The étale homotopy type of a scheme
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In this note we define the étale homotopy type of a locally noetherian scheme X, assuming familiarity with
the basic language of simplicial sets. It roughly follows the notes of Schlank-Skorogobatov [SS10] but contains
more details and examples. Comments and corrections should be sent to jcs15@cam.ac.uk.

Notation and conventions: If C denotes a category we denote sC be the category of simplicial objects
in C. If C has a terminal object then Cy denotes the corresponding pointed category. Write Top for the
category of CW-complexes. We will usually denote a simplicial set by a boldface letter like X,Y etcetera.
We often omit basepoints in our notation of homotopy groups and silently assume the object (simplicial set,
scheme, topological space) is pointed. All schemes considered are locally noetherian.
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1 Categorical background

1.1 Pro-categories

Definition 1.1. A small category T is cofiltering if

1. For all objects i,j of I, there is a diagram

k

7N

i J

2. Every pair of arrows f,g: 1 — j is equalized by an arrow from some k i.e. there exists an arrow
h: k — i such that fh = gh.

If a cofiltering category has at most one arrow between any two objects we call it a codirected system or
more commonly an inverse system.

Definition 1.2. Let C be a category. We define the pro-category proC of C as follows:

e An object in proC is a functor F: T — C.

o Morphisms are given by

Homproc({ci}ier {Dj}jej) = I&Hhﬂ Home (C, Dj)'
J z

We call an object of proC a pro-object of C.

There is a fully faithful functor C — proC and one should view proC as an enlargement of C by formally
adjoining all cofiltered limits. A few remarks are in order:

Remark 1.3 (Alternative definition of the pro-category). Fvery functor F: C — Set is a colimit of rep-
resentable functors (this is formal and straightforward, see Ashwin’s notes). We say F is pro-representable
if it is a filtered colimit of representable functors, i.e. the colimit is indexed by a category L°PP where I is
cofiltered. The functor

proCoPP — [C, Set], {X;} — Hompoc ({ X5}, —)

is fully faithful and its essential image consists of the set of pro-representable functors. This shows that an
alternative definition of proC would be the opposite category of the full subcategory of [C,Set] consisting of
the pro-representable functors.

Remark 1.4 (Cofiltered vs. inverse limits). The fact that cofiltering categories are more general than the
(more familiar) inverse systems might be uncomfortable but there is essentially no difference: every object
in proC is isomorphic to a pro-object indexed by an inverse system, see [AR94, Theorem 1.5].

A pro-object of a category can contain more information than its limit if it exists:



Example 1.5. Let FinGrps be the category of finite groups. Then every pro-object in this category has a
limit in the larger category of (all) groups Grps, but the functor lim: proFinGrps — Grps is not full. In
fact, every element in the image of this functor canonically has the structure of a topological group, and
the corresponding functor proFinGrps — TopGrps is fully faithful; its essential image consists of those
topological groups which are Hausdorff, compact and totally disconnected. It is therefore justified to call such
a topological group a profinite group!

1.2 Simplicial enrichment

Let C be a category which is enriched in sSet. This means that C consists of a class of objects and for
each pair of objects X,Y we are given a simplicial set Hom(X,Y") and for any three objects X,Y, Z we are
given a morphism of simplicial sets Hom(X,Y) x Hom(Y, Z) — Hom(X, Z) (‘composition’) satisfying the
same axioms as the Hom-sets of an ordinary category. The Hom set Hom(X,Y) = Hom(X,Y)q gives C the
structure of an ordinary category.

In any simplicially enriched category, we can talk about homotopy.

Definition 1.6 (Homotopies). Let C be a category enriched in sSet. Let f,g € Hom(X,Y) = Hom(X,Y),.
We say f and g are strictly homotopic if there exists an element of Hom(X,Y'); whose restrictions along the
faces 0 and 1 is f and g respectively. We say f and g are homotopic if they are equivalent in the equivalence
relation generated by strict homotopies, i.e. if they can be connected by a chain of strict homotopies.

The equivalence relation of homotopy is stable under pre- and post-composing morphisms (exercise), so the
following is well-defined:

Definition 1.7 (The homotopy category). Let C be a category enriched in sSet. The homotopy category of
C, denoted Ho(C), is the category with

e Objects the same as C.

o Morphisms are elements of Hom(X,Y') up to homotopy equivalence.

Any functor F': C — D between simplicially enriched categories (i.e. a map between the objects of C and
D together with simplicial maps Hom(X,Y) — Hom(F X, FY) satisfying the usual axioms of a functor)
induces a functor Ho(F'): Ho(C) — Ho(D) between the homotopy categories.

We will only consider simplicially enriched categories in the context of the following example:

Example 1.8. Let C be a category with finite coproducts. If X is in C and A is a finite set we define X ® A
as the coproduct of X with itself indexed by A. Similarly if X is a simplicial object in C and A a simplicial
set such that A, is finite for each n > 0, we may define the simplicial object X @ A of C. This allows us to
define a simplicial enrichment of C with simplicial Hom-sets given by

Hom(X,Y),, = Homs, (X ® A™)Y).

