Automorphic forms for quaternion algebras

Recollections from last time

Last time we talked about the local Langlands correspondence, local base change and the local Jacquet-Langlands correspondence.

Let K be a finite extension of \mathbb{Q}_{p}. The local Langlands correspondence is a bijection
irreducible smooth $\stackrel{\text { rec }}{\longleftrightarrow}$ Frobenius-semisimple Weil-Deligne $\mathrm{GL}_{n}(K)$-representations representations of W_{K}

$$
\begin{array}{rll}
\text { supercuspidals } & \longleftrightarrow & \text { irreducibles } \\
\text { discrete series } & \longleftrightarrow & \text { indecomposables }
\end{array}
$$

which we described explicitly in the unramified case using Satake parameters.

If K^{\prime} / K is a finite extension and $\pi \in \operatorname{Irr}\left(\mathrm{GL}_{n}(K)\right)$, then write $\mathrm{BC}(\pi)$ for the image of π under
$\operatorname{Irr}\left(\mathrm{GL}_{n}(K)\right) \xrightarrow{\mathrm{rec}_{K}} \operatorname{Rep}\left(\mathrm{WD}_{K}\right)^{\mathrm{F}-\mathrm{ss}} \longrightarrow \operatorname{Rep}\left(\mathrm{WD}_{K^{\prime}}\right)^{\mathrm{F}-\mathrm{ss}} \xrightarrow{\mathrm{rec}_{K^{\prime}}^{-1}} \operatorname{Irr}\left(\mathrm{GL}_{n}\left(K^{\prime}\right)\right)$

Proposition

Assume K^{\prime} / K is cyclic, $\operatorname{Gal}\left(K^{\prime} / K\right)=\langle\sigma\rangle$.
(1) $\pi^{\prime} \in \operatorname{lrr}\left(\mathrm{GL}_{n}\left(K^{\prime}\right)\right)$ is in the image if and only if $\pi^{\prime} \simeq \pi^{\prime} \circ \sigma$ (this has the same underlying space as π^{\prime}, but $\mathrm{GL}_{n}\left(K^{\prime}\right)$ acts through $\pi^{\prime} \circ \sigma$).
(2) $\mathrm{BC}\left(\pi_{1}\right) \simeq \mathrm{BC}\left(\pi_{2}\right) \Longleftrightarrow \pi_{1} \simeq \pi_{2} \otimes \chi \circ \operatorname{det}$ for some smooth $K^{\times} \longrightarrow \mathbb{C}^{\times}$which is trivial on $N_{K^{\prime} / K}\left(K^{\prime \times}\right)$.
(3) $\mathrm{BC}(\pi)$ is supercuspidal $\Longleftrightarrow \pi$ is supercuspidal and $\pi \not \approx \pi \otimes \chi \circ \operatorname{det}$ for all $\chi \neq 1$ as above.
(9) The central character of $\mathrm{BC}(\pi)$ is $\omega_{\mathrm{BC}(\pi)}=\omega_{\pi} \circ N_{K^{\prime} / K}$.

Let D be a central division algebra over K of dimension $n^{2} . D^{\times}$is a locally profinite group.
$D \otimes_{K} \bar{K} \simeq \mathrm{M}_{n}(\bar{K})$, and we can associate to each regular element $\delta \in D_{\text {reg }}^{\times}$(i.e. semisimple with distinct eigenvalues) a regular element $\gamma \in \mathrm{GL}_{n}(K)_{\text {reg }}$, up to conjugation.

If π is a finite length smooth representation of a locally profinite group G, then there exists a locally constant function $\Theta_{\pi}: G_{\text {reg }} \longrightarrow \mathbb{C}$ such that for all $f \in \mathcal{H}(G)$,

$$
\operatorname{tr} \pi(f)=\int_{G_{\mathrm{reg}}} \Theta_{\pi}(g) f(g) d g
$$

Theorem (Local Jacquet-Langlands correspondence)

There exists a unique bijection

$$
J L: \operatorname{Irr}\left(D^{\times}\right) \xrightarrow{\sim} \operatorname{Ir}^{2}\left(G L_{n}(K)\right)
$$

such that for $\pi \in \operatorname{Irr}\left(D^{\times}\right)$and δ, γ as above, $\Theta_{\pi}(\delta)=(-1)^{n-1} \Theta_{J L(\pi)}(\gamma)$.

