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Introduction

In 1974 Pierre Deligne and Jean-Pierre Serre published the paper [DS74], “Formes modulaires de
poids 17, revealing a connection between modular forms of weight one and Galois representations.
Given a newform f of level N and type (1, x) they construct a continuous two-dimensional Galois
representation

py : Gal(QIQ) — GLy(C)

whose Artin L-function equals the L-function of f. The purpose of this essay is to explain this
result and the necessary background surrounding it, as well as giving some explicit examples.
The use of L-functions is emphasized throughout, since they seem to provide a natural framework
for this connection.

The material is presented as follows. The first chapter provides some additional background on
modular forms of arbitrary level and explicit constructions of modular forms of weight one. The
content is largely taken from [Iwa97] and [Miy06]. In the interest of space we assume the basic
theory of modular forms as described in the first five chapters of [DS05]. The second chapter is
on Galois representations. The concepts of Artin conductor and Artin L-function are carefully
explained. The third chapter explains the Deligne-Serre construction and is at the heart of the
essay. The fourth and final chapter gives explicit examples of newforms of weight one classified
according to their projective image, using the theory of binary quadratic forms (dihedral type)
and databases recently made available by Kevin Buzzard and Alan Lauder [BL]. Most of the
dihedral examples are self-constructed, some are taken from [Ser75).

The first two chapters are meant to provide the necessary background for understanding chapter
3. The reader mainly interested in the Deligne-Serre construction may go straight to chapter 3,
going back to the first two chapters to fill in the details where necessary.

Before we continue I would like to thank my supervisor Dr. Jack Thorne for his helpful sugges-
tions and the interesting conversations.

Disclaimer

This essay might contain mathematical inaccuracies which are entirely due to the author; cor-
rections can be sent to jcsl@cam.ac.uk.

Notation

For a finite set X, we denote its cardinality by | X]|.

If K/Q is a quadratic extension with discriminant A, there is a unique non-trivial homomorphism
Gal(K/Q) — C*. The associated Dirichlet character (via class field theory) is written xya and
has conductor |A|. For a prime p not dividing A, it is given by

xa(p) = (?)

where (5> is the Legendre symbol.



1. Modular Forms

In this chapter we discuss some additional topics in the classical theory of modular forms which
are relevant to modular forms of weight one and Galois representations. We will give some
explicit constructions of modular forms in various ways. We will assume basic concepts of
modular forms on congruence subgroups and the theory of newforms. Details of the definitions
and proofs can be found in [DS05].

Let H = {z | S(2) > 0} be the upper half plane and f : X — C a holomorphic function. For
each k € Z>; and o € GLy(R) we define a function f|[a]x : H — C by

(fllalk)(2) = det(a)**(cz + d) ™" f(a(2)).

If T' < SLy(Z) is a congruence subgroup we write My(T") for the space of modular forms on I'
and S, (T) for the subspace of cusp forms. If x : (Z/NZ)™ — C* is a Dirichlet character mod N
we write My (N, x) (resp. Sk(N, x)) for the space of modular forms (resp. cusp forms) on I'g(N)
with character y. For such f we will say its level is N and its type is (k, x). Such modular forms
will be the main object of study of this essay.

For a fixed level N, let T C End(M(T'1(N))) be the C-algebra generated be the Hecke operators
T}, for all primes p. Let T () be the subalgebra of T generated by the Hecke operators T}, for p not
dividing N (‘away from N’). We will often consider T and T ) as subalgebras of End(Sk(I'1(V))
or End(Mj (N, x)) for a character x since they are T-invariant subspaces of My (I'1(N)). We
say f € Mp(I'1(N)) is a T-eigenform (resp. T(y)-eigenform) if f is an eigenform for the Hecke
operators T, for all n > 1 (resp. all n coprime to N). Note that the Diamond operators
(d) : My(T'1(N)) — M(T'1(N)) for (d,N) = 1 are in T () and T so every T y)-eigenform has
a nebentype x.

1.1. L-functions, twisting, converse theorems

Central to the study of modular forms are their associated L-functions. An L-function is a
Dirichlet series with an Euler product and a functional equation. In this section we examine
some properties of these L-functions and state so-called converse theorems. We mostly follow
chapter 7 of [Iwa97] and section 4.3 of [Miy06].

1.1.1. Functional Equation

0 -1

Let f € Sk(N, x) be a cusp form. We write Wy = <N 0

) . Define

9= floy= N'"*2f|Wn]i = (VN2) " f(=1/Nz).



Since WnT'1(N) = I'1(IV)Wy we know that g € S,(I'1(N), X) and the normalization is chosen
such that g|,,= (—1)¥f. We can associate to f and g the L-functions

L(f,s)= Zanrf‘S (1.1)

n>1

L(g,s)=> by * (1.2)
n>1
where f = Zn21 anq™ and g = anl bnq"™ are the g-expansions at infinity of f and g. Since
lan|= O(n*/?) we see that L(f,s) converges absolutely for %(s) > k/2 + 1, and similarly for
L(g,s). We define the complete L-functions to be

Aﬂ$=:<¢N> I'(s)L(f,5) (1.3)

2T

Ag(s) = <W> '(s)L(g,s). (1.4)

2
The relation g = f|,, translates into the functional equation
As(s) = i"Ay(k — ).

So the complete L-functions are entire and have a holomorphic continuation to the whole complex
plane, which shows that the L(f,s) and L(g,s) have a holomorphic continuation as well (since
1/T'(s) is entire). An important observation is that the above arguments can be reversed, using
the inverse Mellin transform. More precisely, we have the following result, due to Hecke, which
applies to all modular forms (not only cusp forms):

Theorem 1.1.1 (Hecke). Suppose f and g are holomorphic functions on H given by the Fourier
series

f(Z) — Zane27rinz’

n>0

g(z) — Z bn€27rinz’

n>0

such that a,, b, = O(n®) as n — oo for some positive constant «. Let N,k be positive integers
and put

L(f,s) =) ann "’ L(g,s) =Y ban ", (1.5)

n>1 n>1

<\§) L(s)L(f,s), Ay(s) = (*/N) I'(s)L(g,s). (1.6)

Ag(s) = o

Then the following are equivalent:

1. The functions f and g satisfy

9(2) = (VN2) " f(=1/N>z).

2. Both A(f,s) and A(g,s) have a meromorphic continuation to the whole complex plane,
the function

boik

k—s

A(f.5)+ =+ (1.7)



is entire, bounded on vertical strips and satisfies

As(s) ="M (k — s)

Proof. See [Iwa97, Theorem 7.3]. O

We will apply this result to obtain a converse theorem for modular forms on SLa(Z) (see theorem
1.1.3).

1.1.2. Twisting

We can get more functional equations by ‘twisting’” a modular form by a primitive Dirichlet
character .

Theorem 1.1.2. Let f € My(N,x) be a modular form of type (k,x) where yx is a Dirichlet
character mod N. Let v be a primitive Dirichlet character of conductor r coprime to N. If f

has g-expansion
[ = Z anqna
n>0

then the twisted form

fd) = Z Y(n)ang”

n>0

belongs to My (Nr?, x1?). Moreover, if f is a cusp form then so is fy.
Proof. See [Iwa97, Theorem 7.4]. O

Moreover, a computation [Iwa97, Theorem 7.5] shows that fy|.,,= w(¥)gl; where g = fl,, and
w(v) is a constant. Now write Lf(v,s) for the twisted L-function L(fy,s) and

Afw,s)—Afw(s)—( ;X) D(s)Ly (. 5). (1.8)

Then applying the previous results shows that A¢(¢,s) has a holomorphic continuation to the
whole complex plane and satisfies the functional equation

Ap(,8) = w()i*Ag (v, k — s) (1.9)

with g = flwy-

1.1.3. Converse theorems

We already observed that theorem implies a converse theorem for modular forms on SLs(Z).
Let us state it here for clarity.



Theorem 1.1.3 (Hecke’s converse theorem). Let £ > 1 be an integer and f a holomorphic
function on H of the form ‘
f(Z) — z:ane%rznz7

n>0
where a,, = O(n®) for some constant o > 0. Then f(z) belongs to My (SLa(Z)) if and only if

A(f,s) = (2m)~*T'(s)L(s, f) has a meromorphic continuation to the whole complex plane, the
function

ikao

k—s

is entire, bounded on vertical strips and satisfies the functional equation

A(f,s)—i—%Jr

A(f,s) =i"A(k — s, f).

The situation is more complicated for I'g(/V) since as a group it has much more generators in
general. We need to require functional equations for sufficiently many twists of the L-function.
To state the theorem, we need some notation. Fix a positive integer N. For a set M C Z>q,
consider the following conditions:

(A) any element of M is prime to N,
(B) for any two coprime integers a, b there exists an element m € M such that m = a mod b.

An example of a set M satisfying both conditions is the set of all primes not dividing N (by
Dirichlet’s theorem). We will need Gauss sums to describe the constants appearing the functional
equations. If ¢ is a primitive Dirichlet character mod m, then the Gauss sum of 1 is denoted

by

m—1

W () =" w(a)e*/m.

a>0

for more on Gauss sums, see [Miy06, §3.1].

Theorem 1.1.4 (Weil’s converse theorem). Let k, N be positive integers, x a Dirichlet character
mod N with x(—1) = (—1)* and M C Z>; a subset satisfying conditions (A) and (B). Let f, g
be holomorphic functions on H given by the Fourier series

f(z) = ane®™, (1.10)

n>0

g(2) = bpe®™, (1.11)

n>0

such that a,,b, = O(n®) as n — oo for some positive constant «. The following conditions are
sufficient to conclude that f € My(N,x),g € Mi(N,x) and g = fluy:

1. The functions A¢(s), Ay(s) as defined in equation [1.6{ have a meromorphic continuation to
the whole s-plane, the function

aq b()’ik
A -
(fr8)+ =+

(1.12)

is entire and bounded on vertical strips and satisfies

As(s) = i"Ay(k — ).



2. For any primitive Dirichlet character ¢ with conductor m, € M, the function Af(%,s)
as defined in equation has a holomorphic continuation to the whole complex plane, is
bounded on vertical strips and satisfies the functional equation

Af(¢7 S) = ZkaAg(@Z’, k— S)a
with Cy = x(my)p(=N)W ()W ().
Moreover, if L(f, s) is absolutely convergent on a half-plane R(s) > k — § for some ¢ > 0 then f
is a cusp form.

Proof. See [Miy06, Theorem 4.3.15]. O

1.2. Eisenstein Series

Recall that if I' is a congruence subgroup and f,g € My(I') are modular forms where either f
or g (or both) is a cusp form, then the integral

(frg) = / AT

is well-defined. It thus makes sense to ask whether a modular form f € My(T") is orthogonal
to all cusp forms g € Sk(I"). This defines the space of Eisenstein series, denoted Ej(I"), and we
have the following decomposition:

My (T) = E(T') © Sk(D).

The space E(I'1(V)) is well-understood and has a basis of Ty)-eigenforms for all Hecke oper-
ators called generalized Eisenstein series. They correspond naturally to Dirichlet L-functions of
Dirichlet characters.

To illustrate the idea behind Eisenstein series on I'1(N) it’s worth looking at Eisentein series on
SLy(Z) from the viewpoint of L-functions. Suppose we start with the Riemann zeta function

=> ne=JJa-p)"

n>1

How can we associate a modular form to it? If we put &(s) = 7—%/2I'(s/2)((s) then we have
the classical functional equation &(s) = (1 — s). Looking at the Euler product we see that ((s)
couldn’t be the L-function of a modular form, but we should consider the product of two zeta
functions. Put

L(s) = ((s)C(s =k + 1)

for k > 2 an even integer. We have

€(s)E(s —k+1) =572 D (g) r (‘“S“) C(s)C(s — k +1)

L Sl (%) T <$ —; 1) 2k 2y (s )_IL(S)
— 1 So bl 71/291- ST(s )Qk/2w(s)_1L(8)
= 2(2m)*/2(27) =T (s) L(s)w(s)



where we used the formulas
I'(s+1)=s(s) (1.13)
s sHLN _ 1/201-s
P(2>F< . >_7r 21=(s) (1.14)
and where we have set
w(s)=(s+1—-k)(s+1—-k—-2)...(s—1).

Since £(s)€(s — k 4 1) is invariant under s — k — s and w(k — s) = (—=1)*/?w(s) we conclude
that the complete L-function
A(s) = (2m)"°T'(s)L(s)

satisfies the functional equation
A(s) = Ak — s).

Since the product of two Dirichlet series has as coefficients the Dirichlet convolution of the
coefficients of the factors we see that

L(s) = Z ok—1(n)n"?%,

where o_1(n) = > 4, d*~! is the (k — 1)-th power sum of divisors function. If k > 4 we see
that A(s) is holomorphic except for a simple pole at s = 0 and k where the residue at s = k is

(2m) D (k)¢ (k) = (27r)—kp<k)(_1)k/2+13k2(3€7:)k
3

= —7 —

2k

So by the functional equation we conclude that

_ By/2k i"By/2k

s k—s

A(s)

is entire and bounded on vertical strips. We conclude that

— By .
ok + Z or-1(n)q

n>1

By =
is a modular form on SLa(Z) of weight k& by theorem Notice that the constant — By, /2k
came naturally out of our calculations.

We can do something similar for the L-functions of two Dirichlet characters. Let x be a primitive
Dirichlet character mod M with associated Dirichlet series

Lix,s) =Y x(mn= =] (1 - x@p~)"".

n>1 p

s = () (5

where u € {0,1} is chosen such that y(—1) = (—1)%, then

If

A(x, s) = exA(x, 1 — s) (1.15)



where ¢, = i W (x)M ™2 and W(y) = Zé\/ial x(a)e? /M is the Gauss sum of y. We can
exploit this functional equation to get modular forms on I'g(N). Suppose x1, x2 are primitive
Dirichlet characters mod M; and Ms. Set M = MM, and x = x1Xx2 which is a Dirichlet
character mod M. Let k be a positive integer that we assume to be different from 2 for simplicity.
Then similarly as above we form the L-function

L(s) = L(x1,8)L(x2,s — k+1).

The coefficients of L(s) are given by ‘generalized divisor functions’:

X17X2 le X2 n/d (n/d

din

A(s) = <\/M) [(s)L(s).

We set

27
A similar calculation as above and using Weil’s converse theorem shows the following.

Theorem 1.2.1. Let x1, x2 be primitive Dirichlet characters mod M; and mod M, respectively.
Put M = M; M, and x = x1x2. Let k # 2 be a positive integer satisfying x(—1) = (—1)*. Then
there exists an ag € C such that

EX1,X2 =ag + ZUX1,X2 q c Mk(M X)

n>1

It is given by
1. ag =0, if £ # 1 and x; is non-trivial, or if both x; and 2 are non-trivial.
2. ag = L(1 — k, x)/2, otherwise.

