EA Global: Enter Arithmetic and Global deformation problems

Vaughan McDonald

March 4, 2021

McDonald

EA Global: Enter Arithmetic and Global deformation problems 1 / 16

Outline

Some motivations

2 Deformation conditions

- 3 Global deformation problems
- **4** Tangent space of global deformation problems

Motivation: dimension and modular forms

A refinement from the theorem last time:

Conjecture (Mazur)

If $G = G_{F,S}$ for $S \supseteq \{\nu \mid \infty\} \cup \{\nu \mid p\}$ and $\bar{\rho} : G_{F,S} \to \operatorname{GL}_n(\overline{\mathbb{F}}_p)$ cts irred.,

dim $R_{\bar{\rho}} = 1 + h^1(G_{F,S}, \operatorname{ad} \bar{\rho}) - h^2(G_{F,S}, \operatorname{ad} \bar{\rho}).$

Remark

This is not true for arbitrary profinite G! Something very arithmetic. When n = 1, equivalent to Leopoldt's conjecture.

For $f = \sum a_n q^n \in S_2^{\text{new}}(\Gamma_0(N))$ Carayol's lemma \implies , $\rho_f : G_{\mathbb{Q}} \to \operatorname{GL}_2(\overline{\mathbb{Q}}_p)$ can be lifted to a rep with coeffs in \mathbb{T}_f . Want to show something like $R_{\overline{\rho}_f}^{\Box} \xrightarrow{\sim} \mathbb{T}_f$. Immediate problem: the ρ_f has special properties! For example, determinant and ramification information, these will cut subschemes smaller than the dimension above.

Idea: to capture modular forms, add conditions to our deformations.

Notation

For this talk:

Notation

- Fix a number field F, a prime p, a finite set of places $S \supseteq \{\nu \mid p\}$. Let F_S be the maximal extension of F unramified $S \cup \{\nu \mid \infty\}$, and $G_{F,S} := \operatorname{Gal}(F_S/F)$.
- Let \mathcal{O} is the ring of integers of a finite extension of \mathbb{Q}_p with maximal ideal λ , and $\mathbb{F} := \mathcal{O}/\lambda$, $\mathcal{C}_{\mathcal{O}}$ will be the category of complete Noetherian (not Artinian!) local \mathcal{O} -algebras.
- For a field K, let $\varepsilon_p : G_K \to \mathbb{Z}_p^{\times}$ be the p-adic cyclotomic character.
- For a representation $\bar{\rho}: \Gamma \to \mathrm{GL}_n(\mathbb{F})$, assume $p \nmid 2n$.

• Denote $\mathbb{F}[\varepsilon] := \mathbb{F}[x]/(x^2)$

Deformation conditions

Definition

A deformation condition/problem $\mathcal{D} \subseteq \mathcal{D}_{\bar{\rho}}^{\Box}$ is a collection of lifts $\rho : \Gamma \to \operatorname{GL}_n(A)$ for $A \in \mathcal{C}_{\mathcal{O}}$ such that

- $(\mathbb{F},\bar{\rho})\in\mathcal{D}$
- $\textbf{ 2 If } \phi: A \to B \in \operatorname{Hom}_{\mathcal{C}_{\mathcal{O}}}(A,B), \, \text{then } (A,\rho) \in \mathcal{D} \implies (B,\phi \circ \rho) \in \mathcal{D}$
- If $\phi : A \hookrightarrow B \in \operatorname{Hom}_{\mathcal{C}_{\mathcal{O}}}(A, B)$ is an injection then (A, ρ) ∈ D ⇐⇒ (B, φ ∘ ρ) ∈ D.
- If $(A, \rho_A), (B, \rho_B) \in \mathcal{D}$ and there are maps $A, B \to C$ in $\mathcal{C}_{\mathcal{O}}$, then $(A \times_C B, \rho_A \times \rho_B) \in \mathcal{D}$.
- For an inverse system $(A_i, \rho_i) \in \mathcal{D}$ such that $\varprojlim A_i \in \mathcal{C}_{\mathcal{O}}$ then $(\varprojlim_i A_i, \lim_i \rho_i) \in \mathcal{D}$.
- $(A, \rho) \in \mathcal{D}, a \in \ker(\operatorname{GL}_n(A) \to \operatorname{GL}_n(\mathbb{F})) \implies (A, a\rho a^{-1}) \in \mathcal{D}.$

Remark

We take lifts rather than deformations, so we need not assume $\bar{\rho}$ be Schur.