Goal for today

Today we will look at global analogues for these correspondences in the setting of GL_{2} and quaternion algebras.

Some notation

Let F be a number field, S a finite set of places, S_{∞} the set of all archimedean places and $S^{\infty}:=S \backslash S_{\infty}$.

Write $F_{S}=\prod_{v \in S} F_{v}, \mathcal{O}_{F, S}=\prod_{v \in S^{\infty}} \mathcal{O}_{F_{v}}$ and $\widehat{\mathcal{O}} S=\prod_{v \notin S \cup S_{\infty}} \mathcal{O}_{F_{v}}$.
Write also $\mathbb{A}_{F}^{S}=\prod_{v \notin S}^{\prime} F_{v}, \mathbb{A}_{F}^{\infty}=\mathbb{A}_{F}^{S_{\infty}}$ and $F_{\infty}=F_{S_{\infty}}$.

Central simple algebras

Let D be a central simple algebra over F of dimension n^{2}. If $n=2$, we say D is a quaternion algebra.

Fact

The set $S(D)=\left\{v: D \otimes_{F} F_{v} \nsucceq \mathrm{M}_{n}\left(F_{v}\right)\right\}$ is finite.
If $n=2$, then $S(D)$ is even, and $D \longmapsto S(D)$ is a bijection between quaternion algebras over F and finite sets of places of F of even cardinality.

Consider the algebraic group $G=D^{\times}$, defined by $G(R)=\left(D \otimes_{F} R\right)^{\times}$for any F-algebra R.

Note that if $v \notin S_{\infty}$, then $G\left(F_{v}\right)$ is locally profinite, and if $S \supseteq S_{\infty}$, then so is $G\left(\mathbb{A}_{F}^{S}\right)$.

Assume $S \supseteq S_{\infty}$. Let $\left\{\pi_{v}\right\}_{v \notin S}$ be a collection of irreducible (smooth) representations such that π_{v} is unramified for almost all v, and write $S_{\text {ram }}$ for the $v \notin S \cup S(D)$ such that π_{v} is ramified.

Define

(recall that if π_{v} is unramified and irreducible, then $\pi_{v}^{G\left(\mathcal{O}_{\left.F_{v}\right)}\right.}$ is 1-dimensional)

Theorem (Flath)

The association $\left\{\pi_{v}\right\}_{v} \longmapsto \bigotimes_{v \notin S}^{\prime} \pi_{v}$ is a bijection between collections $\left\{\pi_{v}\right\}$ unramified almost everywhere and irreducible smooth representations of $G\left(\mathbb{A}_{F}^{S}\right)$.

Automorphic forms for quaternion algebras

Assume now that $n=2$ and F is totally real.
If $v \in S_{\infty}$, then

$$
G\left(F_{v}\right) \simeq \begin{cases}\mathrm{GL}_{2}(\mathbb{R}) & v \notin S(D) \\ \mathbb{H}^{\times} & v \in S(D)\end{cases}
$$

where \mathbb{H} are the Hamilton quaternions. Thus,

$$
U_{v}= \begin{cases}\mathbb{R}^{\times} \mathrm{SO}_{2}(\mathbb{R}) & v \notin S(D) \\ \mathbb{H}^{\times} & v \in S(D)\end{cases}
$$

is a maximal compact-mod-center subgroup of $G\left(F_{v}\right)$.
Set $U_{\infty}=\prod_{v \mid \infty} U_{v}$.

