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Where we left

Fix N ≥ 11 prime, N 6= 13 (so g = g(X0(N)) > 0).
Goal: construct a quotient A of J0(N) so that

I X0(N)→ A seperates the cusps

I A(Q) has rank 0

As A has good reduction outside N , we have seen that this
implies there exist no rational elliptic curves with N -torsion,
i.e. Y1(N)(Q) = ∅.
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Intermezzo on reduction of X0(N)

The coarse moduli space M0(N)/Z classifying generalised
elliptic curves with level Γ0(N)-structure is fine over Z[1/N ].

Obtain X0(N) by desingularising special fiber M0(N) at N :

Néron model of J0(N)/Q is smooth outside N and totally
toric at N . Any quotient A inherits these properties.
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Overview

Reminders on J0(N) and the Hecke algebra

Construction of the Eisenstein Quotient

Main argument

Computation of α (the number of Z/pZ’s)

Computation of δ (the defect at N)



Recall:

I S2(Γ0(N)) ∼= H0(X0(N)C,Ω
1)

compatible with Hecke
action

I Hodge decomposition

H1(X0(N)C,Z)⊗ C = S2(Γ0(N))⊕ S2(Γ0(N))

compatible with Hecke action

I Hecke correspondences on X0(N) form commutative ring
T, acting faithfully on H1(X0(N)C,Z), hence finite free
Z-module

I S2(Γ0(N)) has a basis of normalised eigenforms;
multiplicity one implies it is a free TC-module of rank 1

and therefore H1(X0(N),Q) free TQ-module rank 2.

I Dualizing and tensoring with Ql where (l 6= N), we see
Vl(J0(N)) is a rank 2 TQl

-module
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have bijections:
{normalised eigenforms} ↔ {homomorphisms T→ C} ↔
{minimal primes of T}

Notation.
for f ∈ S2(Γ0(N)) normalised eigenform, denote pf for kernel
of eigenvalue homomorphism T→ C, generated by Tl − al(f)
for l 6= N .
Denote the image Of , it is an order in the (totally real)
number field Kf := Of ⊗Q.

The abelian variety Af := J0(N)/pfJ0(N) has dimension
[Kf : Q].
It is in fact simple (we won’t need this).
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Proposition.

J0(N) isogenous to
∏

f Af where f runs over the galois orbits
of normalised eigenforms

Proof sketch.
Denote ef ∈ TQ =

∏
f Kf for the idempotent of Kf , then for

some n > 0, each nef lies in T, so n =
∑

f nef . One checks
nefJ0(N) = Af , and so we get an isogeny

∏
f Af → J0(N) �

Corollary.

VlJ0(N) decomposes as a product

VlJ0(N) =
∏
f

∏
λ in Kf lying over l

Vf,λ,

where Vf,λ are 2-dimensional λ-adic representations
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Fix a prime p dividing the order of [0]− [∞] ∈ J0(N)
(last time we saw [0]− [∞] a nontrivial torsion element)

Definition.
We define two ideals in T
I The p-Eisenstein prime a is generated by p and
Tl − (l + 1) for l 6= N .

I The ideal I is the intersection of minimal primes in a:

I =
⋂
pf⊂a

pf =
⋂
n≥1

an.

The (p-)Eisenstein quotient is the abelian variety
A = J0N/IJ0(N)
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why Tl − (l + 1)?

Recall the Eichler-Shimura relation: if A/Z is the Néron
model of A, then for l 6= N, p, the Frobenius Frobl satisfies

X2 − TlX + l in End(AFl
)

If Tl acts like l + 1, then this polynomial splits as

(X − l)(X − 1).

This is similar to the representation (Z/pZ)⊕ µp
This observation will allow us to apply machinery of
admissable group schemes



why Tl − (l + 1)?

Recall the Eichler-Shimura relation: if A/Z is the Néron
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Eisenstein ideal, geometrically

T̃ ⊂ End(M2(Γ0(N))) and T ⊂ End(S2(Γ0(N)))



Proposition.
a is a proper maximal ideal of T

Proof.
by choice of p, J0(N)[p] is nontrivial, hence some Vf,λ
contains Z/pZ as a sub.

We then have that the semisimplified
reduction of Vf,λ is Z/pZ⊕ µp. Therefore

al(f) ≡ l + 1 (mod λ)

for l 6= p,N . Therefore, the image of a in Of is contained in
λ, and a is a proper ideal. Finally, 0 6= T/a ⊂ Of/pf , so a is
maximal. �
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Proposition.

[0] 6= [∞] in A

Proof.

If J ⊂ T is an ideal, we denote T̂J for the J-adic completion.
Then note that T̂p is a direct summand of T̂a, denote e the
corresponding idempotent. We have

0→ IJ0(N)[p∞]→ J0(N)[p∞]→ A[p∞]→ 0

as T̂p-modules. apply e and use that Ia = 0 by definition of I
to get

J0(N)[a∞] ∼= A[a∞].

finally, by choice of p, a multiple of [0]− [∞] is nontrivial
a-torsion in J0(N) and so the same is true in A. �
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Reminders on admissibility

if B is an abelian variety with good reduction away from N
with Néron model B then B[pn] is preadmissable over Z for
p 6= N . I.e.

