Geometry of universal local lifting rings and some deformation problems

Notation.

 L/\mathbb{Q}_{ℓ} finite extension with ring of integers $\mathcal{O} = \mathcal{O}_L$, uniformizer λ and residue field \mathbb{F} .

 Γ is a profinite subgroup satisfying condition Φ_{ℓ} , $\overline{\rho} \colon \Gamma \longrightarrow GL_n(\mathbb{F})$ is a continuous representation.

K is a finite extension of \mathbb{Q}_p with residue field k.

The reference [BLGGT] is T. Barnet-Lamb, T. Gee, D. Geraghty, and R. Taylor, *Potential automorphy and change of weight*.

Recollections

In the previous weeks we've seen that given a deformation problem $\mathcal{S} = (F, S, \mathcal{O}, \overline{\rho}, \chi, \{\mathcal{D}_v\}_{v \in S})$ and $T \subseteq S$, then $R_{\mathcal{S}}^{\Box_T}$ is the quotient of a power series ring in $d = \dim H^1_{\mathcal{S},T}(G_{F,S}, \operatorname{ad}^0 \overline{\rho})$ variables over

$$R^{\mathrm{loc}}_{\mathcal{S},T} = \widehat{\bigotimes}_{v \in T} \left(R_{\overline{\rho}|_{G_v},\chi} / I(\mathcal{D}_v) \right),$$

and

$$d \geq \#T - \sum_{v \mid \infty} \dim H^0(G_{F_v}, \mathsf{ad}^0 \overline{\rho}) \\ + \sum_{v \in S \setminus T} \left(\dim L(\mathcal{D}_v) - \dim H^0(G_{F_v}, \mathsf{ad}^0 \overline{\rho}) \right) \\ - \dim H^0(G_{F,S}, \mathsf{ad}^0 \overline{\rho}(1)).$$

Today we will do two things:

- We'll study the generic fibers of universal lifting (or deformation) rings.
- We will consider certain deformation problems that we are interested in for applications.

Generic fibers of deformation rings

We will start by looking at $\operatorname{Spec} R^{\Box}_{\overline{\rho}}[\frac{1}{\ell}]$.

There is a bijection

$$\begin{split} \{ \text{maximal ideals of } R^{\Box}_{\overline{\rho}}[\frac{1}{\ell}] \} & \longleftrightarrow \quad \{ \phi \colon R^{\Box}_{\overline{\rho}} \longrightarrow \mathcal{O}_{L'} \text{ where } L' = L(\phi(R^{\Box}_{\overline{\rho}})) \\ & \text{ is a finite extension of } L \} \\ & \mathfrak{m} \quad \longmapsto \quad (R^{\Box}_{\overline{\rho}} \longrightarrow R^{\Box}_{\overline{\rho}}[\frac{1}{\ell}] \longrightarrow R^{\Box}_{\overline{\rho}}[\frac{1}{\ell}] / \mathfrak{m}) \\ & (\ker \phi)[\frac{1}{\ell}] \quad \leftarrow \quad \phi \end{split}$$

So closed points of $\operatorname{Spec} R^{\square}_{\overline{\rho}}[\frac{1}{\ell}]$ correspond to lifts of $\overline{\rho}$ to finite extensions of L.

If $x \in \operatorname{Spec} R^{\square}_{\overline{\rho}}[\frac{1}{\ell}]$ is a closed point, write $\phi_x \colon R^{\square}_{\overline{\rho}} \longrightarrow L_x$ for the corresponding map and $\rho_x \colon \Gamma \longrightarrow R^{\square}_{\overline{\rho}} \xrightarrow{\phi_x} \operatorname{GL}_n(\mathcal{O}_{L_x})$ for the corresponding lift.

Lemma.