Moreover, since the associated L-function has an Euler product, EX'"** is an eigenform for all
the Hecke operators T}, n > 1.

Proof. See [Miy06, Theorem 4.7.1]. O

In fact, one can prove that EX“X2 are all in the Eisenstein space of I'1(N). If x = x1x2 is a
character mod M with M d1v1d1ng N then EX'"**(dz) is in the Eisenstein space Ej(N,x) if
dM | N and is a T (n)-eigenform. By counting dimensions [Miy06, Theorem 4.7.2] we can fully
describe the space E (N, x).

Theorem 1.2.2. Let k # 2 be a positive integer and and y a Dirichlet character mod N
satisfying x(—1) = (—1)*. The Eisenstein space Ej(N, ) is spanned by the forms EX'"*?(dz)
where 1, x2 are primitive Dirichlet characters mod My, Ms with x1x2 = x and dM1Ms | N.
Moreover, they form a basis for k& > 2 if one considers ordered pairs (xi, x2) satisfying the
above conditions and for & = 1 if one considers unordered pairs {x1, x2} satisfying the above
conditions.

1.3. Hecke characters and L-functions

Let K be a number field of degree n over Q with r; real and 2ry complex embeddings. Write
Ti,...,Tp, for the real embeddings and 7, 41,7y +1, .-+, Tri4res Tri+r, fOr the pairs of complex
conjugate embeddings.

10



We will define a Hecke character of a number field K, which is a generalization of a Dirichlet
character, and see how they provide examples of modular forms in certain cases. Let O be the
ring of integers of K, I the group of nonzero fractional ideals and P the subgroup of principal
ideals of I. We know Clg = I/P is a finite group, the class group. More generally, if m is an
integral ideal of K, set

It Wi et

I(m)
P(m) =

ael|(a,m)=1}

(a) € P|a=1mod*m}

where a = 1 mod*m means that vy(a — 1) > v, (m) for each prime p dividing m. It is a fact that
I(m)/P(m) is a finite group, called the ray class group mod m. Class field theory more or less

says that there is a unique abelian extension of K, the ray class field mod m, denoted Ky, which
is unramified outside m and for which the homomorphism

I(m)/P(m) - Gal(Kn/K),

that sends a prime ideal p € I(m) to the Frobenius at p in Gal(Ky/K), is an isomorphism. Note
that this morphism is well-defined since Gal(Ky/K) is abelian.

Definition 1.3.1. Let ¢ : I(m) — S! be a homomorphism. We say ¢ is a Hecke character mod
m if

£((a)) = f[ ( 7(a) )u |7, (a)|™ for a =1 mod*m

HAm@)

where u,, v, (1 <v <ry+ rg) are real numbers such that

0,1 |
.«u,c {0,1} (7, real),
Z (1, complex ),

° Z”—HQ v, = 0.

v=1

Remark 1.3.2. There is another definition of Hecke characters in terms of ideles. If J g denotes
the ideles of K then a Hecke character is a continuous morphism Jx /K> — S!. Since we are
interested in explicit examples the classical definition of Hecke will suffice for our purposes.

Clearly if m divides n then every Hecke character mod m is a Hecke character mod n. The
smallest ideal m (in the obvious sense) such that a Hecke character £ is defined mod m is called
the conductor of £. If the conductor of £ mod m equals m we say £ is primitive (this is the
exact analogue of Dirichlet characters). Furthermore, if ¢ satisfies the additional conditions that
v, = 0 for all v and u,, = 0 for 7, complex then we say & is a class character. This implies that
¢ defines a homomorphism on some ray class group of K (of modulus m U {real places of K}).
Note that class characters of conductor (1) = Ok are precisely the characters on the narrow
ideal class group of K. We can always extend a Hecke character £ to be a function on I by
setting £(a) = 0 if (a,m) = 1.

For each Hecke character & : I((m)) — S we define the Hecke L-function by (s € C)

L(&,s) =) &(a)N(a)™"

where the sum if taken over all non-zero integral ideals of K and N(a) = |(Ox/a)| is the absolute
norm. This converges absolutely for R(s) > 1 and has an Euler product

L s) = [[ (1 - e@N@ )",

p

11



where the product runs over all primes of K. Note that if £ is the trivial character mod (1)
then L(,s) is the Dedekind zeta function of K. By generalizing the proof for the Riemann
zeta-function, Hecke obtained a functional equation for every Hecke L-function:

Theorem 1.3.3. Let £ be a primitive Hecke character of conductor m. Put

Mes) <W>s/zrﬁ2r (ny s—i-zvl,) ]uy|> L(E )

where n,, is 1 if 7, is real and 2 if 7,, is complex. Then A(, s) has an analytic continuation to a
meromorphic function on the whole s-plane, and satisfies the functional equation

A6, 1 —5) = T(EA(E, 9),

where ¢ is the conjugate Hecke character and T'(¢) a constant only depending on &. Moreover,
A(&, s) is entire if £ is nontrivial.

Proof. See [Miy06|, Theorem 3.3.1]. O

The Gamma factors appearing in A(&, s) can be interpreted as the Euler factors corresponding
to the infinite places.

It might be worth seeing theorem for a simple example. If ¢ is a class character mod m
of Q, then £((a)) = sgn(a)" for all a = 1 mod*m. Defining x(a) = £((a)) for positive integers
a coprime to m and extending periodically mod m, we see that x is a Dirichlet character mod
m satisfying x(—1) = x(m — 1) = (—=1)*. The functional equation for £ is just the functional
equation for y as in equation If € is a class character of an imaginary quadratic number
field F', then

A&, 5) = (JAFIN (m))*?(2m) T (s)L(, 5) (1.16)
which looks like the complete L-function of a modular form. Using Weil’s converse theorem we
can make this connection precise.

Say that a Hecke character £ mod m on a number field K is induced from a Dirichlet character
1 through the norm if it is of the form ¥ o N i.e. if

for all a € I(m).

Theorem 1.3.4. Let K be an imaginary quadratic field with discriminant A and & a Hecke
character mod m such that

a

£((a) = (

|a’>u (a=1 mod m)

with v € Z. Let

Zf a)/2gN (@),

where a runs over all integral ideals of K. Then f(z) € My,11(N,x) with N = |A|N(m) and f
is a cusp form unless v = 0 and ¢ is induced from a Dirichlet character through the norm. The
character x is defined by

x(m) = xa(m)&((m))

12



where

xa(m) = <A>

is the quadratic character associated to K. Moreover, f is a T-eigenform and if £ is primitive
then f is a newform.

Proof. See [Miy06|, Theorem 4.8.2]. O

The fact that f is a T-eigenform follows from the fact that L(, s) has an Euler product. If we
choose u = 0, we get modular forms of weight one. The modular forms constructed this way
have a close connection to theta series. We will explore this in more detail in the section on
dihedral representations in chapter 4. There exists a similar theorem for real quadratic fields:

Theorem 1.3.5. Let K be a real quadratic field with discriminant A and £ a Hecke character
mod m such that
£((a)) =sgn(a”) (a=1 mod m)

for some embedding 7 : K — R. Let
f(z)=>_ &)™,
a

where a runs over all integral ideals of K. Then f(z) € Si(N,x) with N = AN(m) and x is
defined by

x(m) = xa(m)§((m)).

Moreover, f is an eigenform and if ¢ is primitive then f is a newform.

Proof. See [Miy06, Theorem 4.8.3]. O

1.4. Properties of eigenvalues

1.4.1. Rationality

There are certain results for which the algebro-geometric theory of modular forms is indispens-
able. This aspect is not explained in this essay but we will need the result nevertheless:

Theorem 1.4.1. Let f =3 - anq" € Sp(N,x) be a cusp form and o : C — C an automor-
phism.

1. The function f7(z) = 3,5, aj¢" is an element of Sk(N, x7),
2. if the coefficients a,, are algebraic, they have bounded denominators,

3. the eigenvalues of the Hecke operators T, for n > 1 lie in the ring of integers of a number
field K.

Proof. See [DS74, §2.7] and [DI94] §12.3]. O

It is possible to give a more elementary proof of this result for weight £ > 2, see [Shi94, Theorem
3.52]. There are tricks to derive the theorem for weight k£ = 1 via this approach, as explained in
[Sex75l, §2.5].

13



Lemma 1.4.2. Let L be the set of cusp form in Si(I'1(N)) with rational integer g-expansion.
Then L is a free Z-module of finite type. Moreover, let R be a subring of C and let S be the
set of cusp forms in Sk (N, x) with ¢g-expansion in R[[¢]]. Then Sk = L ®z R.

Proof. There exists an integer B > 1 such that the map

Sk(N7X) _>CB
f:Zanan (alw-',an)

n>0

is injective. One can take B = 1+ k[SLg(Z) : T'o(N)]/12. The image of L under this map will
be a submodule of ZZ, hence free of finite type. So L is free of finite type. The remaining part
of the corollary follows from [DI94, §12.3].

O]

1.4.2. Eigenvalues at the bad primes

Let f € Si(N, x) be a newform with L-function

L(f,s) =Y ann* =[[@ = app ) J](1 = app™* + x(p)p" 27"

n>1 pIN PN

Growth conditions on the coefficients of f are of great interest for the study of modular forms
(the Ramanujan-Petersson conjecture is an example, see corollary [3.6.1)). The eigenvalues of T},
at the bad primes are easy to describe.

Proposition 1.4.3. Let f =} -, ang" € Sk(N,x) be a newform and p a prime dividing N.
Then
0 if p? | N and x can be defined mod N/p,

lap|= < pE=1/2if y can’t be defined mod N/p,
pk/2=1 if p? { N and x can be defined mod N/p.

Proof. See [Li74, Theorem 3]. O
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2. Galois Representations

This chapter gives a short introduction to Galois representations. We begin with some general
considerations where we include mod p and I-adic representations. We define the Artin conductor
and Artin L-function for Artin representations. We end with a few results needed in the proof
of the Deligne-Serre construction in chapter three.

2.1. Definitions

2.1.1. Representations

Let G be a topological group and F' a topological field. For each d > 1, we give GL4(F') the
subspace topology coming from Maty(F) ~ Fx4,

Definition 2.1.1. A representation of G is a continuous homomorphism
G — GLd(F )
We call d the degree of the representation and F' the field of definition.

The most important case for us will be if G is a profinite group. Recall that a profinite group
is the inverse limit of an inverse system ((4;)ier, (fij)i<jer) of finite groups:

icl icl
We equip G' with the subspace topology coming from the topology on [[;.; A; where every
finite group A; is given the discrete topology. It is the weakest topology which makes the
natural projection maps G — A; continuous. Under this topology, profinite groups are always
Hausdorff, compact and totally disconnected. Moreover, note that every open subgroup is of
finite index: the quotient is compact and discrete, hence finite. The open normal subgroups of
G form a neighbourhood basis of the identity.

Example 2.1.2. If L/K is a (possibly infinite) Galois extension, then Gal(L/K) is a profinite
group and we have an isomorphism
Gal(L/K)=  lim  Gal(E/K)

E/KCL/K
finite Galois

Where the inverse limit runs over all the finite Galois subextensions of E/K. The topology on
Gal(L/K) that arises in this way is called the Krull topology.

The above discussion specializes to the Galois extension K /K where K is a separable closure of
K. We will write its Galois group as Gx = Gal(K/K). We say G is the absolute Galois group
of K. In this case, a representation

,O:GK—>GLd(F)

is called a Galois representation. According to the field of definition F' we say p is

15



e an Artin representation if F' = C (with the Euclidean topology),
e a mod p representation if F' = F, (with the discrete topology),
e an [-adic representation if F' = Q; (with the l-adic topology).

We will be interested in the case where K is a number field or local field of characteristic zero
(where separability is automatic).

Lemma 2.1.3. If G is profinite, then every complex representation p : G — GL4(C) (where C
is equipped with the Euclidean topology) has open kernel.

Proof. We claim that there is an open neighbourhood U of the identity I; in GL4(C) which
contains no nontrivial subgroups. Indeed, take the norm ||-|| on Maty(C) induced from the
norm on C? given by ||(z)||= v/|z12+ - - + |2a/?. Set

U={AeGL4(C) | [|A— Tal[< 1/2}.

Suppose A € U, A # I, lies in a nontrivial subgroup contained in U. Since ||[P71AP — I ||=
||A — I]| we may suppose that A is in its Jordan canonical form. If one of the eigenvalues of A
has absolute value different from 1 the norms ||A"|| for n € Z are clearly unbounded so A™ ¢ U
for some n € Z. If A has an eigenvalue o # 1 with |a|= 1 then |a™ — 1|> 1/2 for some n € Z
so A™ ¢ U for some n € Z. The only case left is when all the eigenvalues of A are equal to
1. But in that case A has at least one non-trivial Jordan block since A # I; so again ||A"|| is
unbounded for n € Z so A" ¢ U for some n € Z. This covers all cases and shows that U does
not contain any non-trivial subgroup.

Now given such an open set U and a representation p, look at its inverse image p~1(U) in G.
Since G is profinite and p~1(U) is open, there is a subgroup H of finite index contained in
p~1(U). But then p(H) is a subgroup of GL4(C) contained in U, hence trivial. So H is in the
kernel of p, which implies it is a finite index closed subgroup of G, hence open. O

So for every field K, a representation p : Gxg — GL4(C) factors through a finite extension
of K, so we might as well equip GL4(C) with the discrete topology (some authors do this by
default). It is important to remark that if K is a number field, not every Galois representation
G — GLg(F) has finite image. Indeed, if F = Q; we will see examples where the image is
infinite (see theorem of the next chapter).

Lemma 2.1.4. Let G be a profinite group and p : G — GL4(Q;) a continuous representation.
Then p can be conjugated to a representation with values in GLg(Z;).

Proof. 1t is enough to show that G stabilizes some lattice in Qfl, i.e. a free Z;-module which
contains a basis for Qld. Take the standard lattic L = Z;j C Q;j. The set of all A € GL4(Qq)
such that A- L = L is precisely GL4(Z;), an open subgroup of GL4(Q;). So the set of all g € G
such that p(g)L = L is an open subgroup H of G. So G/H is finite and G stabilizes the lattice

Z g-L.

geG/H
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2.1.2. Ramification

Let’s define the notion of ramification for a Galois representation. Let K a number field with
absolute Galois group Gk. For each prime p in K, choose an embedding K — K,. The
restriction map Gal(K,/K,) — Gal(K/K) is injective, its image is the decomposition group
D, C Gg. The ring of integers of K, is stable under the action of Gal(K,/K,), as is its unique
maximal ideal. The residue field may be identified with the algebraic closure k of k, where k is
the residue field of K. Let I, be the kernel of the reduction map

Dy — Gal(k/k).

