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Basic set-up

For now, let k be any field, I" an abstract group. Let V be a finite-dimensional k-vector space
and p : I' — GLi(V) a representation.

If p is irreducible, then End(p) is a finite-dimensional division algebra over k.

Proof

End(p) is clearly finite-dimensional. Let 0 # « € End(p). aV < V is stable under I" and
non-zero, so aV = V. Therefore « has an inverse.

Corollary

| A\

Let k = k and let py, p; be irreducible. Then

kif p1 = py

Homyry (pr, p2) = {0 otherwise.

Lukas Kofler University of Cambridge Galois deformations



Remarks

p irreducible does not imply that p ®; k : T' — GL(V ® k) is irreducible: i.e. C4 — GL>(R),
o (_01 é) becomes reducible over C.

End(p) = k does not imply that p is irreducible: take (; :) — GLy(R).

Definition

| N

A representation p is Schur if Endyr(p) = k. It is absolutely irreducible if V&’ /k, p & k' is
irreducible.

Lemma

| N

The following are equivalent:
@ pis absolutely irreducible

@ p ® kis irreducible

@ pis Schur and irreducible.

See [C-R, 29.13].
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Set-up

L is a finite extension of Q, with ring of integers O, uniformiser A and residue field k. Let I" be
a profinite group. Co is the category of complete Noetherian local O-algebras A with a unique
isomorphism A/my = k, and Co is the full subcategory of local Artinian (J-algebras.

Artinian rings

| 5

For a commutative Noetherian ring A, the following are equivalent:
e A is Artinian, i.e. A satisfies the DCC on ideals.

o A has Krull dimension zero.

e Every finitely generated module over A has finite length.

¢ A is a finite product of commutative Artinian local rings.

e Spec(A) is finite and discrete.

Quotients and localisations of Artinian rings are Artinian. Artinian local rings are complete. An
integral domain is Artinian if and only if it is a field.
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Definition

Letp : I' — GLy (k) be a continuous representation which is Schur, i.e. Endyr(p) = k.
Define the deformation functor %5 : C/(\g — Sets by

K5 : A — Def5(A) = {p: T — GL,(A) such that p mod my = p}/ = .

Lemma

If p; = ps, then a € GL,(A) such that apja~! = p, can be chosen to lie in
ker(GL,(A) — GLu(k)).

Proof

| A\

The reduction if a to GL, (k) must be a scalar since p is Schur. We can lift this to a scalar
X € GL,(A). Then replace a by a\ ™.

| \

Theorem

If p is Schur, then %5 is representable by a ring R%”"’ € C/(\g, the universal deformation ring of p,

ie. #5(A) = Homg (Rw™, A) for any A € Co.

\
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The universal deformation

We can take the inverse image of id under the bijection %%"i"(R%"i") = Homg~ (R%”iv, R%"“’).
This gives a universal deformation p' : T' — GLu(R&"").

It is universal in the sense that every deformation factors through p%'”v, ie. forallA € Cp and
all p : T' — GL,(A) lifting p there is a unique f,, : GL, (R%"iv) — GL,(A) such that

fpo p%’”" ~ p.

All this applies with R% in place of R%’”V, giving the universal framed deformation p%, except
we get a strict equality in the previous line.

There is a canonical map R — RE.

Taking a deformation p to its isomorphism class gives a map %%(A) — %%"” (A). Apply
Yoneda’s lemma.
Alternatively, we view p% : ' — GL, (R%) as a deformation of p to get a unique induced map

Runiv _, RO
P P
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Amapf:A — Bin é(\g is small if its kernel is a principal ideal annihilated by my.

Schlessinger’s criterion

Let F : Co — Sets be a continuous functor such that F (k) is a singleton.
For A,B,C € Cp and maps & : A — Band 3 : B — C, consider

¢1F(A XcB) —)F(A) XF(C) F(B).

