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1 Introduction
Lecture 1
starts here

When we first meet groups, we typically think of them as acting on sets. We recall that a (left) action of a
group G on a set X is by definition a map

G×X → X (1.0.1)

(g, x) 7→ g · x (1.0.2)

such that g · (h · x) = (gh) · x for all g, h ∈ G and x ∈ X and e · x for all x ∈ X, where e ∈ G is the identity
element. Equivalently, writing Sym(X) for the group of all bijections X → X, an action is defined by a
homomorphism G→ Sym(X). We say X is a G-set. Some highlights of group actions include the following:

• Every group admits a faithful action on some set. (Cayley’s theorem)

• Every G-set is a disjoint union of transitive G-sets.

• Every transitive G-set is isomorphic to G/H, the set of left cosets under some subgroup H ≤ G with
G action given by left multiplication. There is an isomorphism of G-sets G/H ' G/H ′ if and only if
H ′ = gHg−1 for some g ∈ G.

It is easy to motivate why G-sets are reasonable objects to study: after all, groups were invented by Galois
precisely to study how Galois groups act on roots of polynomial. In this course we will linearize the situation,
and consider actions of groups on vector spaces by linear transformations; this is called representation theory.
Why is this a good thing to do?

• Linear algebra is the only thing in mathematics we truly understand, so linearization is always a good
idea.
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• This gives rise to a very complete theory for finite groups, which generalizes well to compact Lie groups,
algebras and other algebraic structures.

• This has intrinsic applications to group theory, whose statement does not involve representation theory.
For example, we will prove later in the course Burnside’s theorem that every finite group of order paqb

with p, q prime is solvable using techniques from representation theory.

• There are plenty of applications to and connections with number theory, algebraic geometry, combina-
torics, physics, chemistry, ...

• Any time a group G acts on an object X (like a manifold, variety, other group, ...), we can try to linearize
the situation (taking tangent spaces, cohomology, ...) and study this linear problem instead. It turns out
that this perspective is extremely profitable, see e.g. the study of Galois representations.

It is also just very fun!

2 Basic definitions of representation theory

2.1 Linear algebra preliminaries

Convention 2.1. All vector spaces considered in this course will be finite-dimensional unless explicitly stated
otherwise.

Let F be a field and V be a vector space over F . Define

End(V ) := Hom(V, V ) = {F -linear maps V → V }, (2.1.1)

GL(V ) := {F -linear bijections V → V }. (2.1.2)

After choosing bases (equivalently, choosing an isomorphism V ' Fn), we can represent linear maps using
matrices. For every integer n ≥ 1 define

GLn(F ) := {invertible n× n-matrices over F} (2.1.3)

= {A ∈ Matn(F ) | detA 6= 0}. (2.1.4)

Let {e1, . . . , en} be a basis of V . Given φ ∈ End(V ), define the matrix Aφ = (aij)1≤i,j≤n ∈ Matn(F ) via
φ(ej) =

∑
i aijei.

Proposition 2.2. 1. The map φ 7→ Aφ induces an isomorphism GL(V ) ' GLn(F ).

2. If φ 7→ Bφ is the isomorphism GL(V ) ' GLn(F ) defined using a different basis of V , then there exists a
matrix X ∈ GLn(F ) such that Bφ = XAφX

−1 for all φ ∈ GL(V ).

Proof. Linear algebra. (Exercise)

Conclusion: every linear map V → V gives rise to a matrix once a basis is chosen, and changing the basis
replaces the matrix by a conjugate.
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2.2 Three equivalent definitions

We will now define a representation, in three equivalent ways. This parallels the three different ways of
defining a G-action on a (finite) set X: as a map G×X → X satisfying some properties, as a homomorphism
G→ Sym(X), or as a homomorphism G→ Sn (once a bijection X ' {1, 2, . . . , n} is chosen).

Definition 2.3. A linear action of a group G on an F -vector space V is an action

G× V → V (2.2.1)

(g, v) 7→ g · v (2.2.2)

such that for every g ∈ G the induced map g · (−) : V → V is F -linear. In other words, we require that
g · (λv + µw) = λ(g · v) + µ(g · w) for all g ∈ G, v, w ∈ V and λ, µ ∈ F . We also say that G acts linearly on V ,
or that V is a G-module.

Definition 2.4. A representation of a group G on a vector space V is a homomorphism

ρ : G→ GL(V ). (2.2.3)

We also say that V is a G-representation or G-rep for short, with the homomorphism ρ being implicitly understood.

Definition 2.5. A matrix representation of a group G is a homomorphism

R : G→ GLn(F ). (2.2.4)

We now relate these three definitions. Given a linear action of G on V , the assignment ρ(g)(v) := g · v
defines a homomorphism ρ : G→ GL(V ) and hence a representation of G on V . Conversely, a representation
ρ : G → GL(V ) defines a linear G-action on V via g · v := ρ(g)(v). Given a representation ρ : G → GL(V )
and a basis of V , we obtain a matrix representation R : G → GLn(F ) using Proposition 2.2. Conversely, a
matrix representation gives rise to a representation of G on the vector space V := Fn, using the ‘natural’
isomorphism GL(Fn) ' GLn(F ).

Conclusion: the following notions are the same

{Linear actions} = {Representations} (2.2.5)

{Matrix representations} = {Representations + choice of basis of V } (2.2.6)

We will freely switch between linear actions and representations without mention, and view representations
as matrix representations once we have chosen a basis of V .

2.3 Morphisms of representations

Definition 2.6. A G-homomorphism (or simply morphism) between G-representations V and W is a linear
map f : V → W such that φ(g · v) = g · φ(v) for all g ∈ G and v ∈ V . This is also called a G-linear map or
G-equivariant map. Write

HomG(V,W ) ⊂ Hom(V,W ) (2.3.1)

for the subset of all G-homomorphisms between V and W . This is a linear subspace of Hom(V,W ).

Definition 2.7. A G-homomorphism φ between two representations is called a G-isomorphism (or simply
an isomorphism) if φ is bijective. We say two representations are isomorphic or equivalent if there exists an
isomorphism between them.
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Proposition 2.8. Let R,R′ : G → GLn(F ) be two matrix representations. Then R and R′ are equivalent as
representations if and only if there exists a matrix X ∈ GLn(F ) such that ρ′(g) = Xρ(g)X−1 for all g ∈ G.

Proof. Exercise. (Problem set 1)

2.4 Properties of representations

Definition 2.9. Let ρ : G→ GL(V ) be a representation.

• The dimension of V is called the degree or dimension of the representation ρ.

• We say ρ is faithful if ρ is injective, equivalently the action of G on V is faithful.

• We say W ⊂ V is a subrepresentation of V if W is stable under the G-action, i.e. g · w ∈W for all w ∈W .
In that case W is itself a representation of G.

• We say V is irreducible if V 6= {0} and the only subrepresentations V are {0} and V itself.

3 Examples

3.1 First examples

Definition 3.1. We call V = {0} (with its unique G-action) the zero representation. We call V = F (with the
trivial G-action) the trivial representation.

Examples 3.2. One-dimensional representations are the same as homomorphisms G→ F×. They are automati-
cally irreducible. Two one-dimensional representations are isomorphic if and only if they are equal. For example,
if G = Cn = {1, g, . . . , gn−1} is the cyclic group of order n and F = C×, then homomorphisms G → C× are
all of the form g 7→ ζk for some k ∈ {0, . . . , n − 1}, where ζ ∈ C× is a primitive nth root of unity. This gives
n irreducible representations of G over C; we will soon show (Theorem 5.6) that these are all the irreducible
representations of G up to equivalence.

Example 3.3. Let G = C2 = {1, g}. Then giving a homomorphism G→ GL(V ) is the same as giving an element
φ ∈ GL(V ) satisfying φ2 = Id. Every eigenvalue of φ is ±1 and if 2 6= 0 in F , φ is diagonalizable:

v =
1

2
(v + φ(v)) +

1

2
(v − φ(v)). (3.1.1)

It follows that every representation of C2 is equivalent to one where the action of φ is diagonal and the entries on
the diagonal are ±1.

Example 3.4. Let G = C4 = {1, g, g2, g3} be the cyclic group of order 4. Since the matrix A =

(
0 1
−1 0

)
∈

GL2(R) has A4 = I, the map R : G → GL2(R), gi 7→ Ai defines a matrix representation of G over R. This
representation is faithful. We claim it is also irreducible. Indeed, let W ⊂ GL2(R) be a one-dimensional G-stable
subspace. Then W is a representation of G, defined by a homomorphism G→ GL(W ) = R×. But every element
x ∈ R× with x4 = 1 equals 1 or −1. It follows that W is a ±1-eigenspace for A. Since the eigenvalues of A are
±i, we obtain a contradiction. However, we can also consider R as a representation over C, by composing with

the inclusion GL2(R)→ GL2(C). Then A becomes conjugate to
(
i 0
0 −i

)
. You will show on the problem set that

every element of finite order in GLn(C) is diagonalizable. This is the advantage of working with C.
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Example 3.5. Let G = Dn = 〈r, s | rn = s2 = 1, srs = r−1〉 be the dihedral group of order 2n. By definition, G
is a subgroup of GL2(R) preserving a regular n-gon; this defines a 2-dimensional representation G→ GL2(R).
Composing with the inclusion GL2(R)→ GL2(C), this also defines a representation of G over C. If n ≥ 3 then
this representation is irreducible.

Lecture 2
starts hereExample 3.6. Let G = Q8 = 〈i, j | i4 = 1, i2 = j2, jij−1 = i−1〉 be the quaternion group of order 8. Writing

−1 = i2 = j2 and k = ij, its elements are {±1,±i,±j,±k}. It can be realized as a subgroup of GL2(C) via

i 7→
(
i 0
0 −i

)
, j 7→

(
0 1
−1 0

)
. (3.1.2)

This defines the standard representation of Q8. In the problem set, you will show that every irreducible representa-
tion V of Q8 over C with dimV ≥ 2 is isomorphic to the standard representation. Moreover, you will show that
this representation cannot be realized over R: that is, it cannot be conjugated inside GL2(R).

3.2 Permutation representations

It turns out every group action gives rise to a representation.

Definition 3.7. Let G be a group acting on a finite set X. Let FX be the vector space with basis {ex | x ∈ X}
indexed by X, so an element of FX is of the form

∑
x∈X cxex, where cx ∈ F and ex should be interpreted as

a formal symbol. Then the association g · ex := eg·x extends to a linear G-action on FX. This is called the
permutation representation associated to the G-action on X.

Very often, we will even just write an element of FX as a sum
∑
x∈X cxx, where we simply write x instead of

ex.

Remark 3.8. Warning: some people call a G-action on a finite set a permutation representation. I will stick to
calling them simply actions, or permutation actions, reserving the term permutation representation for the linear
action on the vector space FX.

Example 3.9. Let G = S3 be the symmetric group on three letters and let X = {1, 2, 3} on which G acts by
definition. Let V = CX be the associated permutation representation. In the basis {e1, e2, e3} of V , the action of
G is given by the matrices:

Id 7→

1 0 0
0 1 0
0 0 1

 , (123) 7→

0 0 1
1 0 0
0 1 0

 , (132) 7→

0 1 0
0 0 1
1 0 0

 (3.2.1)

(12) 7→

0 1 0
1 0 0
0 0 1

 , (23) 7→

1 0 0
0 0 1
0 1 0

 , (13) 7→

0 0 1
0 1 0
1 0 0

 (3.2.2)

These are all permutation matrices, something which is always true for permutation representations (in the
natural basis of FX). Observe that e1 + e2 + e3 is fixed by every element of G, hence the C-span of this element
is isomorphic to the trivial representation.

We know that every group acts on itself by left multiplication. This shows that every finite group has a
‘god-given’ representation:

Definition 3.10. Let G be a finite group and consider the action of G on itself by left multplication. The associated
permutation representation FG is called the regular representation of G.

The regular representation is extremely important. For example, we will show pretty soon that every
irreducible representation ‘appears’ in the regular representation when F = C.
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4 Complete reducibility and Maschke’s theorem

4.1 Direct sums, indecomposability

Definition 4.1. Given two G-representations V and W , their direct sum is the vector space of pairs V ⊕W =
{(v, w) | v ∈ V,w ∈W} under componentwise addition. The association g · (v, w) := (g · v, g ·w) defines a linear
G-action on V ⊕W , called the direct sum representation.

Remark 4.2. Recall from linear algebra the comparison of the above ‘external’ direct sum to the following notion
of ‘internal’ direct sum: if U,W are subspaces of a vector space V , we say V is the direct sum of U and W and we
write V = U ⊕W if V = U +W and U ∩W = {0}. To compare the two notions, note that if V is an internal
direct sum of U and W then the summing map U ⊕W → V from the external direct sum to V is an isomorphism.

Definition 4.3. A nonzero G-representation V is called decomposable if we can write V = U ⊕W where U and
W are nonzero subrepresentations of V , and indecomposable otherwise.

Lemma 4.4. Every irreducible representation is indecomposable.

Proof. If the representation were decomposable, it would be isomorphic to U ⊕W where U and W are
nonzero. But then U would be a subrepresentation, contradicting irreducibility.

Let’s interpret irreducibility and indecomposability in terms of matrix representations.

Given a subrepresentation W ≤ V , choose a basis {e1, . . . , em} of W and extend it to a basis {e1, . . . , en} of
V . Let RW : G→ GLm(F ) and RV : G→ GLn(F ) be the associated matrix representations. Then RV (g) has
a block upper triangular form:

RV (g) =

(
RW (g) ∗

0 ∗

)
. (4.1.1)

Now suppose there exists another subrepresentation U ≤ V such that V = W ⊕U . Choose bases of W and U ,
giving a basis of V and matrix representations RV , RW , RU . Then RV has block diagonal form

RV (g) =

(
RW (g) 0

0 RU (g)

)
. (4.1.2)

Maschke’s theorem shows that we can alway transform the block upper triangular form of RV into a block
diagonal form after changing the basis (under certain conditions on G and F ).

4.2 Maschke and its proof

Theorem 4.5 (Maschke). Let G be a finite group and suppose that the order of G is invertible in F . Let V be
a G-representation and W ≤ V a subrepresentation. Then there exists a G-invariant complement to W : there
exists a subrepresentation U ≤ V such that V = W ⊕ U .

We will give two proofs. For the first one, we will assume F = C.

Definition 4.6. A Hermitian inner product on a complex vector space V is a map 〈−,−〉 : V × V → C such that
for all v, w ∈ V, λ, µ ∈ C:
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• (Hermitian) 〈v, w〉 = 〈w, v〉;

• (Sesquilinear) 〈λv + µv′, w〉 = λ〈v, w〉+ µ〈v′, w〉;

• (Positive definite) 〈v, v〉 > 0 if v 6= 0.

If V is a G-representation, we say h is G-invariant if 〈gv, gw〉 = 〈v, w〉 for all v, w ∈ V, g ∈ G.

Lemma 4.7. Let V be a G-representation over C with a G-invariant Hermitian inner product h and let W ≤ V be
a subrepresentation. Then W⊥ = {v ∈ V | 〈w, v〉 = 0, ∀w ∈W} is a subrepresentation of V and V = W ⊕W⊥.

Proof. The direct sum decomposition V = W ⊕W⊥ holds for any subspace W , so it suffices to show that W⊥

is stable under G. Let v ∈W⊥ and g ∈ G. Then 〈v, w〉 = 0 for all w ∈W . By G-invariance, 〈g · v, g · w〉 = 0
for all w ∈W . Since W is G-invariant, g ·W = W so 〈g · v, w〉 = 0 for all w ∈W . Hence g · v ∈W⊥ and the
claim is proven.

Theorem 4.8. (Weyl’s unitary trick) Suppose that G is finite and let V be a G-representation over C. Then there
exists a G-invariant Hermitian inner product on V .

Proof. The proof is beautiful. Start with any Hermitian inner product 〈−,−〉0 on V . Then 〈−,−〉0 is not
necessarily G-invariant, but we can make a new one that will be: set

〈v, w〉 :=
1

|G|
∑
g∈G
〈g · v, g · w〉0. (4.2.1)

Then 〈−,−〉 is again a Hermitian inner product on V , being a sum of such things. Moreover, 〈−,−〉 is
G-invariant by construction. Indeed, for every g′ ∈ G, we compute:

〈g′v, g′w〉 =
1

|G|
∑
g∈G
〈gg′v, gg′w〉0 (4.2.2)

As g runs over G, gg′ runs over G too, so the sum equals

1

|G|
∑
g∈G
〈gv, gw〉0 = 〈v, w〉, (4.2.3)

as claimed.

Since every Hermitian inner product is equivalent to the standard one on Cn, given by 〈(xi), (yi)〉 =
∑
xiȳi,

and since the subgroup of GLn(C) leaving the standard form invariant is

Un(C) := {A ∈ GLn(C) | AĀt = I}, (4.2.4)

we get as a consequence:

Corollary 4.9. Every finite subgroup of GLn(C) is conjugate to a subgroup of Un(C).

First proof of Maschke’s theorem, assuming F = C. Let 〈−,−〉 be a G-invariant inner product (which exists by
Theorem 4.8) on V and set U = W⊥. By Lemma 4.7, U is G-stable and V = W ⊕ U .

Lecture 3
starts here

We will now give a second proof, just assuming that G is finite and F is a general field whose characteristic
does not divide the order of |G|. We will use the following lemma and a similar ‘averaging’ idea. If W is a
subspace of V , we call a map p : V →W a projector if p(w) = w for all w ∈W .
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Lemma 4.10. Let V be a G-representation, W ≤ V a subrepresentation and p : V → W a G-equivariant
projector. Then ker(p) ≤ V is a subrepresentation and V = W ⊕ ker(p).

Proof. The map p : V →W is surjective, and injective when restricted to W ; it follows that W ∩ ker(p) = {0}
and V = W + ker(p) by dimension considerations, hence V = W ⊕ ker(p). It suffices to prove that ker(p) is a
subrepresentation of V . But if v ∈ ker(p) and g ∈ G, then p(gv) = gp(v) = g · 0 = 0, so g · v ∈ ker(p).

Second proof of Maschke’s theorem. Let p0 : V →W be any projector (not necessarily G-equivariant). Define
the linear map p : V →W via:

p(v) =
1

|G|
∑
g∈G

g · p0(g−1 · v). (4.2.5)

(This makes sense since we can divide by |G| in F .) We claim that p is a G-equivariant projector. Indeed, if
w ∈W then

p(w) =
1

|G|
∑
g∈G

g · p(g−1 · w) =
1

|G|
∑
g∈G

g · (g−1 · w) = w (4.2.6)

So p is indeed a projector. To check that it is G-invariant, let h ∈ G and compute:

h · p(v) =
1

|G|
∑
g∈G

hg · p(g−1 · v) (4.2.7)

=
1

|G|
∑
g∈G

hg · p((hg)−1h · v) (4.2.8)

Since the map G→ G, g 7→ hg is a bijection, we may replace hg by g in the above sum which equals

1

|G|
∑
g∈G

g · p(g−1(h · v)) = p(h · v), (4.2.9)

proving that p is G-equivariant, as claimed. Using Lemma 4.10, we see that U = ker(p) is a G-stable
complement to W .

4.3 Corollaries of Maschke’s theorem

Definition 4.11. A G-representation V is said to be completely reducible (or semisimple) if V is a direct sum of
irreducible representations: there exists irreducible representations V1, . . . , Vn such that V ' V1 ⊕ · · · ⊕ Vn.

Theorem 4.12. Suppose that G is finite and |G| 6= 0 in F . Then every G-representation is semisimple.

Proof. This follows from induction on the dimension of V and repeatedly applying Maschke’s theorem. Indeed,
suppose V is a G-representation. If dimV = 1, then V is irreducible. If dimV ≥ 2, then either V is irreducible
(in which case we’re done), or V has a proper subrepresentation 0 6= W ≤ V . By Maschke’s theorem, there
exists a subrepresentation U ≤ V with V = W ⊕ U . Since dimW and dimU are < dimV , U and W are
completely reducible by the induction hypothesis. It follows that V is completely reducible too.

Remark 4.13. In abstract terms, this shows that the category of C-representations of a finite group is ‘semisimple’.
So there are no nontrivial ‘extensions’ between representations.
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Here is another corollary of Maschke’s theorem, which we will reprove later using character theory. We did
not cover this in class, and consequently it is non-examinable.

Corollary 4.14. Suppose that G is finite and |G| 6= 0 in F . Let V be an irreducible representation of G. Then V
is isomorphic to a subrepresentation of the regular representation FG.

Proof. We will first exhibit V as a quotient of V , and then apply Maschke’s theorem to turn the quotient
into a subrepresentation. Let v ∈ V be a nonzero element. Let φ : FG→ V be the map sending

∑
g cgeg to∑

g cg(g · v). Then φ is a G-homomorphism, since this can be checked on basis elements of FG. Therefore
the image image(φ) ≤ V is a nontrivial subrepresentation. Since V is irreducible, image(φ) = V and φ
is surjective. By Maschke’s theorem, the kernel of φ has a G-invariant complement W ≤ FG, and the

composition W ↪→ FG
φ−→ V is an isomorphism. The claim follows.

This already implies that there are only finitely many isomorphism classes of irreducible representations of G.

5 Schur’s lemma and isotypical decomposition

5.1 Schur’s lemma

Schur’s lemma is simple to state and prove but has surprisingly many consequences. We continue to work
with a group G and vector spaces over a field F .

Theorem 5.1 (Schur’s lemma). Let V,W be irreducible G-representations.

1. Let φ : V →W be a G-equivariant map. Then φ is either zero or invertible.

2. Suppose F is algebraically closed. Let φ : V → V be a G-equivariant endomorphism. Then φ is a scalar
multiple of the identity map.

Proof. 1. The crucial observation to make is that ker(φ) and image(φ) are subrepresentations of V and
W respectively. Indeed, if v ∈ ker(φ) and g ∈ G then φ(g · v) = g · φ(v) = 0, so g · v ∈ ker(φ). If
w = φ(v) ∈ image(φ), then g · w = φ(g · v) ∈ image(φ). Then the proof is easy: if φ is nonzero,
ker(φ) 6= V and image(φ) 6= 0. By irreducibility of V and W , ker(φ) = 0 and image(φ) = W . In other
words, φ is bijective, hence invertible.

2. Let φ : V → V be a G-equivariant map. Let λ ∈ F be an eigenvalue of φ; such a λ exists because F is
algebraically closed (hence the characteristic polynomial of φ has a root in F ). Then the linear map
φ− λ Id : V → V is again G-equivariant. However, φ− λ Id is not injective because every λ-eigenvector
for φ lies in the kernel of this map. By Part (1), we conclude that φ− λ Id = 0, that is φ = λ Id.

Remark 5.2. If F is not necessarily algebraically closed, we can deduce that for any irreducible G-representation,
EndG(V ) = HomG(V, V ) is a division algebra under composition, i.e. every nonzero element is invertible. Since
the only division algebra over an algebraically closed field is the field itself, this explain the second part of Theorem
5.1.

Let’s discuss some consequences of Schur’s lemma. We will now assume, until explicitly stated otherwise, that

Convention: G is finite and F = C.

12



5.2 Abelian groups

For a group G, let Z(G) = {g ∈ G | gh = hg, ∀h ∈ G} be its center.

Proposition 5.3 (Central character). Let V be an irreducible G-representation. Let Z(G) be the center of G.
Then there exists a homomorphism λ : Z(G) → C×, called the central character, such that z · v = λ(z) · v for
all z ∈ Z(G) and v ∈ V . In other words, the restriction of G → GL(V ) to Z(G) lands in the subset of scalar
multiples of Id.

Proof. We claim that if z ∈ Z(G) then the map φz := ρ(z) : V → V, v 7→ z · v is G-equivariant. Indeed, since z
commutes with every element of G, we have φz(g · v) = z · (g · v) = g · (z · v) = g · φz(v). By Part 2 of Schur’s
lemma, the map v 7→ zv is given by multiplication by a scalar λ(z) ∈ C×. The claim follows.

This has the following not-so obvious corollary.

Corollary 5.4. Suppose that G admits a faithful irreducible representation. Then the center Z(G) of G is cyclic.

Proof. This implies that the central character Z(G) → C× is injective. But every finite subgroup of C× is
cyclic.

Remark 5.5 (Non-examinable). Not every group with cyclic center has a faithful irreducible representation.
Indeed, suppose S3 acts on C3 via the non-trivial action of C2 = S3/C3 on C3. Then C3 o S3 has trivial center
but no irreducible faithful representation. (Exercise for enthousiasts.)

Theorem 5.6. Let G be a finite abelian group. Then every irreducible G-representation is one-dimensional. The
number of irreducible representations of G (up to equivalence) is finite and equals |G|.

Proof. Since G is abelian, G = Z(G). By Proposition 5.3, the action of G on an irreducible representation
V is given by multiplication by the central character λ : G → C×. In particular, every subspace of V is a
subrepresentation. Since V is irreducible, it follows that V is one-dimensional.

To count the number of irreps of G up to isomorphism, it suffices to count the number of homomorphisms
G→ C×. By the structure theorem for finitely generated abelian groups, G is a direct product of cyclic groups
Cn1

, . . . , Cnk . Since Hom(A×B,C×) = Hom(A,C×)×Hom(B,C×) for abelian groups A,B, we may assume
that G is cyclic of order n, with generator n. If ζ ∈ C× is a primitive nth root of unity, every homomorphism
G→ C× is of the form g 7→ ζk for some 0 ≤ k ≤ n− 1.

We will see later that the number of irreps up to equivalence for a (not necessarily abelian) group is equal to
the number of conjugacy classes in G.

5.3 Isotypical decomposition
Lecture 4
starts here

Recall from linear algebra that if φ : V → V is a diagonalizable linear map with eigenvalues λ1, . . . , λk then

V = V (λ1)⊕ · · · ⊕ V (λk), (5.3.1)

where V (λi) denotes the λi-eigenspace of φ. This decomposition is ‘canonical’, i.e. it does not require us to
choose any bases. Something similar happens for representations. To see this, we will need the following
consequence of Schur’s lemma. Recall that HomG(V,W ) denotes the set of G-homomorphisms V →W
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Lemma 5.7. Let V,W be irreducible G-representations. Then

dimC HomG(V,W ) =

{
0 if V 6'W,
1 if V 'W.

(5.3.2)

Proof. By Schur’s lemma, every element of HomG(V,W ) is either an isomorphism or the zero map. If V 6'W ,
this implies HomG(V,W ) = 0. Suppose V 'W and let ψ : V →W be an isomorphism of G-representations.
We will show that every G-linear map φ : V → W is a scalar multiple of ψ, proving that HomG(V,W ) is
one-dimensional. Indeed, the composition ψ−1φ : V → V is a G-equivariant endomorphism of V . Again by
Schur’s lemma, this endomorphism is a scalar multiple of the identity map, so ψ−1φ = λ Id for some λ ∈ C.
Therefore φ = λψ, proving that HomG(V,W ) = span{ψ}.

Lemma 5.8. Let V, V1, V2 be G-representations. Then there are isomorphisms of vector spaces

HomG(V, V1 ⊕ V2) ' HomG(V, V1)⊕HomG(V, V2), (5.3.3)

HomG(V1 ⊕ V2, V ) ' HomG(V1, V )⊕HomG(V2, V ). (5.3.4)

Proof. We will write down the ‘obvious maps’ and their inverses for the first isomorphism, leaving the
verifications and the second isomorphism as an exercise. Given a G-homomorphism φ : V → V1 ⊕ V2,
let φi : V → Vi be the postcomposition with the projection V1 ⊕ V2 → Vi. Given two G-homomorphisms
φi : V → Vi for i = 1, 2, let define the map φ : V → V1 ⊕ V2 via φ(v) = (φ1(v), φ2(v)). This establishes a
bijection between linear maps φ : V → V1 ⊕ V2 and pairs of linear maps φ1 : V → V1 and φ2 : V → V2. It is
easy to check that φ is G-equivariant if and only if φ1 and φ2 are G-equivariant.

Proposition 5.9. Let V be a G-representation and write V = V1 ⊕ · · · ⊕ Vk where each Vi is irreducible. Let S
be an irreducible G-representation. Then

dimC HomG(S, V ) = #{1 ≤ i ≤ k | Vi ' S}. (5.3.5)

Proof. By Lemma 5.8, HomG(S, V ) = HomG(S, V1) ⊕ · · · ⊕ HomG(S, Vk). By Lemma 5.7, HomG(S, Vi) is
one-dimensional or zero according to whether S ' Vi or not. Combining these two sentences proves the
proposition.

Theorem 5.10 (Isotypic decomposition). Let V be a G-representation.

1. There exists mutually non-isomorphic irreducible representations V1, . . . , Vk, nonnegative integers a1, . . . , ak
and a decomposition

V ' V ⊕a11 ⊕ · · · ⊕ V ⊕akk . (5.3.6)

2. The integers ai are uniquely determined. In other words, if V ' V ⊕b11 ⊕ · · · ⊕ V ⊕bkk then ai = bi for all
1 ≤ i ≤ k.

3. The image of V aii in V is independent of the choice of isomorphism (5.3.6). This subrepresentation of V is
called the Vi-isotypic component of V .

