Automorphic forms for quaternion algebras

Last time we talked about the local Langlands correspondence, local base change and the local Jacquet-Langlands correspondence.

Let K be a finite extension of $\mathbb{Q}_p.$ The local Langlands correspondence is a bijection

irreducible smooth $\stackrel{\text{rec}}{\longleftrightarrow}$ Frobenius-semisimple Weil-Deligne $GL_n(K)$ -representations representations of W_K

supercuspidals	\longleftrightarrow	irreducibles
discrete series	\longleftrightarrow	indecomposables

which we described explicitly in the unramified case using Satake parameters.

If K'/K is a finite extension and $\pi\in {\rm Irr}({\rm GL}_n(K)),$ then write ${\rm BC}(\pi)$ for the image of π under

$$\mathsf{Irr}(\mathsf{GL}_n(K)) \xrightarrow{\mathsf{rec}_K} \mathsf{Rep}(\mathsf{WD}_K)^{\mathsf{F-ss}} \longrightarrow \mathsf{Rep}(\mathsf{WD}_{K'})^{\mathsf{F-ss}} \xrightarrow{\mathsf{rec}_K^{-1}} \mathsf{Irr}(\mathsf{GL}_n(K'))$$

Proposition

Assume K'/K is cyclic, $Gal(K'/K) = \langle \sigma \rangle$.

- $\pi' \in \operatorname{Irr}(\operatorname{GL}_n(K'))$ is in the image if and only if $\pi' \simeq \pi' \circ \sigma$ (this has the same underlying space as π' , but $\operatorname{GL}_n(K')$ acts through $\pi' \circ \sigma$).
- **2** $\mathsf{BC}(\pi_1) \simeq \mathsf{BC}(\pi_2) \iff \pi_1 \simeq \pi_2 \otimes \chi \circ \det$ for some smooth $K^{\times} \longrightarrow \mathbb{C}^{\times}$ which is trivial on $N_{K'/K}(K'^{\times})$.
- Sec(π) is supercuspidal ⇐⇒ π is supercuspidal and π ≄ π ⊗ χ ∘ det for all χ ≠ 1 as above.

• The central character of $BC(\pi)$ is $\omega_{BC(\pi)} = \omega_{\pi} \circ N_{K'/K}$.

Let D be a central division algebra over K of dimension n^2 . D^{\times} is a locally profinite group.

 $D \otimes_K \overline{K} \simeq \mathsf{M}_n(\overline{K})$, and we can associate to each regular element $\delta \in D^{\times}_{\mathsf{reg}}$ (i.e. semisimple with distinct eigenvalues) a regular element $\gamma \in \mathsf{GL}_n(K)_{\mathsf{reg}}$, up to conjugation.

If π is a finite length smooth representation of a locally profinite group G, then there exists a locally constant function $\Theta_{\pi} \colon G_{\text{reg}} \longrightarrow \mathbb{C}$ such that for all $f \in \mathcal{H}(G)$,

$$\operatorname{tr} \pi(f) = \int_{G_{\operatorname{reg}}} \Theta_{\pi}(g) f(g) dg.$$

Theorem (Local Jacquet-Langlands correspondence)

There exists a unique bijection

$$JL: Irr(D^{\times}) \xrightarrow{\sim} Irr^2(GL_n(K))$$

such that for $\pi \in Irr(D^{\times})$ and δ, γ as above, $\Theta_{\pi}(\delta) = (-1)^{n-1} \Theta_{JL(\pi)}(\gamma)$.

Today we will look at global analogues for these correspondences in the setting of GL_2 and quaternion algebras.

Let F be a number field, S a finite set of places, S_{∞} the set of all archimedean places and $S^{\infty} := S \setminus S_{\infty}$.

Write
$$F_S = \prod_{v \in S} F_v$$
, $\mathcal{O}_{F,S} = \prod_{v \in S^{\infty}} \mathcal{O}_{F_v}$ and $\widehat{\mathcal{O}}_F^S = \prod_{v \notin S \cup S_{\infty}} \mathcal{O}_{F_v}$.
Write also $\mathbb{A}_F^S = \prod_{v \notin S}' F_v$, $\mathbb{A}_F^{\infty} = \mathbb{A}_F^{S_{\infty}}$ and $F_{\infty} = F_{S_{\infty}}$.