Since k = F is a finite field, the group Gal(k/k) = Gal(F,/F,) is topologically cyclic, generated
by the Frobenius  — x?. Since the reduction map Dy — Gal(k/k) is surjective, there exists
an element Frob, € D, which reduces to the Frobenius on k. We call such elements Frobenius
elements.

Definition 2.1.5. Let L be a finite extension of Q, and K a number field.

e We say a representation o : G — GLg4(F') is unramified if the inertia group of G, is in
the kernel of o. Otherwise, we say ¢ is ramified.

e We say a representation p : Gx — GL4(F') is unramified at a prime p of K if p|y, is trivial
or equivalently, if the associated local representation p|p,: G, — GLg(F) is unramified.

For an ideal m of K, say p is unramified outside m if p is unramified for every prime p not
dividing m.

This definition doesn’t depend on the choice of the embedding K — K. If p: Gx — GL4(F) is
unramified at p and Frob, is a Frobenius at p then p(Froby) is well-defined up to conjugation. It
thus makes sense to speak of the trace, determinant and characteristic polynomial of p(Froby).
If p factors through a finite extension L/K then it is ramified at only finitely many primes.

2.2. Artin conductor

In this section we will define for each representation p : Gy — GL4(C) an ideal in K which
measures the ramification behaviour of p in a precise way, called the Artin conductor. To do
this, we will first look at the local case. We refer to [Ser95, chapter VI] for the proofs.

Suppose L/K is a finite Galois extension of local fields, which we will assume to be finite
extensions of Q. Recall that G = Gal(L/K) comes with a filtration

GOGy DG DGy D ---

called the ramification groups in the lower numbering. If L, K have residue fields kr, kx then
Gy is the kernel of the reduction map G — Gal(kr/kx) and Gy is the unique sylow-p-subgroup
of Go. By setting G = G for every real number ¢ > —1 (set G_1 = G) and

Yoo dt
¢L/K(U’) = /O [GO . Gt]

We define the upper ramification groups to be G* = G (w) for u > —1.

-1
¢L/K
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Definition 2.2.1. The Artin conductor of a representation p : G — GL(V') is defined as
N /Gl
i(p) z; Gol

where V& denotes the subspace of V fixed by G;.

dim(V/ V)

It is a non-trivial fact that the Artin conductor of a representation is always an integer. We can
rewrite it as follows:

i) = [ °° "g‘o" dim(V/VE) dt

© (®)
- / 1G] iy ey
~1 |Gol

Making the substitution u = ¢,/ (t) and noting that ¢} / ,(t) = Jg(t)" almost everywhere, we

obtain the expression

f(p) = / h dim(V/VE") du. (2.1)

-1

Clearly, the representation p is unramified if and only if f(p) = 0. Equation shows that we
have the following more precise statement:

Proposition 2.2.2. Let p : G — GL4(C) be an irreducible representation of G and r the largest
integer such that p|gr is non-trivial (if p|go is trivial, set 7 = —1). Then

f(p) = deg(p)(r +1).

Proof. Since G* is a normal subgroup of G, then subspace V" is G-invariant, hence equal to
V or trivial because p is irreducible. The result follows from equation [2.1

O]

Remark 2.2.3. This result is particularly useful for one-dimensional representations, which are
always irreducible.

Let’s move on to the global picture. Let L/K be a finite Galois extension of number fields with
G = Gal(L/K). For each prime p in K and prime 8 in L above p we have subgroups

Dy € G

which are isomorphic to Gal(Lg/Kp) where Ly and K, are the B-adic and p-adic completions
of L and K respectively. If p: G — GL4(C) is a representation we can restrict it to Dy, and
get a local representation

Py - Gal(Lf_p/Kp) — GLd(C)

Set f(p,p) = §(pp), which doesn’t depend on the choice of the prime 9 above p. Since p is
ramified at only finitely many primes, the product

f(p) = ] p¥

p

is a well-defined integral ideal of K, and is called the Artin conductor of p. It satisfies the
following properties:
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Proposition 2.2.4. Let p, p’ be two complex representations of G = Gal(L/K). Then we have
1. f(p@ ') =f(p)f(p’) and f(1g) = 1 where 14 is the trivial representation

2. If K'/K C L/K is a subextension with H = Gal(L/K') < G and v a representation of H
then

F(Indf ¢) = 05 Ny e (7)),

where Indgz/) is the induced representation on G and 0gv /i the discriminant of the ex-
tension K'/K.

3. If K'/K C L/K is a Galois subextension with H = Gal(L/K') and o : G/H — GL(V) a
representation of G/H = Gal(K’/K) with inflation ¢ : G — GL(V) then

f(p) = 1(p).

As an application of the previous proposition, take H = {1} in property 2 and let ¢ be the trivial
representation on H. The induction of 9 to G is the regular representation, and so decomposing
this we get that

0 /K = H (p)dests)
p

where the product runs over all irreducible representations of Gal(L/K'). This is known as the
‘Fiithrerdiskriminantenproduktformel’.

The definition of the Artin conductor for representations p : Gg — GL4(C) of the absolute
Galois group of a number field K is straightforward: by lemma p factors through some
Gal(L/K) where L/K is a finite Galois extension as in the following diagram:

Gx —— GL4(C)

L A

p
Gal(L/K)

hence we define the Artin conductor of p to be the one attached to the representation p :
Gal(L/K) — GL4(C), that is f(p) = f(p). Property 3 of proposition shows that this
doesn’t depend on L.

Example 2.2.5. To illustrate why the Artin conductor is a suitable invariant, let’s describe all
one-dimensional representations Gg — C* of the absolute Galois group of Q of conductor N.
If 1 is such a representation then by Kronecker-Weber 1) factors through some Gal(Q(¢ar)/Q)
for some M > 1. For a prime p let M = tp® with p 1 ¢. The i-th ramification group at p in the
upper numbering is given by Gal(Q(Car)/Q((yyi)) for i = 0,1,...,e — 1 and is trivial for i > e.
By proposition [2.2.2 this shows that N divides M and 1t is trivial on Gal(QCM/QCtpva))' In

other words, 1 factors through Gal(Q({x)/Q) but not through any smaller cyclotomic extension.
Using the isomorphism Gal(Q(¢yx)/Q) ~ (Z/NZ)™, we can identify ¢ with a Dirichlet character
mod N and the above considerations show that it is primitive. In conclusion, we showed that
there is a natural correspondence

Representations ¢ : Gqg — C* o Dirichlet characters x : (Z/NZ)™ — C*
of conductor N of conductor N ’

More generally, a one-dimensional representation p : Gg — C* of conductor m will correspond
to a primitive Hecke character mod m by class field theory.

19



2.3. Artin L-functions

Recall that a Dirichlet character x : (Z/NZ)* — C* has an associated L-function
_ s\ —1
L(x,s) => x(mn~* =] (1 = x(p)p™*)
n>1 p

with an appropriate functional equation. Dirichlet characters are just one-dimensional repre-
sentations Gq — C*: in this section we will define an L-function for every Artin representation
of Gk for a number field K. Rather than defining the coefficients directly we will prescribe the
Euler factors and look at one prime at a time.

Let p: Gxg — GL(V) be a complex representation with K a number field. For a prime p in K,
let py be the restriction of p at the decomposition group D, of p (after a choice of an embedding
K < K,). Define the local factor at p to be

Ly(p, s) = det (1 = N(p)~* (ply1 ) (Froby)) ", (2.2)

where N(p) = |Og/p| is the absolute norm, V% is the subspace of V fixed by the inertia
subgroup I, at p and Frob, a choice of Frobenius at p. Since Frob, is a well-defined element of
D, /I, up to conjugacy the above expression is independent of the choice of prime above p and
choice of Frobenius.

Definition 2.3.1. The Artin L-function of an Artin representation p : Gxg — GL(V) is defined
by

L(p7 S) = HLP(p7 3)7
p

where the product is over all prime ideals of K and the local factors Ly (p, s) are given by equation
2.2

Example 2.3.2. Suppose p: Gxg — C* is one-dimensional. Then the local factors for a prime
p of K are as follows:

L(pp,s) = (2.3)

(1-— N(p)_S,O(Frobp))_1 if p is unramified,
1 otherwise.

In particular if K = Q we obtain the L-function of the associated Dirichlet character.

Proposition 2.3.3. The Artin L-function of a representation converges on some half-plane
R(s) > a (a > 0) and satisfies the following properties:

1. (Additivity) If
0 —— (plavl) — (pv V) — (pﬁvvﬁ) —0
is a short exact sequence of Artin representations then

L(p,s) = L(plv S)L(p//, s)

2. (Induction) If L/K is a finite extension, p : G, — GL(V) a repersentation and o the
induced representation on G then L(p,s) = L(o, s).

Proof. See [Del73l, §3] or [Mar77, §1]. O
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Example 2.3.4. If p: G, — C* is the trivial representation then

L(p,s) = CL(s)

is the Dedekind zeta function of L. Now suppose that L/K is a finite Galois extension and
71,k the regular representation of Gal(L/K). On the one hand 7,/ is induced from the trivial
representation, on the other hand it decomposes as a direct sum of irreducible representations
of Gal(L/K) which can be seen as representations of Gx. By proposition we obtain

n

o(s) =[] L(pi, ) (2.4)

=1

where py, ..., p, are the irreducible representations of Gal(L/K) of degree dy, . . ., d,, respectively.

If x : Gg — C* is a one-dimensional representation then x corresponds to a class character and
we know (theorem that the complete L-function is entire (if x is nontrivial) and satisfies
a functional equation. To state the functional equation for general p : Gx — GL(V') we need to
define the Gamma factors at infinity. It is convenient to define

Le(s) =2(2m)°I(s),
Ir(s) = 7 %20 (s/2).

This allows us to restate the duplication formula in an elegant way: I'c(s) = 'r(s)'r(s + 1).

Now suppose that v is an infinite place. Recall that this is an equivalence class of archimedean
absolute values on K or which amounts to the same thing, a real embedding K — R or a pair
of complex conjugate embeddings K — C. Note that each real place defines an element ¢ € G
of order two, the restriction of complex conjugation under an embedding K — C extending the
given embedding K — R. This ¢ is a well-defined element of Gx up to conjugation and we say
¢ is a complex conjugation associated to v. For each infinite place v, define the local factor at v
to be

L(s)desl) if v is complex,

. b e s (2.5)
Il'r(s)*Tr(s+1)” if v is real

L,(p,s) = {

where a, b are the dimensions of the +1 and —1 eigenspace of p(c) where ¢ is a complex conju-
gation associated to v. We set

Loo(p,s) = H Ly(p,s)

v infinite

Now if f(p) is the Artin conductor of p, set

Alp) = |AK " Nig g (§(p)), (2.6)

which is the Artin conductor of the induced representation on Gq.

Definition 2.3.5. The complete L-function of an Artin representation p : Gxg — GL(V) is
defined as

Alp,) = A(p)** Loc(p. 5) L(p, 5). (2.7)

Theorem 2.3.6. The complete Artin L-function satisfies properties 1 and 2 of proposition 2.3.3]
i.e. it is additive and inductive. Moreover, A(p, s) has a meromorphic continuation to the whole
complex plane and satisfies the functional equation

Alp, 1 —s) = W(p)A(p", 5), (2.8)

where p* is the contragradient representation and W (p) € C is a constant of absolute value 1.
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Remark 2.3.7. The constant W (p) is called the Artin root number.

Details of the proof can be found in [Mar77, §1.4]. Let’s indicate how one could prove this result.
The fact that A(p, s) is well behaved under short exact sequences and induced representations
follows from the corresponding properties of the Artin conductor, the duplication formula and
proposition By Brauer’s induction theorem [Ser77, §10.5] the character of p is an inte-
ger linear combination of induced characters of one-dimensional representations on finite index
subgroups of Gx. So we can write

L(p.s) = [ L 9™

with x; one-dimensional representations and m; € Z (not necessarily positive). This reduces to
the case of one-dimensional representations, which has already been established (see theorem
1.3.3).

Example 2.3.8. Suppose K = Q and p : Gq — GL2(C) is two-dimensional. Suppose further-
more that p is odd: this means that det(p(c)) = —1 for any complex conjugation ¢ € G¢. Since

. . (1 0
¢ has order two we can conjugate ¢ to the matrix <

0 _1>. If M is the conductor of p, we see

that the complete L-function is

Ap,s) = M*/*Tr(s)Tr(s + 1)L(p, ) (2.9)
= M*?T'c(s)L(p, s). (2.10)

It is important to remark that the above theorem does not assert that A(p,s) is entire, since
the m; € Z obtained from Brauer’s induction theorem could be negative. It seems appropriate
to mention the following conjecture:

Conjecture 2.3.9 (Artin). If p doesn’t contain the trivial representation then L(p, s) is entire.

The most common ways of proving that a representation L(p, s) satisfies the Artin conjecture
is by proving that it is induced from a one-dimensional representation or that it comes from a
modular (or more generally, automorphic) form, as we will explain in the next chapter (corollary
3.5.2).

2.4. Chebotarev density theorem

It is often useful to know that primes are uniformly spread in different ways. For example if
a,n € Z>y are coprime natural numbers then the density of primes congruent to @ mod n is
roughly % by a theorem of Dirichlet. More precisely, if P denotes the set of prime ideals in a
number field K, we define the natural density of a subset X C P as

. H{p € X | Nig/q(p) < o}
d(X) = lim [{p € P | Ng/q(p) <z}

provided that the limit exists. We define the Dirichlet density of X C P as

N —S
5(X) = lim Lvep K/Q(p)_s
s 1 Zpep NK/Q(p)
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provided that the limit exists. The precise statement of Dirichlet’s theorem says that for a,n
coprime we have

1
¢(n)
In fact a similar result for natural density holds but this is harder to prove. Roughly speaking,
proving a result on Dirichlet density requires proving that a certain L-function doesn’t vanish

at s = 1, while proving a result on natural density requires proving that an L-function doesn’t
vanish on the line R(s) = 1 (this is exactly what happens in the proof of Dirichlet’s theorem).

