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Notation

F{Qp is a local field with uniformiser $, |OF{p$q| � q.
We do not assume characters are unitary.
G usually denotes GLnpFq and H GLnpOFq.

Lukas Kofler University of Cambridge Local Langlands



Recall that a representation pπ,Vq of G � GLnpFq is smooth if for all v P V , stabpvq is open in
G, and admissible if it is smooth and for all open compact K ¥ G, dimpVKq   8.
The irreducible admissible representations of GLnpFq can be organised as follows:

IrrscpGLnpFqq � Irr2pGLnpFqq � IrradmpGLnpFqq,

where Irrsc denoted supercuspidal representations and Irr2 denotes square-integrable (or
discrete series representations.
For GL2, all irr. adm. representations not in Irr2 are principal series representations.

Fact: Schur’s lemma holds for irreducible admissible representations of G � GLnpFq.
Therefore the centre ZpGq of G must act by scalars on V . ZpGq � F� and so we can define the
central character of π by ωπ : F� Ñ C�.
In fact any irreducible smooth finite-dimensional representation of G is 1-dimensional and of
the form χ � det.
Such representations do not occur as constituents of automorphic representations.
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Principal series representation

Let G � GLnpFq, B the Borel subgroup of upper triangular matrices. If χ1, ..., χn are
characters F� Ñ C�, we can construct a character χ : B Ñ C� by defining
χpbq �

±
χipbiiq. Define δ : B Ñ C� by

δpbq �
¹
i j

|bii{bjj|.

Then define the normalised induced representation of χ from B to G by

IndG
B pχq � tf : G Ñ C|f pbgq � δpbq1{2χpbqf pgqu.

where the functions f are locally constant, b P B and g P G. This is a G-representation through
gpf phqq � f phgq.
IndG

B pχq is admissible. It is irreducible iff χi � χj|.|�1 for all i, j. Two such representations are
isomorphic iff they come from the same characters, possibly after reordering. If the
representation is irreducible, it is called a principal series representation.
If it is not irreducible, it contains either a subrepresentation of codimension 1 or a quotient
representation by a 1-dimensional subrepresentation which is irreducible and admissible. In
either case it is called a special (or Steinberg) representation, denoted Sp.
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Discrete series and supercuspidal

Let pπ,Vq P IrradmpGLnpFqq with V_ its smooth dual. For v P V , f P V_ define the matrix
coefficient φv,f : GLnpFq Ñ C by φv,f � f pπpgqvq.

pπ,Vq is a supercuspidal representation if all matrix coefficients φv,f have compact support
modulo F�.

pπ,Vq is square integrable (or discrete series) if for every φv,f ,
»

GLnpFq{F�
|φv,f pgqωπpdetpgqq�1{n|2dµ   8,

where ωπ is the central character of π.
Supercuspidal implies discrete series, but the converse is not true for n ¡ 1.

Classification for GL2pFq

An irreducible admissible representation of GL2pFq is one of the following disjoint types

 1-dimensional, of the form χ � det,

 principal series IndG

B pχ1, χ2q where χ1χ
�1
2 � |.|�1,


 special representation (possibly twisted by a character), Sp b χ,

 supercuspidal.
For GLn, n ¡ 2, things are more complicated.
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Bernstein-Zelevinsky classification

Let π P IrrscpGLmpFqq, m, r ¥ 1. Then

π � π| det | � ...� π detr�1

has a unique irreducible quotient Sprpmq P GLmr pFq.

For πi P Irr2pGLni pFqq suitably ordered, there exists exactly one irreducible quotient of
π1 � ...� πr , called the Langlands quotient and denoted π1 ` ...` πr .

IrradmpGLnpFqq is in bijection with

tpr, tπiu
r
i�1|r ¥ 1, πi P Irr2pGLni pFq,

¸
ni � nu,

where the bijection is given by sending pr, tπiuq to `iπi.
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Automorphic representations

Let f P S2pΓ0pNqq be a newform with character χ. There is a canonical way of associating to f
a representation πf ,p of GL2pQpq. πf ,p turns out to be admissible and irreducible. Let f
correspond to an elliptic curve E by Eichler-Shimura. Then


 if p - N then πf ,p is a principal series representation coming from two unramified characters
χ1 and χ2 such that χ1p$q and χ2p$q are the roots of X2 � apX � χppqpk�1. We can see that
it is irreducible: if it weren’t, we would have χ1p$q{χ2p$q � q�1. But then ap � q � 1,
violating the Hasse-Weil bound!


 if p divides N exactly, πf ,p � Sp b punram. quadr. char.q


 if p2|N, πf ,p is ramified principal series iff E acquires good reduction over an abelian
extension of Qp, and supercuspidal or Sp b pram quadr. char.q
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Weil-Deligne representations again

A Weil-Deligne representation is a representation ρ : WF Ñ GLCpVq together with a nilpotent
N P EndCpVq such that

 ρpIFq is finite and

 @σ P WF, ρpσqNρpσq�1 � q�vFpσqN.

