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Introduction

In 1974 Pierre Deligne and Jean-Pierre Serre published the paper [DS74], “Formes modulaires de
poids 1”, revealing a connection between modular forms of weight one and Galois representations.
Given a newform f of level N and type (1, χ) they construct a continuous two-dimensional Galois
representation

ρf : Gal(Q|Q)→ GL2(C)

whose Artin L-function equals the L-function of f . The purpose of this essay is to explain this
result and the necessary background surrounding it, as well as giving some explicit examples.
The use of L-functions is emphasized throughout, since they seem to provide a natural framework
for this connection.

The material is presented as follows. The first chapter provides some additional background on
modular forms of arbitrary level and explicit constructions of modular forms of weight one. The
content is largely taken from [Iwa97] and [Miy06]. In the interest of space we assume the basic
theory of modular forms as described in the first five chapters of [DS05]. The second chapter is
on Galois representations. The concepts of Artin conductor and Artin L-function are carefully
explained. The third chapter explains the Deligne-Serre construction and is at the heart of the
essay. The fourth and final chapter gives explicit examples of newforms of weight one classified
according to their projective image, using the theory of binary quadratic forms (dihedral type)
and databases recently made available by Kevin Buzzard and Alan Lauder [BL]. Most of the
dihedral examples are self-constructed, some are taken from [Ser75].

The first two chapters are meant to provide the necessary background for understanding chapter
3. The reader mainly interested in the Deligne-Serre construction may go straight to chapter 3,
going back to the first two chapters to fill in the details where necessary.

Before we continue I would like to thank my supervisor Dr. Jack Thorne for his helpful sugges-
tions and the interesting conversations.

Disclaimer

This essay might contain mathematical inaccuracies which are entirely due to the author; cor-
rections can be sent to jcsl@cam.ac.uk.

Notation

For a finite set X, we denote its cardinality by |X|.

IfK/Q is a quadratic extension with discriminant ∆, there is a unique non-trivial homomorphism
Gal(K/Q)→ C×. The associated Dirichlet character (via class field theory) is written χ∆ and
has conductor |∆|. For a prime p not dividing ∆, it is given by

χ∆(p) =

(
∆

p

)
where

(
·
p

)
is the Legendre symbol.
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1. Modular Forms

In this chapter we discuss some additional topics in the classical theory of modular forms which
are relevant to modular forms of weight one and Galois representations. We will give some
explicit constructions of modular forms in various ways. We will assume basic concepts of
modular forms on congruence subgroups and the theory of newforms. Details of the definitions
and proofs can be found in [DS05].

Let H = {z | =(z) > 0} be the upper half plane and f : H → C a holomorphic function. For
each k ∈ Z≥1 and α ∈ GL2(R) we define a function f |[α]k : H → C by

(f |[α]k)(z) = det(α)k−1(cz + d)−kf(α(z)).

If Γ ≤ SL2(Z) is a congruence subgroup we write Mk(Γ) for the space of modular forms on Γ
and Sk(Γ) for the subspace of cusp forms. If χ : (Z/NZ)× → C× is a Dirichlet character mod N
we write Mk(N,χ) (resp. Sk(N,χ)) for the space of modular forms (resp. cusp forms) on Γ0(N)
with character χ. For such f we will say its level is N and its type is (k, χ). Such modular forms
will be the main object of study of this essay.

For a fixed level N , let T ⊂ End(Mk(Γ1(N))) be the C-algebra generated be the Hecke operators
Tp for all primes p. Let T(N) be the subalgebra of T generated by the Hecke operators Tp for p not
dividingN (‘away fromN ’). We will often consider T and T(N) as subalgebras of End(Sk(Γ1(N))
or End(Mk(N,χ)) for a character χ since they are T-invariant subspaces of Mk(Γ1(N)). We
say f ∈ Mk(Γ1(N)) is a T-eigenform (resp. T(N)-eigenform) if f is an eigenform for the Hecke
operators Tn for all n ≥ 1 (resp. all n coprime to N). Note that the Diamond operators
〈d〉 : Mk(Γ1(N)) → Mk(Γ1(N)) for (d,N) = 1 are in T(N) and T so every T(N)-eigenform has
a nebentype χ.

1.1. L-functions, twisting, converse theorems

Central to the study of modular forms are their associated L-functions. An L-function is a
Dirichlet series with an Euler product and a functional equation. In this section we examine
some properties of these L-functions and state so-called converse theorems. We mostly follow
chapter 7 of [Iwa97] and section 4.3 of [Miy06].

1.1.1. Functional Equation

Let f ∈ Sk(N,χ) be a cusp form. We write WN =

(
0 −1
N 0

)
. Define

g = f |ωN= N1−k/2f |[WN ]k = (
√
Nz)−kf(−1/Nz).
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Since WNΓ1(N) = Γ1(N)WN we know that g ∈ Sk(Γ1(N), χ) and the normalization is chosen
such that g|ωN= (−1)kf . We can associate to f and g the L-functions

L(f, s) =
∑
n≥1

ann
−s (1.1)

L(g, s) =
∑
n≥1

bnn
−s (1.2)

where f =
∑

n≥1 anq
n and g =

∑
n≥1 bnq

n are the q-expansions at infinity of f and g. Since

|an|= O(nk/2) we see that L(f, s) converges absolutely for <(s) > k/2 + 1, and similarly for
L(g, s). We define the complete L-functions to be

Λf (s) =

(√
N

2π

)s
Γ(s)L(f, s) (1.3)

Λg(s) =

(√
N

2π

)s
Γ(s)L(g, s). (1.4)

The relation g = f |ωN translates into the functional equation

Λf (s) = ikΛg(k − s).

So the complete L-functions are entire and have a holomorphic continuation to the whole complex
plane, which shows that the L(f, s) and L(g, s) have a holomorphic continuation as well (since
1/Γ(s) is entire). An important observation is that the above arguments can be reversed, using
the inverse Mellin transform. More precisely, we have the following result, due to Hecke, which
applies to all modular forms (not only cusp forms):

Theorem 1.1.1 (Hecke). Suppose f and g are holomorphic functions on H given by the Fourier
series

f(z) =
∑
n≥0

ane
2πinz,

g(z) =
∑
n≥0

bne
2πinz,

such that an, bn = O(nα) as n→∞ for some positive constant α. Let N, k be positive integers
and put

L(f, s) =
∑
n≥1

ann
−s, L(g, s) =

∑
n≥1

bnn
−s, (1.5)

Λf (s) =

(√
N

2π

)s
Γ(s)L(f, s), Λg(s) =

(√
N

2π

)s
Γ(s)L(g, s). (1.6)

Then the following are equivalent:

1. The functions f and g satisfy

g(z) = (
√
Nz)−kf(−1/Nz).

2. Both Λ(f, s) and Λ(g, s) have a meromorphic continuation to the whole complex plane,
the function

Λ(f, s) +
a0

s
+

b0i
k

k − s
(1.7)
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is entire, bounded on vertical strips and satisfies

Λf (s) = ikΛg(k − s)

.

Proof. See [Iwa97, Theorem 7.3].

We will apply this result to obtain a converse theorem for modular forms on SL2(Z) (see theorem
1.1.3).

1.1.2. Twisting

We can get more functional equations by ‘twisting’ a modular form by a primitive Dirichlet
character ψ.

Theorem 1.1.2. Let f ∈ Mk(N,χ) be a modular form of type (k, χ) where χ is a Dirichlet
character mod N . Let ψ be a primitive Dirichlet character of conductor r coprime to N . If f
has q-expansion

f =
∑
n≥0

anq
n,

then the twisted form
fψ =

∑
n≥0

ψ(n)anq
n

belongs to Mk(Nr
2, χψ2). Moreover, if f is a cusp form then so is fψ.

Proof. See [Iwa97, Theorem 7.4].

Moreover, a computation [Iwa97, Theorem 7.5] shows that fψ|ωN= w(ψ)g|ψ̄ where g = f |ωN and
w(ψ) is a constant. Now write Lf (ψ, s) for the twisted L-function L(fψ, s) and

Λf (ψ, s) = Λfψ(s) =

(√
Nr

2π

)s
Γ(s)Lf (ψ, s). (1.8)

Then applying the previous results shows that Λf (ψ, s) has a holomorphic continuation to the
whole complex plane and satisfies the functional equation

Λf (ψ, s) = w(ψ)ikΛg(ψ̄, k − s) (1.9)

with g = f |ωN .

1.1.3. Converse theorems

We already observed that theorem 1.1.1 implies a converse theorem for modular forms on SL2(Z).
Let us state it here for clarity.
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Theorem 1.1.3 (Hecke’s converse theorem). Let k ≥ 1 be an integer and f a holomorphic
function on H of the form

f(z) =
∑
n≥0

ane
2πinz,

where an = O(nα) for some constant α > 0. Then f(z) belongs to Mk(SL2(Z)) if and only if
Λ(f, s) = (2π)−sΓ(s)L(s, f) has a meromorphic continuation to the whole complex plane, the
function

Λ(f, s) +
a0

s
+

ika0

k − s
is entire, bounded on vertical strips and satisfies the functional equation

Λ(f, s) = ikΛ(k − s, f).

The situation is more complicated for Γ0(N) since as a group it has much more generators in
general. We need to require functional equations for sufficiently many twists of the L-function.
To state the theorem, we need some notation. Fix a positive integer N . For a set M ⊂ Z≥1,
consider the following conditions:

(A) any element of M is prime to N ,

(B) for any two coprime integers a, b there exists an element m ∈M such that m ≡ a mod b.

An example of a set M satisfying both conditions is the set of all primes not dividing N (by
Dirichlet’s theorem). We will need Gauss sums to describe the constants appearing the functional
equations. If ψ is a primitive Dirichlet character mod m, then the Gauss sum of ψ is denoted
by

W (ψ) =
m−1∑
a≥0

ψ(a)e2πa/m.

for more on Gauss sums, see [Miy06, §3.1].

Theorem 1.1.4 (Weil’s converse theorem). Let k,N be positive integers, χ a Dirichlet character
mod N with χ(−1) = (−1)k and M⊂ Z≥1 a subset satisfying conditions (A) and (B). Let f, g
be holomorphic functions on H given by the Fourier series

f(z) =
∑
n≥0

ane
2πinz, (1.10)

g(z) =
∑
n≥0

bne
2πinz, (1.11)

such that an, bn = O(nα) as n→∞ for some positive constant α. The following conditions are
sufficient to conclude that f ∈Mk(N,χ), g ∈Mk(N,χ) and g = f |ωN :

1. The functions Λf (s), Λg(s) as defined in equation 1.6 have a meromorphic continuation to
the whole s-plane, the function

Λ(f, s) +
a0

s
+

b0i
k

k − s
(1.12)

is entire and bounded on vertical strips and satisfies

Λf (s) = ikΛg(k − s).
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2. For any primitive Dirichlet character ψ with conductor mψ ∈ M, the function Λf (ψ, s)
as defined in equation 1.8 has a holomorphic continuation to the whole complex plane, is
bounded on vertical strips and satisfies the functional equation

Λf (ψ, s) = ikCψΛg(ψ, k − s),

with Cψ = χ(mψ)ψ(−N)W (ψ)W (ψ̄)−1.

Moreover, if L(f, s) is absolutely convergent on a half-plane <(s) > k− δ for some δ > 0 then f
is a cusp form.

Proof. See [Miy06, Theorem 4.3.15].

1.2. Eisenstein Series

Recall that if Γ is a congruence subgroup and f, g ∈ Mk(Γ) are modular forms where either f
or g (or both) is a cusp form, then the integral

〈f, g〉 =

∫
Γ\H

f(z)g(z)yk
dxdy

y2

is well-defined. It thus makes sense to ask whether a modular form f ∈ Mk(Γ) is orthogonal
to all cusp forms g ∈ Sk(Γ). This defines the space of Eisenstein series, denoted Ek(Γ), and we
have the following decomposition:

Mk(Γ) = Ek(Γ)⊕ Sk(Γ).

The space Ek(Γ1(N)) is well-understood and has a basis of T(N)-eigenforms for all Hecke oper-
ators called generalized Eisenstein series. They correspond naturally to Dirichlet L-functions of
Dirichlet characters.

To illustrate the idea behind Eisenstein series on Γ1(N) it’s worth looking at Eisentein series on
SL2(Z) from the viewpoint of L-functions. Suppose we start with the Riemann zeta function

ζ(s) =
∑
n≥1

n−s =
∏
p

(1− p−s)−1.

How can we associate a modular form to it? If we put ξ(s) = π−s/2Γ(s/2)ζ(s) then we have
the classical functional equation ξ(s) = ξ(1− s). Looking at the Euler product we see that ζ(s)
couldn’t be the L-function of a modular form, but we should consider the product of two zeta
functions. Put

L(s) = ζ(s)ζ(s− k + 1)

for k ≥ 2 an even integer. We have

ξ(s)ξ(s− k + 1) = π−sπ
k−1

2 Γ
(s

2

)
Γ

(
s− k + 1

2

)
ζ(s)ζ(s− k + 1)

= π−sπ
k−1

2 Γ
(s

2

)
Γ

(
s+ 1

2

)
2k/2w(s)−1L(s)

= π−sπ
k−1

2 π1/221−sΓ(s)2k/2w(s)−1L(s)

= 2(2π)k/2(2π)−sΓ(s)L(s)w(s)−1

8



where we used the formulas

Γ(s+ 1) = sΓ(s) (1.13)

Γ
(s

2

)
Γ

(
s+ 1

2

)
= π1/221−sΓ(s) (1.14)

and where we have set

w(s) = (s+ 1− k)(s+ 1− k − 2) . . . (s− 1).

Since ξ(s)ξ(s − k + 1) is invariant under s 7→ k − s and w(k − s) = (−1)k/2w(s) we conclude
that the complete L-function

Λ(s) = (2π)−sΓ(s)L(s)

satisfies the functional equation
Λ(s) = ikΛ(k − s).

Since the product of two Dirichlet series has as coefficients the Dirichlet convolution of the
coefficients of the factors we see that

L(s) =
∑
n≥1

σk−1(n)n−s,

where σk−1(n) =
∑

d|n d
k−1 is the (k − 1)-th power sum of divisors function. If k ≥ 4 we see

that Λ(s) is holomorphic except for a simple pole at s = 0 and k where the residue at s = k is

(2π)−kΓ(k)ζ(k) = (2π)−kΓ(k)(−1)k/2+1Bk(2π)k

2.k!

= −ikBk
2k

So by the functional equation we conclude that

Λ(s)− Bk/2k

s
− ikBk/2k

k − s

is entire and bounded on vertical strips. We conclude that

Ek =
−Bk
2k

+
∑
n≥1

σk−1(n)qn

is a modular form on SL2(Z) of weight k by theorem 1.1.3. Notice that the constant −Bk/2k
came naturally out of our calculations.

We can do something similar for the L-functions of two Dirichlet characters. Let χ be a primitive
Dirichlet character mod M with associated Dirichlet series

L(χ, s) =
∑
n≥1

χ(n)n−s =
∏
p

(
1− χ(p)p−s

)−1
.

If

Λ(χ, s) =

(
M

π

)s/2
Γ

(
s+ u

2

)
L(χ, s),

where u ∈ {0, 1} is chosen such that χ(−1) = (−1)u, then

Λ(χ, s) = εχΛ(χ̄, 1− s) (1.15)

9



where εχ = i−uW (χ)M−1/2 and W (χ) =
∑M−1

a=0 χ(a)e2πia/M is the Gauss sum of χ. We can
exploit this functional equation to get modular forms on Γ0(N). Suppose χ1, χ2 are primitive
Dirichlet characters mod M1 and M2. Set M = M1M2 and χ = χ1χ2 which is a Dirichlet
character mod M . Let k be a positive integer that we assume to be different from 2 for simplicity.
Then similarly as above we form the L-function

L(s) = L(χ1, s)L(χ2, s− k + 1).

The coefficients of L(s) are given by ‘generalized divisor functions’:

σχ1,χ2

k−1 (n) =
∑
d|n

χ1(d)χ2(n/d)(n/d)k−1.

We set

Λ(s) =

(√
M

2π

)s
Γ(s)L(s).

A similar calculation as above and using Weil’s converse theorem shows the following.

