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Quick recap of modular curves over C
• Recall for each N ≥ 1 we have the following subgroups of

Γ(1) = SL2(Z):

Γ0(N) = {
(

a b
c d

)
|c ≡ 0 mod N}

Γ1(N) = {
(

a b
c d

)
|c ≡ 0 mod N,a,d ≡ 1 mod N}

Γ(N) = {A ∈ Γ(1)|A ≡ I mod N}
• We say Γ ⊂ Γ(1) = SL2(Z)) is a congruence subgroup if it

contains Γ(N) for some N ≥ 1
• Γ(1) and hence any congruence subgroup Γ naturally acts

on the upper half-plane H by Mobius transformations, and
we can give the quotient Y (Γ) = H/Γ the structure of a
(non-compact) Riemann surface
• We can compactify this by adding a finite number of points

’cusps’ - one way to do this is by starting with the extended
upper half-plane H∗ = H ∪ P1(Q) and defining a suitable
structure on the quotient X (Γ) = H∗/Γ so that it becomes a
compact Riemann surface



Moduli-theoretic interpretation

• Via the j-function, Y (1) parameterises isomorphism
classes of elliptic curves over C, and similarly we have
interpretations of the modular curves arising from the
congruence subgroups we mentioned:
• Y0(N) parameterises pairs (E ,C) where E an elliptic

curve over C and C a cyclic subgroup of E(C) order N
• Y1(N) parameterises pairs (E ,P) where E an elliptic

curve over C and P a point of order N
• Y (N) parameterises pairs (E , (P,Q)) where E an

elliptic curve over C and (P,Q) is a pair of points of
order N generating E [N](C) (with Weil pairing a fixed
Nth root of unity?)

• This suggests defining these modular curves algebraically
by viewing them as moduli-spaces. This doesn’t quite work
however...



Moduli-theoretic interpretation

• Consider when N = 1, so we are interested in whether the
functor FΓ(1) : S 7→ {iso classes of elliptic curves /S}
(defined on the fppf site of SpecZ say) is representable by
a scheme (here we take an elliptic curve over a general
scheme S to be a smooth proper scheme E/S equipped
with a section 0 ∈ E(S) such that each geometric fiber is a
geometrically connected genus 1 curve)
• Recall however that there are elliptic curves which are not

isomorphic over Q but are isomorphic over C (these
quadratic twists biject with Q∗/(Q∗)2)
• This implies our functor is not even a sheaf (as the map

FΓ(1)(Q)→ FΓ(1)(C) is not injective), so can’t be
representable by any scheme



Some solutions

• Define for N ≥ 2, invertible on S, a Γ(N)-structure on an
elliptic curve E/S to be a pair (P,Q) where P,Q ∈ E(S)[N]
such that the pair (P,Q) defines an isomorphism of group
schemes from (Z/NZ)S to E [N] (or equivalently that they
give a basis for the N-torsion in each geometric fibre of S)
• It turns out if N ≥ 3 then any automorphism which fixes E

and the Γ(N)-structure is the identity
• Using this, one can show that the functor FΓ(N) (defined

analogously on the fppf site of SpecZ[1/N] say by sending
S to iso classes of Γ(N)-structures) is representable by a
smooth affine scheme Y (N) for N ≥ 3



Representability of FΓ(N)

A sketch of the argument Snowden presents is as follows:
• we construct this affine scheme explicitly for some small

values of N (e.g. N = 3,4) together with a universal elliptic
curve and Γ(N)-structure
• Use a relative representability lemma and the observation

that to give a Γ(3N) structure is the same as giving a Γ(3)
and Γ(N) structure for (N,3) = 1 to show FΓ(3N) is
representable over Z[1/3N]

• Observe that for N ≥ 4, (N,3) = 1 the action of GL2(Z/3Z)
on the Γ(3)-structure part is free, and that the quotient
scheme represents FΓ(N) on Z[1/3N]

• Use the N = 4 case to similarly show FΓ(N) is
representable on Z[1/N] whenever (N,6) = 1 (patch
together along the open subschemes) - and then do some
more work to remove this condition (details are omitted in
his lecture here)



Coarse moduli space

• We define for N ≥ 2 a Γ0(N) structure on E to be a closed
etale subgroup G ⊂ E , which in every geometric fibre is
cyclic of cardinality N
• The corresponding functor FΓ0(N) can’t be representable by

a scheme then, as we always have a non-trivial
automorphism of a Γ0(N) structure given by [−1]

• However, the sheafification of this functor is in fact
representable by a smooth affine scheme Y0(N) defined
over Z[1/N] (the coarse moduli space) and Y0(N)(C) can
be identified with H/Γ0(N)

• The construction presented in Snowden’s lectures went via
stacks (a kind of object which will be able to represent the
kind of functors we discussed) and then quotienting by the
action of some finite group



Compact modular curves

• The curve we just constructed has a couple of problems for
what we want to do: its defined over Z[1/N] rather than Z
and is not compact (it doesn’t contain the cusps)
• To fix this we’ll define a slightly more general functor - we

first need to make a couple of definitions:
• Let n ≥ 1 and k a field. The standard n-gon over k ,

denoted Cn, is the quotient of P1
k × Z/nZ given by

identifying (∞, i) with (0, i + 1). Note that the smooth locus
is the group scheme Gm × Z/nZ, and this acts naturally on
Cn

