The Eisenstein quotient

Last time

Last time we proved the following criterion:

Theorem A.

Let N>7 be a prime, A/\mathbb{Q} an abelian variety and $f\colon X_0(N)\longrightarrow A$ such that

- $\ \, \textbf{0} \ \, A \,\, \text{has good reduction away from} \,\, N \\$
- $oldsymbol{a}$ $A(\mathbb{Q})$ has rank 0

Then, no elliptic curve over \mathbb{Q} has a rational point of order N.

Today, we find a quotient A of $J_0(N) := \operatorname{Jac}(X_0(N))$ which will satisfy these hypotheses.

uotient 2 / 24

The structure of $J_0(N)$

Let $N > 7, N \neq 13$ be prime.

Two weeks ago we saw $X_0(N)$ admits an integral model and defined Hecke operators as certain correspondences. Thus, we can see them as morphisms $J_0(N) \longrightarrow J_0(N)$ defined over \mathbb{Q} .

Let $\mathbf{T}\subseteq \operatorname{End}(J_0(N))$ be the subalgebra generated by $T_p, p\nmid N$. We also saw that $S_2(N)$ is a free $\mathbf{T}\otimes \mathbb{C}$ -module of rank 1, with a basis over \mathbb{C} of normalized eigenforms.

Let $f \in S_2(N)$ be a normalized eigenform with system of eigenvalues $\alpha \colon \mathbf{T} \longrightarrow \mathbb{C}$, i.e. $T_p f = \alpha(T_p) f$.

Let $\mathfrak{p}_f = \ker \alpha$ and

$$A_f := J_0(N)/\mathfrak{p}_f J_0(N).$$

Fact.

 $J_0(N)$ is isogenous to $\prod_f A_f$ where f runs over the Galois orbits of normalized eigenforms in $S_2(N)$.

Write $K_f = (\mathbf{T}/\mathfrak{p}_f) \otimes \mathbb{Q}$. This is the number field generated by the Fourier coefficients of f.

Proposition.

 A_f is an abelian variety of dimension $[K_f:\mathbb{Q}]$ with good reduction away from N.

Proof.

The tangent space at 0 of $J_0(N)$ satisfies

$$T_0(J_0(N)) \otimes_{\mathbb{Q}} \mathbb{C} \cong H^0(X_0(N), \Omega^1) \otimes_{\mathbb{Q}} \mathbb{C} \cong S_2(N),$$

hence it is a free rank 1 $\mathbf{T}\otimes\mathbb{C}$ -module. From this, we see that $T_0(A_f)$ is a K_f -vector space of dimension 1, so in particular $\dim A_f=[K_f:\mathbb{Q}]$. The good reduction away from N follows from the corresponding result for $J_0(N)$ and the Néron–Ogg–Shafarevich criterion.

Choose an embedding $\iota \colon K_f \longrightarrow \overline{\mathbb{Q}}_{\ell}$, or equivalently a prime λ of K above ℓ . From the Eichler–Shimura relation, one shows:

Fact.

The representation $V_{f,\lambda}:=\iota V_\ell(A_f)$ is the unique semisimple representation $\rho\colon \mathrm{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})\longrightarrow GL_2(\overline{\mathbb{Q}}_\ell)$ satisfying:

- ρ is unramified away from $N\ell$.
- $\operatorname{tr}(\rho(\mathsf{Frobenius}\;\mathsf{at}\;p)) = a_p(f)\;\mathsf{for}\;p\nmid N\ell.$
- $\det(\rho) = \chi_{\ell} = \ell$ -adic cyclotomic character.

Fact.

 $J_0(N)$ has completely toric reduction at N.

Corollary

Any quotient of $J_0(N)$ has completely toric reduction at N.

Proof.

Let $f\colon J_0(N)\longrightarrow A$ be the quotient map. There exists a map $g\colon A\longrightarrow J_0(N)$ such that fg=[n] for some n>0. f and g extend to the Néron models \mathcal{J},\mathcal{A} of $J_0(N),A$ over \mathbb{Z}_N and still satisfy fg=[n], so we get morphims in the special fibers $\mathcal{J}_{\mathbb{F}_N},\mathcal{A}_{\mathbb{F}_N}$ satisfying fg=[n]. In particular, $f\colon \mathcal{J}_{\mathbb{F}_N}\longrightarrow \mathcal{A}_{\mathbb{F}_N}$ is surjective, so $\mathcal{A}_{\mathbb{F}_N}$ is a torus. \square

The difference of the cusps

Proposition.

The point $[0]-[\infty]\in J_0(N)$ is a non-trivial torsion point of order dividing N-1.

Proof.

If $[0]-[\infty]$ was trivial, it would the divisor of some function f on $X_0(N)$, which would define a degree 1 map to \mathbb{P}^1 , so $X_0(N)$ would need to have genus 0, which is false.

Proof (continued).

