Geometry of universal local lifting rings and some

deformation problems
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Notation

Notation.

L/Qy finite extension with ring of integers O = Oy, uniformizer A and
residue field IF.

" is a profinite subgroup satisfying condition @y, p: I' — GL,(F) is a
continuous representation.

K is a finite extension of Q, with residue field £.

The reference [BLGGT] is T. Barnet-Lamb, T. Gee, D. Geraghty, and R.
Taylor, Potential automorphy and change of weight.
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Recollections

In the previous weeks we've seen that given a deformation problem
S=(F8,0,p,x,{Dy}ves) and T C S, then RET is the quotient of a
power series ring in d = dim Hg (G r,s,ad’ p) variables over

p—

7 =@ _ (Rag,n/ 1)

and
d>#T — Zdim H°(GF,,ad’p)

v]oo

+ Z (dim L(D,) — dim H%(G, , ad” )
veS\T

— dim H%(Grs,ad’ p(1)).
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Today we will do two things:

© We'll study the generic fibers of universal lifting (or deformation)
rings.

@ We will consider certain deformation problems that we are interested
in for applications.

4/26



Generic fibers of deformation rings

We will start by looking at Spec R%][%].

There is a bijection

D
is a finite extension of L}
m +— (Ry — RZ[;] — RE[{]/m)

{maximal ideals of RF[1]} «— {¢: RY — O where L' = L(¢(R5))
— 9

So closed points of Spec RﬁD[

of L.

%] correspond to lifts of p to finite extensions

If z € Spec R%[%] is a closed point, write ¢, : R% — L, for the

corresponding map and p,: I' — RﬁD RZN GL,(Or,) for the
corresponding lift.



Lemma.

Let Cr, be the category of Artinian local L;-algebras with residue field

L,. Then, the completion of Rg[%] at z,

[ -t ] (e 1)

represents the functor

X, : Cr, —> Sets

Ar—{p: T — GL,(A4) | p mod my = p, }.
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What does Spec R%[%] look like?
In the unobstructed case, RﬁD ~ O[[X1, ..., X4]]. We have

(Spec O[[ X1, ..., Xd]])@e) = {0},

(Spec O[[ X1, ..., Xa)(Qy) = {(21, ..., 2q) € Qp | |25| < 1}.

The closed points of Spec R%[%] are Zariski dense.




In order to say anything meaningful about Spec R%[%], we must specialize
to the case when I' = Gk is the absolute Galois group of a finite extension

K of Q.

We must treat the cases £ # p and ¢ = p separately.
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The case ¢ # p

Assume ¢ # p.

Each irreducible component of Spec R%[%] is generically formally smooth

over L of dimension n2.

Idea of proof.

The first step is to show that the points x such that

H°(Gg, (ad p;)(1)) = 0 is Zariski dense [BLGGT, Lemma 1.3.2 (2)]. For
such an z, local Tate duality and the Euler-Poincaré characteristic formula
show dim H°(Gg,ad p,) = dim H' (G, ad p,) and H?(Gg,ad p) = 0.
The same argument we did for p works for liftings of p, to show

BF[312 = Lally1, .- yn2]l. O
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We can similarly show:

Lemma.

If x: T'— O lifts det p, then each irreducible component of
Spec Rgx[%] is generically formally smooth over L of dimension n? — 1.

Lemma.

| A\

If 5 is Schur, then each irreducible component Spec R%X[%] is generically
formally smooth over L of dimension 1
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Let C be a non-empty subset of irreducible components of Spec R%[%] and
x a lift of det p.

Definition.

We write RﬁDXC for the largest reduced and /¢-torsion free quotient of R%
such that Spec RpDXc is contained in C.

Lemma.

| A

If Ip = ker(R%X — RE%C), then D(I¢) is a deformation problem.

Moreover, REXC is equidimensional of dimension n2.
b 9

The hard part is showing that ker(GL (R%X) — GL,,(IF)) preserves the

connected components of Spec R%”i"[%], which is shown in [BLGGT,
Lemma 1.2.2]. O
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Let Wi be the Weil group of K and Ix C Wi the interia subgroup.
Recall that a Weil-Deligne representation is a triple (V,r, N) where

r: Wk — GL(V) is a continuous representation (i.e. has open kernel)
satisfying for 0 € Wy, 7(0)Nr(o) ™! = (#k) V(@ N,

Definition

An interial type is an object of the form (V,r|r,, N) where (V,r,N) is a
Weil-Deligne representation. A Weil-Deligne representation has type

7= (V,79, N) if it is isomorphic to a Weil-Deligne representation (V,r, N)
with ro = 7|7,

If (V,ro, N) is an interial type, then ¢ has open kernel and 79 and N
commute, but the converse isn’t true in general.
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There are four cases for (types of) 2-dimensional Weil-Deligne
representations over C:
© Unramified up to twist: 7 = (¢ & 1, 0) for some character
v g — C*.
@ Steinberg: 7= (¢ @ ¥, (8 (1))) for 1) as above.
@ Split ramified: 7 = (1)1 @ 12,0) for distinct characters
V1,2 Ix — C*.
Q Irreducible: 7 = (r9,0) where rg is the restriction of some irreducible
Weil-Deligne representation.
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Assume n = 2.

After possibly enlarging L:
© Every irreducible component C of Spec RE[%] has an associated type
7c such that:
e If 7¢ is not Steinberg, then closed points correspond to p, whose
Weil-Deligne representation is of type 7¢.
o If 7¢ is Steinberg, then closed points correspond to (possibly split)
extensions
0—¢(l) — p, — ¥ —0
for some ¢: Gxg — L.
@ Each case (1)-(4) occurs in at most one component, except if
- = T - —1 . e g
P = 1 @ 1y for distinct ¥, 15 such that 1115 " is unramified, in
which case there are two components which are split ramified (case

(3))-
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Theorem (continued).