4. Let W be another representation and suppose that W ' V ⊕b11 ⊕ · · · ⊕ V ⊕bkk . Then there exist isomorphisms
of vector spaces

HomG(V,W ) '
k⊕
i=1

Hom(V ⊕aii , V ⊕bii ) (5.3.7)

'
k⊕
i=1

Matai×bi(C) = {ai × bi-matrices}. (5.3.8)

14



Proof. Part (1) is a restatement of Theorem 4.12. For Part (2), note that ai = dimC HomG(Vi, V ) by Proposition
5.9, so the ai do not depend on the isomorphism (5.3.6). To prove (4), it follows from Lemmas 5.8 and 5.7
that

HomG(V,W ) '
k⊕
i=1

Hom(V ⊕aii , V ⊕bii ) '
k⊕
i=1

HomG(Vi, Vi)
ai×bi . (5.3.9)

By Schur’s lemma, HomG(Vi, Vi) ' C, which concludes, so HomG(Vi, Vi)
ai×bi can be seen as the space of

ai × bi-matrices. To prove (3), it suffices to prove that any isomorphism V a11 ⊕ · · · ⊕ V akk
∼−→ V a11 ⊕ · · · ⊕ V akk

maps each V aii to itself. This follows immediately from (5.3.7).

Definition 5.11. A decomposition of V of the form

V = W1 ⊕ · · · ⊕Wk (5.3.10)

where Wi ' V ⊕nii , Vi is irreducible and Vi 6' Vj for all i 6= j is called the isotypic decomposition, and Wi is called
the Vi-isotypic component. The integer ni is called the multiplicity of Vi in V .

By Theorem 5.10, this decomposition is unique hence it is really justified to speak of the isotypic decomposition.

Remark 5.12. We can characterize the Vi-isotypic component of V in the following ‘basis-independent’ way: it is
the union of image(φ), where φ runs over all elements of HomG(Vi, V ). Using tensor products (to be discussed
later), it can also be characterized as the image of the natural map Vi ⊗HomG(Vi, V )→ V .

Remark 5.13. Even though the Vi-isotypic component Wi ≤ V is uniquely determined, we cannot write
Wi ' V nii without making any choices. Going back to the analogy with eigenspaces, the eigenspaces of a
diagonalizable operator are uniquely determined but choosing eigenvectors requires choosing a basis. In fact,
giving an isomorphism Wi ' V nii is the same as giving a basis of HomG(Vi, V ).

6 Character theory

Recall that G is assumed to be a finite group and all representations are finite-dimensional over C.

6.1 Basic definitions

Definition 6.1. The character of a representation ρ : G→ GL(V ) is the function χV : G→ C, g 7→ tr(ρ(g)). We
call any function χ : G → C of the form χV for some G-representation V a character, and in that case we say
that χ is afforded by V .

Alternatively, after choosing a basis of V the character is the function g 7→ tr(R(g)), where R : G→ GLn(C)
is the corresponding matrix representation. Since the trace of a matrix is invariant under conjugation, this
definition is well defined and does not depend on a choice of basis. Note that the character χV is merely a
function G→ C, not necessarily a group homomorphism. We can therefore assign a single complex number
to an element of g ∈ G. At this point it might be hard to imagine how this function G→ C can contain much
information about the representation, which in a basis assigns a whole matrix of numbers to every g ∈ G.
Amazingly, it will turn out that the character of V will determine V !

Definition 6.2. Let χ = χV be a character. We say χ is faithful, irreducible, trivial if V is. We call dimV the
degree of χ. We say χ is linear if it is of degree 1. In that case χ is a group homomorphism G→ C×.
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We start with some easy but very useful properties of characters.

Proposition 6.3. Let V be a G-representation with character χV .

1. χV (1) = dimV .

2. χV : G→ C is a class function: for all g, h ∈ G we have

χV (ghg−1) = χV (h). (6.1.1)

3. χV (g−1) = χV (g) for all g ∈ G.

4. If V,W are two representations then χV⊕W = χV + χW .

Proof. 1. χV (1) = tr(IdV ) = dimV .

2. Choose a basis of V and letR : G→ GLn(C) be the associated matrix representation. Then χV (ghg−1) =
tr(R(ghg−1)) = tr(R(g)R(h)R(g)−1) = tr(R(h)) = χV (h), where the third equality is justified by the
fact that the trace is conjugation invariant.

3. You have shown in Problem Set 1 (Q4) that ρ(g) ∈ GL(V ) is diagonalizable; suppose that it has
eigenvalues λ1, . . . , λn, counted with multiplicity. Then ρ(g−1) has eigenvalues λ−1

1 , . . . , λ−1
n . Since g

is of finite order, each λi is a root of unity and λ−1
i = λi. It follows that χV (g−1) = λ−1

1 + · · ·+ λ−1
n =

λ1 + · · ·+ λn = χV (g).

4. Choose bases of V and W . This determines a basis of V ⊕W in which the action of G is given by block
diagonal form (4.1.2). Since the trace of a block diagonal matrix is the sum of the traces of the blocks,
the identity follows.

Example 6.4. Let G = S3 and let V = C{1, 2, 3} be the associated permutation representation. Then V '
(trivial)⊕W , where W is the subset of V whose coordinates sum to zero. Using the fact that χV = χW + χtriv
and the matrices from (3.2.1), we can quickly compute the character of χW . Namely χW (1) = 2, χW ((12)) = 0
and χW ((123)) = −1.

Definition 6.5. A class function is a function f : G→ C that is constant on conjugacy classes of G, in other words
that satisfies f(hgh−1) = f(g) for all g, h ∈ G. Write C(G) for the vector space of all class functions G → C
under pointwise addition.

Let C1, . . . , Ck be the conjugacy classes of G. Since a function f : G→ C is a class function if and only if it is
constant on conjugacy classes, an explicit basis {δi | 1 ≤ i ≤ k} of C(G) is given by the characteristic functions
of the conjugacy classes Ci:

δi(g) =

{
1 if g ∈ Ci,
0 otherwise.

(6.1.2)

It follows that dim C(G) = k = #{number of conjugacy classes of G}.

Definition 6.6 (Inner product of class functions). Given two class functions f, f ′ : G→ C, we define

〈f, f ′〉 :=
1

|G|
∑
g∈G

f(g)f ′(g). (6.1.3)

This is a Hermitian inner product on C(G).
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Choose representatives gi ∈ Ci. Then we may also write

〈f, f ′〉 =
1

|G|

k∑
i=1

|Ci|f(gi)f ′(gi) =

k∑
i=1

1

|CG(gi)|
f(gi)f ′(gi). (6.1.4)

Here CG(gi) = {g ∈ G | ggi = gig} is the centralizer of gi and the second equality follows from the
orbit-stabilizer formula.

6.2 Completeness of characters + consequences

The next theorem is one of the cornerstones of this course and of representation theory of finite groups.

Theorem 6.7 (Completeness of characters). The irreducible characters of G form an orthonormal basis of C(G).
In other words:

1. Let V, V ′ be two irreducible G-representations with characters χ, χ′. Then

〈χ, χ′〉 =

{
1 if V ' V ′,
0 if V 6' V ′.

(6.2.1)

2. Every class function f ∈ C(G) is a C-linear combination of irreducible characters.

The proof will be postponed to next lecture. We first look at some staggering consequences.

Corollary 6.8. The number of irreducible representations of G up to equivalence equals the number of conjugacy
classes of G.

Proof. Both irreducible characters and characteristic functions of conjugacy classes form bases of C(G).

Corollary 6.9. Two representations V and V ′ are isomorphic if and only if they have the same character.

Proof. Let V be a G-representation. We know that V ' V n1
1 ⊕· · ·⊕V

nk
k where each Vi is irreducible. Moreover

two representations are isomorphic if and only all the multiplicities ni agree. But if V has character χ and Vi
has character χi, we have χ = n1χ1 + · · ·+ nkχk and hence by orthonormality

〈χ, χi〉 = ni. (6.2.2)

It follows that the character χ determines the multiplicities ni, hence the isomorphism class of V .

Corollary 6.9 might fail for infinite groups. For example, if G = Z then the representations

1 7→
(

1 0
0 1

)
, 1 7→

(
1 1
0 1

)
(6.2.3)

are not isomorphic but have the same character. Lecture 5
starts here

Corollary 6.10. A representation V is irreducible if and only if 〈χV , χV 〉 = 1.
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Proof. Write V = V n1
1 ⊕ · · · ⊕ V nkk where Vi are irreducible and non-isomorphic. Then

〈χV , χV 〉 = n2
1 + · · ·+ n2

k. (6.2.4)

V is irreducible if and only if exactly one of the ni’s is 1 and all the others are zero. But this is true if and only
if n2

1 + · · ·+ n2
k = 1.

For the next result, we first determine the character of our favourite representation, the regular representation.

Lemma 6.11. Let χreg be the character of the regular representation. Then

χreg(g) =

{
|G| if g = 1,

0 else.
(6.2.5)

Proof. In the standard basis of the regular representation, the action of g is given by permutation matrices, as
is the case for any permutation representation. Since the trace of a permutation matrix is equal to the number
of basis elements fixed by the matrix (the number of elements on the diagonal), we see that χreg(g) equals
the number of fixed points of the multiplication-by-g map G→ G, h 7→ gh. This map has no fixed points if
g 6= 1 and has |G| fixed points if g = 1.

Theorem 6.12. Let V1, . . . , Vk be a set of representatives for the isomorphism classes of irreducible representations
of G. Let χ1, . . . , χk be their irreducible characters of G and let d1, . . . , dk be their degrees. Then

d2
1 + · · ·+ d2

k = |G|. (6.2.6)

Proof. Let χreg be the character of the regular representation CG. The proof will follow from evaluating
〈χreg, χreg〉 in two different ways. First of all, by Lemma 6.11,

〈χreg, χreg〉 =
1

|G|
∑
g∈G

χreg(g)χreg(g) =
1

|G|
|G| · |G| = |G|. (6.2.7)

Since the regular representation is completely reducible, we can write χreg = m1χ1 + · · ·+mkχk, where mi

is the multiplicity of Vi in the regular representation. Again by Lemma 6.11,

mi = 〈χreg, χi〉 =
1

|G|
∑
g∈G

χreg(g)χi(g) =
1

|G|
χreg(1)χi(1) = χi(1) = dimVi. (6.2.8)

In other words, we have mi = di. By orthonormality, we have

〈χreg, χreg〉 =
∑

1≤i,j≤k

didj〈χi, χj〉 = d2
1 + · · ·+ d2

k. (6.2.9)

Combining (6.2.7) and (6.2.9) proves the theorem.

The proof of Theorem 6.12 shows:

Corollary 6.13. Let Vi be an irreducibleG-representation. Then the multiplicity of Vi in the regular representation
equals dimVi.

Theorem 6.12 also shows that G is abelian if and only if di = 1 for all i. Indeed, this is both equivalent to
k = |G|.
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Corollary 6.14. Two elements g, g′ ∈ G are conjugate if and only if χ(g) = χ(g′) for all irreducible characters χ.

Proof. The elements g, g′ are conjugate if and only if f(g) = f(g′) for every class function f ∈ C(G). Since the
irreducible characters of G span C(G) as a C-vector space, this is equivalent to χ(g) = χ(g′) for all irreducible
characters χ.

6.3 Character table

Let C1, . . . , Ck be the conjugacy classes of G and choose representatives gi ∈ Ci for each i.

Definition 6.15. The character table of G is the complex k × k-matrix (χi(gj))1≤i,j≤k where χi runs over the
irreducible characters of G.

Note that this is a square matrix by Theorem 6.7. Usually we think of the character table not just as a matrix,
but as a table where we also record the sizes of the conjugacy classes and the irreducible characters. The
character table is a concise way of packaging all the information of all the irreducible representations of G.

Slogan: the character table is the ‘C-linear shadow’ of G.

Example 6.16. Let G = S3. Then G has three conjugacy classes, with representatives Id, (12), (123) and of size
1, 3, 2 respectively. The group G has two one-dimensional representations, the trivial one and the sign character
sgn. Since there are three conjugacy classes, there is exactly one other irreducible representation. Let χ be the
character of the ‘standard’ representation of S3, the sum-zero subspace of C3 where S3 permutes the coordinates.
In Example 6.4, we calculated χ and since 〈χ, χ〉 = 1

6 (1 · 22 + 3 · 02 + 2 · (−1)2) = 1 we know that χ is irreducible.
So the character table of S3 is:

Id (12) (123)
1 1 1 1

sgn 1 −1 1
χ 2 0 −1

Example 6.17. Suppose that we are given a nonabelian group G of order 6 and let us pretend for a moment that
we don’t know it is isomorphic to S3. What can we say about its character table purely from first princples? It
turns out everything! Indeed, let k be the numer of conjugacy classes of G and d1, . . . , dk the dimensions of the
irreducible characters. By Theorem 6.12, d2

1 + · · ·+ d2
k = 6. Since G is nonabelian, k < 6. The only way to write

6 as a sum of five or less squares is as 12 + 12 + 22, so G has two characters of degree 1 and one character of
degree 2. Let ε be the nontrivial linear character and χ the degree 2 irreducible character. Let g be an element of
order 2 and h be an element of order 3 in G. The 1, g, h are representatives for the conjugacy classes of G with
size 1, 3, 2 and the character table of G looks like:

Id g h
1 1 1 1
ε 1 ? ?
χ 1 ? ?

Since h−1 has order 3, h−1 is conjugate to h. Therefore ε(h) ∈ C× satisfies ε(h) = ε(h−1) = ε(h) and ε(h)3 = 1.
This implies that ε(h) = 1. Since ε is nontrivial, it must be 6= 1 on some conjugacy class, so ε(g) 6= 1 and ε(g)2 = 1,
hence ε(g) = −1. So our character table looks like:
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Id g h
1 1 1 1
ε 1 −1 1
χ 1 ? ?

The last row can be determined using the relations 〈χ, 1〉 = 0 and 〈χ, ε〉 = 0. (Or using column orthogonality, see
below.)

On Problem Set 2 you will see an example of two non-isomorphic groups with the same character table.

Remark 6.18. Usually constructing the character table of a group is much easier than actually constructing
the corresponding irreducible representations! But just knowing the character table is often enough to deduce
interesting results about the group in question.

Let us state some properties of character tables that are very useful when computing them. The relation
〈χi, χj〉 = δij for irreducible characters χi, χj is called row orthogonality, because it states the the rows of the
character table are orthogonal, with the caveat that one has to weigh the entries by the size of the associated
conjugacy class. We know from linear algebra that a matrix with orthonormal rows also has orthonormal
columns, similarly here, we have:

Proposition 6.19 (Column orthogonality). Let C, C′ be conjugacy classes of G with representatives g ∈ C, g′ ∈ C′.
Then

∑
g∈G

χ(g)χ(g′) =

{
|CG(g)| if C = C′,
0 else .

(6.3.1)

Proof. This essentially follows from the fact AĀt = I ⇒ ĀtA = I, but we have to be slightly careful to
remember weighting by the size of the conjugacy class. Let A = (aij)1≤i,j≤k = (χi(gj)) be the character table
of G and let D = diag(|CG(g1)|, . . . , |CG(gk)|). Then row orthogonality translates to AD−1Āt = I. Since left
inverses and right inverses of matrices are the same, we also have D−1ĀtA = I, in other words ĀtA = D.
This implies the proposition.

The following lemma allows us to generate new characters from old ones, which is often useful when
constructing character tables.

Lemma 6.20. 1. If χ is an (irreducible) character, then so is χ̄.

2. If χ is an (irreducible) character and ε, then so is εχ for every linear (one-dimensional character) ε.

Proof. 1. If χ is afforded by the matrix representation R : G→ GLn(C), then χ̄ is afforderd by g 7→ R(g).
Since complex conjugation induces a bijection between subrepresentations of R and subrepresentations
of R̄, χ̄ is irreducible if χ is.

2. If χ is afforded by R : G → GLn(C), then εχ is afforded by g 7→ ε(g)R(g). The remaining properties
follow from (Q3) on Problem Set 1.

On the problem set you will get a lot of hands on experience with computing character tables of finite groups.

20



6.4 First projection formula
Lecture 6
starts here

We will now work our way towards proving Theorem 6.7. We will start by proving orthonormality. This
will follow from the very similarly looking Lemma 5.7. As a warm-up, we will start with the first projection
formula, which implies orthogonality with the first row of the character table.

Definition 6.21. If V is a G-representation, the subspace

V G := {v ∈ V | g · v = v, ∀g ∈ G} (6.4.1)

is called the G-invariant subspace, or the subspace of G-fixed points. It is a subrepresentation of V .

Proposition 6.22 (First projection formula). Let V be a representation with character χ. If 1: G→ C is the
trivial character then

〈χ, 1〉 = 〈1, χ〉 = dimV G. (6.4.2)

Proof. The map

π : V → V, v 7→ 1

|G|
∑
g∈G

g · v (6.4.3)

lands in V G and is a projector, that is π(v) = v for all v ∈ V G. It follows that the trace of π equals dimV G.
(This is a general fact about projectors.) But the definition of π shows that the trace of π is exactly 〈χ, 1〉.
Since dimV G is a real number, 〈χ, 1〉 = 〈1, χ〉.

6.5 Orthonormality of characters

To deduce orthogonality between χV and χW for irreducible G-representations, the trick is to apply the first
projection formula to a third representation, namely Hom(V,W ), defined as follows:

Definition 6.23. Let V,W be G-representations. Then the assignment (g · φ)(v) := g · φ(g−1 · v) defines a linear
G-action on Hom(V,W ), so Hom(V,W ) is again a G-representation.

You should check as an exercise why this is indeed a G-action, and why the inverse is present! In particular, if
W is the trivial representation then the dual vector space Hom(V,C) = V ∗ is again a G-representation via
(g · φ)(v) = φ(g−1 · v). The following lemma is immediate from the definition.

Lemma 6.24. Let V,W be G-representations. Then

Hom(V,W )G = HomG(V,W ). (6.5.1)

The following lemma is a calculation:

Lemma 6.25. Let V,W be G-representations. Then χHom(V,W )(g) = χV (g)χW (g) for all g ∈ G.

Proof. Let g ∈ G. Recall that g acts as a diagonalizable linear map on V and W ; let {v1, . . . , vm} and
{w1, . . . , wn} be a basis of eigenvectors of V and W respectively. Then g · vi = λi and g · wj = µj , where
λi, µj ∈ C are roots of unity. So g−1 · vi = λ̄ivi for all i.
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For 1 ≤ i ≤ m and 1 ≤ j ≤ n, let εij ∈ Hom(V,W ) be the linear map defined by sending vi to wj , and vk to 0
for all k 6= i. Then {εij} is a basis of Hom(V,W ). (These are like the ‘elementary matrices’.) By definition of
the G-action on Hom(V,W ), (g · εij)(v) = g · εij(g−1 · v) for all v ∈ V . In particular, (g · εij)(vk) equals 0 if
k 6= i, and equals µj λ̄iwj if k = i. It follows that g · εij = λ̄iµjεij . We conclude that

χHom(V,W )(g) =

m∑
i=1

n∑
j=1

λ̄iµj =

(
m∑
i=1

λ̄i

) n∑
j=1

µi

 = χV (g)χW (g). (6.5.2)

Remark 6.26. Later we will define the tensor product V ⊗ W of two representations and this will satisfy
χV⊗W = χV χW . The proof of the previous lemma then follows from the isomorphism of G-representations
Hom(V,W ) ' V ∗ ⊗W .

Proposition 6.27. Let V,W be G-representations. Then

〈χV , χW 〉 = 〈χW , χV 〉 = dim HomG(V,W ). (6.5.3)

Proof. Let U = Hom(V,W ), seen as a G-representation. Applying the first projection formula to U shows
that 〈χU , 1〉 = dimUG. By Lemma 6.24, UG = HomG(V,W ). By Lemma 6.25, 〈χV , χW 〉 = 〈1, χU 〉. This
already shows that 〈χV , χW 〉 = dim HomG(V,W ). Since 〈χV , χW 〉 is an integer, 〈χW , χV 〉 = 〈χV , χW 〉 =
〈χV , χW 〉.

Proposition 6.27, which is very interesting in its own right, allows us to prove orthogonality of irreducible
characters.

Proof of Part 1 of Theorem 6.7. Follows from Proposition 6.27 combined with Schur’s lemma (more precisely,
Lemma 5.7).

6.6 Proof that characters form a basis

To prove Theorem 6.7, it remains to prove that every class function is a C-linear combination of characters.
When we will discuss representation theory of semisimple algebras, there will be a very natural proof of this
fact. Here we content ourselves with the following slightly magical argument.

Lemma 6.28. Let f : G→ C be a class function and ρ : G→ GL(V ) a representation. Then∑
g∈G

f(g)ρ(g) ∈ End(V ) (6.6.1)

is a G-linear endomorphism, in other words lies in EndG(V ).

Proof. We can just check this directly. Indeed, call this homomorphism φ. If h ∈ G and v ∈ V , then

φ(h · v) =
∑
g∈G

f(g)g · (hv) =
∑
g∈G

f(g)gh · v. (6.6.2)

Replacing g by hgh−1, this equals∑
g∈G

f(hgh−1)hg · v =
∑
g∈G

f(g)hg · v = h · φ(v). (6.6.3)
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Proposition 6.29. Every class function f ∈ C(G) is a C-linear combination of irreducible characters.

Proof. Since 〈−,−〉 is a Hermitian inner product on C(G), it suffices to prove that the orthogonal complement
of the span of the irreducible characters is trivial. So let f ∈ C(G) be a class function with 〈χ, f〉 = 0 for every
irreducible character χ. We need to show that f is zero. Given a representation ρ : G→ GL(V ), define

φV :=
∑
g∈G

f(g)ρ(g) ∈ End(V ), (6.6.4)

which is an element of EndG(V ) by Lemma 6.28. We claim that φV is the zero endomorphism for all V .
Indeed, by complete reducibility it suffices to prove this for irreducible V . In that case φV ∈ EndG(V ) = C · Id
is a scalar by Schur’s lemma. So write φV = λ Id for some λ ∈ C. How do we know that this scalar is zero?
Take the trace! Indeed, the trace of φV equals |G|〈χV , f〉, which is zero by assumption. But the trace of
λ Id is λ dimV . This implies that λ = 0 and so φV = 0 for all representations V . Here comes the punchline:
take V = CG to be the regular representation. Then the endomorphism φV sends the basis element e1 to∑
g∈G f(g)eg. Since φV = 0 and {eg} forms a basis of CG, f(g) = 0 for all g ∈ G.

7 Some multilinear algebra
Lecture 7
starts here

Before doing more representation theory, we have to first introduce (or recall) some concepts from multilinear
algebra. In the first three sections, we will work over C but everything works over a general field of
characteristic zero.

7.1 Tensor products

Let U, V,W be vector spaces over a field F .

Definition 7.1. A map b : V ×W → U is bilinear if for every v ∈ V and w ∈W , the maps b(v,−) : W → U and
b(−, w) : V → U are linear.

Informally speaking, the tensor product V ⊗ W of V and W is the vector space such that linear maps
V ⊗W → U naturally correspond to bilinear maps V ×W → U .

We may concretely construct V ⊗W as follows:

Definition 7.2. Let V and W be vector spaces with bases {e1, . . . , em} and {f1, . . . , fn}, we define the tensor
product of V and W to be the vector space V ⊗W with basis given by the formal symbols {ei ⊗ fj | 1 ≤ i ≤
m, 1 ≤ j ≤ n}. For v =

∑m
i=1 xiei and w =

∑n
j=1 yjfj we define v ⊗ w by extending (−)⊗ (−) bilinearly:

v ⊗ w =
∑

1≤i≤m
1≤j≤n

xiyj(ei ⊗ fj) ∈ V ⊗W. (7.1.1)

We will usually leave the summation indices and ranges explicit in what follows. By definition, dim(V ⊗W ) =
(dimV ) · (dimW ).

Example 7.3. If V = C2 and W = C3, then every element of V ⊗W is of the form x11e1 ⊗ f1 + x12e1 ⊗
f2 + x13e1 ⊗ f3 + x21e2 ⊗ f1 + x22e2 ⊗ f2 + x23e1 ⊗ f3. We may view V ⊗W as the space of 2 × 3-matrices,
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mapping such an element to the matrix
(
x11 x12 x13

x21 x22 x23

)
. What do the elements of the form v ⊗ w look like?

Writing v = y1e1 + y2e2 and w = z1f1 + z2f2 + z3f3, we compute that v ⊗ w corresponds to the matrix(
y1

y2

)
·
(
z1 z2 z3

)
. This matrix has proportional rows, so is of rank ≤ 1. It follows that matrices of rank 2

cannot be written in this form, e.g. e1 ⊗ f1 + e2 ⊗ f2 is not of the form v ⊗ w.

Elements in V ⊗W of the form v ⊗ w are called pure tensors. The above example highlights an important
feature: not every element of V ⊗W is a pure tensor! Of course every element is a linear combination of
pure tensors.

The next proposition states the most important properties about V ⊗W .

Proposition 7.4. 1. The map V ×W → V ⊗W, (v, w) 7→ v ⊗ w is bilinear.

2. If {v1, . . . , vm} and {w1, . . . , wn} are bases of V and W , then {vi ⊗ wj} is a basis for V ⊗W .

Proof. 1. This is very formal; we will check that (v + v′)⊗ w = v ⊗ w + v′ ⊗ w, leaving the other parts as
an exercise. Write v =

∑
xiei, v′ =

∑
x′iei and w =

∑
yjfj . Then

(v + v′)⊗ w =
(∑

(xi + x′i)ei

)
⊗
(∑

yjfj

)
(7.1.2)

=
∑
i,j

(xi + x′i)yj(ei ⊗ fj) (7.1.3)

=
∑
i,j

xiyj(ei ⊗ fj) +
∑
i,j

x′iyj(ei ⊗ fj) (7.1.4)

= v ⊗ w + v′ ⊗ w. (7.1.5)

2. Write ek =
∑
i aikvi and fl =

∑
j bjlwj . By Part 1, ek ⊗ fl =

∑
i,j aikbjl(vi ⊗ wj). It follows that the

span of the set {vi ⊗ wj} contains all elements ek ⊗ fl, so this set spans V ⊗W . Since {vi ⊗ wj} has
size mn = dim(V ⊗W ), this is indeed a basis.

Remark 7.5 (Can be safely ignored). We can use Proposition 7.4 to define the tensor product of V and W
without choosing bases, as follows. Let F (V ×W ) be the (infinite-dimensional) vector space with basis given
by the formal symbols {ev,w | v ∈ V,w ∈ W}. Let Z be the subspace of F (V ×W ) spanned by the following
relations for all v, v′ ∈ V,w,w′ ∈W,λ, µ ∈ F :

eλv+µv′,w − λev,w − µev′,w, (7.1.6)

ev,λw+µw′ − λev,w − µev,w′ . (7.1.7)

Then we may define the tensor product of V and W as the quotient space F (V ×W )/Z, and for every v ∈ V ,
w ∈ W we let v ⊗ w to be the image of ev,w ∈ F (V ×W ) in this quotient space. It can be checked that this
produces a vector space isomorphic to our original definition. In fact, the map F (V ×W ) → V ⊗W defined
by sending ev,w to v ⊗ w has the subspace Z in its kernel (by Part 1 of Proposition 7.4), hence induces a map
F (V ×W )/Z → V ⊗W . Since V ⊗W is spanned by pure tensors, this map is surjective. Moreover using
the relations of Z the set {ei ⊗ fj} spans F (V ×W )/Z. By dimension considerations, the map must be an
isomorphism.
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7.2 Basis properties of tensor products

The next proposition makes the relationship between tensor products and bilinear maps precise. It gives an
easy way to construct maps out of tensor products. It is called the universal property of tensor products.

Proposition 7.6. If V,W,U are vector spaces, the map

Hom(V ⊗W,U)→ {Bilinear maps V ×W → U} (7.2.1)

(φ : V ⊗W → U) 7→ bφ(v, w) := φ(v ⊗ w) (7.2.2)

is an isomorphism of vector spaces. (The right hand side is a vector space in the obvious way.)

Proof. Since (v, w) 7→ v ⊗ w is bilinear and φ is linear, bφ is bilinear. Therefore the association φ 7→ bφ is
well-defined. Recall that V ⊗W has basis {ei ⊗ fj}. Moreover giving a bilinear form b : V ×W → U is the
same as specifying the elements b(ei, fj) ∈ U , and any such specification gives rise to a bilinear form. The
last two sentences quickly imply the proposition. To be completely explicit (so that we are all happy), if
φ : V ⊗W → U is such that bφ = 0, then bφ(ei, fj) = φ(ei⊗ fj) = 0 for all i, j. Since {ei⊗ fj} forms a basis of
V ⊗W , this implies that φ = 0, so the map φ 7→ bφ is injective. To prove that it is surjective, let b : V ×W → U
be an arbitrary bilinear map. Let φ : V ⊗W → U be the unique linear map satisfying φ(ei ⊗ fj) = b(ei, fj)
for all i, j. Then bφ = b, since both bilinear forms agree on the pairs (ei, fj). Therefore φ 7→ bφ is surjective,
proving the proposition.

We conclude that writing down a linear map V ⊗ W → U is the same as writing down a bilinear map
V ×W → U . Let’s see this concretely in action.

Given two linear maps α : V → V ′ and β : W → W ′, the map V ×W → V ′ ⊗W ′, (v, w) 7→ α(v) ⊗ β(w) is
bilinear, so by Proposition 7.6 corresponds to a linear map α⊗ β : V ⊗W → V ′ ⊗W ′.

Definition 7.7. The linear map α⊗ β : V ⊗W → V ′ ⊗W ′ constructed above is called the tensor product of α
and β.

