Ceresa cycles of curves with extra automorphisms Joint with Ari Shnidman

Jef Laga

University of Cambridge

- X : smooth projective variety over a field $k \subset \mathbb{C}$.
- For $0 \le i \le \dim(X)$ let

$$\mathcal{Z}^{i}(X)$$
 = free abelian group on $\{[Z]: Z \subset X \text{ codimension } i\}$.

- $CH^{i}(X) = \mathcal{Z}^{i}(X)/rational$ equivalence.
- Rational equivalence: generated by

$$[W \times \{0\}] - [W \times \{\infty\}], \quad W \in \mathcal{Z}^i(X \times \mathbb{P}^1)$$

- Set $CH_i(X) = CH^{\dim(X)-i}(X)$.
- The abelian groups $CH^0(X), CH^1(X), \ldots, CH^{\dim(X)}(X)$ are fundamental invariants of X.

Examples

- $CH^0(X) = \mathbb{Z}[X] \simeq \mathbb{Z}$.
- $CH^1(X) \simeq Pic(X)$, and Pic(X) fits into an exact sequence

$$0 o \operatorname{\mathsf{Pic}}^0(X) o \operatorname{\mathsf{Pic}}(X) o \operatorname{\mathsf{NS}}(X) o 0,$$

where NS(X) is finitely generated, and $Pic^{0}(X)$ is an abelian variety.

• If dim X = 1 and $k = \mathbb{C}$, have isomorphism

$$\operatorname{Pic}^0(X) \xrightarrow{\operatorname{AJ}} H^0(X, \Omega^1_X)^{\vee} / H_1(X, \mathbb{Z}) \simeq \mathbb{C}^g / \Lambda$$

• $CH^{i}(\mathbb{P}^{n}) = \mathbb{Z}$ if $0 \leq i \leq n$.

In general, have a cycle class map

$$0 \to \mathrm{CH}^i(X)_{hom} \to \mathrm{CH}^i(X) \xrightarrow{\mathrm{cl}} \mathrm{H}^{2i}(X(\mathbb{C}), \mathbb{Z}).$$

and Abel-Jacobi map

$$\mathrm{AJ}\colon \mathrm{CH}^i(X)_{hom}\to J(H^{2i-1}(X))=H^{2i-1}(X,\mathbb{C})/\mathrm{Fil}^i+H^{2i-1}(X,\mathbb{Z})$$

- 1 Image of cl: predicted by the Hodge conjecture.
- ② AJ might not be injective/surjective: ker(AJ) is huge when $h^{2,0} \neq 0$ (Mumford).
- 3 Beilinson–Bloch conjecture: if k is a number field, then $\operatorname{rank}(\operatorname{CH}^i(X)_{hom}) = \operatorname{ord}_{s=1} L(H^{2i-1}(X)(i), s).$

We study $CH^{i}(X)$ using filtration

$$\mathrm{CH}^i(X)_{alg} \subset \mathrm{CH}^i(X)_{hom} \subset \mathrm{CH}^i(X)$$

 $\mathrm{CH}^i(X)_{alg} = \mathrm{generated}$ by $[W \times \{t_0\}] - [W \times \{t_1\}]$, where $W \in \mathrm{CH}^i(X \times T)$, (T, t_0, t_1) pointed variety.

Definition

The Griffiths group is $\operatorname{Griff}^i(X) := \operatorname{CH}^i(X)_{hom}/\operatorname{CH}^i(X)_{alg}$.

If i = 1, then $Griff^i(X) = 0$.

Griffiths

 $Griff^2(X) \neq 0$ for a very general quintic 3-fold.

The Ceresa cycle

- C: smooth projective curve of genus $g \ge 2$
- $p \in C(k)$ point
- J: Jacobian variety of C
- $\iota_p \colon C \hookrightarrow J, x \mapsto [x] [p]$: Abel-Jacobi map
- The Ceresa cycle based at p is the 1-cycle

$$\kappa_p(C) = [\iota_p(C)] - (-1)^*[\iota_p(C)] \in \mathrm{CH}_1(J),$$

where (-1): $J \rightarrow J$ denotes the inversion map.

Lemma

 $\kappa_p(C) \in \mathrm{CH}_1(J)_{hom}$, i.e. $\kappa_p(C)$ is homologically trivial.

Proof.