Theorem 1.2.1. Let χ1, χ2 be primitive Dirichlet characters mod M1 and mod M2 respectively.
Put M = M1M2 and χ = χ1χ2. Let k 6= 2 be a positive integer satisfying χ(−1) = (−1)k. Then
there exists an a0 ∈ C such that

Eχ1,χ2

k (z) := a0 +
∑
n≥1

σχ1,χ2

k−1 (n)qn ∈Mk(M,χ).

It is given by

1. a0 = 0, if k 6= 1 and χ1 is non-trivial, or if both χ1 and χ2 are non-trivial.

2. a0 = L(1− k, χ)/2, otherwise.

Moreover, since the associated L-function has an Euler product, Eχ1,χ2

k is an eigenform for all
the Hecke operators Tn, n ≥ 1.

Proof. See [Miy06, Theorem 4.7.1].

In fact, one can prove that Eχ1,χ2

k are all in the Eisenstein space of Γ1(N). If χ = χ1χ2 is a
character mod M with M dividing N then Eχ1,χ2

k (dz) is in the Eisenstein space Ek(N,χ) if
dM | N and is a T(N)-eigenform. By counting dimensions [Miy06, Theorem 4.7.2] we can fully
describe the space Ek(N,χ).

Theorem 1.2.2. Let k 6= 2 be a positive integer and and χ a Dirichlet character mod N
satisfying χ(−1) = (−1)k. The Eisenstein space Ek(N,χ) is spanned by the forms Eχ1,χ2

k (dz)
where χ1, χ2 are primitive Dirichlet characters mod M1, M2 with χ1χ2 = χ and dM1M2 | N .
Moreover, they form a basis for k > 2 if one considers ordered pairs (χ1, χ2) satisfying the
above conditions and for k = 1 if one considers unordered pairs {χ1, χ2} satisfying the above
conditions.

1.3. Hecke characters and L-functions

Let K be a number field of degree n over Q with r1 real and 2r2 complex embeddings. Write
τ1, . . . , τr1 for the real embeddings and τr1+1, τ r1+1, . . . , τr1+r2 , τ r1+r2 for the pairs of complex
conjugate embeddings.
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We will define a Hecke character of a number field K, which is a generalization of a Dirichlet
character, and see how they provide examples of modular forms in certain cases. Let OK be the
ring of integers of K, I the group of nonzero fractional ideals and P the subgroup of principal
ideals of I. We know ClK = I/P is a finite group, the class group. More generally, if m is an
integral ideal of K, set

I(m) = {a ∈ I | (a,m) = 1}
P (m) = {(a) ∈ P | a ≡ 1 mod∗m}

where a ≡ 1 mod∗m means that vp(a− 1) ≥ vp(m) for each prime p dividing m. It is a fact that
I(m)/P (m) is a finite group, called the ray class group mod m. Class field theory more or less
says that there is a unique abelian extension of K, the ray class field mod m, denoted Km which
is unramified outside m and for which the homomorphism

I(m)/P (m)→ Gal(Km/K),

that sends a prime ideal p ∈ I(m) to the Frobenius at p in Gal(Km/K), is an isomorphism. Note
that this morphism is well-defined since Gal(Km/K) is abelian.

Definition 1.3.1. Let ξ : I(m)→ S1 be a homomorphism. We say ξ is a Hecke character mod
m if

ξ((a)) =

r1+r2∏
ν=1

(
τν(a)

|τν(a)|

)uν
|τν(a)|ivν for a ≡ 1 mod∗m

where uν , vν (1 ≤ ν ≤ r1 + r2) are real numbers such that

• uν ∈

{
{0, 1} (τν real),

Z (τν complex ),

•
∑r1+r2

ν=1 vν = 0.

Remark 1.3.2. There is another definition of Hecke characters in terms of ideles. If JK denotes
the ideles of K then a Hecke character is a continuous morphism JK/K

× → S1. Since we are
interested in explicit examples the classical definition of Hecke will suffice for our purposes.

Clearly if m divides n then every Hecke character mod m is a Hecke character mod n. The
smallest ideal m (in the obvious sense) such that a Hecke character ξ is defined mod m is called
the conductor of ξ. If the conductor of ξ mod m equals m we say ξ is primitive (this is the
exact analogue of Dirichlet characters). Furthermore, if ξ satisfies the additional conditions that
vν = 0 for all ν and uν = 0 for τν complex then we say ξ is a class character. This implies that
ξ defines a homomorphism on some ray class group of K (of modulus m ∪ {real places of K}).
Note that class characters of conductor (1) = OK are precisely the characters on the narrow
ideal class group of K. We can always extend a Hecke character ξ to be a function on I by
setting ξ(a) = 0 if (a,m) = 1.

For each Hecke character ξ : I((m))→ S1 we define the Hecke L-function by (s ∈ C)

L(ξ, s) =
∑
a

ξ(a)N(a)−s.

where the sum if taken over all non-zero integral ideals of K and N(a) = |(OK/a)| is the absolute
norm. This converges absolutely for <(s) > 1 and has an Euler product

L(ξ, s) =
∏
p

(
1− ξ(p)N(p)−s

)−1
,

11



where the product runs over all primes of K. Note that if ξ is the trivial character mod (1)
then L(ξ, s) is the Dedekind zeta function of K. By generalizing the proof for the Riemann
zeta-function, Hecke obtained a functional equation for every Hecke L-function:

Theorem 1.3.3. Let ξ be a primitive Hecke character of conductor m. Put

Λ(ξ, s) =

(
2r1 |∆F |N(m)

(2π)n

)s/2 r1+r2∏
ν=1

Γ

(
nν(s+ ivν) + |uν |

2

)
L(ξ, s)

where nν is 1 if τν is real and 2 if τν is complex. Then Λ(ξ, s) has an analytic continuation to a
meromorphic function on the whole s-plane, and satisfies the functional equation

Λ(ξ, 1− s) = T (ξ)Λ(ξ̄, s),

where ξ̄ is the conjugate Hecke character and T (ξ) a constant only depending on ξ. Moreover,
Λ(ξ, s) is entire if ξ is nontrivial.

Proof. See [Miy06, Theorem 3.3.1].

The Gamma factors appearing in Λ(ξ, s) can be interpreted as the Euler factors corresponding
to the infinite places.

It might be worth seeing theorem 1.3.3 for a simple example. If ξ is a class character mod m
of Q, then ξ((a)) = sgn(a)u for all a ≡ 1 mod∗m. Defining χ(a) = ξ((a)) for positive integers
a coprime to m and extending periodically mod m, we see that χ is a Dirichlet character mod
m satisfying χ(−1) = χ(m − 1) = (−1)u. The functional equation for ξ is just the functional
equation for χ as in equation 1.15. If ξ is a class character of an imaginary quadratic number
field F , then

Λ(ξ, s) = (|∆F |N(m))s/2(2π)−sΓ(s)L(ξ, s) (1.16)

which looks like the complete L-function of a modular form. Using Weil’s converse theorem we
can make this connection precise.

Say that a Hecke character ξ mod m on a number field K is induced from a Dirichlet character
ψ through the norm if it is of the form ψ ◦N i.e. if

ξ(a) = ψ(N(a))

for all a ∈ I(m).

Theorem 1.3.4. Let K be an imaginary quadratic field with discriminant ∆ and ξ a Hecke
character mod m such that

ξ((a)) =

(
a

|a|

)u
(a ≡ 1 mod m)

with u ∈ Z. Let
f(z) =

∑
a

ξ(a)N(a)u/2qN(a),

where a runs over all integral ideals of K. Then f(z) ∈ Mu+1(N,χ) with N = |∆|N(m) and f
is a cusp form unless u = 0 and ξ is induced from a Dirichlet character through the norm. The
character χ is defined by

χ(m) = χ∆(m)ξ((m))

12



where

χ∆(m) =

(
∆

·

)
is the quadratic character associated to K. Moreover, f is a T-eigenform and if ξ is primitive
then f is a newform.

Proof. See [Miy06, Theorem 4.8.2].

The fact that f is a T-eigenform follows from the fact that L(ξ, s) has an Euler product. If we
choose u = 0, we get modular forms of weight one. The modular forms constructed this way
have a close connection to theta series. We will explore this in more detail in the section on
dihedral representations in chapter 4. There exists a similar theorem for real quadratic fields:

Theorem 1.3.5. Let K be a real quadratic field with discriminant ∆ and ξ a Hecke character
mod m such that

ξ((a)) = sgn(aτ ) (a ≡ 1 mod m)

for some embedding τ : K → R. Let

f(z) =
∑
a

ξ(a)qNa,

where a runs over all integral ideals of K. Then f(z) ∈ S1(N,χ) with N = ∆N(m) and χ is
defined by

χ(m) = χ∆(m)ξ((m)).

Moreover, f is an eigenform and if ξ is primitive then f is a newform.

Proof. See [Miy06, Theorem 4.8.3].

1.4. Properties of eigenvalues

1.4.1. Rationality

There are certain results for which the algebro-geometric theory of modular forms is indispens-
able. This aspect is not explained in this essay but we will need the result nevertheless:

Theorem 1.4.1. Let f =
∑

n≥1 anq
n ∈ Sk(N,χ) be a cusp form and σ : C → C an automor-

phism.

1. The function fσ(z) =
∑

n≥1 a
σ
nq
n is an element of Sk(N,χ

σ),

2. if the coefficients an are algebraic, they have bounded denominators,

3. the eigenvalues of the Hecke operators Tn for n ≥ 1 lie in the ring of integers of a number
field K.

Proof. See [DS74, §2.7] and [DI94, §12.3].

It is possible to give a more elementary proof of this result for weight k ≥ 2, see [Shi94, Theorem
3.52]. There are tricks to derive the theorem for weight k = 1 via this approach, as explained in
[Ser75, §2.5].

13



Lemma 1.4.2. Let L be the set of cusp form in Sk(Γ1(N)) with rational integer q-expansion.
Then L is a free Z-module of finite type. Moreover, let R be a subring of C and let SR be the
set of cusp forms in Sk(N,χ) with q-expansion in R[[q]]. Then SR ∼= L⊗Z R.

Proof. There exists an integer B ≥ 1 such that the map

Sk(N,χ)→ CB

f =
∑
n≥0

anq
n 7→ (a1, . . . , an)

is injective. One can take B = 1 + k[SL2(Z) : Γ0(N)]/12. The image of L under this map will
be a submodule of ZB, hence free of finite type. So L is free of finite type. The remaining part
of the corollary follows from [DI94, §12.3].

1.4.2. Eigenvalues at the bad primes

Let f ∈ Sk(N,χ) be a newform with L-function

L(f, s) =
∑
n≥1

ann
−s =

∏
p|N

(1− app−s)−1
∏
p-N

(1− app−s + χ(p)pk−1−2s)−1.

Growth conditions on the coefficients of f are of great interest for the study of modular forms
(the Ramanujan-Petersson conjecture is an example, see corollary 3.6.1). The eigenvalues of Tp
at the bad primes are easy to describe.

Proposition 1.4.3. Let f =
∑

n≥1 anq
n ∈ Sk(N,χ) be a newform and p a prime dividing N .

Then

|ap|=


0 if p2 | N and χ can be defined mod N/p,

p(k−1)/2 if χ can’t be defined mod N/p,

pk/2−1 if p2 - N and χ can be defined mod N/p.

Proof. See [Li74, Theorem 3].
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2. Galois Representations

This chapter gives a short introduction to Galois representations. We begin with some general
considerations where we include mod p and l-adic representations. We define the Artin conductor
and Artin L-function for Artin representations. We end with a few results needed in the proof
of the Deligne-Serre construction in chapter three.

2.1. Definitions

2.1.1. Representations

Let G be a topological group and F a topological field. For each d ≥ 1, we give GLd(F ) the
subspace topology coming from Matd(F ) ' F d×d.
Definition 2.1.1. A representation of G is a continuous homomorphism

G→ GLd(F ).

We call d the degree of the representation and F the field of definition.

The most important case for us will be if G is a profinite group. Recall that a profinite group
is the inverse limit of an inverse system ((Ai)i∈I , (fij)i≤j∈I) of finite groups:

G = lim←−Ai =

{
(ai) ∈

∏
i∈I

Ai | fij(aj) = ai, ∀i ≤ j
}
⊆
∏
i∈I

Ai.

We equip G with the subspace topology coming from the topology on
∏
i∈I Ai where every

finite group Ai is given the discrete topology. It is the weakest topology which makes the
natural projection maps G → Ai continuous. Under this topology, profinite groups are always
Hausdorff, compact and totally disconnected. Moreover, note that every open subgroup is of
finite index: the quotient is compact and discrete, hence finite. The open normal subgroups of
G form a neighbourhood basis of the identity.

Example 2.1.2. If L/K is a (possibly infinite) Galois extension, then Gal(L/K) is a profinite
group and we have an isomorphism

Gal(L/K) ∼= lim←−
E/K⊂L/K
finite Galois

Gal(E/K)

Where the inverse limit runs over all the finite Galois subextensions of E/K. The topology on
Gal(L/K) that arises in this way is called the Krull topology.

The above discussion specializes to the Galois extension K̄/K where K̄ is a separable closure of
K. We will write its Galois group as GK = Gal(K̄/K). We say GK is the absolute Galois group
of K. In this case, a representation

ρ : GK → GLd(F )

is called a Galois representation. According to the field of definition F we say ρ is
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• an Artin representation if F = C (with the Euclidean topology),

• a mod p representation if F = Fp (with the discrete topology),

• an l-adic representation if F = Ql (with the l-adic topology).

We will be interested in the case where K is a number field or local field of characteristic zero
(where separability is automatic).

Lemma 2.1.3. If G is profinite, then every complex representation ρ : G→ GLd(C) (where C
is equipped with the Euclidean topology) has open kernel.

Proof. We claim that there is an open neighbourhood U of the identity Id in GLd(C) which
contains no nontrivial subgroups. Indeed, take the norm ||·|| on Matd(C) induced from the
norm on Cd given by ||(zi)||=

√
|z1|2+ · · ·+ |zd|2. Set

U = {A ∈ GLd(C) | ||A− Id||< 1/2}.

Suppose A ∈ U,A 6= Id lies in a nontrivial subgroup contained in U . Since ||P−1AP − Id||=
||A− Id|| we may suppose that A is in its Jordan canonical form. If one of the eigenvalues of A
has absolute value different from 1 the norms ||An|| for n ∈ Z are clearly unbounded so An 6∈ U
for some n ∈ Z. If A has an eigenvalue α 6= 1 with |α|= 1 then |αn − 1|> 1/2 for some n ∈ Z
so An 6∈ U for some n ∈ Z. The only case left is when all the eigenvalues of A are equal to
1. But in that case A has at least one non-trivial Jordan block since A 6= Id so again ||An|| is
unbounded for n ∈ Z so An 6∈ U for some n ∈ Z. This covers all cases and shows that U does
not contain any non-trivial subgroup.

Now given such an open set U and a representation ρ, look at its inverse image ρ−1(U) in G.
Since G is profinite and ρ−1(U) is open, there is a subgroup H of finite index contained in
ρ−1(U). But then ρ(H) is a subgroup of GLd(C) contained in U , hence trivial. So H is in the
kernel of ρ, which implies it is a finite index closed subgroup of G, hence open.

So for every field K, a representation ρ : GK → GLd(C) factors through a finite extension
of K, so we might as well equip GLd(C) with the discrete topology (some authors do this by
default). It is important to remark that if K is a number field, not every Galois representation
GK → GLd(F ) has finite image. Indeed, if F = Ql we will see examples where the image is
infinite (see theorem 3.2.1 of the next chapter).

Lemma 2.1.4. Let G be a profinite group and ρ : G → GLd(Ql) a continuous representation.
Then ρ can be conjugated to a representation with values in GLd(Zl).

Proof. It is enough to show that G stabilizes some lattice in Qd
l , i.e. a free Zl-module which

contains a basis for Qd
l . Take the standard lattic L = Zdl ⊂ Qd

l . The set of all A ∈ GLd(Ql)
such that A ·L = L is precisely GLd(Zl), an open subgroup of GLd(Ql). So the set of all g ∈ G
such that ρ(g)L = L is an open subgroup H of G. So G/H is finite and G stabilizes the lattice∑

g∈G/H

g · L.
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2.1.2. Ramification

Let’s define the notion of ramification for a Galois representation. Let K a number field with
absolute Galois group GK . For each prime p in K, choose an embedding K → Kp. The
restriction map Gal(Kp/Kp) → Gal(K/K) is injective, its image is the decomposition group
Dp ⊂ GK . The ring of integers of Kp is stable under the action of Gal(Kp/Kp), as is its unique
maximal ideal. The residue field may be identified with the algebraic closure k of k, where k is
the residue field of K. Let Ip be the kernel of the reduction map

Dp → Gal(k/k).