Deformation conditions are "closed subschemes:"

Lemma

Let $R_{\bar{\rho}}^{\Box} \twoheadrightarrow R$ be a surjection in $\mathcal{C}_{\mathcal{O}}$ such that (*): for any lift $\rho: \Gamma \to \mathrm{GL}_n(A)$ to $A \in \mathcal{C}_{\mathcal{O}}$ and $g \in 1 + M_n(\mathfrak{m}_A)$, the induced map $R^{\Box} \to A$ factors through Riff gpg^{-1} factors through R. Then the lifts that factors through R form a deformation problem, and every deformation problem \mathcal{D} arises this way

Proof.

Given \mathcal{D} , want an $I \subset \mathbb{R}_{\bar{\rho}}^{\Box}$. Let $\mathcal{I} = \{I \subseteq \mathbb{R}_{\bar{\rho}}^{\Box} : (\mathbb{R}_{\bar{\rho}}^{\Box}/I, \rho^{\Box} \mod I) \in \mathcal{D}\}.$ Conditions: (1) $\Longrightarrow \mathcal{I} \neq \emptyset$; (2), (3) $\Longrightarrow (A, \rho) \in \mathcal{D} \iff \ker(\mathbb{R}^{\Box} \to A) \in \mathcal{I}$; + (5) $\Longrightarrow \mathcal{I}$ closed under nested intersection; (4) + (5) $\Longrightarrow \mathcal{I}$ closed under finite intersections. Zorn's lemma produces a minimal $I(\mathcal{D}) \in \mathcal{I}$. (6) $\Longrightarrow \mathbb{R} := \mathbb{R}^{\Box}/I(\mathcal{D})$ satisfies (*). First part is easy.

Remark

Want bijection between def. problems \mathcal{D} and $1 + M_n(\mathfrak{m}_{R_{\overline{\rho}}})$ -invariant (radical) ideals $I \subseteq R_{\overline{\rho}}^{\Box}$, but I don't see why $I(\mathcal{D})$ is radical. See [BLGHT, 3.1-3.2].

Deformation conditions: examples

Let $\bar{\rho}: \Gamma \to \operatorname{GL}_n(\mathbb{F})$ be a continuous representation.

Example (Determinant)

Fix a continuous character $\psi: \Gamma \to \mathcal{O}^{\times}$ such that $\psi \mod \lambda \equiv \det \bar{\rho}$. Then take $D_{\bar{\rho}}^{\Box,\psi}: \mathcal{C}_{\mathcal{O}} \to \mathsf{Set}, A \mapsto \{(\rho, A) \in D_{\bar{\rho}}^{\Box} : \det \rho = \Gamma \xrightarrow{\psi} \mathcal{O}^{\times} \hookrightarrow A^{\times}\}$. This is conjugation invariant, and so also defines $D_{\bar{\rho}}^{\psi} \subseteq D_{\bar{\rho}}$. $D_{\bar{\rho}}^{\Box,\psi}$ is a deformation. problem, represented by $R_{\bar{\rho}}^{\Box,\psi} = R_{\bar{\rho}}^{\Box}/J$, where $J = (\{\det \rho^{\Box}(\sigma) - \psi(\sigma) : \sigma \in \Gamma\})$, and same for $D_{\bar{\rho}}^{\psi}$ and $R_{\bar{\rho}}^{\psi}$. Easy to show $D_{\bar{\rho}}^{\Box,\psi}(\mathbb{F}[\varepsilon]) \simeq Z^1(\Gamma, \mathrm{ad}^0 \bar{\rho}), D_{\bar{\rho}}^{\psi}(\mathbb{F}[\varepsilon]) \simeq H^1(\Gamma, \mathrm{ad}^0 \bar{\rho})$, (second part uses $p \nmid n$), where $\mathrm{ad}^0 \bar{\rho}$ denotes trace 0.