Let D be a central simple algebra over F of dimension n^2 . If n = 2, we say D is a quaternion algebra.

Fact

The set $S(D) = \{v : D \otimes_F F_v \not\simeq \mathsf{M}_n(F_v)\}$ is finite. If n = 2, then S(D) is even, and $D \mapsto S(D)$ is a bijection between quaternion algebras over F and finite sets of places of F of even cardinality.

Consider the algebraic group $G = D^{\times}$, defined by $G(R) = (D \otimes_F R)^{\times}$ for any *F*-algebra *R*.

Note that if $v \notin S_{\infty}$, then $G(F_v)$ is locally profinite, and if $S \supseteq S_{\infty}$, then so is $G(\mathbb{A}_F^S)$.

Assume $S \supseteq S_{\infty}$. Let $\{\pi_v\}_{v \notin S}$ be a collection of irreducible (smooth) representations such that π_v is unramified for almost all v, and write S_{ram} for the $v \notin S \cup S(D)$ such that π_v is ramified.

Define

$$\bigotimes_{v \notin S}' \pi_v := \varinjlim_{\substack{T \supseteq S_{\mathsf{ram}} \cup (S(D) \setminus S) \\ T \cap S = \emptyset}} \left(\bigotimes_{v \in T} \pi_v \otimes \bigotimes_{v \notin T \cup S} \pi_v^{G(\mathcal{O}_{F_v})} \right)$$

(recall that if π_v is unramified and irreducible, then $\pi_v^{G(\mathcal{O}_{F_v})}$ is 1-dimensional)

Theorem (Flath)

The association $\{\pi_v\}_v \mapsto \bigotimes'_{v \notin S} \pi_v$ is a bijection between collections $\{\pi_v\}$ unramified almost everywhere and irreducible smooth representations of $G(\mathbb{A}_F^S)$.

Automorphic forms for quaternion algebras

Assume now that n = 2 and F is totally real.

If
$$v \in S_{\infty}$$
, then
$$G(F_v) \simeq \begin{cases} \mathsf{GL}_2(\mathbb{R}) & v \notin S(D) \\ \mathbb{H}^{\times} & v \in S(D) \end{cases}$$

where \mathbb{H} are the Hamilton quaternions. Thus,

$$U_v = \begin{cases} \mathbb{R}^{\times} \mathsf{SO}_2(\mathbb{R}) & v \notin S(D) \\ \mathbb{H}^{\times} & v \in S(D) \end{cases}$$

is a maximal compact-mod-center subgroup of $G(F_v)$.

Set $U_{\infty} = \prod_{v \mid \infty} U_v$.

Let $(k_v, \eta_v)_{v|\infty}$ be integers with $k_v \ge 2$ for all v and such that $w = k_v + 2\eta_v - 1$ is independent of v. Consider the representation of U_∞

$$W = \bigotimes_{v \in S_{\infty} \cap S(D)} \operatorname{Sym}^{k_v - 2}(\mathbb{C}^2) \otimes \det(\mathbb{C}^2)^{\eta_v} \otimes \bigotimes_{v \in S_{\infty} \setminus S(D)} \mathbb{C}_{k_v, \eta_v}$$

where \mathbb{C}_{k_v,η_v} is the 1-dimensional representation of $\mathbb{R}^{\times}\mathrm{SO}_2(\mathbb{R})$ where $h = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{R}^{\times}\mathrm{SO}_2(\mathbb{R})$ acts via $(ci + d)^{k_v}(\det \gamma)^{\eta_v - 1}$.