Let $\left(k_{v}, \eta_{v}\right)_{v \mid \infty}$ be integers with $k_{v} \geq 2$ for all v and such that $w=k_{v}+2 \eta_{v}-1$ is independent of v. Consider the representation of U_{∞}

$$
W=\bigotimes_{v \in S_{\infty} \cap S(D)} \operatorname{Sym}^{k_{v}-2}\left(\mathbb{C}^{2}\right) \otimes \operatorname{det}\left(\mathbb{C}^{2}\right)^{\eta_{v}} \otimes \bigotimes_{v \in S_{\infty} \backslash S(D)} \mathbb{C}_{k_{v}, \eta_{v}}
$$

where $\mathbb{C}_{k_{v}, \eta_{v}}$ is the 1-dimensional representation of $\mathbb{R}^{\times} \mathrm{SO}_{2}(\mathbb{R})$ where $h=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathbb{R}^{\times} \mathrm{SO}_{2}(\mathbb{R})$ acts via $(c i+d)^{k_{v}}(\operatorname{det} \gamma)^{\eta_{v}-1}$.

Definition

The space $\mathcal{S}_{D, k, \eta}$ of automorphic forms for D of weight (k, η) is the space of functions $\phi: G(F) \backslash G\left(\mathbb{A}_{F}\right) \longrightarrow W$ satisfying
(1) ϕ is right-translation invariant by some open compact $U^{\infty} \subseteq G\left(\mathbb{A}_{F}^{\infty}\right)$
(2) ϕ is equivariant for the action of $U_{\infty} \subseteq G\left(F_{\infty}\right)$
(3) for all $g \in G\left(\mathbb{A}_{F}^{\infty}\right)$, the function

$$
\begin{aligned}
(\mathbb{C} \backslash \mathbb{R})^{S_{\infty} \backslash S(D)} & \longrightarrow W \\
h \cdot(i, \ldots, i) & \longmapsto h \cdot \phi(g h)
\end{aligned}
$$

for $h \in\left(\mathbb{R}^{\times} \mathrm{SO}_{2}(\mathbb{R})\right)^{S_{\infty}} \backslash S(D)$ is holomorphic

Definition (continued)

(1) if $F=\mathbb{Q}$ and $S(D)=\emptyset$, then for all $g \in G\left(\mathbb{A}_{F}^{\infty}\right) \simeq \mathrm{GL}_{2}\left(\mathbb{A}_{F}^{\infty}\right)$, the function

$$
\begin{aligned}
\mathbb{C} \backslash \mathbb{R} & \longrightarrow W \\
h \cdot i & \longmapsto \phi(g h)|\operatorname{Im}(h i)|^{k / 2}
\end{aligned}
$$

is bounded
(5) if $S(D)=\emptyset$, then for all $g \in G\left(\mathbb{A}_{F}\right) \simeq \mathrm{GL}_{2}\left(\mathbb{A}_{F}\right)$,

$$
\int_{F / \mathbb{A}_{F}} \phi\left(\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right) g\right) d x=0
$$

$G\left(\mathbb{A}_{F}^{\infty}\right)$ acts smoothly on $\mathcal{S}_{D, k, \eta}$ by right translation.

Example

If $F=\mathbb{Q}$ and $S(D)=\emptyset$, so $G=\mathrm{GL}_{2 / \mathbb{Q}}$, for any $N \geq 1$ set

$$
U_{1}(N)=\left\{g \in \mathrm{GL}_{2}(\widehat{\mathbb{Z}}): g \equiv\left(\begin{array}{ll}
* & * \\
0 & 1
\end{array}\right) \quad \bmod N\right\} .
$$

Then $\mathcal{S}_{D, k, 0}^{U_{1}(N)}$ is isomorphic to the usual space $\mathcal{S}_{k}\left(\Gamma_{1}(N)\right)$ of modular cusp forms of weight k and level $\Gamma_{1}(N)$. An automorphic form ϕ corresponds to

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) i \longmapsto(c i+d)^{k} \phi\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right) .
$$

for $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathbb{R}^{\times} \mathrm{SO}_{2}(\mathbb{R})$.

