Automorphic forms on definite quaternion algebras: Integral theory

Vaughan McDonald

April 29, 2021

McDonald

1 Recap and setup for integral theory

Integral automorphic forms on definite quaternion algebras

8 Hecke algebras on integral automorphic forms

4 Hecke algebras and Galois representations

Recap of last lecture

Last time we discussed automorphic forms on quaternion algebras D^{\times} , and global aspects of automorphic forms.

These automorphic forms were particularly concrete when $S(D) \supset S_{\infty}$, i.e. when D/F is **totally definite**. Then $\mathcal{S}_{D,k,\eta}$ is the space of functions $\phi: D^{\times} \setminus (D \otimes \mathbb{A}_F)^{\times} \to \bigotimes_{\tau:F \hookrightarrow \mathbb{R}} \operatorname{Sym}^{n_{\tau}}(\mathbb{C}^2) \otimes (\det)^{m_{\tau}}$ such that:

• φ is right-invariant under some compact open $U \subset \operatorname{GL}_2(\mathbb{A}_F^\infty)$.

•
$$\varphi(gh) = h^{-1}\varphi(g)$$
 for $h \in D_{\infty}^{\times}$

 $\bullet \ \varphi(gz) = \chi(z)\varphi(g)$

We also saw for any open subgroup $U \subset G(\mathbb{A}_F^{\infty})$, the double quotient $G(F) \setminus G(\mathbb{A}_F^{\infty})/U$ is finite.

This totally definite D/F situation is easier, so we focus on it. By Jacquet–Langlands and base change passing to this situation will suffice.

Jacquet–Langlands

Let F be a totally real field and D/F totally definite quaternion algebra.

Definition

The space of **automorphic forms** $\mathcal{A}_0(D^{\times} \setminus (A \otimes_F \mathbb{A})^{\times}, \chi)$ for a Hecke character $\chi : \mathbb{A}_F^{\times}/F^{\times} \to \mathbb{C}^{\times}$ is the space of functions $\varphi : D^{\times} \setminus (D$

Theorem

There is a decomposition into irreducible representations of $(D \otimes \mathbb{A}_F)^{\times}$

$$\mathcal{A}_0(D^{\times} \setminus (D \otimes_F \mathbb{A}_F)^{\times}, \chi) \simeq \oplus \pi^D,$$

such that either:

 (finite dimensional): π^D = φ ◦ det, where det is the reduced more and φ is a Hecke character with φ² = χ

• (∞ -dimensional): $\pi^D \simeq \pi^\infty \otimes \pi^D_\infty$ for π an aut. rep. of $\operatorname{GL}_2(\mathbb{A}_F)$, and $\pi^D_\infty = \bigotimes_{\tau:F \hookrightarrow \mathbb{R}} \left(\operatorname{Sym}^{n_\tau}(\mathbb{C}^2) \otimes \operatorname{det}^{s_\tau + 1/2} \right)^{\vee}$ with other conditions

Today

We will discuss integral theory of automorphic forms on definite quaternion algebras over totally real fields.

We can then use this to form the " \mathbb{T} " side of $R = \mathbb{T}$ theorems. That is, we construct a Galois representation valued in a localized Hecke algebra.

Notation

Domain:

Let F be a totally real field, D/F a quaternion algebra, $G = GL_1(D)$ the associated algebraic group, and $Z \subset G$ its center.

Assumption:

Say *D* is totally definite, i.e. $S(D) = \{\nu \mid \infty\} =: S_{\infty}$, so that necessarily $[F : \mathbb{Q}]$ is even. For $\nu \nmid \infty$, $G(F_{\nu}) \simeq \operatorname{GL}_2(\mathbb{F}_{\nu})$. Fix maximal orders $G(\mathcal{O}_{F_{\nu}}) \simeq \operatorname{GL}_2(\mathcal{O}_{F_{\nu}})$, and thus an isomorphism $G(\mathbb{A}_F^{\infty}) \simeq \operatorname{GL}_2(\mathbb{A}_F^{\infty})$ The weights $(k, \eta) = ((k_{\nu}), (\eta_{\nu}))$ with $w = k_{\nu} + 2\eta_{\nu} - 1$ independent of ν . Let $S \subset \{\text{finite } v \nmid \ell\}$ be a finite set of places. For an open compact $U = \prod_{\nu \nmid \infty} U_{\nu} = U_S U^S \subseteq \operatorname{GL}_2(\mathbb{A}_F^{\infty})$, assume $U^S = \prod_{\nu \notin S \cup S_{\infty}} \operatorname{GL}_2(\mathcal{O}_{F,\nu})$ Coefficients:

Let L/\mathbb{Q}_{ℓ} be a finite extension so that all embeddings $F \hookrightarrow \overline{L}$ are contained in L. \mathcal{O} its ring of integers, $\lambda \subset \mathcal{O}$ a uniformizer, $\mathbb{F} := \mathcal{O}/\lambda$. Fix an isomorphism $i : \overline{\mathbb{Q}}_{\ell} \simeq \mathbb{C}$.

Let $\chi : \mathbb{A}_F^{\times}/F^{\times} \to \mathbb{C}^{\times}$ be a central character such that χ unramified outside S and $\chi \mid_{(F_{\infty}^{\times})^0} (z) = z^{1-w}$.

Idelic class characters

Adding characters to the situation is a little fiddly, so just ignore for now. For now, $\chi : \mathbb{A}_F^{\times}/F^{\times} \to \mathbb{C}^{\times} \simeq \mathbb{Q}_{\ell}^{\times}$ will be a Hecke character, whose infinite component one can twist away as necessary. More to be added later

Setup

Natural idea: to define integral automorphic forms, take functions valued in $\Lambda = \bigotimes_{\tau:F \hookrightarrow \overline{L}} \operatorname{Sym}^{n_{\tau}}(\mathcal{O}^2) \otimes (\det)^{m_{\tau}}$. The problem is the definition of $S_{k,\chi}(\mathbb{C})$ is that it includes a D_{∞}^{\times} -action. We deal with this as follows:

Lemma

$$S_{k,\chi}(\mathbb{C}) \simeq \{ f : G(\mathbb{A}_F^\infty) \to \otimes_{\tau} \operatorname{Sym}^{n_{\tau}}(\mathbb{C}^2) \otimes (\det)^{m_{\tau}} :$$

•
$$f(\delta gz) = \tilde{\chi}(z)\delta f(g)$$
 for $\delta \in D^{\times}, z \in (\mathbb{A}_F^{\infty})^{\times}$.

• f is right-invariant under some open compact subgroup.}

Proof.

Given
$$\varphi \in \mathcal{S}_{k,\chi}(\mathbb{C})$$
, define $f : G(\mathbb{A}_F^{\infty}) \to \bigotimes_{\tau} \operatorname{Sym}^{n_{\tau}}(\mathbb{C}^2) \otimes (\det)^{m_{\tau}}$ by $f(g) := g_{\infty}\varphi(g)$. This is well-defined since if $h \in D^{\times}$, $f(gh) = g_{\infty}h\varphi(gh) = g_{\infty}\varphi(g)$. Conversely, send f to $\varphi(g) := g_{\infty}^{-1}f(g^{\infty})$

This definition does not involve the D_{∞}^{\times} -action, so we can define $S_{k,\chi}(\overline{\mathbb{Q}}_{\ell})$

Definition of integral automorphic forms

We can then undo the unraveling of the ∞ -component at ℓ :

Lemma

$$S_{k,\chi}(\overline{\mathbb{Q}}_{\ell}) \simeq \{\varphi : D^{\times} \setminus G(\mathbb{A}_{F}^{\infty}) \to \bigotimes_{\tau:F \hookrightarrow \overline{\mathbb{Q}}_{\ell}} \operatorname{Sym}^{n_{\tau}}(\overline{\mathbb{Q}}_{\ell}^{2}) \otimes (\det)^{m_{\tau}} : \\ \varphi(guz) = \chi^{(\ell)}(z) u_{\ell}^{-1} \varphi(g) \text{ for } z \in (\mathbb{A}_{F}^{\infty})^{\times}, u \in U \text{ some open compact } \}$$

Proof.

Send
$$f \in S_{k,\eta}(\overline{\mathbb{Q}}_{\ell})$$
 to $\varphi(g) = g_{\ell}^{-1}f(g)$. The inverse is $\varphi \mapsto (f \mapsto g_{\ell}(\varphi(g)))$.