Theorem

(Elliptic curves): If E/\mathbb{Q} is an elliptic curve then det $\rho_{E,p} \simeq \varepsilon_p$. (Modular forms): If $f \in S_2(\Gamma_0(N))$ then det $\rho_f \simeq \varepsilon_p$

Deformations: local examples

Example (D^{ord})

For
$$K/\mathbb{Q}_p$$
 finite, define $\bar{\rho}: G_K \to \operatorname{GL}_2(\mathbb{F})$ by $g \mapsto \begin{pmatrix} \bar{\chi}_1(g) & * \\ 0 & \bar{\chi}_2(g) \end{pmatrix}$ where $\bar{\rho}(I_K) \neq 1$ and $\bar{\chi}_1 \mid_{I_K} = 1$.
Fixing cts $\psi: I_K \to \mathcal{O}^{\times}$, define $D^{\operatorname{ord}}: \operatorname{CNL}_{\mathcal{O}} \to \operatorname{Set}$ as lifts ρ to A strictly equivalent to $\begin{pmatrix} \chi_1 & * \\ 0 & \chi_2 \end{pmatrix}$ with $\chi_1 \mid_{I_K} = 1, \chi_2 \mid_{I_K} = \psi$.
 $\mathcal{D}^{\operatorname{ord}}$ is a deformation problem, and when $\bar{\chi}_1 \bar{\chi}_2^{-1} \neq 1, \bar{\varepsilon}_p$ in fact is represented by $R^{\operatorname{ord}} \simeq \mathcal{O}_K[[x_1, \ldots, x_g]], g = 4 + [K: \mathbb{Q}_p]$ (compute with Tate duality).

Theorem

(Elliptic curves): If an elliptic curve E/\mathbb{Q} has good ordinary reduction at p $(p \nmid a_p)$ then $\rho_{E,p} \in \mathcal{D}^{\text{ord}}$. (Modular forms): If $f \in S_2(\Gamma_0(N))$ then $\rho_f \mid_{G_{\mathbb{Q}_p}} : G_{\mathbb{Q}_p} \to \operatorname{GL}_2(\mathcal{O}_{K'}) \in \mathcal{D}^{\text{ord}}$ iff $a_p \in \mathcal{O}_{K'}^{\times}$.

Global deformation problems

Definition

A global deformation problem is the data $S = (\bar{\rho}, S, \psi, \mathcal{O}, \{\mathcal{D}_{\nu}\}_{\nu \in S})$ where $\bar{\rho} : G_{F,S} \to \operatorname{GL}_n(\mathbb{F})$ is Schur, $\psi : G_{F,S} \to \mathcal{O}^{\times}$ has $\psi \equiv \det \bar{\rho} \mod \lambda$, and \mathcal{D}_{ν} is a deformation problem for $\bar{\rho} \mid_{G_{\nu}}$. We say a lift $\rho : G_{F,S} \to \operatorname{GL}_n(A)$ of $\bar{\rho}$ to A is of type S if:

• $\det \rho = \psi$

•
$$\rho \mid_{G_{F_{\nu}}} \in D_{\nu}(A)$$
 for all $\nu \in S$.

A deformation is of type S if any of its lifts are.

Definition

A *T*-framed deformation of type S to $A \in C_{\mathcal{O}}$ is a strict equivalence class of tuples $(\rho, \{\beta_{\nu}\}_{\nu \in T})$ for $\rho : \Gamma \to \operatorname{GL}_{n}(A)$ a lift of $\bar{\rho}$ of type S and $\beta_{\nu} \in \operatorname{ker}(\operatorname{GL}_{n}(A) \to \operatorname{GL}_{n}(\mathbb{F}))$. Strict equivalence means for $\alpha \in \operatorname{ker}(\operatorname{GL}_{n}(A) \to \operatorname{GL}_{n}(\mathbb{F})), (\rho, \{\beta_{\nu}\}_{\nu \in T}) \sim (\alpha \rho \alpha^{-1}, \{\alpha \beta_{\nu}\}_{\nu \in T})$ (so that $\beta_{\nu}^{-1} \rho \mid_{G_{F_{\nu}}} \beta_{\nu} \in D_{\nu}$ is well-defined).