This has all the nice properties you would expect, like (α′ ⊗ β′) ◦ (α⊗ β) = (α′ ◦ α)⊗ (β′ ◦ β). In category
theory lingo, we say that the tensor product is functorial.

Proposition 7.8. There is a ‘natural’ isomorphism V ∗ ⊗W ' Hom(V,W ).

Proof. We will just define the linear map V ∗ ⊗ W → Hom(V,W ), leaving the verification that it is an
isomorphism as an exercise. By Proposition 7.6, we just need to write down a bilinear map V ∗ ×W →
Hom(V,W ). Here is one: given (α,w) ∈ V ∗ ×W , let fα,w : V →W be the linear map defined by fα,w(v) =
α(v)w. To verify that it is an isomorphism, choose bases and think about elementary matrices!

We briefly indicate how to take tensor products of n vector spaces V1, . . . , Vn. If B1, . . . , Bn are bases of
V1, . . . , Vn then V1 ⊗ · · · ⊗ Vn is the vector space with basis {b1 ⊗ · · · ⊗ bn | bi ∈ Bi}. We may similarly define
v1 ⊗ · · · ⊗ vn ∈ V1 ⊗ · · · ⊗ Vn if vi ∈ Vi by writing each vi as a linear combination of elements in Bi and
expanding linearly in each variable. We then analogously have a bijective correspondence:{

Linear maps
V1 ⊗ · · · ⊗ Vn → U

}
↔
{

Multilinear maps
V1 × · · · × Vn → U

}
(7.2.3)

(A multilinear map is a map that this linear in every variable when all the others are fixed.) We also have
natural isomorphisms (V1 ⊗ V2) ⊗ V3 ' V1 ⊗ (V2 ⊗ V3) ' V1 ⊗ V2 ⊗ V3, so we will not write the brackets
anymore.
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7.3 Symmetric and exterior powers

It is especially interesting to take the tensor product of a vector space with itself.

Definition 7.9. For n ≥ 1 the nth tensor power of V is

V ⊗n := V ⊗ · · · ⊗ V︸ ︷︷ ︸
n times

. (7.3.1)

By convention, we set V ⊗0 = C. We can break up this space into smaller pieces. To see the general picture,
let us first treat the simplest interesting case n = 2. The assignment v ⊗ w 7→ w ⊗ v uniquely extends to an
involution τ : V ⊗2 → V ⊗2. As with every involution on a vector space, we can consider its ±1-eigenspaces:

Definition 7.10. The symmetric and exterior square of V are respectively:

Sym2 V := {x ∈ V ⊗2 | τ(x) = x}, (7.3.2)∧2
V := {x ∈ V ⊗2 | τ(x) = −x}. (7.3.3)

We have

V ⊗2 = Sym2 V ⊕
∧2

V. (7.3.4)

This parallels the decomposition of a square matrix as a sum of a symmetric and anti-symmetric matrix!

We can write down bases for Sym2 V and
∧2

V . If e1, . . . , em is a basis of V , then {ei ⊗ ej | 1 ≤ i, j ≤ m} is a
basis of V ⊗2, and τ(ei ⊗ ej) = ej ⊗ ei. It follows that Sym2 V has basis

{ei ⊗ ej + ej ⊗ ei | 1 ≤ i ≤ j ≤ m} (7.3.5)

and
∧2

V has basis

{ei ⊗ ej − ej ⊗ ei | 1 ≤ i < j ≤ m}. (7.3.6)

We now move on to general n. Every σ ∈ Sn induces a linear map σ : V ⊗n → V ⊗n via

v1 ⊗ · · · ⊗ vn 7→ vσ−1(1) ⊗ · · · ⊗ vσ−1(n) (7.3.7)

and extending linearly.

Lemma 7.11. This defines a (left) linear action of Sn on V ⊗n.

Proof. The inverse in the formula ensures that this is a left action instead of a right action. Note that for each
σ ∈ Sn the association (7.3.7) is multilinear, so indeed σ defines a linear map. For σ, τ ∈ Sn, let wi = vτ−1(i).
Then by definition

σ · (τ · (v1 ⊗ · · · ⊗ vn) = σ · (w1 ⊗ · · · ⊗ wn) (7.3.8)

= wσ−1(1) ⊗ · · · ⊗ wσ−1(n) (7.3.9)

= vτ−1(σ−1(1)) ⊗ · · · ⊗ vτ−1(σ−1(n)) (7.3.10)

= v(στ)−1(1) ⊗ · · · ⊗ v(στ)−1(n) (7.3.11)

= (στ)(v1 ⊗ · · · ⊗ vn). (7.3.12)

So σ · (τ · x) = (στ) · x if x ∈ V ⊗n is a pure tensor. By linearity, this identity holds for all x ∈ V ⊗n.
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Conclusion: V ⊗n defines a representation of Sn! We know from §5.3 that we can decompose any representa-
tion into its isotypic components indexed by the irreducible representations of the group. Doing this for the
trivial representation and sign representation sgn : Sn → {±1} of Sn, we get:

Definition 7.12. The symmetric and exterior nth power of V are defined as

Symn V = {x ∈ V ⊗n | σ(x) = x, ∀σ ∈ Sn}, (7.3.13)∧n
V = {x ∈ V ⊗n | σ(x) = sgn(σ)x, ∀σ ∈ Sn}. (7.3.14)

If n ≥ 3, then in general the inclusion Symn V ⊕
∧n

V ⊂ V ⊗n is strict, so the situation is more complicated
than (7.3.4). In fact, armed with our knowledge of representation theory, we know exactly why the situation
is more complicated: Sn has more representations than 1 and sgn if n ≥ 2! This is the starting point of the
fascinating theory of Schur functors, something we might cover when talking about representation theory of
Sn.

Sometimes Symn V and
∧n

V are defined as quotients of V ⊗n, instead of subspaces. In fact, the quotient
definition is the correct definition when working over a field of positive characteristic. Here we can compare
the two as follows. If v1, . . . , vn ∈ V , define

v1 • · · · • vn :=
1

n!

∑
σ∈Sn

σ · (v1 ⊗ · · · ⊗ vn), (7.3.15)

v1 ∧ · · · ∧ vn :=
1

n!

∑
σ∈Sn

sgn(σ)(σ · (v1 ⊗ · · · ⊗ vn)). (7.3.16)

We can directly check that v1 • · · · • vn ∈ Symn V and v1 ∧ · · · ∧ vn ∈
∧n

V . Since these expressions are
multilinear in the variables v1, . . . , vn, they induce linear maps

πS : V ⊗n → Symn V, (7.3.17)

πA : V ⊗n →
∧n

V. (7.3.18)

(‘S’ for symmetric, ‘A’ for alternating.)

Lemma 7.13. The maps πS : V ⊗n → Symn V and πA : V ⊗n →
∧n

V are projectors.

Proof. Recall that this just means that πS(x) = x for all x ∈ Symn V and πA(x) = x for all x ∈
∧n

V . But this
is obvious from the formula πS(x) = 1

n!

∑
σ σ · x for all x ∈ V ⊗n. Similarly πA(x) = 1

n!

∑
σ(sgn(σ))σ · x so

πA(x) = x for all x ∈
∧n

V .

Note that this lemma is the reason why we include the factor 1/n! in (7.3.15) and (7.3.16). It follows that
the maps πS and πA are surjective and hence realize Symn V and

∧n
V as quotients of V ⊗n. These maps are

also useful in writing down bases:

Proposition 7.14. Let {e1, . . . , em} be a basis of V . Then

{ei1 • · · · • ein | 1 ≤ i1 ≤ · · · ≤ in ≤ m} (7.3.19)

is a basis of Symn V , and

{ei1 ∧ · · · ∧ ein | 1 ≤ i1 < · · · < in ≤ m} (7.3.20)

is a basis of
∧n

V .
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Proof. By Lemma 7.13, πS is surjective so Symn V is generated by S = {ei1 • · · · • ein | 1 ≤ i1, . . . , in ≤ m}.
However, not all these elements are linearly indepedendent. Indeed, note that ei1 •· · ·•ein = eσ(i1)•· · ·•eσ(in),
so we only need to keep those elements of S that satisfy i1 ≤ · · · ≤ in. Using the fact that {ei1 ⊗ · · · ⊗ ein |
1 ≤ i1, . . . , in ≤ m} is a basis of V ⊗n, it is now easy to see that any two elements in (7.3.19) are distinct and
linearly independent, hence forming a basis.

The analysis for
∧n

V is similar: by Lemma 7.13,
∧n

V is generated by S = {ei1∧· · ·∧ein | 1 ≤ i1, . . . , in ≤ m}.
Using the definition (7.3.16), we can calculate (exercise!) that σ(ei1 ∧ · · · ∧ ein) = sgn(σ)ei1 ∧ · · · ∧ ein . In
particular, if two indices ia and ib are equal, then letting σ = (a b) be the transposition swapping a and b
shows that ei1 ∧ · · · ∧ ein = 0. Therefore, we only need to keep those elements of S such that all the i1, . . . , in
are distinct and up to reordering (which only changes the sign) we may assume that i1 < · · · < in. This shows
that the set of (7.3.20) spans

∧n
V , and it is easy to check that all the elements are linearly independent.

We remark that every map α : V → V induces linear maps Symn(α) : Symn V → Symn V and
∧n

(α) :
∧n

V →∧n
V .

We also remark that Proposition 7.14 shows that
∧m

V (where m = dimV ) is one-dimensinoal. Therefore
every linear map α : V → V induces a linear map ∧m(α) :

∧m
V →

∧m
V on a one-dimensional vector space.

On Problem set 3, you will show that this map is given by multiplication by the determinant of α!

Remark 7.15. It is very good to think of Symn V as homogeneous degree n polynomials ‘in V ’. This perspective
might make the basis of Symn V from Proposition 7.14 more transparent.

Remark 7.16 (Can be safely ignored). There is a universal property similar to Proposition 7.6 for Symn V
and

∧n
V . Say a multilinear map b : V × · · · × V → U is symmetric if b(vσ(1), . . . , vσ(n)) = b(v1, . . . , vn) for all

σ ∈ Sn. Then the restriction

Hom(Symn V,U)→
{

Symmetric multilinear maps
V × · · · × V → U

}
(7.3.21)

(φ : Symn V → U) 7→ bφ(v1, . . . , vn) := φ(v1 • · · · • vn) (7.3.22)

is an isomorphism. Similarly a multilinear map is alternating if b(vσ(1), . . . , vσ(n)) = sgn(σ)b(v1, . . . , vn) for all
σ ∈ Sn. Then the restriction

Hom(
∧n

V,U)→
{

Alternating multilinear maps
V × · · · × V → U

}
(7.3.23)

(φ :
∧n

V → U) 7→ bφ(v1, . . . , vn) := φ(v1 ∧ · · · ∧ vn) (7.3.24)

is again an isomorphism.

7.4 Tensor products of representations
Lecture 8
starts here

Let G be a finite group and ρ : G→ GL(V ) and ρ′ : G→ GL(W ) be representations. Then we can give V ⊗W
the structure of a representation by mapping g to ρ(g) ⊗ ρ′(g) ∈ GL(V ⊗W ). In other words, the linear
G-action on V ⊗W is determined by specifying that

g · (v ⊗ w) = (g · v)⊗ (g · w) (7.4.1)

for all g ∈ G, v ∈ V,w ∈ W . It can be readily checked (do this!) that this really is a linear G-action. This
follows from the fact that taking tensor products of linear maps (as in Definition 7.7) behaves well with
respect to composition.
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Remark 7.17. We emphasize again that (in general) not every element of V ⊗W is of the form v ⊗ w and so
Equation (7.4.1) should be interpreted as follows: there exists a unique linear G-action on V ⊗W such that
(7.4.1) holds; this can be justified using Proposition 7.6.

Lemma 7.18. χV⊗W = χV χW .

This shows that the product of two characters is a character!

Proof. Let g ∈ G. Since g is diagonalizable, we may assume that the bases {ei} and {fj} are eigenvectors for
g. If g · ei = λiei and g · fj = µj , then g(ei · fj) = λiµj(ei⊗ fj). So χV⊗W (g) =

∑
i,j λiµj = χV (g)χW (g).

We have seen on Problem set 1 that the tensor product of an irreducible representation and a one-dimensional
representation is still irreducible. However, for general irreducible representations V,W , the representation
V ⊗W is usually highly reducible. For example, if V = W then V ⊗ V decompoes into subrepresentations∧2

V and Sym2 V (see next section).

Lemma 7.19. There exists an isomorphism of G-representations Hom(V,W ) ' V ∗ ⊗W .

Proof. This follows from the fact that these representations have the same character: combine Lemmas 6.25
and 7.18 and the fact that χV ∗ = χV . Alternatively, we can observe that the ‘natural’ isomorphism from
Proposition 7.8 is G-equivariant.

7.5 Symmetric/exterior powers of representations

Let V be a G-representation. Then V ⊗n is again a G-representation by specifying that g(v1 ⊗ · · · ⊗ vn) =
(gv1)⊗ · · · ⊗ (gvn). Moreover, in (7.3.7) we have seen that V ⊗n also has a linear Sn-action. In fact, these two
actions interact well:

Lemma 7.20. The G-action and Sn-action commute with each other: for all x ∈ V ⊗n, g ∈ G and σ ∈ Sn,

g · (σ · x) = σ · (g · x). (7.5.1)

Proof. Since both actions are linear, it suffices to check this identity on pure tensors x ∈ V ⊗n, where it
immediately follows from the definition.

This observation is the beginning of a beautiful story whose central theme is called ‘Schur–Weyl duality’. In
our case, we conclude that G preserves the Sn-isotypic components of V ⊗n. In particular, the subspaces
Symn V ⊂ V and

∧n
V ⊂ V ⊗n are G-invariant and hence by restriction define G-representations.

The next proposition determines their characters if n = 2.

Proposition 7.21. For every g ∈ G:

χSym2 V (g) =
1

2

(
χV (g)2 + χV (g2)

)
, (7.5.2)

χ∧2 V (g) =
1

2

(
χV (g)2 − χV (g2)

)
. (7.5.3)
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Proof. This is an explicit eigenvalue calculation. Note that since V ⊗2 = Sym2 V ⊕
∧2

V we have χV ⊗2(g) =
χV (g)2 = χSym2 V (g)+χ∧2 V (g) so we only need to prove the formula for χ∧2 V (g). Since g is diagonalizable, V
has a basis of eigenvectors e1, . . . , em with g ·ei = λiei. Then

∧2
V has a basis {ei⊗ej−ej⊗ei | 1 ≤ i < j ≤ m},

and each ei ⊗ ej − ej ⊗ ei is an eigenvector for g with eigenvalue λiλj . So

χ∧2 V (g) =
∑
i<j

λiλj . (7.5.4)

But

χV (g)2 =

(∑
i

λi

)2

= 2
∑
i<j

λiλj +
∑
i

λ2
i , (7.5.5)

χV (g2) =
∑
i

λ2
i . (7.5.6)

Subtracting χV (g2) from χV (g)2 and dividing by 2 indeed gives χ∧2 V (g), as desired.

The computation of χ∧n V will be carried out on Problem set 3.

Example 7.22. Consider the standard representation V of G = S3. Let’s decompose V ⊗2 into irreducible
components. It suffices to decompose Sym2 V and

∧2
V into irreducible components. To do this, we may use the

characters of S3 from Example 6.16 and orthogonality relations. We get χV ⊗2 = 1 + sgn + χV .

7.6 Representations of G×H

Using tensor products we can give a description of all the irreducible representations of G×H, given that we
know all the irreducible representations of G and H already.

Given a G-representation V and a H-representation W , we denote by V �W the G×H-representation whose
underlying vector space is V ⊗W and where the linear G×H-action is defined via (g, h) ·(v⊗w) = (gv)⊗(hw).

Remark 7.23. The notation V �W might seem confusing at first. As vector spaces, there is no difference between
V �W and V ⊗W , but we use the � to indicate that we think of V �W as a representation of the product
group G×H.

Remark 7.24. If G = H, then the above construction defines a linear G × G-action on V ⊗W for every two
G-representations V,W . When restricting this G-action to the ‘diagonal’ G = {(g, g) | g ∈ G} ⊂ G × G, we
recover the usual G-action on V ⊗W from §7.4.

Theorem 7.25. Let G and H be finite groups. If V and W are irreducible representations of G and H respectively,
then V �W is an irreducible representation of G×H. Conversely, every irreducible representation of G×H is of
this form.

Proof. The character of V �W at (g, h) can be computed to be χV (g)χW (h). Therefore if V ′ and W ′ are
irreps of G and H respectively then

〈χV�W , χV ′�W ′〉 =
1

|G×H|
∑

(g,h)∈G×H

χV (g)χW (h)χV ′(g)χW ′(h) (7.6.1)

=

 1

|G|
∑
g∈G

χV (g)χV ′(g)

( 1

|H|
∑
h∈H

χW (h)χW ′(h)

)
(7.6.2)

= 〈χV , χV ′〉〈χW , χW ′〉. (7.6.3)
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Taking V = V ′ and W = W ′, we see that V �W is indeed irreducible.

To show that every irreducible representation of G×H is of this form, we use a counting argument. Recall
that the number of irreps of a group equals the number of conjugacy classes. The number of conjugacy classes
of G×H equals the product of the number of conjugacy classes in G and those in H. the above calculation
shows that V �W ' V ′ �W ′ if and only if V ' V ′ and W ' W ′. This shows that we have produced all
irreps of G×H.

8 Representation theory of algebras

We will now switch our focus for a few lectures from representations of groups to representations of algebras.
This viewpoint was pioneered by Emmy Noether, who clarified many proofs in the early days of representation
theory. We will connect this back to groups using the so-called group algebra of a finite group G.

Representation theory of algebras is in some sense the correct setting for many questions and problems in
representation theory of finite groups, for example when studying representations defined over R (‘Schur
indicators’), Q, or fields of positive characteristic Fp (‘modular representation theory’). It is also very useful
when studying representations of ‘quivers’ and Lie algebras (through their universal enveloping algebras).
Here we will content ourselves with giving a new proof of Part 2 of Theorem 6.7 (class functions are linear
combinations of characters) and using it in some applications of representation theory.

8.1 Basics of algebras

Because everything in this section is completely formal, we will assume that F is a general field for now. It
will be useful in the future (when talking about Lie groups) to have these notions for F = R.

Definition 8.1. An associative unital algebra over a field F is a vector space A over F together with a bilinear
map A×A→ A, (a, b) 7→ a · b such that

1. (a · b) · c = a · (b · c) for all a, b, c ∈ A. (Associative)

2. There exists a (necessarily unique) 1 ∈ A such that 1 · a = a · 1 = a for all a ∈ A. (Unital)

We will usually simply call A an algebra. A linear map between algebras f : A → B is called an algebra
homomorphism if f(1) = 1 and f(a1a2) = f(a1)f(a2) for all a1, a2 ∈ A.

We do not require A to be commutative!

Example 8.2. Let A = Matn(F ) be the algebra of n× n-matrices equipped with matrix multiplication. Then A
is an F -algebra. To phrase this without choosing bases, if V is a vector space over F , End(V ) is an F -algebra
under composition.

Example 8.3. If A1, A2 are F -algebras, then the direct product vector space A1 ×A2 = {(a1, a2) | ai ∈ Ai} is
an F -algebra under pointwise composition (a1, a2) · (b1, b2) := (a1b1, a2b2).

Warning 8.4. Later in this course we will study Lie algebras. Confusingly, they are not algebras in the sense we
just defined! They are typically non-associative.

Definition 8.5. Let A be an algebra over a field F . A left A-module is a vector space M together with a bilinear
map A×M →M, (a,m) 7→ a ·m such that 1 ·m = m and a · (b ·m) = (a · b) ·m for all a, b ∈ A and m ∈M .
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Similarly, a right A-module is a vector space M with a bilinear map M × A → M such that m · 1 = m and
(m · a) · b = m · (ab) for all a, b ∈ A and m ∈M .

Lemma 8.6. Giving a left A-module is the same as giving a homomorphism of algebras A → End(M), via
a 7→ (m 7→ a ·m).

Proof. Exercise.

When we don’t specify left or right, an A-module will always mean a left A-module. We also call an A-module
a representation of A. We say a linear map between A-modules f : M → N is an A-module homomorphism if
f(a ·m) = a · f(m) and we write HomA(M,N) ⊂ Hom(M,N) for the set of all A-module homomorphisms.

Example 8.7. A = Matn(F ) has an n-dimensional left module Fn, the space of column vectors on which A
acts via left multiplication. Under Lemma 8.6, this corresponds to the ‘tautological’ identity homomorphism
Matn(F ) → Matn(F ) = EndF (Fn) of F -algebras. You will show on Problem Set 3 that Fn is an irreducible
Matn(F )-module.

Example 8.8. Every algebra A has a canonical representation, where M = A and A acts on M via left
multiplication. (In fact, A is simultaneously a left and right module. This is called an (A,A)-bimodule, but we
will not use this notion.) When A = Matn(F ), then this representation is isomorphic to a direct sum of n copies
of the representation Fn.

In analogy with the case of group, we have the notions of:

• An A-module isomorphism: a bijective A-module homomorphism;

• A-submodule of A-module V : subspace W ⊂ V such that a · w ∈W for all a ∈ A,w ∈W ;

• Irreducible/simple module: A-module V with no proper nonzero submodules;

• Direct sum of A-modules: of V,W are A-modules then V ⊕W is an A-module via a · (v, w) = (a ·v, a ·w).

8.2 Schur’s lemma and central characters
Lecture 9
starts here

The representation theory of algebras is more complicated than that of finite groups, but there are some
similarities. For example, Schur’s lemma remains true in this context:

Lemma 8.9 (Schur’s lemma for algebras). LetA be an F -algebra and Let V,W be irreducible (finite-dimensional)
A-representations.

1. Every φ ∈ HomA(V,W ) is either zero or invertible.

2. EndA(V ) is a division algebra, i.e. every nonzero element is invertible.

3. If F is algebraically closed, EndA(V ) = F · IdV .

Proof. The proof is identical to the case of groups! See Theorem 5.1.

This has the following useful corollary, similarly to Proposition 5.3 in the case of groups. We assume again
that F = C from now on.
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Definition 8.10. Let A be a C-algebra. Then center of A is defined as

Z(A) := {z ∈ A | za = az, ∀a ∈ A}. (8.2.1)

It is a commutative subalgebra of A.

Corollary 8.11 (Central character). Let A be a C-algebra and let ρ : A→ End(V ) be an irreducible A-module.
Then ρ(Z(A)) is contained in the scalar matrices {C · IdV } of End(V ) and hence defines a morphism of algebras

ωV : Z(A)→ C, (8.2.2)

called the central character of V .

Proof. The proof is identical to that of Proposition 5.3: if a ∈ Z(A) then the linear map a · (−) : V → V is
an A-module homomorphism, hence by Schur’s lemma (Lemma 8.9) is given by multiplication by a scalar
ωV (a) ∈ C.

In fact, by comparing traces we see that ωV (a) = tr(ρ(a))/dimV for all a ∈ Z(A).

Example 8.12. If A = Matn(C) and V = Cn then on Problem set 3 you will show that V is an irreducible
A-module. It follows that the center Z(Matn(C)) acts on Cn by scalar matrices. This proves that Z(Matn(C)) =
C · Id in a representation theoretic way. (It can also be checked explicitly using e.g. elementary matrices.)

8.3 The group algebra

Let G be a finite group.

Definition 8.13. The group algebra C[G] is the C-algebra with basis given by symbols {eg | g ∈ G} and with
multiplication given on basis elements by eg · eg′ = egg′ , and extending linearly.

The group algebra is important because it connects the representation theory of finite groups with the
representation theory of algebras: we have a bijection1

{C[G]-modules} 1:1←→ {G-representations}. (8.3.1)

Indeed, given a C[G]-module V , the restriction of the map C[G] × V → V to G × V defines a linear G-
action on V . Conversely, given a linear G-action on V , we may extend it to a C[G]-module by defining
(
∑
g cgeg) ·m :=

∑
g cg(g ·m). It can be checked that this indeed defines a left C[G]-module structure on V .

Remark 8.14. Note that the regular representation of G is precisely the group algebra C[G], seen as a left module
over itself. (as in Example 8.8.)

We will now show, perhaps surprisingly, that C[G] is always a product of matrix algebras. Let V1, . . . , Vm be a
set of representatives of the isomorphism classes of irreducible representations of G. Write di = dimVi.

Theorem 8.15. There is an isomorphism of C-algebras

C[G] ' Matd1(C)× · · · ×Matdm(C). (8.3.2)
1for the categorically minded: an isomorphism of categories
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Proof. The G-action on Vi extends to a left C[G]-module structure on Vi. In other words, we have for
each i a homomorphism of algebras C[G] → End(Vi). We therefore get a natural morphism of algebras
φ : C[G] → End(V1) × · · · × End(Vm). We claim that φ is injective. Indeed, if x ∈ C[G] has φ(x) = 0,
then x · vi = 0 for all vi ∈ Vi and all 1 ≤ i ≤ m. In particular, by complete reducibility, x · v = 0 for all
G-representations V and v ∈ V . Taking V = C[G] to be the regular representation and v = e1 = 1, we see
that 0 = x · v = x · e1 = x, so x = 0, showing that φ is indeed injective. Since φ is injective, it suffices to show
that the dimensions of the domain and target of φ are equal. The dimension of C[G] is |G|. On the other hand,
the dimension of Matd1(C)× · · · ×Matdm(C) is d2

1 + · · ·+ d2
m, which also equals |G| by Theorem 6.12.

Remark 8.16. A C-algebra is semisimple if every left A-module is a direct sum of simple or irreducible modules.
What is really going on here is that Maschke’s theorem implies that the algebra C[G] is semisimple, and that
the Artin–Wedderburn theorem states that every finite-dimensional semisimple C-algebra is a product of matrix
algebras. Since we will not use these concepts in what follows, we have chosen to not introduce them in detail
here, but any serious algebra student should be aware of them!

Example 8.17. If G is abelian, then every irreducible representation of G is one-dimensional and C[G] '
C× C× · · · × C. If G = S3, then G has an irrep of dimension 1, 1, 2 so C[S3] ' C× C×Mat2(C).

Remark 8.18. Not every algebra is a group algebra. For example, Mat2(C) is not isomorphic to C[G] for any
group G, because a group algebra always has a one-dimensional trivial representation.

8.4 The center of the group algebra

Let G be a finite group with conjugacy classes C1, . . . , Ck. Let Ci =
∑
g∈Ci eg ∈ C[G].

Proposition 8.19. The center Z(C[G]) has C-basis given by C1, . . . , Ck.

The center of the group algebra is not the same as the group algebra of the center!

Proof. Let x =
∑
cgeg ∈ C[G]. Since {eh | h ∈ G} is a basis of C[G], x ∈ Z(C[G]) if and only if eh · x = x · eh

for all h ∈ G. This is true if and only if x = eh−1 ·x ·eh =
∑
g cgeh−1gh for all h ∈ G. Replacing g by hgh−1, the

last expression equals
∑
g chgh−1eg. Comparing coefficients, we see that x ∈ Z(C[G]) if and only if cg = chgh−1

for all g, h ∈ G. In other words, x is central if and only if g 7→ cg is a class function! Since characteristic
functions of conjugacy classes form a basis of class functions, Z(C[G]) has basis C1, . . . , Ck.

We can use our results on the group algebra to give a new proof of ‘completeness of characters’, i.e. the
fact that every class function is a linear combination of irreducible characters. Indeed, by orthogonality of
irreducible characters, it suffices to prove that the number of irreps up to isomorphism (call this number
m) equals the number of conjugacy classes (call this number k) of G. But both of these numbers equals the
dimension of Z(C[G]). Indeed, Proposition 8.19 implies that dimZ(C[G]) = k. On the other hand, Theorem
8.15 implies that

Z(C[G]) ' Z(Matd1(C)× · · · ×Matdm(C)). (8.4.1)

Using the fact that Z(A × B) = Z(A) × Z(B) and that Z(Matn(C)) = C (Example 8.12), we see that
dimZ(C[G]) = m, showing that indeed k = m. The careful reader can check that this argument is not
circular! To prove that C[G] is a product of matrix algebras, we have used the identity d2

1 + · · ·+ d2
m = |G|

(Theorem 6.12), but the proof of this identity does not rely on the completeness of characters.
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9 Integrality in the group algebra and applications

We will now use the group algebra together with the notion of algebraic integers to prove some surprising
properties about representations. Firstly, we show that the degree of a representation always divides the order
of the group G. This is highly non-obvious! Secondly, we will use it to deduce that every group of order paqb

is solvable (Burnside’s theorem).

9.1 Algebraic integers

Recall that a complex number α is algebraic if f(α) = 0 for some monic polynomial f ∈ Q[x]. For example,√
2 and i/7 are algebraic, being solutions to the polynomials x2 − 2 and x2 + 1/49. It turns out that numbers

like e and π are not algebraic, but that requires more work.

Definition 9.1. A complex number α ∈ C is an algebraic integer if f(α) = 0 for some monic polynomial f ∈ Z[x]
with integer coefficients. In other words, there exists an integer n ≥ Z≥1 and integers c1, . . . , cn such that

αn + c1α
n−1 + · · ·+ cn = 0. (9.1.1)

We write Z ⊂ C for the subset of algebraic integers.

You should think of Z as a generalization of the usual integers.

Example 9.2. We have i ∈ Z because i2 + 1 = 0 and x2 + 1 ∈ Z[x]. Also 1 +
√

2 ∈ Z, being the solution to
x2 − 2x− 1 ∈ Z[x]. However, it turns out that i/7 6∈ Z. (But takes a little more effort to show.) The ‘problem’ is
the 7 in the denominator!