5({pe7>ypza modn})):

Chebotarev density theorem is a generalization of Dirichlet’s theorem for finite Galois extensions
of number fields L/K. The starting point is that the extension Q((,)/Q has Galois group
(Z/nZ)* where a prime p € (Z/nZ)™ corresponds to the element (¢, — (%) € Gal(Q(¢,)/Q).
So a distribution of prime numbers mod n is the same as studying Frobenii in Gal(Q(¢,)/Q).
Recall that if p is a prime of K which is unramified in L then for every prime B above p in L
there exists an element Froby, € Gal(L/K), a Frobenius at p, such that for all z € O, we have

2P = NG mod B

where N(p). Different choices of B above p give conjugate elements of the Galois group, so we
will think of Frob, as being well-defined up to conjugacy.

Theorem 2.4.1 (Chebotarev density theorem). Let L/K be a finite Galois extension of number
fields and let P denote the set of nonzero prime ideals in Og. Let C' be a conjugacy class of
Gal(L/K). Then

_

) ({p € P | p is unramified and Frob, € C}) ~ G

Proof. See [Neu99, §13.4]. O

Remark 2.4.2. The corresponding statement for natural density holds as well but is less relevant
for our purposes.

2.5. The Brauer-Nesbitt theorem and representations mod p

We will need the following facts from representation theory in the next chapter.

Theorem 2.5.1 (Brauer-Nesbitt). Let k be a field and A a unital associative k-algebra. Let
M, N be A-modules which are of finite dimension over k. Then the following are equivalent:

1. M and N have the same composition factors (as A-modules)

m—a-m

2. for all @ € A the characteristic polynomials of the k-linear maps M ——— M and
N 222 N are equal.
Proof. See [CR62, Proposition 30.16]. O

The theorem of Brauer-Nesbitt, together with Chebotarev density theorem implies that Galois
representations are determined by Frobenii:
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Corollary 2.5.2. Let K be a number field and F a topological field. Let p, p' : Gx — GLg4(F)
be (continuous) semisimple representations. Let X be a set of primes of K of density one such
that for all p € X, p and p’ are unramified at p and such that the characteristic polynomials of
p(Froby,) and p’(Froby) agree. Then p and p’ are isomorphic.

Proof. By Chebotarev density theorem, the set of all Frobenii coming from X is dense in Gg.
Since p and p’ are continuous and the map GL4(F) — F[z] sending a matrix to its characteristic
polynomial is continuous, we see that the characteristic polynomials of p(g) and p’(g) are the
same for all g € Gi hence by Brauer-Nesbitt p and p’ are isomorphic. O

Remark 2.5.3. If F' has characteristic zero, the characteristic polynomial of a matrix A €
GLg4(F) is determined by the elements Tr(A¥) (k = 1...d) so we only have to assume the traces
agree (a well-known fact in classical representation theory of finite groups over C).

2.5.1. Splitting fields and reducing representations mod p

Let G be a finite group and let K be a number field which is a splitting field for G (i.e. every
representation G — GL4(K) is irreducible over K if and only if it is irreducible over K). Let
p C Ok be a prime above p € Q. Write O, for the localization of Ok at p. Let ky, = Op/p be
the residue field.

Lemma 2.5.4. Suppose p 1 |G| and let p, 7 be irreducible Op-representations of G (i.e. mor-
phisms G — GL4(Oy)). Then composing p, 7 with the projection GL4(Op) — GLg4(kp) yields
absolutely irreducible representations p, 7. Moreover, we have

PETES PpT
Proof. See [Fei67, §4.3]. 0

We will need the following theorem in the proof of theorem

Theorem 2.5.5. Assume p { |G|. Then the reduction mod p-map p — p induces a bijection
between isomorphism classes of Oy-representations of G and kjy-representations of G. Moreover,
p is abolutely irreducible if and only p is.

Proof. By lemma we know the map is injective. Since p 1 |G| the number of p-regular
conjugacy classes of G equals the number of conjugacy classes so reduction mod p induces a
bijection on the isomorphism classes of irreducible representations of G, so on all representations
by complete reducibility. O

We conclude this section with a reassuring result on splitting fields of finite groups.

Theorem 2.5.6. If |G|=n then Q((,) is a splitting field for G.

Proof. See [Ser77, §13.1]. O
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3. The Deligne-Serre construction

3.1. Main Result

The similarity between the L-functions of a newform of type (1, x) and a two-dimensional odd
Artin representation (theorem and example gives us a reason to believe that these two
seemingly different objects are related. In 1974, Deligne and Serre [DS74] showed that for every
newform f on I'g(IN) of type (1, x) there exists an irreducible two-dimensional p : Gq — GL2(C)
such that L(f,s) = L(p, s). This chapter will be devoted to the precise statement and proof of
this result.

For each prime p of Q, choose a Frobenius Frob, € Gq. Recall that if a representation p : Gq —
GL2(F) is unramified at p, then p(Frob,) is a well-defined element of GL2(F') up to conjugacy.

Theorem 3.1.1. Let x be a Dirichlet character mod N with x(—1) = —1. Let f € Mi(N,x)
be a nonzero modular form satisfying T}, f = a, f for all primes p not dividing N. Then there
exists a representation

p:Gq — GL2(C)
which is unramified outside N such that for all p{t N we have
det(1 — p(Frob,)T) = 1 — a,T + x(p)T?. (3.1)
Moreover, p is irreducible if and only if f is a cusp form.

Remark 3.1.2. If such a representation exists, it is unique up to conjugacy in GLy(C) by

corollary

The proof will be presented as follows: first we will give an outline of the proof combining
several claims which will be assumed at first. The next sections will be devoted to explaining
these intermediate steps.

Proof of theorem |3.1.1]. If f is an Eisenstein series, the result is clear since we have an explicit de-
scription of the eigenforms by theorem @} Indeed, the T'(y)-eigenspace containing f contains
some E}""*?(z) where y = x1x2 is a Dirichlet character mod M dividing N and its L-function
is L(x1,s)L(x2, s) so the reducible representation p = x1 @ x2 satisfies equation

From now on, assume that f is a cusp form. By theorem there is a number field K
containing all the eigenvalues a, and values of the character x(p) for p t N, which we can
assume to be Galois over Q. Define £ to be the set of primes p € Z which split completely in
K. By Chebotarev density theorem, this set is infinite. For each [ € £, choose a prime A; in K
above [. By construction, the residue field of ); is isomorphic to F;.

Assumption 1. “There exists a semisimple representation

Pl - GQ — GLQ(F[)
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which is unramified outside NI such that for each prime p{ NI we have

det(1 — py(Frob,)T) =1 — a,T + x(p)T? mod \;”
Write G for the image of p; in GLa(Fy).
Assumption 2. “There is a constant A such that |G;|< A foralll e L7

Fix such a constant A. Note that adding finitely many elements of Q to K and taking its Galois
closure can only make £ smaller. So there is no harm in assuming that K contains all n-th roots
of unity, for n < A. Set

Y = {(1 —aoT)(1—pT) | a, B roots of unity of order < A}.

Now fix a prime p not dividing N. For every prime [ # p, we know that p;(Frob,) € GLa(F;)
has order at most A and the eigenvalues of its characteristic polynomial are roots of unity in
F;, which are reductions of roots of unity in Q. In other words, we have

1 —a,T + x(p)T? = det(1 — p(Frob,)T) = R(T) mod \;

for some R(T") € Y. Since a similar congruence holds for every [ € £ and since Y is a finite set,
there is a fixed element of Y such that the congruence holds for infinitely many primes A\; with
| € £. This implies genuine equality, so 1 —a,T + x(p)T? € Y. Here we use that if two elements
in Ok are congruent modulo infinitely many primes, they are equal. Continuing with this idea,
set

£’:{ZEL|l>AandVR,SEY:R7€S:>R§éS mod)\l}.

The set £\ L is contained in the set of all primes [ for which R =S mod )\; for some R, S € Y
with R # S. This happens only finitely many times so £ \ £’ is finite, hence the set £’ is
infinite. Fix a prime [ € £’. Since |Gy|< A, the prime [ doesn’t divide |G;|. By theorem [2.5.5]
the representation G; — GL2(F;) is the reduction of a representation G; — GL2(O,,). So the
composite

p: GQ — Gl — GLQ(O)\Z) — GLQ(C)

is a continous representation of Gq which is unramified outside of NI. But for a prime p not
dividing N, det(1 — p(Frob,)T") belongs to Y since |G;|< A and

det(1 — p(Frob,)T) =1 — a,T + x(p)T?* mod A

so by definition of £’ (since both sides are elements of Y') we deduce equality on the characteristic
zero level i.e.

det(1 — p(Frob,)T) =1 — a,T + x(p)T?, ¥p{ NI

We play the same game for a different I’ € £’ and obtain a representation p’ : Gq — GL2(C)
which is unramified outside NI’ and satisfies det(1 — p/(Frob,)T) = 1 — a,T + x(p)T? for all p
not dividing NI’'. Corollary implies that p and p’ are isomorphic and so equation holds
for all p not dividing N. So the representation p satisfies equation for all primes p t N and
is unramified outside V.

The last step in the proof is to show that p is irreducible. Suppose not, then it would be the
sum of two one-dimensional representations x; and x2. So that a, = x1(p) + x2(p). But then

Dlaplp =2 "p "+ > xa@)e@p* + Y xa)x2(p)p

ptN ptN ptN piN
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Now x1 # X2 since x = x1x2 satisfies x(—1) = —1. This implies that

2 p =2log <811> +0(1) (s =1)

pIN

S xe)@prt=0(1) (s 1)
pIN

But this contradicts the following estimate:

Assumption 3. “The sum } J[N\ap|2p_s converges for R(s) > 1 and

s 1 »
Z|ap‘2p < log (s—l) +0(1) (s = 1).

ptN
We conclude that p is irreducible and the proof is complete. ]

The next sections will get rid of the assumptions made in the previous proofs. Section 3.2 will
prove assumption 1. Section 3.3 will prove assumption 3. Section 3.4 (using some results from
section 3.3) will prove assumption 2.

3.2. [-adic and mod [ representations

In the proof of theorem we assumed for every prime [ € L the existence of a semisimple
representation Gq — GL2(F;) where the equality was true mod A; for all primes p not
dividing NI. For a modular form of weight & > 2, such representations can be acquired by
starting with an [-adic representation (as given by theorem below), reducing it mod [
and taking its semisimplification. For a modular form f of weight one, we don’t have such
representations but we can use the following trick: we multiply f by an Eisensten series Ej €
M. (SLa(Z)) to get a modular form fEj of weight k + 1. If f is an eigenformn Ej f need not to
be one but by choosing k appropriately we can make it to be an eigenform modulo a prime [.
This will turn out to be sufficient for our purposes.

3.2.1. [-adic representations
Recall (theorem [1.4.1)) that the eigenvalues of the Hecke operators are algebraic integers which
generate a field extension of Q of finite degree.

Theorem 3.2.1 (Deligne). Let k£ > 2 and f € My (N, x) be a nonzero modular form such that
Tpf = apf (with a, € C) for all p{ N. Let K be a number field containing a, and x(p) for all
p1 N. For a rational prime [ € Z, let A be a prime in K above [. Let K) the A-adic completion
of K. Then there exists a unique semisimple representation

p: GQ — GLQ(K)\)
which is unramified outside NI such that for all p{ NI we have

det(1 — p(Frob,)T) = 1 — a,T + x(p)p" ' T? (3.2)

27



Proof. See [DelT]] O

Remark 3.2.2. By corollary p is unique up to isomorphism. Since det(p(Frob,)) =
X(p)pk_l, the representation does not have finite image (since k > 2).

The case k = 2 is rather explicit and was known by Shimura. Deligne proved the general case
using techniques from étale cohomology.

3.2.2. Reduction mod !

Before we state the theorem, let’s introduce some notation. Let K be a number field with ring of
integers Og. We will always see number fields as subfields of C. Let A be a prime of Ok above
l € Z. Write O), for the localization of O at A. It is a discrete valuation ring with maximal
ideal m) and residue field k).

We will use the concept of a modular form on F;, but only implicitly and the naive definition will
suffice for our purposes. Say a modular form f € My(N,x) is A-integral (resp. f =0 mod A)
if its Fourier coefficients at infinity {a,}n>0 are in Oy (resp. in my). If f is A-integral, say f is
an eigenvector of T}, mod A with eigenvalue a, € k) if T,,f —a,f =0 mod A.

The following theorem is the main result of this section.

Theorem 3.2.3. With the above notation, let f € My(N, x) be a modular form with Fourier
coefficients in K. Suppose that f is A-integral, f # 0 mod A and f is an eigenvector of T}, mod
A with eigenvalue a, € k) for all primes p { Ni. Let ks be the subfield of k) generated by the
elements a, and the reductions of x(p) for p t NI.

Then there exists a semisimple representation
p:Gq — GLa(ky)
which is unramified outside of NI such that for all primes p{ N1 we have

det(1 — p(Frob,)T) = 1 — a,T + x(p)p*1T? mod A (3.3)

Proof. We will proceed in several steps.

Step 1. First of all, note that there is no harm in changing f and K as long as the conclusion of
the theorem doesn’t change. More precisely, suppose we are given the data (K', N, f',x/, (aj,))
with the same notation and assumptions as in the statement of the theorem such that K’ contains

K, the prime ) lies above A and

ap = al mod \
P*Ix(p) =" X (p) mod X
for all p t+ NI. Then proving the theorem for f is equivalent with proving it for f/, since the
conditions imposed on the sought representation are equivalent for f and f’.

Step 2. Next, we show that we only have to prove the theorem for weight k at least two. Indeed,
suppose that k =1, so f € M1(N, x). Let E, be the normalized Eisenstein series on SLy(Z) of
weight n:

28



We want to find an n such that fE, = f mod A. By the theorem of Von Staudt-Clausen (see
theorem in the appendix), we know that when B,, is written as a fraction in lowest terms,
its denominator is the product of all primes p such that p — 1 divides n. So it suffices to choose
n =1[—1 and we have

fE,=f mod\.

Now n4+1=1 mod [ —1so x(p)p™t)=1 = x(p)p'~' mod X so the conditions of Step 1 are
satisfied, and proving the theorem for f is equivalent with proving it for fF,. So from now on,
assume that the weight k is at least two.

Step 3. We now have an f € My (N, x) which is an eigenform mod A, but to apply theorem
we need a genuine eigenform. We invoke the following lemma, whose proof is purely algebraic
and will be given in the appendix (theorem |A.2.1)).

Lemma 3.2.4 (Deligne-Serre lifting lemma). Let O be a discrete valuation ring with maximal
ideal m, residue field k = O/m and fraction field K. Let M be a free O-module of finite rank.
Let 7 C Endp(M) be a commuting family of endomorphisms of M. Suppose 0 # f € M/mM
satisfies T'(f) = arf (ar € k) forall T € T.

