

Arithmetic statistics and graded Lie algebras

Jef Laga

University of Cambridge

March 17, 2022

Motivation

Given a family of curves \mathcal{F} over \mathbb{Q} , want to study statistical behaviour of $C \in \mathcal{F}$:

- Rational points $C(\mathbb{Q})$,
- Mordell-Weil group $J(\mathbb{Q})$,
- 2-Selmer group $\text{Sel}_2 J$.

Recall the exact sequence

$$0 \rightarrow J(\mathbb{Q})/2J(\mathbb{Q}) \rightarrow \text{Sel}_2 J \rightarrow \text{III}(J)[2] \rightarrow 0.$$

Example 1: Elliptic Curves

$\mathcal{F} = \{\text{elliptic curves over } \mathbb{Q}\}$. Every $E \in \mathcal{F}$ has unique equation

$$E_{A,B} : y^2 = x^3 + Ax + B, \quad (A, B \in \mathbb{Z})$$

where no prime p has $p^4 \mid A$ and $p^6 \mid B$. Define

$$H(E_{A,B}) = \max(|A|^3, |B|^2).$$

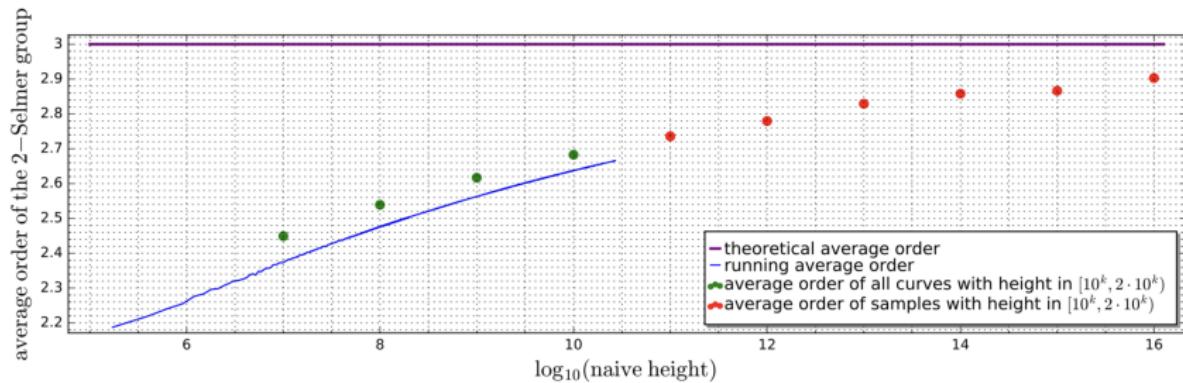
Theorem (Bhargava-Shankar)

When ordered by height,

$$\text{Average}(\#\text{Sel}_2(E) \mid E \in \mathcal{F}) = 3.$$

Example 1: Elliptic curves

FIGURE 6. Average order of the 2-Selmer groups, including samples (log₁₀ scale)



Source: Balakrishnan, Ho, Kaplan, ... (ANTS XII)

Example 2: Hyperelliptic curves

Bhargava and Gross obtained similar results for the family

$$\mathcal{F}_g = \{\text{odd hyperelliptic curves of genus } g/\mathbb{Q}\}$$

for every $g \geq 1$. Poonen and Stoll used this to show that

$$\mathbb{P}(C \in \mathcal{F}_g \mid \#C(\mathbb{Q}) = 1) \rightarrow 1$$

as $g \rightarrow +\infty$.

Proof method

Roughly speaking, two steps in proving the theorems of Bhargava–Shankar and Bhargava–Gross:

- ① Find a representation V of a reductive group G/\mathbb{Q} such that

$$\left\{ \begin{array}{c} \text{certain } G(\mathbb{Q})\text{-orbits} \\ \text{of } V(\mathbb{Q}) \end{array} \right\} \leftrightarrow \left\{ \begin{array}{c} \text{Sel}_2 J \text{ for all} \\ C \in \mathcal{F} \end{array} \right\}$$

- ② Count integral orbits in (G, V) .

Example

Elements of $\text{Sel}_2 E$ (with E/\mathbb{Q} elliptic curve) correspond to $\text{PGL}_2(\mathbb{Q})$ -orbits of binary quartic forms. [Reason: a double cover $C \rightarrow \mathbb{P}^1$ with $\text{Jac}(C) = E$ is defined by a binary quartic]

Question

Where does (G, V) come from?

