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Given a family of curves F over QQ, want to study statistical behaviour of
CeF:

e Rational points C(Q),
e Mordell-Weil group J(Q),
@ 2-Selmer group Sel; J.

Recall the exact sequence

0 — J(Q)/2J(Q) — Selo J — III(J)[2] — O.
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Example 1: Elliptic Curves

F = {elliptic curves over Q}. Every E € F has unique equation
Eap:y’=x>+Ax+B, (ABcZ)
where no prime p has p* | A and p° | B. Define
H(Ea,g) = max (|A]%,|B]?) .

Theorem (Bhargava-Shankar)
When ordered by height,

Average(# Selo(E) | E € F) = 3.
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Example 1: Elliptic curves

FIGURE 6. Average order of the 2-Selmer groups, including samples (log,, scale)
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Source: Balakrishnan, Ho, Kaplan, ... (ANTS XIlI)
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Example 2: Hyperelliptic curves

Bhargava and Gross obtained similar results for the family
Fg = {odd hyperelliptic curves of genus g/Q}
for every g > 1. Poonen and Stoll used this to show that
P(CeFe | #C(Q)=1)—1

as g — +oo0.
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Proof method

Roughly speaking, two steps in proving the theorems of Bhargava—Shankar
and Bhargava—Gross:

© Find a representation V of a reductive group G/Q such that

certain G(Q)-orbits Sely J for all
of V(Q) T cer

@ Count integral orbits in (G, V).

Example

Elements of Sely E (with E/Q elliptic curve) correspond to PGL2(Q)-orbits
of binary quartic forms. [Reason: a double cover C — P! with Jac(C) = E
is defined by a binary quartic]

Question
Where does (G, V') come from?
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Graded Lie algebras

Definition
A Lie algebra § over a field k is m-graded if

b= EP b

i€Z/mi

where [(],‘7 hJ] C f),'_H' for all iyJ.

A graded Lie algebra defines a representation

h ~ b via the adjoint representation, so g := hg acts on V := b3 via
restriction.

If H is an algebraic group with LieH = § and G C H a closed subgroup
with LieG = g, then similarly G ~ V and (G, V) is called a Vinberg
representation.
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Graded Lie algebras

Observation (Gross)

All representations appearing in the arithmetic statistics literature are
Vinberg representations! (Apart from a few special cases)

Punchline of talk/"Main result"

We can use graded Lie algebras as a starting point to (re)prove theorems in
arithmetic statistics.
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Main results

Given an ADE Dynkin diagram, we can canonically construct a Vinberg
representation and a family of curves (Thorne):
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Main results

Explicit example: A,
o h=sl3, H=PGL3, 0: H— H, g+~ (g*)~! where (—)* denotes
reflection along anti-diagonal
o G =HI V =19="1 given by (PGLy, Sym?(4)).
@ A, singularity is a cusp:
(VP=x)wF={y>=x3+Ax+B|ABcZ}.

We can find F inside V: elements of the form

x 0 1
y —2x 0| cV

w z X

with characteristic polynomial t3 + At 4 B are described by the affine curve
(y2=x3+ Ax + B)
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Main results

Theorem (L.)

Let D # Ay be an ADE Dynkin diagram, giving a representation (G, V)
and family of curves F. Then:

© For every C € F, there exists a ‘natural’ injection

Selp J = G(Q)\V(Q).

@ When ordered by a suitable height, there exists an explicit m € Z>1
such that

Average(# Selp(J)) < 3-2m7L.
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Previously known cases

@ A,: Bhargava—Shankar
Aog: Bhargava—Gross
Aog+1: Shankar-Wang
Dogy1: (Ananth) Shankar
Asz, Dy: Bhargava—Ho.

The proofs of Theorems 1 and 2 are uniform.

Jef Laga (Cambridge) Arithmetic statistics and graded Lie alget March 17, 2022



Concrete consequence of Eg case

Let
F_ non-hyperelliptic genus 3 curves C/Q
| with a marked rational hyperflex P € C(Q)

Given by smooth members of the form

y2 = x* 4 (pox® + psx + pg)y + (pex® + pox + p12),

Consequence 1
A majority (> 61%) of curves in F have at most 26 rational points. J

Consequence 2 J

A positive proportion of curves in F have only one rational point.
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Proof of Theorem 1

@ Construct ‘identity’ k¢ € V(Q) for each C € F.
Q ‘Twist’ k¢:

G(Q\ (V(Q N G(Q) - k) + ker(HH(Q, Stabg(kc)) — H'(Q, G))

© Thorne: Stabg(rkc) =~ J[2] as Galois modules. So need to show
composition

Sely J < HY(Q, J[2]) ~ HY(Q, Stabg(kc)) — HY(Q, G)
is trivial. In fact, suffices to show
J(Kk)/2J(k) = HY(k, J[2]) = H(k, G)

is trivial for every field k/Q.
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Proof of Theorem 1

Consider 'universal' curve/Jacobian

C,J — A"\ {discriminant}

Example

Ay i then C = J C P? x (A%\ {A = 0}) is the universal Weierstrass
equation y2z = x3 + Axz? + BZ5.

J(k) = HY(k, J[2]) ~ H*(k, Stabg(rc)) — H(k, G)
Every P € J(k) gives a class ap € H(k, G).
There exists a G-torsor T — J interpolating all these classes.

Theorem
T is Zariski locally trivial. J
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Proof of Theorem 1

Theorem
T is Zariski locally trivial. J

Two essential ingredients:

First ingredient: geometry of J J

The total space J is rational.

Proof: extend J to singular curves and get compactified Jacobian
J = A"
BB decomposition ~» 7 has an affine cell decomposition.

Example

A> case: B
J C P? x A?

is a union A3 U A2
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Proof of Theorem 1

Second ingredient: Generalities on torsors

Let U C Ag be an open with codim(AN\ U,AN) > 2 and let T — U be a
G-torsor. Suppose that T is trivial for some x € U(Q). Then T, is trivial
for every y € U(Q). (In fact, T is Zariski trivial.)

Similar to results of Colliot-Thelene, Sansuc.

Finishing touch:

Special case of Grothendieck—Serre conjecture
If T — J is generically trivial, then T is Zariski locally trivial. J
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Theorem
T is Zariski locally trivial.

Proof.

@ There exists an open V C J which is also an open in AV,
(First ingredient)
@ The torsor 7|y — V extends to one on U C AN with
codim(AN\ U, AN) > 2.
© 7. is trivial for some x € V(Q), since 27(Q) N V # (). (Using
rationality of 7 and dominance of J X—2> J)
© Therefore Ty is Zariski trivial. (Second ingredient)
© We conclude 7 is Zariski trivial. (GS conjecture)
[]
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Thank you for your attention! )
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