Fact

$\mathcal{S}_{D, k, \eta}$ is an admissible and semisimple representation of $G\left(\mathbb{A}_{F}^{\infty}\right)$.

Definition

The irreducible constituents of $\mathcal{S}_{D, k, \eta}$ are called regular algebraic cuspidal automorphic representations of $G\left(\mathbb{A}_{F}^{\infty}\right)$ of weight (k, η).

Theorem (Multiplicity one)

Each irreducible $\pi \subseteq \mathcal{S}_{D, k, \eta}$ appears exactly once as a direct summand. Moreover, if $\pi \subseteq \mathcal{S}_{D, k, \eta}$ and $\pi^{\prime} \subseteq \mathcal{S}_{D, k^{\prime}, \eta^{\prime}}$ satisfy $\pi_{v} \simeq \pi_{v}^{\prime}$ for almost all v, then $(k, \eta)=\left(k^{\prime}, \eta^{\prime}\right)$ and $\pi=\pi^{\prime}$.

If $S(D) \supseteq S_{\infty}$, we say D is a definite quaternion algebra. In this case, we have:

Fact

$G(F) \backslash G\left(\mathbb{A}_{F}^{\infty}\right)$ is compact.
For all open compact $U^{\infty} \subseteq G\left(\mathbb{A}_{F}^{\infty}\right)$, the space $G(F) \backslash G\left(\mathbb{A}_{F}^{\infty}\right) / U^{\infty}$ is finite.

In particular, the spaces $\mathcal{S}_{D, k, \eta}$ are very simple:

$$
\begin{aligned}
& \mathcal{S}_{D, 2,0}=\underset{U^{\infty}}{\lim }\left\{G(F) \backslash G\left(\mathbb{A}_{F}^{\infty}\right) / U^{\infty} \longrightarrow \mathbb{C}\right\}, \\
& \mathcal{S}_{D, k, \eta}=\operatorname{Hom}_{G\left(F_{\infty}\right)}\left(W^{\vee}, \mathcal{S}_{D, 2,0}\right)
\end{aligned}
$$

The global Jacquet-Langlands correspondence

Let D be a quaternion algebra over $F, G=D^{\times}$.

Theorem (Jacquet-Langlands, Badulescu)

There is a bijection JL from the infinite-dimensional cuspidal automorphic representations of $G\left(\mathbb{A}_{F}^{\infty}\right)$ of weight (k, η) to the cuspidal automorphic representations of $G L_{2}\left(\mathbb{A}_{F}^{\infty}\right)$ of weight (k, η) which are discrete series at all finite places $v \in S(D)$ and such that

$$
J L(\pi)_{v}= \begin{cases}\pi_{v} & v \notin S(D) \\ J L\left(\pi_{v}\right) & v \in S(D)\end{cases}
$$

Global base change

Theorem (Cyclic base change)

Let E / F be a cyclic extension of prime degree, and fix generators σ, δ of $\operatorname{Gal}(E / F)$ and $\operatorname{Hom}\left(\operatorname{Gal}(E / F), \mathbb{C}^{\times}\right)$respectively. Let π be a cuspidal automorphic representation of $G L_{2}\left(\mathbb{A}_{F}^{\infty}\right)$ of weight (k, η). Then, there exists a cuspidal automorphic representation $B C(\pi)$ of $G L_{2}\left(\mathbb{A}_{E}^{\infty}\right)$ of weight ($B C(k), B C(\eta))$ such that
(1) For all finite places v of E lying above a place w of F, $B C_{E / F}(\pi)_{v}=B C_{E_{v} / F_{w}}\left(\pi_{w}\right)$.
(2) $B C(k)_{v}=k_{w}$ and $B C(\eta)_{v}=\eta_{w}$ for v, w as above.
(3) $B C(\pi) \simeq B C\left(\pi^{\prime}\right) \Longleftrightarrow \pi \simeq \pi^{\prime} \otimes\left(\delta^{i} \circ A r t_{F} \circ\right.$ det) for some i.
(1) A cuspidal automorphic representation π of $G L_{2}\left(\mathbb{A}_{E}^{\infty}\right)$ is in the image of $B C \Longleftrightarrow \pi=\pi \circ \sigma$.