(-1) acts as the identity on $H_2(J)$.

$$\kappa_p(C) = [\iota_p(C)] - (-1)^*[\iota_p(C)] \in \mathrm{CH}_1(J)_{hom}.$$

Let $\kappa_{Gr}(C)$ be image of $\kappa_p(C)$ in $Griff_1(J)$ (doesn't depend on p).

Motivating question

When is $\kappa_p(C)$, $\kappa_{Gr}(C)$ zero, or torsion?

Why do we care?

- Basic question about geometry of curves
 - Evidence for Beilinson–Bloch
 - Testing ground for knowledge of algebraic cycles

First observations

Lemma

If C is hyperelliptic and p a Weierstrass point, then $\kappa_p(C) = 0$.

Reason: (-1) restricts to the hyperelliptic involution on $C = \iota_p(C)$.

Lemma

If $\kappa_p(C)$ is torsion in $\mathrm{CH}_1(J)$, then $(2g-2)p=K_C$ in $\mathrm{CH}_1(C)\otimes \mathbb{Q}$.

We therefore get rid of the basepoint and define

Definition (Canonical Ceresa cycle)

 $\kappa(C)$: image of $\kappa_e(C)$ in $\mathrm{CH}_1(J)\otimes \mathbb{Q}$, where e is a degree-1 divisor with $(2g-2)e=K_C$.

Fact: $\kappa(C)$ is independent of the choice of e.

Upshot: get canonical elements

$$\kappa(C) \in \mathrm{CH}_1(J) \otimes \mathbb{Q}, \quad \kappa_{\mathrm{Gr}}(C) \in \mathrm{Griff}_1(J).$$

Question

Can we describe

$$V_g^{rat} = \{ C \in \mathcal{M}_g : \kappa(C) = 0 \}, \tag{1}$$

$$V_g^{alg} = \{C \in \mathcal{M}_g : \kappa_{Gr}(C) \text{ torsion}\}$$
? (2)

Formal: V_g^{rat} , V_g^{alg} are countable unions of closed subvarieties of \mathcal{M}_g .

$$\{ ext{hyperelliptic locus}\}\subset V_g^{rat}\subset V_g^{alg}\subset \mathcal{M}_g$$

Some history

Theorem (Ceresa)

If $g \geq 3$, then a very general C over $\mathbb C$ has $\kappa_{\mathrm{Gr}}(C)$ infinite order. In other words, $V_g^{\mathsf{alg}} \neq \mathcal M_g$.

Theorem (Bloch, Harris)

The Fermat curve has $\kappa_{Gr}(C)$ of infinite order.

Therefore $Griff^2(J) \neq 0$ for this curve!

Clemens' question

Does $\kappa_{Gr}(C) = 0$ imply C is hyperelliptic?

Spirit of the question: Ceresa only vanishes when there is a good geometric reason.

Recent results of curves with torsion Ceresa cycle:

Bisogno-Litt-Li-Srinivasan, Beauville-Schoen, Qiu-Zhang,

Lilienfeldt—Shnidman...
Jef Laga (University of Cambridge)

Chow vanishing criterion

Let H^* denote singular cohomology with \mathbb{Q} -coefficients. Let $G = \operatorname{Aut}(C)$.

Theorem (L.-Shnidman)

If
$$H^3(J)^G = 0$$
, then $\kappa(C) = 0$ in $\mathrm{CH}_1(J) \otimes \mathbb{Q}$.

This strengthens a criterion of Qiu–Zhang, who required $(H^1(J)^{\otimes 3})^G = 0$. If $V = H^0(C, \Omega^1_C)$, then $H^3(J) = \wedge^3(V + \bar{V})$. Examples:

- $y^3 = x^4 + x$ (Beauville–Schoen, $G = C_9$)
- $y^3 = x^4 + 1$ (Qiu-Zhang, G = order 48)
- $y^3 = x^5 + 1$ (Lilienfeldt–Shnidman, $G = C_{15}$)
- 1-parameter family in genus 4. (Qiu-Zhang)

Proof of Chow vanishing

Theorem (L.-Shnidman)

If
$$H^3(J)^G = 0$$
, then $\kappa(C) = 0$ in $\mathrm{CH}_1(J) \otimes \mathbb{Q}$.

