EA Global: Enter Arithmetic and Global deformation problems

Vaughan McDonald

March 4, 2021

Outline

(1) Some motivations
(2) Deformation conditions
(3) Global deformation problems
(4) Tangent space of global deformation problems

Motivation: dimension and modular forms

A refinement from the theorem last time:

Conjecture (Mazur)

If $G=G_{F, S}$ for $S \supseteq\{\nu \mid \infty\} \cup\{\nu \mid p\}$ and $\bar{\rho}: G_{F, S} \rightarrow \mathrm{GL}_{n}\left(\overline{\mathbb{F}}_{p}\right)$ cts irred.,

$$
\operatorname{dim} R_{\bar{\rho}}=1+h^{1}\left(G_{F, S}, \operatorname{ad} \bar{\rho}\right)-h^{2}\left(G_{F, S}, \operatorname{ad} \bar{\rho}\right) .
$$

Remark

This is not true for arbitrary profinite G ! Something very arithmetic. When $n=1$, equivalent to Leopoldt's conjecture.

For $f=\sum a_{n} q^{n} \in S_{2}^{\text {new }}\left(\Gamma_{0}(N)\right)$ Carayol's lemma $\Longrightarrow, \rho_{f}: G_{\mathbb{Q}} \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{Q}}_{p}\right)$ can be lifted to a rep with coeffs in \mathbb{T}_{f}. Want to show something like $R_{\bar{\rho}_{f}}^{\square} \xrightarrow{\sim} \mathbb{T}_{f}$. Immediate problem: the ρ_{f} has special properties! For example, determinant and ramification information, these will cut subschemes smaller than the dimension above.
Idea: to capture modular forms, add conditions to our deformations.

Notation

For this talk:

Notation

- Fix a number field F, a prime p, a finite set of places $S \supseteq\{\nu \mid p\}$. Let F_{S} be the maximal extension of F unramified $S \cup\{\nu \mid \infty\}$, and $G_{F, S}:=\operatorname{Gal}\left(F_{S} / F\right)$.
- Let \mathcal{O} is the ring of integers of a finite extension of \mathbb{Q}_{p} with maximal ideal λ, and $\mathbb{F}:=\mathcal{O} / \lambda, \mathcal{C}_{\mathcal{O}}$ will be the category of complete Noetherian (not Artinian!) local \mathcal{O}-algebras.
- For a field K, let $\varepsilon_{p}: G_{K} \rightarrow \mathbb{Z}_{p}^{\times}$be the p-adic cyclotomic character.
- For a representation $\bar{\rho}: \Gamma \rightarrow \mathrm{GL}_{n}(\mathbb{F})$, assume $p \nmid 2 n$.
- Denote $\mathbb{F}[\varepsilon]:=\mathbb{F}[x] /\left(x^{2}\right)$

Deformation conditions

Definition

A deformation condition/problem $\mathcal{D} \subseteq \mathcal{D}_{\bar{\rho}}^{\square}$ is a collection of lifts $\rho: \Gamma \rightarrow \mathrm{GL}_{n}(A)$ for $A \in \mathcal{C}_{\mathcal{O}}$ such that
(1) $(\mathbb{F}, \bar{\rho}) \in \mathcal{D}$
(2) If $\phi: A \rightarrow B \in \operatorname{Hom}_{\mathcal{C}_{\mathcal{O}}}(A, B)$, then $(A, \rho) \in \mathcal{D} \Longrightarrow(B, \phi \circ \rho) \in \mathcal{D}$
(3) If $\phi: A \hookrightarrow B \in \operatorname{Hom}_{\mathcal{C}_{\mathcal{O}}}(A, B)$ is an injection then $(A, \rho) \in \mathcal{D} \Longleftrightarrow(B, \phi \circ \rho) \in \mathcal{D}$.
(1) If $\left(A, \rho_{A}\right),\left(B, \rho_{B}\right) \in \mathcal{D}$ and there are maps $A, B \rightarrow C$ in $\mathcal{C}_{\mathcal{O}}$, then $\left(A \times_{C} B, \rho_{A} \times \rho_{B}\right) \in \mathcal{D}$.
(5) For an inverse system $\left(A_{i}, \rho_{i}\right) \in \mathcal{D}$ such that $\varliminf_{¿} A_{i} \in \mathcal{C}_{\mathcal{O}}$ then $\left(\lim _{\longleftarrow} A_{i}, \lim _{i} \rho_{i}\right) \in \mathcal{D}$.
(6) $(A, \rho) \in \mathcal{D}, a \in \operatorname{ker}\left(\mathrm{GL}_{n}(A) \rightarrow \mathrm{GL}_{n}(\mathbb{F})\right) \Longrightarrow\left(A, a \rho a^{-1}\right) \in \mathcal{D}$.