Since k = Fq is a finite field, the group Gal(k/k) = Gal(Fq/Fq) is topologically cyclic, generated
by the Frobenius x 7→ xq. Since the reduction map Dp → Gal(k/k) is surjective, there exists
an element Frobp ∈ Dp which reduces to the Frobenius on k. We call such elements Frobenius
elements.

Definition 2.1.5. Let L be a finite extension of Qp and K a number field.

• We say a representation σ : GL → GLd(F ) is unramified if the inertia group of GL is in
the kernel of σ. Otherwise, we say σ is ramified.

• We say a representation ρ : GK → GLd(F ) is unramified at a prime p of K if ρ|Ip is trivial
or equivalently, if the associated local representation ρ|Dp : GKp → GLd(F ) is unramified.

For an ideal m of K, say ρ is unramified outside m if ρ is unramified for every prime p not
dividing m.

This definition doesn’t depend on the choice of the embedding K → Kp. If ρ : GK → GLd(F ) is
unramified at p and Frobp is a Frobenius at p then ρ(Frobp) is well-defined up to conjugation. It
thus makes sense to speak of the trace, determinant and characteristic polynomial of ρ(Frobp).
If ρ factors through a finite extension L/K then it is ramified at only finitely many primes.

2.2. Artin conductor

In this section we will define for each representation ρ : GK → GLd(C) an ideal in K which
measures the ramification behaviour of ρ in a precise way, called the Artin conductor. To do
this, we will first look at the local case. We refer to [Ser95, chapter VI] for the proofs.

Suppose L/K is a finite Galois extension of local fields, which we will assume to be finite
extensions of Qp. Recall that G = Gal(L/K) comes with a filtration

G ⊃ G0 ⊃ G1 ⊃ G2 ⊃ · · ·

called the ramification groups in the lower numbering. If L,K have residue fields kL, kK then
G0 is the kernel of the reduction map G→ Gal(kL/kK) and G1 is the unique sylow-p-subgroup
of G0. By setting Gt = Gdte for every real number t > −1 (set G−1 = G) and

φL/K(u) =

∫ u

0

dt

[G0 : Gt]

We define the upper ramification groups to be Gu = Gφ−1
L/K

(u) for u > −1.
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Definition 2.2.1. The Artin conductor of a representation ρ : G→ GL(V ) is defined as

f(ρ) =
∞∑
i=0

|Gi|
|G0|

dim(V/V Gi)

where V Gi denotes the subspace of V fixed by Gi.

It is a non-trivial fact that the Artin conductor of a representation is always an integer. We can
rewrite it as follows:

f(ρ) =

∫ ∞
−1

|Gt|
|G0|

dim(V/V Gi) dt

=

∫ ∞
−1

|Gt|
|G0|

dim(V/V G
φL/K (t)

) dt.

Making the substitution u = φL/K(t) and noting that φ′L/K(t) = |Gt|
|G0| almost everywhere, we

obtain the expression

f(ρ) =

∫ ∞
−1

dim(V/V Gu) du. (2.1)

Clearly, the representation ρ is unramified if and only if f(ρ) = 0. Equation 2.1 shows that we
have the following more precise statement:

Proposition 2.2.2. Let ρ : G→ GLd(C) be an irreducible representation of G and r the largest
integer such that ρ|Gr is non-trivial (if ρ|G0 is trivial, set r = −1). Then

f(ρ) = deg(ρ)(r + 1).

Proof. Since Gu is a normal subgroup of G, then subspace V Gu is G-invariant, hence equal to
V or trivial because ρ is irreducible. The result follows from equation 2.1.

Remark 2.2.3. This result is particularly useful for one-dimensional representations, which are
always irreducible.

Let’s move on to the global picture. Let L/K be a finite Galois extension of number fields with
G = Gal(L/K). For each prime p in K and prime P in L above p we have subgroups

DP|p ⊆ G

which are isomorphic to Gal(LP/Kp) where LP and Kp are the P-adic and p-adic completions
of L and K respectively. If ρ : G → GLd(C) is a representation we can restrict it to DP|p and
get a local representation

ρp : Gal(LP/Kp)→ GLd(C).

Set f(ρ, p) = f(ρp), which doesn’t depend on the choice of the prime P above p. Since ρ is
ramified at only finitely many primes, the product

f(ρ) =
∏
p

pf(ρ,p)

is a well-defined integral ideal of K, and is called the Artin conductor of ρ. It satisfies the
following properties:

18



Proposition 2.2.4. Let ρ, ρ′ be two complex representations of G = Gal(L/K). Then we have

1. f(ρ⊕ ρ′) = f(ρ)f(ρ′) and f(1G) = 1 where 1G is the trivial representation

2. If K ′/K ⊂ L/K is a subextension with H = Gal(L/K ′) ≤ G and ψ a representation of H
then

f
(
IndGH ψ

)
= d

deg(ψ)
K′/K NK′/K(f(ψ)),

where IndGH ψ is the induced representation on G and dK′/K the discriminant of the ex-
tension K ′/K.

3. If K ′/K ⊂ L/K is a Galois subextension with H = Gal(L/K ′) and σ : G/H → GL(V ) a
representation of G/H = Gal(K ′/K) with inflation σ̃ : G→ GL(V ) then

f(ρ̃) = f(ρ).

As an application of the previous proposition, take H = {1} in property 2 and let ψ be the trivial
representation on H. The induction of ψ to G is the regular representation, and so decomposing
this we get that

dL/K =
∏
ρ

f(ρ)deg(ρ)

where the product runs over all irreducible representations of Gal(L/K). This is known as the
‘Führerdiskriminantenproduktformel’.

The definition of the Artin conductor for representations ρ : GK → GLd(C) of the absolute
Galois group of a number field K is straightforward: by lemma 2.1.3, ρ factors through some
Gal(L/K) where L/K is a finite Galois extension as in the following diagram:

GK GLd(C)

Gal(L/K)

ρ

ρ̃

hence we define the Artin conductor of ρ to be the one attached to the representation ρ̃ :
Gal(L/K) → GLd(C), that is f(ρ) = f(ρ̃). Property 3 of proposition 2.2.4 shows that this
doesn’t depend on L.

Example 2.2.5. To illustrate why the Artin conductor is a suitable invariant, let’s describe all
one-dimensional representations GQ → C× of the absolute Galois group of Q of conductor N .
If ψ is such a representation then by Kronecker-Weber ψ factors through some Gal(Q(ζM )/Q)
for some M ≥ 1. For a prime p let M = tpe with p - t. The i-th ramification group at p in the
upper numbering is given by Gal(Q(ζM )/Q(ζtpi)) for i = 0, 1, . . . , e− 1 and is trivial for i ≥ e.
By proposition 2.2.2, this shows that N divides M and ψ is trivial on Gal(QζM /Qζ

tpvp(N)
). In

other words, ψ factors through Gal(Q(ζN )/Q) but not through any smaller cyclotomic extension.
Using the isomorphism Gal(Q(ζN )/Q) ' (Z/NZ)×, we can identify ψ with a Dirichlet character
mod N and the above considerations show that it is primitive. In conclusion, we showed that
there is a natural correspondence{

Representations ψ : GQ → C×

of conductor N

}
↔
{

Dirichlet characters χ : (Z/NZ)× → C×

of conductor N

}
.

More generally, a one-dimensional representation ρ : GK → C× of conductor m will correspond
to a primitive Hecke character mod m by class field theory.
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2.3. Artin L-functions

Recall that a Dirichlet character χ : (Z/NZ)× → C× has an associated L-function

L(χ, s) =
∑
n≥1

χ(n)n−s =
∏
p

(
1− χ(p)p−s

)−1

with an appropriate functional equation. Dirichlet characters are just one-dimensional repre-
sentations GQ → C×: in this section we will define an L-function for every Artin representation
of GK for a number field K. Rather than defining the coefficients directly we will prescribe the
Euler factors and look at one prime at a time.

Let ρ : GK → GL(V ) be a complex representation with K a number field. For a prime p in K,
let ρp be the restriction of ρ at the decomposition group Dp of p (after a choice of an embedding
K ↪→ Kp). Define the local factor at p to be

Lp(ρ, s) = det
(
1−N(p)−s

(
ρ|V Ip

)
(Frobp)

)−1
, (2.2)

where N(p) = |OK/p| is the absolute norm, V Ip is the subspace of V fixed by the inertia
subgroup Ip at p and Frobp a choice of Frobenius at p. Since Frobp is a well-defined element of
Dp/Ip up to conjugacy the above expression is independent of the choice of prime above p and
choice of Frobenius.

Definition 2.3.1. The Artin L-function of an Artin representation ρ : GK → GL(V ) is defined
by

L(ρ, s) =
∏
p

Lp(ρ, s),

where the product is over all prime ideals of K and the local factors Lp(ρ, s) are given by equation
2.2.

Example 2.3.2. Suppose ρ : GK → C× is one-dimensional. Then the local factors for a prime
p of K are as follows:

L(ρp, s) =

{
(1−N(p)−sρ(Frobp))

−1
if p is unramified,

1 otherwise.
(2.3)

In particular if K = Q we obtain the L-function of the associated Dirichlet character.

Proposition 2.3.3. The Artin L-function of a representation converges on some half-plane
<(s) > a (a > 0) and satisfies the following properties:

1. (Additivity) If

0 (ρ′, V ′) (ρ, V ) (ρ′′, V ′′) 0

is a short exact sequence of Artin representations then

L(ρ, s) = L(ρ′, s)L(ρ′′, s)

2. (Induction) If L/K is a finite extension, ρ : GL → GL(V ) a repersentation and σ the
induced representation on GK then L(ρ, s) = L(σ, s).

Proof. See [Del73, §3] or [Mar77, §1].
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Example 2.3.4. If ρ : GL → C× is the trivial representation then

L(ρ, s) = ζL(s)

is the Dedekind zeta function of L. Now suppose that L/K is a finite Galois extension and
rL/K the regular representation of Gal(L/K). On the one hand rL/K is induced from the trivial
representation, on the other hand it decomposes as a direct sum of irreducible representations
of Gal(L/K) which can be seen as representations of GK . By proposition 2.3.3 we obtain

ζL(s) =
n∏
i=1

L(ρi, s)
di (2.4)

where ρ1, . . . , ρn are the irreducible representations of Gal(L/K) of degree d1, . . . , dn respectively.

If χ : GK → C× is a one-dimensional representation then χ corresponds to a class character and
we know (theorem 1.3.3) that the complete L-function is entire (if χ is nontrivial) and satisfies
a functional equation. To state the functional equation for general ρ : GK → GL(V ) we need to
define the Gamma factors at infinity. It is convenient to define

ΓC(s) = 2(2π)−sΓ(s),

ΓR(s) = π−s/2Γ(s/2).

This allows us to restate the duplication formula in an elegant way: ΓC(s) = ΓR(s)ΓR(s+ 1).

Now suppose that v is an infinite place. Recall that this is an equivalence class of archimedean
absolute values on K or which amounts to the same thing, a real embedding K → R or a pair
of complex conjugate embeddings K → C. Note that each real place defines an element c ∈ GK
of order two, the restriction of complex conjugation under an embedding K̄ → C extending the
given embedding K → R. This c is a well-defined element of GK up to conjugation and we say
c is a complex conjugation associated to v. For each infinite place v, define the local factor at v
to be

Lv(ρ, s) =

{
ΓC(s)deg(ρ) if v is complex,

ΓR(s)aΓR(s+ 1)b if v is real.
(2.5)

where a, b are the dimensions of the +1 and −1 eigenspace of ρ(c) where c is a complex conju-
gation associated to v. We set

L∞(ρ, s) =
∏

v infinite

Lv(ρ, s)

Now if f(ρ) is the Artin conductor of ρ, set

A(ρ) = |∆K |deg(ρ)NK/Q(f(ρ)), (2.6)

which is the Artin conductor of the induced representation on GQ.

Definition 2.3.5. The complete L-function of an Artin representation ρ : GK → GL(V ) is
defined as

Λ(ρ, s) = A(ρ)s/2L∞(ρ, s)L(ρ, s). (2.7)

Theorem 2.3.6. The complete Artin L-function satisfies properties 1 and 2 of proposition 2.3.3
i.e. it is additive and inductive. Moreover, Λ(ρ, s) has a meromorphic continuation to the whole
complex plane and satisfies the functional equation

Λ(ρ, 1− s) = W (ρ)Λ(ρ∗, s), (2.8)

where ρ∗ is the contragradient representation and W (ρ) ∈ C is a constant of absolute value 1.
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Remark 2.3.7. The constant W (ρ) is called the Artin root number.

Details of the proof can be found in [Mar77, §1.4]. Let’s indicate how one could prove this result.
The fact that Λ(ρ, s) is well behaved under short exact sequences and induced representations
follows from the corresponding properties of the Artin conductor, the duplication formula and
proposition 2.3.3. By Brauer’s induction theorem [Ser77, §10.5] the character of ρ is an inte-
ger linear combination of induced characters of one-dimensional representations on finite index
subgroups of GK . So we can write

L(ρ, s) =
∏
j

L(χj , s)
mj

with χj one-dimensional representations and mj ∈ Z (not necessarily positive). This reduces to
the case of one-dimensional representations, which has already been established (see theorem
1.3.3).

Example 2.3.8. Suppose K = Q and ρ : GQ → GL2(C) is two-dimensional. Suppose further-
more that ρ is odd: this means that det(ρ(c)) = −1 for any complex conjugation c ∈ GQ. Since

c has order two we can conjugate c to the matrix

(
1 0
0 −1

)
. If M is the conductor of ρ, we see

that the complete L-function is

Λ(ρ, s) = M s/2ΓR(s)ΓR(s+ 1)L(ρ, s) (2.9)

= M s/2ΓC(s)L(ρ, s). (2.10)

It is important to remark that the above theorem does not assert that Λ(ρ, s) is entire, since
the mj ∈ Z obtained from Brauer’s induction theorem could be negative. It seems appropriate
to mention the following conjecture:

Conjecture 2.3.9 (Artin). If ρ doesn’t contain the trivial representation then L(ρ, s) is entire.

The most common ways of proving that a representation L(ρ, s) satisfies the Artin conjecture
is by proving that it is induced from a one-dimensional representation or that it comes from a
modular (or more generally, automorphic) form, as we will explain in the next chapter (corollary
3.5.2).

2.4. Chebotarev density theorem

It is often useful to know that primes are uniformly spread in different ways. For example if
a, n ∈ Z≥1 are coprime natural numbers then the density of primes congruent to a mod n is
roughly 1

φ(n) by a theorem of Dirichlet. More precisely, if P denotes the set of prime ideals in a
number field K, we define the natural density of a subset X ⊂ P as

d(X) = lim
x→∞

|{p ∈ X | NK/Q(p) ≤ x}|
|{p ∈ P | NK/Q(p) ≤ x}|

provided that the limit exists. We define the Dirichlet density of X ⊂ P as

δ(X) = lim
s

+−→1

∑
p∈P NK/Q(p)−s∑
p∈P NK/Q(p)−s
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provided that the limit exists. The precise statement of Dirichlet’s theorem says that for a, n
coprime we have

δ
({
p ∈ P | p ≡ a mod n

})
) =

1

φ(n)

In fact a similar result for natural density holds but this is harder to prove. Roughly speaking,
proving a result on Dirichlet density requires proving that a certain L-function doesn’t vanish
at s = 1, while proving a result on natural density requires proving that an L-function doesn’t
vanish on the line <(s) = 1 (this is exactly what happens in the proof of Dirichlet’s theorem).

Chebotarev density theorem is a generalization of Dirichlet’s theorem for finite Galois extensions
of number fields L/K. The starting point is that the extension Q(ζn)/Q has Galois group
(Z/nZ)× where a prime p ∈ (Z/nZ)× corresponds to the element (ζn 7→ ζpn) ∈ Gal(Q(ζn)/Q).
So a distribution of prime numbers mod n is the same as studying Frobenii in Gal(Q(ζn)/Q).
Recall that if p is a prime of K which is unramified in L then for every prime P above p in L
there exists an element FrobP|p ∈ Gal(L/K), a Frobenius at p, such that for all x ∈ OL we have

xFrobP|p ≡ xN(p) mod P

where N(p). Different choices of P above p give conjugate elements of the Galois group, so we
will think of Frobp as being well-defined up to conjugacy.