A WD representation is Frobenius semi-simple if for every lift φ of the geometric Frobenius,
ρpφq is semi-simple.

RepFss
n pWDFq can be built up from irreducible WD representations as follows, see [Del]:

Repindec
n pWDFq is in bijection with tpr, ρq : r ¥ 1, r|n, ρ P Repirr

n{rpWDFqu, with map

pr, ρq ÞÑ Sprpρq � pρ` ρ|.| ` ...` ρ|.|s�1,Nq, where N � pδi,i�1qij.

Furthermore RepFsspWDFq is in bijection with
tpni, tρiuq|ni ¥ 1, ρi P Repindec

ni
pWDFq,

°
ni � nu, the map given by direct sum.

Notice how this mirrors the Bernstein-Zelevinsky classification.
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Local Langlands correspondence (Harris-Taylor, Henniart, Scholze)

Let F{Qp be a finite extension. Then there exists exactly one bijection

recn
F : IrrpGLnpFqq Ñ RepFsspWDFq

such that rec1
F is the Artin map from local class field theory, i.e. sending χ : F� Ñ C� to

WF Ñ Wab
F

ArtFÝÝÑ K� Ñ C�, and such that recn
F preserves L-factors and ε-factors in pairs:

1) Lps, π1 � π2q � Lps, recpπ1q b recpπ2qq

2) εps, π1 � π2q � εps, recpπ1q b recpπ2qq

Furthermore,

 recF preserves conductors,

 if π corresonds to ρ, then π_ corresponds to ρ_,

 the central character ωπ corresponds to detpρq under rec1

F ,

 π � pχ � detq corresponds to ρb rec1

Fpχq,

 π1 ` π2 corresponds to recpπ1q ` recpπ2q,

 if π P IrrscpGLnpFqq corresponds to ρ, then Sprpπq corresponds to Sprpρq for all r ¥ 1.
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Moreover,

IrrpGLnpFqq Ñ RepFss
n pWDFq

Irr2pGLnpFqq Ñ Repindec
n pWDFq

IrrscpGLnpFqq Ñ Repirr
n pWDFq

so by [B-Z] and [Del] it is enough to establish the last correspondence satisfying properties 1q
and 2q to get the entire Langlands correspondence.

Conductors, L-factors, e factors
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The Hecke algebra

Let G be a locally profinite unimodular group with Haar measure µ and K an open compact
subgroup. H � HpG,Kq is the algebra of compactly supported locally constant K-biinvariant
functions G Ñ C with convolution product given by

pf � gqpxq �
»

G
f pxh�1qgphqdh.

There is a bijection from tirreducible smooth representations pπ,Vq of G with VK � 0u to
tsimple HpG,Kq-modulesu given by V ÞÑ VK .
The action of HpG,Kq on VK is given by

πpf qpvq �
»

G
f pgqπpgqvdg.

Each f P HpG,Kq is constant on double cosets KxK. f is compactly supported, so it is a finite
linear combination of characteristic functions of double cosets. These characteristic functions
give a Z-basis for HpG,Kq.
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G � GLnpFq. Let B be the Borel subgroup of upper triangular matrices, T the maximal torus of
diagonal matrices and N the unipotent radical of B.
There is an isomorphism

HpTpFq{TpOFqq � Crx�1
1 , ..., x�1

n s

given by taking the characteristic function of TpOFqdiagp$a1 , ..., $an qTpOFq to xa1 � � � xan .

Define Hur :� HpGLnpFq,GLnpOFqq.

The Satake transform

The Satake transform is the map

S : Hur Ñ HpTpFq, TpOFqq � Crx�1
1 , ..., x�1

n s.

given by

f ÞÑ pt ÞÑ δ
1{2
B ptq

»
N

f ptnqµnq.
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Theorem

The Satake transform S is injective and gives an isomorphism Hur � Crx�1 , ..., x
�
n s

Sn

Let si be the i-th symmetric function in x1, ..., xn and set Ti � qipn�iq{2si. Then
Crx�1 , ..., x

�
n s

Sn � CrT1, ..., Tn�1, T
�1
n s and the isomorphism with Hur is given by sending

the characteristic function of GLnpOFqdiagp$Ii, In�iqGLnpOFq to Ti.

Corollary

The unramified Hecke algebra HurpGLnpFqq is commutative.