Here are some essential properties of algebraic integers. We did not cover the proof in class, and you don’t
need to understand it, however I hope you will read it and convince yourself that it is reasonably elementary.

Proposition 9.3. 1. Z is a subring of C. In other words, if α, β are algebraic integers, then so is α+ β and
αβ.

2. Z ∩Q = Z. In other words, if α is both rational and an algebraic integer, then α is in fact an integer.

3. α ∈ Z if and only if there exists a subring R ⊂ C containing α that is a finitely generated Z-module.

Proof. We first show Part 3. If α ∈ Z, then the subring R = Z[α] = {
∑m
i=0 aiα

i | ai ∈ Z} ⊂ C generated by α
is a finitely generated Z-module. Indeed, by assumption αn + c1α

n−1 + · · ·+ cn = 0 for some ci ∈ Z, so αn

lies in the Z-span of {1, . . . , αn−1}. We can apply the same argument to higher powers of α and it follows
that Z[α] is generated by {1, α, . . . , αn−1}. Conversely, let R ⊂ C be a subring that is a finitely generated
Z-module and contains α. By the classification of finitely generated abelian groups and the fact that R is
torsion-free, R ' Zn for some n ≥ 1. The map φ : R → R, r 7→ αr is Z-linear and after choosing a basis
of R it can be represented by an n × n-matrix with integer coefficients. It follows that the characteristic
polynomial of this matrix is a monic polynomial f = xn + c1x

n−1 + · · · + cn with integer coefficients. By
Cayley–Hamilton, we have an identity of maps φn + c1φ

n−1 + · · ·+ cn = 0. Evaluating this identity at r = 1,
we see that αn + c1α

n−1 + · · ·+ cn, showing that α ∈ Z.

We can use Part 3 to prove Part 1. Indeed, if α, β ∈ Z, then Z[α] and Z[β] are finitely generated Z-modules. It
follows that R = Z[α, β] = Z[α][β] is a finitely generated Z-module (take products of generators). Therefore
R ⊂ Z and hence α+ β and αβ lie in R ⊂ Z.
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Part 2 follows from the fundamental theorem of arithmetic, namely that each integer can be uniquely written
as a product of primes. Write α = a/b ∈ Z ∩Q for integers a, b ∈ Z. If α were not an integer, there exists a
prime p dividing b but not a. By assumption, α ∈ Z so αn + c1α

n−1 + · · ·+ cn−1α+ cn = 0. Writing α = a/b
and clearing out denominators, we get an + c1a

n−1b+ · · ·+ cnb
n = 0. We see that every term on the left hand

side is divisible by p except an; this is a contradiction.

Algebraic integers will be useful because we will sometimes be able to show that certain numbers related to
characters are both algebraic integers and rational, so by the above proposition they must be integers.

9.2 Characters and algebraic integers
Lecture 10
starts here

Let G be a finite group.

Lemma 9.4. If χ is a character of G, then χ(g) ∈ Z for all g ∈ Z.

Proof. Roots of unity are algebraic integers, because they are roots of monic polynomials of the form
xd − 1 ∈ Z[x]. Since χ(g) is a sum of roots of unity and since Z is closed under addition, this proves the
lemma.

Let C1, . . . , Ck be the conjugacy classes of G and choose representatives gi ∈ Ci.

Proposition 9.5. Let χ be an irreducible character of G. Then for every 1 ≤ i ≤ k we have

χ(gi)

χ(1)
|Ci| ∈ Z. (9.2.1)

Note that this statement is not obvious because there is a χ(1) in the denominator: we cannot always ‘divide’
algebraic integers and stay in Z.

Proof. This will follow from calculations with the center of the group algebra. Indeed, recall from Proposition
8.19 that Z(C[G]) has C-basis given by C1, . . . , Ck where Ci =

∑
g∈Ci eg. Let ρ : G → GL(V ) be the

representation with character χ, and let ω = ωV : Z(C[G])→ C be the associated central character (Corollary
8.11). The star of the show in this proof is the complex number ω(Ci). We first determine this number. We
have

tr

∑
g∈Ci

ρ(g)

 = tr(ω(Ci) IdV ). (9.2.2)

The left hand side of this equation equals
∑
g∈Ci χ(g) = χ(gi)|Ci|. The right hand side equals ω(Ci) =

dimV ω(Ci) = χ(1)ω(Ci). It follows that

ω(Ci) =
χ(gi)

χ(1)
|Ci|. (9.2.3)

But we now claim that ω(Ci) is an algebraic integer! Indeed, since {C1, . . . , Ck} is a basis of Z(C[G]) we
have Cp · Cq =

∑k
r=1 apqrCr for some apqr ∈ C. But apqr are in fact nonnegative integers. Indeed, by writing

out Cp, Cq, Cr in the basis {eg | g ∈ G} we see that apqr = #{(x, y) ∈ Cp × Cq | xy = gr} ∈ Z. Since ω is
an algebra homomorphism ω(Cp) · ω(Cq) =

∑k
r=1 apqrω(Cr). It follows that R = Zω(C1) + . . .Zω(Ck) is a

subring of C that is finitely generated as a Z-module. By Part 3 of Proposition 9.3, this implies that R ⊂ Z so
ω(Ci) ∈ Z.
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It is important in the above proposition that χ is irreducible. Indeed, if χ is reducible then we don’t have a
central character ω : Z(C[G])→ C.

We now show that the degree of an irreducible character divides the order of the group. It is very unclear a
priori that this must be true!

Theorem 9.6. Let V be an irreducible representation of G. Then dimV divides |G|.

Proof. Let χ be the character of V . Expanding the identity 〈χ, χ〉 = 1 and dividing out by dimV = χ(1), we
get ∑

g∈G

χ(g)

χ(1)
χ(g) =

|G|
dimV

. (9.2.4)

We need to show that the rational number |G|/ dimV is an integer. By Part 2 of Proposition 9.3, it suffices to
prove that it is an algebraic integer. For this we look at the left hand side of (9.2.4). Since χ is a class function
and χ(g) = χ(g−1), we can rewrite this left hand side as

k∑
i=1

χ(gi)

χ(1)
|Ci|χ(g−1

i ). (9.2.5)

Now comes the coup de grâce. Every term χ(gi)
χ(1) |Ci| is an algebraic integer by Proposition 9.5. Moreover χ(g−1

i )

is an algebraic integer by Lemma 9.4. By Part 1 Proposition 9.3, sums and products of algebraic integers are
algebraic integers, so the whole expression (9.2.5) is an algebraic integer!

That’s magic.

Example 9.7. Let G be a group of order pn for some prime p. Then every irreducible representation has dimension
pm for some m ≤ n. In fact, since the sum of the squares of the dimensions equals pn and there is always the
trivial representation, we must have p2m < pn, so 2m < n. So every group of order p2 has only one-dimensional
irreducible representations (i.e. is abelian) and every group of order p3 only has irreducible representations of
dimension 1 and p.

9.3 Burnside’s theorem

Recall from group theory the following theorem:

Proposition 9.8. Let G 6= 1 be a group of prime power order. Then Z(G) 6= 1.

In particular, the only groups of prime power order that are simple are groups of the form Cp. Burnside
proved the following result using character theory:

Theorem 9.9 (Burnside). Let G be a group of order paqb, where p 6= q are prime and a+ b ≥ 2. Then G is not
simple.

By induction on the order of G, it follows that every such group is solvable. Note that the result is sharp in
some sense: the smallest non-abelian simple group A5 has order 22 × 3× 5.

We will use the integrality results from the previous section together with the following lemma from Galois
theory, whose proof we will not cover but is included for completeness:
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Lemma 9.10. Suppose that λ1, . . . , λm are roots of unity and that

α =
1

m

m∑
j=1

λj (9.3.1)

is an algebraic integer. Then either α = 0 or |α| = 1.

Proof. This lemma follows from considering the norm of α. Suppose λdm = 1 for all m. Let G = Gal(Q(ζd)/Q).
Then σ(α) ∈ Z for all σ ∈ G, since if f(α) = 0 for some monic f ∈ Z[x], then f(σ(α)) = 0 too. Let
N(α) =

∏
σ∈G σ(α). Them N(α) ∈ Z and by definition σ(N(α)) = N(α) for all σ ∈ G. Therefore by Galois

theory N(α) ∈ Q and so N(α) ∈ Z ∩Q = Z. We know that |α| ≤ 1
m

∑
|λj | = 1 and similarly |σ(α)| ≤ 1. So

|N(α)| =
∏
σ |σ(α)| ≤ 1. Since N(α) ∈ Z, we either have N(α) = 0 (in which case α = 0) or |N(α)| = 1, so

all inequalities |σ(α)| ≤ 1 are equalities and |α| = 1.

Lemma 9.11. Let χ be an irreducible character of G and C a conjugacy class such that χ(1) and |C| are coprime.
Then for all g ∈ C we have either χ(g) = 0 or |χ(g)| = χ(1).

Proof. We would like to apply the previous lemma to α = χ(g)/χ(1). It remains to show that α is an algebraic
integer. However, we know that χ(g)|C|/χ(1) is an algebraic integer by Proposition 9.5. Since |C| and p are
coprime, by Bezout’s theorem there exist integers a, b such that a|C|+ bχ(1) = 1. Multiplying this equation by
χ(g)/χ(1), we see that

a
χ(g)

χ(1)
|C|+ χ(g)|C| = χ(g)

χ(1)
. (9.3.2)

We know that the left hand side is a sum of algebraic integers, so χ(g)/χ(1) is indeed an algebraic integer, as
desired.

Theorem 9.12. Suppose that G has a conjugacy class C of prime power order pn > 1. Then G is not nonabelian
and simple.

Proof. Assume that G is simple and nonabelian. Let g ∈ C be a representative. By column orthogonality
applied to {1} and C,

1 +
∑
χ6=1

χ(1)χ(g) = 0, (9.3.3)

where the sum runs over all nontrivial irreducible characters of G. We first claim that if χ is such a character
then |χ(g)| 6= χ(1). Indeed, let ρ : G→ GL(V ) be the representation with character χ. Then ρ is faithful since
G is simple and χ 6= 1. On Problem Set 2, you have shown that |χ(g)| = χ(1) implies that ρ(g) = λ Id for
some λ ∈ C×. Therefore ρ(g) commutes with ρ(h) for all h ∈ G. Since ρ is faithful, g ∈ Z(G), contradicting
the fact G is nonabelian and simple. This proves the claim. We conclude by Lemma 9.11 that for all nontrivial
irreducible characters χ, either p | χ(1) or χ(g) = 0. So the above sum simplifies to

1 +
∑
χ6=1
p|χ(1)

χ(1)χ(g) = 0. (9.3.4)

Dividing by p we get

−1

p
=
∑
χ 6=1
p|χ(1)

χ(1)

p
χ(g). (9.3.5)

The right hand side is a sum of algebraic integers, hence an algebraic integer. Therefore −1/p is an algebraic
integer. Since Q ∩ Z = Z, this is a contradiction!
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Proof of Theorem 9.9. If a = 0 or b = 0 then the result follows from Proposition 9.8, so assume a ≥ 1 and
b ≥ 1 and G nonabelian simple. Let P ≤ G be a Sylow-p-subgroup of G. By that same proposition, Z(P ) 6= 1;
let x ∈ Z(P ) be a nontrivial element. Then the centralizer of x contains P , so pa = |P | divides |CG(x)|, which
in turn divides paqb. It follows that |CG(x)| = paqn for some 0 ≤ n ≤ b. If n = b, then x ∈ Z(G), contradicting
the fact that G is nonabelian and simple. If n < b, then by the orbit-stabilizer formula the conjugacy class of x
has size |G|/|CG(x)| = qn−b > 1. By Theorem 9.12, G is not nonabelian and simple, contradiction.

Feit and Thompson proved that every nonabelian group of odd order is not simple. The proof is hundreds of
pages long.

10 Induction of representations
Lecture 11
starts here

In this last section on representation theory of finite groups, we will discuss a way to make a G-representation
out of an H-representation, where H ≤ G is a subgroup. Since we will be only spending one lecture on this
topic, we will be quite brief in places.

10.1 Motivation

Let G be a finite group and H ≤ G a subgroup. Given a representation V of G, the restriction of V to H is
the H-representation by simply restricting the G-action on V to H. It is sometimes written as ResGH(V ) to
emphasize that we view it as an H-representation. We therefore have a map:

ResGH : {G-representations} → {H-representations}. (10.1.1)

Induction goes to other way around: given an H-representation V , we will define a G-representation IndGH(V ),
so we will have a map

IndGH : {H-representations} → {G-representations}. (10.1.2)

This is not an inverse to ResGH , and the underlying vector spaces of V and IndGH V will not be the same!

As a warm-up, let’s try to see if we can come up with a definition of H has index two in G. If the following
paragraphs don’t make sense, don’t worry and just read the formal definition of induction in the next section.

Since H has index 2, G = H t tH for some t ∈ G. Given an H-representation V , we would like to make a
G-representation W = IndGH V somehow. The decomposition G = H t tH shows that we just need to decide
how H acts on W and how t acts on W , because then th ∈ tH acts via t · (h · w) on w ∈W .

Our first attempt might be to just set W = V as vector spaces and try to act by G on V . It’s clear how H acts
on V , but what is t · v for v ∈ V ? Without extra information, there doesn’t seem to be a reasonable way to
assign an element of V to t · v. To remedy this, we simply ‘formally’ add all vectors of the form ‘t · v’ to our
space! In other words, we define W to be the direct sum of two copies of V , so W = V ⊕ tV and we write an
element of W as v1 + tv2 with vi ∈ V .

I now claim that we can define a reasonable linear G-action on W . How does H act on this space? It acts via
its defining action on the first factor V ⊂W . To describe the action on the second factor, note that if h ∈ H,
we can write ht = th′ and so it seems intuitively clear that h · (tv) should be t(h′ · v). So if R : H → GLn(C)
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is a matrix representation for V then h acts on W via the block 2n× 2n-matrix(
R(h) 0

0 R(t−1ht)

)
. (10.1.3)

How do elements g = th ∈ tH act? We have g · v = t(h · v). Moreover gt = h′ for some h′ ∈ H and so we set
g · (tv) = h′v. In other words, g will act via the block matrix(

0 R(gt)
R(t−1g) 0

)
. (10.1.4)

It can be checked that W is indeed a G-representation. The next section will define induction in the general
case, but using the same idea.

10.2 Defining induction

We will define induction in a hands on way. Choose representatives t1, . . . , tm ∈ G of the left cosets G/H. In
other words, we have [G : H] = m and

G = t1H t t2H t · · · t tmH. (10.2.1)

Let V be an H-representation. We define a new vector space IndGH V as follows:

IndGH(V ) := t1V ⊕ · · · ⊕ tmV. (10.2.2)

Here each tiV denotes a copy of the vector space V , and we write elements of tiV as tiv, v ∈ V . The notation
tiV is purely formal, as it usually doesn’t make sense to act by ti on V (since the latter only has an H-action),
but it will be useful to index the copies of V by these elements ti to describe the G-action on IndGH(V ). If
g ∈ G, g acts on the left cosets G/H, so there is an element σ ∈ Sm and unique elements h1, . . . , hm ∈ H
such that gti = tσ(i)hi. If

∑
tivi ∈ IndGH(V ), we define

g ·

(
m∑
i=1

tivi

)
:=

m∑
i=1

tσ(i)(hi · vi). (10.2.3)

It can be checked (exercise!) that this indeed defines a linear G-action on IndGH V , called the induction of V
to G. We will later see as a corollary of Proposition 10.3 that (the isomorphism class of) IndGH V does not
depend on the choice of representatives t1, . . . , tm.

10.3 Examples

Example 10.1 (Inducing the trivial representation). If V = C is the trivial representation of H, then (10.2.3)
shows that IndGH V is a vector space with basis t1, . . . , tm and g acts via permuting the basis elements according
to how G acts on the left cosets G/H. In other words, IndGH V is isomorphic to the permutation representation of
G acting on G/H. In particular, if H = {1} and V is trivial then IndGH V is the regular representation of G.

As the above example shows, the induction of a representation will typically be reducible. However, if you
pick your subgroup and representation wisely then the induction can be irreducible.
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Example 10.2. Let G = D5 = {1, r, . . . , r4, s, rs, . . . , r4s} and H = 〈r〉 ≤ G. Let ζ = e2πi/5. Then H →
C×, r 7→ ζ defines a one-dimensional H-representation V = Ce. Let’s determine W = IndGH(V ). We may take
{1, s} as our left coset representatives, so if we set v1 = e and v2 = se then W = Cv1 ⊕ Cv2. Since rs = sr4, r
acts via ζ on v1 and via ζ4 on v2. How does s act? It sends v1 to v2 and v2 to v1. It follows that in the basis
{v1, v2} the action of r, s is given by

r 7→
(
ζ 0
0 ζ4

)
, s 7→

(
0 1
1 0

)
(10.3.1)

From Q10 on Problem Set 1, you recognize this representation as a two-dimensional irreducible representation of
D5.

10.4 The character of induction

Proposition 10.3. Let V be an H-representation with character χ : H → C. Let ψ be the character of IndGH(V ).
Then for all g ∈ G,

ψ(g) =
∑

1≤i≤m
t−1
i gti∈H

χ(t−1
i gti) =

1

|H|
∑
x∈G,

xgx−1∈H

χ(x−1gx). (10.4.1)

Proof. The action of G on IndGH V is given by ‘block’ permutation matrices, where the permutation is given by
the action of G on the left cosets G/H. More precisely, let R : H → GLn(C) be the permutation representation
associated to some basis {e1, . . . , en} of V . Then this basis determines a basis {tiej} of IndGH V If g ∈ G,
σ ∈ Sm and hi ∈ H are as in (10.2.3), then g acts on IndGH V by an mn ×mn block permutation matrix,
where the blocks have size n× n, the permutation corresponds to σ, and the ith block is R(t−1

σ(i)gti). The only
parts that contribute to ψ are those i such that σ(i) = i; in other words, those i such that t−1

i gti ∈ H. The
block ρ(t−1

i gti) has contribution χ(t−1
i gti). It follows that

ψ(g) =
∑

1≤i≤m
t−1
i gti∈H

χ(t−1
i gti) (10.4.2)

But χ is a class function and for h ∈ H we have (tih)−1g(tih) ∈ H if and only if t−1
i gti ∈ H. Therefore

ψ(g) =
1

|H|
∑
x∈G

x−1gx∈H

χ(x−1gx), (10.4.3)

as claimed.

This shows in particular that the isomorphism class of the G-representation IndGH V is independent of the
choice of representatives t1, . . . , tm of G/H, because the character of IndGH V does not depend on this choice.

10.5 Frobenius reciprocity

Theorem 10.4 (Frobenius reciprocity). Let V be anH-representation with character χ andW aG-representation
with character ψ. Then

〈IndGH(χ), ψ〉G = 〈χ,ResGH(ψ)〉H . (10.5.1)
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The inner product on the left is taken in the space of class functions on G; the inner product on the right is
taken in the space of class functions on H.

Proof. There is an abstract proof of this theorem using the group algebra, see Section 10.6. For a more hands
on approach, we simply calculate both sides and compare the result. Indeed, by Proposition 10.3 we have

〈IndGH(χ), ψ〉G =
1

|G||H|
∑
g,x∈G

x−1gx∈H

χ(x−1gx)ψ(g) (10.5.2)

Setting h = x−1gx, then in the above sum we may instead sum over h ∈ H and x ∈ G, so the is expression
equals

1

|G||H|
∑

h∈h,x∈G

χ(h)ψ(xhx−1) (10.5.3)

Since ψ is a class function, summing ψ(xhx−1) over all x ∈ G equals |G|ψ(h). We conclude that the above
expression equals

1

|H|
∑
h∈H

χ(h)ψ(h) (10.5.4)

which equals 〈χ,ResGH(ψ)〉H , as desired.

Example 10.5. Let V be the 2-dimensional irreducible representation of S3 and let W be the induction of V
along S3 ≤ S4. Then we can determine the decomposition of W into S4-irreducibles.

Frobenius reciprocity is very useful when trying to determine wether the induction IndGH(χ) of a character of
H is irreducible. Indeed, we know that

〈IndGH(χ), IndGH(χ)〉G = 〈χ,ResGH IndGH χ〉 (10.5.5)

It therefore suffices to compute how often χ occurs in the character ResGH IndGH χ. This can be done explicitly
in examples and in general leads to a subject called Mackey theory.

10.6 Induction using the group algebra

This section was not covered in class, but might be of interest to the more algebraically inclined. It explains
how induction can be naturally viewed in the context of representations of algebras.

Let A be an (associative, unital, finite-dimensional) C-algebra and B ⊂ A a subalgebra. Let V be a left
B-module.

Definition 10.6. The induction of V to A, written A⊗B V , is the quotient of the tensor product A⊗ V by the
subspace spanned by {(ab)⊗ v− a⊗ (bv) | a ∈ A, b ∈ B, v ∈ V }. The assignment a · (a′⊗ v) = (aa′)⊗ v induces
a left A-module structure of A⊗B V .

Let V be a B-module and W an A-module. Then W is also naturally a B-module by restriction, and the map

HomA(A⊗B V,W )→ HomB(V,W ) (10.6.1)

φ 7→ (v 7→ φ(1⊗ v)) (10.6.2)
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is an isomorphism of vector spaces. In other words,B-homomorphisms V →W correspond toA-homomorphisms
A⊗B V →W . This is the universal property of A⊗B V .

Now let G be a finite group and H ≤ G a subgroup. Then we know that representations of these groups
correspond to representations of the associated group algebras. So given an H-representation V , which
corresponds to a C[H]-module V , we may define the C[G]-module

C[G]⊗C[H] V, (10.6.3)

which corresponds to a G-representation. It can be checked that this indeed coincides with the concrete
definition of IndGH(V ) given above. This gives an elegant (but not very concrete way) of defining the induction
of a representation.

To see why this is useful, note that by Proposition 6.27 Frobenius reciprocity is equivalent to the statement that
dim HomG(IndGH V,W ) = dim HomH(V,ResGHW ). But this follows from (10.6.1)! This gives an alternative
proof of Theorem 10.4.

11 Compact groups and the Peter–Weyl theorem
Lecture 12
starts here

We leave the safe world of finite groups and take our first dive into the representation theory of infinite
groups.

Most groups that arise in mathematical nature carry some extra structure, like a topology, or a differential
structure, or an algebraic structure. In that case it is only natural to study those representations that are
compatible with this structure. In this lecture we will see this in action for the first time for compact topological
groups. Later we will study the representation theory of compact Lie groups in more detail via their associated
Lie algebras.

11.1 Basic definitions

Definition 11.1. A topological group is a topological space G that is also a group such that the multiplication
map G×G→ G, (x, y) 7→ xy and inversion map G→ G, x 7→ x−1 are both continuous.

A homomorphism of topological groups is a continuous group homomorphism, and we say it is an isomorphism
if the inverse is also a continuous group homomorphism.

As a convention, we will assume that all topological spaces (and thus topological groups) are Hausdorff,
usually without further mention.

Examples 11.2. 1. Any group can be made into a topological group by endowing it with the discrete topology
(i.e. every set is open).

2. The group G = R under addition is a topological group (with the Euclidean topology on R). So is G = R>0

under multiplication. The exponential map R → R>0, t 7→ et is an isomorphism of topological groups.
Similarly Rn and Cn are topological groups.

3. The group G = GLn(R) is an open subset of Rn2

and the induced topology on G turns it into a topological
group. Indeed, multiplication of matrices is given by polynomials in the entries so is continuous. Inversion
is continuous because of Cramer’s rule: if A ∈ GLn(R) then A−1 = (det(A))−1adj(A), where the adjunct
matrix adj(A) has entries that are polynomial in the entries of A. Similarly GLn(C) is a topological group.
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4. Let F = R or C and V a (finite-dimensional) vector space over F . Then V (under addition) and
GL(V ) (under composition) are naturally topological groups. Indeed, choosing a basis of V defines group
isomorphisms V ' Fn and GL(V ) ' GLn(F ), and we endow V and GL(V ) with the unique topologies
such that these maps are homeomorphisms. These topologies don’t depend on the choice of basis, since every
other basis changes these isomorphisms by multiplication/conjugation by a matrix X ∈ GLn(F ), which is a
homeomorphism.

5. Every subgroup of a topological group, endowed with the subspace topology, is a topological group itself.
(Exercise!)

6. The subgroup S1 = {z ∈ C× | |z| = 1} ≤ C× is closed being the pre-image of {1} under the continuous
map C× → R>0, z 7→ |z|. Therefore S1 is a topological group too. Since it is a closed and bounded subset of
R2, it is in fact a compact topological group. You will show on the problem set that there is an isomorphism
of topological groups S1 ' R/Z.

7. Generalizing the previous example, we see that SLn(R),SLn(C),SO(n),U(n),SU(n), . . . are all topological
groups. We will consider all of these examples in detail later.

8. There are some more exotic topological groups out there. For example, Zp, GLn(Zp), GLn(Qp), Gal(Q̄|Q)
are all topological groups. They are very important in number theory and the Langlands program (especially
their representation theory), but we won’t consider them in this course.

In one of the above examples we have defined the topological group GL(V ) for every finite-dimensional
C-vector space.

Definition 11.3. A (finite-dimensional) representation of G is a continuous homomorphism G→ GL(V ), where
V is a finite-dimensional C-vector space.

There are obvious notions of: G-homomorphism, G-isomorphism, subrepresentation, trivial representation
and irreducible representation.

It also makes sense (and is often fruitful) to think about infinite-dimensional representations. We will briefly
mention this later.

11.2 Integration on topological groups

In general, topological groups can be huge and difficult, and their representation theory can be extremely
complicated. However, if G is compact then many basis results in rep theory of finite groups will carry over!
The main observation our very useful averaging procedure 1

|G|
∑
g∈G carries over to the compact group setting,

by replacing the sum by an integral.

Let C(G,R) be the set of continuous functions G→ R.

Theorem 11.4 (Existence of Haar integral). Let G be a compact (and Hausdorff) group. Then there exists a
linear map

∫
G

: C(G,R)→ R satisfying the following properties:

1. If f ≥ 0, then
∫
G
f(g)dg ≥ 0;

2. For every f ∈ C(G,R),
∣∣∫
G
f
∣∣ ≤ supg∈G |f(g)|;

3. If f = 1G the function with constant value 1, then
∫
G

1G = 1;
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4. We have left-translation invariance: if t∗gf denotes the function (t∗gf)(x) = f(gx), then
∫
G
f =

∫
G
t∗gf for

all f ∈ C(G,R).

Moreover,
∫
G

is the unique linear map C(G,R)→ R satisfying these properties.

The integral
∫
G
f (sometimes written

∫
G
f(g) dg) is called the Haar integral of f ∈ C(G,R). By considering

real and imaginary parts, we may also define the Haar integral of a continuous function f : G→ C.

Remark 11.5 (For those who know about measure theory). Theorem 11.4 is equivalent to the existence of
a measure µ (called the Haar measure), defined on the Borel σ-algebra of G, that is left-translation invariant
(so µ(gS) = µ(S) for all Borel sets S) and satisfies µ(G) = 1. This Haar measure then allows us to define the
integral over all measurable functions.

Remark 11.6. There is an analogue of Theorem 11.4for locally compact (but not compact) Hausdorff groups:
there exists a unique Haar integral

∫
G

from compactly supported functions on G to R satisfying Part 1,2 and 4.
Since 1G is not in general compactly supported, we need to replace Part 3 with

∫
G

1K < ∞ for every compact
subset K ⊂ G. The integral will then only be unique up to a positive scalar multiple.

Lemma 11.7. Let G be a compact Hausdorff group. Then the Haar integral is also right-translation invariant.

Proof. For every x ∈ G, the map f 7→
∫
G
f(gx) dg satisfies Parts 1-4 of the theorem so must equal

∫
G
f(g) dg

by the uniqueness of the Haar integral.

Examples 11.8. 1. If G is finite and endowed with the discrete topology, then the Haar integral is simply∫
G
f = 1

|G|
∑
g∈G f(g). It is easy to check that Parts 1-4 are satisfied.

2. Let G = S1 = R/Z. When identifying functions on G with periodic functions on R, the Haar integral is just
given by the usual ‘Riemann integral’ on [0, 1]. In other words, if f : S1 → R then∫

G

f(g) =

∫ 1

0

f(e2πit) dt. (11.2.1)

We can also write this as 1
2π

∫ 2π

0
f(eit)dt.