(Here A™ denotes the standard n-simplex.) The previous definitions then apply to sC and the category Ho(sC)
is defined. The same holds for any full subcategory of sC.

Example 1.9. Let Ho™“"(sSet) be the homotopy category of the full subcategory of sSet consisting of Kan
simplicial sets. Then Ho™*"(sSet) is equivalent to Ho(Top), the homotopy category of CW-complexes.



2 Definition of the étale homotopy type

2.1 Motivation

Let X be a noetherian scheme and z: Speck — X a geometric point. The étale fundamental group m (X, z)
is a profinite group classifying covering spaces over X: the category of finite étale covers over X is equivalent
to the category of discrete (X, x)-sets. Moreover if X is a connected normal finite-type C-scheme, every
finite covering space of X (C) is the analytification of a finite étale cover of X, yielding a comparision theorem
over C.

We would like to have an equally satisfactory algebro-geometric definition for the higher homotopy groups
a scheme X. Even better would be a functorial association of a homotopy equivalence class of a ‘space’
attached to any scheme which has similar applications as for ordinary topological spaces. This leads to the
notion of the étale homotopy type.

The starting observation is the following.

Lemma 2.1. LetU = U;c;U; be an open cover of a topological space X such that every connected component
of every finite intersection of U;’s is contractible (a ‘good covering’). Let mo(U)e be the siset with

Tol)n :=moU xx -+ XxU) ((n+1) times).

(The connected component of the Cech nerve of U.) Then the geometrical realization of mo(U)e is homotopy
equivalent to X .

If follows that for any locally contractible topological space (like a manifold, a finite CW-complex or the
analytification of a finite type C-scheme), its homotopy type (i.e. its homotopy equivalence class) can be
represented as the connected component of the Cech nerve of a good covering. Moreover every covering of
such a space can be refined to a good covering.

In the world of schemes, connected components, Cech nerves and coverings have satisfactory analogues,
but the notion of a good cover does not. The idea instead is to take the formal limit over all coverings
simultaneously, hoping that finer coverings will yield better and better approximations. This is very similar
to defining the universal cover of a connected scheme X by the pro-scheme {X;} where X; — X runs over
the (cofiltered!) category of connected finite étale covers of X, and we know that this works well. We will
try to imitate the latter construction but we will need more background to implement in a good way.

2.2 Hypercoverings

Let X.; denote the small étale site of a scheme X, with objects étale X-schemes and coverings jointly
surjective families. Let Cov(X) denote the full subcategory of X,.: consisting of coverings, i.e. surjective
étale morphisms ¥ — X (not necessarily finite). We would like to implement the same strategy as the
definition of the universal cover. However, ordinary coverings of X are not fine enough for the purposes of
homotopy, a phenomenon already visible in cohomology. Indeed, taking cohomology of the simplicial sets
mo(Ue) (valued in a finite abelian group A) indexed by coverings essentially gives us the system of Cech
cohomology groups {H*(U, A)} and the colimit of this system gives H (X, A), which is not always the same
as Het (X, A). (It will be if X is quasi-projective over an affine base by a theorem of Artin, but this class
doesn’t even include all smooth proper varieties over C!)

This problem can be rectified by considering hypercoverings instead.



Definition 2.2. A hypercovering of X is a simplicial object Uy of Xt such that

1. Uy — X is a covering.

2. For everyn > 0, Uy 11 — (coskyUs)n+1 is a covering.
Write HC(X) for the full subcategory of s(Xet) of hypercoverings.

The Cech nerve construction realizes every covering as a hypercovering, but the latter allows extra freedom
at every level. This extra freedom has the following essential consequences, due to Verdier. If U, is any
hypercovering and % is a sheaf on X.; we write H*(U,, F#) for the cohomology of the cosimplicial abelian
group % (Us ). The following is [AM69, Theorem 8.16]:

Theorem 2.3. Let % be an abelian sheaf on Xei. Then there is a canonical isomorphism
H"(X,.Z)=colim H" (U, F),

where the colimit is taken over the category HC(X)oPP.

Note that if .7 is constant then H" (Us, .F) = H™(mo(Us),-F ), so the above theorem says that the cohomology

of X valued in constant sheaves can be computed as the colimit of the cohomology of the connected component
of the Cech nerve over all hypercoverings.

For the next important result, recall that HC(X) is simplicially enriched so its homotopy category is well-
defined. We have (|[AM69, Corollary 8.13]):

Theorem 2.4. The homotopy category Ho(HC(X)) is cofiltering.

The categories HC(X) and Cov(X) are not cofiltered, as the following example shows:

Example 2.5. Consider the objects {X 1, X} and {XUX 1doid, X} of Cov(X). Let f and g denote the

inclusion of X into the first and second factor of X UX. Then no (hyper)covering of X equalizes f and g.