Definition

For any finitely generated \mathcal{O} -module A, the A-valued automorphic forms of weight (k, η) , level U, and character χ are $\mathcal{S}_{k,\chi}(U, A) :=$

$$\mathcal{S}_{k,\eta,\chi_0,i}(U,A) = \{\phi: G(F) \setminus G(\mathbb{A}_F^\infty) \to \Lambda \otimes_{\mathcal{O}} A: \phi(guz) = \chi(z)u_\ell^{-1} \cdot \phi(g), \}$$

where $g \in G(\mathbb{A}_F^{\infty}), u \in U, z \in Z(\mathbb{A}_F^{\infty})$ and $u_{\ell}^{-1} \cdot \phi$ comes from the action of $u_{\ell} \in \operatorname{GL}_2(\mathcal{O}_{F,\ell}) = \prod_{\nu \mid \ell} \operatorname{GL}_2(\mathcal{O}_{F_{\nu}}).$

Basic structure

For any $U \subseteq \operatorname{GL}_2(\mathbb{A}_F^{\infty})$ such that $U_{\ell} \subset \operatorname{GL}_2(\mathbb{F}_{\ell}) \cap M_2(\mathcal{O}_{F,\ell})$. Then U acts on $\mathcal{S}_{k,\chi}(U,A)$ for any A by $(u \cdot \varphi)(g) = u_{\ell}\varphi(gu_{\ell})$.

Lemma

Choose coset representatives $\operatorname{GL}_2(\mathbb{A}_F^{\infty}) = \sqcup_{i \in I} D^{\times} g_i U(\mathbb{A}_F^{\infty})^{\times}$. We then have an isomorphism

$$\mathcal{S}_{k,\chi}(U,A) \simeq \bigoplus_{i \in I} \left(\Lambda \otimes_{\mathcal{O}} A \right)^{(U \cdot (\mathbb{A}_F^{\infty})^{\times} \cap g_i^{-1} D^{\times} g_i)/F^{\times}}$$

given by $\varphi \mapsto (\varphi(g_i))$. (Warning: this depends on the choice of the $g_i!$)

Proof.

The ambiguity of choice $g_i = \delta g_i uz$, i.e. when $uz \in U(\mathbb{A}_F^\infty)^{\times} \cap g_i^{-1}D^{\times}g_i$. Since $\varphi(g_i) = \varphi(g_i uz) = \chi(z)u_{\ell}^{-1}\varphi(g_i)$, so that $\chi(z)^{-1}u_{\ell}\varphi(g_i) = \varphi(g_i)$. So the map is well-defined and injective (double cosets det'd by one value). Surjective b/c cosets disjoint, and we det'd ambiguity of writing $g_i \in D^{\times} \backslash \operatorname{GL}_2(\mathbb{A}_F^\infty)/U$. \Box

Basic structure (continued)

We now discuss some basic structural results. Define $\Delta_{g,U} := (U \cdot (\mathbb{A}_F^{\infty})^{\times} \cap g^{-1}D^{\times}g)/F^{\times}$. It is compact and discrete (since $D^{\times} \subset (D \otimes A)^{\times}$ is discrete), hence finite.

Definition

Say U is sufficiently small for ℓ if $\ell \nmid \#\Delta_{g,U}$ for all g.

Lemma

•
$$S_{k,\chi}(U, \mathcal{O})$$
 is a finite free \mathcal{O} -module.

- $\mathcal{S}_{k,\chi}(U,\mathcal{O}) \otimes_{\mathcal{O}} \mathbb{C} \simeq S^U_{k,\chi}$ (complex automorphic forms with level U and character χ_0).
- For $V \subset U$ open, $\mathcal{S}_{k,\chi}(U,A) \hookrightarrow \mathcal{S}_{k,\chi}(V,A)$.
- If [F(ζ_ℓ): F] > 2 then U is sufficiently small for ℓ (true if ℓ > 3 and F tot. real).

Proof of lemma

Proof.