Theorem 2.4.1 (Chebotarev density theorem). Let L/K be a finite Galois extension of number
fields and let P denote the set of nonzero prime ideals in OK . Let C be a conjugacy class of
Gal(L/K). Then

δ
({

p ∈ P | p is unramified and Frobp ∈ C
})

=
|C|
|G|

Proof. See [Neu99, §13.4].

Remark 2.4.2. The corresponding statement for natural density holds as well but is less relevant
for our purposes.

2.5. The Brauer-Nesbitt theorem and representations mod p

We will need the following facts from representation theory in the next chapter.

Theorem 2.5.1 (Brauer-Nesbitt). Let k be a field and A a unital associative k-algebra. Let
M,N be A-modules which are of finite dimension over k. Then the following are equivalent:

1. M and N have the same composition factors (as A-modules)

2. for all a ∈ A the characteristic polynomials of the k-linear maps M
m 7→a·m−−−−−→ M and

N
n7→a·n−−−−→ N are equal.

Proof. See [CR62, Proposition 30.16].

The theorem of Brauer-Nesbitt, together with Chebotarev density theorem implies that Galois
representations are determined by Frobenii:
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Corollary 2.5.2. Let K be a number field and F a topological field. Let ρ, ρ′ : GK → GLd(F )
be (continuous) semisimple representations. Let X be a set of primes of K of density one such
that for all p ∈ X, ρ and ρ′ are unramified at p and such that the characteristic polynomials of
ρ(Frobp) and ρ′(Frobp) agree. Then ρ and ρ′ are isomorphic.

Proof. By Chebotarev density theorem, the set of all Frobenii coming from X is dense in GK .
Since ρ and ρ′ are continuous and the map GLd(F )→ F [x] sending a matrix to its characteristic
polynomial is continuous, we see that the characteristic polynomials of ρ(g) and ρ′(g) are the
same for all g ∈ GK hence by Brauer-Nesbitt ρ and ρ′ are isomorphic.

Remark 2.5.3. If F has characteristic zero, the characteristic polynomial of a matrix A ∈
GLd(F ) is determined by the elements Tr(Ak) (k = 1 . . . d) so we only have to assume the traces
agree (a well-known fact in classical representation theory of finite groups over C).

2.5.1. Splitting fields and reducing representations mod p

Let G be a finite group and let K be a number field which is a splitting field for G (i.e. every
representation G → GLd(K) is irreducible over K if and only if it is irreducible over K̄). Let
p ⊂ OK be a prime above p ∈ Q. Write Op for the localization of OK at p. Let kp = Op/p be
the residue field.

Lemma 2.5.4. Suppose p - |G| and let ρ, τ be irreducible Op-representations of G (i.e. mor-
phisms G → GLd(Op)). Then composing ρ, τ with the projection GLd(Op) → GLd(kp) yields
absolutely irreducible representations ρ̃, τ̃ . Moreover, we have

ρ ' τ ⇔ ρ̃ ' τ̃

Proof. See [Fei67, §4.3].

We will need the following theorem in the proof of theorem 3.1.1.

Theorem 2.5.5. Assume p - |G|. Then the reduction mod p-map ρ 7→ ρ̃ induces a bijection
between isomorphism classes of Op-representations of G and kp-representations of G. Moreover,
ρ is abolutely irreducible if and only ρ̃ is.

Proof. By lemma 2.5.4, we know the map is injective. Since p - |G| the number of p-regular
conjugacy classes of G equals the number of conjugacy classes so reduction mod p induces a
bijection on the isomorphism classes of irreducible representations of G, so on all representations
by complete reducibility.

We conclude this section with a reassuring result on splitting fields of finite groups.

Theorem 2.5.6. If |G|= n then Q(ζn) is a splitting field for G.

Proof. See [Ser77, §13.1].
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3. The Deligne-Serre construction

3.1. Main Result

The similarity between the L-functions of a newform of type (1, χ) and a two-dimensional odd
Artin representation (theorem 1.1.3 and example 2.3.8) gives us a reason to believe that these two
seemingly different objects are related. In 1974, Deligne and Serre [DS74] showed that for every
newform f on Γ0(N) of type (1, χ) there exists an irreducible two-dimensional ρ : GQ → GL2(C)
such that L(f, s) = L(ρ, s). This chapter will be devoted to the precise statement and proof of
this result.

For each prime p of Q, choose a Frobenius Frobp ∈ GQ. Recall that if a representation ρ : GQ →
GL2(F ) is unramified at p, then ρ(Frobp) is a well-defined element of GL2(F ) up to conjugacy.

Theorem 3.1.1. Let χ be a Dirichlet character mod N with χ(−1) = −1. Let f ∈ M1(N,χ)
be a nonzero modular form satisfying Tpf = apf for all primes p not dividing N . Then there
exists a representation

ρ : GQ → GL2(C)

which is unramified outside N such that for all p - N we have

det(1− ρ(Frobp)T ) = 1− apT + χ(p)T 2. (3.1)

Moreover, ρ is irreducible if and only if f is a cusp form.

Remark 3.1.2. If such a representation exists, it is unique up to conjugacy in GL2(C) by
corollary 2.5.2.

The proof will be presented as follows: first we will give an outline of the proof combining
several claims which will be assumed at first. The next sections will be devoted to explaining
these intermediate steps.

Proof of theorem 3.1.1. If f is an Eisenstein series, the result is clear since we have an explicit de-
scription of the eigenforms by theorem 1.2.2. Indeed, the T(N)-eigenspace containing f contains
some Eχ1,χ2

1 (z) where χ = χ1χ2 is a Dirichlet character mod M dividing N and its L-function
is L(χ1, s)L(χ2, s) so the reducible representation ρ = χ1 ⊕ χ2 satisfies equation 3.1.

From now on, assume that f is a cusp form. By theorem 1.4.1, there is a number field K
containing all the eigenvalues ap and values of the character χ(p) for p - N , which we can
assume to be Galois over Q. Define L to be the set of primes p ∈ Z which split completely in
K. By Chebotarev density theorem, this set is infinite. For each l ∈ L, choose a prime λl in K
above l. By construction, the residue field of λl is isomorphic to Fl.

Assumption 1. “There exists a semisimple representation

ρl : GQ → GL2(Fl)
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which is unramified outside Nl such that for each prime p - Nl we have

det(1− ρl(Frobp)T ) ≡ 1− apT + χ(p)T 2 mod λl”

Write Gl for the image of ρl in GL2(Fl).

Assumption 2. “There is a constant A such that |Gl|≤ A for all l ∈ L ”

Fix such a constant A. Note that adding finitely many elements of Q to K and taking its Galois
closure can only make L smaller. So there is no harm in assuming that K contains all n-th roots
of unity, for n ≤ A. Set

Y =

{
(1− αT )(1− βT ) | α, β roots of unity of order ≤ A

}
.

Now fix a prime p not dividing N . For every prime l 6= p, we know that ρl(Frobp) ∈ GL2(Fl)
has order at most A and the eigenvalues of its characteristic polynomial are roots of unity in
Fl, which are reductions of roots of unity in Q. In other words, we have

1− apT + χ(p)T 2 ≡ det(1− ρ(Frobp)T ) ≡ R(T ) mod λl

for some R(T ) ∈ Y . Since a similar congruence holds for every l ∈ L and since Y is a finite set,
there is a fixed element of Y such that the congruence holds for infinitely many primes λl with
l ∈ L. This implies genuine equality, so 1−apT +χ(p)T 2 ∈ Y . Here we use that if two elements
in OK are congruent modulo infinitely many primes, they are equal. Continuing with this idea,
set

L′ =
{
l ∈ L | l > A and ∀R,S ∈ Y : R 6= S ⇒ R 6≡ S mod λl

}
.

The set L\L′ is contained in the set of all primes l for which R ≡ S mod λl for some R,S ∈ Y
with R 6= S. This happens only finitely many times so L \ L′ is finite, hence the set L′ is
infinite. Fix a prime l ∈ L′. Since |Gl|≤ A, the prime l doesn’t divide |Gl|. By theorem 2.5.5,
the representation Gl → GL2(Fl) is the reduction of a representation Gl → GL2(Oλl). So the
composite

ρ : GQ → Gl → GL2(Oλl) ↪→ GL2(C)

is a continous representation of GQ which is unramified outside of Nl. But for a prime p not
dividing Nl, det(1− ρ(Frobp)T ) belongs to Y since |Gl|≤ A and

det(1− ρ(Frobp)T ) ≡ 1− apT + χ(p)T 2 mod λ

so by definition of L′ (since both sides are elements of Y ) we deduce equality on the characteristic
zero level i.e.

det(1− ρ(Frobp)T ) = 1− apT + χ(p)T 2, ∀p - Nl

We play the same game for a different l′ ∈ L′ and obtain a representation ρ′ : GQ → GL2(C)
which is unramified outside Nl′ and satisfies det(1 − ρ′(Frobp)T ) = 1 − apT + χ(p)T 2 for all p
not dividing Nl′. Corollary 2.5.2 implies that ρ and ρ′ are isomorphic and so equation 3.1 holds
for all p not dividing N . So the representation ρ satisfies equation 3.1 for all primes p - N and
is unramified outside N .

The last step in the proof is to show that ρ is irreducible. Suppose not, then it would be the
sum of two one-dimensional representations χ1 and χ2. So that ap = χ1(p) + χ2(p). But then∑

p -N

|ap|2p−s = 2
∑
p -N

p−s +
∑
p -N

χ1(p)χ̄2(p)p−s +
∑
p -N

χ̄1(p)χ2(p)p−s
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Now χ1 6= χ2 since χ = χ1χ2 satisfies χ(−1) = −1. This implies that

2
∑
p -N

p−s = 2 log

(
1

s− 1

)
+O(1) (s

>−→ 1)

∑
p -N

χ1(p)χ̄2(p)p−s = O(1) (s
>−→ 1)

But this contradicts the following estimate:

Assumption 3. “The sum
∑

p -N |ap|2p−s converges for <(s) > 1 and

∑
p -N

|ap|2p−s ≤ log

(
1

s− 1

)
+O(1) (s

>−→ 1).”

We conclude that ρ is irreducible and the proof is complete.

The next sections will get rid of the assumptions made in the previous proofs. Section 3.2 will
prove assumption 1. Section 3.3 will prove assumption 3. Section 3.4 (using some results from
section 3.3) will prove assumption 2.

3.2. l-adic and mod l representations

In the proof of theorem 3.1.1 we assumed for every prime l ∈ L the existence of a semisimple
representation GQ → GL2(Fl) where the equality 3.1 was true mod λl for all primes p not
dividing Nl. For a modular form of weight k ≥ 2, such representations can be acquired by
starting with an l-adic representation (as given by theorem 3.2.1 below), reducing it mod l
and taking its semisimplification. For a modular form f of weight one, we don’t have such
representations but we can use the following trick: we multiply f by an Eisensten series Ek ∈
Mk(SL2(Z)) to get a modular form fEk of weight k + 1. If f is an eigenformn Ekf need not to
be one but by choosing k appropriately we can make it to be an eigenform modulo a prime l.
This will turn out to be sufficient for our purposes.

3.2.1. l-adic representations

Recall (theorem 1.4.1) that the eigenvalues of the Hecke operators are algebraic integers which
generate a field extension of Q of finite degree.

Theorem 3.2.1 (Deligne). Let k ≥ 2 and f ∈Mk(N,χ) be a nonzero modular form such that
Tpf = apf (with ap ∈ C) for all p - N . Let K be a number field containing ap and χ(p) for all
p - N . For a rational prime l ∈ Z, let λ be a prime in K above l. Let Kλ the λ-adic completion
of K. Then there exists a unique semisimple representation

ρ : GQ → GL2(Kλ)

which is unramified outside Nl such that for all p - Nl we have

det(1− ρ(Frobp)T ) = 1− apT + χ(p)pk−1T 2 (3.2)
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Proof. See [Del71]

Remark 3.2.2. By corollary 2.5.2, ρ is unique up to isomorphism. Since det(ρ(Frobp)) =
χ(p)pk−1, the representation does not have finite image (since k ≥ 2).

The case k = 2 is rather explicit and was known by Shimura. Deligne proved the general case
using techniques from étale cohomology.

3.2.2. Reduction mod l

Before we state the theorem, let’s introduce some notation. Let K be a number field with ring of
integers OK . We will always see number fields as subfields of C. Let λ be a prime of OK above
l ∈ Z. Write Oλ for the localization of OK at λ. It is a discrete valuation ring with maximal
ideal mλ and residue field kλ.

We will use the concept of a modular form on Fl, but only implicitly and the naive definition will
suffice for our purposes. Say a modular form f ∈ Mk(N,χ) is λ-integral (resp. f ≡ 0 mod λ)
if its Fourier coefficients at infinity {an}n≥0 are in Oλ (resp. in mλ). If f is λ-integral, say f is
an eigenvector of Tp mod λ with eigenvalue ap ∈ kλ if Tpf − apf ≡ 0 mod λ.

The following theorem is the main result of this section.

Theorem 3.2.3. With the above notation, let f ∈ Mk(N,χ) be a modular form with Fourier
coefficients in K. Suppose that f is λ-integral, f 6≡ 0 mod λ and f is an eigenvector of Tp mod
λ with eigenvalue ap ∈ kλ for all primes p - Nl. Let kf be the subfield of kλ generated by the
elements ap and the reductions of χ(p) for p - Nl.

Then there exists a semisimple representation

ρ : GQ → GL2(kf )

which is unramified outside of Nl such that for all primes p - Nl we have

det(1− ρ(Frobp)T ) = 1− apT + χ(p)pk−1T 2 mod λ (3.3)

Proof. We will proceed in several steps.

Step 1. First of all, note that there is no harm in changing f and K as long as the conclusion of
the theorem doesn’t change. More precisely, suppose we are given the data (K ′, λ′, f ′, χ′, (a′p))
with the same notation and assumptions as in the statement of the theorem such that K ′ contains
K, the prime λ′ lies above λ and

ap ≡ a′p mod λ′

pk−1χ(p) ≡ pk′−1χ′(p) mod λ′

for all p - Nl. Then proving the theorem for f is equivalent with proving it for f ′, since the
conditions imposed on the sought representation are equivalent for f and f ′.

Step 2. Next, we show that we only have to prove the theorem for weight k at least two. Indeed,
suppose that k = 1, so f ∈M1(N,χ). Let En be the normalized Eisenstein series on SL2(Z) of
weight n:

En(z) = 1− 2n

Bn

∑
n≥1

σn−1(m)qm.
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We want to find an n such that fEn ≡ f mod λ. By the theorem of Von Staudt-Clausen (see
theorem A.1.1 in the appendix), we know that when Bn is written as a fraction in lowest terms,
its denominator is the product of all primes p such that p− 1 divides n. So it suffices to choose
n = l − 1 and we have

fEn ≡ f mod λ.

Now n + 1 ≡ 1 mod l − 1 so χ(p)p(n+1)−1 ≡ χ(p)p1−1 mod λ so the conditions of Step 1 are
satisfied, and proving the theorem for f is equivalent with proving it for fEn. So from now on,
assume that the weight k is at least two.

Step 3. We now have an f ∈Mk(N,χ) which is an eigenform mod λ, but to apply theorem 3.2.1
we need a genuine eigenform. We invoke the following lemma, whose proof is purely algebraic
and will be given in the appendix (theorem A.2.1).

Lemma 3.2.4 (Deligne-Serre lifting lemma). Let O be a discrete valuation ring with maximal
ideal m, residue field k = O/m and fraction field K. Let M be a free O-module of finite rank.
Let T ⊂ EndO(M) be a commuting family of endomorphisms of M . Suppose 0 6= f ∈ M/mM
satisfies T (f) = aT f (aT ∈ k) for all T ∈ T .

Then there is a discrete valutation ring O′ with maximal ideal m′ where O ⊂ O′, m′ ∩ O = m
and the fraction field of O′ is a finite extension of K such that the system of eigenvalues {aT }T∈T
has a lift to M ′ = M ⊗O O′: there exists a nonzero f ′ ∈M ′ such that

T (f ′) = a′T f
′ ∀T ∈ T

with a′T ∈ O′ such that a′T ≡ aT mod m′M ′.