The global Langlands correspondence

Let p be prime, F an number field, $\mathcal{G}_{F}=\operatorname{Gal}(\bar{F} / F)$ and $n \geq 1$. Fix an isomorphism $\iota: \overline{\mathbb{Q}}_{p} \xrightarrow{\sim} \mathbb{C}$.

Conjecture (Global Langlands correspondence)

There exists a unique bijection between regular algebraic cuspidal automorhic representations π of $\mathrm{GL}_{n}\left(\mathbb{A}_{F}\right)$ and irreducible Galois representations $r: \mathcal{G}_{F} \longrightarrow \mathrm{GL}_{n}\left(\overline{\mathbb{Q}}_{p}\right)$ which are de Rham at all $v \mid p$ such that

- For all $v \nmid \infty$ we have $\operatorname{rec}_{F_{v}}\left(\pi_{v} \otimes|\operatorname{det}|^{\frac{1-n}{2}}\right) \simeq \mathrm{WD}\left(\left.r\right|_{\mathcal{G}_{F_{v}}}\right)^{\mathrm{F}-\mathrm{ss}}$.
- For all $v \mid \infty$, the weight of π at v corresponds to $H T_{\iota^{-1} v}\left(\left.r\right|_{\mathcal{G}_{F_{v}}}\right)$.

In the case where $n=2$ and F is totally real, we know the following:

Theorem (Carayol, Wiles, Taylor, Blasius-Rogawski, Saito, Skinner)

Let $\pi \in \mathcal{S}_{G L_{2 / F}, k, \eta}$ be regular algebraic. There exists a CM field $L_{\pi} \subseteq \mathbb{C}$ and $\left\{r_{\lambda}(\pi): \mathcal{G}_{F} \longrightarrow G L_{2}\left(\bar{L}_{\pi, \lambda}\right)\right\}_{\lambda}$ for finite places λ of L_{π} such that, if we fix an embedding $\bar{L}_{\pi} \hookrightarrow \mathbb{C}$ and extensions $\iota: \bar{L}_{\pi, \lambda} \longrightarrow \mathbb{C}$, then:
(1) For finite places v of F not dividing the residue characteristic of λ, $r e c\left(\pi_{v} \otimes|\operatorname{det}|^{-1 / 2}\right) \simeq W D\left(\left.r_{\lambda}(\pi)\right|_{\mathcal{G}_{F_{v}}}\right)^{F-s s}$
(2) The characteristic polynomial of $r_{\lambda}(\pi)\left(\right.$ Frob $\left._{v}\right)$ has coefficients in L_{π}
(3) For all v dividing the residue characteristic of $\lambda,\left.r_{\lambda}(\pi)\right|_{\mathcal{G}_{F v}}$ is de Rham with τ-Hodge-Tate weights $\eta_{\tau}, \eta_{\tau}+k_{\tau}-1$ for any embedding $\tau: F \hookrightarrow \bar{L}_{\pi} \hookrightarrow \mathbb{C}$ lying over v. If π_{v} is unramified, then $\left.r_{\lambda}(\pi)\right|_{\mathcal{G}_{F_{v}}}$ is crystalline
(9) For all $v \mid \infty, \operatorname{det}\left(r_{\lambda}\left(c_{v}\right)\right)=-1$, where c_{v} is complex conjugation.