F is representable if and only if all the following conditions are satisfied.
H1) If « is small, then ¢ is surjective.

H2) If A = k[e] and C = k, then ¢ is bijective.

H3) dimy, F(k[e]) < o0

H4) If A = B and o = 3 is small, then ¢ is bijective.

Note: F(k[e]) has a natural k-vector space structure, see [Ma2].

See [Sch].
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Proof of Theorem (Mazur)

Use Schlessinger’s criterion, see [Mal].

Proof of Theorem (Kisin)

Use formal schemes to make precise the idea that R%”i" = Rp5/PGL,. See [Boe].

Proof of Theorem (Faltings)

From the last talk we know that we may assume I' is topologically finitely generated. Take a set
of topological generators g1, ..., g-. Choose lifts E; € M, (O) of the p(g;). For A € Co we
denote by M(A) the ring M,,(A)/(A.I).

We define a map iy : MO(A) — M/;(A) by X — (XE; — E;X)"_,. This is clearly injective. We
claim that i4 is a split injection:

Denote the reduction of i4 modulo my by ix. If i (X) = 0 then Xp(g;) = p(gi)X. Because p is
Schur, X is a scalar and so i is injective. Thus M, (k)" = ir(M2(k)) @ (&P ke;). We can lift
these ¢; to e; € M,(A). Then by Nakayama’s lemma, M, (A)" = is(M2(A)) @ (P Ae;), 50 iy is
indeed split.

Fix a splitting 7 of ipp. Canonically, M(A) =~ M(O) Qo A and T4 = 7o ®id, is a
splitting of 4. Define the map ¢ by sending a deformation p to (p(g:))/_; € Mu(A)".

We say that p is well-placed if ma(¢(p)) € MO(A) equals 7o (Ey, ..., Er) ® 1. Now we need to
prove a lemma.
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Lemma (Faltings)

For every p € Def5(A) there is a matrix M € ker(GL,(A) — GLy(k)) such that MpM~! is
well-placed, i.e. ma(&(p)) = To(E1, ..., Er) ® 1. M is unique modulo 1 + my.

| N

Proof

Recall that A = lim A/m’;. By completeness it is enough to prove the statement for A/m/, i.e.
for Artinian local O-algebras A. We use induction on the length of A.

The base case A = k is clear. Now assume that my' = 0 and that p is well-placed mod m:f L
We want to find a unique H € Mg(mi"‘*l) such that p’ = (1 + H)p(1 + H)~" is well-placed.
Let H € MY (m;x"_l) act on p by conjugation with 1 + H, on M, (A)" by

X=X+ (1+H)X(1+H)~! =X+ HX — XH and on M)(A) by Y ~— Y + H. We can check
that this action of Mg(mx‘fl) is compatible with the maps ¢ and 4.

Therefore ma($(p")) = ma(p(p)) + H. We know that this is congruent to

7o (El, ..., Er) ® 1 mod mg"fl. So choose H € Mg(mjf*l) such that the congruence holds
modulo m’{".

N
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Theorem

If p is Schur, then %5 is representable by a ring R%”i" € 5(\9, the universal deformation ring of p,
ie. Z5(A) = Hom g~ (R%"iV,A) forany A € Co.

Proof of Theorem (Faltings) continued

‘We apply the lemma to get a well-placed conjugate p of p%. Define R to be the smallest closed
sub-0-algebra of R that contains all entries of p(g) for all g € I. Then p lies in Def5(R). We
claim that R is the universal deformation ring R%’”V:

Surjectivity of the map HomC/E (R,A) — Def5(A) follows from the surjectivity of

Homé?o (R5,A) — Defp(A).