• A generalised elliptic curve over a scheme S is a triple
(E ,e,+) where E/S a finite flat scheme, e ∈ E(S) a
section and + : E sm × E → E such that (E sm,e,+) is a
group scheme with + defining an action on E , and all
geometric fibres of E are elliptic curves or n-gons



X0(N)

• We are now ready to define our functor - for simplicity in
the definition we will now assume N is squarefree
• If E/S is a generalised elliptic curve, a Γ0(N)-structure is

given by G ⊂ E sm a closed subgroup of order N finite and
flat over S; then our functor takes a scheme S to (the
groupoid of) such pairs (E ,G)

• Again this functor is representable only by a stack (this
time defined over Z however); if we then take the coarse
moduli space of the functor we now get a scheme X0(N)
defined over Z



The special fibre

• Now further assume N is prime. Since our scheme was
defined over Z we can ask what does the special fibre
X0(N)FN look like
• We recall firstly the possibilities for the N-torsion of E an

elliptic curve over FN : either its ordinary and
E [N] ∼= µN × Z/NZ or its supersingular and E [N] ∼= αN2 -
the supersingular case occurs only for finitely many curves
up to isomorphism
• It turns out to be given by gluing two copies of X0(1)FN

along the supersingular loci via the Frobenius map - we
also recall that X0(1) is just P1 so this is two copies of P1

FN
glued along a finite number of points



Hecke operators

• Recall that S2(N) is the space of weight 2 cusp forms for
the congruence subgroup Γ0(N), which may naturally be
identified with H0(X0(N),Ω1)

• For (n,N) = 1 we can most easily define the Hecke
operators Tn as endomorphisms of S2(N) by
Tn(f )(Λ) =

∑
|Λ:Λ′|=n f (Λ′) (where we have identified points

of X0(N) as lattices defining elliptic curves)
• We have the familiar facts that these family of operators

commute, Tmn = TmTn for (m,n) = 1,
Tpn+1 = TpTpn − pTpn−1 for p prime, n ≥ 1 so the Tp for
(p,N) = 1 prime generate them all, and we can compute
the effect on f =

∑
n≥1(an)qn in terms of fourier

expansions:
Tpf =

∑
n≥1

(apn + pan/p)qn



Eigenforms

• The Hecke operators are self-adjoint with respect to the
Peterssen inner product on S2(N), so this leads to a
decomposition of S2(N) as a direct sum of eigenspaces for
the Hecke operators
• We have multiplicity one, which states that if f ,g ∈ S2(N)

are normalised eigenforms (so a1(f ) = a1(g) = 1) with the
same eigenvalues on Tp for (p,N) = 1 then f = g (recall
we are still supposing N prime so we only have newforms
appearing)
• If we let T be the Z-subalgebra of End(S2(N)) generated

by the Tp for (p,N) = 1 prime, then eigenforms for the
Hecke operators correspond to algebra homomorphisms
T→ C by sending Tp to its eigenvalue
• We deduce TC = T⊗Z C S2(N) is a direct product of

copies of C indexed by the normalised eigenforms and that
S2(N) is free of rank 1 as a TC-module



Correspondences

• If C is a smooth projective curve, a correspondence
C 99K C is a pair of finite maps p1,p2 : C′ → C from a
smooth projective curve C′

• If C is defined over C then a correspondence induces a
map on both the singular cohomology H1(C,Z) via the
composition (p2)∗ ◦ (p1)∗ (where the pushforward is defined
via the pushforward on homology using Poincare duality)
• They also act on differential forms by a similar formula, and

the isomorphism H1(C,Z)⊗Z C ∼= H0(C,Ω1)⊕ H0(C,Ω1)
arising from Hodge theory is compatible with the map
induced by a correspondence



Hecke Correspondences

• In our setting, if we take C = X0(N) and (p,N) = 1 a
prime, then we define the Hecke correspondence by letting
C′ = X0(Np) and viewing a Γ0(Np) structure on an elliptic
curve E as corresponding to a pair consisting of an
N-isogeny E ′ → E (the kernel of which will be the
subgroup of order N) and a subgroup G ⊂ E of order p,
then we define the maps p1,p2 as follows:

p1(f : E ′ → E ,G) = (E ,G)

p2(f : E ′ → E ,G) = (E ′, f (G))

• Viewing H1(C,Z)⊗Z C = S2(N)⊕ S2(N), the map induced
by these Hecke correspondences matchup with the action
of the Hecke operators



Consequences for the Hecke algebra

• If we let T̃ = Z[Tp : (p,N) = 1] be the polynomial algebra
acting on H1(X0(N),Z) by these correspondences, we see
that an element acts as 0 iff it acts as 0 on S2(N) and
hence its image in End(H1(X ,Z)) is isomorphic to T and
(using the freeness result of S2(N) as a TC-module) we
deduce H1(X0(N),Q) is a free TQ = T⊗Q-module of rank
2



Action on Jacobians and Eichler-Shimura

• Our next observation is that a correspondence C 99K C
also induces a map on divisors, again by the same kind of
formula, and hence a map on the Jacobian variety
• Even nicer, our above Hecke correspondences induce

maps on the Jacobian J0(N) of X0(N), defined now over Q
• For (p,N) = 1 prime then, J0(N) extends to an abelian

scheme over Zp and Tp also extends. If we then look in the
special fibre, there is a formula for Tp known as the
Eichler-Shimura relation:

Tp = F + V

where F is the Frobenius and V the Verscheibung acting
on J0(N)Fp