Remark

This theorem generalises to reductive groups: Crx�1
1 , ..., x�1

n s can be viewed as the cocharacter
variety X� of the maximal torus T , and Sn is the Weyl group W of GLn. In general we have an
isomorphism

HpGpFq,GpOFqq � X�pTpCqqW .
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Definition

π P IrrpGLnpFqq is unramified (or spherical) if πGLnpOFq � 0.
These are important for global automorphic representations: such representations are restricted
products with respect to spherical representations.

Let π be an unramified irreducible representation of GLnpFq. πGLnpOFq � 0 is irreducible as an
Hur-module. But Hur is commutative, so πGLnpOFq � C
We obtain a map Sπ : Hur Ñ C called a Satake parameter. It is defined by the SπpTiq � si.
We have shown that giving π P IrrurpGLnpFqq is the same as giving a point of pC�qn{Sn. We
define the Hecke polynomial of π by

±
pX � siq.

Lukas Kofler University of Cambridge Local Langlands



Unramified local Langlands

recn
F induces a bijection between IrrurpGLnpFqq and Repur

n pWDFqFss making the following
diagram commute:

IrrurpGLnpFqq Repur
n pWDFqFss

pC�qn{Sn

S ÞÑ`iσsi

recn
F

S ÞÑ`iχsi

where S � ts1, ..., snu and χsi and σsi correspond by class field theory. Furthermore the
characteristic polynomial of ρpFrobq equals the Hecke polynomial of π.
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Proof (sketch)

For ρ P Repur
n pWDFqFss, kerpNq is a subrepresentation, so we must have N � 0. ρ is trivial on

IF , so ρ is just a map Z Ñ GLnpCq such that ρpFrobq has semi-simple image. Thus ρ is
determined by the eigenvalues s1, ..., sn of the diagonalisation of ρpFrobq.
We clearly have a bijection pC�qn{Sn Ñ Repur

n pWDFqFss.
On the other hand, a point ps1, ..., snq of pC�qn{Sn is the same as a set of n unramified
characters det �χi : GLnpFq Ñ C�, where χip$q � si.
Again let G � GLnpFq, B the upper triangular Borel subgroup and K � GLnpOFq.

Form IndG
B ppχiqq � tf : G Ñ C|f p

�
��

a1 � �

0
. . . �

0 0 an

�
�
gq � δGpbq�1{2δBpbq1{2±χipaiqf pgqu

The Iwasawa decomposition gives G � BK. Define f 0pbkq � δGpbq�1{2δHpbq1{2±χipaiq.
This is well-defined as B X K � kerpf 0q and K-invariant.
Conversely if f P IndG

B ppχiqq satisfies f pgkq � f pgq for all k P K then f � cf 0.
It is left to show that the image of Cf 0 in the Langlands quotient `χi is nontrivial. Then the
map to RepurpGLnpFqq is well-defined.
Compose with the Satake map and show it gives the identity on pC�qn{Sn. Together with the
injectivity of the Satake map this gives a bijection. Now show that the isomorphism is
compatible with L-factors and ε-factors to see that it must equal recn

F .
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Let L1{L{Qp be finite extensions. If L1{Qp is Galois, we can use the ramification filtration to see
that GalpL1{Qpq and hence GalpL1{Lq is solvable.

Local base change

The following diagram commutes:

IrrpGLnpL1qq RepFsspWDL1 q

IrrpGLnpLqq RepFsspWDLq
recL

recL1

The left vertical map is given by base change, the right one by restriction.
For n � 1, χ : F� Ñ C� base changes to χ � NF1{F : F1� Ñ C�.

Lukas Kofler University of Cambridge Local Langlands



Let D{F be a central division algebra, rD : Fs � n2.

We define the reduced norm map ND : D Ñ D bF F � MnpFq
det
ÝÝÑ F. Its image actually

lands in F.

There exists a map
D�reg{ �ãÑ GLnpFqreg{ �,

δ ÞÑ γ such that charpδq � charpγq. Regular means distinct eigenvalues, and � denotes
equivalence under conjugation.
The image of this map is tγ| charpγqis irreducible overFu. Call these elliptic elements.

Theorem (Jacquet-Langlands, Rogawski, Deligne-Kazhdan-Vigneras)

There is a unique bijection
JL : IrrpD�q �

ÝÑ Irr2pGLnpFqq

Lukas Kofler University of Cambridge Local Langlands



References

[B1] Buzzard Satake
[Bump]
[B-Z] Bernstein-Zelevinsky
[Del] Deligne Antwerp
[Gr] Gross Satake
[Loe] Loeffler article

Lukas Kofler University of Cambridge Local Langlands