Then there is a discrete valutation ring @’ with maximal ideal m’ where O C O, m' N O =m
and the fraction field of O is a finite extension of K such that the system of eigenvalues {ar}reT
has a lift to M/ = M ®» O': there exists a nonzero ' € M’ such that

T(fY=ayrf VYT €T

with a/, € O such that a/, = ap mod m/M’.

Note that we do not assert that f lifts f: it is the eigenvalues of f that have lifts but this is
enough to apply Step 1. Indeed, apply the lemma to the case where O = Oy, T ={T, | p{ NI}
and M the Oy-module of A-integral forms in My (N, x). By lemma M is a free Oy-module
of finite type and behaves well under base change. We know by definition that the coefficients
g-expansion of T,f — a,f lie in my. Let 7 € Oy be a generator of my. Then we know that
T,f — apf = mg where g is a A-integral form. This shows that f € M/myM indeed satisfies
the conditions of the Deligne-Serre lifting lemmaﬂ This implies that there is a modular form f
which is an eigenform for all T, (p { NI) for which clearly the conditions of Step 1 are satisfied.
We conclude that we may assume that f is an eigenform for T, (p { NI) with eigenvalue a,,.

Step 4. If [ does not divide N then Tj is semisimple and commutes with 7, for p { NI so we may
assume that f is an eigenform of all the Hecke operators T}, with p { N with eigenvalue a,. By
theorem there exists a semisimple representation

P GQ — GLQ(K)\)

satisfying equation of the theorem. The A-adic completion (5,\ of O, is a PID with fraction
field K, so we may suppose (see lemma that py takes values in GL2(O,). Reducing mod
A\ we get a representation py : Gq — GLa(ky). Taking the semi-simplification of p (the sum of
its Jordan-Holder factors), we obtain a semi-simple representation

¢ : GQ — GLQ(k)\).

!The last three sentences are necessary because it is a priori not obvious that a A-integral form which has
coefficients of its g-expansion in my lies in myM. Otherwise put, an argument is needed why the canonical
map M/maxM — (Ox/mx) [[q]] is injective. This is called the ‘g-expansion principle’ and is explained in [DI94]
§12.3].
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Since p) is unramified outside of NI it factors through a (possibly infinite) Galois extension
K /Q which is unramified outside NI. So the same is true for py hence ¢ as well, which shows
that ¢ is unramified outside NI. By construction, the equation is satisfied.

Step 5. The last thing to show is that ¢ is realizable over k). But since k) is a finite field, this
amounts to proving that ¢ ~ ¢ for all o € Gal(ky/ky) (because the Schur indices are always
1 by Wedderburn’s theorem, see [Kar92, §14.4, Theorem 4.1]). By Brauer-Nesbitt and since all
terms in equation are in ky we conclude that p ~ p? so the proof of the theorem is complete.

O]

3.3. An application of the Rankin-Selberg method

In this section we establish an analytic result which is proved using the convolution of two
Dirichlet series, nowadays called the Rankin-Selberg method. It is roughly analogous to twisting
an L-series of a modular form by a dirichlet character, but in this case we ‘twist’ by another
modular form. To illustrate the method, let f, g be normalized newforms of weight k on T'g(V)
with character y and v respectively:

Write L(f,s) = >_,>1 ann™° and L(g,s) = >_,5; byn™" for the associated L-functions. Since f
and g are newforms, the L-functions have an Euler product which looks like

-1
L(f.5) = [T = app™) ™ TT (1 = ap™ + x(w)p" %)
pIN pIN
and similarly for g. The goal is to derive analytic properties of the L-function Zn21 anbpn™% =

Y n>1 Can %, Since ap, b, = O(n*/?), we know this series converges absolutely and is holomor-
phic on the half-plane R(s) > k. Since amn = amay, for m,n coprime and similarly for by, the
same holds true for the product of the two and all the information is contained in the coefficients
at the prime powers. If p is a ‘bad prime’ and divides IV, we have c,r = ¢, hence

Z G = (1= ™)t = (1= apbpp™) 7"
r>0
If p does not divide N, the recurrence relation is a bit more involved. We invoke the following

lemma:

Lemma 3.3.1. Let (u,)r>0 and (v,)r>0 be sequences satisfying linear recurrence relations of
order two of the form

Up = QUp_1 + bup_o
Vp = CUp—1 + dVp_2
for r > 2 where (ug,u1) = (1,a) and (vg,v1) = (1,b). Let A1, A2 be the solutions of the
equation X2 —aX —b and pu1, o the solutions to the equation X? — c¢X — d. Then the sequence
(wy)r>0 = (urvy) satisfies a linear recurrence relation of order four and the following identity of
formal power series holds:
1 — bdT?

upv, I =
g (1= A T) (1 = A pueT) (1 = Ay T) (1 = AgpioT)
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Proof. A tedious but straightforward calculation. O

In our interest, we take u, = a,r and v, = by (where p{ N) and so the lemma implies that we
have the identity

S by = L= x(@)p™ >
= (1 = Apupp=*) (1 = Appapp™*) (1 = Apppp=*) (1 — Aypup™*)

where Ay, ), are the roots of X% —a,X + x(p)p*~! and pp, tt, the roots of X2 —b,X + x(p)p*L.
Definition 3.3.2. The convolution of the L-series L(f,s) and L(g, s) is

L(f®g,5) = [ = MAppp—5) " (1 = Appapp™*) (1 = Appapp™®) 1 (1 = Nypirp™®) ™!
ptN

The notation f ® g is purely forma]ﬂ The above calculations show that

L(f®g,5) = L(x,2s +2 = 2k) | > anbyn™* (3.4)

n>1

where L(x,s) is the L-function attached to the Dirichlet character x1 of modulus N. Note
that if x1) is trivial, L(xv, s) = prN(l — p~*)~1 is the partial zeta function (x(s), defined as

()= Y
=1

(n,N)=

Moreover, if f € Sk(N, x) is a normalized newform on I'g(N) with character x, then z — f(—2)
is a normalized newform on I'g(N) as well, with character x. Its Fourier coefficients are given by
the complex conjugates of those of f, so we denote this form by f (although it is not litterally
the complex conjugate of f, which is not even holomorphic). Setting g = f in equation gives

L(f®fs)=Cn@2s+2-2k) [ D fan/’n™

(n,N)=1

Adding the Euler factors at the bad primes and replacing (y by ( yields

L(fefos)= | TT (= laplp™) (1-p272%) | ¢@s+2-20) | Ylanln™ | (35)

p|N n>1

Using non-holomorphic Eisenstein series, one can prove the following fact:

Lemma 3.3.3 (Rankin). Under the above assumptions, the function L(f ® f,s) has a mero-
morphic continuation to the complex plane. It is holomorphic everywhere except at s = k where
it has a simple pole.

Proof. See theorem 3 of [Ogg69] or [Ran39).

O]

20r is it? Modular forms are related to automorphic forms on GL2 and so f ® g should correspond to an
automorphic form on GL2 X GL2, see [Ram00] and [JacT72).
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We are now ready to prove the proposition needed for the main theorem.

Proposition 3.3.4. Let f € Si(N, x) be a cusp form such that 7, f = a, f for all primes p not
dividing N. Then the sum Zp TN|ap|2p_5 converges for real s > k and the following inequality
holds:

S Jay 25 < log (8_1]) Lo) (55K (3.6)
ptN

(meaning that the difference between the left and right hand side is bounded above as s & k).

Proof. Since f is in the same T'y)-eigenspace as some newform (on a possibly lower level), we
may assume f itself is a newform. Hence f has a g-expansion of the form

n
= 5 ang
n>1

and the above discussion applies to f. Indeed, if \j, p, are the roots of the polynomial X 2
apX + x(p)p*~1 (for pt N) then

L(f&f,s) =[]0 = XAp™) " (1 = Apfipp™®) (1 = ppApp™®) " (1 = papfipp™®) ™!
PN

and by equation by equation [3.5}

L(f @ f,s) = H(s)((2s +2 = 2k) | D _lan>n™* | ,

n>1

where
H(S) — H (1 - ‘ap|2pfs) (1 _p72372+2k> )
pIN

By lemma the function L(f ® f, s) has a meromorphic continuation to the complex plane
which is holomorphic except at s = k where it has a simple pole. Since |a,|< p*/? if p divides
N (see proposition we see that H(s) has no zeros in the half-plane R(s) > k. The same
is true for ¢(2s + 2 — 2k) and >_|a,|?*n* so L(f ® f, s) is non-zero for R(s) > k. Now we have
at least formally the following equality of Dirichlet series:

)\m 2,,—ms
log(L(f ® f, ) ZZ’ +“p‘ (3.7)

ptN m>1

and the right hand side converges absolutely for R(s) > k since
g+ P < (A )
< 4 Appp[™
_ 4pm(k—1)

so the n-th coefficient is of order O(n*~1). Since L(f® f, s) has a simple pole at s = k, we know
that log((s — k)L(f ® f,s)) is bounded as s = k, hence

Z|ap|2 - ZP‘ +Mp|2 -

pIN pIN

33

pIN m>1

=log(L(f ® [, 5))

~ log (ék) +0() (s k)

‘)\m_i_u —ms
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which proves the desired claim.

O

We see that for k& = 1, this was exactly assumption 3 in the proof of theorem [3.1.1} The
following proposition will be useful for the next section. It tells us in some sense that the
Fourier coefficients a, of a weight one eigenform have controllable growth. Recall that if P
denotes the set of prime numbers, then the Dirichlet densitiy of a subset X C P is defined as

J(X) = limsup Zpéi

We always have §(X) € [0,1]. We use the lim sup in this definition instead of a limit to guarantee
that it is well-defined for every subset X C P.

Proposition 3.3.5. Using the notation of the previous proposition, assume k = 1. For every
real > 0 there is a finite set ¥;, C C such that

s({pePlaev,})=1-n. (3.8)

Proof. We know the a, and x(p) are algebraic integers in a finite extension K of Q. For each
c >0, set
Y(c) = {a € Ok | lo(@))*< ¢, Vo : K c}.

Then Y (c) is a finite set, since the coefficients of the minimal polynomials of elements of Y (c)
are bounded. It suffices to prove that d({p | a, € Y(c)}) tends to 1 as ¢ — oco. By theorem
1.4.1} we know that for each embedding o : K — C the coefficients o(a,) are the eigenvalues of
a modular form f? on I'y(N) so proposition shows that

S Y lota) P < 1 Qlios (S ) +0() (55 )
o ptN

where the sum is over all embeddings ¢ : K — C and all primes p { N. If a, ¢ Y; then
>, lo(ap)|?*> ¢ hence

1
Z p° <c¢ 'K :Qllog <s_1> +0(1),
ap#Y (c)

So 5({p | ap € Y(c)}) > 1 — c1[K : Q] which proves the proposition. O

Remark 3.3.6. Once theorem is completely proven, we know that the set {a, | p t N} is
in fact finite!

3.4. Subgroups of GLy(F))

We only have to remedy assumption 2 from the proof of theorem which said that the
images of the local representations p; : Gq — GL2(F;) have bounded cardinality. In this section
we will analyze subgroups of GLo(F;) to reach the desired conclusion. First, some notation.
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Definition 3.4.1. Let G be a subgroup of GLy(F;) with [ a prime number. We say G is
semisimple if the inclusion G — GLo(F;) is a semisimple representation. If M is a positive real
number, we say G is M-sparse if G has a subset H C G such that |[H|> 2|G| and

[{det(1 — hT) | h € H}< M.

Proposition 3.4.2. For every M > 0, there exists an A > 0 such that |G|< A for every prime
[ and every semi-simple M-sparse G < GLa(F).

Proof. If G < GLa(F;) is a semi-simple subgroup, G satisfies one of the following ([Ser72, §2,
Proposition 14.15] or [Dic5§]):

1. G contains SLy(F;) (G is big),

2. (G is conjugates to a subgroup of { <; 2) } (which means it stabilizes two lines in F?)7

3. G conjugates to a subgroup of the normalizer of the subgroup { (; 2) },

4. the image of G in PGLy(F;) under the projection GLy(F;) — PGLy(F;) is isomorphic to
Ay, Sy or As (exceptional).

By examining each of these cases separately, we can bound the cardinality of G, see [DST4,
Proposition 7.2]. We will only illustrate the method and do the second case as an example.
In this case, at most two elements of G have the same characteristic polynomial. Since G is
M-sparse, we have

4 4
GI< -|H|IL - (2M
GI< S1HI< S (2M)
which indeed proves that |G| is bounded.

O

We can now prove assumption 3 in the proof of theorem Keep the same notation as in
the proof in section 3.1. So we have for each prime [ splitting completely in K, a subgroup
G; < GLy(F;). We claim that there exists an M such that G; is M-sparse for all [. Indeed, by
proposition we know that there exists a finite set Y C C such that

5({1)673\&,,61/})23/4.

Write X ={p € P |ap, &Y} Then §(X) <1/4. Let M be the finite set of polynomials of the
form 1 — a,T + x(p)T? with p ¢ X, denote its cardinality by M. We claim that G is M-sparse
for all | € £. Indeed, if H; denotes the subset of G; consisting of all elements p;(Frob,) (p ¢ X)
and their conjugates, then Chebotarev density theorem tells us that |H;| > 2|G,|. On the other
hand if h € H; then det(l — hT') is the reduction mod \; of an element of M. So there are
at most M possibilities for det(1 — hT'). This proves that G; is M-sparse for all | € L. By
proposition the cardinalities of the G; are indeed bounded so assumption 3 is proven.

3.5. From Galois representations to modular forms

For a T(y)-eigenform f € Sk(N,x), write py for the two-dimensional Artin representation
associated to f given by theorem [3.1.1
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Proposition 3.5.1. Let f € Si(V, x) be a newform.

1. The Artin conductor of p; equals IN. In particular, the representation is ramified at all
prime divisors of .

2. L(f.s) = Llps, s)-

Proof. Write p = py to ease the notation a bit. Let’s try to exploit the functional equations
of L(f,s) and L(p,s). Write f = >, <, ang". Let g = floy= N"V2271f(~1/N2z) and f=
S ,>1 @ng". Since f is a newform, g and f will be in the newspace Sp“(N, x) with the same
T(N_)—eigenvalues. By strong multiplicity one, there is a nonzero constant A € C such that

g=2A f . By theorem we obtain the functional equation
Ap(1—s) =iA(g,s) = iAAf(s) (3.9)
where A (s) = N3/2(2m)=°T'(s)L(f, s).