Note that we do not assert that f̃ lifts f : it is the eigenvalues of f that have lifts but this is
enough to apply Step 1. Indeed, apply the lemma to the case where O = Oλ, T = {Tp | p - Nl}
and M the Oλ-module of λ-integral forms in Mk(N,χ). By lemma 1.4.2, M is a free Oλ-module
of finite type and behaves well under base change. We know by definition that the coefficients
q-expansion of Tpf − apf lie in mλ. Let π ∈ Oλ be a generator of mλ. Then we know that
Tpf − apf = πg where g is a λ-integral form. This shows that f ∈ M/mλM indeed satisfies
the conditions of the Deligne-Serre lifting lemma1. This implies that there is a modular form f ′

which is an eigenform for all Tp (p - Nl) for which clearly the conditions of Step 1 are satisfied.
We conclude that we may assume that f is an eigenform for Tp (p - Nl) with eigenvalue ap.

Step 4. If l does not divide N then Tl is semisimple and commutes with Tp for p - Nl so we may
assume that f is an eigenform of all the Hecke operators Tp with p - N with eigenvalue ap. By
theorem 3.2.1 there exists a semisimple representation

ρλ : GQ → GL2(Kλ)

satisfying equation 3.2 of the theorem. The λ-adic completion Ôλ of Oλ is a PID with fraction
field Kλ, so we may suppose (see lemma 2.1.4) that ρλ takes values in GL2(Ôλ). Reducing mod
λ we get a representation ρ̃λ : GQ → GL2(kλ). Taking the semi-simplification of ρ̃ (the sum of
its Jordan-Hölder factors), we obtain a semi-simple representation

φ : GQ → GL2(kλ).

1The last three sentences are necessary because it is a priori not obvious that a λ-integral form which has
coefficients of its q-expansion in mλ lies in mλM . Otherwise put, an argument is needed why the canonical
map M/mλM → (Oλ/mλ) [[q]] is injective. This is called the ‘q-expansion principle’ and is explained in [DI94,
§12.3].
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Since ρλ is unramified outside of Nl it factors through a (possibly infinite) Galois extension
K/Q which is unramified outside Nl. So the same is true for ρλ hence φ as well, which shows
that φ is unramified outside Nl. By construction, the equation 3.3 is satisfied.

Step 5. The last thing to show is that φ is realizable over kλ. But since kλ is a finite field, this
amounts to proving that φσ ' φ for all σ ∈ Gal(kλ/kf ) (because the Schur indices are always
1 by Wedderburn’s theorem, see [Kar92, §14.4, Theorem 4.1]). By Brauer-Nesbitt and since all
terms in equation 3.3 are in kf we conclude that ρ ' ρσ so the proof of the theorem is complete.

3.3. An application of the Rankin-Selberg method

In this section we establish an analytic result which is proved using the convolution of two
Dirichlet series, nowadays called the Rankin-Selberg method. It is roughly analogous to twisting
an L-series of a modular form by a dirichlet character, but in this case we ‘twist’ by another
modular form. To illustrate the method, let f, g be normalized newforms of weight k on Γ0(N)
with character χ and ψ respectively:

f =
∑
n≥1

anq
n,

g =
∑
n≥1

bnq
n.

Write L(f, s) =
∑

n≥1 ann
−s and L(g, s) =

∑
n≥1 bnn

−s for the associated L-functions. Since f
and g are newforms, the L-functions have an Euler product which looks like

L(f, s) =
∏
p|N

(1− app−s)−1
∏
p -N

(
1− app−s + χ(p)pk−1−2s

)−1

and similarly for g. The goal is to derive analytic properties of the L-function
∑

n≥1 anbnn
−s =∑

n≥1 cnn
−s. Since an, bn = O(nk/2), we know this series converges absolutely and is holomor-

phic on the half-plane <(s) > k. Since amn = aman for m,n coprime and similarly for bn, the
same holds true for the product of the two and all the information is contained in the coefficients
at the prime powers. If p is a ‘bad prime’ and divides N , we have cpr = crp hence∑

r≥0

cprp
−rs = (1− cpp−s)−1 = (1− apbpp−s)−1.

If p does not divide N , the recurrence relation is a bit more involved. We invoke the following
lemma:

Lemma 3.3.1. Let (ur)r≥0 and (vr)r≥0 be sequences satisfying linear recurrence relations of
order two of the form

ur = aur−1 + bur−2

vr = cvr−1 + dvr−2

for r ≥ 2 where (u0, u1) = (1, a) and (v0, v1) = (1, b). Let λ1, λ2 be the solutions of the
equation X2− aX − b and µ1, µ2 the solutions to the equation X2− cX − d. Then the sequence
(wr)r≥0 = (urvr) satisfies a linear recurrence relation of order four and the following identity of
formal power series holds:∑

r≥0

urvrT
r =

1− bdT 2

(1− λ1µ1T )(1− λ1µ2T )(1− λ2µ1T )(1− λ2µ2T )
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Proof. A tedious but straightforward calculation.

In our interest, we take ur = apr and vr = bpr (where p - N) and so the lemma implies that we
have the identity∑

r≥0

aprbprp
−rs =

1− χ(p)ψ(p)p2k−2−2s

(1− λ′pµ′pp−s)(1− λpµpp−s)(1− λ′pµpp−s)(1− λ′pµ′pp−s)

where λp, λ
′
p are the roots of X2−apX+χ(p)pk−1 and µp, µ

′
p the roots of X2− bpX+χ(p)pk−1.

Definition 3.3.2. The convolution of the L-series L(f, s) and L(g, s) is

L(f ⊗ g, s) =
∏
p -N

(1− λpµpp−s)−1(1− λpµ′pp−s)−1(1− λ′pµpp−s)−1(1− λ′pµ′pp−s)−1

The notation f ⊗ g is purely formal2. The above calculations show that

L(f ⊗ g, s) = L(χψ, 2s+ 2− 2k)

∑
n≥1

anbnn
−s

 (3.4)

where L(χψ, s) is the L-function attached to the Dirichlet character χψ of modulus N . Note
that if χψ is trivial, L(χψ, s) =

∏
p-N (1− p−s)−1 is the partial zeta function ζN (s), defined as

ζN (s) =
∑

(n,N)=1

n−s

Moreover, if f ∈ Sk(N,χ) is a normalized newform on Γ0(N) with character χ, then z 7→ f(−z̄)
is a normalized newform on Γ0(N) as well, with character χ̄. Its Fourier coefficients are given by
the complex conjugates of those of f , so we denote this form by f̄ (although it is not litterally
the complex conjugate of f , which is not even holomorphic). Setting g = f̄ in equation 3.4 gives

L(f ⊗ f̄ , s) = ζN (2s+ 2− 2k)

 ∑
(n,N)=1

|an|2n−s


Adding the Euler factors at the bad primes and replacing ζN by ζ yields

L(f ⊗ f̄ , s) =

∏
p|N

(
1− |ap|2p−s

) (
1− p−2s−2+2k

) ζ(2s+ 2− 2k)

∑
n≥1

|an|2n−s
 (3.5)

Using non-holomorphic Eisenstein series, one can prove the following fact:

Lemma 3.3.3 (Rankin). Under the above assumptions, the function L(f ⊗ f̄ , s) has a mero-
morphic continuation to the complex plane. It is holomorphic everywhere except at s = k where
it has a simple pole.

Proof. See theorem 3 of [Ogg69] or [Ran39].

2Or is it? Modular forms are related to automorphic forms on GL2 and so f ⊗ g should correspond to an
automorphic form on GL2×GL2, see [Ram00] and [Jac72].
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We are now ready to prove the proposition needed for the main theorem.

Proposition 3.3.4. Let f ∈ Sk(N,χ) be a cusp form such that Tpf = apf for all primes p not
dividing N . Then the sum

∑
p -N |ap|2p−s converges for real s > k and the following inequality

holds: ∑
p -N

|ap|2p−s ≤ log

(
1

s− k

)
+O(1) (s

+−→ k) (3.6)

(meaning that the difference between the left and right hand side is bounded above as s
+−→ k).

Proof. Since f is in the same T(N)-eigenspace as some newform (on a possibly lower level), we
may assume f itself is a newform. Hence f has a q-expansion of the form

f =
∑
n≥1

anq
n

and the above discussion applies to f . Indeed, if λp, µp are the roots of the polynomial X2 −
apX + χ(p)pk−1 (for p - N) then

L(f ⊗ f̄ , s) =
∏
p -N

(1− λpλ̄pp−s)−1(1− λpµ̄pp−s)−1(1− µpλ̄pp−s)−1(1− µpµ̄pp−s)−1

and by equation by equation 3.5:

L(f ⊗ f̄ , s) = H(s)ζ(2s+ 2− 2k)

∑
n≥1

|an|2n−s
 ,

where
H(s) =

∏
p |N

(
1− |ap|2p−s

) (
1− p−2s−2+2k

)
.

By lemma 3.3.3, the function L(f ⊗ f̄ , s) has a meromorphic continuation to the complex plane
which is holomorphic except at s = k where it has a simple pole. Since |ap|< pk/2 if p divides
N (see proposition 1.4.3) we see that H(s) has no zeros in the half-plane <(s) > k. The same
is true for ζ(2s+ 2− 2k) and

∑
|an|2n−s so L(f ⊗ f̄ , s) is non-zero for <(s) > k. Now we have

at least formally the following equality of Dirichlet series:

log(L(f ⊗ f̄ , s)) =
∑
p -N

∑
m≥1

|λmp + µmp |2p−ms

m
(3.7)

and the right hand side converges absolutely for <(s) > k since

|λmp + µmp |2 ≤ (|λmp |+|µmp |)2

≤ 4|λpµp|m

= 4pm(k−1)

so the n-th coefficient is of order O(nk−1). Since L(f ⊗ f̄ , s) has a simple pole at s = k, we know

that log((s− k)L(f ⊗ f̄ , s)) is bounded as s
+−→ k, hence∑

p -N

|ap|2p−s =
∑
p -N

|λp + µp|2p−s

≤
∑
p -N

∑
m≥1

|λmp + µmp |2p−ms

m

= log(L(f ⊗ f̄ , s))

= log

(
1

s− k

)
+O(1) (s

+−→ k)
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which proves the desired claim.

We see that for k = 1, this was exactly assumption 3 in the proof of theorem 3.1.1. The
following proposition will be useful for the next section. It tells us in some sense that the
Fourier coefficients ap of a weight one eigenform have controllable growth. Recall that if P
denotes the set of prime numbers, then the Dirichlet densitiy of a subset X ⊂ P is defined as

δ(X) = lim sup
s−→+1

∑
p∈X p

−s

log
(

1
s−1

)
We always have δ(X) ∈ [0, 1]. We use the lim sup in this definition instead of a limit to guarantee
that it is well-defined for every subset X ⊂ P.

Proposition 3.3.5. Using the notation of the previous proposition, assume k = 1. For every
real η > 0 there is a finite set Yη ⊂ C such that

δ
({
p ∈ P | ap ∈ Yη

})
≥ 1− η. (3.8)

Proof. We know the ap and χ(p) are algebraic integers in a finite extension K of Q. For each
c ≥ 0, set

Y (c) =
{
a ∈ OK | |σ(a)|2≤ c, ∀σ : K ↪→ C

}
.

Then Y (c) is a finite set, since the coefficients of the minimal polynomials of elements of Y (c)
are bounded. It suffices to prove that δ({p | ap ∈ Y (c)}) tends to 1 as c → ∞. By theorem
1.4.1, we know that for each embedding σ : K → C the coefficients σ(ap) are the eigenvalues of
a modular form fσ on Γ1(N) so proposition 3.3.4 shows that∑

σ

∑
p-N

|σ(ap)|2p−s ≤ [K : Q] log

(
1

s− 1

)
+O(1) (s

+−→ 1)

where the sum is over all embeddings σ : K → C and all primes p - N . If ap 6∈ Yη then∑
σ|σ(ap)|2≥ c hence

∑
ap 6∈Y (c)

p−s ≤ c−1[K : Q] log

(
1

s− 1

)
+O(1),

So δ({p | ap ∈ Y (c)}) ≥ 1− c−1[K : Q] which proves the proposition.

Remark 3.3.6. Once theorem 3.1.1 is completely proven, we know that the set {ap | p - N} is
in fact finite!

3.4. Subgroups of GL2(Fl)

We only have to remedy assumption 2 from the proof of theorem 3.1.1 which said that the
images of the local representations ρl : GQ → GL2(Fl) have bounded cardinality. In this section
we will analyze subgroups of GL2(Fl) to reach the desired conclusion. First, some notation.
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Definition 3.4.1. Let G be a subgroup of GL2(Fl) with l a prime number. We say G is
semisimple if the inclusion G→ GL2(Fl) is a semisimple representation. If M is a positive real
number, we say G is M -sparse if G has a subset H ⊂ G such that |H|≥ 3

4 |G| and

|{det(1− hT ) | h ∈ H}|≤M.

Proposition 3.4.2. For every M ≥ 0, there exists an A ≥ 0 such that |G|≤ A for every prime
l and every semi-simple M -sparse G ≤ GL2(Fl).

Proof. If G ≤ GL2(Fl) is a semi-simple subgroup, G satisfies one of the following ([Ser72, §2,
Proposition 14.15] or [Dic58]):

1. G contains SL2(Fl) (G is big),

2. G is conjugates to a subgroup of

{(
∗ 0
0 ∗

)}
(which means it stabilizes two lines in F2

l ),

3. G conjugates to a subgroup of the normalizer of the subgroup

{(
∗ 0
0 ∗

)}
,

4. the image of G in PGL2(Fl) under the projection GL2(Fl) → PGL2(Fl) is isomorphic to
A4, S4 or A5 (exceptional).

By examining each of these cases separately, we can bound the cardinality of G, see [DS74,
Proposition 7.2]. We will only illustrate the method and do the second case as an example.
In this case, at most two elements of G have the same characteristic polynomial. Since G is
M -sparse, we have

|G|≤ 4

3
|H|≤ 4

3
(2M)

which indeed proves that |G| is bounded.

We can now prove assumption 3 in the proof of theorem 3.1.1. Keep the same notation as in
the proof in section 3.1. So we have for each prime l splitting completely in K, a subgroup
Gl ≤ GL2(Fl). We claim that there exists an M such that Gl is M -sparse for all l. Indeed, by
proposition 3.3.5 we know that there exists a finite set Y ⊂ C such that

δ
({
p ∈ P | ap ∈ Y

})
≥ 3/4.

Write X = {p ∈ P | ap 6∈ Y }. Then δ(X) ≤ 1/4. Let M be the finite set of polynomials of the
form 1− apT + χ(p)T 2 with p 6∈ X, denote its cardinality by M . We claim that Gl is M -sparse
for all l ∈ L. Indeed, if Hl denotes the subset of Gl consisting of all elements ρl(Frobp) (p 6∈ X)
and their conjugates, then Chebotarev density theorem tells us that |Hl| ≥ 3

4 |Gl|. On the other
hand if h ∈ Hl then det(1 − hT ) is the reduction mod λl of an element of M. So there are
at most M possibilities for det(1 − hT ). This proves that Gl is M -sparse for all l ∈ L. By
proposition 3.4.2, the cardinalities of the Gl are indeed bounded so assumption 3 is proven.

3.5. From Galois representations to modular forms

For a T(N)-eigenform f ∈ Sk(N,χ), write ρf for the two-dimensional Artin representation
associated to f given by theorem 3.1.1.
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Proposition 3.5.1. Let f ∈ Sk(N,χ) be a newform.

1. The Artin conductor of ρf equals N . In particular, the representation is ramified at all
prime divisors of N .

2. L(f, s) = L(ρf , s).

Proof. Write ρ = ρf to ease the notation a bit. Let’s try to exploit the functional equations
of L(f, s) and L(ρ, s). Write f =

∑
n≥1 anq

n. Let g = f |ωN= N−1/2z−1f(−1/Nz) and f̃ =∑
n≥1 ānq

n. Since f is a newform, g and f̃ will be in the newspace Snewk (N, χ̄) with the same
T(N)-eigenvalues. By strong multiplicity one, there is a nonzero constant λ ∈ C such that

g = λf̃ . By theorem 1.1.1 we obtain the functional equation

Λf (1− s) = iΛ(g, s) = iλΛf̃ (s) (3.9)

where Λf (s) = N s/2(2π)−sΓ(s)L(f, s).