Consider the modular form

$$\Delta(z) = q \prod_{n \ge 1} (1 - q^n)^{24} = q + \dots \in S_{12}(\Gamma(1))$$

for $q=e^{2\pi iz}$. It is nowhere vanishing on the upper-half plane. $\Delta(Nz)\in S_{12}(N)$ is also nowhere vanishing, so

$$f(z) := \Delta(z)/\Delta(Nz) = q^{-(N-1)} + \cdots$$

is a $\Gamma_0(N)$ -invariant nowhere vanishing function on the upper-half plane, so it defines a meromorphic function on $X_0(N)$.

f has a pole of order N-1 at ∞ , so 0 must be a zero of order N-1. Thus, $\operatorname{div}(f)=(N-1)[0]-(N-1)[\infty]$.

Remark.

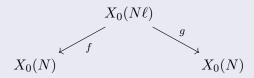
Ogg showed that the order of $[0]-[\infty]$ is exactly $(N-1)/\gcd(N-1,12)$, and Mazur shows that it generats the torsion subgroup of $J_0(N)$.

Proposition.

For
$$\ell \neq N$$
, $T_{\ell}([0] - [\infty]) = (\ell + 1)([0] - [\infty])$

Proof.

 T_{ℓ} is given by the correspondence



where f and g correspond to the identity map and multiplication by ℓ on $\mathbb{H} \cup \mathbb{P}^1(\mathbb{Q})$, i.e.

$$T_{\ell}([P]) = g_*(f^*([P])).$$

Proof (continued).

 $X_0(N\ell)$ has 4 cusps, corresponding to $(x,y) \in \{ \text{cusps of } X_0(N) \} \times \{ \text{cusps of } X_0(\ell) \}.$ We see that f(x,y) = g(x,y) = x.

f has ramification index ℓ at (x,0) and index 1 at (x,∞) . Thus,

$$\begin{split} f^*([x]) &= \ell[(x,0)] + [(x,\infty)], \\ g_*(f^*([x])) &= (\ell+1)[x], \\ T_\ell([0] - [\infty]) &= g_*(f^*([0] - [\infty])) = (\ell+1)([0] - [\infty]). \end{split}$$

The Eisenstein quotient: motivation

We want to find a quotient A of $J_0(N)$ such that

- ullet A has good reduction away from N.
- $f([0]) \neq f([\infty])$ for $f: X_0(N) \longrightarrow J_0(N) \longrightarrow A$.
- $A(\mathbb{Q})$ has rank 0.

To check last condition, we want to use Theorem B, which says that this condition is satisfied if

- ullet A has good reduction away from N.
- A has completely toric reduction at N.
- All Jordan-Hölder factors of A are trivial or cyclotomic.

The first two conditions come for free, but the last one doesn't.

The case of rational coefficients

Assume all normalized eigenforms $f \in S_2(N)$ have rational coefficients.

Fix a prime $p \neq N$. Say that an abelian variety A/\mathbb{Q} satisfies JH(p) if all the Jordan-Hölder factors of $A[p](\overline{\mathbb{Q}})$ are trivial or cyclotomic.

Note that this is isogeny invariant. Because of the decomposition (up to isogeny)

$$J_0(N) = \prod_f A_f,$$

there is a maximal quotient of $J_0(N)$ satisfying JH(p).

Lemma.

For a modular form f with $K_f = \mathbb{Q}$, A_f satisfies $JH(p) \iff p \mid (a_\ell(f) - (\ell+1))$ for all $\ell \nmid pN$.

Proof.

If A_f satisfies JH(p), then the semisimplification of $A_f[p]$ is $(\mathbb{Z}/p\mathbb{Z}) \oplus \chi_p$ since its determinant is χ_p . Thus, mod p, the trace of the Frobenius at ℓ (which is $a_\ell(f)$) is $\ell+1$. Similarly for the converse.

Remark.

The Eisenstein series of weight 2 satisfies $T_{\ell}(E_2) = (\ell+1)E_2$ for all ℓ , so A_f satisfies JH(p) \iff the Fourier coefficients of f are congruent mod p to those of E_2 .

Let S be the set of f such that A_f satisfies JH(p).

For each f, let \mathfrak{p}_f be the kernel of the corresponding system of eigenvalues $\mathbf{T} \longrightarrow \mathbb{C}$. Define

$$I := \bigcap_{f \in S} \mathfrak{p}_f$$
$$A := J_0(N)/IJ_0(N)$$

A satisfies JH(p), so by Theorem B, $A(\mathbb{Q})$ has rank 0. But for all we know, S could be empty and A trivial!

Let p divide the order of $[0]-[\infty]\in J_0(N)$. Then, $J_0(N)$ has a p-torsion point, so $J_0(N)[p]$ has a copy of the trivial representation, which must come from some A_f . This f belongs to S.

Define the p-Eisenstein ideal as the ideal $\mathfrak a$ of $\mathbf T$ generated by p and $T_\ell-(\ell+1)$ for all $\ell.$

Lemma.

 $\mathbf{T}/\mathfrak{a} \cong \mathbb{F}_p$. In particular \mathfrak{a} is maximal.

Proof.

Let $f\in S$, so $T_\ell-(\ell+1)$ is divisible by p in $\mathbf{T}/\mathfrak{p}_f$. The image of \mathfrak{a} in $\mathbf{T}/\mathfrak{p}_f$ is not the unit ideal, so $\mathbf{T}/\mathfrak{a}\cong \mathbb{F}_p$ as every operator is identified with an integer.

