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Where we left

Fix N > 11 prime, N # 13 (so g = g(Xo(N)) > 0).
Goal: construct a quotient A of Jy(V) so that

» Xo(N) — A seperates the cusps

» A(Q) has rank 0

As A has good reduction outside IV, we have seen that this
implies there exist no rational elliptic curves with N-torsion,

ie. Yi(N)(Q) = 0.
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Intermezzo on reduction of X(V)

The coarse moduli space My(N)/Z classifying generalised
elliptic curves with level I'y(V)-structure is fine over Z[1/N].
Obtain Xo(N) by desingularising special fiber My(N) at N:

Mo(N

’0.0...0
"

Xo(N)ry

Néron model of Jy(N)/Q is smooth outside N and totally
toric at N. Any quotient A inherits these properties.



Overview

Reminders on Jy(N) and the Hecke algebra
Construction of the Eisenstein Quotient
Main argument

Computation of « (the number of Z/pZ's)

Computation of J (the defect at N)
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Recall:

>

>

So(To(N)) = HO(Xo(N)c, ') compatible with Hecke
action

Hodge decomposition
H'(Xo(N)c, Z) ® C = Sy(To(N)) @ S2(To(N))

compatible with Hecke action

Hecke correspondences on Xy(/N) form commutative ring
T, acting faithfully on H'(Xo(N)c,Z), hence finite free
Z-module

S2(T'o(IN)) has a basis of normalised eigenforms;
multiplicity one implies it is a free Tc-module of rank 1
and therefore H'(X(N), Q) free Tg-module rank 2.

Dualizing and tensoring with Q; where (I # N), we see
Vi(Jo(N)) is a rank 2 Tg,-module
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have bijections:
{normalised eigenforms} <+ {homomorphisms T — C} <>
{minimal primes of T}

Notation.

for f € So(I'o(IV)) normalised eigenform, denote py for kernel
of eigenvalue homomorphism T — C, generated by 7} — a;(f)
for [ # N.

Denote the image Oy, it is an order in the (totally real)
number field Ky := OF ® Q.

The abelian variety A; := Jo(N)/psJo(IN) has dimension
(K- QJ.

It is in fact simple (we won't need this).
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Proposition.

Jo(IN) isogenous to [ ], Ay where f runs over the galois orbits
of normalised eigenforms

Proof sketch.

Denote e € T = Hf K for the idempotent of K, then for
some n > 0, each ney lies in T, so n = Zf ney. One checks
neyJo(N) = Ay, and so we get an isogeny [[; Ay — Jo(N) W

Corollary.
ViJo(N') decomposes as a product

Vido(N) =[] 11 Vi,

f Xin Ky lying over [

where V; \ are 2-dimensional A-adic representations
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Fix a prime p dividing the order of [0] — [00] € Jo(N)
(last time we saw [0] — [oc] a nontrivial torsion element)

Definition.
We define two ideals in T
» The p-Eisenstein prime a is generated by p and
T, —(l+1) forl # N.
» The ideal I is the intersection of minimal primes in a:

I= ﬂpf:ﬂa”.

prCa n>1

The (p-)Eisenstein quotient is the abelian variety
A= JoN/LJy(N)
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why T; — (I +1)?

Recall the Eichler-Shimura relation: if .A/Z is the Néron
model of A, then for [ # N, p, the Frobenius Frob; satisfies

X -TX+1 in End(Ay)
If T} acts like [ + 1, then this polynomial splits as
(X =D(X —-1).

This is similar to the representation (Z/pZ) & p,
This observation will allow us to apply machinery of
admissable group schemes



Eisenstein ideal, geometrically

T C End(Ms(To(N))) and T € End(S2(To(N)))

p
£ Spec (Z)

=32

Spec
Spec T
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Proposition.
a is a proper maximal ideal of T

Proof.

by choice of p, Jo(NN)[p] is nontrivial, hence some V7
contains Z/pZ as a sub. We then have that the semisimplified
reduction of V;  is Z/pZ & p,. Therefore

a(f)=1+1 (mod\)

for [ # p, N. Therefore, the image of a in Oy is contained in
A, and a is a proper ideal. Finally, 0 # T/a C Of/pys, so a is
maximal. [ |
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Proposition.