Graded Lie algebras

Definition

A Lie algebra \mathfrak{h} over a field k is *m-graded* if

$$\mathfrak{h} = \bigoplus_{i \in \mathbb{Z}/m\mathbb{Z}} \mathfrak{h}_i$$

where $[\mathfrak{h}_i, \mathfrak{h}_j] \subset \mathfrak{h}_{i+j}$ for all i, j .

A graded Lie algebra defines a representation

$\mathfrak{h} \curvearrowright \mathfrak{h}$ via the adjoint representation, so $\mathfrak{g} := \mathfrak{h}_0$ acts on $V := \mathfrak{h}_1$ via restriction.

If H is an algebraic group with $\text{Lie}H = \mathfrak{h}$ and $G \subset H$ a closed subgroup with $\text{Lie}G = \mathfrak{g}$, then similarly $G \curvearrowright V$ and (G, V) is called a **Vinberg representation**.

Graded Lie algebras

Observation (Gross)

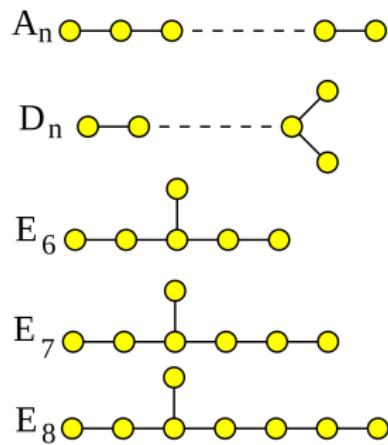
All representations appearing in the arithmetic statistics literature are Vinberg representations! (Apart from a few special cases)

Punchline of talk/"Main result"

We can use graded Lie algebras as a *starting point* to (re)prove theorems in arithmetic statistics.

Main results

Given an ADE Dynkin diagram, we can *canonically* construct a Vinberg representation and a family of curves (Thorne):



Main results

Explicit example: A_2

- $\mathfrak{h} = \mathfrak{sl}_3$, $H = \mathrm{PGL}_3$, $\theta: H \rightarrow H$, $g \mapsto (g^*)^{-1}$ where $(-)^*$ denotes reflection along anti-diagonal
- $G = H^\theta$, $V = \mathfrak{h}^{d\theta = -\mathrm{Id}}$ given by $(\mathrm{PGL}_2, \mathrm{Sym}^2(4))$.
- A_2 singularity is a cusp:
 $(y^2 = x^3) \rightsquigarrow \mathcal{F} = \{y^2 = x^3 + Ax + B \mid A, B \in \mathbb{Z}\}.$

We can find \mathcal{F} inside V : elements of the form

$$\begin{pmatrix} x & 0 & 1 \\ y & -2x & 0 \\ w & z & x \end{pmatrix} \subset V$$

with characteristic polynomial $t^3 + At + B$ are described by the affine curve
 $(y^2 = x^3 + Ax + B)$

Theorem (L.)

Let $\mathcal{D} \neq A_1$ be an ADE Dynkin diagram, giving a representation (G, V) and family of curves \mathcal{F} . Then:

- ① For every $C \in \mathcal{F}$, there exists a 'natural' injection

$$\mathrm{Sel}_2 J \hookrightarrow G(\mathbb{Q}) \backslash V(\mathbb{Q}).$$

- ② When ordered by a suitable height, there exists an explicit $m \in \mathbb{Z}_{\geq 1}$ such that

$$\text{Average}(\#\mathrm{Sel}_2(J)) \leq 3 \cdot 2^{m-1}.$$

Previously known cases

- A_2 : Bhargava–Shankar
- A_{2g} : Bhargava–Gross
- A_{2g+1} : Shankar–Wang
- D_{2g+1} : (Ananth) Shankar
- A_3, D_4 : Bhargava–Ho.

The proofs of Theorems 1 and 2 are uniform.

Concrete consequence of E_6 case

Let

$$\mathcal{F} = \left\{ \begin{array}{l} \text{non-hyperelliptic genus 3 curves } C/\mathbb{Q} \\ \text{with a marked rational hyperflex } P \in C(\mathbb{Q}) \end{array} \right\}$$

Given by smooth members of the form

$$y^3 = x^4 + (p_2x^2 + p_5x + p_8)y + (p_6x^2 + p_9x + p_{12}),$$

Consequence 1

A majority ($> 61\%$) of curves in \mathcal{F} have at most 26 rational points.

Consequence 2

A positive proportion of curves in \mathcal{F} have only one rational point.