Let M be the conductor of ρ. Since det(ρ(c)) = −1, complex conjugation acts non-trivially (we
say the infinite prime of Q ramifies) and the correct factor at infinity is (2π)−sΓ(s) (proposition
2.3.6). Put

ξ(s) = M s/2(2π)−sΓ(s)L(ρ, s),

then the functional equation reads

ξ(ρ, 1− s) = νξ(ρ̄, s) (3.10)

with ν ∈ C a nonzero constant and ρ̄ the contragradient representation.

So set

F (s) =
Λf (s)

ξ(ρ, s)
=

(
N

M

)s/2 L(f, s)

L(ρ, s)

F̃ (s) =
Λf̃ (s)

ξ(ρ̄, s)
=

(
N

M

)s/2 L(f̃ , s)

L(ρ̄, s)
.

The above equations show that
F (1− s) = ωF̃ (s) (3.11)

with ω = iλ/ν. By the construction of ρ, the Euler factors of Λf (s) and ξ(ρ, s) agree if p - N ,
so we can write F (s) as a finite product

F (s) = As
∏
p|N

Fp(s)

with A = (N/M)1/2 and

Fp(s) =
(1− bpp−s)(1− cpp−s)

(1− app−s)

where det(1−ρ|V Ip (Frobp)) = (1−bpp−s)(1−cpp−s) (we allow bp or cp to be zero). We would be
done if we could show that Fp = 1 for all p | N , for then the functional equation reads A1−s = As

hence A = 1. If Fp is not equal to 1, then Fp has infinitely many zeroes or poles. Note that if
(1−αp−s) = 0 then p<(s) = |α|. So if s ∈ C is a zero of Fp then by the functional equation 3.11
we know that both p<(s) and p1−<(s) equal the absolute value of some α appearing in an Euler
factor (1 − αp−s) of F or F̃ . We claim that for every such α we have |α|< p1/2. This would
give a contradiction since then p<(s)p1−<(s) < p. Indeed, if α comes from an Euler factor from
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L(ρ, s) this is clear since the eigenvalues of Frobp are roots of unity. If α = ap then this follows
from proposition 1.4.3.

Corollary 3.5.2. For every T(N)-eigenform f ∈ Sk(N,χ) the representation ρf satisfies the
Artin conjecture i.e. L(ρf , s) is entire.

Proof. Indeed, f has the same T(N)-eigenvalues as some g(z) where g is a newform in Sk(M,χ)
and M | N . So we may as well assume that f is a newform. But then by proposition 3.5.1 we
have L(ρf , s) = L(f, s). Since Λf (s) = (2π)−sΓ(s)L(f, s) is entire (theorem 1.1.1) and Γ(s) has
no zeros the function L(f, s) is entire as well.

The assignment f 7→ ρf defines a map{
Newforms on Γ0(N)

of type (1, χ)

}
→
{

Irreducible representations ρ : GQ → GL2(C)
of conductor N with determinant χ

}
where the representations under consideration are up to isomorphism. By strong multiplicity
one this map is injective, so the question remains what its image is. It is now known (see
[KW09]) that this map is a bijection. The proof of this result is outside of the scope of this
essay, but we can still say something interesting about it. The first step is to characterise the
image in a different way, which relates it to the Artin conjecture. If we assume the L-functions
of ρ and sufficiently many of its twists satisfy certain holomorphy conditions then we can apply
Weil’s converse theorem (theorem 1.1.4) and conclude:

Proposition 3.5.3 (Weil-Langlands). Let ρ : GQ → GL2(C) be an irreducible representation
with conductor N and det(ρ) = χ satisfying:

1. ρ is odd, i.e. det(ρ(c)) = −1 for any choice of complex conjugation c ∈ GQ.

2. there is an integer M ≥ 1 such that for every one-dimensional representation ψ : GQ → C×

of conductor prime to M , the Artin L-function L(ρ⊗ ψ, s) is entire.

then there exists a newform on Γ0(N) of type (1, χ) such that L(f, s) = L(ρ, s).

Proof. See [Wei71].

The representation ρf obtained from a newform f satisfies the conditions of proposition 3.5.3
since a twist of a modular form is again a modular form (see theorem 1.1.2). So the above
proposition shows that an odd irreducible representation ρ is ‘modular’ (i.e. of the form ρf ) if
and only if sufficiently many of its twists satisfy the Artin conjecture. By studying the image
of the associated projective representation GQ → PGL2(C) we will explicitly show that a large
class of representations is modular using Hecke L-functions (the dihedral representations).

3.6. Estimates of Fourier coefficients

Theorem 3.1.1 shows that the L-function of a normalised newform of weight one is the Artin
L-function of a two-dimensional representation. This has consequences on the growth of the
coefficients.
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Corollary 3.6.1. Let f be a non-zero modular form on Γ0(N) of type (1, χ) such that Tpf = apf
for all primes p - N . Then

|ap|≤ 2, ∀p - N.

Proof. Indeed, by theorem 3.1.1 we see that ap = Tr(ρ(Frobp)) is the sum of the eigenvalues of
ρ(Frobp) which are roots of unity.

This proves the Ramanujan-Petersson conjecture for weight one: for general weight k it says

that the eigenvalues ap of the Hecke operators Tp for p - N satisfy |ap|≤ 2p
k−1

2 . In his proof of
the Weil conjectures, Deligne proved the Ramanujan-Petersson conjecture for weight k ≥ 2 (see
[Del74]).

We furthermore have the following estimates, which hold for a general modular form of weight
one on a congruence subgroup [DS74, §9]:

Corollary 3.6.2. Let f =
∑

n≥1 ane
2πinz/M be a modular form of weight one on a congruence

subgroup of SL2(Z).

1. |an|= O(nδ) for each δ > 0.

2. The set of all n ∈ Z≥1 such that an 6= 0 has density zero.

The density here considered in the natural density on Z≥1: a subset S ⊂ Z≥1 has density c if

lim
x→+∞

|{n ∈ S | n ≤ x}|
x

= c.
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4. Examples and computations

In this chapter we will give some explicit examples of modular forms of weight one and their asso-
ciated Galois representations. The website http://www.lmfdb.org/ and the computer algebra
software SAGE ([The18]) can be of help for routine calculations.

4.1. The projective image

A representation ρ : GQ → GL2(C) has finite image, hence by composing with the projection
GL2(C)→ PGL2(C) we obtain a projective representation ρ̃ with finite image. Call the image
of ρ̃ the projective image of ρ. The following lemma tells us what the projective images can be:

Lemma 4.1.1. Let G be a finite subgroup of PGL2(C). Then G is one of the following:

1. G is cyclic

2. G is dihedral

3. G is isomorphic to A4, S4 or S5.

Proof. Let π : SL2(C)→ PSL2(C) = PGL2(C) be the projection map. The kernel of π is {±I}
and so G̃ = π−1(G) is a finite subgroup of SL2(C). By taking a hermitian form 〈, 〉 on C2 and
averaging it, i.e. setting

〈v, w〉G̃ =
∑
σ∈G̃

〈σ(v), σ(w)〉

we see that G̃ stabilizes some hermitian form, hence after conjugation we can assume that G̃ is
a subgroup of SU2(C). But SU2(C)/{±I} is isomorphic to SO3(R), which can be seen using
quaternions (conjugating pure quaternions by unit quaternions defines a surjective morphism
SU2(C) → SO3(R) whose kernel is {±I}). So the image of G̃ in SO3(R) is isomorphic to G.
But finite subgroups of SO3(R) are classified by cones (cyclic), double cones (dihedral) and the
platonic solids (A4, S4 and S5). This completes the proof. The diagram below summarizes the
situation.

SL2(C) PGL2(C)

{±I}

SU2(C) SU2(C)/{±I} ' SO3(R)
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Remark 4.1.2. The argument essentially shows that SO3(R) is a maximal compact subgroup
of PGL2(C).

Given a representation ρ : GQ → GL2(C), the image of ρ is a central extension of its projective
image i.e. there is an exact sequence

1 Z im ρ im ρ̃ 1

where Z is the subgroup of scalar matrices in im ρ, which is contained in the center of im ρ.
Since a central extension of a cyclic group is abelian, it follows that the projective image of ρ
cannot be cyclic if ρ is irreducible. The other cases do occur (as we will see later) and we will
say the type of an irreducible representation ρ is dihedral, tetrahedral (A4), octahedral (S4) or
icosahedral (A5) according to the projective image of ρ. The proof of lemma should make the
geometric interpretation of the terminology clear.

If f ∈ S1(N,χ) is an eigenform for the Hecke operators Tp with p - N , write ρf for the irreducible
representation GQ → GL2(C) attached to f by theorem 3.1.1. Then we say f is dihedral,
tetrahedral, octahedral or icosahedral according to the type of ρf .

4.2. Dihedral representations

We will study the simplest case where the projective image is dihedral, i.e. isomorphic to the
dihedral group Dn of order 2n for some n ≥ 2.

Lemma 4.2.1. Let ρ : GQ → GL2(C) be a dihedral representation. Then ρ is induced from a
one-dimensional ψ : GK → C× where K is a quadratic number field.

Proof. Let M be the Galois number field cut out by ρ i.e. such that ρ factors through a
faithful representation Gal(M/Q) → GL2(C). Let L/Q ⊂ M/Q be the subfield of M cut
out by the projective representation ρ̃ : GQ → PGL2(C). Then Gal(L/Q) ' Dn for some
n ≥ 2 by assumption. Since Dn has a cyclic subgroup Cn of index 2, there exists a number
field K/Q ⊂ L/Q of degree 2 such that Gal(L/K) ' Cn. So ρ|GK : GK → GL2(C) has cyclic
projective image hence is reducible, which allows us to decompose it as

ρ|GK= ψ ⊕ ψ′

for one-dimensional representations ψ,ψ′ of GK . Let ψ̂ be the induction of ψ to GQ. By
Frobenius reciprocity we have

1 ≤ 〈ρ|GK , ψ〉GK = 〈ρ, ψ̂ 〉GQ
≤ 1

So both equalities hold which implies that ρ = ψ̂.

Conversely, suppose we start with a quadratic number field K/Q and a one-dimensional rep-
resentation ψ : GK → C×. Let ρ be the induction of ψ to GQ and let ρ̃ be the associated
projective representation. Let σ be the non-identity element of Gal(K/Q). We define ψσ(g) as
ψ(σ−1gσ). Recall that ∆K denotes the discriminant and f(ψ) the Artin conductor of ψ. The
following proposition gives us more information on ρ [Ser75, §7.2.1]:
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Proposition 4.2.2. 1. The representation ρ is irreducible if and only if ψ 6= ψσ. In that
case, ρ is dihedral.

2. The conductor of ρ is |∆K |NK/Q(f(ψ)).

3. The representation det(ρ) is odd if and only if one of the following holds:

a) K is imaginary,

b) K is real and has signature (+,−) at infinity: if c, c′ ∈ GK are complex conjugations
associated to the two real places of K then {χ(c), χ(c′)} = {1,−1}.

Proof. A matrix representation of ρ is given by

ρ(g) =

(
ψ(g) ψ(gσ)
ψ(σ−1) ψ(σ−1gσ)

)
(4.1)

where we set ψ(g) = 0 if g 6∈ GK . So ρ|GK= ψ ⊕ ψσ and (1) follows by Frobenius reciprocity. If
ρ is irreducible, the projective image of ρ has a cyclic subgroup of index 2 and so we see that
ρ has to be dihedral. The second assertion follows from proposition 2.2.4. For 3, suppose first
that K is imaginary. If c is a complex conjugation of Q then c 6∈ GK so in (4.1) we might as
well take σ = c which shows that

ρ(c) =

(
0 1
1 0

)
,

so ρ is indeed odd. If K is real and c is a complex conjugation of Q then c and σ−1cσ represent
the complex conjugations associated to the real places of K. By (4.1) we see that ρ is odd if
and only if ψ(c) 6= ψ(σ−1 c σ). This proves the proposition.

Recall that we say that a representation ρ : GQ → GL2(C) is modular if there exists a T(N)-
eigenform f ∈M1(N,χ) such that ρ = ρf .

Proposition 4.2.3. Every odd dihedral representation ρ is modular.

Proof. A dihedral representation is certainly irreducible. The conditions of proposition 3.5.3
are satisfied since L(ρ, s) = L(ψ, s) where ψ : GK → GL2(C) is a one-dimensional character by
lemma 4.2.1 and satisfies a functional equation by theorem 1.3.3.

Can we actually write down what the corresponding modular forms are? The answer is yes, in
a very explicit way. Theorems 1.3.4 and 1.3.5 show that if ψ : GK → C× is a one-dimensional

representation for which ρ = Ind
GQ

GK
ψ is odd and irreducible the function

fψ =
∑
a

qNa

is a cusp form of level |∆K |N(m) of type (1, χ). So such modular forms correspond exactly to
dihedral Galois representations!

If K is imaginary quadratic we can even be more explicit, which was first observed by Hecke in
[Hec59]. There is a beautiful connection between the ideal class group of K and binary quadratic
forms of discriminant ∆K which was first studied by Gauss in his ‘Disquisitiones Arithmeticae’.
Let us briefly recall the relevant concepts. Let

Q(x, y) = ax2 + bxy + cy2
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be a positive-definite binary quadratic form. This means that a, b, c ∈ Z with discriminant
∆Q = b2 − 4ac < 0. We say two such forms Q,Q′ are SL2(Z)-equivalent if a coordinate
transformation of the form(

x
y

)
7→
(
α β
γ δ

)(
x
y

)
, with

(
α β
γ δ

)
∈ SL2(Z)

which transforms Q into Q′. Let K be an imaginary quadratic number field with ring of integers
OK , discriminant ∆K and ideal class group ClK . For each ideal a of OK , choose a Z-basis for
a i.e. write it as

a = Zα1 + Zα2

where α1, α2 are chosen such that α1ᾱ2 − α2ᾱ1 = N(I)
√

∆K (a sign convention). Associate to
a the quadratic form

Qa =
1

N(I)
(α1x+ α2y)(ᾱ1x+ ᾱ2y).

We will use the following classical result:

Theorem 4.2.4. Let K be an imaginary quadratic field. The set of binary quadratic forms of
discriminant ∆K up SL2(Z)-equivalence can be given the structure of an abelian group, denoted
Q(∆K). The map

ClK → Q(∆K)

[a] 7→ Qa

is a well-defined group isomorphism.

Proof. See [Bue89, Theorem 6.20] or [Fro94, §VII.2].

Example 4.2.5. If K = Q(
√
−5) then ∆K = −20 and ClK ' Z/2 where we have

2OK = (2,
√
−5 + 1)2

and (2,
√
−5 + 1) is non-principal. We conclude that there are two classes of binary quadratic

forms of discriminant −20, represented by the forms:

Q0 = x2 + 5y2,

Q1 = 2x2 + 2xy + 3y2.

So ideal classes can be represented by binary quadratic forms. Now it turns out that quadratic
forms themselves have associated modular forms, using the theory of theta series. We explain
what we need for our purposes, the interested reader might consult [Miy06, §4.9], [Iwa97, chapter
10] or [Sch74].

Let A ∈Mr(Z) be a symmetric matrix with integer coefficients. We suppose A is positive-definite
of even rank r = 2k. We can associate a quadratic form QA to A:

QA(x) =
1

2
xtAx,

where x ∈ Rr. If x = (xi) we can write QA(x) as

QA(x) =
∑
i=1

1

2
aiix

2
i +

∑
i 6=j

aijxixj

where A = (aij)1≤i,j≤r. So QA(x) has half-integral coefficients on the diagonal and integral
coefficients off the diagonal. We say A is even if moreover the aii are even integers. Let N
be a positive integer such that the matrix NA−1 is integral and even. Set D = det(A) and
∆ = (−1)kD, the determinant and discriminant of A respectively.
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Theorem 4.2.6. Let A ∈ Matr(Z) be a symmetric, positive definite, integral even matrix of
even rank r = 2k. Suppose N ∈ Z≥1 is a positive integer such that NA−1 is integral even. Let
∆ = (−1)k det(A) and χ∆ the character given by

χ∆ =

(
∆

·

)
.

