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Motivation

Let F : (Schemes)opp → (Sets) be a functor represented by some
(noetherian) scheme M. (Or more generally a noetherian algebraic stack)
Let x be a ’point’ of F , i.e. an element of F (k).

Goal
Study infinitesimal neighbourhood of M around x using F , to obtain
information about smoothness, tangent spaces,...

Example
F (S) = Elliptic curve over S with level structure  X1(N),X0(N), . . .

For g ≥ 2, F (S) = smooth proper X → S of genus g  Mg

Given a scheme X , consider (fppf sheaffication of)
F (S) = Pic(XS)/Pic(S)  PicX
F (S) = closed subschemes Z ⊂ Pn

S , flat over S  HilbPn
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Motivation

Let C be the category of local Artinian rings with given isomorphism
A/mA ' k . Let Fx : C → (Sets) be given by Fx(A) = elements of
F (SpecA) mapping to x under F (Spec(A/mA)) = F (k).

Answer
Formal neighbourhood of x is determined by Fx !

More precisely, if F is represented by M, then Fx is pro-represented by ÔM,x

Example

If F =Mg and k algebraically closed, then ÔM,x ' k[[t1, . . . , t3g−3]] if
char k = 0, and W (k)[[t1, . . . , t3g−3]] otherwise.
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Motivation

Imagine we have a moduli space of Galois representations

”S 7→ {ρ : Γ→ GLn(OS)}”

(As written, has very bad properties and barely makes sense, see however
the recent work of Emerton-Gee)
We may then similarly fix an Fq-point ρ̄ : Γ→ GLn(Fq) and consider lifts to
ρ : Γ→ GLn(A) for Artinian local rings with A/mA ' Fq.

 Leads to the theory of deformations of Galois representations, and has
the same features as classical deformation theory in algebraic geometry (i.e.
cohomological interpretation of tangent spaces, obstructions, deformation
problems...)
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Condition Φp

Lemma
Let Γ be a profinite group. TFAE:

1 For every open H ≤ Γ, the maximal pro-p quotient of H is
topologically finitely generated.

2 For every open H ≤ Γ, the Fp-vector space Hab ⊗Z Fp is
finite-dimensional.

In both are satisfied, we say Γ satisfies Φp.

Proof.
(1)⇒ (2): clear.
(2)⇒ (1): Suppose Hab ⊗ Fp finitely generated. Also assume H is pro-p.
Let S ⊂ H be a lift of the generating set of Hab ⊗ Fp. We claim that S
topologically generates H. We may suppose that H is finite: now this is
exactly Burnside’s basis theorem.
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Condition Φp

Definition
Recall: Γ satisfies Φp if dimFp(Hab ⊗ Fp) <∞ for all open H ≤ Γ

Examples
Let F be a local field, then GF satisfies Φp.
Reason: G ab

F ' F×/(F×)p (LCFT), which is finite. Since every open
subgroup of GF is of the form GF ′ , same argument applies.
Let F be a global field, S a finite set of primes of F and GF ,S =
Galois group of maximal extension unramified outside S . Then GF ,S

satisfies Φp.
Reason: only finitely many Galois extensions of F of degree p
unramified outside S .
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Notations

Fix a finite field k of characteristic p.

Notation
Let O be the ring of integers of a finite extension of Qp with residue
field k .
CO = category of local Artinian O-algebras (A,mA) with residue field
k , with local homomorphisms (Provides unique iso A/mA ' k)

ĈO = category of complete Noetherian local O-algebras with residue
field k . (Coincides with pro-objects of CO with dimk mA/m

2
A <∞ .)

Definition

A functor F : ĈO → (Sets) is continuous if F (A) = lim←−F (A/mn
A) for all

A ∈ ĈO, and representable if F (A) = Hom(R,A) for some R ∈ ĈO.

For example, F (A) = mA is represented by O[[X ]]
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Deformations

Let Γ be a profinite group satisfying Φp. Let ρ̄ : Γ→ GLn(k) be a
(continuous) representation.