Remark

We take lifts rather than deformations, so we need not assume $\bar{\rho}$ be Schur.

Deformation conditions are "closed subschemes:"

Lemma

Let $R_{\bar{\rho}}^{\square} \rightarrow R$ be a surjection in $\mathcal{C}_{\mathcal{O}}$ such that $(*):$ for any lift $\rho: \Gamma \rightarrow \mathrm{GL}_{n}(A)$ to $A \in \mathcal{C}_{\mathcal{O}}$ and $g \in 1+M_{n}\left(\mathfrak{m}_{A}\right)$, the induced map $R^{\square} \rightarrow A$ factors through R iff gpg $^{-1}$ factors through R. Then the lifts that factors through R form a deformation problem, and every deformation problem \mathcal{D} arises this way

Proof.

Given \mathcal{D}, want an $I \subset R_{\bar{\rho}}^{\square}$. Let $\mathcal{I}=\left\{I \subseteq R_{\bar{\rho}}^{\square}:\left(R_{\bar{\rho}}^{\square} / I, \rho^{\square} \bmod I\right) \in \mathcal{D}\right\}$. Conditions: $(1) \Longrightarrow \mathcal{I} \neq \emptyset ;(2),(3) \Longrightarrow(A, \rho) \in \mathcal{D} \Longleftrightarrow \operatorname{ker}\left(R^{\square} \rightarrow A\right) \in \mathcal{I}$; $+(5) \Longrightarrow \mathcal{I}$ closed under nested intersection; $(4)+(5) \Longrightarrow \mathcal{I}$ closed under finite intersections. Zorn's lemma produces a minimal $I(\mathcal{D}) \in \mathcal{I}$. (6) $\Longrightarrow R:=R^{\square} / I(\mathcal{D})$ satisfies ($*$). First part is easy.

Remark

Want bijection between def. problems \mathcal{D} and $1+M_{n}\left(\mathfrak{m}_{R_{\bar{D}}}\right)$-invariant (radical) ideals $I \subseteq R_{\bar{\rho}}^{\square}$, but I don't see why $I(\mathcal{D})$ is radical. See [BLGHT, 3.1-3.2].

Deformation conditions: examples

Let $\bar{\rho}: \Gamma \rightarrow \mathrm{GL}_{n}(\mathbb{F})$ be a continuous representation.

Example (Determinant)