I seperated, finite type commutative group scheme over Z
I p-power order finite flat over Z[1/N ]

I quasifinite flat

Say admissable if B[pn] satisfies JH(p), i.e. admits a filtration
over Z[1/N ] by µp’s and Z/pZ’s, equivalently B[pn](Q) has a
similar filtration by Gal(Q/Q)-modules.
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A[a] is admissable

A[a]/Q =
⋂
α∈a

kernel of α in A[p]/Q

is a finite subgroup scheme of A[p]/Q. Define A[a] to be
Zariski closure in A[p]. Still quasifinite flat over Z and finite
over Z[1/N ], hence preadmissable.

Caution
A[a]/Z is not necessarily the full kernel of a in A!

Lemma
A[a] satisfies JH(p)
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Proof.

For l 6= p,N , Frobl satisfies (X − l)(X − 1) in Aut(A[a]).
Denote W for the Gal(Q/Q)-module
A[a](Q)⊕ (A[a](Q))∗(1). It is self-dual, so the characteristic
polynomial of Frobl on W must be of the form

(X − l)d(X − 1)d.

Actually, we can pass to Gal(K/Q)-modules for some K/Q
abelian, hence by Cebotarev all g ∈ Gal(K/Q) have the same
characteristic polynomial on W ss and (Z/pZ)d ⊕ µdp. By
Brauer-Nesbitt these semisimple representations are
isomorphic, so V ss is a sum of Z/pZ’s and µp’s �
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(X − l)d(X − 1)d.

Actually, we can pass to Gal(K/Q)-modules for some K/Q
abelian, hence by Cebotarev all g ∈ Gal(K/Q) have the same
characteristic polynomial on W ss and (Z/pZ)d ⊕ µdp. By
Brauer-Nesbitt these semisimple representations are
isomorphic, so V ss is a sum of Z/pZ’s and µp’s �



Admissability of the a-component

Let us denote

Gn := A[pn][a∞] = A[pn]a = J0(N)[pn]a

(’a’ component), it is the direct summand of A[pn] on which
T̂a acts nontrivially.

Proposition
Gn is admissable

Proof.
Suppose a1, . . . , an generate an/an+1, then the map
x 7→ a1x⊕ ...⊕ anx yields an injection of A[a(n+1)]/A[a] into
A[a]n as G(Q/Q)-modules. So each A[an] satisfies JH(p).
Gn actually lies in A[am] for some m. �
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Fundamental inequality

Recall that for any admissable group G/Z, we defined the
invariants α (the number of Z/pZ’s in an admissable
filtration) and δ (defect of lengths over Q and FN),
we showed

h1(G)− h0(G) ≤ δ(G)− α(G)

Later we will show that for d = rankZpT̂a we have

Lemma

α(Gn) = nd+O(1) and δ(Gn) = nd+O(1)



Fundamental inequality

Recall that for any admissable group G/Z, we defined the
invariants α (the number of Z/pZ’s in an admissable
filtration) and δ (defect of lengths over Q and FN),
we showed

h1(G)− h0(G) ≤ δ(G)− α(G)

Later we will show that for d = rankZpT̂a we have

Lemma

α(Gn) = nd+O(1) and δ(Gn) = nd+O(1)



Deduction from computations of α and δ

Theorem
A(Q) has rank 0.

Proof

Denote Hn = A◦[pn]a. Then

h1(Hn)− h0(Hn) ≤ δ(Hn)− α(Hn)

= (δ(Gn) +O(1))− α(Gn)

= O(1)

note that H0
fppf (Spec (Z),Hn) ⊂ A(Z)[pn] = A(Q)[pn] has

bounded size by Mordell-Weil.



Deduction from computations of α and δ

Theorem
A(Q) has rank 0.

Proof
Denote Hn = A◦[pn]a. Then

h1(Hn)− h0(Hn) ≤ δ(Hn)− α(Hn)

= (δ(Gn) +O(1))− α(Gn)

= O(1)

note that H0
fppf (Spec (Z),Hn) ⊂ A(Z)[pn] = A(Q)[pn] has

bounded size by Mordell-Weil.



Deduction from computations of α and δ

Theorem
A(Q) has rank 0.

Proof
Denote Hn = A◦[pn]a. Then

h1(Hn)− h0(Hn) ≤ δ(Hn)− α(Hn)

= (δ(Gn) +O(1))− α(Gn)

= O(1)

note that H0
fppf (Spec (Z),Hn) ⊂ A(Z)[pn] = A(Q)[pn] has

bounded size by Mordell-Weil.



Proof (continued).