Recall the Abel-Jacobi map

$$\mathrm{AJ}\colon \mathrm{CH}^p(X)\to J(H^{2p-1}(X))$$

Theorem (Beauville)

If
$$H^3(J)^G = 0$$
, then $AJ(\kappa(C)) = 0$ in $J(H^{2g-3}(J)) \otimes \mathbb{Q}$.

Proof sketch.

$$H^3(J)^G = 0 \Rightarrow H^{2g-3}(J)^G = 0$$
. By functoriality,

$$\mathrm{AJ}(\kappa(C)) \in J(H^{2g-3}(J))^G \otimes \mathbb{Q} = 0.$$

Goal: upgrade this proof to show $\kappa(C) = 0$.

Chow motives

We use the category of Chow motives Mot(k).

- Every X has a Chow motive $\mathfrak{h}(X) \in \mathrm{Mot}(k)$
- $\operatorname{\mathsf{Hom}}(\mathfrak{h}(X),\mathfrak{h}(Y))=\operatorname{CH}^{\dim(X)}(X\times Y)\otimes\mathbb{Q}$
- If $p \in \text{End}(M)$ idempotent, have decomposition $M = \ker(p) \oplus \ker(1-p)$ in Mot(k).

Just like X, a motive M has

- Cohomology groups H*(M)
- Chow groups CH*(M)

Every $\mathfrak{h}(X)$ is expected to have a decomposition

$$\mathfrak{h}(X) = \bigoplus_{i=0}^{2\dim X} \mathfrak{h}^i(X)$$

with $H^*(\mathfrak{h}^i(X)) = H^i(X)$. Known for abelian varieties.

Beauville decomposition for abelian varieties: we have

 $\mathrm{CH}^p(J)_{\mathbb Q}=\bigoplus_s\mathrm{CH}^p_{(s)}(J)$, where

$$\mathrm{CH}^p_{(s)}(J) = \{ \alpha \in \mathrm{CH}^p(J)_{\mathbb{Q}} \colon (n)^* \alpha = n^{2p-s} \alpha \, \forall n \in \mathbb{Z} \}$$

Since $[C] \in CH^{g-1}(J)$, we can write $[C] = [C]_0 + [C]_1 + \cdots + [C]_{g-1}$. So

$$\kappa(C) = [C] - (-1)^*[C] = 2[C]_1 + 2[C]_3 + \cdots$$

Deninger–Murre: have $\mathfrak{h}(J) = \bigoplus_{i=0}^{2g} \mathfrak{h}^i(J)$ with $\mathrm{CH}^p(\mathfrak{h}^i(J)) = \mathrm{CH}^p_{(2p-i)}(J)$.

Proof of Chow vanishing.

- **1** S.W. Zhang: $\kappa(C) = 0$ if and only if $[C]_1 = 0$
- **3** The motive $M = \mathfrak{h}^3(J)^G$ has $H^*(M) = 0$ by assumption and is finite-dimensional in the sense of Kimura. So M = 0 hence $\kappa(C) = 0$.

Griffiths vanishing criterion

What about algebraic triviality? Recall

$$\mathrm{CH}_1(J)_{alg} \subset \mathrm{CH}_1(J)_{hom} \subset \mathrm{CH}_1(J)$$

and the element $\kappa_{\mathrm{Gr}}(\mathcal{C}) \in \mathrm{Griff}_1(J) = \mathrm{CH}_1(J)_{hom}/\mathrm{CH}_1(J)_{alg}$.

Theorem (L.-Shnidman)

Let $G = \operatorname{Aut}(C)$ and $V = H^0(C, \Omega_C)$. Suppose $(\wedge^3 V)^G = 0$. Assume the Hodge conjecture for abelian varieties. Then $\kappa(C)$ is zero in $\operatorname{Gr}_1(J) \otimes \mathbb{Q}$.

Theorem (L.-Shnidman)

Suppose $H^0(J, \Omega_J^3)^{\operatorname{Aut}(C)} = 0$. Assume the Hodge conjecture for abelian varieties. Then $\kappa(C)$ is zero in $\operatorname{Gr}_1(J) \otimes \mathbb{Q}$.

Proof.