Fix a continuous character $\psi: \Gamma \rightarrow \mathcal{O}^{\times}$such that $\psi \bmod \lambda \equiv \operatorname{det} \bar{\rho}$. Then take $D_{\bar{\rho}}^{\square, \psi}: \mathcal{C}_{\mathcal{O}} \rightarrow$ Set, $A \mapsto\left\{(\rho, A) \in D_{\bar{\rho}}^{\square}: \operatorname{det} \rho=\Gamma \xrightarrow{\psi} \mathcal{O}^{\times} \hookrightarrow A^{\times}\right\}$. This is conjugation invariant, and so also defines $D_{\bar{\rho}}^{\psi} \subseteq D_{\bar{\rho}}$.
$D_{\bar{\rho}}^{\square, \psi}$ is a deformation. problem, represented by $R_{\bar{\rho}}^{\square, \psi}=R_{\bar{\rho}}^{\square} / J$, where $J=\left(\left\{\operatorname{det} \rho^{\square}(\sigma)-\psi(\sigma): \sigma \in \Gamma\right\}\right)$, and same for $D_{\bar{\rho}}^{\psi}$ and $R_{\bar{\rho}}^{\psi}$.
Easy to show $D_{\bar{\rho}}^{\square, \psi}(\mathbb{F}[\varepsilon]) \simeq Z^{1}\left(\Gamma, \operatorname{ad}^{0} \bar{\rho}\right), D_{\bar{\rho}}^{\psi}(\mathbb{F}[\varepsilon]) \simeq H^{1}\left(\Gamma, \operatorname{ad}^{0} \bar{\rho}\right)$, (second part uses $p \nmid n)$, where $\operatorname{ad}^{0} \bar{\rho}$ denotes trace 0 .

Theorem

(Elliptic curves): If E / \mathbb{Q} is an elliptic curve then $\operatorname{det} \rho_{E, p} \simeq \varepsilon_{p}$. (Modular forms): If $f \in S_{2}\left(\Gamma_{0}(N)\right)$ then $\operatorname{det} \rho_{f} \simeq \varepsilon_{p}$

Deformations: local examples

Example ($D^{\text {ord }}$)

For K / \mathbb{Q}_{p} finite, define $\bar{\rho}: G_{K} \rightarrow \mathrm{GL}_{2}(\mathbb{F})$ by $g \mapsto\left(\begin{array}{cc}\bar{\chi}_{1}(g) & * \\ 0 & \bar{\chi}_{2}(g)\end{array}\right)$ where $\bar{\rho}\left(I_{K}\right) \neq 1$ and $\left.\bar{\chi}_{1}\right|_{I_{K}}=1$. Fixing cts $\psi: I_{K} \rightarrow \mathcal{O}^{\times}$, define $D^{\text {ord }}: \mathrm{CNL}_{\mathcal{O}} \rightarrow$ Set as lifts ρ to A strictly equivalent to $\left(\begin{array}{cc}\chi_{1} & * \\ 0 & \chi_{2}\end{array}\right)$ with $\left.\chi_{1}\right|_{I_{K}}=1,\left.\chi_{2}\right|_{I_{K}}=\psi$.
$\mathcal{D}^{\text {ord }}$ is a deformation problem, and when $\bar{\chi}_{1} \bar{\chi}_{2}^{-1} \neq 1, \bar{\varepsilon}_{p}$ in fact is represented by $R^{\text {ord }} \simeq \mathcal{O}_{K}\left[\left[x_{1}, \ldots, x_{g}\right]\right], g=4+\left[K: \mathbb{Q}_{p}\right]$ (compute with Tate duality).

Theorem

(Elliptic curves): If an elliptic curve E / \mathbb{Q} has good ordinary reduction at p ($p \nmid a_{p}$) then $\rho_{E, p} \in \mathcal{D}^{\text {ord }}$.
(Modular forms): If $f \in S_{2}\left(\Gamma_{0}(N)\right)$ then $\left.\rho_{f}\right|_{G_{Q_{p}}}: G_{\mathbb{Q}_{p}} \rightarrow \mathrm{GL}_{2}\left(\mathcal{O}_{K^{\prime}}\right) \in \mathcal{D}^{\text {ord }}$ iff $a_{p} \in \mathcal{O}_{K^{\prime}}^{\times}$.