Definition

Define the framed deformation functor D�ρ̄ : ĈO → (Sets) by sending
A ∈ ĈO to the set of all ρ : Γ→ GLn(A) such that ρ mod mA = ρ̄.

Definition
Say ρ, ρ′ ∈ D�ρ̄ (A) are strictly equivalent if there exists g ∈ GLn(A)
which conjugates ρ to ρ′. (Such g cqn be chosen to be trivial in
GLn(k).)
A deformation is a strict equivalence class of framed deformations.
The deformation functor Dρ̄ : ĈO → (Sets) sends A ∈ ĈO to the set of
A-valued deformations.
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Representability

D�ρ̄ and Dρ̄ are continuous functors.

Theorem
Suppose that Γ satisfies Φp.

1 The functor D�ρ̄ is representable by an element R�ρ̄ ∈ ĈO.
2 If ρ̄ is absolutely irreducible, then Dρ̄ is representable by an element

Rρ̄ ∈ ĈO.

Proof.

We only prove (1) today. Warm-up: suppose that Γ = Ẑ.
Let g̃ ∈ GLn(O) be a lift of ρ̄(1) ∈ GLn(k). Then an element ρ ∈ D�ρ̄ (A) is
specified by the element ρ(1) ∈ g̃ + Matn(mA). Therefore
D�ρ̄ (A) ' mn2

A ' HomO(O[[X11, . . . ,Xnn]],A), so R�ρ̄ ' O[[X11, . . . ,Xnn]].
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Proof of general case

Lemma
To prove that D�ρ̄ is representable, we may assume that Γ is topologically
finitely generated.

Proof:
Let H = ker(ρ̄ : Γ→ GLn(k)), an open subgroup of Γ.
Let H0 = ker(H → pro-p quotient of H) E Γ (normal since H0 is a
characteristic subgroup of H)

Step 1: I + Matn(mA) is pro-p

Proof: We may suppose A is Artinian, so mN
A = 0 for some N ≥ 1. If

B ∈ Matn(mA), then (I + B)p = I + pB + B2(. . . ). Since B2 ∈ Matn(m2
A)

and p ∈ mA, see that (I + B)p ∈ I + Matn(m2
A). So (I + B)p

N
= I .
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Proof of general case

Step 2: every ρ ∈ D�ρ̄ (A) factors through Γ/H0

Proof: ρ|H : Γ→ I + Matn(mA) has pro-p image. Use Step 1.

Step 3: Γ/H0 is topologically finitely generated
Proof: By property Φp, H/H0 is topologically finitely generated. Since it is
a finite index normal subgroup of Γ/H0, the latter is also finitely generated.

By replacing Γ by Γ/H0, the lemma is proved.
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Proof of general case

Let ρ̄ : Γ→ GLn(k) and assume Γ topologically finitely generated. Let
Fd = 〈e1, . . . , ed〉 be the free group on d generators, and choose

Fd

��

φ0 // Γ

��
F̂d

φ // Γ

where φ surjective. Then ker φ0 is dense in ker φ (exercise). ker φ0
generated by words r(e1, . . . , ed).
Since GLn(A) is profinite, giving a homomorphism ρ : Γ→ GLn(A) is the
same as giving elements g1, . . . , gd ∈ GLn(A) such that r(g1, . . . , gd) = 1
for all r ∈ ker φ0.
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Proof of general case

Let g̃1, . . . , g̃d denote lifts of ρ̄(φ(ei )) ∈ GLn(k) to GLn(O).

Conclusion
Giving an element ρ ∈ D�ρ̄ (A)⇔ giving g1, . . . , gd ∈ GLn(A) with the
property that:

1 r(g1, . . . , gd) = 1 for all r ∈ ker φ0.
2 gi ∈ g̃i + Matn(mA) for i = 1, . . . , d .

End of proof: Each gk defines an element (X k
ij )1≤i ,j≤n of mn2

A by (2).
Conditions (1) cut out an ideal of O[[{X k

ij }]]: the corresponding quotient
will represent D�ρ̄ .
�
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