Let C_{L_x} be the category of Artinian local L_x -algebras with residue field L_x . Then, the completion of $R^{\Box}_{\overline{\rho}}[\frac{1}{\ell}]$ at x,

$$R_{\overline{\rho}}^{\Box} \left[\frac{1}{\ell}\right]_{x}^{\wedge} := \varprojlim_{j} R_{\overline{\rho}}^{\Box} \left[\frac{1}{\ell}\right] / \left(\ker \phi_{x} \left[\frac{1}{\ell}\right]\right)^{j}$$

represents the functor

$$\mathscr{R}_{\rho_x}^{\Box} : \mathscr{C}_{L_x} \longrightarrow \mathsf{Sets}$$
$$A \longmapsto \{\rho \colon \Gamma \longrightarrow \mathsf{GL}_n(A) \mid \rho \mod \mathfrak{m}_A = \rho_x \}.$$

What does $\operatorname{Spec} R^{\Box}_{\overline{\rho}}[\frac{1}{\ell}]$ look like?

In the unobstructed case, $R^{\square}_{\overline{\rho}} \simeq \mathcal{O}[[X_1, ..., X_d]]$. We have

$$(\operatorname{Spec} \mathcal{O}[[X_1, ..., X_d]])(\overline{\mathbb{P}}_{\ell}) = \{0\},\$$
$$(\operatorname{Spec} \mathcal{O}[[X_1, ..., X_d]])(\overline{\mathbb{Q}}_{\ell}) = \{(x_1, ..., x_d) \in \overline{\mathbb{Q}}_{\ell} \mid |x_i| < 1\}.$$

Fact.

The closed points of Spec $R^{\Box}_{\overline{\rho}}[\frac{1}{\ell}]$ are Zariski dense.

In order to say anything meaningful about $\operatorname{Spec} R_{\overline{\rho}}^{\Box}[\frac{1}{\ell}]$, we must specialize to the case when $\Gamma = G_K$ is the absolute Galois group of a finite extension K of \mathbb{Q}_p .

We must treat the cases $\ell \neq p$ and $\ell = p$ separately.

Assume $\ell \neq p$.

Lemma.

Each irreducible component of $\operatorname{Spec} R^{\square}_{\overline{\rho}}[\frac{1}{\ell}]$ is generically formally smooth over L of dimension $n^2.$

Idea of proof.

The first step is to show that the points x such that $H^0(G_K, (\operatorname{ad} \rho_x)(1)) = 0$ is Zariski dense [BLGGT, Lemma 1.3.2 (2)]. For such an x, local Tate duality and the Euler-Poincaré characteristic formula show dim $H^0(G_K, \operatorname{ad} \rho_x) = \dim H^1(G_K, \operatorname{ad} \rho_x)$ and $H^2(G_K, \operatorname{ad} \rho) = 0$. The same argument we did for $\overline{\rho}$ works for liftings of ρ_x to show $R_{\overline{\rho}}^{\Box}[\frac{1}{\ell}]_x^{\wedge} \simeq L_x[[y_1, ..., y_{n^2}]].$

We can similarly show:

Lemma.

If $\chi \colon \Gamma \longrightarrow \mathcal{O}^{\times}$ lifts det $\overline{\rho}$, then each irreducible component of $\operatorname{Spec} R^{\Box}_{\overline{\rho},\chi}[\frac{1}{\ell}]$ is generically formally smooth over L of dimension $n^2 - 1$.

Lemma.

If $\overline{\rho}$ is Schur, then each irreducible component $\operatorname{Spec} R^{\Box}_{\overline{\rho},\chi}[\frac{1}{\ell}]$ is generically formally smooth over L of dimension 1

Let C be a non-empty subset of irreducible components of $\operatorname{Spec} R^{\Box}_{\overline{\rho}}[\frac{1}{\ell}]$ and χ a lift of det $\overline{\rho}$.

Definition.

We write $R_{\overline{\rho},\chi,\mathcal{C}}^{\Box}$ for the largest reduced and ℓ -torsion free quotient of $R_{\overline{\rho}}^{\Box}$ such that $\operatorname{Spec} R_{\overline{\rho},\chi,\mathcal{C}}^{\Box}$ is contained in \mathcal{C} .