3. If G = SU(2), then the Haar integral gives you a way to integrate functions on the 3-sphere. It is quite
complicated to describe in general, but for class functions If f ∈ C(G,R) is a class function, then Weyl’s
integration formula says that∫

G

f(g) =

∫ 1

0

f

((
e2πit 0

0 e−2πit

))
(eπit − e−πit) dt. (11.2.2)

11.3 Basic results representation theory compact groups

Let G be a compact (Hausdorff) group. For example, G might be a finite group equipped with the discrete
topology. Then many basic results in the representation theory of G are identical to the finite group setting.
For example:

Proposition 11.9 (Weyl’s unitary trick). Let G be a compact group and V a representation of G. Then there
exists a G-invariant Hermitian inner product on V .
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Proof. The proof is identical to the finite groups case! Let 〈−,−〉0 : V × V → C be any Hermitian inner
product on V . For fixed v, w ∈ V , note that g 7→ 〈g · v, g · w〉0 is a continuous function G → C. We may
therefore define, for every v, w ∈ V ,

〈v, w〉 =

∫
G

〈g · v, g · w〉0 dg. (11.3.1)

We claim that 〈−,−〉 is a G-invariant Hermitian inner product. Since
∫
G

is linear, 〈−,−〉 is linear in the
first variable. We have 〈w, v〉 = 〈v, w〉 since 〈−,−〉0 has the same property. If v ∈ V is nonzero, the map
g 7→ 〈gv, gw〉0 is a continuous map G→ R>0. Since G is compact, there exists an ε > 0 such that 〈gv, gv〉 ≥ ε
for all g ∈ G. Therefore

∫
G
〈gv, gv〉0 ≥

∫
G
ε IdG ≥ ε > 0. This shows that 〈−,−〉 is a Hermitian inner product;

it remains to show that it is G-invariant. This follows from the right-translation invariance of
∫
G

: for every
h ∈ G, we have

〈hv, hw〉 =

∫
G

〈(gh)v, (gh)w〉0 dg (11.3.2)

Since
∫
G

is right-translation invariant, this equals
∫
G
〈gv, gw〉0 dg = 〈v, w〉, as desired.

Corollary 11.10. Every finite-dimensional G-representation is a direct sum of irreducible representations.

Here are some other results, with identical proofs as in the finite group case:

Proposition 11.11 (Schur’s lemma). If V,W are irreducibleG-representations, then every element of HomG(V,W )
is zero or invertible. Moreover EndG(V ) = C · IdV .

Corollary 11.12. If G is abelian, every irreducible representation is one-dimensional.

There is also a satisfactory analogue of character theory. If ρ : G→ GL(V ) is a representation, χV (g) = tr(ρ(g))
is a continuous function G→ C called the character of V . It is a class function. If φ, ψ : G→ C are continuous
class functions, set

〈φ, ψ〉 :=

∫
G

φ(g)ψ(g) dg. (11.3.3)

We then have an analogue of the first projection formula:

〈χV , 1〉 = dimV G (11.3.4)

and consequently of orthogonality of characters: if V,W are irreducible then

〈χV , χW 〉 =

{
1 if V 'W,
0 if V 6'W.

(11.3.5)

This is all rather formal, and we didn’t construct any interesting representations of G yet. Do characters span
the space of all continuous class functions? What is the analogue of the regular representation? This is the
content of the Peter–Weyl theorem. To state it in its full glory, we need some preliminaries, but we can already
state one part of it here: consider the space of continuous class functions G→ C equipped with the uniform
norm ||f || = maxg∈G |f(g)|. Then the Peter–Weyl implies that the C-span of the irreducible characters form a
dense subspace in this space with respect to this topology.
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11.4 Representations on infinite-dimensional vector spaces

We recall some notions from topology and functional analysis. These are included for completeness to state
the Peter–Weyl theorem but we will not use these notions in later lectures.

Recall from Definition 4.6 that a Hermitian inner product 〈−,−〉 : V × V → C on a C-vector space is a pairing
that satisfies 〈y, x〉 = 〈x, y〉, that is C-linear in the first variable, and that satisfies 〈x, x〉 > 0 if x 6= 0. Note
that any such Hermitian inner product on V induces a norm on V by setting ||x|| :=

√
〈x, x〉. The norm || · ||

induces a metric on V via ||x− y|| and hence V has the structure of a metric (and so topological) space.

Definition 11.13. A Hilbert space is a (possibly infinite-dimensional) C-vector space H together with a Hermitian
inner product 〈−,−〉 : H ×H → C such that H is complete with respect to the norm ||x|| =

√
〈x, x〉. This means

that every Cauchy sequence in H has a limit.

If H is a Hilbert space, write U(H) for the set of unitary linear maps φ : H → H, namely those such that
〈φ(v), φ(w)〉 = 〈v, w〉 for all v, w ∈ V .

Definition 11.14. Let G be a topological group. A unitary Hilbert space representation of G is a group
homomorphism G→ U(H) where H is a Hilbert space such that the associated map G×H → H is continuous.

Definition 11.15. Let {Hi}i∈I be a family of Hilbert spaces. We define the Hilbert direct sum of the {Hi} as

⊕̂
i∈I
Hi :=

{
(xi) ∈

∏
i∈I

Hi |
∑
i∈I
|xi|2 <∞

}
. (11.4.1)

Here
∑
i∈I ||xi||2 <∞ means that only a countable number of the xi are nonzero and we interpret convergence

over this countable set in the usual way.

11.5 The Peter–Weyl theorem

Recall that if G is a finite group, the regular representation CG could also be seen (Problem Set 1) as the
space of functions G→ C where G acts on such a function via (g · f)(x) = f(g−1x). When G is a topological
group, the latter generalizes better, and the regular representation should be like a space of functions G→ C.
We should not consider all functions on G though, as this would be bad from a topological viewpoint. We will
only consider functions that ‘lie’ in L2.

Definition 11.16. Let G be a compact group. We define L2(G) as the space of measurable functions f : G→ C
such that

∫
G
|f |2 <∞, modulo the subspace of those f such that

∫
G
|f |2 = 0. Then L2(G) is a Hilbert space with

Hermitian inner product 〈f, f ′〉 =
∫
G
f(g)f ′(g) dg.

We need to take the quotient to ensure that nonzero elements in L2(G) have 〈f, f〉 > 0.

The group G acts on L2(G) via (g · f)(x) = f(g−1x); this is called the left-regular representation.

Lemma 11.17. The above association defines a unitary representation of G on L2(G).

Proof. This follows from the left-translation invariance of
∫
G

.

The following theorem summarizes all the properties analogous to ‘completenses of characters’ in the group
setting.
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Theorem 11.18 (Peter–Weyl theorem). Let G be a compact group.

1. Every irreducible unitary Hilbert space representation of G is finite-dimensional.

2. The set of characters is dense in the space of continuous class functions. (Equipped with the uniform norm.)

3. There exists a Hilbert direct sum decomposition

L2(G) '
⊕̂
ρ

V ⊕ dimVρ
ρ , (11.5.1)

where ρ : G→ GL(Vρ) ranges over all irreducible finite-dimensional representations of G.

We will not prove this theorem: the main input is the spectral theory of compact self-adjoint operators on
Hilbert spaces.

Example 11.19. Let G = S1. On Problem Set 4, you will show that every irreducible representation of S1 is of
the form S1 → C×, z 7→ zn. Then the Peter–Weyl theorem says that every periodic L2-function on R equals a
convergent sum of e2πint almost everywhere. This is the main result in the theory of Fourier series.

Note that this doesn’t really give an alternative proof in the theory of Fourier series: it just generalizes it
massively to the context of compact groups. The proof will still rely on sophisticated results in functional
analysis.

Example 11.20. Let G = R. Then G is not a compact group. It turns out that its irreducible unitary
representations are given by R→ C×, x 7→ e2πixy for some y ∈ R. Moreover, the theory of the Fourier transform
shows that if f ∈ L2(R) then f(x) =

∫
R f̂(y)e2πixy dy. So in some sense, L2(R) is a like a ‘direct integral’ over

its irreducible unitary representations, contrary to the compact case.

Remark 11.21. For non-compact groups, like G = SL2(R), there will usually be interesting infinite-dimensional
unitary irreducible representations.

12 Differential geometry background
Lecture 13
starts here

We assume some prior exposure to the basic notions in manifold theory. But here are some reminders to
refresh your memory and set up some notation.

12.1 Basic definitions

Let M be a topological space.

Definition 12.1. A chart (U, φ) of M is a homeomorphism φ : U → φ(U), where U ⊂M is an open subset and
φ(U) ⊂ Rn is an open subset for some n ≥ 0.

Definition 12.2. We say two charts (U, φ) and (V, ψ) are compatible if the composition

ψ ◦ φ−1 : φ(U ∩ V )→ U ∩ V → ψ(U ∩ V ) (12.1.1)

is smooth. (I.e. all partial derivatives up to every order are continuous.)
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Definition 12.3. An atlas on M is a collection of charts A = {(Uα, φα)} such that

1. M =
⋃
α∈A Uα;

2. For every α, β ∈ A, the charts (Uα, φα) and (Uβ , φβ) are compatible.

We say two atlases A and A′ are equivalent if their union A ∪A′ is again an atlas, in other words if every chart
in A is compatible with every chart in A′.

Example 12.4. Let M = S1 = {(x, y) | x2 + y2 = 1} ⊂ R2. Then M is a topological space with the
subspace topology of R2. We can define charts on S1 by slicing up the circle along the x or y-axis. Let
U+ = {(x, y) ∈ S1 | y > 0} and U− = {(x, y) ∈ S1 | y < 0}. Then φ+ : U+ → R2, (x, y) 7→ x is a
homeomorphism onto the open unit disk, hence defines a chart of S1. Similarly we have a chart (U−, φ−), and if
V ± = {(x, y) ∈ S1 | ±x > 0} we can define charts (V ±, ψ±). The four charts {(U±, φ±), (V ±, ψ±)} form an
atlas on S1. Indeed, the open sets clearly cover S1. We just check that the charts (U+, φ+) and (V +, ψ+) are
compatible, leaving the others to the reader. But U+ ∩ V + = {(x, y) ∈ S1 | x, y > 0}, and the transition map
φ+(U+ ∩ V +) → ψ+(U+ ∩ V +) is the map (0, 1) → (0, 1) sending t to

√
1− t2, which is indeed smooth with

smooth inverse.

Of course, in the above example, there are many other natural choices of atlases on S1: we could use
stereographic projection to define charts, or the angle parametrization of the circle. However, all the atlases
will turn out to be equivalent, and for the purposes of doing calculus on S1 this choice shouldn’t matter.

Definition 12.5. A (smooth or differentiable) manifold is a topological space M together with an equivalence
class of smooth atlases on M , that is moreover Hausdorff and second countable.

We recall that M is Hausdorff if for every two distinct x, y ∈ M , there exist open subsets U, V of M with
x ∈ U and y ∈ V such that U ∩ V . (‘Any two points are separated by open sets’.) This is a very desirable
property, and excludes some weird spaces like the line with two origins. Recall that M is second-countable if
there exists a countable basis {Un}n∈N of open sets: for every point p ∈M and open set V containing p, there
exists an n ≥ 1 such that p ∈ Un and Un ⊂ V . This condition is slightly more technical, but is satisfies by all
topological spaces that are not absurdly big (every subset of Rn is second-countable). It ensures the existence
of partitions of unity for example.

Remark 12.6. Instead of taking equivalence classes of atlases, one could also use a maximal atlas. Given an atlas
A, the union of all atlases equivalent to A is again an atlas A′; it is the unique maximal atlas equivalent to A,
and it consists of all charts compatible to every chart in A. Then one could equivalently define a manifold as a
(Hausdorff, second-countable) topological space with a maximal atlas.

If M is a manifold, a chart on M is by definition a chart in some atlas in the given equivalence class.

Examples 12.7. 1. M = S1 with the atlas given in Example 12.4 defines a manifold.

2. M = Rn with atlas {(Rn, Id)} defines a manifold.

3. Every open subset of a manifold M has the structure of a manifold, by taking the restriction of every chart
in an atlas of M .

4. Not every closed subset S of a manifold M can be given a manifold structure: a necessary condition for this
is that S is locally Euclidean, that is every point p ∈ S has an open neighbourhood p ∈ U ⊂ S such that U
is homeomorphic to an open subset of Rn for some n. If M = R2 and S is the union of the coordinate axis,
then S is not locally Euclidean at the origin hence cannot be given an atlas.
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If M is a manifold and p ∈M , we say M has dimension n at p if there exists a chart (U, φ) containg p such
that φ(U) is an open subset of Rn. It is an exercise to check that this definition does not depend on the choice
of chart and defines a locally constant function M → Z≥0. If this function is constant (which is always the
case if M is connected) and equal to n, we say that M has dimension n.

12.2 Smooth maps

Definition 12.8. Let M,N be manifolds. A continuous map F : M → N is smooth at p ∈ M if there exists
charts (U, φ) of M and (V, ψ) of N containing p and F (p) respectively such that the composition

ψ ◦ f ◦ φ−1 : φ(U ∩ F−1(V ))→ U ∩ F−1(V )→ V → ψ(V ) (12.2.1)

is smooth at p. We say F is smooth if it is smooth at every point of M . If F is smooth and has a smooth inverse,
we say F is a diffeomorphism.

A map F : M → N is smooth at p ∈M if and only if the above condition is satisfied for all charts (U, φ) and
(V, ψ) with p ∈ U and F (p) ∈ V . (Exercise.)

We reiterate that when we use the word ‘chart’ on a manifold M we mean a chart compatible with the smooth
structure, i.e. lying in an atlas in the equivalence class.

Example 12.9. A continuous map f : M → R is smooth if for every p ∈M there exists a chart (U, φ) with p ∈ U
such that f ◦ φ−1 : φ(U)→ R is smooth.

For manifolds M,N , write

C∞(M,N) = {Smooth functions M → N}, (12.2.2)

C∞(M) = C∞(M,R). (12.2.3)

Since we can add and multiply functions M → R pointwise, C∞(M) is a commutative R-algebra.

Definition 12.10. A curve on a manifold M is a smooth map γ : I →M for some open interval I ⊂ R.

12.3 Tangent spaces

Let M be a manifold that has dimension n at p ∈M . Then we would like to define an n-dimensional vector
space TpM of ‘tangent vectors at p’. Since we think of M as an abstract manifold, not as a subset of RN , it’s
not obvious a priori how to make the right definition. The key idea is to view tangent vectors as ‘directions in
which you can differentiate functions’.

To illustrate this, let us assume that M = Rn for a moment. Given a smooth function f : Rn → R (or one
only defined on an open subset of Rn containing p) and a vector v ∈ Rn, we can differentiate f at p in the
direction v:

∂

∂ v

∣∣∣∣
p

f := lim
t7→0

f(p+ tv)− f(p)

t
. (12.3.1)

So every v ∈ Rn defines a map X : C∞(Rn)→ R, f 7→ ∂
∂ v

∣∣
p
f . This map is R-linear and satisfies the Leibniz

rule: X(fg) = X(f)g(p) + f(p)X(g) for all smooth functions f, g ∈ C∞(Rn).
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Proposition 12.11. The map v 7→ ∂
∂ v

∣∣
p

induces an R-linear isomorphism:

Rn ∼−→
{

R-linear maps X : C∞(Rn)→ R satisfying
X(fg) = X(f)g(p) + f(p)X(g) for all f, g ∈ C∞(Rn)

}
(12.3.2)

Proof. See any textbook on manifolds. This uses first-order Taylor series.

It is the right hand side of the isomorphism in the above proposition that generalizes well. Let M be a
manifold.

Definition 12.12. A derivation on M at p is a R-linear map X : C∞(M)→ R such that X(fg) = f(p)X(g) +
X(f)g(p) for all f, g ∈ C∞(M). Write Derp(M) for the set of all R-linear derivations on M at p.

Note that Derp(M) is an R-subspace of the space of linear functionals on C∞(M), hence a vector space itself.

Definition 12.13. The tangent space of M at p is defined to be the vector space TpM := Derp(M).

With this definition, defining the derivative of a map looks silly:

Definition 12.14. Let F : M → N be a smooth map between manifolds. If p ∈ M , then the differential (or
derivative) of F at p is the linear map (dF )p : TpM → TF (p)N defined by sending X ∈ TpM = Derp(M) to
(dF )p(X) ∈ DerF (p)(N) that is defined via

(dF )p(X)(g) := X(g ◦ F ) (12.3.3)

for all g ∈ C∞(N).

In other words, the induced map on tangent spaces is just pulling back derivations.

Proposition 12.15 (Chain rule). Let F : M → N and G : N → L be smooth maps between manifolds. Then
G ◦ F : M → L is smooth and for all p ∈M we have

(d(G ◦ F ))p = (dG)F (p) ◦ (dF )p (12.3.4)

Proof. The fact that G ◦ F is smooth follows from the fact that a composition of smooth functions on open
subsets of Rn is smooth. (This uses the ordinary chain rule.) The centered identity (12.3.4) can be proven
formally: for X ∈ Derp(M) and h ∈ C∞(L) we have

(d(G ◦ F ))p(X)(h) = X(h ◦G ◦ F ) (12.3.5)

= X((h ◦G) ◦ F ) (12.3.6)

= (dF )p(X)(h ◦G) (12.3.7)

= (dG)F (p)((dF )p(X))(h). (12.3.8)

This looks like weird symbol manipulating, but it is just saying that precomposing functions with (G ◦ F ) is
the same as first precomposition with G and then with F .

The chain rule implies that if F : M → N is a smooth map with a smooth inverse then (dF )p : TpM → TF (p)N
is an isomorphism for all p ∈M . Indeed, if G : N →M is the smooth inverse of F then (dG)F (p) ◦ (dF )p = Id
and (dF )p ◦ (dG)F (p) = Id.
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We can think concretely about tangent vectors on M at p once we choose a chart (U, φ) containing p. Indeed,
in that case φ(U) ⊂ Rn and the n coordinate functions Rn → R, (x1, . . . , xn) 7→ xi give rise to coordinate
functions x1, . . . , xn : U → R. These are called local coordinates on M . Define for f ∈ C∞(M):

∂

∂ xi

∣∣∣∣
p

(f) :=
∂

∂ xi

∣∣∣∣
φ(p)

(f ◦ φ−1). (12.3.9)

Then { ∂
∂ x1

∣∣
p
, . . . , ∂

∂ xn

∣∣
p
} are derivations at p and form a basis of TpM , by Proposition 12.11. If N is another

manifold, F : M → N is a smooth map, and (V, ψ) is a chart of N containing F (p), we have local coordinates
y1, . . . , ym : V → R onN and TF (p)N has basis { ∂

∂ yj

∣∣
F (p)
}1≤j≤m. If we set Fj = yj◦F ◦φ−1 : φ(U∩F−1(V ))→

R, then F1, . . . , Fm are functions in the variables x1, . . . , xn defined on an open subset containing φ(p). The
differential (dF )p : TpM → TF (p)N in these explicit bases is exactly given by

∂

∂ xi

∣∣∣∣
p

7→
m∑
j=1

∂ Fj
∂ xi

(p)
∂

∂ yj

∣∣∣∣
F (p)

. (12.3.10)

Therefore all the abstractly defined notions of tangent space and differential specialize to the familiar notions
from multivarialbe calculus.

Finally, we connect back to the motivation for the definition of the tangent space:

Lemma 12.16. Let U be an open subset of a finite-dimensional R-vector space V . Then U is a manifold, and for
every p ∈ U the map V → TpU, t 7→ γ′v(0), where γv(t) = p+ tv, is an isomorphism.

This is a good exercise in the definitions. We will use this lemma over and over again and will often implicitly
identify TpU with V via this map.

12.4 Vector fields
Lecture 14
starts here

Let M be a manifold. We will endow the set T∗M = tp∈MTpM with the structure of a manifold, as follows.
There is a projection map π : T∗M →M, (p, v) 7→ p whose fibers are exactly all the tangent spaces of M . Let
A be an atlas for M defining the smooth structure. Let φ : U → φ(U) ⊂ Rn be a chart in A, defining local
coordinates x1, . . . , xn : U → R. For each p ∈ U , the basis { ∂

∂ xi

∣∣
p
} determines an isomorphism αp : TpM

∼−→
Rn. Collecting these isomorphisms determines a bijection φT∗M : π−1(U)→ φ(U)×Rn, (p, v) 7→ (φ(p), αp(v)).
Let A′ = {(π−1(U), φT∗M ) | (U, φ) ∈ A}. We give T∗M the unique topology for every map in A′ is a
homeomorphism, and declare A′ to be an atlas. One can check that this is indeed an atlas and π : T∗M →M
is a smooth map. The manifold T∗M is called the tangent bundle of M .

Definition 12.17. Let M be a manifold. A vector field on M is a smooth map V : M → T∗M such that
V (p) ∈ TpM . In other words, π ◦ V = IdM .

In other words, a vector field is a choice of tangent vector in TpM for every p ∈M that varies smoothly in
some way. This smoothness depends on the manifold structure on T∗M , but we can express it concretely as
follows:

Let (U, φ) be a chart of M , x1, . . . , xn the corresponding local coordinates on U , giving rise to the basis
{ ∂
∂ x1

∣∣
p
, . . . , ∂

∂ xn

∣∣
p
} for each p ∈ U . If V : M → T∗M is any map satisfying V (p) ∈ TpM for all p ∈ M , then

there exist functions V1, . . . , Vn : U → R such that

V (p) =

n∑
i=1

Vi(p)
∂

∂ xi

∣∣∣∣
p

(12.4.1)
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for all p ∈ U . Then V is a vector field (in other words, V is smooth) if and only if the functions Vi : U → R
are smooth for all 1 ≤ i ≤ n and all charts (U, φ) in a given atlas of M .

We have seen (by definition) that tangent vectors at p ∈M are derivations of M at p. Since a vector field is a
collection of tangent vectors, we can use it to differentiate a function at every point.

Definition 12.18. A derivation on M is a R-linear map D : C∞(M) → C∞(M) satisfying D(fg) = D(f)g +
fD(g) for all f, g ∈ C∞(M). Write Der(M) for the set of all derivations on M .

The difference between Derp(M) and Der(M) is that an element of Derp(M) is a map C∞(M)→ R, while an
element of Der(M) is a map C∞(M)→ C∞(M).

Let V : M → T∗M be a vector field on M . Then V gives rise to a derivation DV : C∞(M)→ C∞(M) via

(DV (f))(p) = V (p)(f) (12.4.2)

for f ∈ C∞(M) and p ∈M . In other words, each V (p) is a derivation at p so for each p we can derive f at p
using V (p).

Proposition 12.19. The map V 7→ DV defines an R-linear isomorphism between the set of vector fields on M
and Der(M).

Why is this useful? If D,D′ ∈ Der(M), then the composite maps D ◦D′ : M →M and D′ ◦D : M →M are
not derivations, but one can check that

[D,D′] := D ◦D′ −D′ ◦D ∈ Der(M). (12.4.3)

Definition 12.20. Given two vector fields V, V ′ on M , there exists a unique vector field on M corresponding to
the derivation [DV , DV ′ ]. This vector field is called the Lie bracket of V and V ′.

12.5 Integral curves

Let M be a manifold and γ : I →M a curve, i.e. a smooth map from an open interval I ⊂ R. If t ∈ I and R
has coordinate x, TtI has a canonical generator, namely ∂

∂ x

∣∣
t
.

Definition 12.21. If γ : I →M is a curve, we define the tangent vector γ′(t) ∈ Tγ(t)M at t to be (Dγ)t
(
∂
∂ x

∣∣
t

)
.

Definition 12.22. Let V be a vector field on M . An integral curve for V on M is a smooth curve γ : I →M such
that γ′(t) = V (γ(t)) for all t ∈ I.

Example 12.23. Let M = R, V = x ∂
∂ x . Then an integral curve is a smooth map γ : I → R such that γ′(t) = γ(t).

This differential equation has solutions γ(t) = Cet for some C ∈ R.

Example 12.24. Let M = R2 and V = x ∂
∂ y − y

∂
∂ x . Then integral curves for V are concentric circles.

Working out these examples show that finding integral curves is like finding solutions to ordinary differential
equations. Since we can always solve them locally, we have the following theorem:

Theorem 12.25. Let M be a manifold, V a vector field on M and p ∈ M . Then there exists an open interval
I ⊂ R containing 0 and a smooth map γ : I →M such that γ(0) = p such that γ is an integral curve for V . If
J ⊂ R is another open interval containing 0 and γ̃ : J →M an integral curve for V with γ̃(0) = p, then γ = γ̃
on I ∩ J .
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12.6 Submanifolds

Let M be a manifold. We now define what it means to be a submanifold of M . There are actually two
competing notions for this, and their difference is subtle. We start with the notion that has the best properties.

Definition 12.26. Let S ⊂M be a subset. We say S is an embedded submanifold of dimension k if for every p ∈ S,
there exists a chart φ : U → φ(U) ⊂ Rn ofM such that φ(S∩U) = {(x1, . . . , xn) ∈ φ(U) | xk+1 = · · · = xn = 0}.
Such a chart is called a slice chart.

If S is an embedded submanifold of M , equipped with the subspace topology, then there exists a unique
smooth structure on S (i.e. manifold structure) such that the inclusion S ↪→M is smooth. Indeed, we may
simply take the restriction of slice charts to the first k coordinates.

Example 12.27. Any vector subspace S of Rn is an embedded submanifold.

Example 12.28. The subset S1 ⊂ R2 is an embedded submanifold. This can be seen using polar coordinates.

To produce examples of embedded submanifolds, we will need the notion of a submersion.

Definition 12.29. A smooth map F : M → N is said to be

1. An immersion at p ∈M if (dF )p is injective;

2. A submersion at p ∈M if (dF )p is surjective.

We say F is an immersion/submersion if it is an immersion/submersion at every point.

Theorem 12.30 (Submersion theorem). Let F : M → N be a submersion and c ∈ N . If F is a submersion at
every p ∈ F−1(c), then F−1(c) is an embedded submanifold of M .

Corollary 12.31 (Level sets). Let f : M → R be a smooth map and c ∈ R such that (df)p is nonzero for all
p ∈ f−1(c). Then f−1(c) is an embedded submanifold of M .

Example 12.32 (Spheres are embedded submanifolds). Let M = Rn and f : Rn → R, (x1, . . . , xn) 7→
x2

1 + · · · + x2
n. If p = (a1, . . . , an), then (df)p = (2a1, . . . , 2an). It follows that (df)p is a submersion at every

point p 6= 0 and so f−1(1) = Sn−1 is an embedded submanifold of Rn.

Given an embedded submanifold S ⊂ M , we have seen that S is a manifold itself and the definition of
the manifold structure shows that S → M is an injective immersion. Does this characterize embedded
submanifolds, i.e. is every image of an injective immersion an embedded submanifold? This turns out to be
false.

Example 12.33. Let M = R2 and let S be the ‘figure six’ curve inside M . Then there exists an injective immersion
f : (0, 1) → M with image S. (Draw picture.) However, S is not an embedded submanifold because it is not
locally Euclidean at the branch point where the ends of (0, 1) meet.

Definition 12.34. Let S ⊂M be a subset of M . If S is the image of an injective immersion N →M for some
manifold N , we say S is an immersed submanifold of M .

So every embedded submanifold is immersed, but the converse might not be true. The image of an in-
jective immersion f : N → M is an embedded submanifold if the subspace topology of f(N) induces a
homeomorphism f : N → f(N).

Example 12.35. Let M = S1 × S1 and let α ∈ R. Let N = R and consider the map f : N → M, t 7→
(e2πit, e2πiαt). If α is rational, the image of f is an embedded submanifold diffeomorphic to S1. If α is irrational,
f is an injective immersion and the image is an immersed submanifold. It turns out that in this case the image of
f is dense in M and so is certainly not an embedded submanifold of M .
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12.7 Exercises on manifolds

Here are some additional (non hand-in) exercises for those who want to practice their manifold skills. You’re
very welcome to discuss any of these during office hours!

1. Let M be a manifold with atlas A. Show that a chart (U, φ) of the topological space M lies in an atlas of
the equivalence class of A if and only if (U, φ) is compatible with every chart in A.

2. Let f : M → N be a smooth map of manifolds. Show that for every chart (U, φ) of M and (V, ψ) of N
with U ∩ f−1(V ) 6= ∅, the induced map ψ ◦ f ◦ φ−1 : φ(U ∩ f−1(V ))→ V → ψ(V ) is smooth.

3. Let (U, φ) be a chart on a manifold M . Show that φ : U → φ(U) is a diffeomorphism (with the manifold
structures on U and φ(U)).

4. Define an atlas on real projective space Pn(R) = (Rn+1\{0})/R× and define a smooth map Sn → Pn(R).

5. Let M and N be manifolds. Equip M ×N with the structure of a manifold.

6. Verify that the chain rule in local coordinates is equivalent to the familiar chain rule from analysis.

7. Let F : M → N be a smooth map with M connected and (dF )p = 0 for all p ∈ M . Show that F is
constant.

8. Let p be a point of a manifold M and v ∈ TpM . Show that there exists a curve γ : I →M with 0 ∈ I ⊂ R
such that γ(0) = p and γ′(0) = v. Let F : M → N be a smooth map. Show that (dF )p(v) = (F ◦ γ)′(0),
so derivatives can be computed derivatives of curves.

9. Let V be a finite-dimensional R-vector space and U ⊂ V an open subset. Then U has the structure of a
manifold, and for every p ∈ U there exists a ‘canonical’ isomorphism V ' TpU given by sending v to the
derivative of the curve p+ tv at zero.

10. For which values of c ∈ R is the zero locus in R3 of z2 − (x2 + y2)2 + c an embedded submanifold of
R3? When is it an immersed submanifold?

13 Lie groups

13.1 Basic definitions

Definition 13.1. A Lie group is a manifold G whose underlying set has a group structure such that the maps
G × G → G, (x, y) 7→ x · y and G → G, x 7→ x−1 are smooth. A map between Lie groups φ : G → H is a Lie
group homomorphism (or simply a homomorphism) if it is smooth and a group homomorphism. If φ has an
inverse that is again a Lie group homomorphism, we say that φ is an isomorphism.

Since every Lie group is in particular a group and a topological space, we can add properties to Lie groups that
put restrictions on the group structure or topology. For example, a Lie group G is connected if the underlying
topological space is connected, and a Lie group G is commutative if the underlying group is commutative.