T-framed deformations

Lemma

The functor $D_{\mathcal{S}}^{\Box_T} : \mathcal{C}_{\mathcal{O}} \to \mathsf{Set}$ sending A to T-framed deformations of $\bar{\rho}$ of type \mathcal{S} is representable by $R_{\mathcal{S}}^{\Box_T} \in \mathcal{C}_{\mathcal{O}}$. In fact, $\mathcal{R}_{\mathcal{S}}^{\Box_T} \simeq R_{\mathcal{S}}[[x_1, \ldots, x_{n^2|T|-1}]]$ (non-canonically)

Proof.

We saw fixings determinants representable, so suffices to show local properties + framing representable. Assume for now $\mathcal{T} = \emptyset$. Choosing a lift ρ of the universal $R^{\psi}_{\bar{\rho}}$ -deformation and taking $\rho \mid_{G_{F_{\nu}}}$ gives maps $R^{\Box}_{\bar{\rho}\mid G_{F_{\nu}}} \to R^{\psi}_{\bar{\rho}}$. By pushout, this gives a map $R^{\Box}_{\mathcal{S}} := \widehat{\bigotimes}_{\nu \in S} R^{\Box}_{\bar{\rho}\mid G_{F_{\nu}}} \to R^{\psi}_{\bar{\rho}}$. Also define $R^{\text{loc}}_{\mathcal{S}} := \widehat{\bigotimes}_{\nu \in S} R_{\nu}$. Then $D_{\mathcal{S}}$ is represented by $R^{\psi}_{\bar{\rho}} \otimes_{R^{\Box}_{\mathcal{S}}} R^{\text{loc}}_{\mathcal{S}}$ (quotient b/c R_{ν} is quotient of $R^{\Box}_{\bar{\rho}\mid G_{F_{\nu}}}$). Independent of choice of ρ since the D_{ν} are deformation problems (condition (6)). To add T-framing, specifying $|T| \ n \times n$ matrices (subtract 1 for scaling equivalence). See [CHT, 2.2.9].

Presentation over local lifting rings

Recall

We showed dim $R_{\bar{\rho}} \ge 1 + h^1(G, \operatorname{ad} \bar{\rho}) - h^2(G, \operatorname{ad} \bar{\rho})$. Can we get a similar theory for $R_{\mathcal{S}}^{\Box_T}$?

Note $\beta_{\nu}^{-1}\rho^{\Box_T}|_{G_{F_{\nu}}}\beta_{\nu}: G_{F_{\nu}} \to \operatorname{GL}_n(R_{\mathcal{S}}^{\Box_T}) \in D_{\nu}$ is independent of choice of strict equivalence of *T*-frame \implies a map $R_{\nu} \to R_{\mathcal{S}}^T$, which induces a **canonical** map

$$R_{\mathcal{S},T}^{\mathrm{loc}} := \widehat{\bigotimes}_{\nu \in T} R_{\nu} \to R_{\mathcal{S}}^{\Box_T}.$$

Now set $\mathfrak{m} := \mathfrak{m}_{R_{S}^{\Box_{T}}}$ and $\mathfrak{m}^{\mathrm{loc}} := \mathfrak{m}_{R_{S,T}^{\mathrm{loc}}}$. Goal: compute the relative tangent of this presentations, i.e. $\dim_{\mathbb{F}} \operatorname{Hom}_{\mathbb{F}}(\mathfrak{m}/(\mathfrak{m}^{2},\mathfrak{m}^{\mathrm{loc}},\lambda),\mathbb{F})$. This will be Galois cohomology subject to local conditions, so more like a Selmer group.

Constructing a complex

We need to deal with 3 adjustments, which we tackle one at a time.

- Adding framing $(T \neq \emptyset)$;
- 2 Taking relative tangent space (deal with places $\nu \in T$);
- **3** Adding in general local conditions at $\nu \in S \setminus T$.