Global deformation problems

Definition

A global deformation problem is the data $\mathcal{S}=\left(\bar{\rho}, S, \psi, \mathcal{O},\left\{\mathcal{D}_{\nu}\right\}_{\nu \in S}\right)$ where $\bar{\rho}: G_{F, S} \rightarrow \mathrm{GL}_{n}(\mathbb{F})$ is Schur, $\psi: G_{F, S} \rightarrow \mathcal{O}^{\times}$has $\psi \equiv \operatorname{det} \bar{\rho} \bmod \lambda$, and \mathcal{D}_{ν} is a deformation problem for $\left.\bar{\rho}\right|_{G_{\nu}}$. We say a lift $\rho: G_{F, S} \rightarrow \operatorname{GL}_{n}(A)$ of $\bar{\rho}$ to A is of type \mathcal{S} if:

- $\operatorname{det} \rho=\psi$
- $\left.\rho\right|_{G_{F_{\nu}}} \in D_{\nu}(A)$ for all $\nu \in S$.

A deformation is of type \mathcal{S} if any of its lifts are.

Definition

A T-framed deformation of type \mathcal{S} to $A \in \mathcal{C}_{\mathcal{O}}$ is a strict equivalence class of tuples $\left(\rho,\left\{\beta_{\nu}\right\}_{\nu \in T}\right)$ for $\rho: \Gamma \rightarrow \operatorname{GL}_{n}(A)$ a lift of $\bar{\rho}$ of type \mathcal{S} and $\beta_{\nu} \in \operatorname{ker}\left(\mathrm{GL}_{n}(A) \rightarrow \mathrm{GL}_{n}(\mathbb{F})\right)$. Strict equivalence means for $\alpha \in \operatorname{ker}\left(\mathrm{GL}_{n}(A) \rightarrow \mathrm{GL}_{n}(\mathbb{F})\right),\left(\rho,\left\{\beta_{\nu}\right\}_{\nu \in T}\right) \sim\left(\alpha \rho \alpha^{-1},\left\{\alpha \beta_{\nu}\right\}_{\nu \in T}\right)$ (so that $\left.\beta_{\nu}^{-1} \rho\right|_{G_{F_{\nu}}} \beta_{\nu} \in D_{\nu}$ is well-defined).

T-framed deformations

Lemma

The functor $D_{\mathcal{S}}^{\square_{T}}: \mathcal{C}_{\mathcal{O}} \rightarrow$ Set sending A to T-framed deformations of $\bar{\rho}$ of type \mathcal{S} is representable by $R_{\mathcal{S}}^{\square_{T}} \in \mathcal{C}_{\mathcal{O}}$. In fact, $\mathcal{R}_{S}^{\square_{T}} \simeq R_{\mathcal{S}}\left[\left[x_{1}, \ldots, x_{n^{2}|T|-1}\right]\right]$ (non-canonically)

Proof.

We saw fixings determinants representable, so suffices to show local properties + framing representable. Assume for now $\mathcal{T}=\emptyset$. Choosing a lift ρ of the universal $R_{\bar{\rho}}^{\psi}$-deformation and taking $\left.\rho\right|_{G_{F_{\nu}}}$ gives maps $R_{\left.\bar{\rho}\right|_{G_{F_{\nu}}}} \rightarrow R_{\bar{\rho}}^{\psi}$. By pushout, this gives a map $R_{\mathcal{S}}^{\square}:=\widehat{\bigotimes}_{\nu \in S} R_{\left.\bar{\rho}\right|_{G_{F_{\nu}}}}^{\square} \rightarrow R_{\bar{\rho}}^{\psi}$. Also define
$R_{\mathcal{S}}^{\mathrm{loc}}:=\widehat{\bigotimes}_{\nu \in S} R_{\nu}$. Then $D_{\mathcal{S}}$ is represented by $R_{\bar{\rho}}^{\psi} \otimes_{R_{\mathcal{S}}^{\square}} R_{\mathcal{S}}^{\text {loc }}$ (quotient b/c R_{ν} is quotient of $\left.R_{\left.\bar{\rho}\right|_{G_{F_{\nu}}} ^{\square}}\right)$. Independent of choice of ρ since the D_{ν} are deformation problems (condition (6)). To add T-framing, specifying $|T| n \times n$ matrices (subtract 1 for scaling equivalence). See [CHT, 2.2.9].