Definition 13.2. Let G be a Lie group and g ∈ G. Write Lg : G → G, x 7→ gx and Rg : G → G, x 7→ xg for
left/right multiplication by g.

The maps Lg, Rg are diffeomorphisms of G and provide G with an extraordinary amount of symmetry. For
example, d(Lg)e induces an isomorphism TeG → TgG for all g ∈ G, so all the tangent spaces TgG are
canonically identified.
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13.2 Examples of Lie groups

Examples 13.3. 1. G = (Rn,+) is a Lie group under addition.

2. The group G = GLn(R) is a Lie group under matrix multiplication. Indeed, since G is an open subset of
Rn2

, it inherits a manifold structure from Rn2

. The multiplication map is smooth since it is polynomial,
and the inversion map is smooth by Cramer’s rule. Similarly, GLn(C) is a Lie group.

3. If F = R or C and V is a finite-dimensional F -vector space, GL(V ) has the structure of a Lie group, by an
argument similar to Example 4 in §11.1.

4. The subset Bn(R) of upper triangular matrices

Bn(R) =


∗ · · · ∗0

. . .
...

0 0 ∗


 ⊂ GLn(R) (13.2.1)

is a Lie group, because it is an embedded submanifold of GLn(R) so a manifold, and the multiplica-
tion/inversion map are smooth. Similarly the subset of strictly upper triangular matrices

Un(R) =


1 · · · ∗

0
. . .

...
0 0 1


 ⊂ GLn(R) (13.2.2)

is a Lie group.

5. If G,H are Lie groups, the direct product G×H (with the product manifold structure and product group
structure) is a Lie group.

6. G = S1 = {z ∈ C× | |z| = 1} is a Lie group under multiplication. (The fact that multiplication/inversion
is smooth can be seen by taking angle parametrizations.)

7. G = GLn(R)+ = {A ∈ GLn(R) | det(A) > 0} is a Lie group, being an open subgroup of GLn(R). In fact,
GLn(R)+ is connected. (See problem set 5.)

We will be able to write down more examples after the next section.

13.3 Lie subgroups

Let G be a Lie group.

Definition 13.4. An immersed Lie subgroup (or simply Lie subgroup) of G is the image of a Lie group homomo-
morphism H → G that is an injective immersion.

Definition 13.5. An embedded Lie subgroup of G is a subgroup H ≤ G that is also an embedded submanifold of
G.

If H is an embedded Lie subgroup of G, then H is a manifold itself (by restricting slice charts) and with
respect to this manifold structure and subgroup structure H is a Lie group itself. (Exercise.)

Example 13.6. S1 is an embedded Lie subgroup of C×.
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Example 13.7. A line with irrational slope in S1 × S1 (Example 12.35) is a Lie subgroup that is immersed but
not embedded.

The following nontrivial theorem (which we won’t prove) gives an easy way of generating new Lie groups:

Theorem 13.8 (Closed subgroup theorem). The following are equivalent for a subgroup H of a Lie group G:

1. H is closed;

2. H is an embedded Lie subgroup of G.

This theorem implies that every closed subgroup of a Lie group is a Lie group itself.

Example 13.9. Since SLn(R) = {A ∈ GLn(R) | det(A) = 1} is closed in GLn(R) (being the preimage of {1}
under det), the closed subgroup theorem implies that SLn(R) is an embedded Lie subgroup of GLn(R) hence a
Lie group itself. Similarly SLn(C) is a Lie group.

Example 13.10. Since the group U(n) = {A ∈ GLn(C) | AĀt = I} is closed in GLn(C), U(n) is a Lie group.

See the problem set for many more examples of Lie groups.

13.4 Lie algebras

It turns out that the tangent space of a Lie group at the identity has the structure of a Lie algebra, and that
this Lie algebra remembers a lot about the corresponding Lie group. Before we define this we start with some
generalities on Lie algebras.

Definition 13.11. A Lie algebra over a field F is a vector space g over F together with a bilinear pairing
[−,−] : g× g→ g (called the Lie bracket) such that

1. [−,−] is alternating: [x, x] = 0 for all x ∈ g. (This implies that [x, y] = −[y, x] for all x, y ∈ g.)

2. [−,−] satisfies the Jacobi identity: for all x, y, z ∈ g, [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

A morphism of Lie algebras is a linear map f : g→ h such that f([x, y]) = [f(x), f(y)] for all x, y ∈ g.

Example 13.12. Consider the vector space Matn(F ) of n × n-matrices with Lie bracket [A,B] := AB − BA.
This bracket is clearly bilinear and alternating, and a calculation shows that it satisfies the Jacobi identity. We
write this Lie algebra as gln(F ). (Of course, as a vector space it is the same as Matn(F ), but we write gln(F ) to
emphasize that we think of it as a Lie algebra.) Similarly, we have a Lie algebra gl(V ) for any F -vector space,
where the underlying vector space is End(V ) and the bracket is [f, g] = f ◦ g − g ◦ f .

Warning 13.13. A Lie algebra is not an algebra in the sense of Section 8.1. In particular, a Lie algebra does not
necessarily have a unit, nor do we require it to be associative.

The following lemma might demystify the Jacobi identity a little bit:

Lemma 13.14. Let g be a vector space with an alternating bilinear bracket [−,−] : g× g→ g. Then g is a Lie
algebra (i.e. satisfies the Jacobi identity) if and only if the map ad: g→ gl(g), x 7→ [x, y] respects the brackets on
both sides.

Proof. The condition that ad preserves the bracket means that ad[x,y] = adx ◦ ady − ady ◦ adx for all x, y ∈ g.
Evaluating this at z ∈ g and using the fact that [−,−] is alternating exactly recovers the Jacobi identity.

57



13.5 Lie algebra of a Lie group
Lecture 15
starts here

Let G be a Lie group with identity e ∈ G.

Definition 13.15. The tangent space TeG at e of G, denoted by g or Lie(G), is called the Lie algebra of G.

In the next paragraphs we will define a bracket [−,−] on g and show that g is a Lie algebra over R. This will
take a few steps.

We start by considering for every g ∈ G the conjugation map

Ψg : G→ G, x 7→ gxg−1 (13.5.1)

Then Ψg is a Lie group homomorphism sending e to e. We can therefore take its derivative, and get a
homomorphism Ad(g) := (dΨg)e : g→ g. Since Ψg ◦Ψh = Ψgh, the chain rule implies that Ad(g) ◦Ad(h) =
Ad(gh) for all g, h ∈ G. In other words, the map g 7→ Ad(g) defines a homomorphism

Ad: G→ GL(g). (13.5.2)

This homomorphism is called the adjoint representation of G. Let us first prove that this map is smooth. (This
is a technical detail that you can skip over on first reading.) It suffices to show that for every X ∈ g, the map
g 7→ Ad(g)(X) is smooth. (Indeed, if that’s the case then after choosing a basis of g and taking X to be the
basis vectors, we can conclude that all the matrix entries are smooth.) Let γ : I = (−ε, ε)→ G be a curve with
γ(0) = e and γ′(0) = X. Then Ad(g)(X) = d

dt

∣∣
t=0

[gγ(t)g−1]. Since the map G ×G → G, (g, x) 7→ gxg−1 is
smooth, the map G × I → G, (g, t) 7→ gγ(t)g−1 is smooth as well. Since taking the partial derivative of a
smooth map is smooth, (g, t) 7→ d

dt [gγ(t)g−1] is smooth. Since the restriction of a smooth function is smooth,
g 7→ d

dt

∣∣
t=0

[gγ(t)g−1] = Ad(g)(X) is smooth too, as desired.

Since Ad is smooth and sends e to Id, we can take the derivative of Ad at e. Using the fact that Te GL(g) =
End(g) (Lemma 12.16), we get an R-linear map

ad := (dAd)e : g→ End(g), (13.5.3)

called the adjoint representation of g.

Definition 13.16. The Lie bracket on g is defined by setting for x, y ∈ g:

[x, y] := ad(x)(y) ∈ g . (13.5.4)

Since ad is linear and lands in End(g), [−,−] is bilinear. Before we prove that [−,−] defines a Lie algebra
structure on g, we start with some lemmas.

Lemma 13.17. Let G = GLn(R). Then [A,B] = AB − BA for all A,B ∈ g = gln(R). Hence Lie(G) is a Lie
algebra.

Proof. It will be useful in this proof (and later) to calculate derivatives using curves: if F : M → N is a smooth
map between manifolds, v ∈ TpM and γ : (−ε, ε) → M is a curve on M with γ(0) = p and γ′(0) = v, then
(dF )p(v) = (F ◦ γ)′(0).

To apply this principle here, choose ε > 0 small enough so that the curves γ : (−ε, ε)→ GLn(R), t 7→ I + tA
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and ψ(t) = I + tB are well-defined (i.e. I + tA, I + tB are invertible for |t| < ε). Then

[A,B] =
d

dt

∣∣∣∣
t=0

Ad(γ(t))(B) (13.5.5)

=
d

dt

∣∣∣∣
t=0

d

ds

∣∣∣∣
s=0

Ad(I + tA)(I + sB) (13.5.6)

=
d

dt

∣∣∣∣
t=0

d

ds

∣∣∣∣
s=0

(I + tA)(I + sB)(I + tA)−1. (13.5.7)

So we need to derive the matrix valued function (t, s) 7→ (I + tA)(I + sB)(I + tA)−1. For this we can
use the matrix-valued product rule: if t 7→ X(t), Y (t) ∈ Matn(R) are curves, then d

dt

∣∣
t=0

(X(t)Y (t)) =

X ′(t)Y (t) + X(t)Y ′(t). Applied to the variable s first, we see that [A,B] = d
dt

∣∣
t=0

((I + tA)B(I + tA)−1).

Applied toX(t) = (I+tA) and Y (t) = (I+tA)−1, we see that d
dt

∣∣
t=0

(X(t)Y (t)) = 0 so d
dt

∣∣
t=0

(I+tA)−1 = −A.
So

d

dt

∣∣∣∣
t=0

((I + tA)B(I + tA)−1) =
d

dt

∣∣∣∣
t=0

(I + tA)B +B
d

dt

∣∣∣∣
t=0

((I + tA)−1) (13.5.8)

= AB −BA. (13.5.9)

The next lemma shows that the Lie bracket behaves well with respect to group homomorphisms.

Lemma 13.18. Let Φ: G → H be a Lie group homomorphism with φ = Lie(Φ) = (dΦ)e : g → h the induced
linear map. Then

φ([x, y]) = [φ(x), φ(y)] (13.5.10)

for all x, y ∈ g.

Proof. Since Φ(gxg−1) = Φ(g)Φ(x)Φ(g)−1 we have (using the notation of (13.5.1)) that Φ ◦Ψg = ΨΦ(g) ◦ Φ
for all g ∈ G. Taking the derivative at e shows that φ ◦Ad(g) = Ad(Φ(g)) ◦ φ for all g ∈ G. Let X,Y ∈ g and
choose a curve γ : I = (−ε, ε) → G with γ(0) = e and γ′(0) = X. Then [X,Y ] = d

dt

∣∣
t=0

Ad(γ(t))(Y ) and by
the above calculation

φ(Ad(γ(t))(Y )) = Ad(Φ(γ(t)))(φ(Y )). (13.5.11)

The derivative of the left-hand side at t = 0 is φ([X,Y ]). Since t 7→ Φ(γ(t)) is a curve on H with derivative
φ(X), the right-hand side equals ad(φ(X))(φ(Y )) = [φ(X), φ(Y )]. Therefore these two are equal, concluding
the proof.

Combining the above two lemmas already proves that [−,−] defines a Lie algebra structure on g if G is an
immersed subgroup of GLn(R). Indeed, in that case the inclusion G ↪→ GLn(R) induces an injective map
g ↪→ gln(R) respecting the Lie bracket. So when we view X,Y ∈ g as n× n-matrices, Lemma 13.18 shows
that [X,Y ] = XY − Y X, which can be explicitly seen to be a Lie algebra.

To prove that the bracket [−,−] defines a Lie bracket in general, we postpone the proof to the next section.

Example 13.19. You will show on the problem set that the derivative of det : GLn(R) → R× at the identity
equals the trace tr : gln(R)→ R. Therefore sln(R) = Lie(SLn(R)) ⊂ gln(R) equals {X ∈ gln(R) | tr(X) = 0}.
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Warning 13.20. In general, XY does not make sense as an element of g, it is only [X,Y ] that we can define. For
example, if X,Y ∈ sln(R), then the matrix XY does not necessarily lie in sln(R). This is why we focus on the Lie
algebra structure.

Example 13.21. A calculation similar to Lemma 13.17 shows that the Lie bracket on gln(C) = Lie(GLn(C)) is
[A,B] = AB −BA.

Example 13.22. The Lie algebra of SO(n) ⊂ GLn(R) turns out to be so(n) = {X ∈ gln(R) | X + Xt = 0}.
Indeed, the map GLn(R) 7→ GLn(R), A 7→ AAt has derivative gln(R)→ gln(R), X 7→ X +Xt.

Example 13.23. Suppose that G is a commutative Lie group. Then [x, y] = 0 for all x, y ∈ g. Indeed, in that
case the conjugation maps Ψg are all trivial!

13.6 One-parameter subgroups

Let G be a Lie group, g its Lie algebra and X ∈ g. Even though X just defines a single element in the tangent
space of G at e, we can use the group structure on G to extend it to a vector field. Recall that for g ∈ G,
Lg : G→ G, x 7→ gx denotes the multiplication by g map.

Definition 13.24. We say a vector field V : G→ T∗G is left-invariant if V (gh) = (dLg)h(V (h)) for all g, h ∈ G.

Proposition 13.25. If X ∈ g, the association VX(g) := (dLg)e(X) defines a vector field. The map X 7→ VX is
an isomorphism between g and the set of all left-invariant vector fields.

Proof. We first check that VX is smooth. To prove this, it suffices to show (why?) that for every open
U ⊂ G and f ∈ C∞(U), DVX (f) ∈ C∞(U). But DVX (f)(g) = VX(g)(f) = (dLg)e(X)(f) = X(f ◦ Lg). Let
γ : (−ε, ε)→ G be a curve with γ(0) = e and γ′(0) = X. Then

X(f ◦ Lg) =
d

dt

∣∣∣∣
t=0

f(g · γ(t)) (13.6.1)

Since the map U × (−ε, ε) → R, (g, t) 7→ f(g · γ(t)) is smooth, taking the derivative of the t-variable and
evaluating at 0 still gives a smooth map, so g 7→ X(f ◦ Lg) is smooth, as desired.

To check that VX is left-invariant, we compute for g, h ∈ G that

VX(gh) = (dLgh)(VX(e)) = (dLg)(dLh)(VX(e)) = dLg(VX(h)). (13.6.2)

(We have omitted the subscripts from dLg etcetera for ease of notation.)

We conclude that VX is a left-invariant vector field. If V is any left-invariant vector field and X = V (e) ∈ g,
then V (g) = (dLg)(V (e)) = (dLg)(X) = VX(g) for all g ∈ G so V = VX . So X 7→ VX and V 7→ V (e) give
mutually inverse bijections between g and the set of left-invariant vector fields.

Remark 13.26. It turns out that the Lie bracket of two left-invariant vector fields is again left-invariant, and
that the map X 7→ VX from Proposition 13.25 respects Lie brackets on both sides. This can be used to give an
alternative definition of the Lie bracket on g.

Lecture 16
starts here

The next proposition determines what the integral curves for the vector fields VX look like: they turn out to
be extremely important.

Proposition 13.27. Let X ∈ g. Then there exists an integral curve ϕX : R → G with ϕX(0) = e for VX .
Moreover, it is the unique Lie group homomorphism ϕX : R→ G satisfying ϕ′X(0) = X.

60



Proof. By Theorem 12.25, there exists an open interval containing 0 and an integral curve for V through
e. Moreover, any two integral curves for VX through the same point agree on their domain of definition.
Therefore, if I ⊂ R is the union of all open intervals containing 0 for which an integral curve through e ∈ G
exists, then we obtain a ‘maximal’ integral curve ϕX : I → G through e for VX . The content of the proposition
is that I = R and that ϕX is a homomorphism. The idea will be to use the group structure to ‘copy’ a small
segment of the curve and extend it.

We first show that if s ∈ I is fixed then γ(t) = ϕX(s)ϕX(t) is an integral curve I → G for VX through
g0 := ϕX(s). Indeed, using the fact that ϕX is an integral curve and VX is left-invariant, we have

γ′(t) =
d

dt
[Lg0(ϕX(t))] (13.6.3)

= (dLg0)ϕX(t)(ϕ
′
X(t)) (13.6.4)

= (dLg0)ϕX(t)VX(ϕX(t)) (13.6.5)

= VX(ϕX(s)ϕX(t)) (13.6.6)

= VX(γ(t)). (13.6.7)

Therefore γ : I → G is indeed an integral curve through ϕX . By the uniqueness of integral curves, we see that
ϕX(s+ t) = ϕX(s)ϕX(t) whenever s, t, s+ t ∈ I. We can therefore paste together ϕX(t) and ϕX(t− s)ϕX(s)
and get a curve defined on the union of I and s+ I. Since I is the maximal interval over which integral curves
are defined, we see that s + I ⊂ I. Since I is non-empty by Theorem 12.25, we may take s ∈ I nonzero,
which implies that I = R. In the course of this proof, we have also showed that ϕX(s+ t) = ϕX(s)ϕX(t) for
all s, t ∈ R, in other words ϕX is a Lie group homomorphism.

It remains to show that if φ : R → G is a Lie group homomorphism with φ′(0) = X ∈ g, then φ = φX . To
prove this, it suffices to show (by the uniqueness of integral curves) that φ is an integral curve of VX . But this
follows from the fact that φ′(t) = d

ds

∣∣
s=0

φ(t+ s) = d
ds

∣∣
s=0

(φ(t)φ(s)) = (dLφ(t))e(X) = VX(φ(t)).

Definition 13.28. If X ∈ g, the homomorphism ϕX : R→ G from Proposition 13.27 is called the one-parameter
subgroup associated to G and X ∈ g.

We emphasize that a one-parameter subgroup is, despite its name, a homomorphism R→ G, and not just its
image.

We can use the above proposition to show that [−,−] is a well-defined Lie bracket for all Lie groups G (not
necessarily embedded in GLn(R)), as promised in the previous section.

Proposition 13.29. The bracket [−,−] defines a Lie algebra structure on g.

Proof. We just need to check that [−,−] is alternating and satisfies the Jacobi identity.

To check that it is alternating, let X ∈ g and let ϕX : R→ G be the one-parameter subgroup associated to X.
Then

[X,X] =
d

dt

∣∣∣∣
t=0

Ad(ϕX(t))(X) (13.6.8)

=
d

dt

∣∣∣∣
t=0

d

ds

∣∣∣∣
s=0

[
ϕX(t)ϕX(s)ϕX(t)−1

]
. (13.6.9)

Since ϕX : R → G is a homomorphism, the elements in the image of ϕX commute with each other. So
ϕX(t)ϕX(s)ϕX(t)−1 = e, and hence the derivative [X,X] is zero.
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To prove the Jacobi identity, apply Lemma 13.18 toG = G, H = GL(g) and Φ = Ad. We get that ad: g→ gl(g)
preserves the Lie bracket, that is ad[X,Y ] = adX adY − adY adX for all x, y ∈ g. Plugging in z ∈ g we get
[[x, y], z] = [x, [y, z]] − [y, [x, z]]. Rearranging and using the skew-symmetry, this gives exactly the Jacobi
identity!

13.7 The exponential map

The exponential map is a crucial tool to relate the Lie group to its Lie algebra.

Definition 13.30. The exponential map exp: g→ G is defined via exp(X) = ϕX(1) ∈ G, where ϕX : R→ G is
the one-parameter subgroup associated to G.

We sometimes simply write eX for exp(X) if X ∈ g. We also write ϕX(t) = etX for the corresponding
one-parameter subgroup.

Example 13.31. Let G = GLn(R). Then for X ∈ g, the expression eX :=
∑
n≥0X

n/n! converges with respect to
the norm ||X|| =

√
tr(XXt) on g = Matn(R) and defines an element of GLn(R). The assignment t 7→ etX = is

a Lie group homomorphism R→ G with derivative X. By the uniqueness of one-parameter subgroups, we see that
ϕX(t) = etX and so the exponential map in this case is exactly exp(X) = eX = I +X +X2/2 +X3/3! + · · · ∈
GLn(R), which explains the name.

The following theorem summarizes the most important properties of the exponential map.

Theorem 13.32. 1. exp is a smooth map.

2. (d exp)0 : T0 g = g→ TeG = g is the identity map.

3. exp is a local diffeomorphism around 0 ∈ g: there exists open subsets U ⊂ g and V ⊂ G with 0 ∈ U and
e ∈ V such that exp restricts to a diffeomorphism exp |U : U

∼−→ V .

4. exp is natural: if F : G→ H is a Lie group homomorphism with derivative f then the following diagram is
commutative:

g G

h H

f F

exp

exp

In other words, F ◦ exp = exp ◦f .

Proof. 1. This follows from the fact that integral curves (i.e. solutions to ODEs) depend smoothly on the
initial parameters, so the map g×R, (X, t) 7→ ϕX(t) is smooth. (Detailed proof omitted.)

2. We have (d exp)0(X) = d
dt

∣∣
t=0

exp(tX) = d
dt

∣∣
t=0

ϕtX(1) = d
dt

∣∣
t=0

ϕX(t) = X.

3. Follows from the previous part and the inverse function theorem. (The inverse function theorem says
that if F : M → N is smooth and (dF )p : TpM → TqN is an isomorphism, there exist open subsets
U ⊂M and V ⊂ N containing p and q such that F |U : U → V is a diffeomorphism.)

4. This follows from the fact that ϕf(X) = F ◦ ϕX for all X ∈ g, as both are one-parameter subgroups
R → H for f(X) and the fact that one-parameter subgroups are unique. Therefore F (exp(X)) =
F (ϕX(1)) = ϕf(X)(1) = exp(f(X)) for all X ∈ g.
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Warning 13.33. The exponential map is not a homomorphism in general. For example, for matricesA,B ∈ gln(R)
it is not necessarily true that eA+B = eA · eB . The latter identity does hold when A and B commute, and you will
show on the problem set that more generally eX+Y = eX · eY if X,Y ∈ g satisfy [X,Y ] = 0.

We can use the exponential map to show that a map between Lie groups (with connected domain) is
determined by its Lie algebra. We need the following lemma, whose proof is an exercise on Problem Set 5.

Lemma 13.34. Let U ⊂ G be an open subset containing the identity in a connected Lie group G. Then U
generates G.

Proposition 13.35. Let F, F ′ : G→ H be Lie group homomorphisms with G connected, and let f, f ′ : g→ h be
the induced map on Lie algebras. Then F = F ′ if and only if f = f ′.

Proof. If F = F ′ then clearly f = (dF )e = (dF ′)e = f ′, so assume for the converse that f = f ′. By Lemma
13.34, it suffices to show that F and F ′ agree on an open neighbourhood of the identity of G. By Part 4 of
Theorem 13.32, F (exp(X)) = exp(f(X)) = exp(f ′(X)) = F ′(exp(X)), so F and F ′ agree on the image of
the exponential map exp: g→ G. Since the image of the exponential map contains an open neighbourhood
of the identity (Part 3 of Theorem 13.32), we conclude that F = F ′.

Remark 13.36. We cannot drop the assumption that G is connected. For example, every finite group (with the
discrete topology) defines a Lie group with Lie algebra the zero vector space. In fact, if G◦ ⊂ G is the connected
component of the identity of G, then Lie(G◦) = Lie(G), so the Lie algebra only ‘detects’ the identity component of
G.

13.8 Covering spaces of Lie groups
Lecture 17
starts here

In this section we consider covering spaces: these will turn out to be maps that ‘don’t change the Lie algebra’.
We start by recalling some topological preliminaries.

Definition 13.37. A continuous map p : Y → X between topological spaces is called a covering space (or covering
map) if for every x ∈ X, there exists an open x ∈ U ⊂ X, such that p−1(U) is homeomorphic to a (possibly
infinite) disjoint union of open sets {Ui}i∈I , such that p restricts to a homeomorphism p|Ui : Ui → U for each
i ∈ I.

We say a covering space p : Y → X is trivial if Y is homeomorphic to a disjoint union of open sets Xi, each
mapping homeomorphically onto X. We note that every covering space is ‘locally trivial’, but there definitely
are nontrivial covering spaces; this is what makes the theory interesting! We say a connected X is simply
connected if every covering of X is trivial, equivalently every connected covering of X is a homeomorphism.
It turns out that this is equivalent to the usual definition of simply connected, i.e. π1(X,x) is trivial for every
x ∈ X.

Examples 13.38. The topological spaces Rn, Sn (n ≥ 2) and their products are simply connected. The space S1

is not simply connected: it has fundamental group Z and connected coverings of the form S1 → S1, z 7→ zn and
R→ S1.

Even if our space we started with is not simply connected, we can cover it by a simply connected space:

Proposition 13.39. Let X be a connected and ‘reasonable’ topological space. Then there exists a covering space
p : X̃ → X with X̃ connected and simply connected. Moreover, there is a bijection between p−1(x) and π1(X,x)
for every x ∈ X. We call p : X̃ : X a universal cover of X. If p′ : X̃ ′ → X is another universal cover of X, then
there exists a homeomorphism φ : X̃ → X̃ ′ such that p′ ◦ φ = p.
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Reasonable above means: locally simply connected. Any manifold is reasonable.

Examples 13.40. 1. R → S1, t 7→ e2πit is the universal cover of S1, and the preimage of 1 ∈ S1 is
Z = π1(S1, 1).

2. C→ C×, z 7→ ez is the universal cover of C×.

3. If you know about real projective space Pn(R) = (Rn+1 \ {(0)})/R×, then you might appreciate that the
natural map Sn → Pn(R) is the universal cover for n ≥ 2, so Pn(R) has fundamental group of order 2.

For our Lie group purposes, we will state the following two facts without proof. (Their proofs are not very
hard, but I don’t want to get too much into the topology details.)

Proposition 13.41. Let G be a Lie group.

1. Let G̃→ G be a covering space. Let ẽ ∈ G̃ be an element with π(ẽ) = e. Then there exists a unique group
structure and manifold structure on G̃ such that G̃ is a Lie group with identity ẽ and π is a Lie group
homomorphism. The kernel π is a discrete (closed) subgroup of G̃ contained in the center of G̃.

2. Conversely, if Γ ≤ G is a discrete and central (i.e. contained in the center) subgroup, then G/Γ has the
structure of a manifold and π : G→ G/Γ is a Lie group homomorphism that is also a covering space.

Proof. (Sketch of ideas) The idea of Part 2 is that the discreteness assumption shows that we can find around
each g ∈ G a sufficiently small chart (U, φ) with g ∈ U ⊂ G, so that the image of U in G/Γ is homeomorphic
to U . Such a U can be used to define a chart on G/Γ around g mod Γ, and it can be checked that this defines
a manifold structure with the desired properties. For Part 1, it suffices to treat the case that G̃ is simply
connected, for then we can obtain Lie group structures on intermediate coverings by Part 2. But in the simply
connected case, there exists a unique continuous map G̃× G̃→ G̃ lifting the multiplication map on G and
mapping (ẽ, ẽ) to ẽ. One then checks that this map defines a group structure on G̃. To define the manifold
structure, for each g ∈ G we can find a chart φ : U → φ(U) containing g such that p−1(U) = tUi where each

Ui maps homeomorphically onto U . Then we declare Ui
p−→ U

φ−→ φ(U) to be charts, and one can check that
this defines a manifold structure such that G̃ becomes a Lie group. The fact that the kernel is central follows
from PSET5 Q4.

The above proposition shows that the universal cover of a connected Lie group is again a Lie group: we call it
the universal cover or simply connected cover of G and denote it by Gsc (or sometimes G̃).

Proposition 13.42. Let G,H be connected Lie groups. Then a Lie group homomorphism π : G→ H is a covering
space if and only if (dπ)e : g→ h is an isomorphism.

Proof. (Sketch of ideas) On Problem Set 5 you have shown that π covering space⇒ (dπ)e is an isomorphism.
For the converse, assume that (dπ)e is an isomorphism. By left-translating, it follows that (dπ)g is an
isomorphism for all g ∈ G. By the inverse function theorem, π is a local diffeomorphism at every point g ∈ G.
Therefore the image of π contains an open neighbourhood of the identity of H, and hence by Lemma 13.34, π
is surjective. The kernel of π is a discrete and normal (and hence central by PSET5 Q4) subgroup of G. By Part
(2) of Proposition 13.41, G/ ker(π) is a Lie group and the induced map G/ ker(π)→ H is a bijective Lie group
homomorphism whose derivative at every point is an isomorphism. By the inverse function theorem, the
inverse of this map is smooth and so G/ ker(π) ' H and we conclude that G→ G/ ker(π) = H is a covering
space.

Definition 13.43. Let G,H be connected Lie groups. A Lie group homomorphism G→ H that is also a covering
space is called an isogeny. We say two Lie groups G and H are isogenous if there exists an isogeny G → H or
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H → G. We say G and H are in same isogeny class if there exists a third Lie group K that is isogenous to both G
and H.

Being isogenous is not an equivalence relation, but being in the same isogeny class is (it is the equivalence
relation generated by isogeny). Two Lie groups are in the same isogeny class if and only if their universal
covers are isomorphic as Lie groups. (Exercise!)