(1): Assume $\mathcal{D}_{\nu} = \mathcal{D}_{\rho|_{G_{F_{\nu}}}}^{\Box}$ are trivial. What is $\operatorname{Hom}_{\mathbb{F}}(\mathfrak{m}/(\mathfrak{m}^{2},\lambda),\mathbb{F}) \simeq \mathcal{D}_{S}^{\Box_{T}}(\mathbb{F}[\varepsilon])$? Just fixing determinants, so:

$$\begin{aligned} (\rho, (\alpha_{\nu})_{\nu \in T})/\sim &= (Z^{1}(G_{F,S}, \operatorname{ad}^{0} \bar{\rho}) \oplus \bigoplus_{\nu \in T} (1 + \varepsilon M_{n}(\mathbb{F})))/\sim \\ &= \operatorname{coker} \left(\operatorname{ad} \bar{\rho} \xrightarrow{\partial \oplus \Delta_{T}} Z^{1}(G_{F,S}, \operatorname{ad}^{0} \bar{\rho}) \oplus \bigoplus_{\nu \in T} \operatorname{ad} \bar{\rho} \right), \end{aligned}$$

where $\Delta_T(a) = (a, a, \dots, a).$

(2): relative tangent space

Claim

For $\{D_{\nu}\}_{\nu \in S \setminus T}$ trivial, $\operatorname{Hom}_{\mathbb{F}}(\mathfrak{m}/(\mathfrak{m}^2, \mathfrak{m}^{\operatorname{loc}}, \lambda), \mathbb{F})$ is

$$\ker\left((Z^1(G_{F,S}, \mathrm{ad}^0\,\bar{\rho}) \oplus \bigoplus_{\nu \in T} \mathrm{ad}\,\bar{\rho})/\operatorname{im}(\partial \oplus \Delta_T) \xrightarrow{\oplus_{\nu \in T} \operatorname{res}_{\nu} \oplus (-\partial)} \bigoplus_{\nu \in T} Z^1(F_{\nu}, \mathrm{ad}^0\,\bar{\rho})\right)$$

Proof.

Note $\mathfrak{m}/(\mathfrak{m}^2, \mathfrak{m}^{\mathrm{loc}}, \lambda) = \operatorname{coker}(\mathfrak{m}^{\mathrm{loc}}/((\mathfrak{m}^{\mathrm{loc}})^2, \lambda) \to \mathfrak{m}/(\mathfrak{m}^2, \lambda))$, so we compute $\operatorname{ker}(\mathcal{D}_{\mathcal{S}}^{\Box_T}(\mathbb{F}[\varepsilon]) \to \bigoplus_{\nu \in T} D_{\nu}(\mathbb{F}[\varepsilon]))$, which sends a lift (independent of class) $(\rho = (1 + \phi\varepsilon)\bar{\rho}, \alpha_{\nu} = 1 + T_{\nu}\varepsilon) \mapsto \alpha_{\nu}^{-1}\rho\alpha_{\nu}$, where $T_{\nu} \in M_n(\mathbb{F}), \phi \in Z^1(G, \operatorname{ad}^0\bar{\rho})$. Expanding $\alpha_{\nu}^{-1}\rho\alpha_{\nu} = \bar{\rho}$,

$$\alpha_{\nu}^{-1}\rho\alpha_{\nu} = (1 - T_{\nu}\varepsilon)(1 + \phi\varepsilon)\bar{\rho}(1 + T_{\nu}\varepsilon)$$
$$= \bar{\rho} + (\phi\bar{\rho} - T_{\nu}\bar{\rho} + \bar{\rho}T_{\nu})\varepsilon = \bar{\rho},$$

So $\forall \nu \in T$, $\phi - T_{\nu} + \bar{\rho}T_{\nu}\bar{\rho}^{-1} = \phi - \partial T_{\nu} = 0$, as desired.

Constructing a complex (continued)

(3): To add general local \mathcal{D}_{ν} at $\nu \in S \setminus T$, note $\widetilde{\mathcal{L}}_{\nu} := \mathcal{D}_{\nu}(\mathbb{F}[\varepsilon]) \subseteq Z^{1}(F_{\nu}, \operatorname{ad}^{0} \bar{\rho}) \subseteq \mathcal{C}^{1}(F_{\nu}, \operatorname{ad}^{0} \bar{\rho})$ is the full preimage of its image $\mathcal{L}_{\nu} \subseteq H^{1}(F_{\nu}, \operatorname{ad}^{0} \bar{\rho})$ (by condition (6)), so $\rho \mid_{G_{F_{\nu}}} \in \mathcal{D}_{\nu}(\mathbb{F}[\varepsilon])$ iff