The theta function
θA(z) =

∑
m∈Zr

q
1
2
mtAm

is an element of Mk(N,χ∆).

Proof. See [Miy06, Corollary 4.9.5].

For quadratic forms in two variables (i.e. binary quadratic forms) we therefore obtain modular
forms of weight one.

Let’s relate this to dihedral representations. Suppose that ψ : GK → C× is a one-dimensional
representation with K an imaginary quadratic number field. Suppose furthermore that ψ is
unramified, i.e. factors through the Hilbert class field of K. Then ψ defines a morphism
ψ : ClK → C× and by theorem 1.3.4 the function

fψ =
∑
a

ψ(a)qNa

is an element of M1(N,χ) with χ = χ∆K
the quadratic character of conductor ∆K defined by

the extension K/Q. Write

fψ =
∑
A∈ClK

ψ(A)
∑
a∈A

qNa.

Now fix an A ∈ ClK and choose an integral ideal b ∈ A. Then for an integral ideal a we have
a ∈ A if and only if a = (k)b for some k ∈ K× with k ∈ b−1. If we choose a Z-basis for b:

b = Zα1 + Zα2,

then its inverse is given by

b−1 =
1

Nb
(Zᾱ1 + Zᾱ2) .

If k = 1
Nb (xᾱ1 + yᾱ2) is in b−1 then

N(xb) = Qb(x, y),

where Qb is the quadratic form associated to b. Note1 that we have to order the basis {α1, α2}
in such a way that ᾱ1α2 − ᾱ2α1 = N(I)

√
∆K . If we run over all elements of b−1 we encounter

every integral ideal a ∼ b exactly w times, where

w = |O×K |=


4 if K = Q(i),

6 if K = Q(
√
−3),

2 otherwise.

1A different ordering would give Qb̄(x, y) = Qb(x,−y). Since Qb and Qb̄ represent the same integers we will
ignore the issue of ordering our basis in most examples since it is not a serious one.
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In conclusion, we have ∑
a∈A

qNa =
1

w

∑
x,y∈Z

qQA(x,y) (4.2)

= w−1θA(z) (4.3)

where θA is the theta series associated with the quadratic form QA by theorem 4.2.6. So fψ is
a linear combination of theta series associated to quadratic forms of discriminant ∆K .

Example 4.2.7. Suppose ψ : GK → C× is an unramified one-dimensional representation. Then
ψ factors through the Hilbert class field HK of K and defines a character ψ : Gal(HK/K) '
ClK → C×. If σ is the nontrivial element of Gal(K/Q) then the map g 7→ σgσ−1 under the

isomorphism Gal(HK/K) ' ClK becomes the map a 7→ σ(a). If we want ρ = Ind
GQ

GK
(ψ) to be

irreducible we have to require that ψ 6= ψσ. Since aσ ∼ a−1 in ClK we see that this condition
is equivalent with ψ2 6= 1. So such ψ : ClK → C× can exist only if ClK is not an elementary
2-group. The smallest value of |∆K | for which this is true is ∆K = −23 i.e. K = Q(

√
−23).

Set δ = 1+
√
−23

2 . We have ClK ' Z/3 and 2OK = (2, δ)(2, δ − 1) where (2, δ) is non-principal.
If A is the equivalence class of the ideal (2, δ) then A2 ∼ (2, δ− 1) and the associated quadratic
forms are

Q1 = x2 + xy + 6y2

QA = 2x2 + xy + 3y2

QA2 = 2x2 − xy + 3y2.

Since QA(x,−y) = QA2(x, y) these quadratic forms represent the same values, hence θA = θA2 .
If ψ : ClK → C× is the character sending A to ζ3 = e2πi/3 then

fψ =
1

2

(
θ1 + ζ3θA + ζ2

3θA2

)
=

1

2

∑
x,y∈Z

qx
2+xy+3y2 −

∑
x,y∈Z

q2x2+xy+6y2

 .

which is an element of S1(23, χ−23). But by [DS05, Proposition 3.2.2], the space S1(23, χ−23) is
spanned by the form

η(z)η(23z) = q
∏
n≥1

(1− qn)(1− q23n),

where η(z) is the Dedekind eta function. So this form is equal to fψ. Let’s compute the associated
representation. The Hilbert class field H of K is a degree 3 extension of K: it’s the splitting field
of the polynomial X3−X−1. We have Gal(H/Q) ' S3 ' D3. If ρ is the induced representation
of ψ on Gal(H/Q) then ρ is the unique two-dimensional irreducible representation of D3. This
representation is faithful, and Tr(ρ(Frobp)) = ap for every prime p 6= 23. A simple consequence
of this is that for all p 6= 23 we have

ap =


2 if Frobp has order 1,

0 if Frobp has order 2,

−1 if Frobp has order 3.

so the primes that split completely in H are exactly the primes such that ap = 2. As an
application, note that η(z)η(23z) ≡ ∆(z) mod 23 so if ∆(z) =

∑
n≥1 τ(n)qn then the splitting

behaviour of the polynomial X3 − X − 1 is determined by the values of τ(p) mod 23. This is
an example where a modular form encodes the splitting behaviour of a polynomial and hence
provides us with a ‘reciprocity law’ in the non-abelian case. For more examples of this kind, see
[HS17].
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Example 4.2.8. Let K = Q(
√
−14). Then ClK ' Z/4 with generator p = (3,

√
−14 + 1). We

have p2 ∼ (2,
√
−11) and p3 ∼ (3,−

√
−14 + 1) so the associated quadratic forms are

Q1 = x2 + 14y2

Qp = 3x2 + 2xy + 5y2

Qp2 = 2x2 + 7y2

Qp3 = 3x2 − 2xy + 5y2.

There are two characters ψ : ClK → C× such that ψ2 6= 1. Choose ψ such that ψ(p) = i. We
have

fψ =
1

2

∑
x,y∈Z

qx
2+14y2 −

∑
x,y∈Z

q2x2+7y2

 ,

which is a cusp form of level 56 and character χ−56.

The two above examples deal with characters ψ : GK → C× which are everywhere unramified
and so that we can give the explicit description using quadratic forms. Can we do the same if ψ
is ramified? Suppose ψ factors through some nontrivial modulus m: it defines a character of the
ray class group mod m, denoted Cl(m). Since the class group parametrizes quadratic forms up
to SL2(Z)-equivalence, we might expect ray class groups to parametrize quadratic forms with
extra data, since there is a surjective map Cl(m)→ ClK . This idea is further pursued in [ISE17],
where the authors consider quadratic forms up to ±Γ1(N)-equivalence. For our purposes, we
will interpret the ray class groups as quadratic forms with extra congruence conditions. Instead
of trying to make this precise, let’s give an example to illustrate the idea.

Example 4.2.9. Let K = Q(i) and m = 6OK . Using class field theory, we compute that

Cl(m) ' (Z/2× F×9 )

{±1,±i}
' Z/4,

and the prime p = (2 + i) ∈ I(m) is a generator for Cl(m). So Cl(m) = {1, p, p2, p3}. The set
of integral ideals a which are equivalent to (1) in Cl(m) correspond to ideals of the form (x)
where x ∈ OK with x ≡ 1 mod 6OK . The set of integral ideals a equivalent to p in Cl(m)
correspond to ideals of the form (y)p with y ≡ 1 mod 6OK such that (y)p ⊂ OK . Equivalently,
they correspond to ideals of the form (x) with x ∈ OK and x ≡ 2 + i mod 6OK . There are
analogous congruences for the other ideal classes. If ψ : Cl(m) → C× is a character that sends
p to i then

fψ =
∑
a

ψ(a)qNa

=
∑

A∈Cl(m)

ψ(A)
∑
a∈A

qNa

Now ∑
a∼(1)

qNa =
∑
x,y∈Z

(x,y)≡(1,0) mod 6

qx
2+y2
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by the above remarks, and similarly for the other ideal classes. Since the classes p and p3 in the
sum cancel out, we are left with

fψ =
∑
a∼(1)

qNa −
∑
a∼p2

qNa

=
∑
x,y∈Z

(x,y)≡(1,0)
mod 6

qx
2+y2 −

∑
x,y∈Z

(x,y)≡(3,4)
mod 6

qx
2+y2

if we switch the roles of x and y in the last sum, we can write fψ more compactly as follows:

fψ =
∑
x,y

(−1)yqx
2+y2

,

where the sum is taken over all x, y ∈ Z such that
x ≡ 1 mod 3,

y ≡ 0 mod 3,

x+ y ≡ 1 mod 2.

This is a cusp form of level |∆K |N(m) = 144 with character χ−4. The ray class field mod
m is E = Q(i, 4

√
12) and Gal(E/Q) ' D4. The representation associated to fψ is the unique

two-dimensional irreducible representation of D4.

Example 4.2.10. Let’s compute all dihedral cusp forms of weight one and level 44. This is
equivalent with finding all odd irreducible dihedral representations of GQ of conductor 44. By
proposition 4.2.2, all such representations are induced from a character ψ : GK → C× with K
a quadratic field such that |∆K |NK/Q(f(ψ)) = 44. So the possible values of K are

K = Q(i),Q(
√

11) or Q(
√
−11). (4.4)

We examine each case seperately.

• If K = Q(i), we need a character ψ : GK → C× such that NK/Q(f(ψ)) = 11. But 11 is
inert in K so there is no ideal of norm 11 in K.

• If K = Q(
√

11) then ψ : GK → C× has to be everywhere unramified and ψ2 6= 1. But the
class group of K is trivial, so no such ψ exists.

• The case K = Q(
√
−11) is slightly more interesting. The class group of K is trivial, with

associated quadratic form
Q = x2 + xy + 3y2.

We want a character ψ : GK → C× with conductor of norm 4. Since 2 is inert in K, the
conductor equals 2OK . We have to compute the ray class group mod m = 2OK . Using
class field theory, we see that

Cl(m) =
O×2

(1 + 2O2){±1}
' F×4 ' Z/3Z

whereO2 denotes the (2)-adic completion ofOK . If we put δ = 1+
√
−11

2 then p = (δ) ∈ I(m)
is a generator of Cl(m). The integral ideals of K which are equivalent to (1) in Cl(m) are
precisely the ideals of the form (x+ yδ) with x, y ∈ Z and (x, y) ≡ (1, 0) mod 2. Similar
descriptions hold for the other ideal classes, for example we have∑

a∼p
qNa =

1

2

∑
x,y∈Z

x even, y odd

qx
2+xy+3y2

,
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where we need to divide by 2 since each ideal a ∼ p appears twice in the sum on the right
hand side since −1 ≡ 1 mod 2OK . Now choose ψ : Cl(m) → C× such that ψ(p) = ζ3 =
e2πi/3. Then

fψ =
1

2

∑
a∼(1)

qNa + ζ3

∑
a∼p

qNa + ζ2
3

∑
a∼p2

qNa



=
1

2

 ∑
x,y∈Z

x odd, y even

qx
2+xy+3y2

+ ζ3

∑
x,y∈Z

x even, y odd

qx
2+xy+3y2

+ ζ2
3

∑
x,y∈Z

x odd, y odd

qx
2+xy+3y2


Alternatively, noting that integral ideals a ∼ p are exactly ideals of the form (x)p with
a ∈ p−1 = 1

Np p̄ such that x ≡ 1 mod 2OK and Np ≡ 1 mod p, we can write fψ using the

quadratic forms attached to p and p2 ∼ p̄:

fψ =
1

2

 ∑
x,y∈Z

x odd, y even

qx
2+xy+3y2

+ ζ3q
3x2+xy+y2

+ ζ2
3q

3x2−xy+y2



=
1

2

 ∑
x,y∈Z

x odd, y even

qx
2+xy+3y2

+ q3x2+xy+y2

 .

the first coefficients of fψ are q − q3 − q5 + q11 + q15 − q23 + O(q24). This is a newform of
level 44 and type (1, χ−11). Since fψ = fψ−1 it is the only dihedral form of level 44 and using
computer calculations (see next section) one can prove that in fact this is the only form of
level 44. How does the associated Galois representation look like? We first need to know the
ray class field mod 2OK of K. We can either do this by bruteforce (i.e. by looking at a
table on http://www.lmfdb.org of number fields of small discriminant) or using the theory of
complex multiplication (for an introduction to this beautiful subject, see [Sil94]). Indeed, since
K has class number one we know the elliptic curve C/OK has rational j-invariant. Via the
approximation j(z) = q−1 + 744 + 196884q + 21493760q2 +O(q3) we calculate using SAGE that

j

(
1 +
√
−11

2

)
= −32768.

Using the universal elliptic curve or built-in databases in SAGE we see that the curve

E : y2 + y = x3 − x2 − 7x+ 10

has compex multiplication by OK . We obtain the ray class field mod 2OK by adding all x-
coordinates of the 2-torsion points. In these coordinates the multiplication by 2-isogeny looks
like

[2](x, y) =

(
x4 + 14x2 − 82x+ 90

4x3 − 4x2 − 28x+ 41
, · · ·

)
.

so adding all roots of the polynomial 4x3 − 4x2 − 28x+ 41 to Q gives a field extension L/Q of
degree 6 with Gal(L/Q) ' S3 ' D3. The unique two-dimensional irreducible representation of
D3 is the one associated to fψ.
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N dim(S1(Γ1(N)))

23 1
31 1
39 1
44 1
47 2
52 2
55 1
56 1
57 2
59 1
63 1
68 3
71 3
72 2

Table 4.1.: weight one cusp forms of small level

4.3. Computing all cusp forms of weight one: the exceptional cases

The only examples we have given so far are cusp forms of dihedral type, so the question remains
whether we can explicitly construct forms with non-dihedral projective image. In fact, we
might wonder if there are explicit algorithms to compute the space of cusp forms of weight one
of a given level. For weight at least two, there exist explicit algorithms relying on the Eichler-
Shimura isomorphism phrased in the language of modular symbols (see [Ste07]). New ideas were
needed to provide algorithms for the weight one case. Buzzard and Lauder recently published
a database [BL] which contains all newforms f ∈ S1(N,χ) and their projective image of level
N ≤ 1500. This database was computed using the algorithm described in [Buz14] with the
aid of the computer algebra package Magma. It goes roughly as follows: suppose we want to
compute the space S1(Γ1(N)). Let g ∈ Sk(Γ1(N)) be a modular form whose q-expansion can be
computed to arbitrary precision (e.g. an Eisenstein series). The map

S1(Γ1(N))→ Sk+1(Γ1(N))

f 7→ f.g

is injective, and the space on the right hand side can be explicitly computed using modular
symbols. It follows that S1(Γ1(N)) is contained in the space of q-expansions {g−1h | h ∈
Sk+1(Γ1(N))}. Doing this for many g and taking intersections gives a good upper bound for
the dimension of S1(Γ1(N)). To get a lower bound, we can compute all dihedral forms of level
N by computing all odd dihedral representations of GQ using class field theory (the conductors
of the quadratic fields are bounded so this is in theory a finite process). Two possibilities can
arise. Either the upper and lower bound agree so every cusp form is dihedral and the dimension
is computed. In the other case, there is a possibility of having cusp forms of other then dihedral
type. If h is a suspected cusp form of weight one which lies in the intersection of all our test
spaces, then it is certainly meromorphic and weight k invariant so it suffices to prove that h2 is a
weight two modular form. If the q-expansions of h2 and some weight two cusp form agree up to
a high enough power of q (e.g. the Sturm bound), then we know for sure that h is holomorphic.

As an example, all dimensions of nonzero S1(Γ1(N)) up to N ≤ 60 are given in table 4.1. In this
range all levels containing a newform do not contain oldforms. We have already encountered
some of these forms in example 4.2.7 and 4.2.10. The calculations of [BL] show that all cusp
forms of level N ≤ 123 are dihedral so can be computed in the same fashion as in section 4.2.
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order 1 2 3

observed 7.7% 23.8% 68.5%
expected 8.3% 25% 66.6%

Table 4.2.: the A4 example

Buzzard and Lauder determined the smallest levels for which there exist a cusp form of type
A4, S4 and A5. Let us briefly discuss this. We will not try to rigorously prove that these forms
are of the desired type but only give heuristic arguments and an indication of how one could do
this. The following straightforward lemma will be useful [BL, Lemma 1]:

Lemma 4.3.1. Let g ∈ PGL2(C) be an element of finite order n and g̃ ∈ GL2(C) any lift of
g. Then the complex number Tr(g̃)/det(g̃) is independent of the choice of g̃, and we denote it
by c(g). We have c(g) = 2 + ζ + ζ−1 where ζ is a primitive nth root of unity so if g has order

1, 2, 3, 4 then c(g) = 4, 0, 1, 2 respectively. If g has order 5 then c(g) = 1±
√

5
2 .