The Kummer sequence in fppf cohomology yields an injection

A◦(Z)⊗ Zp → lim
←

H1
fppf (Spec (Z),A◦[pn])

tensoring by T and apply the idempotent e:

A◦(Z)⊗T T̂a → lim
←

H1
fppf (Spec (Z),Hn)

As A0(Z) is of finite index in A(Z) = A(Q), the conclusion is
that A(Q)⊗T T̂a is finite.
Af (Q) = A(Q)/pfA(Q) is a finitely generated module over
Of , so if we take completions at a we see that Af (Q) is finite.
We conclude by the isogeny A→

∏
pf⊂aA/pfA. �
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Overview

Reminders on J0(N) and the Hecke algebra

Construction of the Eisenstein Quotient

Main argument

Computation of α (the number of Z/pZ’s)

Computation of δ (the defect at N)



Recall Gn = A[pn]a, and we set d = rankZpT̂a.

length of Gn
len(Gn) = 2nd+O(1)

Proof.
Let G = A[p∞]a, this is a p-divisible group, with p-adic Tate
module Vp(G) = Tp(G)⊗Q Qp free of rank 2 over T̂a[1/p] as p
is ordinary. Therefore Tp(G) contains a rank 2 free

T̂a-submodule T ′. Hence

len(Gn) = len(G[pn])

= len(Tp(G)/pnTp(G))

= len(T ′/pnT ′) +O(1)

= 2nd+O(1)

�
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idea: descent selfduality J0(N) to a-component

α(Gn) = nd+O(1)

Before we showed that Aa = J0(N)a, hence
Gn = J0N [pn]a = eJ0(N)[pn]. Let x ∈ J0(N)[pn]. As e is
self-adjoint in the Weil paring,

〈ex, (1− e)x〉 = 〈e(1− e)x, x〉 = 0

so this implies the Weil paring restricts to a pairing on Gn,
which is perfect as it is perfect on J0(N)[pn].
Hence Gn is Cartier selfdual, thus
α = 1/2 len(Gn) = nd+O(1). �
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Overview

Reminders on J0(N) and the Hecke algebra

Construction of the Eisenstein Quotient

Main argument

Computation of α (the number of Z/pZ’s)

Computation of δ (the defect at N)



First we study how the inertia I at N acts on the p-adic Tate
module.

Lemma.
for any abelian variety A with good reduction at p,

Vp(A)I = Vp(AFN
)

Proof.
Note A[pn] is étale, and ZunrN is strictly Henselian, so

A[pn](Zunr
N )� A[pn](FN),

By the Neron mapping property A[pn](Zunr
N ) = A[pn](Qunr

N ).
In general, for finite étale group schemes over ZN we have
G(QN) = G(FN) �
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How to compute δ for A[pn]

As A has completely toric reduction at N , so

(VpA)I = Vp(GdimA
m,FN

)

is a dimA-dimensional p-adic representation.

δ(A[pn]) = len(A[pn])− len(A[pn]FN
)

= 2n dim(A)− n dimA

= n dimA
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Passing to a

applying the idempotent e, we get

Corollary (of last lemma)

Gn(FN) = Gn(QN)I

Proposition.

If U ⊂ VpA is any summand, we have dim(U I) = 1/2 dim(U).
This applies in particular to the Tate module VpG of the
p-divisible group G = A[p∞]a = eVp(A)

Proof.
Say U ⊕ U ′ = V . Clearly U I ⊕ U ′I = V I and
dimVpA

I = 1/2 dimVpA, so suffices to show the claim
dimU I ≥ 1/2 dimU (and similar for U ′).
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Proof. (continued)
I By semistability inertia acts unipotently on U , and wild

inertia P acts trivally, as pro-N . also I/P is pro-cyclic,
say topologically generated by g, have U I = U g

I All Vf,λ for λ above p in Kf , pf ⊂ a are 2-dimensional,
(g − 1)2 on VpA.

Therefore

dim(U I) = dim(U g) ≥ dim((g − 1)U) ≥ 1

2
dim(U)

�

Remark
More generally, Grothendieck’s orthogonality theorem implies
that inertia acts unipotently on the Tate module of any
semistable abelian variety in 2 steps, i.e. (g − 1)2 = 0 holds.
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Computing inertia invariants

Lemma

len(Gn(QN)I) = nd+O(1)

Proof.
Let T = TpG and V = VpG. Galois cohomology gives

0→ T I/pnT I → (T/pnT )I → H1(I, T )[pn]→ 0

and H1(I, T ) is a finitely generated Zp-module. Hence
len((T/nT )I) = len(T I/pnT I) +O(1).
Now using the previous lemma,

len(T I/pnT I) = dim(V I) =
1

2
dimV = nd

For the last step, recall V is a free rank 2 T̂a[1/p]-module. �
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Computation of δ

Finally,

δ(Gn) = len(Gn)− len((Gn)FN
)

= 2nd− len(Gn(QN)I) +O(1)

= nd+O(1)
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