Proof of Theorem 1

① Construct ‘identity’ $\kappa_C \in V(\mathbb{Q})$ for each $C \in \mathcal{F}$.

② ‘Twist’ κ_C :

$$G(\mathbb{Q}) \setminus (V(\mathbb{Q}) \cap G(\bar{\mathbb{Q}}) \cdot \kappa_C) \leftrightarrow \ker(H^1(\mathbb{Q}, \text{Stab}_G(\kappa_C)) \rightarrow H^1(\mathbb{Q}, G))$$

③ Thorne: $\text{Stab}_G(\kappa_C) \simeq J[2]$ as Galois modules. So need to show composition

$$\text{Sel}_2 J \hookrightarrow H^1(\mathbb{Q}, J[2]) \simeq H^1(\mathbb{Q}, \text{Stab}_G(\kappa_C)) \rightarrow H^1(\mathbb{Q}, G)$$

is trivial. In fact, suffices to show

$$J(k)/2J(k) \hookrightarrow H^1(k, J[2]) \rightarrow H^1(k, G)$$

is trivial for every field k/\mathbb{Q} .

Proof of Theorem 1

Consider 'universal' curve/Jacobian

$$\mathcal{C}, \mathcal{J} \rightarrow \mathbb{A}^n \setminus \{\text{discriminant}\}$$

Example

A_2 : then $\mathcal{C} = \mathcal{J} \subset \mathbb{P}^2 \times (\mathbb{A}^2 \setminus \{\Delta = 0\})$ is the universal Weierstrass equation $y^2z = x^3 + Axz^2 + Bz^3$.

$$J(k) \rightarrow H^1(k, J[2]) \simeq H^1(k, \text{Stab}_G(\kappa_{\mathcal{C}})) \rightarrow H^1(k, G)$$

Every $P \in J(k)$ gives a class $\alpha_P \in H^1(k, G)$.

There exists a G -torsor $\mathcal{T} \rightarrow \mathcal{J}$ interpolating all these classes.

Theorem

\mathcal{T} is Zariski locally trivial.

Proof of Theorem 1

Theorem

\mathcal{T} is Zariski locally trivial.

Two essential ingredients:

First ingredient: geometry of \mathcal{J}

The total space \mathcal{J} is rational.

Proof: extend \mathcal{J} to singular curves and get *compactified Jacobian*

$$\bar{\mathcal{J}} \rightarrow \mathbb{A}^n$$

BB decomposition $\rightsquigarrow \bar{\mathcal{J}}$ has an affine cell decomposition.

Example

A_2 case:

$$\bar{\mathcal{J}} \subset \mathbb{P}^2 \times \mathbb{A}^2$$

is a union $\mathbb{A}^3 \cup \mathbb{A}^2$

Proof of Theorem 1

Second ingredient: Generalities on torsors

Let $U \subset \mathbb{A}_{\mathbb{Q}}^N$ be an open with $\text{codim}(\mathbb{A}^N \setminus U, \mathbb{A}^N) \geq 2$ and let $T \rightarrow U$ be a G -torsor. Suppose that T_x is trivial for some $x \in U(\mathbb{Q})$. Then T_y is trivial for every $y \in U(\mathbb{Q})$. (In fact, T is Zariski trivial.)

Similar to results of Colliot-Thelene, Sansuc.

Finishing touch:

Special case of Grothendieck–Serre conjecture

If $\mathcal{T} \rightarrow \mathcal{J}$ is generically trivial, then \mathcal{T} is Zariski locally trivial.

Theorem

\mathcal{T} is Zariski locally trivial.

Proof.

- ① There exists an open $V \subset \mathcal{J}$ which is also an open in \mathbb{A}^N .
(First ingredient)
- ② The torsor $\mathcal{T}|_V \rightarrow V$ extends to one on $U \subset \mathbb{A}^N$ with $\text{codim}(\mathbb{A}^N \setminus U, \mathbb{A}^N) \geq 2$.
- ③ \mathcal{T}_x is trivial for some $x \in V(\mathbb{Q})$, since $2\mathcal{J}(\mathbb{Q}) \cap V \neq \emptyset$. (Using rationality of \mathcal{J} and dominance of $\mathcal{J} \xrightarrow{\times 2} \mathcal{J}$)
- ④ Therefore $\mathcal{T}|_V$ is Zariski trivial. (Second ingredient)
- ⑤ We conclude \mathcal{T} is Zariski trivial. (GS conjecture)

Thank you for your attention!