0] # [oo] in A

Proof.

If J C T is an ideal, we denote ']I‘J for the J-adic completion.
Then note that T is a direct summand of Ta, denote e the
corresponding |dempotent We have

0 — IJo(N)[p>] = Jo(N)[p>=] — A[p™] — 0

as ']T‘p—modules. apply e and use that I, = 0 by definition of [
to get

Jo(N)[a>] = Ala™].
finally, by choice of p, a multiple of [0] — [o0] is nontrivial
a-torsion in Jy(V) and so the same is true in A. [
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Reminders on admissibility

if B is an abelian variety with good reduction away from N
with Néron model B then B[p"] is preadmissable over Z for

p# N. le.
» seperated, finite type commutative group scheme over Z

» p-power order finite flat over Z[1/N]
» quasifinite flat
Say admissable if B[p"| satisfies JH(p), i.e. admits a filtration

over Z[1/N] by p,'s and Z/pZ's, equivalently B[p"](Q) has a
similar filtration by Gal(Q/Q)-modules.
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Ala] is admissable

Ala]/Q = ﬂ kernel of a in A[p|/Q

aca

is a finite subgroup scheme of A[p]/Q. Define Ala] to be
Zariski closure in Alp|. Still quasifinite flat over Z and finite
over Z[1/N], hence preadmissable.

Caution
Ala]/Z is not necessarily the full kernel of a in A!

Lemma
Ala] satisfies JH(p)
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Proof.

For [ # p, N, Frob, satisfies (X — )(X — 1) in Aut(A[a]).
Denote W for the Gal(Q/Q)-module

Ala](Q) @ (A[a](Q))*(1). It is self-dual, so the characteristic
polynomial of Frob; on W must be of the form

(X —DYX - 1)

Actually, we can pass to Gal(K/Q)-modules for some K/Q
abelian, hence by Cebotarev all g € Gal(K/Q) have the same
characteristic polynomial on W** and (Z/pZ)* & ut. By
Brauer-Nesbitt these semisimple representations are
isomorphic, so V** is a sum of Z/pZ's and p,'s |
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Admissability of the a-component

Let us denote
Gn = Alp"[a>] = Alp"la = Jo(N)[p"]a

(‘a’ component), it is the direct summand of A[p"] on which
T, acts nontrivially.

Proposition

G,, is admissable

Proof.

Suppose ay, . ..,a, generate a”/a""! then the map

T a1z & ... & apx yields an injection of A[a™]/ Ala] into
Ala]™ as G(Q/Q)-modules. So each A[a"] satisfies JH(p).

G, actually lies in Afa™] for some m. [
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Recall that for any admissable group G/Z, we defined the
invariants « (the number of Z/pZ's in an admissable
filtration) and § (defect of lengths over Q and Fy),
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Fundamental inequality

Recall that for any admissable group G/Z, we defined the
invariants a (the number of Z/pZ's in an admissable
filtration) and & (defect of lengths over Q and Fy),
we showed

hY(G) = h(G) < 6(G) — a(G)

A

Later we will show that for d = rankz, T, we have
Lemma

a(Gy) =nd+O0(1) and  §(Gy) = nd + O(1)
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Deduction from computations of o and o

Theorem
A(Q) has rank 0.

Proof
Denote #,, = A°[p"]s. Then

W (Hn) = h°(Ha) <

/‘\
\_/

note that H}, .(Spec (Z), H.) C A(Z)[p"] = A(Q)[p"] has
bounded size by Mordell-Weil.
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Proof (continued).

