Minimal automorphy lifting

Dmitri Whitmore

06/05/2021

Dmitri Whitmore

Minimal automorphy lifting

06/05/2021 1/11

Let *F* be a totally real number field and fix weights (k, η) . We recall that for π a regular algebraic cuspidal automorphic representation of $GL_2(\mathbb{A}_F^{\infty})$ of weight (k, η) , there exists a CM field $L_{\pi} \subset \mathbb{C}$ and Galois representations

$$r_\lambda(\pi): G_F o GL_2(\overline{L_{\pi,\lambda}})$$

for every finite place λ of L_{π} .

Definition

A semisimple representation $\rho : G_F \to GL_2(\overline{\mathbb{Q}_I})$ is automorphic if $\rho \cong \iota \circ r_\lambda(\pi)$ for some $\iota : \overline{L_{\pi,\lambda}} \cong \overline{\mathbb{Q}_I}$ or $\rho \cong \chi_1 \oplus \chi_2$. A semisimple representation $\overline{\rho} : G_F \to GL_2(\overline{\mathbb{F}_I})$ is automorphic if $\overline{\rho} \cong (\iota \circ r_\lambda(\pi) \mod I)^{ss}$

Conjecture

Suppose ρ : $G_F \to GL_2(\overline{\mathbb{Q}_I})$ is unramified almost everywhere and de Rham, with distinct Hodge-Tate weights for every $i : F \to \overline{\mathbb{Q}_I}$. If ($\rho \mod I$)^{ss} is automorphic, then ρ is automorphic.

Over the next three talks, we will prove a weaker version of this result. Firstly introduce the following notation. Let *L* be a finite extension of \mathbb{Q}_l , ring of integers \mathcal{O} and uniformizer λ and residue field *k*.

Definition

Let $\rho, \rho_0 : G_F \to GL_2(L)$ and suppose $\chi := \det \rho = \det \rho_0$ and that $\bar{\rho} := \rho \mod \lambda = \rho_0 \mod \lambda$. For v a finite place of *F* we say $\rho_v \sim (\rho_0)_v$ if $\rho_v, (\rho_0)_v$ belong to the same irreducible component of Spec $R_{\overline{\rho_v}, \chi}^{\Box}[1/I]$. (Recall this was the universal framed deformation ring for the residual representation $\overline{\rho_v}$ of character χ).

We will prove:

Theorem

Suppose $|F(\zeta_l) : F| \ge 2$ (so necessarily $l \ge 5$). Let $\rho, \rho_0 : G_F \to GL_2(L)$ be unramified outside $S \sqcup T_l$ where S is a finite set of places not dividing l of F and T_l is the set of places dividing l. Suppose that ρ_0 is automorphic, $\rho \mod \lambda \cong \rho_0 \mod \lambda$ is absolutely irreducible. Suppose further that ρ, ρ_0 are crystalline for every v|l and that the Hodge-Tate weights of ρ, ρ_0 are equal, and distinct integers for every embedding $F \to \overline{\mathbb{Q}_l}$. Finally, suppose for every finite $v \in S \sqcup T_l$ that $\rho_v \sim (\rho_0)_v$. Then ρ is automorphic.

(While not stated in the notes, I think we might also need irreducibility of $\bar{\rho}|_{G_{F(\zeta_l)}}$ or some other image condition to prove the existence of sets of Taylor-Wiles primes, which we will see in the subsequent lectures).

We will reduce the theorem to proving such a result with additional conditions. Recall firstly the result on finite solvable base change:

Proposition

Let E/F be a finite solvable extension of totally real fields. Then $\rho: G_F \to GL_2(\overline{\mathbb{Q}_l})$ is modular if and only if $\rho|_{G_F}$ is.

We then have the following fact.

Proposition

Let F a number field and S a finite set of places. Fix for each $v \in S$ a finite Galois extension L_v/F_v . Then there exists a finite solvable extension M/F such that for each place w of M above v, $L_v \cong M_w$ over F_v .

Some reductions

By passing to such a finite solvable extension of totally real fields (the totally real condition given by taking $L_v = F_v$ for every infinite place *v*) we may make the following assumptions on our representation:

- $|F:\mathbb{Q}|$ is even (e.g. by choosing a quadratic extension at some finite place)
- If ρ or ρ₀ are ramified at some place v ∤ l then ρ̄|_{GF_v} is trivial and #k(v) ≡ 1 mod l (for such v set L'_v = F^{ker ρ̄}_v and then let L_v be an unramified extension of L'_v of degree the order of #k(v) in (ℤ/Iℤ)[×])
- ρ(*I_v*) and ρ₀(*I_v*) are unipotent for all *v* ∤ *I* (proof the same as in *I*-adic monodromy)
- χ := det ρ = det ρ₀ (since ρ, ρ₀ are crystalline of equal HT weights, det ρ/ det ρ₀ is unramified at v|l and since ρ(l_v), ρ₀(l_v) is unipotent at v ∤ l, det ρ/ det ρ₀ is unramified everywhere so finite order and trivial mod l. So it has *l*-power order so its kernel defines a finite abelian totally real (l ≠ 2 so complex conjugation acts trivially) extension unramified away from l).