Presentation over local lifting rings

Recall

We showed $\operatorname{dim} R_{\bar{\rho}} \geq 1+h^{1}(G, \operatorname{ad} \bar{\rho})-h^{2}(G, \operatorname{ad} \bar{\rho})$. Can we get a similar theory for $R_{\mathcal{S}}^{\square_{T}}$?

Note $\left.\beta_{\nu}^{-1} \rho^{\square_{T}}\right|_{G_{F_{\nu}}} \beta_{\nu}: G_{F_{\nu}} \rightarrow \mathrm{GL}_{n}\left(R_{\mathcal{S}}^{\square_{T}}\right) \in D_{\nu}$ is independent of choice of strict equivalence of T-frame \Longrightarrow a map $R_{\nu} \rightarrow R_{\mathcal{S}}^{T}$, which induces a canonical map

$$
R_{\mathcal{S}, T}^{\mathrm{loc}}:=\widehat{\bigotimes}_{\nu \in T} R_{\nu} \rightarrow R_{\mathcal{S}}^{\square_{T}} .
$$

Now set $\mathfrak{m}:=\mathfrak{m}_{R_{\mathcal{S}} \square_{T}}$ and $\mathfrak{m}^{\text {loc }}:=\mathfrak{m}_{R_{S} \text { loc }}$.
Goal: compute the relative tangent of this presentations, i.e. $\operatorname{dim}_{\mathbb{F}} \operatorname{Hom}_{\mathbb{F}}\left(\mathfrak{m} /\left(\mathfrak{m}^{2}, \mathfrak{m}^{\text {loc }}, \lambda\right), \mathbb{F}\right)$. This will be Galois cohomology subject to local conditions, so more like a Selmer group.

Constructing a complex

We need to deal with 3 adjustments, which we tackle one at a time.
(1) Adding framing $(T \neq \emptyset)$;
(3) Taking relative tangent space (deal with places $\nu \in T$);
(0) Adding in general local conditions at $\nu \in S \backslash T$.
(1): Assume $\mathcal{D}_{\nu}=\mathcal{D}_{\left.\rho\right|_{G_{F_{\nu}}}}$ are trivial. What is
$\operatorname{Hom}_{\mathbb{F}}\left(\mathfrak{m} /\left(\mathfrak{m}^{2}, \lambda\right), \mathbb{F}\right) \simeq \mathcal{D}_{S}^{\square_{T}}(\mathbb{F}[\varepsilon])$? Just fixing determinants, so:

$$
\begin{aligned}
\left(\rho,\left(\alpha_{\nu}\right)_{\nu \in T}\right) / \sim & =\left(Z^{1}\left(G_{F, S}, \operatorname{ad}^{0} \bar{\rho}\right) \oplus \bigoplus_{\nu \in T}\left(1+\varepsilon M_{n}(\mathbb{F})\right)\right) / \sim \\
& =\operatorname{coker}\left(\operatorname{ad} \bar{\rho} \xrightarrow{\partial \oplus \Delta_{T}} Z^{1}\left(G_{F, S}, \operatorname{ad}^{0} \bar{\rho}\right) \oplus \bigoplus_{\nu \in T} \operatorname{ad} \bar{\rho}\right),
\end{aligned}
$$

where $\Delta_{T}(a)=(a, a, \ldots, a)$.