4.3.1. The A4 case

The smallest N such that there exists an A4 form is N = 124 = 22 × 31. There are 4 newforms
on S1(Γ1(N)) which are all tetrahedral. If ζ = e2πi/12 and ω = e2π/3 then one of these newforms
is given by the q-expansion:

q − ζ3q2 + (ζ − ζ3)q3 − q4 + ωq5 − ζ2q6 + (ζ3 − ζ)q7 + ζ3q8 + ζq10

− ζq11 + (ζ3 − ζ)q12 − ωq13 + ζ2q14 + ζ3q15 + q16 − ζ2q17 + (−ζ3 + ζ)q19 +O(q20).

It’s character χ is determined by χ(63) = −1 and χ(65) = ω. How can we prove that this form
is of type A4? A heuristic way goes as follows. Let ρ = ρf be the associated representation
and ρ̃ the associated projective representation. By lemma 4.3.1, we can calculate the orders of
ρ̃(Frobp) by computing c(ρ̃(Frobp)) = a2

p/χ(p). Chebotarev density theorem guarantees that the
orders of ρ̃(Frobp) will reflect the orders of the projective image. In this case, only elements of
order 1, 2, 3 seem to appear and the frequency of the orders for primes below 1000 is reported
in table 4.3.1. The expected orders are computed using the fact that A4 has 12 elements of
which 1, 3, 8 are of order 1, 2, 3 respectively. The similarity between the observed and expected
frequencies strongly suggest that f is of type A4. To prove this rigourously, we can use some
tricks [BL] to see it could not be dihedral or of type S4 and A5. Or we explicitly compute a
Galois representation of type A4 of conductor 124 which is known to come from some newform
[Buz14, Lemma 4]. The number field cut out by the projective representation is the splitting
field of x4 + 7x2 − 2x+ 14.

4.3.2. The S4 case

The smallest level containing an S4 form is N = 148 = 22 × 37. There are two such forms of
this level and they are Galois conjugate. The q-expansion of one of them starts as follows:

q − iq3 − q7 + iq11 + (i− 1)q17 + (−i+ 1)q19 + iq21 + (i− 1)q23 + iq25

− iq27 + (−i− 1)q29 + q33 − iq37 − iq41 + q47 + (i+ 1)q51 + q53 + (−i− 1)q57 +O(q68).

Table 4.3.2 shows the frequencies of the orders of the primes below 1000, against the frequencies
of the orders in S4. Since there are elements of order 4, it is certainly not an A4 or A5 form
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order 1 2 3 4

observed 0.6% 38.7% 33.9% 26.8%
expected 0.4% 37.5% 33.3% 25%

Table 4.3.: the S4 example

order 1 2 3 5

observed 0.6% 28.6% 33.9% 36.9%
expected 1.7% 25% 33.3% 40%

Table 4.4.: the A5 example

(since these groups don’t have elements of order 4). By computing all dihedral forms of level
148 using class field theory one can show that it is not dihedral either, so it is indeed of type
S4. The number field cut out by the projective Galois representation is the splitting field of
x4 − x3 + 5x2 − 7x+ 12.

4.3.3. The A5 case

The smallest level containing an icosahedral form is N = 633 = 3× 211. If ζ = e2πi/20 then the
first coefficients of such a form are given by

q + (−ζ7 + ζ5)q2 − ζ8q3 + (−ζ4 + ζ2 − 1)q4 − ζ7q5 + (−ζ5 + ζ3)q6 + ζ4q7 − ζ3q8

− ζ6q9 + (−ζ4 + ζ2)q10 + (ζ7 + ζ3 − ζ)q11 + (ζ6 − ζ4)q12 − ζ4q13 +O(q14).

Table 4.3.3 shows the frequencies of the orders of the primes below 1000, against the frequencies
of the orders in A5. The field cut out by the projective Galois representation attached to this
A5 form is the splitting field of x5 − 211x2 − 1266x− 1899.
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A. Additional proofs

A.1. Von-Staudt Clausen theorem

The main reference for this section is [AIK14]. Recall that the Bernoulli numbers (Bn)n≥0 are
defined by the following power series: ∑

n≥0

Bn
n!
tn =

t

et − 1
.

The first terms are B0 = 1, B1 = −1/2 and B2 = 1/6. This seems to be a rather innocent
definition but the Bernoulli numbers are closely connected with many deep arithmetic problems.
Let us note that

t

et − 1
+
t

2

is an even function, hence Bn = 0 if n ≥ 3 is odd. In what follows we give an elementary proof
of the Von Staudt-Clausen theorem used in the proof of theorem 3.2.3.

Theorem A.1.1 (Von Staudt-Clausen). For all n ≥ 1 we have

Bn +
∑
p−1|n

1

p
∈ Z,

where the sum is over all primes p such that p− 1 divides n.

Proof. The statement is true for n = 1 and since Bn = 0 for n ≥ 3 odd we may assume that
n = 2m is even. Let’s rewrite the generating function for Bn. We have the following equalities
as formal power series:

t

et − 1
=

log((et − 1) + 1)

et − 1

=
1

et − 1

∑
k≥1

(−1)k+1 (et − 1)k

k

=
∑
k≥0

(−1)k
(et − 1)k

k + 1

=
∑
k≥0

(−1)k

k + 1

∑
n≥1

tn

n!

k

But we can expand the right hand side by noting that∑
n≥1

tn

n!

k

=
∑
n≥k

 ∑
ai≥1

a1+···+ak=n

(
n

a1, . . . , ak

) tn

n!
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A counting argument shows that∑
ai≥1

a1+···+ak=n

(
n

a1, . . . , ak

)
= k!S(n, k)

where S(n, k) is the number of partitions of {1, . . . , n} in k non-empty subsets. The S(n, k) are
called the Stirling numbers of the second kind. In conclusion we obtain

Bn =
∑
k≥0

(−1)kk!

k + 1
S(n, k) (A.1)

So the only primes appearing in the denominator of Bn are those dividing k + 1 for some
k ∈ {1, . . . , n}. In fact one sees that if k + 1 is composite and k 6= 4 then k + 1 divides k!. But
the Stirling numbers satisfy the identity (see [AIK14])

S(n, k) =
1

k!

k∑
j=0

(−1)k+j

(
k

j

)
jn (A.2)

so

S(n, 3) =
1

3!

((
3

1

)
− 2n

(
3

2

)
+ 3n

(
3

3

))
(A.3)

=
1

3!
(3n − 3.2n + 3) (A.4)

so since n is even we get that 3!S(n, 3) ≡ 3n − 3.2n + 3 ≡ 0 mod 4.

Conclusion: if k is composite then

(−1)kk!

k + 1
S(n, k) ∈ Z.

So the only case left to consider is if p = k + 1 is prime. We show that

(−1)kk!S(n, k) ≡

{
−1 mod p, if p− 1 | n
0 mod p, if p− 1 - n

(A.5)

this is clear for p = 2 so assume p to be odd. We use formula A.2 for k = p− 1 and obtain

(−1)kk!S(n, k) =

p−1∑
j=0

(−1)j
(
p− 1

j

)
jn

Now (
p− 1

j

)
≡ (−1)j mod p

and
p−1∑
j=0

jn ≡

{
−1 mod p, if p− 1 | n
0 mod p, if p− 1 - n

hence we obtain the result.

Remark A.1.2. Once one has developped the theory of p-adic integration there are more
natural proofs of the Von Staudt-Clausen congruence.
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A.2. Deligne-Serre lifting lemma

In this section we prove the Deligne-Serre lifting lemma. We use the notions of associated and
support primes of a ring from commutative algebra. The reader is reminded of their definition
and basic properties below the proof of the lifting lemma. The proof is an adaptation of the one
given in [Sai09].

Lemma A.2.1 (Deligne-Serre lifting lemma). Let O be a discrete valuation ring with maximal
ideal m, residue field k = O/m and fraction field K. Let M be a free O-module of finite rank.
Let T ⊂ EndO(M) be a commuting family of endomorphisms of M . Suppose 0 6= f ∈ M/mM
satisfies T (f) = aT f (aT ∈ k) for all T ∈ T .

Then there is a discrete valutation ring O′ with maximal ideal m′ where O ⊂ O′, m′ ∩ O = m
and the fraction field of O′ is a finite extension of K such that the system of eigenvalues {aT }T∈T
has a lift to M ′ = M ⊗O O′: there exists a nonzero f ′ ∈M ′ such that

T (f ′) = a′T f
′ ∀T ∈ T

with a′T ∈ O′ such that a′T ≡ aT mod m′M ′.

Proof. Let H be the O-subalgebra of EndO(M) generated by T . Since M is a free O-module
of finite rank, EndO(M) and hence H is a free O-module of finite rank as well. Moreover, H
is an integral extension of O, since it is a finitely generated O-module. So HK = H ⊗O K is
a commutative finite K-algebra, hence is an Artinian ring. Since an Artinian ring is a direct
product of Artinian local rings [AM69, Theorem 8.7] we can write

HK =
∏

m∈Spec(HK)

(HK)m

where the product is over all maximal ideals of HK and where (HK)m has residue field HK/m
which is a field extension of K of finite degree. By lemma A.2.2 and the fact that the tensor
product of finite K-algebras distributes over direct products, we see that there exists a field
extension K ′/K of finite degree such that HK′ = H⊗O K ′ = HK ⊗K K ′ is a direct product of
Artinian local rings whose residue fields are isomorphic to K ′. Let Õ be the integral closure of
O in K ′. By the Krull-Akizuki theorem [Neu99, Proposition I.12.8], Õ is a Dedekind domain
as well (note that we don’t assume the extension K ′/K to be seperable). Take a maximal ideal
m′ of Õ. Define O′ to be the localization of Õ at m′. Then O′ is a discrete valuation ring with
maximal ideal m′ and fraction field K ′, such that O ∩m′ = m. Replacing O by O′, K by K ′,
k by O′/m′ and M by M ⊗O O′, we can assume that HK is a product of Artinian local rings
whose residue fields are isomorphic to K. We will do this in what follows.

Define χ : H → k by sending T ∈ H to aT where T (f) = aT f . Since O ⊂ H, the homorphism χ
is surjective and so the ideal ker(χ) is maximal. Take a minimal prime ideal p contained in ker(χ)
(such a p exists by Zorn’s lemma). By lemma A.2.3, p is contained in the set of zero-divisors of
H. Since O is a domain, this implies that O∩ p = 0. The prime ideals of HK correspond to the
prime ideals of H which intersect trivially with O, so p corresponds to a prime ideal P in HK
and

K ' HK/P ' (H/p)⊗O K,

so the fraction field of H/p is isomorphic to K. Moreover, since O ↪→ H/p is an integral
extension and O is integrally closed, we see that in fact H/p ' O. This provides us with a map
χ′ : H → H/p ' O, defined by the canonical projection. Since the maximal ideal ker(χ) gets
mapped to a maximal ideal in H/p ' O under χ′, we see that in fact χ′(ker(χ)) ⊆ m. Since
T − aT ∈ ker(χ) we get χ′(T ) ≡ aT mod m and the following diagram commutes:
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O

H k

χ′

χ

It remains to show that P is an associated prime of MK = M⊗OK, i.e. is of the form AnnHK (f ′)
for some non-zero element f ′ ∈ MK . Because then we can suppose f ′ to be in M , and f ′ is
annihilated by T − χ′(T ) and so T (f ′) = χ′(T )f and χ′(T ) = aT mod m so this f ′ satisfies the
sought requirements of the lemma.

We first show that p = AnnH/m(f), which is the same as showing that p+mH = AnnH(f). The
inclusion ‘⊆’ for the latter equality is clear. To show the other inclusion, take a T ∈ AnnH(f).
We know that T − a′T ∈ p and a′T − aT ∈ mH so we have T ≡ aT mod p +mH. Since Tf ≡ 0
mod mM by assumption, we see that aT f ≡ 0 mod mM . But f 6= 0 in M/mM so aT = 0 in k,
hence aT ∈ mH. This shows that T ∈ p +mH so we have indeed the equality AnnH/m(f) = p.
This shows that p is a support prime of M/mM , hence it is an associated prime by lemma A.2.5.
So AnnH/m(M/mM) ⊆ p. This implies that AnnHK (MK) ⊆ P. So P is a support prime of
MK by lemma A.2.5, hence by the same lemma contains an associated prime P. Since p is a
minimal prime of H, P is a minimal prime of HK . This implies that P = P is an associated
prime itself. This concludes the proof of the theorem.

Lemma A.2.2. Let F/K be a field extension of finite degree. If a field E contains the normal
closure of F/K and is of finite degree over K, the tensor product F ⊗K E is a direct product of
Artinian local rings with residue fields isomorphic to E.

Proof. Let E be such a field, which we will see as a subfield of an algebraic closure K of K.
We know that F ⊗K E is a direct product of Artinian local rings whose residue fields are
finite extensions of E, hence of K. So the residue fields are precisely the images of E-algebra
morphisms F ⊗K E → K. Such morphisms correspond to K-algebra morphisms F → K. But
such a morphism factors through F → E since E contains the normal closure of F/K. We
conclude that every morphism F ⊗K E → K factors through F ⊗K E → E. So the image of
such a morphism is a field which is an E-algebra and admits an E-algebra morphism to E; this
implies that it must be equal to E. We conclude that F ⊗K E is a direct product of Artinian
local rings with residue fields isomorphic to E.

Lemma A.2.3. Let p be a minimal prime ideal of a (commutative) ring A. Then p is contained
in the set of zero-divisors.

Proof. Let s ∈ p be nonzero. The ring Ap has only one prime ideal, so every element of pAp

is nilpotent. So s/1 ∈ Ap is nilpotent. So snt = 0 for some n ≥ 1 and t ∈ A \ p. If the
natural number n is taken to be minimal such that snt = 0, then sn−1t 6= 0. So s is indeed a
zero-divisor.

Definition A.2.4. Let A be a commutative ring and M an A-module.

1. The annihilator of M is defined as

AnnA(M) = {x ∈ A | xm = 0∀m ∈M}.

If m ∈M , we write AnnA(m) for AnnA(〈m〉).
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2. Say a prime ideal p of A is an associated prime of M if p is of the form AnnA(m) for some
element m ∈M . We write AssA(M) for the set of associated primes of M .

3. Say a prime ideal p of A is a support prime of M if Mp 6= 0. Equivalently, there exists an
m ∈M such that AnnA(m) ⊆ p. We write SuppA(M) for the set of support primes of M .

Lemma A.2.5. Let A be a noetherian ring, M an A-module and p a prime ideal of A.

1. If M is non-zero, AssA(M) is non-empty,

2. If M is finitely generated, then p ∈ SuppA(M)⇔ AnnA(M) ⊆ p,

3. AssA(M) ⊆ SuppA(M),

4. If p is a support prime, p contains an associated prime of M .

Proof. 1. An application of Zorn’s lemma.

2. If p is a support prime, then AnnA(m) ⊆ p for some m ∈M so AnnA(M) ⊆ AnnA(m) ⊆ p.
Conversely, suppose M has generators m1, . . . ,mn. If p is not an associated prime, we know
Mp = 0 so simi = 0 for some si ∈ A \ p for each 1 ≤ i ≤ n. But then s = s1 . . . sn ∈ A \ p
annihilates all the mi so s ∈ AnnA(M)\ ⊂ p. This implies the claim by taking the
contrapositive.

3. If p is an associated prime, AnnA(m) = p for some m ∈ M so indeed AnnA(M) ⊆
AnnA(m) = p.

4. Since Mp 6= 0, it has an associated prime q which is of the form AnnA(y/s) for some
y ∈ M , s ∈ A \ p and y/s 6= 0. We want to show that q is an associated prime. Let
a1, . . . , an be a set of generators for q. Then ai(y/s) = 0 so aitiy = 0 for some ti ∈ A \ p.
Write t = t1 . . . tn ∈ A \ p. Since no element of A \ p annihilates y/s, we see that ty 6= 0.
So q is the annihilator of ty ∈M .
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