Set $T_I = \{v | I\}$ and $T_r = \{v \nmid I, \infty : \rho \text{ or } \rho_0 \text{ ramified at } v\}$. Let $T = T_I \sqcup T_r$. We will impose deformation conditions \mathcal{D}_v for $v \in T$ as follows:

- For $v \in T_r$, \mathcal{D}_v is all lifts (of fixed determinant χ_v)
- For v ∈ T_I, D_v corresponds to the ideal ker(R[□]_{p̄v,χv} → R[□]_{p̄v,χv,cr,HT}) where R[□]_{p̄v,χv,cr,{HT}</sub>) is the maximal quotient which is *I*-torsion free, reduced and whose char 0 points give crystalline representations with HT weights {HT}

Our global deformation problem will be $S = (F, T, \bar{\rho}, \chi, \{D_v\}_{v \in T})$. Let $R^{\text{univ}} = R_S^{\text{univ}}$ be the universal deformation ring for this deformation problem.

Let π_0 be the automorphic representation corresponding to ρ_0 , unramified outside T. We will take automorphic forms on D^{\times} where Dis the quaternion algebra with $S(D) = \{v | \infty\}$ (we may since $|F : \mathbb{Q}|$ is even). Then our level subgroup

$$U=\prod_{
u
min \infty}U_
u\subset GL_2(\mathbb{A}_F^\infty)$$

will be a compact open subgroup given by

$$U_{v} = egin{cases} GL_{2}(\mathcal{O}_{F_{v}}) & ext{v}
otin T_{r} \ U_{v} ext{ such that } \pi^{U_{v}}_{0,v}
eq 0 & ext{v} \in T_{r} \end{cases}$$

Set $S = S(U, O) = S^U_{k,\eta,\chi|\cdot|_{\mathbb{A}_F^{\times}}}$ to be our space of automorphic forms. k, η here are determined by the HT weights of ρ_0 .

Dmitri Whitmore

Hecke algebra

Let \mathbb{T}_U be the Hecke algebra at level U (generated by the images of the unramified Hecke operators T_v , S_v for $v \notin T$ acting on $\mathcal{S}(U, \mathcal{O})$). \mathbb{T}_U is a commutative \mathcal{O} -algebra which is finite free over \mathcal{O} and reduced. We recall by strong multiplicity one that we had a bijective correspondence

$$\{\mathbb{T}_U \to \mathbb{C}\} \leftrightarrow \{\pi \subset S_{k,\eta,\chi} \text{ s.t. } \pi^U \neq \mathbf{0}\}.$$

The kernel of the composition

$$egin{aligned} \mathbb{T}_U &
ightarrow \mathcal{O}
ightarrow k \ T_{m{v}} &\mapsto \operatorname{tr}
ho_0(\operatorname{Frob}_{m{v}}) \ S_{m{v}} &\mapsto m{q}^{-1} \det
ho(\operatorname{Frob}_{m{v}}) \end{aligned}$$

(arising from the eigenvalue on π_0^U) defines a maximal ideal $\mathfrak{m} = \langle \lambda, \operatorname{tr}(\bar{\rho}(\operatorname{Frob}_v)) - T_v, \det \bar{\rho}(\operatorname{Frob}_v) - q_v S_v \rangle \subset \mathbb{T}_U$. Then $\bar{\rho}_m \cong \bar{\rho}$ and we saw the existence of a lift

$$ho_{\mathfrak{m}}^{\mathsf{mod}}: G_{F} o GL_{2}(\mathbb{T}_{U,\mathfrak{m}})$$

with tr $\rho_{\mathfrak{m}}^{\mathsf{mod}}(\mathsf{Frob}_{v}) = T_{v}$ and det $\rho_{\mathfrak{m}}^{\mathsf{mod}}(\mathsf{Frob}_{v}) = T_{v}$

The representation $\rho_{\mathfrak{m}}^{\mathsf{mod}}$ satisfies the deformation conditions $\{\mathcal{D}_{v}\}_{v\in T}$ (since all such $\pi \subset S_{k,\eta,\chi}$ s.t. $\pi^{U} \neq 0$ give rise to Galois representations satisfying the deformation conditions) and is unramified outside *T*. Hence by the defining property of R^{univ} , we get a map $R^{\mathsf{univ}} \to \mathbb{T}_{U,\mathfrak{m}}$. The map is surjective, as tr $\rho^{\mathsf{univ}}(\mathsf{Frob}_{v}) = T_{v}$ and det $\rho^{\mathsf{univ}}(\mathsf{Frob}_{v}) = q_{v}S_{v}$. To prove the theorem, it will suffice to show that for any

 $\rho: G_F \to GL_2(\mathcal{O})$ of type S lifting $\bar{\rho}$ that the map $R^{\text{univ}} \to \mathcal{O}$ factors through $\mathbb{T}_{U,\mathfrak{m}}$. Indeed, the map $\mathbb{T}_{U,\mathfrak{m}} \to \mathcal{O} \hookrightarrow \mathbb{C}$ defines an automorphic representation π_{ρ} , and the Galois representation arising from π_{ρ} is isomorphic to ρ (as the eigenvalues of Frob_V for $v \notin T$ agree). The map $R^{\text{univ}} \to \mathbb{T}_{U,\mathfrak{m}}$ factors through the reduced quotient $R^{\text{univ,red}} \to \mathbb{T}_{U,\mathfrak{m}}$ and so since \mathcal{O} is reduced it will suffice to show that this map is an isomorphism.

Thanks for listening and feel free to ask any questions.