Proposition 13.42 shows that two connected Lie groups lying in the same isogeny class have isomorphic Lie
algebras. We will show in the next section that the converse is also true.

Example 13.44. The map R→ S1, t 7→ e2πit is a covering space and a Lie group homomorphism.

Example 13.45. On Problem Set 5 you will show that there exists a Lie group homomorphism π : SU(2)→ SO(3)
with kernel {±1}. This implies that π is a covering map. Indeed, by Proposition 13.42 it suffices to show that
(dπ)e is an isomorphism. Since both SU(2) and SO(3) are three-dimensional, it suffices to show that (dπ)e
is injective. But if X ∈ Lie(SU(2)) lies in the kernel of (dπ)e, then by naturality of the exponential map the
one-parameter subgroup ϕX : R→ SU(2) lands in the kernel of π, that is {±1}. Since this kernel is discrete and
R is connected, ϕX(t) is constant, so ϕ′X(0) = X = 0. This shows that (dπ)e is an isomorphism and hence π is a
covering space.

Since SU(2) =

{(
a b
−b̄ ā

)
| a, b ∈ C, |a|2 + |b|2 = 1

}
is homeomorphic to the unit sphere S3 in C2 = R4, it is

simply connected (indeed, it is a fact from topology that Sn is simply connected for all n ≥ 2). So SU(2) does
not have any nontrivial connected coverings. It turns out that the center of SU(2) is exactly {±I}, so SU(2) and
SO(3) are the only two members in their isogeny class by Proposition 13.41.

Example 13.46. Combining the above two examples, we see that the Lie groups R× SO(3) and S1 × SU(2) are
not isogenous but are in the same isogeny class: they are both covered by R× SU(2).

Example 13.47. The group SO(2) is isomorphic to S1 and so has universal cover R. The groups SO(n) for n ≥ 3
have fundamental group Z/2Z (this is not obvious) and their universal covers are double covers Spin(n)→ SO(n),
called spin groups. Apparently they are important in physics.

Example 13.48. Proposition 13.41 shows that quotients of Lie groups by discrete central subgroups are still Lie
groups. For example, if G = SL2(R) and Γ = {±I} then G/Γ = PSL2(R) is a Lie group.

We can use the exponential map and the notion of a covering space to classify connected commutative Lie
groups.

Proposition 13.49. Let G be a connected commutative Lie group. Then G is isomorphic to a product of copies of
S1 and R.

Proof. On Problem Set 5, you have shown that if X,Y ∈ g then exp(X + Y ) = exp(X) exp(Y ). In particular,
since G is commutative the Lie bracket on g is trivial and so exp: g→ G is a Lie group homomorphism. Since
the image of exp contains an open neighbourhood of the identity and since such an open neighbourhood
generates G, we see that exp is surjective. Since the derivative at 0 of exp is an isomorphism, we conclude
that exp is a covering space. It follows that G is isomorphic to the quotient of g ' Rn by a discrete subgroup
Γ. It turns out that such a subgroup is always of the form Zv1 + · · · + Zvk, where {v1, . . . , vk} ⊂ Rn is a
linearly independent set of vectors. (We omit the proof of this standard fact.) It follows that G ' Rn/Γ '
(S1)k × Rn−k.
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13.9 Lie group-Lie algebra correspondence: statements
Lecture 18
starts here

Let G,H be Lie groups with G connected. Proposition 13.35 shows that the map F 7→ (dF )e

HomLieGrp(G,H)→ HomLieAlg/R(g, h) (13.9.1)

is an injection. This raises some natural questions:

1. What is the image of this map? In other words, which Lie algebra homomorphisms g → h can be
realized as derivatives of Lie group homomorphisms?

2. If g ' h, does this imply that G ' H?

3. Is every (abstract) Lie algebra isomorphic to the Lie algebra of a Lie group?

The short answers: 1) the map (13.9.1) is bijective when G is simply connected; 2) no: g ' h if and only if G
and H lie in the same isogeny class; 3) Yes!

In more detail, we will state the following theorems and prove them in the next section.

Theorem 13.50 (The homomorphism theorem). Let G,H be Lie groups, and assume that G is connected and
simply connected. Then (13.9.1) is bijective. In other words, every Lie algebra homomorphism g→ h is of the
form (dF )e for some unique Lie group homomorphism F : G→ H.

Remark 13.51. The simply connectedness assumption cannot be dropped. For example, on Problem Set 5 you
have shown that every Lie group homomorphism S1 → S1 is of the form z 7→ zn. But there are way more Lie
algebra homomorphisms Lie(S1) = R→ R.

The second theorem identifies Lie subgroups with Lie subalgebras.

Theorem 13.52 (Subgroup-subalgebra correspondence). Let G be a connected Lie group. The map (H ↪→
G) 7→ (h ⊂ g) induces a bijection between the set of connected immersed Lie subgroups of G and the set of Lie
subalgebras of g. (I.e. subspaces preserved under the Lie bracket.)

Remark 13.53. Let G = S1 × S1, so g = R2 with the trivial Lie bracket. Then Lie subalgebras of g are just
subspaces h ⊂ R2. Such a proper nonzero subspace is simply a line in R2. The subgroup in S1 × S1 corresponding
to this line is simply the image of this line under the covering map R2 → S1 × S1. For example, if the line has
irrational slope, then we get an immersed subgroup R ↪→ S1 × S1, see Example 12.35. This shows that we really
need to consider immersed subgroups in Theorem 13.52, not just embedded ones.

The third theorem says that Lie algebras really are the right linear algebraic objects to consider when studying
Lie groups.

Theorem 13.54 (Lie’s third theorem). Every finite-dimensional Lie algebra g over R is of the form Lie(G) for
some Lie group G.

Corollary 13.55. Let G,H be connected Lie groups. Then g ' h (as Lie algebras) if and only if G and H are in
the same isogeny class, if and only if the simply connected covers of G and H are isomorphic as Lie groups.

Proof. Write Gsc → G and Hsc → H for the universal covers of G and H (they are unique up to isomorphism).
Then G and H lie in the same isogeny class if and only if Gsc ' Hsc as Lie groups. If this holds, then
g ' Lie(Gsc) ' Lie(Hsc) ' h. Conversely, suppose that g ' h and let φ : g → h and ψ : h → g be mutually
inverse Lie algebra isomorphisms. By Theorem 13.50, there exist (unique) Lie group homomorphisms
Φ: Gsc → Hsc and Ψ: Hsc → Gsc with dΦ = φ and dΨ = ψ. Since Ψ ◦ Φ: Gsc → Gsc has differential equal
to ψ ◦ φ = Id, Proposition 13.35 shows that Ψ ◦ Φ = IdG. Similarly Φ ◦ Ψ = IdH . Therefore Φ and Ψ are
mutually inverse Lie group homomorphisms, so Gsc ' Hsc so G and H are in the same isogeny class.
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Remark 13.56. Let G,H be connected and simply connected Lie groups. Then the above corollary says:
Lie(G) ' Lie(H) if and only if G ' H.

13.10 Lie group-Lie algebra correspondence: proofs

We indicate the proofs of the three theorems from the previous section. It will turns out the the subgroup-
subalgebra correspondence will imply both the homomorphism theorem and Lie’s third theorem. So assume
the subgroup-subalgebra correspondence (Theorem 13.52) for now.

Proof of homomorphism Theorem 13.50. Let G,H be Lie groups with G connected and simply connected. Let
φ : g → h be a Lie algebra homomorphism. We will use Theorem 13.52 to construct a homomorphism
Φ: G → H with differential φ. The key idea is to encode a function f : X → Y using its graph {(x, y) ∈
X × Y | f(x) = y}. In this contex, let k = {(x, y) ∈ g× h | φ(x) = y}. Since φ is a Lie algebra homomorphism,
k is a Lie subalgebra of g× h (where the Lie bracket is given by [(x, y), (x′, y′)] = ([x, x′], [y, y′])). By Theorem
13.52, there exists a connected immersed Lie subgroup K ↪→ G×H whose Lie algebra equals k. Let p : K → G
be the projection of K onto the G-component. Then the derivative (dp)e : k → g equals the projection of
k onto the g component. Since k is the graph of a function, this projection map k → g is an isomorphism.
It follows that (dp)e is an isomorphism. By Proposition 13.42, this implies that p is a covering space. But
since G is assumed to be simply connected, it has no nontrivial connected coverings! In other words, p must

be an isomorphism K → G. It follows that the composite map G
p−1

−−→ K ↪→ G × H → H is a Lie group
homomorphism whose derivative at e is φ.

To prove Lie’s third Theorem 13.54, we will use the following purely algebraic result (no proof given):

Theorem 13.57 (Ado). Every finite-dimensional Lie algebra g over a field F of characteristic zero is isomorphic
to a subalgebra of gln(F ).

Proof of Lie’s third Theorem 13.54. Let g be a (finite-dimensional) Lie algebra over R, and choose an embed-
ding g ⊂ gln(R). By Theorem 13.52, there exists an immersed subgroup G ↪→ GLn(R) with Lie algebra
g.

Remark 13.58. It is not true that every Lie group is an immersed Lie subgroup of GLn(R). For example, it turns
out (but is certainly not obvious) that the universal cover of SL2(R) is not an immersed subgroup of GLn(R).
However, most Lie groups that we encounter in ‘nature’ are closed subgroups of GLn(R).

Remark 13.59. The proof of Theorem 13.54 shows that every Lie group lies in the same isogeny class as an
(immersed) Lie subgroup of GLn(R) for some n ≥ 1. Indeed, let g = Lie(G). By Ado’s theorem, g is isomorphic
to a subalgebra of gln(R). By the subgroup-subalgebra correspondence, there exists a connected Lie subgroup
G′ ⊂ GLn(R) with Lie(G′) ' g. Therefore Lie(G) ' Lie(G′). By Corollary 13.55, G and G′ lie in the same
isogeny class.

The last remaining piece is Theorem 13.52, i.e. the correspondence between Lie subgroups and Lie subalgebras.
So given a connected Lie group G and a subalgebra h ⊂ g, we need to somehow produce a Lie subgroup H
in G. Recall that exp(g) contains an open neighbourhood of the identity in G, so by Lemma 13.34, exp(g)
generates G. Therefore a natural candidate for H would be the subgroup generated by exp(h). But how can
we guarantee that this is not bigger than expected, i.e. that Lie(H) = h? Here is where we need to use that h
is a subalgebra of g, not merely a subspace. This subalgebra property will turn out to imply that exp(h) is
a ‘subgroup’ near the identity of G: this will be a consequence of the amazing Baker–Campbell–Hausdorff
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formula. This ‘subgroup near the identity’ property will turn out to be enough to prove that H has the desired
properties.

First, some preliminaries. Let G be a connected Lie group, exp: g→ G be the exponential map, and choose by
Theorem 13.32 open neighborhoods U ⊂ g and V ⊂ G of 0 and e such that exp |U : U → V is a diffeomorphism.
Write log : V → U for the inverse of this diffeomorphism. Since the map U×U → g, (X,Y ) 7→ exp(X) ·exp(Y )
is continuous, we may shrink U and V so that log is defined on the image of this map. For X,Y ∈ U ⊂ g, let

X ∗ Y := log(exp(X) · exp(Y )) ∈ g . (13.10.1)

In other words: we take two elements of the Lie algebra, exponentiate, multiply and take the logarithm to go
back to the Lie algebra. We emphasize that log is only defined on a small open neighborhood of the identity
in G, and X ∗ Y is only defined for X,Y sufficiently close to 0 in g. Lecture 19

starts hereExample 13.60. If G = GLn(R)+, then

log(g) = (g − I)− (g − I)2

2
+

(g − I)3

3
− . . . (13.10.2)

defines an element of g = gln(R) for every g ∈ GLn(R)+ sufficiently close to the identity I, and where it is defined
it is an inverse to the exponential map. If X,Y ∈ gln(R), what is X ∗ Y ? It is the logarithm of

exp(X) · exp(Y ) =
(
I +X +X2/2! + . . .

)
·
(
I + Y + Y 2/2! + . . .

)
(13.10.3)

= I + (X + Y ) +

(
X2

2
+XY +

Y 2

2

)
+ · · · (13.10.4)

where the · · · involve at least 3 terms X,Y and where we have to be careful to remember that we cannot assume
that XY = Y X! Set g = exp(X) · exp(Y ). Ignoring terms of order ≥ 3, we have that X ∗ Y = log(g) equals

(g − I)− (g − I)2

2
+ · · · = (X + Y ) +

(
X2

2
+XY +

Y 2

2

)
− 1

2

(
(X + Y ) +

(
X2

2
+XY +

Y 2

2

))2

+ · · ·

Working this out and forgetting about order ≥ 3 terms, we end up at

X ∗ Y = X + Y +

(
X2

2
+XY +

Y 2

2

)
− 1

2
(X + Y ) · (X + Y ) + · · ·

= X + Y +

(
X2

2
+XY +

Y 2

2

)
− 1

2

(
X2 +XY + Y X + Y 2

)
= X + Y +

1

2
(XY − Y X)

= (X + Y ) +
1

2
[X,Y ] + · · ·

So after some calculations, we see that the first terms only involve addition and the Lie bracket! Note that there is
no clear a priori reason why this should be true: the terms X2 and Y 2 just magically cancel out and we’re left
with 1

2 (XY − Y X). Going further, it turns out that the degree 3 term equals

1

12

(
X2Y +XY 2 − 2XYX + Y 2X + Y X2 − 2Y XY

)
. (13.10.5)

Magically, this turns out to be 1
12 [X, [X,Y ]]− 1

12 [Y, [X,Y ]], i.e. only involves the Lie brackets. The degree 4 term
equals

1

24

(
X2Y 2 − 2XYXY − Y 2X2 + 2Y XY X

)
, (13.10.6)

which turns out to be simply 1
24 [Y, [X, [X,Y ]]]. It follows that for X,Y sufficiently small matrices, we have

X ∗ Y = (X + Y ) +
1

2
[X,Y ] +

1

12
[X, [X,Y ]]− 1

12
[Y, [X,Y ]] +

1

24
[Y, [X, [X,Y ]]] + · · · (13.10.7)
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It turns out that the dots in (13.10.7) only involve taking more and more commutators of X and Y . This
remarkable fact and its generalization to an arbitrary Lie algebra is the content of the BCH formula.

Proposition 13.61 (Baker–Campbell–Hausdorff formula). After possible shrinking U to an even smaller open
neighborhood of 0, we have for all X,Y ∈ U :

X ∗ Y = X + Y +
1

2
[X,Y ] +

1

12
[X, [X,Y ]]− 1

12
[Y, [X,Y ]] + · · · (13.10.8)

where the dots only involve (infinitely many) iterated brackets of X and Y .

Implicit in the statement is that the right hand side of (13.10.8) converges for all X,Y ∈ U . It is possible to
give an explicit formula for the iterated brackets appearing in this formula (this is due to Dynkin), but it is
quite complicated. For most applications the mere existence of this formula is already interesting enough.
Indeed, it implies that

The group law on G ‘near’ the identity is entirely determined by the Lie algebra!

Indeed, if g, h ∈ G are ‘very close to’ e, we may write X = log(g), Y = log(h), and then g · h = exp(X ∗ Y ),
and X ∗ Y is expressible only using the Lie algebra, i.e. a sum of iterated Lie brackets of X and Y .

We omit the proof of the BCH formula; it follows from computing the derivative of the exponential map at all
points of g, see Hall’s Lie groups book for a nice exposition. We will use the BCH formula to prove the Lie
subgroup-subalgebra correspondence. The following lemma will be useful, whose proof is largely manifold
theoretic and I will only sketch (it is certainly non-examinable).

Lemma 13.62. In the above notation, let S ⊂ g be a subspace, let H0 = exp(S ∩ U) and suppose that H0 is a
‘local subgroup’: H−1

0 = H0 and H0 ·H0 ∩ exp(U) = H0. Then the subgroup H generated by H0 is an immersed
Lie subgroup of G and H0 is an open neighbourhood of the identity of H.

Proof sketch. We have H = ∪h∈Hh · H0. For each h ∈ H we have bijections U ∩ S exp−−→ H0
h·(−)−−−→ h · H0;

denote the composite U ∩ S → h ·H0 by φh. We endow H with the unique topology such that h ·H0 is open
and φh : U ∩ S → h ·H0 is a homeomorphism for each h ∈ H. This topology on H is well defined, and will
in general differ from the subspace topology on H. Upon choosing a basis of S to identify S with Rn, each
φ−1
h : h ·H0 → U ∩ S ⊂ S = Rn defines a chart of H. These charts are all compatible and turn out to define a

manifold structure on H. (Details omitted.) This gives H the structure of a Lie group, and the map H → G
is an injective immersion. Therefore H is an immersed Lie subgroup and H0 ⊂ H is by definition an open
neighbhourhood containing the identity.

Proof of subgroup-subalgebra correspondence 13.52. Let h ⊂ g be a subalgebra. Let U ⊂ g be a sufficiently
small open neighbourhood of 0 ∈ g, more precisely an open neighbourhood for which the conclusion of
Proposition 13.61 holds. By possibly replacing U by U ∩ (−U), we may assume that U = −U , i.e. −X ∈ U for
all X ∈ U . Let H be the subgroup of G generated by H0 := exp(h∩U). We will show that H is an immersed
subgroup of G with Lie algebra h. By Lemma 13.62, it suffices to show that H0 is a ‘local subgroup’ of G,
i.e. that H−1

0 = H0 and H0 ·H0 ∩ exp(U) = H0. Indeed, in that case H0 is an open neighbourhood of the
identity in H so Lie(H) = TeH = TeH0 = h. (The latter equality follows from exp being a diffeomorphism
when restricted to U .)

We have H−1
0 = {exp(X)−1 | X ∈ h∩U} = {exp(−X) | X ∈ h∩U}. Since U = −U by assumption and

− h = h since h is a subspace, {exp(−X) | X ∈ h∩U} = {exp(X) | X ∈ h∩U} = H0. This shows that
H−1

0 = H0.

69



It remains to show that H0 ·H0 ∩ exp(U) = H0. But if X,Y ∈ U ∩ h then exp(X) · exp(Y ) = exp(X ∗ Y ) by
definition of X ∗ Y . So we need to show that X ∗ Y ∈ h. But this follows from the BCH formula! Indeed,
since h is a subalgebra, [X,Y ] ∈ h and all repeated commutators like [X, [X,Y ]] and [Y, [X,Y ]] again lie in h.
So by Formula (13.10.8), each term on the right lies in h. Since the expression converges to X ∗ Y , the latter
also lies in h.

13.11 Representation theory of Lie groups

Recall that if V is a C-vector space, then GL(V ) has the structure of a Lie group: a choice of basis gives a Lie
group isomorphism with GLn(C).

Definition 13.63. A representation a Lie group G is a Lie group homomorphism

R : G→ GL(V ), (13.11.1)

where V is a finite-dimensional C-vector space.

In other words, after choosing a basis a representation of G is nothing but a Lie group homomorphism

G→ GLn(C), (13.11.2)

so the representation theory of Lie groups is the same as that of finite groups, except that we add the word
‘smooth’ everywhere. As usual, given a representation ρ : G→ GL(V ), we will often view V as a G-module
and simply write g · v for ρ(g) · v. We will use the same terminology as in the representation theory of finite
groups: subrepresentation, irreducible representation, direct sum of representations, G-homomorphism or
G-equivariant homomorphism, isomorphisms of representations,...

What happens if we take the derivative of a representation? If ρ : G→ GL(V ) is a representation then (dR)e
defines a homomorphism of Lie algebras

ρ := (dR)e : g→ gl(V ). (13.11.3)

(Recall that gl(V ) is the Lie algebra End(V ) with Lie bracket given by the commutator.) Explicitly, if X ∈ g
then ρ(X) = d

dt

∣∣
t=0

R(etX). This motivates the following definition:

Definition 13.64. Let g be a Lie algebra over R. A representation of g is Lie algebra homomorphism g→ gl(V )
for some finite-dimensional C-vector space V .

Note that gl(V ) is actually a vector space and Lie algebra over C, but here we merely see it as a Lie algebra
over R. In other words, a representation of a Lie algebra g over R is an R-linear map ρ : g→ gl(V ) preserving
the Lie bracket, i.e. such that ρ([x, y]) = ρ(x) ◦ ρ(y)− ρ(y) ◦ ρ(x) for all x, y ∈ g. We will usually simply write
X · v for ρ(X)(v) if X ∈ g and v ∈ V .

Similarly to the case of finite groups and Lie groups, there is the notion of a subrepresentation of a g-
representation V : a subspace W ≤ V such that X ·w ∈W for all X ∈ g and w ∈W . Correspondingly, there is
the notion of irreducible representation. If V and W are g-representations, we say a C-linear map f : V →W
is a g-homomorphism (or g-equivariant) if f(X · v) = X · f(v) for all v ∈ V . We say two g-representations are
isomorphic if there exists a g-equivariant isomorphism between them. Lecture 20

starts hereExample 13.65. Let V be a representation of a Lie group G. Then V ∗ = Hom(V,C) is again a representation of
G via (g · φ)(v) = φ(g−1 · v). What does the g-representation structure on V ∗ look like? For X ∈ g and φ ∈ V ∗
and v ∈ V , we compute (X · φ)(v) = d

dt

∣∣
t=0

φ((etX)−1 · v) = d
dt

∣∣
t=0

φ((e−tX) · v). By the chain rule and the fact
that the derivative of the linear map φ equals φ itself (after identifying the tangent spaces with the ambient space),
this equals φ(−X · v).

70



Example 13.66. On PSET6, you have shown that if V,W are G-representations, the G-representation V ⊗W
induces a g-representation with formula X · (v ⊗ w) = (Xv)⊗ w + v ⊗ (Xw) for all X ∈ g, v ∈ V and w ∈W .

There is a very tight relation between the representation theory of a connected Lie group G and that of its Lie
algebra. For example:

Lemma 13.67. Let G be a connected Lie group and R : G→ GL(V ) a representation. Let ρ = (dR)e : g→ gl(V )
be the derivative of R, a representation of g. Then

1. A subspace W ⊂ V is stable under G (i.e. g ·w ∈W for all g ∈ G,w ∈W ) if and only if W is stable under
g (i.e. X · w ∈W for all X ∈ g, w ∈W ).

2. V is irreducible as a G-representation if and only if V is irreducible as a g-representation.

3. An element v ∈ V is a G-fixed vector if and only if X · v = 0 for all X ∈ g.

4. If W is another G-representation, a C-linear map V → W is a G-homomorphism if and only if it is a
g-homomorphism.

5. Let V and W be G-representations. Then V and W are isomorphic if and only if the corresponding
g-representations are isomorphic.

Proof. 1. Recall that for X ∈ g and v ∈ V , X · v(= ρ(X)(v)) equals d
dt

∣∣
t=0

R(etX)(v) = d
dt

∣∣
t=0

etX · v.
Now suppose that W is G-stable. Then the above formula shows that for all X ∈ g and w ∈ W ,
X · w = d

dt

∣∣
t=0

etX · w ∈ W , so W is g-stable. Conversely, suppose that W is g-stable. By naturality of
the exponential map applied to R : G → GL(V ), R(eX) = eρ(X) for all X ∈ g. Here eX denotes the
exponential map in g, and eρ(X) denotes the exponential map in gl(V ). Therefore if w ∈W then

eX · w =
∑
n≥0

ρ(X)n

n!
· w. (13.11.4)

Each term on the right hand side lies in W and W is a closed subspace of V , since any subspace of a
finite-dimensional C-vector space is closed. It follows that eX · w ∈W for all w ∈W and X ∈ g. Since
G is connected, the image of the exponential map generates G, so g · w ∈W for all w ∈W and g ∈ G,
so W is G-stable.

2. Follows from part 1.

3. Exercise.

4. Let U = HomC(V,W ). Then in analogy with the finite groups case (Definition 6.23), the association
(g ·F )(v) = g ·F (g−1 · v) gives U the structure of a G-representation. Moreover, a G-fixed vector in U is
the same as a G-equivariant homomorphism V → W . By combining examples 13.65 and 13.66 and
recalling the isomorphism U ' V ∗ ⊗W from Proposition 7.8, we compute that the derivative of this
G-representation on U is a g-representation with explicit formula (X · F )(v) = X · F (v)− F (X · v) for
all X ∈ g and v ∈ V . It follows that X · F = 0 if and only if F is g-equivariant. The proof now follows
from part 3 applied to U .

5. Follows from part 5.

The next proposition is a consequence of the homomorphism theorem:
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Proposition 13.68. Let G be a connected, simply connected Lie group. Then taking the derivative induces a
bijection:

HomLieGrp(G,GLn(C))
∼−→ HomLieAlg/R(g, gln(C)). (13.11.5)

The left hand side of (13.11.5) is the set of all Lie group homomorphisms G→ GLn(C); the right hand side
equals the set of R-linear maps g→ gln(C) preserving the Lie bracket. This proposition reduces the study of
representations of Lie groups (essentially) to the study of representations of Lie algebras!

Example 13.69. Let G = SU(2). We have seen that G is connected and simply connected (since as a topological
space it is homeomorphic to S3). Therefore by Proposition 13.68 the representations of G correspond to the
representations of g = su(2), and by Proposition 13.67 the isomorphism classes of irreducible representations of
SU(2) correspond to the isomorphism classes irreducible representations of su(2). In the remaining lectures we
will determine the irreducible representations of su(2).

14 Lie algebras

In the last few lectures we will say a few words about the representation theory of Lie algebras, mostly
focusing on sl2(C). We will first show why it suffices to consider representations of complex Lie algebras.

14.1 Complex Lie algebras

If G is a Lie group, its Lie algebra is a Lie algebra over R. However, we can also consider Lie algebras over C:
these are called complex Lie algebras.

Example 14.1. The following are all Lie algebras over C:

gln(C) = Matn(C) (14.1.1)

sln(C) = {A ∈ gln(C) | tr(A) = 0} (14.1.2)

son(C) = {A ∈ gln(C) | A+At = 0}. (14.1.3)

Example 14.2. Even though su(n) = {A ∈ gln(C) | A+ Āt = 0} is defined as a subset of gln(C), it is not a Lie
algebra over C, since su(n) is not necessarily preserved by multiplication by an element of C.

Definition 14.3. Let g be a Lie algebra over C. A representation of g is a homomorphism of C-Lie algebras
ρ : g→ gl(V ), where V is a finite-dimensional C-vector space. In other words, a representation is a C-linear map
ρ : g→ gl(V ) satisfying ρ([x, y])(v) = ρ(x)(ρ(y)(v))− ρ(y)(ρ(x)(v)) for all x, y ∈ g and v ∈ V .

Example 14.4. For any complex Lie algebra g, V = C with X · v = 0 is called the trivial representation.

Example 14.5. For any finite-dimensional complex Lie algebra g, V = g with X · v = [X, v] is called the adjoint
representation. The fact that this is a representation is equivalent to the Jacobi identity.

14.2 Complexification

If we start with a real Lie algebra, we can make a complex Lie algebra in a natural way, called its complexifi-
cation. To describe this process, we first define it for vector spaces.
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Definition 14.6. Let V be an R-vector space. The complexification of V , denoted by VC, is set of formal linear
combinations of the form v1 + iv2 with v1, v2 ∈ V .

More formally, we can write an element v1 + iv2 as a pair (v1, v2) ∈ V × V , and VC is the set of all such
pairs. The set VC is in fact a C-vector space. Indeed, it is a R-vector space by componentwise addition and
multiplication λ · (v1 + iv2) = λv1 + i(λv2). The assignment i · (v1 + iv2) = −v2 + iv1 defines the action of
C on VC. As an R-vector space, VC is simply V ⊕ V , but the point is that we have defined a C-vector space
structure on VC.

There is a very concrete way of thinking about complexification. Let {v1, . . . , vn} be an R-basis of V . Then VC
has C-basis {v1, . . . , vn}, i.e. every element of VC is a unique C-linear combination of v1, . . . , vn. Therefore VC
is just the space with the same coordinates as V but we also ‘allow’ C-coefficients instead of just R-coefficients.

Example 14.7. The complexification of Rn is Cn.

Remark 14.8. Every C-vector space W is also an R-vector space by restricting the C-action to R. So this gives a
way of going from C-vector spaces to R-vector spaces. The complexification goes the other way around: it sends
an R-vector space to a C-vector space.

Remark 14.9. More abstractly, VC can also be defined as the tensor product C⊗R V .

The next lemma is the universal property of complexifcation.

Lemma 14.10. Let V be an R-vector space and W a C-vector space. Then the assignment

HomR−linear(V,W )→ HomC−linear(VC,W ) (14.2.1)

(f : V →W ) 7→ (fC : VC →W, v1 + iv2 7→ f(v1) + if(v2)) (14.2.2)

is a bijection.

Proof. Let us first check that fC is C-linear. To do this, it suffices to check for all v = v1 + iv2 ∈ VC that
fC(λv) = λfC(v) for all λ ∈ R and that fC(iv) = ifC(v). We check that

fC(λv) = fC(λv1 + i(λv2)) = f(λv1) + if(λv2) = λf(v1) + iλf(v2) = λfC(v). (14.2.3)

using the fact that f is R-linear, and

fC(iv) = fC(−v2 + iv1) = −f(v2) + if(v1) = i · (f(v1) + if(v2)) = ifC(v). (14.2.4)

We conclude that fC is C-linear and that the map (14.2.10) is well defined. To prove that it is bijective, we
construct an inverse. Given a C-linear map g : VC → W , let g0 : V → W be the map g0(v) = g(v + i · 0) (so
just restrict g to V ⊂ VC). We leave the verification that this is an inverse to f 7→ fC as an exercise.