Let M be the conductor of p. Since det(p(c)) = —1, complex conjugation acts non-trivially (we
say the infinite prime of Q ramifies) and the correct factor at infinity is (27)~*I'(s) (proposition
9.3.6). Put

(s) = M¥/2(2m)T(5)L(p, ),

then the functional equation reads
&(p,1— 5) = vE(p, 5) (3.10)
with v € C a nonzero constant and p the contragradient representation.

So set

&(pss)  \M /)  L(p,s)
5o 7Af(s) (N 5/2L(f,s)
P = g0 = <M> L(p,s)’
The above equations show that
F(1—s) =wF(s) (3.11)

with w = iA/v. By the construction of p, the Euler factors of A¢(s) and &(p, s) agree if p { N,
so we can write F'(s) as a finite product

F(s) = A° [ Fo(s)

p|N

with A = (N/M)'/? and
(1= bpp™*)(L — cpp™*)
(1 —app*)

where det(1—pl,1, (Froby)) = (1 —=b,p~%)(1 —cpp~*) (we allow b, or ¢, to be zero). We would be
done if we could show that F}, = 1 for all p | N, for then the functional equation reads Al=s = As
hence A = 1. If F, is not equal to 1, then F}, has infinitely many zeroes or poles. Note that if
(1 —ap—*) = 0 then p**) = |a|. Soif s € C is a zero of F,, then by the functional equation
we know that both p™(*) and p'~®(5) equal the absolute value of some « appearing in an Euler
factor (1 — ap~®) of F or F. We claim that for every such o we have |o|< p'/2. This would
give a contradiction since then pRE)pl=R() < p Indeed, if o comes from an Euler factor from

Fp(s) =
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L(p, s) this is clear since the eigenvalues of Frob,, are roots of unity. If & = a, then this follows
from proposition [1.4.3

O]

Corollary 3.5.2. For every T y)-eigenform [ € Sk(N, x) the representation p; satisfies the
Artin conjecture i.e. L(py,s) is entire.

Proof. Indeed, f has the same T y)-eigenvalues as some g(z) where g is a newform in Si(M, x)
and M | N. So we may as well assume that f is a newform. But then by proposition we
have L(pg,s) = L(f,s). Since A¢(s) = (2m)7°T'(s)L(f, s) is entire (theorem and I'(s) has
no zeros the function L(f, s) is entire as well. O

The assignment f +— py defines a map

Newforms on T'g(V) Irreducible representations p : Gq — GL2(C)
of type (1, x) of conductor N with determinant x

where the representations under consideration are up to isomorphism. By strong multiplicity
one this map is injective, so the question remains what its image is. It is now known (see
[KW09]) that this map is a bijection. The proof of this result is outside of the scope of this
essay, but we can still say something interesting about it. The first step is to characterise the
image in a different way, which relates it to the Artin conjecture. If we assume the L-functions
of p and sufficiently many of its twists satisfy certain holomorphy conditions then we can apply
Weil’s converse theorem (theorem and conclude:

Proposition 3.5.3 (Weil-Langlands). Let p : Gq — GL2(C) be an irreducible representation
with conductor N and det(p) = x satisfying:

1. pis odd, i.e. det(p(c)) = —1 for any choice of complex conjugation ¢ € Gq.

2. there is an integer M > 1 such that for every one-dimensional representation ¢ : Gqg — C*
of conductor prime to M, the Artin L-function L(p ® v, s) is entire.

then there exists a newform on I'g(N) of type (1, x) such that L(f,s) = L(p, s).
Proof. See [Weifl]. O

The representation py obtained from a newform f satisfies the conditions of proposition W
since a twist of a modular form is again a modular form (see theorem [I.1.2). So the above
proposition shows that an odd irreducible representation p is ‘modular’ (i.e. of the form py) if
and only if sufficiently many of its twists satisfy the Artin conjecture. By studying the image
of the associated projective representation Gq — PGL2(C) we will explicitly show that a large
class of representations is modular using Hecke L-functions (the dihedral representations).

3.6. Estimates of Fourier coefficients

Theorem [3.1.1] shows that the L-function of a normalised newform of weight one is the Artin
L-function of a two-dimensional representation. This has consequences on the growth of the
coeflicients.
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Corollary 3.6.1. Let f be a non-zero modular form on I'g(IV) of type (1, x) such that T}, f = a, f
for all primes p{ N. Then
lap|< 2, VptN.

Proof. Indeed, by theorem we see that a, = T'r(p(Froby)) is the sum of the eigenvalues of
p(Frob,) which are roots of unity. O

This proves the Ramanujan-Petersson conjecture for weight one: for general weight k it says
k-1

that the eigenvalues a, of the Hecke operators T, for p f N satisfy |a,|< 2p 2 . In his proof of

the Weil conjectures, Deligne proved the Ramanujan-Petersson conjecture for weight k£ > 2 (see

[Del74]).

We furthermore have the following estimates, which hold for a general modular form of weight
one on a congruence subgroup [DS74, §9]:

Corollary 3.6.2. Let f = anl ane?™#/M he a modular form of weight one on a congruence
subgroup of SLy(Z).

1. |an|= O(nd) for each 6 > 0.

2. The set of all n € Z>; such that a, # 0 has density zero.

The density here considered in the natural density on Z>1: a subset S C Z>1 has density c if

<
lim ]{neS\n_m}\:C.

T—+00 xX
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4. Examples and computations

In this chapter we will give some explicit examples of modular forms of weight one and their asso-
ciated Galois representations. The website http://www.lmfdb.org/ and the computer algebra
software SAGE ([Thel8]) can be of help for routine calculations.

4.1. The projective image

A representation p : Gq — GL2(C) has finite image, hence by composing with the projection
GL2(C) — PGL2(C) we obtain a projective representation p with finite image. Call the image
of p the projective image of p. The following lemma tells us what the projective images can be:

Lemma 4.1.1. Let G be a finite subgroup of PGLy(C). Then G is one of the following:
1. G is cyclic
2. @ is dihedral

3. G is isomorphic to A4, S4 or Ss.

Proof. Let m : SLy(C) — PSL2(C) = PGL2(C) be the projection map. The kernel of 7 is {1}
and so G = 7~ (G) is a finite subgroup of SLy(C). By taking a hermitian form (,) on C? and
averaging it, i.e. setting

(v,w)g =Y _(o(v),0(w))

oe@

we see that G stabilizes some hermitian form, hence after conjugation we can assume that G is
a subgroup of SUz(C). But SU3(C)/{+£I} is isomorphic to SO3(R), which can be seen using
quaternions (conjugating pure quaternions by unit quaternions defines a surjective morphism
SU3(C) — SO3(R) whose kernel is {£I}). So the image of G in SO3(R) is isomorphic to G.
But finite subgroups of SO3(R) are classified by cones (cyclic), double cones (dihedral) and the
platonic solids (A4, S4 and S5). This completes the proof. The diagram below summarizes the
situation.

SLy(C) ———— PGLy(C)

e

{+1}

N

SUQ(C) —_—> SUQ(C)/{ZIZI} ~ SOg(R)
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Remark 4.1.2. The argument essentially shows that SO3(R) is a maximal compact subgroup
of PGLy(C).

Given a representation p : Gq — GL2(C), the image of p is a central extension of its projective
image i.e. there is an exact sequence

1 Z imp imp ——1

where Z is the subgroup of scalar matrices in im p, which is contained in the center of im p.
Since a central extension of a cyclic group is abelian, it follows that the projective image of p
cannot be cyclic if p is irreducible. The other cases do occur (as we will see later) and we will
say the type of an irreducible representation p is dihedral, tetrahedral (A4), octahedral (S4) or
icosahedral (As) according to the projective image of p. The proof of lemma should make the
geometric interpretation of the terminology clear.

If f € S1(N, x) is an eigenform for the Hecke operators T, with p { N, write ps for the irreducible
representation Gq — GL2(C) attached to f by theorem Then we say f is dihedral,
tetrahedral, octahedral or icosahedral according to the type of p;.

4.2. Dihedral representations

We will study the simplest case where the projective image is dihedral, i.e. isomorphic to the
dihedral group D,, of order 2n for some n > 2.

Lemma 4.2.1. Let p : Gq — GL2(C) be a dihedral representation. Then p is induced from a
one-dimensional ¢ : Gxg — C* where K is a quadratic number field.

Proof. Let M be the Galois number field cut out by p i.e. such that p factors through a
faithful representation Gal(M/Q) — GLo(C). Let L/Q C M/Q be the subfield of M cut
out by the projective representation p : Gq — PGL2(C). Then Gal(L/Q) ~ D, for some
n > 2 by assumption. Since D, has a cyclic subgroup C,, of index 2, there exists a number
field K/Q C L/Q of degree 2 such that Gal(L/K) ~ C),. So p|lg,: Gk — GL2(C) has cyclic
projective image hence is reducible, which allows us to decompose it as

plax=1v &Y

for one-dimensional representations 1,1’ of G. Let 12 be the induction of ¢ to Gq. By
Frobenius reciprocity we have

1< <p|GK7¢>GK = <p’{[}\>GQ <1

~

So both equalities hold which implies that p = 1. O

Conversely, suppose we start with a quadratic number field K/Q and a one-dimensional rep-
resentation ¢ : Gxg — C*. Let p be the induction of ¥ to Gq and let p be the associated
projective representation. Let o be the non-identity element of Gal(K/Q). We define 17(g) as
Y(071go). Recall that Ax denotes the discriminant and (1)) the Artin conductor of 1. The
following proposition gives us more information on p [Ser7h, §7.2.1]:
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Proposition 4.2.2. 1. The representation p is irreducible if and only if b # . In that
case, p is dihedral.

2. The conductor of p is [Ax|[Ng/q(f(1)).
3. The representation det(p) is odd if and only if one of the following holds:
a) K is imaginary,

b) K is real and has signature (+, —) at infinity: if ¢,¢’ € Gg are complex conjugations
associated to the two real places of K then {x(c), x(¢')} = {1,—1}.

Proof. A matrix representation of p is given by

_( ¥l (go)
p(g) = <¢<01) ¢(0190)> (4.1)

where we set ¥(g) = 0if g € Gk. So plg,= ¥ @7 and (1) follows by Frobenius reciprocity. If
p is irreducible, the projective image of p has a cyclic subgroup of index 2 and so we see that
p has to be dihedral. The second assertion follows from proposition For 3, suppose first
that K is imaginary. If ¢ is a complex conjugation of Q then ¢ € G so in we might as
well take o0 = ¢ which shows that
po= (7 o)
1 0)°

so p is indeed odd. If K is real and c is a complex conjugation of Q then ¢ and o~ !co represent
the complex conjugations associated to the real places of K. By (4.1)) we see that p is odd if
and only if 1(c) # ¥ (0~ co). This proves the proposition. O

Recall that we say that a representation p : Gq — GL2(C) is modular if there exists a T (y)-
eigenform f € M;(N,x) such that p = py.

Proposition 4.2.3. Every odd dihedral representation p is modular.

Proof. A dihedral representation is certainly irreducible. The conditions of proposition [3.5.3

are satisfied since L(p,s) = L(1, s) where ¢ : Gxg — GL2(C) is a one-dimensional character by
lemma and satisfies a functional equation by theorem [1.3.3 O

Can we actually write down what the corresponding modular forms are? The answer is yes, in
a very explicit way. Theorems [1.3.4| and [1.3.5| show that if 1) : Gx — C* is a one-dimensional

representation for which p = Indg? 1) is odd and irreducible the function
fo=>_d"
a
is a cusp form of level |[Ag|N(m) of type (1, x). So such modular forms correspond exactly to
dihedral Galois representations!

If K is imaginary quadratic we can even be more explicit, which was first observed by Hecke in
[Hech9]. There is a beautiful connection between the ideal class group of K and binary quadratic
forms of discriminant Ay which was first studied by Gauss in his ‘Disquisitiones Arithmeticae’.
Let us briefly recall the relevant concepts. Let

Q(z,y) = az® + bry + cy?
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be a positive-definite binary quadratic form. This means that a,b,c € Z with discriminant
Ag = b2 — 4ac < 0. We say two such forms Q,Q’ are SLy(Z)-equivalent if a coordinate
transformation of the form

()= 5)G) o () esem

which transforms @ into Q’. Let K be an imaginary quadratic number field with ring of integers
Ok, discriminant Ag and ideal class group Clg. For each ideal a of O, choose a Z-basis for
ai.e. write it as

a=7Zo1 + Zas

where a, ay are chosen such that ajas — asa; = N(I)\/Agk (a sign convention). Associate to

a the quadratic form
1

Qazm(

We will use the following classical result:

a1 + agy)(a1x + aoy).

Theorem 4.2.4. Let K be an imaginary quadratic field. The set of binary quadratic forms of
discriminant A up SLo(Z)-equivalence can be given the structure of an abelian group, denoted
Q(Ak). The map

Clk — Q(Ak)
[a] = Qa
is a well-defined group isomorphism.
Proof. See [Bue89, Theorem 6.20] or [Fro94, §VII.2]. O

Example 4.2.5. If K = Q(y/—5) then Ax = —20 and Clg ~ Z/2 where we have
20K = (2,V/—=5 + 1)?

and (2,+/—5 + 1) is non-principal. We conclude that there are two classes of binary quadratic
forms of discriminant —20, represented by the forms:

Qo = =* + 57,
Q1 = 2x* + 22y + 3y°.

So ideal classes can be represented by binary quadratic forms. Now it turns out that quadratic
forms themselves have associated modular forms, using the theory of theta series. We explain
what we need for our purposes, the interested reader might consult [Miy06] §4.9], [[wa97, chapter
10] or [Sch74].

Let A € M,(Z) be a symmetric matrix with integer coefficients. We suppose A is positive-definite
of even rank r = 2k. We can associate a quadratic form Q4 to A:

1
QA(x) - §mtA‘r7

where x € R". If z = (z;) we can write Q4(z) as

QA(x) = Z %amx? + Z Qi T; T
i=1 i#]
where A = (a;j)1<ij<r- S0 Qa(x) has half-integral coefficients on the diagonal and integral
coefficients off the diagonal. We say A is even if moreover the a;; are even integers. Let N
be a positive integer such that the matrix NA™! is integral and even. Set D = det(A) and
A = (—1)*D, the determinant and discriminant of A respectively.
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Theorem 4.2.6. Let A € Mat,.(Z) be a symmetric, positive definite, integral even matrix of
even rank r = 2k. Suppose N € Z>; is a positive integer such that NA~! is integral even. Let
A = (—1)*det(A) and xa the character given by

w-(2).

Oa(z)= > g4

meZ"

The theta function

is an element of My (N, xa).
Proof. See [Miy06|, Corollary 4.9.5]. O

For quadratic forms in two variables (i.e. binary quadratic forms) we therefore obtain modular
forms of weight one.