The Kummer sequence in fppf cohomology yields an injection
A°(Z) © Z,, - i H},, (Spec (Z), A°[p")
tensoring by T and apply the idempotent e:

A°(Z) @1 Ta = lim H, 1 (Spec (Z), Ha)

As A%(Z) is of finite index in A(Z) = A(Q), the conclusion is
that A(Q) ®r T, is finite.

Ar(Q) = AQ)/prA(Q) is a finitely generated module over
Oy, so if we take completions at a we see that A¢(Q) is finite.
We conclude by the isogeny A — prca A/pfA. |
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Recall G,, = A[p"]4, and we set d = rankzp'ﬁ‘a.

length of G,
len(G,) = 2nd + O(1)

Proof.

Let G = A[p™>],, this is a p-divisible group, with p—adlc Tate
module V,(G) = T,,(G) ®q Q, free of rank 2 over Ty[1/p] as p
is ordinary. Therefore T),(G) contains a rank 2 free

T,-submodule 7". Hence

len(G,,) = len(G[p"])
= len(T},(9)/p"T,(9))
=len(T"/p"T") + O(1)
= 2nd 4+ O(1)
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idea: descent selfduality Jo(/N) to a-component

a(G,) =nd+ O(1)

Before we showed that A, = Jy(NN),, hence

Gn = JoN[p"]a = eJo(N)[p"]. Let x € Jo(N)[p"]. As e is
self-adjoint in the Weil paring,

(ex,(1 —e)x) = (e(l —e)z,z) =0

so this implies the Weil paring restricts to a pairing on G,,,
which is perfect as it is perfect on Jo(N)[p"].

Hence G,, is Cartier selfdual, thus

a=1/2len(G,) =nd+ O(1).
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First we study how the inertia I at NV acts on the p-adic Tate
module.

Lemma.
for any abelian variety A with good reduction at p,

Vo(4)! =V, (Ary)

Proof.
Note A[p"] is étale, and Z%'" is strictly Henselian, so

Alp"|(Z§*) — Alp")(Fy),

By the Neron mapping property A[p"](Z\") = A[p"](QW").
In general, for finite étale group schemes over Zy we have
G(Qn) = G(Fw) u
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How to compute 0 for A[p"]

As A has completely toric reduction at IV, so

(Vo 4)" = Vo(Griky)

m,]FN
is a dim A-dimensional p-adic representation.
6(A[p"]) = len(A[p"]) — len(Alp"]ry)

= 2ndim(A) — ndim A
=ndim A
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Passing to a

applying the idempotent e, we get
Corollary (of last lemma)

Gn(Fy) = Gn(Qn)"

Proposition.

If U C VA is any summand, we have dim(U”) = 1/2dim(U).
This applies in particular to the Tate module V,,G of the
p-divisible group G = A[p™], = eV, (A)

Proof.

Say U U’ =V. Clearly Ul ® Ut = V! and

dim VA" = 1/2dim VA, so suffices to show the claim
dimU! > 1/2 dim U (and similar for U’).
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Proof. (continued)

» By semistability inertia acts unipotently on U, and wild
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Remark

More generally, Grothendieck's orthogonality theorem implies
that inertia acts unipotently on the Tate module of any
semistable abelian variety in 2 steps, i.e. (¢ —1)* =0 holds.
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Computing inertia invariants

Lemma
len(G,(Qy)!) = nd + O(1)

Proof.
Let 7'=T7,G and V = V,G. Galois cohomology gives

0— T /p"T" — (T/p"T)" — H"(I,T)[p"] = 0
and H'(I,T) is a finitely generated Z,-module. Hence

len((T/"T)") =len(T? /p"TT) + O(1).
Now using the previous lemma,

1
len(T? /p"T!) = dim(V?1) = 5 dimV = nd

For the last step, recall V is a free rank 2 T,[1/p]-module. M



Computation of o

Finally,

0(Gn) = len(G,) — len((Gn )z, )
= 2nd — len(G,(Qy)’) + O(1)
=nd+ O(1)
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