- Assumptions $\Rightarrow H^3(J)^G \simeq H^1(A)(-1)$ for some abelian variety A
- Hodge conjecture for $J \times A \Rightarrow \mathfrak{h}^3(J)^G \simeq \mathfrak{h}^1(A)(-1)$
- Therefore $\kappa(C)$ is element of

$$\mathrm{CH}^{g-1}(\mathfrak{h}^{2g-3}(J)^G)\simeq\mathrm{CH}^2(\mathfrak{h}^3(J)^G)\simeq\mathrm{CH}^1(\mathfrak{h}^1(A))\simeq\mathrm{Pic}^0(A).$$

• Since every element of $Pic^0(A)$ is algebraically trivial, done.

Examples where this applies?

Picard curves

Consider genus 3 curves of the form

$$C_f: y^3 = f(x) = x^4 + ax^2 + bx + c.$$

There is an action of $G=C_3$ on $V=H^0(C,\Omega_C^1)$ with eigenvalues ω,ω,ω^2 , where $\omega^3=1$. So $\wedge^3 V$ has eigenvalue ω , so $(\wedge^3 V)^G=0$. Can we verify Hodge conjecture?

Theorem (L.-Shnidman)

$$H^3(J_f)^{C_3} \simeq H^1(E_f)(-1)$$
, where $E_f : y^2 = 4x^3 - 27 \mathrm{disc}(f)$.

Theorem (Schoen)

Hodge conjecture holds for the 4-fold $J_f \times E_f$.

Conclusion: $\kappa_{Gr}(C_f)$ torsion for all Picard curves!

$$C_f: y^3 = f(x) = x^4 + ax^2 + bx + c.$$

When is $\kappa(C_f) = 0$ in $\mathrm{CH}_1(J_f) \otimes \mathbb{Q}$? A quartic has two invariants:

$$I(f) = a^2 + 12c, (3)$$

$$J(f) = 72ac - 2a^3 - 27b^2, (4)$$

which satisfy the relation $J(f)^2 = 4I(f)^3 - 27 \cdot \operatorname{disc}(f)$. In other words, $P_f = (I(f), J(f))$ lies on the elliptic curve

$$E_f$$
: $y^2 = 4x^3 - 27 \operatorname{disc}(f)$.

Theorem (L.-Shnidman)

 $\kappa(C_f) = 0$ if and only if $P_f \in E_f(k)$ is torsion.

Theorem (L.-Shnidman)

 $\kappa(C_f) = 0$ if and only if $P_f = (I(f), J(f))$ on $E_f : y^2 = 4x^3 - 27 \mathrm{disc}(f)$ is torsion.

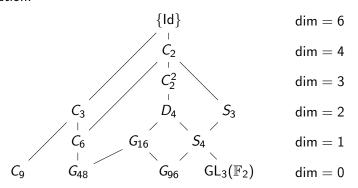
Consequences:

- V_3^{rat} contains infinitely many positive-dimensional components, e.g. $v^3 = x^4 12x^2 + tx 12$
- Torsion orders for $\kappa_p(C)$ are unbounded.

Sketch of proof.

- Prove $H^3(J_f)^G \simeq H^1(E_f)$ using monodromy arguments.
- ② Hodge conjecture for $J_f \times E_f$: proved by Schoen.
- **3** So $\mathfrak{h}^3(J_f)^G \simeq \mathfrak{h}^1(E_f)(-1)$. So $\kappa(C_f)$ "is" an element of $E_f(k)$.
- **②** Analyze Mordell–Weil group of E_f → {Moduli of Picard curves}: free of rank 1 over $\mathbb{Z}[\omega]$, generated by P_f .

Let X_G be the locus of plane quartics with automorphism group G. Stratification:



We determine when the generic curve with automorphism group G has torsion Ceresa:

Theorem (L.-Shnidman)

- $X_G \subset V_3^{\mathrm{rat}}$ if and only if $G = C_9$ or G_{48} .
- $X_G \subset V_3^{\mathrm{alg}}$ if and only if $G = C_3, C_6, C_9, G_{48}$.

Slogan

Ceresa cycle is controlled by motive $\mathfrak{h}^3(J)^G$.

- If $H^3(J)^G = 0$, then $\mathfrak{h}^3(J)^G = 0$, hence $\kappa(C) = 0$.
- If $H^0(\Omega_J^3)^G = 0$, then $\mathfrak{h}^3(J)^G \simeq \mathfrak{h}^1(A)(-1)$, so $\kappa(C)$ "comes from" divisors.