Definition

The space $\mathcal{S}_{D,k,\eta}$ of *automorphic forms for* D *of weight* (k,η) is the space of functions $\phi: G(F) \setminus G(\mathbb{A}_F) \longrightarrow W$ satisfying

- **(**) ϕ is right-translation invariant by some open compact $U^{\infty} \subseteq G(\mathbb{A}_F^{\infty})$
- **2** ϕ is equivariant for the action of $U_{\infty} \subseteq G(F_{\infty})$
- **()** for all $g \in G(\mathbb{A}_F^{\infty})$, the function

$$(\mathbb{C} \setminus \mathbb{R})^{S_{\infty} \setminus S(D)} \longrightarrow W$$
$$h \cdot (i, ..., i) \longmapsto h \cdot \phi(gh)$$

for $h \in (\mathbb{R}^{\times} SO_2(\mathbb{R}))^{S_{\infty} \setminus S(D)}$ is holomorphic

Definition (continued)

() if $F = \mathbb{Q}$ and $S(D) = \emptyset$, then for all $g \in G(\mathbb{A}_F^{\infty}) \simeq \mathrm{GL}_2(\mathbb{A}_F^{\infty})$, the function

$$\mathbb{C} \setminus \mathbb{R} \longrightarrow W$$
$$h \cdot i \longmapsto \phi(gh) |\operatorname{Im}(hi)|^{k/2}$$

is bounded

() if
$$S(D) = \emptyset$$
, then for all $g \in G(\mathbb{A}_F) \simeq \mathsf{GL}_2(\mathbb{A}_F)$,

$$\int_{F/\mathbb{A}_F} \phi\left(\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} g \right) dx = 0.$$

 $G(\mathbb{A}_F^\infty)$ acts smoothly on $\mathcal{S}_{D,k,\eta}$ by right translation.

Example

If
$$F = \mathbb{Q}$$
 and $S(D) = \emptyset$, so $G = \mathsf{GL}_{2/\mathbb{Q}}$, for any $N \ge 1$ set

$$U_1(N) = \{ g \in \mathsf{GL}_2(\widehat{\mathbb{Z}}) : g \equiv \begin{pmatrix} * & * \\ 0 & 1 \end{pmatrix} \mod N \}.$$

Then $\mathcal{S}_{D,k,0}^{U_1(N)}$ is isomorphic to the usual space $\mathcal{S}_k(\Gamma_1(N))$ of modular cusp forms of weight k and level $\Gamma_1(N)$. An automorphic form ϕ corresponds to

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} i \longmapsto (ci+d)^k \phi \left(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \right).$$

for $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{R}^{\times} \mathsf{SO}_2(\mathbb{R}).$

Fact

 $\mathcal{S}_{D,k,\eta}$ is an admissible and semisimple representation of $G(\mathbb{A}_F^{\infty})$.

Definition

The irreducible constituents of $S_{D,k,\eta}$ are called *regular algebraic cuspidal* automorphic representations of $G(\mathbb{A}_F^{\infty})$ of weight (k,η) .

Theorem (Multiplicity one)

Each irreducible $\pi \subseteq S_{D,k,\eta}$ appears exactly once as a direct summand. Moreover, if $\pi \subseteq S_{D,k,\eta}$ and $\pi' \subseteq S_{D,k',\eta'}$ satisfy $\pi_v \simeq \pi'_v$ for almost all v, then $(k,\eta) = (k',\eta')$ and $\pi = \pi'$. If $S(D)\supseteq S_\infty,$ we say D is a definite quaternion algebra. In this case, we have:

Fact

 $G(F)\backslash G(\mathbb{A}_F^{\infty})$ is compact. For all open compact $U^{\infty} \subseteq G(\mathbb{A}_F^{\infty})$, the space $G(F)\backslash G(\mathbb{A}_F^{\infty})/U^{\infty}$ is finite.

In particular, the spaces $\mathcal{S}_{D,k,\eta}$ are very simple:

$$\mathcal{S}_{D,2,0} = \varinjlim_{U^{\infty}} \{ G(F) \setminus G(\mathbb{A}_F^{\infty}) / U^{\infty} \longrightarrow \mathbb{C} \},$$

$$\mathcal{S}_{D,k,\eta} = \operatorname{Hom}_{G(F_{\infty})}(W^{\vee}, \mathcal{S}_{D,2,0}).$$

Let D be a quaternion algebra over F, $G = D^{\times}$.