1),2) follow from previous lemmas. 4) is clear. To show 3) it suffices by the previous lemma to prove $(\Lambda \otimes_{\mathcal{O}} A)^{\Delta_{g_i,U}} = \Lambda^{\Delta_{g_i,U}} \otimes_{\mathcal{O}} A$. Indeed, the idempotent $\frac{1}{\#\Delta_{g_i,U}} (\sum_{\delta \in \Delta_{g_i,U}} \delta)$ makes $\Lambda^{\Delta_{g_i,U}}$ a direct summand of Λ . But Λ is free, and so $\Lambda^{\Delta_{g_i,U}}$ is projective. For 5), if $g^{-1}\delta g \in G_i$ then for $\delta \in D^{\times}$ then $\delta g_i u g_i^{-1} z$ for some $u \in U$ and $z \in Z(\mathbb{A}_F^{\infty})$. det $z = z^2$, so $\delta^2 / \det \delta \in D^{\times} \cap g_i U g_i^{-1} \det U$ which is compact and discrete, hence finite. So $\delta^2 / \det \delta$ is a root of unity in D^{\times} . But $[F(\zeta_{\ell}) : F] > 2$, and a quaternion algebra can only contain quadratic extensions of its center. So $\delta^N \in F^{\times}$ for N prime to ℓ , and the claim follows.

The Hecke algebra

 $\operatorname{GL}_2(\mathbb{A}_F^{\infty,\ell})$ acts on $S_{k,\chi}(A)$, but not $S_{k,\chi}(A)^U$. Instead, we have the usual double coset action: if $UgU = \sqcup g_i U$ and $\varphi \in S_{k,\eta}(A)^U$ then

$$(UgU) \cdot (\varphi) = \sum_{i} g_i \varphi \in S_{k,\chi}(A)^U.$$

Definition

The **Hecke algebra** $\mathbb{T}_U := \mathbb{T}_{k,\chi}^S(U, A) \subseteq \operatorname{End}_A(S_{k,\chi}(A)^U)$ is the subalgebra generated by $\mathbb{T}_{\nu} := U \begin{pmatrix} \omega_{\nu} \\ 1 \end{pmatrix} U, S_{\nu} = U \omega_{\nu} U$ for $\nu \notin S$.

Lemma

 \mathbb{T}_U is a commutative \mathcal{O} -algebra and finite free as an \mathcal{O} -module.

Proof.

First part is easy since $T'_{\nu}s$ are supported at different ν and thus the actions do not interact. It is a finitely generated submodule of $\operatorname{End}_{\mathcal{O}}(S_{k,\chi}(U,\mathcal{O}))$, which is finite free, so \mathbb{T}_U is finite free.

Hecke eigenspaces

Lemma

We have an isomorphism $T_U \otimes_{\mathcal{O}} \mathbb{C} \simeq \prod_{\pi \subset S_{k,\chi}, \pi^U \neq 0} \mathbb{C}$, where π runs over RACARs of $G(\mathbb{A}_F^{\infty})$ given by $T_{\nu}, S_{\nu} \mapsto T_{\nu}(s_{\pi_{\nu}}), S_{\nu}(s_{\pi_{\nu}})$, where $s_{\pi_{\nu}}$ is the associated Satake parameter at ν .

Proof.

Using the properties just described, we have a \mathbb{T}_U equivariant isomorphism

$$\mathcal{S}(U,\mathcal{O}) \otimes_{\mathcal{O}} \mathbb{C} \simeq \mathcal{S}^U_{k,\eta,\chi_0} \simeq \bigoplus_{\pi \subset \mathcal{S}_{k,\chi},\pi^U \neq 0} \pi^{U_S}_S \otimes \left(\bigotimes_{\nu \notin S \cup S_\infty} \pi^{\mathrm{GL}_2(\mathcal{O}_{F_\nu})}_{\nu} \right)$$

and thus an algebra homomorphism $\mathbb{T}_{k,\chi}^{S}(U,\mathbb{C}) \to \prod_{\pi \in \mathcal{S}_{k,\chi}} \mathbb{C}$. If it were not surjective, the image would be a proper \mathbb{C} -subalgebra, with two coordinates equal. But this would two automorphic representations π, π' have the same T_{ν} -eigenvalues for almost all ν . Thus $\pi \simeq \pi'$ by strong multiplicity one.

Hecke-algebra valued Galois representations

Since \mathbb{T}_U is finite free over the complete DVR \mathcal{O} , it has only finitely many maximal ideals, and a general commutative algebra fact gives

$$\mathbb{T}_U \simeq \prod_{\mathfrak{m} \subset ext{maxSpec } \mathbb{T}_U} \mathbb{T}_{U,\mathfrak{m}}.$$

We now focus our attention on $\mathbb{T}_{U,\mathfrak{m}}$ for a maximal ideal $\mathfrak{m} \subseteq \mathbb{T}_U$.