Lemma.

$$f \in S \iff \mathfrak{p}_f \subseteq \mathfrak{a}$$

Proof.

 $f \in S \iff T_{\ell} - (\ell+1)$ is divisible by p in $\mathbf{T}/\mathfrak{p}_f \iff$ the image of \mathfrak{a} in $\mathbf{T}/\mathfrak{p}_f$ is not the unit ideal $\iff \mathfrak{p}_f \subseteq \mathfrak{a}$.

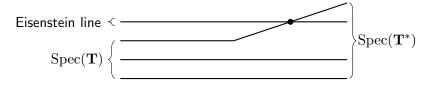
Corollary.

I is the intersection of the minimal primes of T contained in \mathfrak{a} . In particular, $I_{\mathfrak{a}}=0$.

Proof.

The minimal primes are the \mathfrak{p}_f . $I_{\mathfrak{a}}$ is the nilradical of the reduced ring $\mathbf{T}_{\mathfrak{a}}$.

The Eisenstein ideal is the ideal of T generated by $T_{\ell}-(\ell+1)$. We can view this geometrically as



where \mathbf{T}^* is the Hecke algebra acting on the space of all modular forms of weight 2 and level N.

The image of $[0] - [\infty]$ in A

The p-adic completion $\mathbf{T}_p := \varprojlim_n \mathbf{T}/p^n$ is a product of local rings,

$$\mathbf{T}_p = \prod_{p \in \mathfrak{m} \subseteq \mathbf{T} \text{ maximal }} \mathbf{T}_{\mathfrak{m}}.$$

If X is a \mathbf{T} -module where every element is killed by some power of p, the action of \mathbf{T} extends to an action of \mathbf{T}_p , and we have a decomposition $X=X_{\mathfrak{a}}\oplus X'$ where \mathfrak{a} acts trivially on X' and $X_{\mathfrak{a}}=X[\mathfrak{a}^{\infty}].$

Lemma

The map $J_0(N)[\mathfrak{a}^{\infty}] \longrightarrow A[\mathfrak{a}^{\infty}]$ is an isomorphism.

Proof.

Write $X=J_0(N)[p^\infty], Y=A[p^\infty]$. We have a surjection $X\longrightarrow Y$ with kernel $X\cap IJ_0(N)=IX$. Localize the short exact sequence

$$0 \longrightarrow IX \longrightarrow X \longrightarrow Y \longrightarrow 0$$

at \mathfrak{a} . Since $(IX)_{\mathfrak{a}}=I_{\mathfrak{a}}X_{\mathfrak{a}}=0$, $X_{\mathfrak{a}}\longrightarrow Y_{\mathfrak{a}}$ is an isomorphism.

Proposition.

$$[0] \neq [\infty] \text{ in } A$$

Proof.

Let $P=[0]-[\infty]$ and $Q\neq 0$ be a multiple of P which is p-torsion. Then Q is \mathfrak{a} -torsion since $T_{\ell}(P)=(\ell+1)P$, so the same holds for Q. Thus, the image of Q in $A[\mathfrak{a}^{\infty}]$ is non-zero. \square

The general case

In general we have

$$V_p J_0(N) = \prod_f \prod_{\mathfrak{p}} V_{f,\mathfrak{p}},$$

and for a given f, it's possible that some $V_{f,p}$ are of the form (trivial) + (cyclotomic) while others aren't.

We will take A to be the quotient of $J_0(N)$ corresponding to those f such that $V_{f,\mathfrak{p}}$ is of the form (trivial) + (cyclotomic) for $some\ \mathfrak{p}$. However, A will not satisfy the hypotheses of Theorem B, so we will have to work around that next time.

Choose a prime p dividing the order of $[0] - [\infty] \in J_0(N)$, and let $\mathfrak a$ be the ideal generated by p and $T_\ell - (\ell + 1)$.

Lemma

 $\mathbf{T}/\mathfrak{a} \cong \mathbb{F}_p$. In particular, \mathfrak{a} is maximal.

Proof.

Since $J_0(N)[p]$ has a rational point, some constituent of $V_pJ_0(N)$ is trivial. This must come from some (f,\mathfrak{p}) , and for such a pair we must then have

$$\overline{V}_{f,\mathfrak{p}}^{\mathrm{ss}}\cong (\mathbb{Z}/p\mathbb{Z})\oplus \chi_{p}.$$

Thus $a_{\ell}(f) = \ell + 1$ modulo $\mathfrak p$ for all ℓ , so the image of $\mathfrak a$ in $\mathbf T/\mathfrak p_f$ is contained in $\mathfrak p$. So $\mathfrak a$ is not the unit ideal, and $\mathbf T/\mathfrak a \cong \mathbb F_p$.

Let I be the intersection of the minimal primes of ${\bf T}$ contained in ${\mathfrak a}$ and $A=J_0(N)/IJ_0(N)$. The same proof as before shows:

Proposition.

 $[0] \neq [\infty]$ in A.