$$\rho \in \ker \left(Z^1(G_{F,S}, \mathrm{ad}^0 \,\bar{\rho}) \to \bigoplus_{\nu \in S \setminus T} Z^1(F_\nu, \mathrm{ad}^0 \,\bar{\rho}) / \widetilde{\mathcal{L}}_\nu \right),$$

and this is independent of choice of ρ . Summing up, we have

$$\operatorname{Hom}_{\mathbb{F}}(\mathfrak{m}/(\mathfrak{m}^2,\mathfrak{m}^{\operatorname{loc}},\lambda),\mathbb{F})=H^1(K^{\bullet}),$$

where K^{\bullet} is the finite complex

ad
$$\bar{\rho} \to Z^1(G_{F,S}, \mathrm{ad}^0 \bar{\rho}) \oplus \bigoplus_{\nu \in T} \mathrm{ad} \bar{\rho} \to \bigoplus_{\nu \in T} Z^1(F_\nu, \mathrm{ad}^0 \bar{\rho}) \oplus \bigoplus_{\nu \in S \setminus T} Z^1(F_\nu, \mathrm{ad}^0 \bar{\rho}) / \mathcal{L}_\nu.$$

So the tangent space is still an H^1 ! Motivated by this, we will instead rewrite K^{\bullet} on the level of inhomogeneous cochains.

Defining the complex

 K^{\bullet} looks like a cone construction, so we make the following definition:

Definition

Let $\mathcal{C}^{\bullet}_{S,T,\mathrm{loc}}, \mathcal{C}^{\bullet}_{0}$ be complexes of \mathbb{F} -vector spaces defined by

$$\mathcal{C}_{S,T,\mathrm{loc}}^{i} = \begin{cases} \bigoplus_{\nu \in T} \mathcal{C}^{0}(G_{\nu}, \mathrm{ad}\,\bar{\rho}) & i = 0\\ \bigoplus_{\nu \in T} \mathcal{C}^{1}(F_{\nu}, \mathrm{ad}^{0}\,\bar{\rho}) \oplus \bigoplus_{\nu \in S/T} \mathcal{C}^{1}(F_{\nu}, \mathrm{ad}^{0}\,\bar{\rho})/\widetilde{\mathcal{L}}_{\nu} & i = 1\\ \bigoplus_{\nu \in S} \mathcal{C}^{i}(F_{\nu}, \mathrm{ad}^{0}\,\bar{\rho}) & i > 1 \end{cases}$$

and $\mathcal{C}_0^0 = \mathcal{C}^0(G_{F,S}, \operatorname{ad} \bar{\rho})$ and $\mathcal{C}_0^i = \mathcal{C}^i(G_{F,S}, \operatorname{ad}^0 \bar{\rho})$ for i > 0. Define $\mathcal{C}_{S,T}^\bullet = \mathcal{C}_0^\bullet \oplus \mathcal{C}_{S,T,\operatorname{loc}}^{\bullet-1}$, with diff. $\partial : (\phi, (\psi_{\nu})_{\nu \in S}) \mapsto (\partial \phi, (\phi \mid_{G_{F_{\nu}}} - \partial \psi_{\nu})_{\nu})$. We denote $H^i_{S,T}(G_{F,S}, \operatorname{ad}^0 \bar{\rho}) := H^i(\mathcal{C}_{S,T}^\bullet)$

Corollary (Immediate from what we have already done)

 $\operatorname{Hom}_{\mathbb{F}}(\mathfrak{m}/(\mathfrak{m}^2,\mathfrak{m}^{\operatorname{loc}},\lambda),\mathbb{F})\simeq H^1_{\mathcal{S},T}(G_{F,S},\operatorname{ad}^0\bar{\rho}).$

How to grok this dimension in terms of the \mathcal{D}_{ν} will be discussed next lecture.

References

- Main sources: Patrick Allen's online course on modularity lifting 5-9, Rong's notes, Toby Gee's notes
- Technical things: Clozel-Harris-Taylor Section 2.2 (and its correction in BLGHT)