Remark

Condition (1) implies that π_{v} is unramified $\left.\Longleftrightarrow r_{\lambda}(\pi)\right|_{\mathcal{G}_{F_{v}}}$ is unramified. In this case, the characteristic polynomial of $r_{\lambda}(\pi)\left(\mathrm{Frob}_{v}\right)$ is

$$
X^{2}-t_{v} X+\left(\# k_{v}\right) s_{v}
$$

where t_{v} and s_{v} are the eigenvalues of $T_{v}=\left[\mathrm{GL}_{2}\left(\mathcal{O}_{v}\right)\left(\begin{array}{ll}p & 0 \\ 0 & 1\end{array}\right) \mathrm{GL}_{2}\left(\mathcal{O}_{v}\right)\right]$ and $S_{v}=\left[\mathrm{GL}_{2}\left(\mathcal{O}_{v}\right)\left(\begin{array}{ll}p & 0 \\ 0 & p\end{array}\right) \mathrm{GL}_{2}\left(\mathcal{O}_{v}\right)\right]$ in $\pi_{v}^{\mathrm{GL}_{2}\left(\mathcal{O}_{v}\right)}$.

Definition

A representation $\rho: \mathcal{G}_{F} \longrightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{Q}}_{\ell}\right)$ is modular if it is of the form $\iota \circ r_{\lambda}(\pi)$ for some π as above and $\iota: L_{\pi} \hookrightarrow \overline{\mathbb{Q}}_{\ell}$.

Proposition

Let E / F be a finite solvable Galois extension of totally real fields. Then $r: \mathcal{G}_{F} \longrightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{Q}}_{\ell}\right)$ is modular $\left.\Longleftrightarrow r\right|_{\mathcal{G}_{E}}$ is modular.

Proof

By induction we may assume that E / F is cyclic of prime degree, $\operatorname{Gal}(E / F)=\langle\sigma\rangle$. If r is modular and π is the corresponding automorphic representation, then $\left.r\right|_{\mathcal{G}_{E}}$ is modular with corresponding automorphic representation $\mathrm{BC}_{E / F}(\pi)$.

Proof (continued)

Suppose $\left.r\right|_{\mathcal{G}_{E}} \simeq \iota \circ r_{\lambda}(\pi)$ is modular. If v does not divide the residue characteristic of λ and E / F is unramified at v, then $r\left(\mathrm{Frob}_{v}\right)$ and $r\left(\right.$ Frob $\left._{v \sigma}\right)$ have the same characteristic polynomial (as they are conjugate), so by condition (1), $\pi_{v} \simeq \pi_{\sigma v} \circ \sigma_{v}=(\pi \circ \sigma)_{v}$ (where $\sigma_{v}: E_{v} \longrightarrow E_{v \sigma}$) so by strong multiplicity one we have $\pi \circ \sigma \simeq \pi$. Hence, there exists an automorphic reprensentation π^{\prime} such that $\pi=\mathrm{BC}_{E / F}\left(\pi^{\prime}\right)$. Let $r^{\prime}=\iota \circ r_{\lambda}\left(\pi^{\prime}\right)$. If $\tilde{\sigma}$ is a lift of σ to \mathcal{G}_{F}, then $r^{\prime}(\widetilde{\sigma})^{-1} r(\widetilde{\sigma}) r(g)=r^{\prime}(g) r^{\prime}(\widetilde{\sigma})^{-1} r(\widetilde{\sigma})$ for all $g \in \mathcal{G}_{E}$, so by Schur's lemma $r^{\prime}(\widetilde{\sigma})^{-1} r(\widetilde{\sigma})$ must act as a constant. In particular, if we define $\chi: \operatorname{Gal}(E / F) \longrightarrow \overline{\mathbb{Q}}_{\ell}$, by $\chi(\sigma)=r^{\prime}(\widetilde{\sigma})^{-1} r(\widetilde{\sigma})$, we have $r=\chi \otimes r^{\prime}$. By checking the characteristic polynomials of Frobenii, we see that $r=\iota \circ r_{\lambda}\left(\pi^{\prime} \otimes\left(\chi \circ \operatorname{Art}_{F}\right)\right)$.

