) in \(B(x_0, R) \setminus \{x_0\} \). For every \(r < R \), define the set
\[S := \{(t, x) : q(x) < r - t, \ 0 \leq t \leq r\}. \]
Show that if the initial data \((\phi_0, \phi_1) = (0, 0) \) in \(\{x : q(x) \leq r\} \), then the solution \(\phi = 0 \) in \(S \). Show that the same conclusion holds for solutions to
\[-\partial_t^2 \phi + \partial_i ((h^{-1})^{ij} \sqrt{h} \partial_j \phi) = (\partial_t \phi)^2 \]
assuming that the solutions are smooth. (Notice that geometrically, \(S \) is the past of the point \((t = r, x_0) \).)

(15) Consider the equation
\[\Box \phi - \partial_t \phi = 0 \]
on \(\mathbb{R} \times \mathbb{R}^n \) with finite energy data \((\phi_0, \phi_1) \in H^1 \times L^2 \). Show that \(\int_{\mathbb{R}^n} (\partial_t \phi)^2 \) decays exponentially in time.
(16) In this problem, we consider the equation

\[\sum_{\mu,\nu=0}^{n} \frac{1}{\sqrt{-g}} \partial_\mu ((g^{-1})^{\mu\nu} \sqrt{-g} \partial_\nu \phi) + \sum_{\mu=0}^{n} b^\mu \partial_\mu \phi + d\phi = F, \]

(i.e., it has an extra zeroth order term compared to what is done in lecture) in (3+1)-dimensions. In the formula above, we have also used \(g \) to denote the determinant of \(g \). (This convention will also be used throughout the example sheet.)

(a) In \(\mathbb{R}^3 \), prove the Hardy inequality

\[\| \phi \|_{L^2(\mathbb{R}^3)} \leq C \| \partial_r \phi \|_{L^2(\mathbb{R}^3)} \]

for \(\phi \) smooth and compactly supported where \(C > 0 \) is independent of \(\phi \) (or its support). (Hint: Use the fact that \(0 \leq \int_0^\infty (\partial_r \phi + \beta \phi)^2 r^2 dr \) for all functions \(\beta \). Choose \(\beta(r) \) and integrate by parts.)

(b) Consider now the equation

\[\sum_{\mu,\nu=0}^{n} \frac{1}{\sqrt{-g}} \partial_\mu ((g^{-1})^{\mu\nu} \sqrt{-g} \partial_\nu \phi) + \sum_{\mu=0}^{n} b^\mu \partial_\mu \phi + d\phi = F \]

in (3+1)-dimensions with finite energy data \((\phi_0, \phi_1) \in H^1 \times L^2 \). Use the Hardy inequality to show that as long as

\[\sum_{\mu,\nu} |(g^{-1})^{\mu\nu} \sqrt{-g} - m^{\mu\nu}| + |\sqrt{-g} - 1| \leq \frac{1}{2}, \]

and

\[\|(1 + |x|)d\|_{L^1([0,T];L^\infty(\mathbb{R}^3))} + \| \partial (g^{-1}\sqrt{-g}) \|_{L^1([0,T];L^\infty(\mathbb{R}^3))} \]

\[+ \| b \|_{L^1([0,T];L^\infty(\mathbb{R}^3))} = C_1 < \infty \]

and

\[\| F \|_{L^1([0,T];L^2(\mathbb{R}^3))} = C_2 < \infty, \]

the solution \((\phi, \partial_t \phi) \in L^\infty((0,T);H^1(\mathbb{R}^3)) \times L^\infty((0,T);L^2(\mathbb{R}^3)) \). Moreover, prove that the \(L^\infty((0,T);H^1(\mathbb{R}^3)) \times L^\infty((0,T);L^2(\mathbb{R}^3)) \) norm is bounded by a constant depending only on \(C_1, C_2 \) and the \(H^1 \times L^2 \) norm of the initial data \((\phi_0, \phi_1) \).

(17) (Geometric formulation of \(L^2 \) type estimates for the wave equation) This is intended for students who know some differential geometry. Given a wave equation

\[\Box_g \phi := \frac{1}{\sqrt{-g}} \partial_\mu ((g^{-1})^{\mu\nu} \sqrt{-g} \partial_\nu \phi) = 0. \]

Introduce the stress-energy-momentum tensor

\[T_{\mu\nu} = \partial_\mu \phi \partial_\nu \phi - \frac{1}{2} g_{\mu\nu} (g^{-1})^{\alpha\beta} \partial_\alpha \phi \partial_\beta \phi. \]

(a) Show that if \(\phi \) is a solution to the wave equation, then

\[\nabla^\mu T_{\mu\nu} := (g^{-1})^\alpha\mu \nabla_\alpha T_{\mu\nu} := (g^{-1})^\alpha\mu (\partial_\alpha T_{\mu\nu} + \Gamma^\beta_{\alpha\mu} T_{\beta\nu} + \Gamma^\beta_{\alpha\nu} T_{\beta\mu}) = 0. \]

Here, repeated indices are automatically summed over. Also, \(\Gamma^\beta_{\alpha\mu} \) is the Christoffel symbol given by

\[\Gamma^\beta_{\alpha\mu} = \frac{1}{2} (g^{-1})^{\beta\sigma} (\partial_\alpha g_{\sigma\mu} + \partial_\mu g_{\alpha\sigma} - \partial_\sigma g_{\alpha\mu}). \]

(b) Given a vector field \(X \) which is Killing, i.e.,

\[(\mathcal{L}_X g)_{\mu\nu} := X^\alpha \partial_\alpha g_{\mu\nu} + g_{\alpha\mu} \partial_\alpha X^\nu + g_{\alpha\nu} \partial_\alpha X^\mu = 0 \]

Show that \(\text{div} (T(X, \cdot)) = 0 \) (i.e., \((g^{-1})^{\alpha\beta} \nabla_\alpha (T_{\beta\gamma}) = 0 \)). Use the divergence theorem to get a conservation law.
(c) Assume that g is a metric given by $g_{tt} = -1$, $g_{ti} = 0$ for $i = 1, \ldots, n$ and $g_{ij} = h_{ij}$ for $i, j = 1, \ldots, n$, where h is a positive definite symmetric matrix such that $\sum_{i,j=1}^{n} |h_{ij} - \delta_{ij}| \leq \frac{1}{2}$. Moreover, assume that all components of g is independent of t. Show that an appropriately defined “energy” is conserved.

(18) Finally, please look for mistakes in the above problems and let me know about them immediately!