Remark 14.11. After choosing bases, this proposition becomes very concrete: R-linear maps Rn → Cm correspond
to C-linear maps Cn → Cm. Indeed, both are given by choosing n elements in Cm (the images of the basis
vectors).

We can also complexify Lie algebras:

Lemma 14.12. Let g be a Lie algebra over R. Then the association [x1 + ix2, y1 + iy2] = ([x1, y1]− [x2, y2]) +
i([x1, y2] + [x2, y1]) defines a Lie bracket on gC and endows gC with the structure of a Lie algebra over C.

Proof. Exercise!
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It follows that the complexification of a Lie algebra is again a Lie algebra!

Example 14.13. Here are some examples of complexifications:

gln(R)C ' gln(C) (14.2.5)

sln(R)C ' sln(C) (14.2.6)

so(p, q)C ' sop+q(C). (14.2.7)

In particular, the complexifications of so(p, q) only depends on p+ q.

Example 14.14. You will show on the example sheet that su(2)C ' sl2(R)C (they are both isomorphic to sl2(C)).

Proposition 14.15. Let g be a Lie algebra over R and h a Lie algebra over C. Then the assignment

HomR−LieAlg(g, h)→ HomC−LieAlg(gC, h) (14.2.8)

(f : g→ h) 7→ (fC : gC → h, v1 + iv2 7→ f(v1) + if(v2)) (14.2.9)

is a bijection.

Proof. By Lemma 14.10, it suffices to show that f preserves the Lie bracket on g if and only if fC preserves
the Lie bracket on gC. This is a simple exercise.

Lecture 21
starts here

Applying the above proposition to gln(C), we get:

Corollary 14.16. Let g be a Lie algebra over R. There is a bijection

HomR−LieAlg(g, gln(C))
∼−→ HomC−LieAlg(gC, gln(C)). (14.2.10)

In other words, representations of g correspond bijectively to representations of gC.

Example 14.17. Let G = SU(2). Proposition 13.68 shows that representations of G correspond bijectively
to representations of g = su(2). Corollary 14.16 shows that representations of g correspond bijectively to
representations of the complex Lie algebra gC. Since gC ' sl2(C), it suffices to study the representations of the
C-Lie algebra sl2(C). This is what we will do in the remaining lectures.

14.3 Represenations of sl2(C)

After all our efforts in relating Lie groups to Lie algebras, we have reduced the study of representations of Lie
groups (more or less) to the representation theory of their complexified Lie algebras. At this point, it is thus
very natural to study complex Lie algebras and their representation theory in detail. This is a beautiful topic,
quite elementary because it is essentially linear algebra, but would take a whole other course to understand.
Since we only have a few lectures left, we will content ourselves to studying a single example in detail: sl2(C).
So in this section, let g = sl2(C).

Recall that g consists of 2× 2-matrices over C of trace zero, with Lie bracket [X,Y ] = XY − Y X. To study it,
we will use the following basis:

X =

(
0 1
0 0

)
, H =

(
1 0
0 −1

)
, Y =

(
0 0
1 0

)
. (14.3.1)

We can explicitly compute that

[H,X] = 2X, [H,Y ] = −2Y [X,Y ] = H. (14.3.2)
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These will be the only matrix calculations we will do.

A representation of g is a finite-dimensional vector space V/C together with a Lie algebra homomorphism g→
gl(V ). By considering the images of the generators X,H, Y and after choosing a basis of V , a representation
is nothing else but a triple of matrices (Ax, Ah, Ay) satifying AhAx − AxAh = 2Ax, AhAy − AyAh = −2Ay
and AxAy −AyAx = Ah. This is a very concrete linear algebraic problem, and we will solve it completely in
what follows.

Here are some examples of representations of g:

• Trivial representation: V = C with T · v = 0 for all T ∈ g.

• Defining representation: V = C2 and g = sl2(C) ↪→ gl2(C) the natural inclusion. Picking the standard
basis e1, e2 of V , we have for example H · e1 = e1, H · e2 = −e2, X · e1 = 0 etcetera.

• Adjoint representation: V = g ' C3 and g→ gl(V ), T · v = [T, v]. This is a representation because of
the Jacobi identity. In the basis {X,H, Y }, we may calculate that the actions of X,H, Y are given by0 −2 0

0 0 1
0 0 0

 ,

2 0 0
0 0 0
0 0 −2

 ,

 0 0 0
−1 0 0
0 2 0

 . (14.3.3)

Note that in these examples, the image of H in gl(V ) is always diagonalizable. This will be true in general,
and the element H will play a crucial role in our classification of irreducible representations of g.

14.4 Irreducible representations of sl2(C)

Let V be a (finite-dimensional) irreducible representation of g. Let’s try to say as much as possible about V .
For each λ ∈ C, let

Vλ = {v ∈ V | Hv = λv} (14.4.1)

be the λ-eigenspace of V . We know that Vλ 6= 0 for some λ ∈ C, but we don’t know yet that V = ⊕Vλ since
the H-action on V might not be diagonalizable. How do the elements X,Y interact with these eigenspaces?

Lemma 14.18. For every λ ∈ C, X · Vλ ⊂ Vλ+2 and Y · Vλ ⊂ Vλ−2.

Proof. Let v ∈ Vλ, so Hv = λv. Since HX − XH = [H,X] = 2X and g → gl(V ) is a Lie algebra
homomorphism, we compute that

H(Xv) = (XH + [H,X])(v) = X(Hv) + 2Xv (14.4.2)

= X(λv) + 2Xv (14.4.3)

= (λ+ 2)(Xv). (14.4.4)

Therefore Xv ∈ Vλ+2. The calculation for Y is similar, using that [H,Y ] = −2Y .

Lemma 14.18 implies that W = ⊕λ∈CVλ is a subspace of V that is stable under X,H, Y so is g-stable. It is
also nonzero, since H has at least one eigenvalue. Since V is irreducible, this implies that V = W , so H is
diagonalizable.

The following picture summarizes the situation:
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· · · Vλ−2 Vλ Vλ+2 · · ·
X·

Y ·

X·

Y ·

X·

Y ·

X·

Y ·

Let S = {λ ∈ C | Vλ 6= 0}. Lemma 14.18 implies that if µ ∈ S, then ⊕λ∈µ+2ZVλ is g-stable. It follows that this
subspace must equal V by irreducibility, so every two elements in S differ by an even integer.

How do we proceed further? By the finite dimensionality of V , in the above picture you can’t keep hopping
to the right. In other words, there exists a λ ∈ S such that Vλ 6= 0 and Vλ+2 = 0. Let v ∈ Vλ be a nonzero
element. This is called a highest weight vector.

Lemma 14.19. The subspace W = span{v, Y v, Y 2v, . . . } is g-stable.

Proof. It suffices to check that W is stable under X,H and Y . We have Y ·W ⊂ W by construction. By
Lemma 14.18, H · (Y nv) = (λ− 2n)(Y nv) so H ·W ⊂W . It suffices to check that W is stable under X. Let’s
check that X · (Y nv) ∈W for small values of n. If n = 0, then X · v = 0 since X · v ∈ Vλ+2 = 0. If n = 1, then

X(Y v) = (Y X + [X,Y ])v (14.4.5)

= Y (Xv) +Hv (14.4.6)

= λv. (14.4.7)

If n = 2, we compute

X(Y 2v) = (XY )(Y v) (14.4.8)

= (Y X + [X,Y ])(Y v) (14.4.9)

= Y (XY v) +HY v. (14.4.10)

Since XY v = λv and Y v ∈ Vλ−2, we get X(Y 2v) = (2λ − 2)Y v. We can see a pattern here, and prove by
induction (exercise) that for all n ≥ 0 we have

X · (Y nv) = n(λ− n+ 1)(Y n−1v). (14.4.11)

This proves that X ·W ⊂W , concluding the lemma.

Corollary 14.20. All the H-eigenspaces are one-dimensional: if λ ∈ S then dimVλ = 1.

Proof. Let v ∈ Vλ be a highest weight vector. Then W = span{v, Y v, Y 2v, . . . } is g-stable so by irreducibility
V = W . It follows that S = {λ, λ− 2, . . . } and Vλ−2n is spanned by Y nv (which might be zero).

Corollary 14.21. There exists a nonnegative integer n ≥ 0 such that S = {−n,−n+ 2, . . . , n− 2, n} and V has
dimension n+ 1.

Proof. Let v ∈ Vλ be a highest weight vector. Let n ≥ 0 be the largest nonnegative integer such that Y nv 6= 0.
Then W = span{v, Y v, Y 2v, . . . , Y nv}. Formula (14.4.11) applied to Y n+1v shows that

X(Y n+1v) = (n+ 1)(λ− n)Y nv. (14.4.12)

Since Y n+1v = 0 and Y nv 6= 0, (n+ 1)(λ− n) = 0. Since n+ 1 ≥ 1, this implies that λ = n.

Theorem 14.22. Let g = sl2(C) and n ∈ Z≥0. Then up to isomorphism g has a unique representation of
dimension n+ 1, denoted by V (n).
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Proof. We first show uniqueness. Let ρ : g→ gl(V ) be an (n+ 1)-dimensional irreducible representation of g.
Let v ∈ V be a highest weight vector. The above analysis shows that Hv = nv and V = span{v, Y v, . . . , Y nv}.
The proof of Lemma 14.19 explicitly describes the action of g on V . Indeed, in the basis {v, Y v, . . . , Y nv} this
action is given by

ρ(H) =


n

n− 2
. . .

−n

 (14.4.13)

ρ(X) =



0 n
0 2n− 2

. . .
. . .
. . . n

0

 (14.4.14)

ρ(Y ) =


0
1 0

. . .
. . .
1 0

 (14.4.15)

The matrix ρ(X) has coefficient i(n− i+ 1) at entry (i, i+ 1). This shows that every irreducible representation
of g of dimension n+ 1 must be isomorphic to one given by these matrices. To prove existence, we can merely
check that the above big matrices indeed define a Lie algebra homomorphism sl2(C)→ gln+1(C), by checking
that the commutation relations [ρ(H), ρ(X)] = 2ρ(X), [ρ(H), ρ(Y )] = −2ρ(Y ) and [ρ(X), ρ(Y )] = ρ(H). We
still need to verify that this representation is irreducible. But if W ⊂ Cn+1 is a g-stable subspace, acting by
X repeatedly shows that W contains a highest weight vector. Applying Y repeatedly to this highest weight
vector shows that W generates V , as in Lemma 14.19.

Remark 14.23. Another way to prove existence is to explicitly exhibit V (n): it is given by Symn V , where V = C2

is the defining representation of sl2(C). (Problem set 7)

The H-eigenspaces on V (n) are −n,−n+ 2, . . . , n− 2, n and n is the largest eigenvalue of H. That’s why we
denote this representation by V (n) and call it the representation of highest weight n.

So we have completely classified all irreducible representations of sl2(C): there is exactly one of them in each
dimension. But what if we start with a representation that is not irreducible? Is every representation a direct
sum of irreducibles? In the finite group case, this was a consequence of Maschke’s theorem. For a general Lie
algebra, this need not be true. For our specific example of sl2(C), we’re in luck:

Proposition 14.24 (Complete reducibility). Every (finite-dimensional) representation of sl2(C) is a direct sum
of irreducible representations.

There’s a purely algebraic proof of this fact, using the so-called ‘Casimir element’. We will take a different
route, and use the connection with the representation theory of the compact group SU(2). We therefore defer
the proof of this proposition after the discussion of SU(2). Lecture 22

starts here
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14.5 Connection to representations of SU(2)

Recall that SU(2) is a connected, simply connected Lie group with Lie algebra su(2). Recall that su(2)C '
sl2(C). Combining the homomorphism theorem 13.50 with Corollary 14.16, we obtain bijections

Hom(SU(2),GLn(C))
∼−→ HomR−LieAlg(su(2), gln(C))

∼−→ HomC−LieAlg(su(2)C, gln(C)). (14.5.1)

By Lemma 13.67, these bijections preserve the notion of subrepresentation, irreducibility and isomorphism.
(Strictly speaking, that lemma only talks about the first bijection, but its analogue for the second bijection
can be easily seen to also hold.) It follows that the representation theory of SU(2) is equivalent to that of
su(2)C ' sl2(C). Therefore, as a consequence of Theorem 14.22 we have:

Theorem 14.25. For every n ∈ Z≥0, up to isomorphism there exists a unique irreducible representation of SU(2)
of dimension n+ 1.

How can we describe this irreducible representation more explicitly? Let V = C2 be the defining representation
of SU(2), corresponding to the inclusion SU(2) ↪→ GL2(C). Then Symn V ⊂ V ⊗n is a representation of
SU(2), defined in the same way as for finite groups in §7.5. Under the bijections (14.5.1), this representation
induces the representation Symn V of sl2(C), which on Problem Set 7 you have shown to be the irreducible
representation of sl2(C) of dimension n + 1. By Lemma 13.67, it follows that Symn V is irreducible as a
SU(2)-representation.

In more detail, let Pn be the set of homogeneous degree n polynomials in C[x, y]:

Pn = {
n∑
i=0

aix
n−iyi | ai ∈ C}. (14.5.2)

The vector space Pn receives an action of SU(2) via

(g · P )(x, y) = P ((x, y) · g) (14.5.3)

for all g ∈ SU(2) and P ∈ Pn. Here we interpret (x, y) · A as the multiplication of a 1 × 2-matrix and
2× 2-matrix. Then Pn = Symn V is the unique irreducible representation of SU(2) of dimension n+ 1.

It is instructive to take the derivative of this representation and see what we get on the Lie algebra side. If

H ∈ sl2(C) is our diagonal basis element, then iH ∈ su(2) and et(iH) =

(
eit 0
0 e−it

)
. We can then compute

that

(iH) · (xn−kyk) =
d

dt

∣∣∣∣
t=0

((
eit 0
0 e−it

)
· (xn−kyk)

)
(14.5.4)

=
d

dt

∣∣∣∣
t=0

(e(n−2k)itxn−kyk) (14.5.5)

= (n− 2k)ixn−kyk. (14.5.6)

Therefore xn−kyk is an eigenvector for H with eigenvalue n− 2k. This is in agreement with the fact that Pn
should have H-eigenvalues n, n− 2, . . . ,−n.

14.6 Complete reducibility of sl2(C)-representations

Using the connection to SU(2), we now prove the complete reducibility of representations of sl2(C).
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Proof of Proposition 14.24. Let V be a representation of sl2(C). Under the bijections of (14.5.1), V can also
be seen as a representation of SU(2). But SU(2) is a compact group! In particular, by Weyl’s unitary trick
(averaging a Hermitian inner product), we have shown that every (finite-dimensional) representation of SU(2)
is a direct sum of irreducible representations (Corollary 11.10). Therefore we may write V = V1 ⊕ · · · ⊕ Vk,
where each Vi is an irreducible SU(2)-representation. (We may have Vi ' Vj for different i, j.) We claim
that this is also a decomposition of V into a direct sum of irreducible sl2(C)-representations. This essentially
follows from Lemma 13.67. In more detail, write G = SU(2). Since each Vi is G-stable we know that each
Vi is also g-stable, hence also gC-stable since W is a C-subspace. To show that each Vi is irreducible, we go
in the other way: suppose that W ⊂ Vi is a gC-stable subspace. Then W is clearly also g-stable. By Lemma
13.67, it is also G-stable. But since Vi is irreducible, this implies that W = 0 or Vi.

This is an example how the representation theory of Lie algebras and Lie groups inform each other: usually we
use Lie algebras to say interesting things about Lie groups, but here we have used Lie groups to say something
interesting about Lie algebras!

Remark 14.26. Let G = SL2(R) and let V be a G-representation. Then we claim that V is a direct sum of
irreducible G-representations. Indeed, we know that gC ' sl2(C) and that every gC-representation is completely
reducible. So when we view V as a gC-representation, we can decompose V into a direct sum of irreducible gC-
representations W1⊕ · · · ⊕Wk. By an argument very similar to the above proof using Lemma 13.67, this is also a
decomposition of V into G-irreducibles. Therefore, even though SL2(R) is not compact, every (finite-dimensional)
representation of G is still completely reducible.

14.7 Representations of related Lie groups

We will use our knowledge of the representation theory of SU(2) to classify irreducible representations for
other related groups: SO(3),U(2) and SO(4).

14.7.1 Representations of SO(3)

Recall that there is a double cover π : SU(2)→ SO(3), which is surjective with kernel {±I}. Therefore the
irreducible representations of SO(3) correspond to the irreducible representations of SU(2) on which −I acts
trivially. Looking at the representation Pn of SU(2), we see that

(−I) · P (x, y) = P (−x,−y) = (−1)nP (x, y) (14.7.1)

since P is homogeneous of degree n. It follows that −I acts trivially on Pn if and only if n is even! We obtain:

Theorem 14.27. Every irreducible representation of SO(3) has odd dimension, and moreover for every odd
k ∈ Z≥1 there exists a unique irreducible representation of SO(3) of dimension k.

Remark 14.28. The representation V (n) of SU(2) is sometimes called the representation with spin n/2. Repre-
sentations with n even are said to have integer spin. In this language, we can say that representation of SO(3)
correpond to representations of SU(2) with integer spin.

Can we give a more direct description of the irreducible representations of SO(3)? It turns out we can! The
group G = SO(3) acts on R3 in a norm preserving way, so G acts on the 2-sphere S2. It follows that G acts on
functions on the 2-sphere:

L2(S2) = {L2 − functions f : S2 → C}, (14.7.2)

(g · f)(x) = f(g−1x). (14.7.3)
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It turns out that in this way L2(S2) becomes a unitary Hilbert space representation of G, albeit infinite-
dimensional. What can we say about this representation? For example, the G-fixed points are exactly the
functions on S2 that have the same value at every point: in other words, the constant functions. It turns out
that

L2(S2) =
⊕
`≥0

W` (14.7.4)

where W` is the unique irreducible representation of dimension 2`+ 1. It turns out that a basis for W` is given
by the spherical harmonics of degree `!

Remark 14.29. You might be wondering how to study representations of disconnected groups like O(3). In
general, if G is a (possibly disconnected) Lie group with identity component G◦, then there is a way to define the
induction of a G◦-representation to a G-representation (similarly to the finite group case) and show that every
irreducible representation of G is a subrepresentation of the induction of some irreducible representation of G◦.
Therefore the representation theory of G is some kind of ‘mix’ between that of the connected Lie group G◦ and the
finite group π0(G) = G/G◦.

14.7.2 Representations of U(2)

Lemma 14.30. The map (λ,A) 7→ λA induces an isomorphism of Lie groups (S1 × SU(2))/〈(−1,−I)〉 ' U(2).

Proof. The induced map S1 × SU(2)→ U(2) is surjective with kernel 〈(−1,−I)〉.

The following proposition is the analogue of Theorem 7.25.

Proposition 14.31. Let G1, G2 be compact Lie groups. Then every irreducible representation of G1 ×G2 is of the
form V1 � V2 for Vi is an irreducible representation of Gi, uniquely determined up to isomorphism.

Proof. This follows from considering characters of representations and the Peter–Weyl theorem; we omit the
details.

It follows that if G = (G1×G2)/N , then the irreducible representations of G are of the form ρ = ρ1�ρ2, where
ρi is an irrep of Gi, that additionally satisfy ρ(n) = Id for all n ∈ N . In the case U(2) = (S1×SU(2))/〈(−1, I)〉,
this gives the following classification. Let V = C2 be the defining representation of U(2) and ρn = Symn V its
n-th symmetric power, with action exactly as described in §14.5.

Theorem 14.32. Every irreducible representation of U(2) is of the form (det)⊗k ⊗ Symn V for some unique
integers k, n ∈ Z with n ≥ 0.

14.7.3 Representations of SO(4)

Lemma 14.33. There is an isomorphism of Lie groups SO(4) ' (SU(2)× SU(2))/〈(−I,−I)〉.

Proof. Recall that SU(2) can be identified with norm 1 quaternions H. Then the map H×H→ GL(H), (p, q) 7→
(x 7→ pxq−1) restricts to a map π : SU(2)×SU(2)→ SO(4). The kernel of this map is the set of (p, q) ∈ HNm=1

such that pxq−1 = x for all x ∈ H. Setting x = 1 implies that p = q. Then pxp−1 = x for all x ∈ H implies
that p lies in the center of H, which is R · 1. Since Nm(p) = 1, p = ±1. Comparing dimensions, we see that π
is a double cover.
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Let ρn be the irreducible representation of SU(2) of dimension n+ 1.

Theorem 14.34. Every irreducible representation of SO(4) is of the form ρn � ρm with m,n ∈ Z≥0 and m ≡ n
mod 2.

Proof. The representation ρn � ρm has (−I,−I) in its kernel if and only if m− n is even.
Lecture 23
starts here

15 Overview of further topics

In this last lecture (which is non-examinable) we will briefly mention where you could go from here if you
wanted to know more about Lie groups and representation theory. No proofs are given.

15.1 Root systems

Let E be a finite dimensional R-vector space with an inner product (·, ·) : E × E → R. For every nonzero
v ∈ E, write wv(x) = x− 2(x,v)

(v,v) v for the reflection through the hyperplane orthogonal to v.

Definition 15.1. A root system in E is a finite subset Φ ⊂ E \ {0} with the property that:

1. the R-span of Φ is E;

2. if α ∈ Φ and c ∈ R, then cα ∈ Φ if and only if c = ±1;

3. wα(Φ) = Φ for all α ∈ Φ;

4. for all α, β ∈ Φ, the quantity 2(α, β)/(α, α) is an integer.

Note that if θ is the angle between two roots α, β ∈ Φ, then the last condition implies 4 cos(θ)2 = 4(α,β)2

(α,α)(β,β) ∈ Z
so cos(θ)2 ∈ 1

4Z. This means that θ must be 0, 30, 45, 60, 90, 120, 135, 150 or 180 degrees.

The simplest root system is the A1 root system: Φ = {±1} ⊂ R. The root systems in R2 are (up to a suitable
notion of isomorphism) given by the following four pictures:

Root systems can be classified by certain graphs called ‘Dynkin diagrams’, as follows. Given a root system
(E,Φ), let v ∈ E be any nonzero element such that the hyperplane H = {x ∈ E | (x, v) = 0} is disjoint
from Φ. Using this choice, we may define the subsets of positive roots Φ+ = {α ∈ Φ | (v, α) > 0} and
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analogously negative roots Φ−, giving rise to a decomposition Φ = Φ+ t Φ−. One can prove that there exists
a unique subset ∆ ⊂ Φ+ (called simple roots) such that every element of Φ+ is expressible as an integer
linear combination of simple roots with nonnegative coordinates. Define the graph D(Φ) as follows. The
vertices of D(Φ) are indexed by the elements of ∆. Between vertices α and β we draw 4(α, β)2/(α, α)(β, β)
(a positive integer by the fourth axiom of a root system) edges; if α and β do not have equal lengths we draw
an arrow on the edges pointing towards the smaller vector among α and β. This procedure produces a graph
which does not depend on the choice of hyperplane H, called the Dynkin diagram of Φ.

To state the classification, note that (E ⊕ E′,Φ t Φ′) is a root system when (E,Φ) and (E′,Φ′) are, and we
say Φ is irreducible if it is not the sum of two nonzero root systems.

Theorem 15.2. The map Φ 7→ D(Φ) induces a bijection between isomorphism classes of irreducible root systems
and the following graphs, called Dynkin diagrams:

• (An):

• (Bn):

• (Cn):

• (Dn):

• (E6):

• (E7):

• (E8):

• (F4):

• (G2):

15.2 Classification of semisimple complex Lie algebras

Let g be a (finite-dimensional) complex Lie algebra.

Definition 15.3. An ideal of a Lie algebra g is a subspace I with the property that [x, I] ⊂ I for all x ∈ g. A
Lie algebra is said to be simple if the Lie bracket is not identically zero and it has no nonzero proper ideal, and
semisimple if it is isomorphic to a direct sum of simple ones.

Example 15.4. The Lie algebras sln(C) and son(C) are semisimple. They are simple, except sl1(C), so1(C), so2(C)
and so4(C).

We briefly explain how to classify semisimple Lie algebras in terms of root systems. Let g be a semisimple
Lie algebra. There exists a subalgebra t ⊂ g with the property that adx is semisimple for each x ∈ t and the
dimension of t is maximal with respect to this property; such a subalgebra is called a Cartan subalgebra or
CSA. For example, if g = sln then a choice for t is the subset of diagonal matrices (of trace zero). Fix a choice
of CSA t ⊂ g. It turns out that [x, y] = 0 for all x, y ∈ t, so the adx are mutually commuting semisimple linear
maps for x ∈ t. It follows that they can be simultaneously diagonalised, i.e. there is a decomposition

g =
⊕

f : g→C
{x ∈ g | [t, x] = f(t)x ∀t ∈ t}, (15.2.1)
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where the sum runs over all linear functionals of g. It turns out that the part corresponding to the zero
functional is exactly t, i.e. the only elements of g commuting with t are the elements of t itself. Writing
Φ ⊂ t∗ = {f : g→ C} for the set of nonzero functionals for which the corresponding eigenspace gf is nonzero,
we may write

g = t⊕
⊕
α∈Φ

gα .

There exists a canonical perfect pairing on g, called the Killing form, which induces a bilinear form on t∗. If E
denotes the R-span of Φ inside t∗, then equipped with the restriction of this pairing it turns out that (E,Φ) is
a root system!

Theorem 15.5 (Cartan–Killing). The association g 7→ (E,Φ) is, up to isomorphism, independent of any choices
and induces a bijection between simple complex Lie algebras and irreducible root systems. Consequently, every
simple complex Lie algebra is isomorphic to one of the following:

• sln(C)

• son(C)

• sp2n(C)

• Five exceptional Lie algebras: e6, e7, e8, f4 or g2.

Example 15.6. Let g = sl2 and let t ⊂ g be the subspace of diagonal matrices. Then Φ = {±α}, where α : t→ C

sends
(

1 0
0 −1

)
to 2. The associated root system is A1. More generally, sln+1 corresponds to the An root system.

15.3 Classification of compact Lie groups

One of the reasons why we care about semisimple Lie algebras is the following proposition:

Proposition 15.7. Let G be a connected compact Lie group with discrete center. Then gC is a semisimple complex
Lie algebra. Conversely, every semisimple complex Lie algebra is of this form for some unique connected simply
connected compact Lie group.

This proposition shows that the Cartan–Killing classification immediately implies a classification for connected
compact Lie groups up to isogeny.

Theorem 15.8. Let G be a connected compact Lie group with no nontrivial co Then G lies in the same isogeny
class as one of the following Lie groups:

• SU(n)

• SO(n)

• USp(2n) = U(2n) ∩ Sp2n(C)

• Five exceptional compact Lie groups.

The classification of all (not necessarily compact) Lie groups is more complicated, since non-semisimple Lie
algebras are hard to classify, and various real Lie algebras can give rise to the same complexified Lie algebra.
See Fulton–Harris for an overview.

83


	Introduction
	Basic definitions of representation theory
	Linear algebra preliminaries
	Three equivalent definitions
	Morphisms of representations
	Properties of representations

	Examples
	First examples
	Permutation representations

	Complete reducibility and Maschke's theorem
	Direct sums, indecomposability
	Maschke and its proof
	Corollaries of Maschke's theorem

	Schur's lemma and isotypical decomposition
	Schur's lemma
	Abelian groups
	Isotypical decomposition

	Character theory
	Basic definitions
	Completeness of characters + consequences
	Character table
	First projection formula
	Orthonormality of characters
	Proof that characters form a basis

	Some multilinear algebra
	Tensor products
	Basis properties of tensor products
	Symmetric and exterior powers
	Tensor products of representations
	Symmetric/exterior powers of representations
	Representations of GH

	Representation theory of algebras
	Basics of algebras
	Schur's lemma and central characters
	The group algebra
	The center of the group algebra

	Integrality in the group algebra and applications
	Algebraic integers
	Characters and algebraic integers
	Burnside's theorem

	Induction of representations
	Motivation
	Defining induction
	Examples
	The character of induction
	Frobenius reciprocity
	Induction using the group algebra

	Compact groups and the Peter–Weyl theorem
	Basic definitions
	Integration on topological groups
	Basic results representation theory compact groups
	Representations on infinite-dimensional vector spaces
	The Peter–Weyl theorem

	Differential geometry background
	Basic definitions
	Smooth maps
	Tangent spaces
	Vector fields
	Integral curves
	Submanifolds
	Exercises on manifolds

	Lie groups
	Basic definitions
	Examples of Lie groups
	Lie subgroups
	Lie algebras
	Lie algebra of a Lie group
	One-parameter subgroups
	The exponential map
	Covering spaces of Lie groups
	Lie group-Lie algebra correspondence: statements
	Lie group-Lie algebra correspondence: proofs
	Representation theory of Lie groups

	Lie algebras
	Complex Lie algebras
	Complexification
	Represenations of `3́9`42`"̇613A``45`47`"603Asl2(C)
	Irreducible representations of `3́9`42`"̇613A``45`47`"603Asl2(C)
	Connection to representations of `3́9`42`"̇613A``45`47`"603ASU(2)
	Complete reducibility of `3́9`42`"̇613A``45`47`"603Asl2(C)-representations
	Representations of related Lie groups

	Overview of further topics
	Root systems
	Classification of semisimple complex Lie algebras
	Classification of compact Lie groups