Goal

Construct a continuous $\bar{\rho}_{\mathfrak{m}} : G_F \to \operatorname{GL}_2(\mathbb{T}_U/\mathfrak{m})$ such that $\operatorname{tr} \bar{\rho}_{\mathfrak{m}}(\operatorname{Frob}_{\nu}) = T_{\nu}, \operatorname{det} \bar{\rho}_{\mathfrak{m}}(\operatorname{Frob}_{\nu}) = q_{\nu}S_{\nu}.$ If $\bar{\rho}_{\mathfrak{m}}$ is irreducible (aka **non-Eisenstein**), construct a lift $\rho_{\mathfrak{m}} : G_F \to \operatorname{GL}_2(\mathbb{T}_{U,\mathfrak{m}}).$

Step 1: Use Jacquet–Langlands

By Jacquet–Langlands, an RACAR π of $G(\mathbb{A}_F^{\infty})$ corresponds to a RACAR of $\operatorname{GL}_2(\mathbb{A}_F^{\infty})^{\times}$, which have associated ℓ -adic representations $r_{\ell}(\pi): G_F \to \operatorname{GL}_2(\bar{L})$ (this is a bit anachronistic). These are unramified outside $S' := S \cup \{\nu \mid \ell\}$ and for $\nu \notin S'$ satisfy

$$\operatorname{tr}(\rho_{\pi}(\operatorname{Frob}_{\nu})) = T_{\nu}(s_{\pi_{\nu}}), \quad \operatorname{det}(\rho_{\pi}(\operatorname{Frob}_{\nu})) = q_{\nu}S_{\nu}(s_{\pi_{\nu}}).$$

Grouping together for all $\pi \in S_{k,\eta,\chi_0}$ and applying the lemma, we get a representation

$$\rho^{\mathrm{mod}} := \prod r_{\ell}(\pi) : G_F \to \prod_{\pi \subset \mathcal{S}_{k,\chi}} \mathrm{GL}_2(\bar{L}) \simeq \mathrm{GL}_2(\mathbb{T}_U \otimes_{\mathcal{O}} \bar{L}),$$

where tr $\rho^{\text{mod}}(\text{Frob}_{\nu}) = T_{\nu}$ and det $\rho^{\text{mod}}(\text{Frob}_{\nu}) = S_{\nu}q_{\nu}$ (the compatibility follows by the previous lemma).

The residual represention

For our fixed $\mathfrak{m} \subset \mathbb{T}^U$, we can apply going-down to Spec $\mathbb{T}_U \to \operatorname{Spec} \mathcal{O}_{\bar{L}}$ and $(0) \subseteq \mathfrak{m} \cap \mathcal{O}_{\bar{L}} \subset \mathcal{O}_{\bar{L}}$ to get a minimal prime $\mathfrak{p} \subseteq \mathfrak{m} \subset \mathbb{T}_U \otimes \mathcal{O}_{\bar{L}}$. Then we have an injection $\theta: \mathbb{T}_U/\mathfrak{p} \hookrightarrow \overline{L} \simeq \mathbb{C}$. By the previous lemma, this corresponds to a unique π on $\operatorname{GL}_2(\mathbb{A}_F^\infty)$, and thus produces a $r_\ell(\pi)$, After conjugation, one can assume any $r_{\ell}(\pi): G_F \to \mathrm{GL}_2(\bar{L})$ has image in $\operatorname{GL}_2(\bar{\mathcal{O}})$. The mod ℓ reduction then gives $\bar{\rho_{\pi}}: G_F \to \operatorname{GL}_2(\bar{\mathbb{F}})$. By construction $\operatorname{tr}(\rho_{\pi}) \in \mathbb{T}_U/\mathfrak{p} \subseteq \mathcal{O}_{\overline{L}}$, so the reduction has $\operatorname{tr} \overline{\rho}_{\pi} \in \mathbb{T}_U/\mathfrak{m} \subset \overline{\mathbb{F}}$. Since $\mathbb{T}_U/\mathfrak{m}$ is finite, the Brauer group is 0 so the image of G_F are the units of a split central simple algebra over \mathbb{F} , and thus can be conjugated to give $\bar{\rho}_{\mathfrak{m}}: G_F \to \mathrm{GL}_2(\mathbb{T}_U/\mathfrak{m}).$ To lift to characteristic 0, need to localize at \mathfrak{m} . Applying the previous lemma, this amounts to projecting onto a component of \mathbb{T}_{U} . Doing so gives a representation, $\rho_{\mathfrak{m}}^{\mathrm{mod}}: G_F \to \mathrm{GL}_2(\mathbb{T}_{U\mathfrak{m}} \otimes \overline{L}) \simeq \prod_{\pi} \mathrm{GL}_2(\overline{L})$, where this is π

