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Quick recap of modular curves over C

e Recall for each N > 1 we have the following subgroups of
r(1) = SLx(2):

Fo(N)—{(i Z) =0 mod N}

I'1(N):{<i Z) c=0 mod N,a,d=1 mod N}

rN)={Ael(1)|JA=1 mod N}

e Wesay ' C I'(1) = SLx(Z)) is a congruence subgroup if it
contains '(N) for some N > 1

e (1) and hence any congruence subgroup I naturally acts
on the upper half-plane H by Mobius transformations, and
we can give the quotient Y(I') = #H/I the structure of a
(non-compact) Riemann surface

e We can compaciify this by adding a finite number of points
‘cusps’ - one way to do this is by starting with the extended
upper half-plane #* = % U P'(Q) and defining a suitable
structure on the quotient X(I') = #H*/I" so that it becomes a
compact Riemann surface



Moduli-theoretic interpretation

¢ Via the j-function, Y (1) parameterises isomorphism
classes of elliptic curves over C, and similarly we have
interpretations of the modular curves arising from the
congruence subgroups we mentioned:
e Yy(N) parameterises pairs (E, C) where E an elliptic
curve over C and C a cyclic subgroup of E(C) order N
e Yi(N) parameterises pairs (E, P) where E an elliptic
curve over C and P a point of order N
e Y(N) parameterises pairs (E, (P, Q)) where E an
elliptic curve over C and (P, Q) is a pair of points of
order N generating E[N](C) (with Weil pairing a fixed
Nth root of unity?)
e This suggests defining these modular curves algebraically
by viewing them as moduli-spaces. This doesn’t quite work
however...



Moduli-theoretic interpretation

e Consider when N = 1, so we are interested in whether the
functor Fr(qy : S~ {iso classes of elliptic curves /S}
(defined on the fppf site of Spec Z say) is representable by
a scheme (here we take an elliptic curve over a general
scheme S to be a smooth proper scheme E/S equipped
with a section 0 € E(S) such that each geometric fiber is a
geometrically connected genus 1 curve)

o Recall however that there are elliptic curves which are not
isomorphic over Q but are isomorphic over C (these
quadratic twists biject with Q* /(Q*)?)

e This implies our functor is not even a sheaf (as the map
Fr(1)(Q) — Fr(1)(C) is not injective), so can’'t be
representable by any scheme



Some solutions

e Define for N > 2, invertible on S, a I'(N)-structure on an
elliptic curve E/S to be a pair (P, Q) where P, Q € E(S)[N]
such that the pair (P, Q) defines an isomorphism of group
schemes from (Z/NZ)s to E[N] (or equivalently that they
give a basis for the N-torsion in each geometric fibre of S)

e |t turns out if N > 3 then any automorphism which fixes E
and the I'(N)-structure is the identity

e Using this, one can show that the functor Fr () (defined
analogously on the fppf site of Spec Z[1/N] say by sending
S to iso classes of ['( N)-structures) is representable by a
smooth affine scheme Y(N) for N > 3



Representability of Fry)

A sketch of the argument Snowden presents is as follows:

e we construct this affine scheme explicitly for some small
values of N (e.g. N = 3, 4) together with a universal elliptic
curve and I'(N)-structure

e Use a relative representability lemma and the observation
that to give a I'(3N) structure is the same as giving a '(3)
and '(N) structure for (N,3) = 1 to show Frzp) is
representable over Z[1/3N]

e Observe that for N > 4, (N, 3) = 1 the action of GL»(Z/3Z)
on the I'(3)-structure part is free, and that the quotient
scheme represents Fr(yy on Z[1/3N]

e Use the N = 4 case to similarly show Fry is
representable on Z[1/N] whenever (N,6) = 1 (patch
together along the open subschemes) - and then do some
more work to remove this condition (details are omitted in
his lecture here)



Coarse moduli space

e We define for N > 2 a I'g(N) structure on E to be a closed
etale subgroup G C E, which in every geometric fibre is
cyclic of cardinality N

e The corresponding functor Fr () can’t be representable by
a scheme then, as we always have a non-trivial
automorphism of a I'y(N) structure given by [—1]

e However, the sheafification of this functor is in fact
representable by a smooth affine scheme Yy (N) defined
over Z[1/N] (the coarse moduli space) and Yy(N)(C) can
be identified with 1 /To(N)

e The construction presented in Snowden’s lectures went via
stacks (a kind of object which will be able to represent the
kind of functors we discussed) and then quotienting by the
action of some finite group



Compact modular curves

e The curve we just constructed has a couple of problems for
what we want to do: its defined over Z[1/N] rather than Z
and is not compact (it doesn’t contain the cusps)

¢ To fix this we’ll define a slightly more general functor - we
first need to make a couple of definitions:

e Let n > 1 and k a field. The standard n-gon over k,
denoted C,,, is the quotient of P} x Z/nZ given by
identifying (oo, /) with (0,7 + 1). Note that the smooth locus
is the group scheme G, x Z/nZ, and this acts naturally on
Cn

e A generalised elliptic curve over a scheme S is a triple
(E, e, +) where E/S a finite flat scheme, e € E(S) a
section and + : Es™ x E — E such that (E*™, e, +) is a
group scheme with + defining an action on E, and all
geometric fibres of E are elliptic curves or n-gons