© Two components intersect only when one is unramified and the other
is Steinberg and for any x in the intersection, p, = 1(1) @ 1) for some
character ¢: Gx — L.

@ Each component is formally smooth

| A

Proof.
See Section 4 of Vincent Pilloni's The study of 2-dimensional p-adic Galois
deformations in the ¢ # p case. Ol

i
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Example: Taylor-Wiles liftings

Assume p: Gg — GL,,(F) is unramified with distinct eigenvalues, that x
is an unramified lift of det p and that #k =1 mod ¢. Let £ be the
largest power of ¢ dividing #k — 1. Then

R5, =~ Ollz,y, B, u]) /(1 +u)*" —1). )

Proof.
For any lift p: Gx — GL,(A), the image of wild inertia Px C Gi lands
in ker(GL,,(A) — GL,(IF)), so its image is trivial. We can choose a lift of
the Frobenius ¢ € Gk and a topological generator of tame inertia I/ Pk
satisfying o 1o = 07" p is determined by p(c), p(¢).
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Proof (continued).

Let @, B be the eigenvalues of p(¢), and a, 3 € O some lifts. An
application of Hensel's lemma shows there exist B, C,u, v, w, z € my4 such
that
—1l
(1 y a+ B 0 1 vy
p((p)—(m 1) ( 0 B+C><m 1)’
=il
(1 y 1+u v 1 y
p(o’)-(x 1> ( w 1—|—z><x 1>'
From ¢~ lop = 0% we deduce v = w = 0. If det p = x then
C=-B+x@)/(a+B),1+z=(1+u)"! and we see
(1 +u)#* =1 + . This implies (1 4+ )" = 1.
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Proof (continued).

Thus,
() = 1 vy ' (a+B 0 1 y
Pe =1z 1 0 x()/(a+B))\z 1)’
-1
(1 y 1+u 0 Ly
plo) = <:E 1> < 0 (14 u)_l) (:U 1) '
These formulas can be used to define p". Ol
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As is to be expected, the case ¢ = p is more complicated. There are many
more p-adic representations of G i than (-adic representations (for ¢ # p)
as wild inertia can act in complicated ways. In order to study them, we
need to recall the basis of p-adic Hodge theory.
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p-adic Hodge theory defines a hierarchy of p-adic representations

crystalline = semistable =— de Rham = Hodge-Tate

and attaches to a representation in each of these categories some
semilinear algebraic data.
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We have the following analogy:

abelian var. {-adic p-adic semilinear
over K rep. rep. data
Hodge-Tate graded vector spaces
1)
any red. all rep. de Rham filtered vector spaces
fr i) )
semistable red. | unipotent | semistable | adm. filtered (¢, N)-modules
fr i) i)
good red. unramified | crystalline adm. filtered ¢-modules
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We say that a representation is potentially * if it becomes * after
restricting to G for some finite extension K'/K.

For example, potentially de Rham is the same as de Rham, and the p-adic

monodromy theorem asserts that potentially semistable is the same as de
Rham.
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For example, the category of p-adic representations with coefficients in L
of G which become semistable after restriction to G- for a finite
extension K'/K is equivalent to a certain subcategory of filtered

(p, N, Gal(K’/K))-modules over L (for L sufficiently large), defined as
follows:

Let K, be the maximal unramified subextension of K’/K, and let
@o: Ky — K, be the absolute Frobenius. Then a filtered
(p, N,Gal(K'/K)) is a tuple (D, ¢, N, Fil*Dg/) where:

@ D is a finite free K ®q, L-module,

w: D — D is a ¢y ® l-semilinear bijection,

N: D — D is a nilpotent operator satisfying Ny = ppNV,

D has a semilinear action of Gal(K’/K) commuting with ¢ and p,

Fil* Dk is a decreasing filtration of D DKy, L (K'®q, L).
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To such an object we can associate a Weil-Deligne representation. Hence,
we can associate a Weil-Deligne representation to any potentially
semistable representation.

If o: K" — L is an embedding, the filtration Fil® Dg+ induces a filtration
on D ®k; o L. The set HT, of indices where this filtration jumps are
called the Hodge-Tate weights of (D, p, N, Fil* D).

Everything is the same for (potentially) crystalline representations; this
corresponds to the case N = 0.
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@ The p-adic cyclotomic character is crystalline and all its Hodge-Tate
weights are -1.

@ The p-adic Tate module V' of an abelian variety over K has
o-Hodge-Tate weights {0, ...,0,—1,...,—1}. If K has good (resp.
semistable, resp. any) reduction, then V' is crystalline (resp.
semistable, resp. de Rham).

@ If f is an eigenform of weight N, then the associated Galois
representation has Hodge-Tate weights {0,k — 1}. It always de
Rham, and crystalline if p # N.
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Theorem

For each o: K’ — L, let H, be a (muIti)set of n integers. There exists a
unique p-torsion free reduced quotient RX (Ho}K'-st (resp.

R%X {HJ}WK,_CHS) of R%' such that a geometric point x of Spec Rpx[p]
lies in the corresponding subscheme if and only if HT,(p,) = H, for all o
and pz|q,., is semistable (resp. crystalline).

Moreover, Spec(RgX (H,} K- «t) is equidimensional of dimension

+ [K Qp] 2=1) and its generic fiber is generically smooth.
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