Lemma.

If $I_{\mathcal{C}} = \ker(R_{\overline{\rho},\chi}^{\Box} \longrightarrow R_{\overline{\rho},\chi,\mathcal{C}}^{\Box})$, then $\mathcal{D}(I_{\mathcal{C}})$ is a deformation problem. Moreover, $R_{\overline{\rho},\chi,\mathcal{C}}^{\Box}$ is equidimensional of dimension n^2 .

Proof.

The hard part is showing that $\ker(\operatorname{GL}_n(R_{\overline{\rho},\chi}^{\Box}) \longrightarrow \operatorname{GL}_n(\mathbb{F}))$ preserves the connected components of $\operatorname{Spec} R_{\overline{\rho}}^{\operatorname{univ}}[\frac{1}{\ell}]$, which is shown in [BLGGT, Lemma 1.2.2].

Let W_K be the Weil group of K and $I_K \subseteq W_K$ the interia subgroup. Recall that a Weil-Deligne representation is a triple (V, r, N) where $r \colon W_K \longrightarrow \operatorname{GL}(V)$ is a continuous representation (i.e. has open kernel) satisfying for $\sigma \in W_K$, $r(\sigma)Nr(\sigma)^{-1} = (\#k)^{-v(\sigma)}N$.

Definition

An interial type is an object of the form $(V,r|_{I_K},N)$ where (V,r,N) is a Weil-Deligne representation. A Weil-Deligne representation has type $\tau=(V,r_0,N)$ if it is isomorphic to a Weil-Deligne representation (V,r,N) with $r_0=r|_{I_K}$.

If (V, r_0, N) is an interial type, then r_0 has open kernel and r_0 and N commute, but the converse isn't true in general.

Example.

There are four cases for (types of) 2-dimensional Weil-Deligne representations over \mathbb{C} :

• Unramified up to twist: $\tau = (\psi \oplus \psi, 0)$ for some character $\psi \colon I_K \longrightarrow \mathbb{C}^{\times}$.

2 Steinberg:
$$au = (\psi \oplus \psi, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix})$$
 for ψ as above.

- Split ramified: τ = (ψ₁ ⊕ ψ₂, 0) for distinct characters ψ₁, ψ₂: I_K → C[×].
- Irreducible: $\tau = (r_0, 0)$ where r_0 is the restriction of some irreducible Weil-Deligne representation.

Assume n = 2.

Theorem.

After possibly enlarging L:

- Every irreducible component C of Spec $R^{\Box}_{\overline{\rho}}[\frac{1}{\ell}]$ has an associated type $\tau_{\mathcal{C}}$ such that:
 - If $\tau_{\mathcal{C}}$ is not Steinberg, then closed points correspond to ρ_x whose Weil-Deligne representation is of type $\tau_{\mathcal{C}}$.
 - If $\tau_{\mathcal{C}}$ is Steinberg, then closed points correspond to (possibly split) extensions

$$0 \longrightarrow \psi(1) \longrightarrow \rho_x \longrightarrow \psi \longrightarrow 0$$

for some $\psi \colon G_K \longrightarrow L_x^{\times}$.

 Each case (1)-(4) occurs in at most one component, except if *p* = *ψ*₁ ⊕ *ψ*₂ for distinct *ψ*₁, *ψ*₂ such that *ψ*₁*ψ*₂⁻¹ is unramified, in which case there are two components which are split ramified (case (3)).

Theorem (continued).

- Steinberg and for any x in the intersection, ρ_x = ψ(1) ⊕ ψ for some character ψ: G_K → L_x[×].
- Each component is formally smooth

Proof.

See Section 4 of Vincent Pilloni's The study of 2-dimensional p-adic Galois deformations in the $\ell \neq p$ case.

Proposition.