Xo(N)

e We are now ready to define our functor - for simplicity in
the definition we will now assume N is squarefree

e If E/S is a generalised elliptic curve, a I'y(N)-structure is
given by G C E*™ a closed subgroup of order N finite and
flat over S; then our functor takes a scheme S to (the
groupoid of) such pairs (E, G)

e Again this functor is representable only by a stack (this
time defined over Z however); if we then take the coarse
moduli space of the functor we now get a scheme Xjy(N)
defined over Z



The special fibre

e Now further assume N is prime. Since our scheme was
defined over Z we can ask what does the special fibre
Xo(N)r,, look like

o We recall firstly the possibilities for the N-torsion of E an
elliptic curve over Fy: either its ordinary and
E[N] = un x Z/NZ or its supersingular and E[N] = ape -
the supersingular case occurs only for finitely many curves
up to isomorphism

e It turns out to be given by gluing two copies of Xo(1)r,
along the supersingular loci via the Frobenius map - we
also recall that Xo(1) is just P! so this is two copies of P},
glued along a finite number of points



Hecke operators

e Recall that Sy(N) is the space of weight 2 cusp forms for
the congruence subgroup I'y(N), which may naturally be
identified with HO(Xp(N), Q")

e For (n, N) =1 we can most easily define the Hecke
operators T, as endomorphisms of Sy(N) by
Ta(F)(N) = 32 nvj=n (') (Where we have identified points
of Xo(N) as lattices defining elliptic curves)

e We have the familiar facts that these family of operators
commute, Ty = Ty Ty for (m,n) =1,

Toni1 = TpTpn — pTp-1 for p prime, n > 1 so the Tp, for
(p, N) = 1 prime generate them all, and we can compute
the effecton f =3~ - (an)q" in terms of fourier
expansions:

Tpf = Z(apn + pan/p)q”

n>1



Eigenforms

e The Hecke operators are self-adjoint with respect to the
Peterssen inner product on Sy(N), so this leads to a
decomposition of So(N) as a direct sum of eigenspaces for
the Hecke operators

e We have multiplicity one, which states that if f, g € Sy(N)
are normalised eigenforms (so a;(f) = ai(g) = 1) with the
same eigenvalues on T, for (p, N) = 1 then f = g (recall
we are still supposing N prime so we only have newforms
appearing)

e If we let T be the Z-subalgebra of End(S2(N)) generated
by the T, for (p, N) = 1 prime, then eigenforms for the
Hecke operators correspond to algebra homomorphisms
T — C by sending T, to its eigenvalue

e We deduce T¢ = T ®z C Sz(N) is a direct product of

copies of C indexed by the normalised eigenforms and that
S>(N) is free of rank 1 as a Tc-module



Correspondences

e If Cis a smooth projective curve, a correspondence
C --» C is a pair of finite maps p;,p. : C' — C from a
smooth projective curve C’

e If Cis defined over C then a correspondence induces a
map on both the singular cohomology H'(C, Z) via the
composition (p2). o (p1)* (where the pushforward is defined
via the pushforward on homology using Poincare duality)

e They also act on differential forms by a similar formula, and
the isomorphism H'(C,Z) @z C = HY(C,Q') @ HO(C, Q")
arising from Hodge theory is compatible with the map
induced by a correspondence



Hecke Correspondences

e In our setting, if we take C = Xp(N) and (p,N) =1 a
prime, then we define the Hecke correspondence by letting
C' = Xo(Np) and viewing a I'y(Np) structure on an elliptic
curve E as corresponding to a pair consisting of an
N-isogeny E’ — E (the kernel of which will be the
subgroup of order N) and a subgroup G C E of order p,
then we define the maps p;, p» as follows:

pi(f: E' = E,G) = (E,G)
po(f: E' — E, G) = (E, f(G))

e Viewing H'(C,Z) @7 C = S>(N) & S5(N), the map induced
by these Hecke correspondences matchup with the action
of the Hecke operators



Consequences for the Hecke algebra

o Ifwelet T = Z[T, : (p, N) = 1] be the polynomial algebra
acting on H'(Xy(N), Z) by these correspondences, we see
that an element acts as 0 iff it acts as 0 on Sy(N) and
hence its image in End(H'(X,Z)) is isomorphic to T and
(using the freeness result of Sp(N) as a Tc-module) we
deduce H'(Xp(N),Q) is a free Ty = T ® Q-module of rank
2



Action on Jacobians and Eichler-Shimura

e Our next observation is that a correspondence C --» C
also induces a map on divisors, again by the same kind of
formula, and hence a map on the Jacobian variety

e Even nicer, our above Hecke correspondences induce
maps on the Jacobian Jy(N) of Xp(N), defined now over Q

e For (p, N) = 1 prime then, Jy(N) extends to an abelian
scheme over Z, and T, also extends. If we then look in the

special fibre, there is a formula for T, known as the
Eichler-Shimura relation:

where F is the Frobenius and V the Verscheibung acting
on JO(N)FP