(2): relative tangent space

Claim

For $\left\{D_{\nu}\right\}_{\nu \in S \backslash T}$ trivial, $\operatorname{Hom}_{\mathbb{F}}\left(\mathfrak{m} /\left(\mathfrak{m}^{2}, \mathfrak{m}^{\text {loc }}, \lambda\right), \mathbb{F}\right)$ is
$\operatorname{ker}\left(\left(Z^{1}\left(G_{F, S}, \operatorname{ad}^{0} \bar{\rho}\right) \oplus \bigoplus_{\nu \in T} \operatorname{ad} \bar{\rho}\right) / \operatorname{im}\left(\partial \oplus \Delta_{T}\right) \xrightarrow{\oplus \oplus_{\nu T} \operatorname{res}_{\nu} \oplus(-\partial)} \bigoplus_{\nu \in T} Z^{1}\left(F_{\nu}, \operatorname{ad}^{0} \bar{\rho}\right)\right.$

Proof.

Note $\mathfrak{m} /\left(\mathfrak{m}^{2}, \mathfrak{m}^{\text {loc }}, \lambda\right)=\operatorname{coker}\left(\mathfrak{m}^{\text {loc }} /\left(\left(\mathfrak{m}^{\text {loc }}\right)^{2}, \lambda\right) \rightarrow \mathfrak{m} /\left(\mathfrak{m}^{2}, \lambda\right)\right)$, so we compute $\operatorname{ker}\left(\mathcal{D}_{\mathcal{S}}^{\square_{T}}(\mathbb{F}[\varepsilon]) \rightarrow \bigoplus_{\nu \in T} D_{\nu}(\mathbb{F}[\varepsilon])\right)$, which sends a lift (independent of class) $\left(\rho=(1+\phi \varepsilon) \bar{\rho}, \alpha_{\nu}=1+T_{\nu} \varepsilon\right) \mapsto \alpha_{\nu}^{-1} \rho \alpha_{\nu}$, where $T_{\nu} \in M_{n}(\mathbb{F}), \phi \in Z^{1}\left(G, \operatorname{ad}^{0} \bar{\rho}\right)$. Expanding $\alpha_{\nu}^{-1} \rho \alpha_{\nu}=\bar{\rho}$,

$$
\begin{aligned}
\alpha_{\nu}^{-1} \rho \alpha_{\nu} & =\left(1-T_{\nu} \varepsilon\right)(1+\phi \varepsilon) \bar{\rho}\left(1+T_{\nu} \varepsilon\right) \\
& =\bar{\rho}+\left(\phi \bar{\rho}-T_{\nu} \bar{\rho}+\bar{\rho} T_{\nu}\right) \varepsilon=\bar{\rho}
\end{aligned}
$$

So $\forall \nu \in T, \phi-T_{\nu}+\bar{\rho} T_{\nu} \bar{\rho}^{-1}=\phi-\partial T_{\nu}=0$, as desired.

Constructing a complex (continued)

(3): To add general local \mathcal{D}_{ν} at $\nu \in S \backslash T$, note
$\widetilde{\mathcal{L}}_{\nu}:=\mathcal{D}_{\nu}(\mathbb{F}[\varepsilon]) \subseteq Z^{1}\left(F_{\nu}, \operatorname{ad}^{0} \bar{\rho}\right) \subseteq \mathcal{C}^{1}\left(F_{\nu}\right.$, ad $\left.^{0} \bar{\rho}\right)$ is the full preimage of its image $\mathcal{L}_{\nu} \subseteq H^{1}\left(F_{\nu}\right.$, ad $\left.^{0} \bar{\rho}\right)$ (by condition (6)),so $\left.\rho\right|_{G_{F_{\nu}}} \in \mathcal{D}_{\nu}(\mathbb{F}[\varepsilon])$ iff

$$
\rho \in \operatorname{ker}\left(Z^{1}\left(G_{F, S}, \operatorname{ad}^{0} \bar{\rho}\right) \rightarrow \bigoplus_{\nu \in S \backslash T} Z^{1}\left(F_{\nu}, \operatorname{ad}^{0} \bar{\rho}\right) / \widetilde{\mathcal{L}}_{\nu}\right)
$$