such that $\bar{\rho}_{\pi} = \bar{\rho}_{\mathfrak{m}}$.

Lifting to characteristic 0

We can conjugate this to have image in $\prod_{\pi} \operatorname{GL}_2(\mathcal{O}_{\overline{L}})$. In fact, we can conjugate to lie in subring of elements whose reductions lie in $\mathbb{T}_U/\mathfrak{m}$. This can be summarized as follows:

$$G_F \xrightarrow{\rho_{\mathfrak{m}}^{\mathrm{mod}}} \operatorname{GL}_2(\mathbb{T}_{U,\mathfrak{m}} \otimes_{\mathcal{O}} \mathcal{O}_{\bar{L}}) = \prod_{\pi:\bar{\rho}_{\pi}=\bar{\rho}_{\mathfrak{m}}} \operatorname{GL}_2(\mathcal{O}_{\bar{L}})$$

$$\downarrow$$

$$\operatorname{GL}_2(\mathbb{T}_U/\mathfrak{m})$$

Recall Carayol's lemma:

Lemma (Carayol)

If (A, \mathfrak{m}_A) is a complete Noetherian \mathcal{O} -algebra, $\rho : G_F \to \operatorname{GL}_n(A)$ with $\bar{\rho} := \rho \mod \mathfrak{m}_A$ is absolutely irreducible, and $\operatorname{tr}(\rho(G_F)) \subset B$ for $B \subset A$ a closed subring, then there exists $a \in \ker(\operatorname{GL}_n(A) \to \operatorname{GL}_n(\mathbb{F}))$ such that $a\rho a^{-1}$ factors through $\operatorname{GL}_n(B)$.

Thus, if $\bar{\rho}_{\mathfrak{m}}$ is irreducible, we can conjugate to $\rho_{\mathfrak{m}}^{\mathrm{mod}} \to \mathrm{GL}_2(\mathbb{T}_{U,\mathfrak{m}})$.

McDonald

Ending remarks

A key technical point here was that the algebra $T_{U,\mathfrak{m}}$ is \mathcal{O} -flat, so that $T_{U,\mathfrak{m}} \to T_{U,\mathfrak{m}} \otimes \overline{\mathbb{Q}}_{\ell}$ is an injection. We showed $\mathbb{T}_{U,\mathfrak{m}}$ is \mathcal{O} -flat by showing \mathbb{T}_U is free, because they act faithfully on automorphic forms on a quaternion algebra and those are easy. What if one tried to do this over \mathbb{Q} with modular forms? Eichler–Shimura isomorphism gives a $\mathbb{T}^S(\Gamma, k)$ -equivariant isomorphism

$$M_k(\Gamma, \mathbb{C}) \oplus S_k(\Gamma, \mathbb{C}) \simeq H^1(\Gamma, \operatorname{Sym}^{k-2} \mathbb{C}^2).$$

For $\mathfrak{m} \subset \mathbb{T}^{S}(\Gamma, k)$ non-Eisenstein corresponding to $g \in S_{k}(\Gamma, \mathcal{O})$, one shows that $H^{1}(\Gamma, \operatorname{Sym}^{k-2} \mathcal{O}^{2})_{\mathfrak{m}}$ is finite-free over \mathcal{O} , so $\mathbb{T}^{S}(\Gamma, k)_{\mathfrak{m}}$ is \mathcal{O} -flat. The easier argument we had is an advantage of base changing to totally real fields and Jacquet–Langlands be an advantage of totally real fields.

References

• Rong's notes, Toby Gee's notes

• Richard Taylor Stanford notes on Automorphy Lifting