Theorem (Jacquet-Langlands, Badulescu)

There is a bijection JL from the infinite-dimensional cuspidal automorphic representations of $G(\mathbb{A}_F^{\infty})$ of weight (k, η) to the cuspidal automorphic representations of $GL_2(\mathbb{A}_F^{\infty})$ of weight (k, η) which are discrete series at all finite places $v \in S(D)$ and such that

$$JL(\pi)_v = \begin{cases} \pi_v & v \notin S(D), \\ JL(\pi_v) & v \in S(D). \end{cases}$$

Theorem (Cyclic base change)

Let E/F be a cyclic extension of prime degree, and fix generators σ , δ of Gal(E/F) and $Hom(Gal(E/F), \mathbb{C}^{\times})$ respectively. Let π be a cuspidal automorphic representation of $GL_2(\mathbb{A}_F^{\infty})$ of weight (k, η) . Then, there exists a cuspidal automorphic representation $BC(\pi)$ of $GL_2(\mathbb{A}_E^{\infty})$ of weight $(BC(k), BC(\eta))$ such that

 For all finite places v of E lying above a place w of F, BC_{E/F}(π)_v = BC_{Ev/Fw}(π_w).

2 $BC(k)_v = k_w$ and $BC(\eta)_v = \eta_w$ for v, w as above.

- A cuspidal automorphic representation π of GL₂(A[∞]_E) is in the image of BC ⇔ π = π ∘ σ.

Let p be prime, F an number field, $\mathcal{G}_F = \operatorname{Gal}(\overline{F}/F)$ and $n \ge 1$. Fix an isomorphism $\iota \colon \overline{\mathbb{Q}}_p \xrightarrow{\sim} \mathbb{C}$.

Conjecture (Global Langlands correspondence)

There exists a unique bijection between regular algebraic cuspidal automorhic representations π of $\operatorname{GL}_n(\mathbb{A}_F)$ and irreducible Galois representations $r: \mathcal{G}_F \longrightarrow \operatorname{GL}_n(\overline{\mathbb{Q}}_p)$ which are de Rham at all v|p such that

- For all $v \nmid \infty$ we have $\operatorname{rec}_{F_v}(\pi_v \otimes |\det|^{\frac{1-n}{2}}) \simeq \operatorname{WD}(r|_{\mathcal{G}_{F_v}})^{\mathsf{F-ss}}$.
- For all $v|\infty$, the weight of π at v corresponds to $HT_{\iota^{-1}v}(r|_{\mathcal{G}_{F_v}})$.

In the case where n = 2 and F is totally real, we know the following:

Theorem (Carayol, Wiles, Taylor, Blasius-Rogawski, Saito, Skinner)

Let $\pi \in S_{GL_{2/F},k,\eta}$ be regular algebraic. There exists a CM field $L_{\pi} \subseteq \mathbb{C}$ and $\{r_{\lambda}(\pi) : \mathcal{G}_{F} \longrightarrow GL_{2}(\overline{L}_{\pi,\lambda})\}_{\lambda}$ for finite places λ of L_{π} such that, if we fix an embedding $\overline{L}_{\pi} \hookrightarrow \mathbb{C}$ and extensions $\iota : \overline{L}_{\pi,\lambda} \longrightarrow \mathbb{C}$, then:

- For finite places v of F not dividing the residue characteristic of λ, rec(π_v ⊗ | det |^{-1/2}) ≃ WD(r_λ(π)|_{G_{Fv}})^{F-ss}
- **2** The characteristic polynomial of $r_{\lambda}(\pi)(\text{Frob}_{v})$ has coefficients in L_{π}
- For all v dividing the residue characteristic of λ , $r_{\lambda}(\pi)|_{\mathcal{G}_{F_v}}$ is de Rham with τ -Hodge-Tate weights $\eta_{\tau}, \eta_{\tau} + k_{\tau} 1$ for any embedding $\tau \colon F \hookrightarrow \overline{L}_{\pi} \hookrightarrow \mathbb{C}$ lying over v. If π_v is unramified, then $r_{\lambda}(\pi)|_{\mathcal{G}_{F_v}}$ is crystalline
- So For all $v \mid \infty$, $det(r_{\lambda}(c_v)) = -1$, where c_v is complex conjugation.