and this is independent of choice of ρ. Summing up, we have

$$
\operatorname{Hom}_{\mathbb{F}}\left(\mathfrak{m} /\left(\mathfrak{m}^{2}, \mathfrak{m}^{\text {loc }}, \lambda\right), \mathbb{F}\right)=H^{1}\left(K^{\bullet}\right),
$$

where K^{\bullet} is the finite complex
$\operatorname{ad} \bar{\rho} \rightarrow Z^{1}\left(G_{F, S}, \operatorname{ad}^{0} \bar{\rho}\right) \oplus \bigoplus_{\nu \in T} \operatorname{ad} \bar{\rho} \rightarrow \bigoplus_{\nu \in T} Z^{1}\left(F_{\nu}, \operatorname{ad}^{0} \bar{\rho}\right) \oplus \bigoplus_{\nu \in S \backslash T} Z^{1}\left(F_{\nu}, \operatorname{ad}^{0} \bar{\rho}\right) / \mathcal{L}_{\nu}$.
So the tangent space is still an H^{1} ! Motivated by this, we will instead rewrite K^{\bullet} on the level of inhomogeneous cochains.

Defining the complex

K^{\bullet} looks like a cone construction, so we make the following definition:

Definition

Let $\mathcal{C}_{S, T, \text { loc }}^{\bullet}, \mathcal{C}_{0}^{\bullet}$ be complexes of \mathbb{F}-vector spaces defined by

$$
\mathcal{C}_{S, T, \text { loc }}^{i}= \begin{cases}\bigoplus_{\nu \in T} \mathcal{C}^{0}\left(G_{\nu}, \operatorname{ad} \bar{\rho}\right) & i=0 \\ \bigoplus_{\nu \in T} \mathcal{C}^{1}\left(F_{\nu}, \operatorname{ad}^{0} \bar{\rho}\right) \oplus \bigoplus_{\nu \in S / T} \mathcal{C}^{1}\left(F_{\nu}, \operatorname{ad}^{0} \bar{\rho}\right) / \widetilde{\mathcal{L}}_{\nu} & i=1 \\ \bigoplus_{\nu \in S} \mathcal{C}^{i}\left(F_{\nu}, \operatorname{ad}^{0} \bar{\rho}\right) & i>1\end{cases}
$$

and $\mathcal{C}_{0}^{0}=\mathcal{C}^{0}\left(G_{F, S}, \operatorname{ad} \bar{\rho}\right)$ and $\mathcal{C}_{0}^{i}=\mathcal{C}^{i}\left(G_{F, S}, \operatorname{ad}^{0} \bar{\rho}\right)$ for $i>0$.
Define $\mathcal{C}_{\mathcal{S}, T}^{\bullet}=\mathcal{C}_{0}^{\bullet} \oplus \mathcal{C}_{S, T, \text { loc }}^{\bullet-1}$, with diff. $\partial:\left(\phi,\left(\psi_{\nu}\right)_{\nu \in S}\right) \mapsto\left(\partial \phi,\left(\left.\phi\right|_{G_{F_{\nu}}}-\partial \psi_{\nu}\right)_{\nu}\right)$. We denote $H_{S, T}^{i}\left(G_{F, S}, \operatorname{ad}^{0} \bar{\rho}\right):=H^{i}\left(\mathcal{C}_{S, T}^{\bullet}\right)$

Corollary (Immediate from what we have already done)

$\operatorname{Hom}_{\mathbb{F}}\left(\mathfrak{m} /\left(\mathfrak{m}^{2}, \mathfrak{m}^{\mathrm{loc}}, \lambda\right), \mathbb{F}\right) \simeq H_{\mathcal{S}, T}^{1}\left(G_{F, S}, \operatorname{ad}^{0} \bar{\rho}\right)$.
How to grok this dimension in terms of the \mathcal{D}_{ν} will be discussed next lecture.

References

- Main sources: Patrick Allen's online course on modularity lifting 5-9, Rong's notes, Toby Gee's notes
- Technical things: Clozel-Harris-Taylor Section 2.2 (and its correction in BLGHT)