Assume $\overline{\rho} \colon G_K \longrightarrow \mathsf{GL}_n(\mathbb{F})$ is unramified with distinct eigenvalues, that χ is an unramified lift of $\det \overline{\rho}$ and that $\#k \equiv 1 \mod \ell$. Let ℓ^m be the largest power of ℓ dividing #k - 1. Then

$$R_{\overline{\rho},\chi}^{\Box} \simeq \mathcal{O}[[x, y, B, u]]/((1+u)^{\ell^m} - 1).$$

Proof.

For any lift $\rho: G_K \longrightarrow \operatorname{GL}_n(A)$, the image of wild inertia $P_K \subseteq G_K$ lands in $\ker(\operatorname{GL}_n(A) \longrightarrow \operatorname{GL}_n(\mathbb{F}))$, so its image is trivial. We can choose a lift of the Frobenius $\varphi \in G_K$ and a topological generator of tame inertia I_K/P_K satisfying $\varphi^{-1}\sigma\varphi = \sigma^{\#k}$. ρ is determined by $\rho(\sigma), \rho(\varphi)$.

Proof (continued).

Let $\overline{\alpha}, \overline{\beta}$ be the eigenvalues of $\overline{\rho}(\varphi)$, and $\alpha, \beta \in \mathcal{O}$ some lifts. An application of Hensel's lemma shows there exist $B, C, u, v, w, z \in \mathfrak{m}_A$ such that

$$\rho(\varphi) = \begin{pmatrix} 1 & y \\ x & 1 \end{pmatrix}^{-1} \begin{pmatrix} \alpha + B & 0 \\ 0 & \beta + C \end{pmatrix} \begin{pmatrix} 1 & y \\ x & 1 \end{pmatrix},$$
$$\rho(\sigma) = \begin{pmatrix} 1 & y \\ x & 1 \end{pmatrix}^{-1} \begin{pmatrix} 1 + u & v \\ w & 1 + z \end{pmatrix} \begin{pmatrix} 1 & y \\ x & 1 \end{pmatrix}.$$

From $\varphi^{-1}\sigma\varphi = \sigma^{\#k}$ we deduce v = w = 0. If det $\rho = \chi$ then $C = -\beta + \chi(\psi)/(\alpha + B)$, $1 + z = (1 + u)^{-1}$ and we see $(1 + u)^{\#k} = 1 + u$. This implies $(1 + u)^{\ell^m} = 1$.

Proof (continued).

Thus,

$$\begin{split} \rho(\varphi) &= \begin{pmatrix} 1 & y \\ x & 1 \end{pmatrix}^{-1} \begin{pmatrix} \alpha + B & 0 \\ 0 & \chi(\psi)/(\alpha + B) \end{pmatrix} \begin{pmatrix} 1 & y \\ x & 1 \end{pmatrix}, \\ \rho(\sigma) &= \begin{pmatrix} 1 & y \\ x & 1 \end{pmatrix}^{-1} \begin{pmatrix} 1 + u & 0 \\ 0 & (1 + u)^{-1} \end{pmatrix} \begin{pmatrix} 1 & y \\ x & 1 \end{pmatrix}. \end{split}$$

These formulas can be used to define ρ^{\Box} .

As is to be expected, the case $\ell = p$ is more complicated. There are many more *p*-adic representations of G_K than ℓ -adic representations (for $\ell \neq p$) as wild inertia can act in complicated ways. In order to study them, we need to recall the basis of *p*-adic Hodge theory. p-adic Hodge theory defines a hierarchy of p-adic representations

 $\mathsf{crystalline} \implies \mathsf{semistable} \implies \mathsf{de} \ \mathsf{Rham} \implies \mathsf{Hodge-Tate}$

and attaches to a representation in each of these categories some semilinear algebraic data.

We have the following analogy:

abelian var.	ℓ -adic	p-adic	semilinear
over K	rep.	rep.	data
		Hodge-Tate	graded vector spaces
		↑	
any red.	all rep.	de Rham	filtered vector spaces
↑	↑	↑	
semistable red.	unipotent	semistable	adm. filtered (φ, N) -modules
↑	↑	1	
good red.	unramified	crystalline	adm. filtered $arphi$ -modules

We say that a representation is potentially * if it becomes * after restricting to $G_{K'}$ for some finite extension K'/K.