Let’s relate this to dihedral representations. Suppose that ¢ : Gxg — C* is a one-dimensional
representation with K an imaginary quadratic number field. Suppose furthermore that 1 is
unramified, i.e. factors through the Hilbert class field of K. Then v defines a morphism
¢ : Clg — C* and by theorem the function

fo =Y t(a)g"

is an element of M;(N,x) with x = xa, the quadratic character of conductor Ax defined by
the extension K/Q. Write

fo= > wA)> ¢

AeClg acA

Now fix an A € Clg and choose an integral ideal b € A. Then for an integral ideal a we have
a € A if and only if a = (k)b for some k € K* with k € b~L. If we choose a Z-basis for b:

b=Zo; + Zas,

then its inverse is given by

1
b_l == m (ZO_ll + Z&Q) .

If k = ¢ (#6q + yae) is in b~! then

N(l‘b) = Qb(l‘,y),

where @)y is the quadratic form associated to b. Noteﬂ that we have to order the basis {aq, a2}
in such a way that ajas — dea; = N(I)v/Ag. If we run over all elements of b~! we encounter
every integral ideal a ~ b exactly w times, where

4 if K = Qi),
w=105l= {6 if K = Q(v/=3),

2 otherwise.

'A different ordering would give Q;(z,y) = Quv(z, —y). Since Qp and Qj represent the same integers we will
ignore the issue of ordering our basis in most examples since it is not a serious one.
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In conclusion, we have

Z N = % Z qQAa@y) (4.2)

aeA T, Yye€Z
=w 04(2) (4.3)

where 0 4 is the theta series associated with the quadratic form Q4 by theorem So fy is
a linear combination of theta series associated to quadratic forms of discriminant Ag.

Example 4.2.7. Suppose ¢ : Gg — C* is an unramified one-dimensional representation. Then
Y factors through the Hilbert class field Hx of K and defines a character ¢ : Gal(Hg /K) =~
Clg — CX. If ¢ is the nontrivial element of Gal(K/Q) then the map g + ogo~! under the
isomorphism Gal(Hg /K) ~ Clg becomes the map a +— o(a). If we want p = Indgg (1) to be
irreducible we have to require that v # 1. Since a® ~ a~! in Clg we see that this condition
is equivalent with 1)? # 1. So such 1 : Clxg — CX can exist only if Clg is not an elementary
2-group. The smallest value of |Ag| for which this is true is Ax = —23 i.e. K = Q(v/—23).

Set § = LHv=23 {23 We have Clg ~ Z/3 and 20k = (2,0)(2,0 — 1) where (2,6) is non-principal.
If A is the equivalence class of the ideal (2,8) then A% ~ (2,5 — 1) and the associated quadratic
forms are
Q1 = 2% + zy + 6y

Qua = 22"+ zy + 3y’

Qu2 = 222 — zy + 3y%.
Since QA(z, —y) = @ 42(x,y) these quadratic forms represent the same values, hence 64 = 6 42.
If ¢ : Clxg — C* is the character sending A to (3 = ¢2™/3 then

1
== (61 + G304 + (30 .42)

S 2
_ 1 o2 4xy+3y? 222 +2y+6y>
=3 q q

T, YyeZ T, YyeZ

fy

which is an element of 51(23, x_23). But by [DS05, Proposition 3.2.2], the space 51(23, x—23) is
spanned by the form
n(z)n(23z) = ¢ [J (1 — ") (1 = ¢*),
n>1

where 7(2) is the Dedekind eta function. So this form is equal to fy,. Let’s compute the associated
representation. The Hilbert class field H of K is a degree 3 extension of K: it’s the splitting field
of the polynomial X3 — X —1. We have Gal(H/Q) ~ S3 ~ Ds. If p is the induced representation
of ¢ on Gal(H/Q) then p is the unique two-dimensional irreducible representation of Ds. This
representation is faithful, and Tr(p(Frob,)) = a, for every prime p # 23. A simple consequence
of this is that for all p £ 23 we have

2 if Frob, has order 1,
ap =140 if Frob, has order 2,
—1 if Frob, has order 3.

so the primes that split completely in H are exactly the primes such that a, = 2. As an
application, note that 7(2)n(23z) = A(z) mod 23 so if A(z) =), ~; 7(n)¢" then the splitting
behaviour of the polynomial X3 — X — 1 is determined by the values of 7(p) mod 23. This is
an example where a modular form encodes the splitting behaviour of a polynomial and hence

provides us with a ‘reciprocity law’ in the non-abelian case. For more examples of this kind, see
[HS17).
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Example 4.2.8. Let K = Q(v/—14). Then Clg ~ Z/4 with generator p = (3,/—14 4+ 1). We
have p? ~ (2,v/—11) and p? ~ (3, —/—14 + 1) so the associated quadratic forms are

Q1 = 2 + 14y
Qp = 322 + 2zy + 5y°
Qpe = 22% + Ty”
Qps = 322 — 2zy + 512

There are two characters 1 : Clg — C* such that 12 # 1. Choose ¢ such that ¥ (p) = i. We
have

_ 1 x24+14y2 222 4-7y?
fom b [ Sy ).

z,y€Z z,y€Z

which is a cusp form of level 56 and character x_s¢.

The two above examples deal with characters ¥ : Gxg — C* which are everywhere unramified
and so that we can give the explicit description using quadratic forms. Can we do the same if 1
is ramified? Suppose ¥ factors through some nontrivial modulus m: it defines a character of the
ray class group mod m, denoted Cl(m). Since the class group parametrizes quadratic forms up
to SLo(Z)-equivalence, we might expect ray class groups to parametrize quadratic forms with
extra data, since there is a surjective map Cl(m) — Clg. This idea is further pursued in [ISE17],
where the authors consider quadratic forms up to +I'1(IN)-equivalence. For our purposes, we
will interpret the ray class groups as quadratic forms with extra congruence conditions. Instead
of trying to make this precise, let’s give an example to illustrate the idea.

Example 4.2.9. Let K = Q(i) and m = 60k. Using class field theory, we compute that

(Z/2 x Fg)

Cllm) > =5 70y

~7Z/4,

and the prime p = (2 + i) € I(m) is a generator for Cl(m). So Cl(m) = {1,p,p% p3}. The set
of integral ideals a which are equivalent to (1) in Cl(m) correspond to ideals of the form (x)
where x € O with x = 1 mod 60k. The set of integral ideals a equivalent to p in Cl(m)
correspond to ideals of the form (y)p with y =1 mod 60k such that (y)p C Ok. Equivalently,
they correspond to ideals of the form (x) with z € Og and * = 2 4+ 7 mod 60k. There are
analogous congruences for the other ideal classes. If ¢ : Cl(m) — C* is a character that sends
p to ¢ then

fo=>_w(a)g"®

= > e ¢
AeCl(m) acA
Now

Z qNa _ Z qx2+y2
a~(1

) z,y€Z
(z,y)=(1,0) mod 6
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by the above remarks, and similarly for the other ideal classes. Since the classes p and p> in the
sum cancel out, we are left with

f¢: Z qNa_ ZqNa
a~(1)

a~p2
. 2242 2242
SIS Y
z,y€Z z,ye€Z
(z,y)=(1,0) (z.y)=(3,4)
mod 6 mod 6

if we switch the roles of x and y in the last sum, we can write f,;, more compactly as follows:
2 2
fo =Y (=1)¥g" v,
x?y

where the sum is taken over all x,y € Z such that

=1 mod 3,
y=0 mod 3,
r4+y=1 mod 2.

This is a cusp form of level |[Ax|N(m) = 144 with character x_4. The ray class field mod
mis £ = Q(i, vV12) and Gal(E/Q) ~ Dy4. The representation associated to fy is the unique
two-dimensional irreducible representation of Dy.

Example 4.2.10. Let’s compute all dihedral cusp forms of weight one and level 44. This is
equivalent with finding all odd irreducible dihedral representations of Gq of conductor 44. By
proposition all such representations are induced from a character ¥ : Gg — C* with K
a quadratic field such that |[Ax|Ng/q(f(¥)) = 44. So the possible values of K are

K = Q(i), Q(W1L) or Q(v~11). (4.4)

We examine each case seperately.

e If K = Q(i), we need a character ¢ : G — C* such that Nk ,q(f(«/)) = 11. But 11 is
inert in K so there is no ideal of norm 11 in K.

e If K = Q(+/11) then v : G — C* has to be everywhere unramified and 1% # 1. But the
class group of K is trivial, so no such 1 exists.

e The case K = Q(y/—11) is slightly more interesting. The class group of K is trivial, with
associated quadratic form
Q = 2® + zy + 3%
We want a character ¢ : Gxg — C* with conductor of norm 4. Since 2 is inert in K, the
conductor equals 20k. We have to compute the ray class group mod m = 20g. Using
class field theory, we see that

X
Cl(m) = %! ; ~F} ~Z/37Z

(14 204){+£1
where O denotes the (2)-adic completion of Of. If we put § = =1L then p = (§) € I(m)
is a generator of Cl(m). The integral ideals of K which are equivalent to (1) in Cl(m) are
precisely the ideals of the form (x + yd) with xz,y € Z and (z,y) = (1,0) mod 2. Similar
descriptions hold for the other ideal classes, for example we have

Z cht _ % Z qx2+:cy+3y27

a~p T,YyeZ
x even, y odd
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where we need to divide by 2 since each ideal a ~ p appears twice in the sum on the right
hand side since —1 =1 mod 20k. Now choose ¢ : Cl(m) — C* such that (p) = (3 =
e?™i/3 Then

1
_ Na Na 2 Na
fo=35 > "Gy G D g
a~(1) an~p ar~vp?
1 2 2 2 9,2 2 9,2
_ T +xy+3 re+xy+3 2 x4 +xy+3
=3 > AR I CRN ¢nrE g Y gt
z,y€Z T,y€Z z,y€Z
z odd, y even x even, y odd z odd, y odd

Alternatively, noting that integral ideals a ~ p are exactly ideals of the form (z)p with
acp = Nipﬁ such that x =1 mod 20k and Np =1 mod p, we can write f, using the
quadratic forms attached to p and p? ~ p:

1 2 2 2 2 2_ 2
fw _ - Z qx +axy+3y + ng?;x +zy+y + ng?)a: Ty+y

2
T,YyEZ
r odd, y even

E : 2 +ay+3y? 3z +zy+y?
q Yoy +q YTy

z,y€Z
z odd, y even

N

the first coefficients of fy are ¢ — ¢* — ¢® + ¢!t + ¢*° — ¢* + O(¢**). This is a newform of
level 44 and type (1,x-11). Since fy, = fy-1 it is the only dihedral form of level 44 and using
computer calculations (see next section) one can prove that in fact this is the only form of
level 44. How does the associated Galois representation look like? We first need to know the
ray class field mod 20k of K. We can either do this by bruteforce (i.e. by looking at a
table on http://www.1lmfdb.org of number fields of small discriminant) or using the theory of
complex multiplication (for an introduction to this beautiful subject, see [Sil94]). Indeed, since
K has class number one we know the elliptic curve C/Ok has rational j-invariant. Via the
approximation j(z) = ¢! + 744 + 196884q + 21493760¢> + O(q®) we calculate using SAGE that

14 +/—11
j <+2> = —32768.

Using the universal elliptic curve or built-in databases in SAGE we see that the curve
E:y?+y=a®—2>—72+10

has compex multiplication by Ox. We obtain the ray class field mod 20k by adding all z-
coordinates of the 2-torsion points. In these coordinates the multiplication by 2-isogeny looks
like

xt + 1422 — 822 + 90
[2](x,y): 3 1.2 y e
4x 4x 28z + 41

so adding all roots of the polynomial 423 — 422 — 28z + 41 to Q gives a field extension L/Q of
degree 6 with Gal(L/Q) ~ S3 ~ Ds3. The unique two-dimensional irreducible representation of
Ds is the one associated to fy.

46


http://www.lmfdb.org

N dim(Sl(Pl(N)))
23
31
39
44
47
52
55
56
57
59
63
68
71
72

N W W =N = DNDDN

Table 4.1.: weight one cusp forms of small level
4.3. Computing all cusp forms of weight one: the exceptional cases

The only examples we have given so far are cusp forms of dihedral type, so the question remains
whether we can explicitly construct forms with non-dihedral projective image. In fact, we
might wonder if there are explicit algorithms to compute the space of cusp forms of weight one
of a given level. For weight at least two, there exist explicit algorithms relying on the Eichler-
Shimura isomorphism phrased in the language of modular symbols (see [Ste07]). New ideas were
needed to provide algorithms for the weight one case. Buzzard and Lauder recently published
a database [BL] which contains all newforms f € S;(IV, x) and their projective image of level
N < 1500. This database was computed using the algorithm described in [Buzl4] with the
aid of the computer algebra package Magma. It goes roughly as follows: suppose we want to
compute the space S1(I'1(N)). Let g € Sk(I'1(N)) be a modular form whose g-expansion can be
computed to arbitrary precision (e.g. an Eisenstein series). The map

S1(T1(N)) = Sk+1(T'1(N))
fe=1ryg

is injective, and the space on the right hand side can be explicitly computed using modular
symbols. Tt follows that S;(I'1(N)) is contained in the space of g-expansions {g~*h | h €
Sik+1(T'1(N))}. Doing this for many g and taking intersections gives a good upper bound for
the dimension of S1(I'1(NV)). To get a lower bound, we can compute all dihedral forms of level
N by computing all odd dihedral representations of Gq using class field theory (the conductors
of the quadratic fields are bounded so this is in theory a finite process). Two possibilities can
arise. Either the upper and lower bound agree so every cusp form is dihedral and the dimension
is computed. In the other case, there is a possibility of having cusp forms of other then dihedral
type. If h is a suspected cusp form of weight one which lies in the intersection of all our test
spaces, then it is certainly meromorphic and weight k invariant so it suffices to prove that h? is a
weight two modular form. If the g-expansions of h? and some weight two cusp form agree up to
a high enough power of ¢ (e.g. the Sturm bound), then we know for sure that h is holomorphic.

