
Admissible group schemes
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Motivation

Next week, we will prove

Theorem. Let A be an abelian variety over Q and let N 6= p be
primes with N > 2. Assume

(1) A has good reduction away from N.

(2) The Jordan-Hölder factors of A[p](Q) are all isomorphic to
either Z/pZ or µp.

(3) A has completely toric reduction at N.

Then, A(Q) has rank 0.
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Idea of proof.

Recall

A(Q)/pnA(Q) ↪−→ H1(GQ,Np,A[pn]) ∼= H1
ét(SpecZ[1/Np],A[pn]),

where A is the Néron model of A. To prove that A(Q) has rank 0,
it’s enough to show the right hand side is bounded independent of
n.

But this is false!

Instead, A(Q)/pnA(Q) ↪−→ H1
fppf(SpecZ,A[pn]).
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fppf cohomology

Definition. An fppf cover of a scheme X is a family of
morphisms {fi : Xi −→ X}i where each fi is flat and locally of
finite presentation, and such that X =

⋃
i fi (Xi ).

Let Xfppf be the category whose objects are flat and locally of
finite presentation maps to X and morphisms are commutative
diagrams

X1 X2

X .

Xfppf is a site, so we can define fppf cohomology of an fppf sheaf
as usual.
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We can consider a finite flat group scheme G over S as a sheaf
over Sfppf.

Then, H0
fppf(S ,G ) = G (S).

H1
fppf(S ,G ) also has a geometric interpretation, in terms of fppf

torsors.

A torsor for G is a scheme T/S equipped with an action of G
such that for any S ′/S , the action of G (S ′) on T (S ′) is simply
transitive.

T is called an fppf torsor (resp. étale torsor) if there exists an
fppf (resp. étale) cover S ′ −→ S such that T (S ′) 6= ∅.

H1
fppf(S ,G ) is in bijection with the set of isomorphism classes of

fppf torsors.
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Remark. G étale =⇒ H1
fppf(S ,G ) = H1

ét(S ,G ).

Indeed, any étale torsor is an fppf torsor, and if T/S is an fppf
torsor for G , there exists an fppf cover S ′ −→ S such that
TS ′ = GS ′ , in particular TS ′ is étale. This implies T is étale.
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Admissible group schemes

The hypotheses of the theorem are

(1) A has good reduction away from N.
A[pn] is pre-admissibe.

(2) The Jordan-Hölder factors of A[p](Q) are all isomorphic to
either Z/pZ or µp.
A[pn] is admissibe.

(3) A has completely toric reduction at N.
This will allow us to compute certain invariants δ, α.
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Definition.

(1) A group scheme G over Z[1/N] is pre-admissible if it is flat,
commutative, killed by a power of p and finite.

(2) A group scheme G over Z is pre-admissible if it is flat,
commutative, killed by a power of p, quasi-finite, finite over
Z[1/N], separated, of finite presentation.

Example. If A is an abelian variety over Q with good reduction
away from N and A is its Néron model, then A[pn] is
pre-admissible over Z.
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Definition.

(1) A pre-admissible group over Z[1/N] is admissible if there
exists an increasing filtration

0 = F 0G ⊆ F 1G ⊆ · · · ⊆ F nG = G

by closed subgroups such that F n+1G/F nG is isomorphic to
either Z/pZ or µp. F •G is called an admissible filtration.

(2) A pre-admissible group over Z is admissible if its restriction to
Z[1/N] is admissible.
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Definition. A Gal(Q/Q)-module V is admissible if there exists a
filtration F •V by submodules whose successive quotients are Z/pZ
or µp.

Proposition. Let G be a pre-admissible group over Z[1/N].
Then G is admissible if and only if G (Q) is admissible.
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Proof. Let V be the first piece of an admissible filtration of
G (Q), and let H be the closure of V in G .

H finite étale over Z[1/Np] =⇒ HZ[1/Np]
∼= Z/pZ or µp

=⇒ HQp
∼= Z/pZ or µp.

It follows from Raynaud’s theorem when p > 2 (or a theorem of
Fontaine when p = 2) that, over Zp, H is isomorphic to either
Z/pZ or µp.

In fact, a global version of Raynaud’s (or Fontaine’s) theorem
shows that H is isomorphic to either µp or Z/pZ over Z[1/N]. Do
the same for G/H and use induction.
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Example. Let A be an abelian variety over Q with good
reduction away from N and A is its Néron model, and assume the
Jordan-Hölder factors of A[p](Q) are all isomorphic to either Z/pZ
or µp. Then A[pn] is admissible over Z.

Indeed, our assumption and the proposition show that A[p] is
admissible and A[pn] is an iterated extension of A[p]’s.
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Definition. Let G be an admissible group over Z. Define the
invariants

`(G ) = logp(#GQ) = length of an admissible filtration on G ,

δ(G ) = logp(#GQ)− logp(#GFN
),

α(G ) = logp(#G (Fp))

= number of Z/pZ’s appearing in an admissible filtration of G ,

h0(G ) = logp(#H0
fppf(SpecZ,G )) = logp(#G (Z)),

h1(G ) = logp(#H1
fppf(SpecZ,G )).
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Elementary admissible groups

Definition. An admissible group scheme G is elementary if
`(G ) = 1.