For example, potentially de Rham is the same as de Rham, and the p-adic monodromy theorem asserts that potentially semistable is the same as de Rham.

For example, the category of *p*-adic representations with coefficients in *L* of G_K which become semistable after restriction to $G_{K'}$ for a finite extension K'/K is equivalent to a certain subcategory of filtered $(\varphi, N, \operatorname{Gal}(K'/K))$ -modules over *L* (for *L* sufficiently large), defined as follows:

Let K'_0 be the maximal unramified subextension of K'/K, and let $\varphi_0 \colon K'_0 \longrightarrow K'_0$ be the absolute Frobenius. Then a filtered $(\varphi, N, \operatorname{Gal}(K'/K))$ is a tuple $(D, \varphi, N, \operatorname{Fil}^{\bullet} D_{K'})$ where:

- D is a finite free $K_0 \otimes_{\mathbb{Q}_p} L$ -module,
- $\varphi \colon D \longrightarrow D$ is a $\varphi_0 \otimes 1$ -semilinear bijection,
- $N \colon D \longrightarrow D$ is a nilpotent operator satisfying $N \varphi = p \varphi N$,
- D has a semilinear action of ${\rm Gal}(K'/K)$ commuting with φ and $\rho,$
- Fil[•] $D_{K'}$ is a decreasing filtration of $D \otimes_{K'_0 \otimes_{\mathbb{Q}_p} L} (K' \otimes_{\mathbb{Q}_p} L)$.

To such an object we can associate a Weil-Deligne representation. Hence, we can associate a Weil-Deligne representation to any potentially semistable representation.

If $\sigma: K' \hookrightarrow L$ is an embedding, the filtration $\operatorname{Fil}^{\bullet}D_{K'}$ induces a filtration on $D \otimes_{K'_0,\sigma} L$. The set HT_{σ} of indices where this filtration jumps are called the Hodge-Tate weights of $(D, \varphi, N, \operatorname{Fil}^{\bullet}D_{K'})$.

Everything is the same for (potentially) crystalline representations; this corresponds to the case ${\cal N}=0.$

Example.

- The *p*-adic cyclotomic character is crystalline and all its Hodge-Tate weights are -1.
- The *p*-adic Tate module V of an abelian variety over K has σ-Hodge-Tate weights {0, ..., 0, -1, ..., -1}. If K has good (resp. semistable, resp. any) reduction, then V is crystalline (resp. semistable, resp. de Rham).
- If f is an eigenform of weight N, then the associated Galois representation has Hodge-Tate weights $\{0, k 1\}$. It always de Rham, and crystalline if $p \neq N$.

Theorem.

For each $\sigma \colon K' \hookrightarrow L$, let H_{σ} be a (multi)set of n integers. There exists a unique p-torsion free reduced quotient $R_{\overline{\rho},\chi,\{H_{\sigma}\},K'\text{-st}}^{\Box}$ (resp. $R_{\overline{\rho},\chi,\{H_{\sigma}\}\sigma,K'\text{-cris}}^{\Box}$) of $R_{\overline{\rho},\chi}^{\Box}$ such that a geometric point x of $\operatorname{Spec} R_{\overline{\rho},\chi}^{\Box}[\frac{1}{p}]$ lies in the corresponding subscheme if and only if $HT_{\sigma}(\rho_x) = H_{\sigma}$ for all σ and $\rho_x|_{G_{K'}}$ is semistable (resp. crystalline). Moreover, $\operatorname{Spec}(R_{\overline{\rho},\chi,\{H_{\sigma}\},K'\text{-st}}^{\Box})$ is equidimensional of dimension $n^2 + [K:\mathbb{Q}_p]\frac{n(n-1)}{2}$ and its generic fiber is generically smooth.