As an example, all dimensions of nonzero S1(I'1(N)) up to N < 60 are given in table[4.1] In this
range all levels containing a newform do not contain oldforms. We have already encountered
some of these forms in example [4.2.7] and [4.2.10] The calculations of [BL] show that all cusp
forms of level N < 123 are dihedral so can be computed in the same fashion as in section 4.2.
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order 1 2 3
observed | 7.7% 23.8% 68.5%
expected | 8.3%  25%  66.6%

Table 4.2.: the A4 example

Buzzard and Lauder determined the smallest levels for which there exist a cusp form of type
Ay, Sq and As. Let us briefly discuss this. We will not try to rigorously prove that these forms
are of the desired type but only give heuristic arguments and an indication of how one could do
this. The following straightforward lemma will be useful [BL, Lemma 1]:

Lemma 4.3.1. Let g € PGLy(C) be an element of finite order n and g € GLy(C) any lift of
g. Then the complex number Tr(g)/det(g) is independent of the choice of g, and we denote it
by c(g). We have c(g) = 2+ ¢ + ¢~! where ( is a primitive nth root of unity so if g has order

1,2,3,4 then ¢(g) = 4,0, 1,2 respectively. If g has order 5 then ¢(g) = %

4.3.1. The A, case

The smallest N such that there exists an Ay form is N = 124 = 22 x 31. There are 4 newforms
on S1(T'1(N)) which are all tetrahedral. If ¢ = ¢*™/12 and w = €2™/3 then one of these newforms
is given by the g-expansion:

-G+ (-3 — ¢t +wi® — g+ (G- Od" + B+ (e
- qul 4 (4‘3 o C)q12 - wq13 4 <-2q14 4 C3q15 +q16 o C2q17 4 (_C?) 4 C)qlg 4 O(q20)

It’s character x is determined by x(63) = —1 and x(65) = w. How can we prove that this form
is of type A47 A heuristic way goes as follows. Let p = p; be the associated representation
and p the associated projective representation. By lemma [4.3.1] we can calculate the orders of
p(Frob,) by computing ¢(j(Frob,)) = a2/x(p). Chebotarev density theorem guarantees that the
orders of p(Frob,) will reflect the orders of the projective image. In this case, only elements of
order 1,2,3 seem to appear and the frequency of the orders for primes below 1000 is reported
in table The expected orders are computed using the fact that A4 has 12 elements of
which 1, 3,8 are of order 1,2, 3 respectively. The similarity between the observed and expected
frequencies strongly suggest that f is of type A4. To prove this rigourously, we can use some
tricks [BL] to see it could not be dihedral or of type Sy and As. Or we explicitly compute a
Galois representation of type A4 of conductor 124 which is known to come from some newform
[Buzl4, Lemma 4]. The number field cut out by the projective representation is the splitting
field of z* 4+ 722 — 2z + 14.

4.3.2. The S, case

The smallest level containing an Sy form is N = 148 = 22 x 37. There are two such forms of
this level and they are Galois conjugate. The g-expansion of one of them starts as follows:

—iq27+(—i—1)q29+q33—iq37—iq41+q47+(i+1)q51+q53+(—i—1)q57+0(q68).

Table shows the frequencies of the orders of the primes below 1000, against the frequencies
of the orders in S;. Since there are elements of order 4, it is certainly not an A4 or As form
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order 1 2 3 4
observed | 0.6% 38.7% 33.9% 26.8%
expected | 0.4% 37.5% 33.3% 25%

Table 4.3.: the Sy example

order 1 2 3 5
observed | 0.6% 28.6% 33.9% 36.9%
expected | 1.7%  25%  33.3%  40%

Table 4.4.: the A5 example

(since these groups don’t have elements of order 4). By computing all dihedral forms of level
148 using class field theory one can show that it is not dihedral either, so it is indeed of type
S4. The number field cut out by the projective Galois representation is the splitting field of
ot — 23 4+ 5% — 7w 4+ 12.

4.3.3. The A; case

The smallest level containing an icosahedral form is N = 633 = 3 x 211. If ¢ = €2™/20 then the
first coefficients of such a form are given by
¢+ (T +)° = CP+ (" +C -1 =T+ (- + O) + " -
— O+ (=P )+ (T + = O+ (= Mg = gt + O(gM).
Table shows the frequencies of the orders of the primes below 1000, against the frequencies

of the orders in As. The field cut out by the projective Galois representation attached to this
As form is the splitting field of 2° — 21122 — 12662 — 1899.
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A. Additional proofs

A.1. Von-Staudt Clausen theorem

The main reference for this section is [AIK14]. Recall that the Bernoulli numbers (By,),>0 are
defined by the following power series:

n>0

The first terms are By = 1,B; = —1/2 and By = 1/6. This seems to be a rather innocent
definition but the Bernoulli numbers are closely connected with many deep arithmetic problems.

Let us note that ; ;
+ —
et—1 2

is an even function, hence B, = 0 if n > 3 is odd. In what follows we give an elementary proof
of the Von Staudt-Clausen theorem used in the proof of theorem

Theorem A.1.1 (Von Staudt-Clausen). For all n > 1 we have

where the sum is over all primes p such that p — 1 divides n.

Proof. The statement is true for n = 1 and since B,, = 0 for n > 3 odd we may assume that
n = 2m is even. Let’s rewrite the generating function for B,. We have the following equalities
as formal power series:

t log((e! — 1) +1)

et —1 et —1
_ 1 1 k+1 (et B 1)k
et —1 Z(_ ) k
E>1
_ Z(—DRM
= k+1
k
o b
N k+1 n!
k>0 n>1
But we can expand the right hand side by noting that
k
t" n t"
SIS S I SR (R I
n>1 n>k a;>1 LR )

a1+-tar=n
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A counting argument shows that

2 (al,.é. ,ak> = kl.S(n, k)

a;>1
ai+--+ag=n

where S(n, k) is the number of partitions of {1,...,n} in k non-empty subsets. The S(n, k) are
called the Stirling numbers of the second kind. In conclusion we obtain

_1\k
anz(klllklsm,k) (A1)
k>0

So the only primes appearing in the denominator of B, are those dividing k + 1 for some
ke {1,...,n}. In fact one sees that if k¥ + 1 is composite and k # 4 then k + 1 divides k!. But
the Stirling numbers satisfy the identity (see [AIK14])

LS () o

7=0

st =4 () -2(0) o (%)) "

1
= 5 (3" =3.2" +3) (A.4)

SO

so since n is even we get that 3!.S(n,3) =3" —3.2" +3 =0 mod 4.
Conclusion: if k is composite then

(—1)FE!
k—+1

S(n,k) €Z
So the only case left to consider is if p = k + 1 is prime. We show that

—1 modp, ifp—1]|n

(=DFk!S(n, k) = { (A.5)

0 modp, ifp—11n

this is clear for p = 2 so assume p to be odd. We use formula for k = p — 1 and obtain

(—1)*k! S(n, k) pi ( )j”

7=0
Now )
(p B ) =(-1) modp
J

and .

pz_:jnz —1 modp, ifp—1]|n

— 0 mod p, ifp—11n
hence we obtain the result. O

Remark A.1.2. Once one has developped the theory of p-adic integration there are more
natural proofs of the Von Staudt-Clausen congruence.
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A.2. Deligne-Serre lifting lemma

In this section we prove the Deligne-Serre lifting lemma. We use the notions of associated and
support primes of a ring from commutative algebra. The reader is reminded of their definition
and basic properties below the proof of the lifting lemma. The proof is an adaptation of the one
given in [Sai09].

Lemma A.2.1 (Deligne-Serre lifting lemma). Let O be a discrete valuation ring with maximal
ideal m, residue field k = O/m and fraction field K. Let M be a free O-module of finite rank.
Let 7 C Endp(M) be a commuting family of endomorphisms of M. Suppose 0 # f € M/mM
satisfies T'(f) = arf (ar € k) for all T € T.

Then there is a discrete valutation ring @’ with maximal ideal m’ where O C O, m' N O =m
and the fraction field of (' is a finite extension of K such that the system of eigenvalues {ar }re7
has a lift to M/ = M ®o O': there exists a nonzero f’ € M’ such that

T(f)=dpf/ VT €T

with a/, € O such that a/» = ap mod m/M’.

Proof. Let H be the O-subalgebra of Endp (M) generated by 7. Since M is a free O-module
of finite rank, Endp (M) and hence H is a free O-module of finite rank as well. Moreover, H
is an integral extension of O, since it is a finitely generated O-module. So Hx = H Qo K is
a commutative finite K-algebra, hence is an Artinian ring. Since an Artinian ring is a direct
product of Artinian local rings [AM69, Theorem 8.7] we can write

He= ] (e

meSpec(Hg)

where the product is over all maximal ideals of Hx and where (H),,, has residue field Hx /m
which is a field extension of K of finite degree. By lemma and the fact that the tensor
product of finite K-algebras distributes over direct products, we see that there exists a field
extension K'/K of finite degree such that Hyr = H ®0 K' = Hx @k K' is a direct product of
Artinian local rings whose residue fields are isomorphic to K’. Let O be the integral closure of
O in K'. By the Krull-Akizuki theorem [Neu99, Proposition 1.12.8], O is a Dedekind domain
as well (note that we don’t assume the extension K'/K to be seperable). Take a maximal ideal
m’ of O. Define O’ to be the localization of O at m’. Then O’ is a discrete valuation ring with
maximal ideal m’ and fraction field K’, such that O N'm’ = m. Replacing O by O’, K by K’,
k by O'/m' and M by M ®» O, we can assume that Hg is a product of Artinian local rings
whose residue fields are isomorphic to K. We will do this in what follows.

Define x : H — k by sending 7' € H to ar where T'(f) = arf. Since O C H, the homorphism y
is surjective and so the ideal ker(x) is maximal. Take a minimal prime ideal p contained in ker(y)
(such a p exists by Zorn’s lemma). By lemma p is contained in the set of zero-divisors of
‘H. Since O is a domain, this implies that O Np = 0. The prime ideals of Hx correspond to the
prime ideals of H which intersect trivially with O, so p corresponds to a prime ideal P in Hg
and

K~ 'HK/'P ~ (7’[/]3) XKoo K,

so the fraction field of H/p is isomorphic to K. Moreover, since O — H/p is an integral
extension and O is integrally closed, we see that in fact H/p ~ O. This provides us with a map
X' :H — H/p ~ O, defined by the canonical projection. Since the maximal ideal ker(y) gets
mapped to a maximal ideal in H/p ~ O under x’, we see that in fact x’(ker(x)) € m. Since
T — ap € ker(x) we get X'(T') = ar mod m and the following diagram commutes:
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It remains to show that P is an associated prime of Mg = M®p K, i.e. is of the form Annyy,. (f')
for some non-zero element f’ € Mpg. Because then we can suppose f’ to be in M, and f’ is
annihilated by T'— x/(T") and so T'(f') = X'(T)f and x'(T') = ar mod m so this f’ satisfies the
sought requirements of the lemma.

We first show that p = Anny/p, (f), which is the same as showing that p+mH = Anng(f). The
inclusion ‘C’ for the latter equality is clear. To show the other inclusion, take a T' € Anny(f).
We know that T' — a’» € p and a/, — ar € mH so we have T' = ar mod p + mH. Since T'f =0
mod mM by assumption, we see that arf =0 mod mM. But f # 0in M/mM so ar = 0in k,
hence ar € mH. This shows that T' € p + mH so we have indeed the equality Anngy,,(f) = p.
This shows that p is a support prime of M /mM, hence it is an associated prime by lemma
So Anngyjm(M/mM) C p. This implies that Annq, (Mg) € P. So P is a support prime of
Mg by lemma hence by the same lemma contains an associated prime . Since p is a
minimal prime of H, P is a minimal prime of Hg. This implies that P = B is an associated
prime itself. This concludes the proof of the theorem.

O]

Lemma A.2.2. Let F/K be a field extension of finite degree. If a field E contains the normal
closure of F//K and is of finite degree over K, the tensor product F' ® E is a direct product of
Artinian local rings with residue fields isomorphic to E.

Proof. Let E be such a field, which we will see as a subfield of an algebraic closure K of K.
We know that F @ FE is a direct product of Artinian local rings whose residue fields are
finite extensions of E, hence of K. So the residue fields are precisely the images of F-algebra
morphisms F @k E — K. Such morphisms correspond to K-algebra morphisms F — K. But
such a morphism factors through F' — E since E contains the normal closure of F/K. We
conclude that every morphism F ®; F — K factors through FF ®x E — E. So the image of
such a morphism is a field which is an E-algebra and admits an E-algebra morphism to E; this
implies that it must be equal to E. We conclude that F' ®x FE is a direct product of Artinian
local rings with residue fields isomorphic to FE. O

Lemma A.2.3. Let p be a minimal prime ideal of a (commutative) ring A. Then p is contained

in the set of zero-divisors.

Proof. Let s € p be nonzero. The ring A, has only one prime ideal, so every element of pA,
is nilpotent. So s/1 € A, is nilpotent. So s"t = 0 for some n > 1 and t € A\ p. If the
natural number n is taken to be minimal such that s"t = 0, then s 't # 0. So s is indeed a
zero-divisor. O

Definition A.2.4. Let A be a commutative ring and M an A-module.
1. The annihilator of M is defined as
Anna(M)={x € A|xm =0Vm € M}.

If m € M, we write Anna(m) for Anna({(m)).
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2. Say a prime ideal p of A is an associated prime of M if p is of the form Anny(m) for some
element m € M. We write Assa(M) for the set of associated primes of M.

3. Say a prime ideal p of A is a support prime of M if M, # 0. Equivalently, there exists an
m € M such that Ann(m) C p. We write Suppa (M) for the set of support primes of M.

Lemma A.2.5. Let A be a noetherian ring, M an A-module and p a prime ideal of A.
1. If M is non-zero, Assa (M) is non-empty,
2. If M is finitely generated, then p € Suppa(M) < Anna(M) C p,
3. Assa(M) C Suppa(M),

4. If p is a support prime, p contains an associated prime of M.

Proof. 1. An application of Zorn’s lemma.

2. If p is a support prime, then Ann4(m) C p for some m € M so Anna(M) C Annyg(m) C p.
Conversely, suppose M has generators my, ..., m,. If p is not an associated prime, we know
M, =0s0 s;m; =0 for some s; € A\ p foreach 1 <i <n. But then s =s1...5, € A\ p
annihilates all the m; so s € Anna(M)\ C p. This implies the claim by taking the
contrapositive.

3. If p is an associated prime, Anng(m) = p for some m € M so indeed Anns(M) C
Anna(m) = p.

4. Since M, # 0, it has an associated prime q which is of the form Anna(y/s) for some
y€ M,s e A\pand y/s # 0. We want to show that q is an associated prime. Let
ai,...,an be a set of generators for q. Then a;(y/s) = 0 so a;t;y = 0 for some t; € A\ p.
Write t =¢;...t, € A\ p. Since no element of A\ p annihilates y/s, we see that ty # 0.
So q is the annihilator of ty € M.

O
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