Remark

Condition (1) implies that π_v is unramified $\iff r_\lambda(\pi)|_{\mathcal{G}_{F_v}}$ is unramified. In this case, the characteristic polynomial of $r_\lambda(\pi)(\operatorname{Frob}_v)$ is

$$X^2 - t_v X + (\#k_v)s_v$$

where t_v and s_v are the eigenvalues of $T_v = [\operatorname{GL}_2(\mathcal{O}_v) \begin{pmatrix} p & 0 \\ 0 & 1 \end{pmatrix} \operatorname{GL}_2(\mathcal{O}_v)]$ and $S_v = [\operatorname{GL}_2(\mathcal{O}_v) \begin{pmatrix} p & 0 \\ 0 & p \end{pmatrix} \operatorname{GL}_2(\mathcal{O}_v)]$ in $\pi_v^{\operatorname{GL}_2(\mathcal{O}_v)}$.

Definition

A representation $\rho: \mathcal{G}_F \longrightarrow \operatorname{GL}_2(\overline{\mathbb{Q}}_\ell)$ is modular if it is of the form $\iota \circ r_\lambda(\pi)$ for some π as above and $\iota: L_\pi \hookrightarrow \overline{\mathbb{Q}}_\ell$.

Proposition

Let E/F be a finite solvable Galois extension of totally real fields. Then $r: \mathcal{G}_F \longrightarrow \mathsf{GL}_2(\overline{\mathbb{Q}}_\ell)$ is modular $\iff r|_{\mathcal{G}_E}$ is modular.

Proof

By induction we may assume that E/F is cyclic of prime degree, Gal $(E/F) = \langle \sigma \rangle$. If r is modular and π is the corresponding automorphic representation, then $r|_{\mathcal{G}_E}$ is modular with corresponding automorphic representation $\mathsf{BC}_{E/F}(\pi)$.

Proof (continued)

Suppose $r|_{\mathcal{G}_F} \simeq \iota \circ r_{\lambda}(\pi)$ is modular. If v does not divide the residue characteristic of λ and E/F is unramified at v, then $r(Frob_v)$ and $r(Frob_{v\sigma})$ have the same characteristic polynomial (as they are conjugate), so by condition (1), $\pi_v \simeq \pi_{\sigma v} \circ \sigma_v = (\pi \circ \sigma)_v$ (where $\sigma_v \colon E_v \longrightarrow E_{v\sigma}$) so by strong multiplicity one we have $\pi \circ \sigma \simeq \pi$. Hence, there exists an automorphic representation π' such that $\pi = \mathsf{BC}_{E/F}(\pi')$. Let $r' = \iota \circ r_{\lambda}(\pi')$. If $\tilde{\sigma}$ is a lift of σ to \mathcal{G}_F , then $r'(\widetilde{\sigma})^{-1}r(\widetilde{\sigma})r(g) = r'(g)r'(\widetilde{\sigma})^{-1}r(\widetilde{\sigma})$ for all $g \in \mathcal{G}_E$, so by Schur's lemma $r'(\widetilde{\sigma})^{-1}r(\widetilde{\sigma})$ must act as a constant. In particular, if we define $\chi: \operatorname{Gal}(E/F) \longrightarrow \overline{\mathbb{Q}}_{\ell}$, by $\chi(\sigma) = r'(\widetilde{\sigma})^{-1}r(\widetilde{\sigma})$, we have $r = \chi \otimes r'$. By checking the characteristic polynomials of Frobenii, we see that $r = \iota \circ r_{\lambda}(\pi' \otimes (\chi \circ \operatorname{Art}_{F}))$.