Over Z[1/N] the only elementary admissible groups are Z/pZ
and µp.

What about over Z?
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Proposition. Let H be a pre-admissible group over Z[1/N].
Then, there is a bijection between extensions of H to Z and
sub-Gal(QN/QN)-modules V of H(Q) whose elements are fixed by
the inertia subgroup at N.

Corollary. If H(QN) is unramified and one-dimensional (over
Fp), then there are only two extensions to Z, H and H[.

More concretely, H[ can be seen as j!HZ[1/N], where
j : SpecZ[1/N] −→ SpecZ.

Hence, over Z there are four elementary admissible groups:
Z/pZ, (Z/pZ)[, µp and µ[p.
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Proposition. The invariants of the elementary admissible groups
are as follows:

Z/pZ (Z/pZ)[ µp µ[p
δ 0 1 0 1
α 1 1 0 0

h0 1 0

{
1 if p = 2,

0 if p > 2,
0

h1 0 0

{
1 if p = 2,

0 if p > 2,


1 if p = 2,N ≡ 1 mod 4,

1 if p > 2,N ≡ 1 mod p,

0 otherwise,
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Proof. The first three lines are easy, so let’s look at the last one.
Write S = SpecZ.

Z/pZ étale over S =⇒ H1
fppf(S ,Z/pZ) = H ét

1 (S ,Z/pZ)

= Hom(π1
ét(S),Z/pZ)

= Hom(1,Z/pZ)

So h1(Z/pZ) = 0.
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There is a short exact sequence

0 −→ (Z/pZ)[ −→ Z/pZ −→ i∗((Z/pZ)FN
) −→ 0

where i : SpecFN ↪−→ SpecZ.

We get a long exact sequence

H0
fppf(S , (Z/pZ)[)) −→ H0

fppf(S ,Z/pZ) −→ H0
fppf(S , i∗((Z/pZ)FN

))

−→H1
fppf(S , (Z/pZ)[)) −→ H1

fppf(S ,Z/pZ)

i.e.

0 −→ Z/pZ −→ Z/pZ −→H1
fppf(S , (Z/pZ)[)) −→ 0.

So h1((Z/pZ)[) = 0.
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We have an exact sequence of fppf sheaves

0 −→ µp −→ Gm −→ Gm −→ 0,

so we have a long exact sequence

0 H0
fppf(S , µp) H0

fppf(S ,Gm) H0
fppf(S ,Gm)

H1
fppf(S , µp) H1

fppf(S ,Gm)[p] 0

i.e.

0 µp(S) {±1} {±1}

H1
fppf(S , µp) H1

fppf(S ,Gm)[p] 0

(−)p

Fact. H1
fppf(S ,Gm) = H1

Zar(S ,Gm) = Pic(S) = Cl(Z) = 0.

So h1(µp) =

{
1 if p = 2,

0 if p > 2.
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There is a short exact sequence

0 −→ µ[p −→ µp −→ G := i∗((µp)FN
) −→ 0

so we have a long exact sequence

H0
fppf(S , µ

[
p)) −→ H0

fppf(S , µp) −→ H0
fppf(S ,G )

−→H1
fppf(S , µ

[
p)) −→ H1

fppf(S , µp) −→ H1
fppf(S ,G )

Assume p > 2. Then H0
fppf(S , µp) = H1

fppf(S , µp) = 0, so

h1(µ[p) = logp(#µp(FN)) =

{
1 p | N − 1,

0 otherwise.
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For p = 2, the map H0
fppf(S , µp) −→ H0

fppf(S ,G ) is an
isomorphism, so

H1
fppf(S , µ

[
p) = ker(H1

fppf(S , µp) −→ H1
fppf(S ,G )).

H1
fppf(S , µp) has order 2, and from Kummer theory we see that the

non-trivial element corresponds to the torsor
f : SpecZ[

√
−1] −→ S .

This goes to 0 ⇐⇒ Spec(FN [
√
−1]) has an FN -point ⇐⇒

−1 ∈ (F×N)2 ⇐⇒ N ≡ 1 mod 4.

So h1(µ[p) =

{
1 N ≡ 1 mod 4,

0 otherwise.
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Corollary. Let G be admissible over Z. Then,

h1(G )− h0(G ) ≤ δ(G )− α(G )

Proof. This holds for the elementary admissible groups, and
given a short exact sequence

0 −→ G1 −→ G2 −→ G3 −→ 0

of admissible groups, we have

δ(G2)− α(G2) = (δ(G1)− α(G1)) + (δ(G3)− α(G3))

h1(G2)− h0(G2) ≤ (h1(G1)− h1(G1)) + (h0(G3)− h0(G3)),

so the result follows from induction on the length of G .
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