For injectivity, suppose that for fi, > € Hom e (R,A), the associated well-placed

p1,p2: G5 GL,(R) fidz, GLy(A) lie in the same class in Def5(A), i.e. apja~! = p; for

some a € ker(GL,(A) — GL,(k)). By the uniqueness statement in Faltings’ lemma, p; = ps.
By the definition of R, f; equals f> and we are done.
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Schur’s lemma for A-coefficients

LetA € Co, let p: I' > GL,(A) be a continuous representation with p := p mod my
absolutely irreducible. Let a € GL,(A). If apa=! = p, thena € A*.

As in the proof of the previous lemma, we can reduce to Artinian local O-algebras A and use
induction on the length of A. Base case: A = k. We can conclude by Schur’s lemma since p is
absolutely irreducible.

Now let A be Artinian local. We have 0 = mf{“ G m§ & ... & A with each quotient a k-vector
space. Choose a one-dimensional subspace / € m¢, i.e. a minimal non-zero ideal / of A.

Let a € GL,(A) commute with p. By the induction hypothesis,

amod I € Endy/(p mod I) = (A/I)*.

Thus we can write @ = Al, + ag, where A\ € A* and ag € M,,(I). For any -y € " we have
(Aln + a0)p(v) = p(7)(Aln + ao) and so

aop(~y) = p(7y)ap in M,(I). But I = k and A surjects onto k, so

aop(y) = p(v)ap in M, (k). Now we use Schur’s lemma again to see that a is a scalar.
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Carayol’s lemma

LetA € C/(\% B < A aclosed subring, B € 5(\9, and trp(T") < B. Then there exists a in
ker(GL,(A) — GL,(k)) such that ap(T")a~! lies in GL,(B)  GL,(A).

| N

Proof

As in the previous proof, we may assume that A and B are local Artinian. The base case A = k
is trivial. Take I = k — my, as before. By the induction hypothesis applied to A/I we may
assume that

p(T') mod I € GL,(B/I N B).

Since I N B < I = k, either ] " B = I or I n B = 0. In the first case, p(y) mod I € GL,(B/I)
implies that p(y) € GL,(B), as required.

If I n B = 0, we can consider the inclusion B @ e < A given by (b, i) > b + i, where

€% = 0. It will be enough to find a € ker(GL,(B @® Ie) — GL,(k)) such that

ap(T)a—!' = GL,(B), so we can assume that B @ Ie = A.

Now suppose that there exists « € M, (I) with

(1 + @)p(7)(1 + @) ~! mod mp € GL,(B/mp).

Then
(1+a)p(1)(1 + @) € GLu(B).

Thus we only need to prove the statement in the case A/mp = k @ ke = k[e]/(€?) and
B/mp = k. This will be shown in the next talk.
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Brauer-Nesbitt for A-coefficients

Letp : I' — GL,(k) be an absolutely irreducible representation, and let p;, p2 : I' — GL,(A)
be isomorphic to p mod my. Then trp; = trpy = p; = po.

| \

Corollary

univ

The ring R is topologically generated over O by the elements tr(pﬁ (7)) for ~ in a dense
subset of T.

| =
\

Proof

Let S be the closure in R¥"" of the subring generated by the r( p%’”"('y)). S is an element of Co
with maximal ideal mg = mg n S.

By continuity of p%”i", tr( p%”"('y)) lies in S for every 7y € I". Therefore we can apply Carayol’s

lemma: There exists some a in ker(GL, (R%’”") — GL,(k)) such that ap%"v('y)a*l € GL,(S)
forall y e I'.

Thus conjugation by a induces a map f : R"ﬁ’”‘V — S. Since conjugation preserves traces, this is
a retract of the inclusion i : § — R%"”’, i.e. fy oi = ids.

The inclusion i induces a morphism of functors %%’”"’ — Homg~ (S, —). This is surjective
because it has a section induced by f;. It follows from Brauer-Nesbitt for A-coefficients that a
deformation is determined by its trace on a dense open subset of I'. Thus the morphism is also
injective. By Yoneda’s lemma it follows that the inclusion § — R%”i" is actually an
isomorphism in Cp.
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