2.3 The definition

We are now ready to define the étale homotopy type. Let
mo: Xet — Set

be the connected component functor. Since every étale X-scheme is the coproduct of its connected compo-
nents (X is locally noetherian), this functor is well-defined. Then 7y extends to a functor s(X.;) — sSet
compatible with the simplicial enrichments on both sides. Restricting to HC(X) and passing to the homotopy
category defines a functor

Ho(HC(X)) — Ho(sSet).
Taking the topological realization defines a functor
Et(X): Ho(HC(X)) — Ho(Top). (1)

(Here Top denotes the category of CW complexes.) Since Ho(HC(X)) is cofiltered, Et(X) defines a pro-
object of Ho(Top). We call this pro-object the étale homotopy type of X. If we fix a geometric point of X



and consider pointed hypercoverings of X, we can upgrade Et(X) to a pro-object of the pointed homotopy
category of pointed CW complexes Ho(Topy).

The étale homotopy type defines a functor
Et: NoethSchemes — pro Ho(Top).

We may consider truncated versions using the Postnikov tower. Briefly, define Etu(X ) as the geometric
realization of the pro-object {coskymo(Us)} indexed by the cofiltering category Ho(HC(X)) x N. (Here i — j
if i > j in N.) Moreover define Et? (X) as the same pro-object but only indexed by Ho(HC(X)) x {1,...,n}.

3 Properties

3.1 Homotopy, homology and cohomology

Let {X;} be a pro-simplicial set. Then any functor defined on simplicial sets extends to a functor between
the pro-categories. In particular, we write (for any abelian group A)

mn({Xi}) == {mn(Xi)},
which are pro-groups, abelian except in the case of 7. (In the definition of 7, the X; have to be pointed.)
We could define H"({X;}, A) as {H"(X;, A)} which is and ind-abelian group (a pro-object in the opposite
category). However, we prefer to take the colimit and define
H"({X;},A) = @H”(XZ—,A).

Since lim is exact, this will cause no harm. The functors m,, H,,, H" factor through the homotopy category.
The same definitions also work for pro-CW complexes.

The above shows that for any locally noetherian scheme X we may define the pro-groups H,(Et(X), A),
7 (Et(X), A) (after picking a base-point) and the abelian groups H"(Et(X), A).

Theorem 2.3 (and the remark after it) immediately imply the following:

Proposition 3.1. Let X be a locally noetherian scheme and A an abelian group. Then we have a canonical
isomorphism

HJ,(X,A) ~ H"(Et(X), A).

The homology and homotopy groups do give genuinely new invariants of a scheme X.

We say a few words about the difference between weak equivalences and isomorphisms in pro Ho(Top) (or
its pointed version pro Ho(Topy)). The natural map Et(X) — Et*(X) is always a weak equivalence, and an
equivalence if and only if 7¢(X) = 0 for n >> 0. We call a map X — Y in pro Ho(Top) a f-isomorphism if
the induced map of pro-objects X* — Y*# is an isomorphism. (X* is the pro-object {cosk;X;} indexed over
IxN)

Theorem 3.2 (pro-Whitehead’s theorem). A morphism in proHo(Top) is a weak equivalence if and only if
it is a §-isomorphism.

Often when we want to work with a pro-object X in Ho(Top), we first try to understand the f-isomorphic
object X*. If it turns out that 7, (X*) = m,,(X) = 0 for n large enough (true in most examples below), then
X is homotopy equivalent to X*.



3.2 Comparison over C

Let X be a connected finite type normal C-scheme®. We write X, for the homotopy type of the complex
analytic space X (C). By the Riemann existence theorem, the natural map m;(X.;) — 7% (X) induces an
isomorphism on profinite completions. We would like to have an analogous theorem for higher homotopy
groups. There will always be a natural map

T (Xea) = mn (Et(X)),

but in general it will not induce an isomorphism on profinite completions. In fact something better is true:
we can compare X, with the homotopy type of Et(X).

Define Top]™
are finite.

as the full subcategory of Top, (pointed CW-complexes) of objects whose homotopy groups

Proposition 3.3. The inclusion pro Ho(Topom) — proHo(Top,) has a left-adjoint, denoted by X +— X.
We call X the profinite completion of X.

Theorem 3.4 (Generalized Riemann Existence Theorem). Let X be a connected, pointed, normal finite
type C-scheme. Then there is a canonical map X, — Et(X) in proHo(Top,) which realizes Et(X) as the
profinite completion of X,

This implies that Et(X) only depends on the homotopy type of X(C). For example if X is a smooth
projective curve then the étale homotopy type only depends on the genus (and will be computed below).

3.3 Further properties

We collect a few more properties of the étale homotopy type. First of all, the étale homotopy type only
depends on the site X.;. Moreover any universal homeomorphism X — Y induces an equivalence of étale
sites. This implies that Et(X) only depends on the reduced subscheme X,.4, and if X is of finite type over
a separably closed field k then Et(X) ~ Et(Xx) for any seperably closed field extension K/k. So if k is of
characteristic zero we may equally well assume that £ = C and then we can use the comparison theorem. If k
has positive characteristic, we may approximate Et(X) by choosing a lift over W (k) and using the following
proposition (cf.JAM69, Corollary 12.13]):

Proposition 3.5. Let R be a discrete valuation ring with separably closed residue field of characteristic
p>0. Let X — Spec R be a smooth proper morphism with geometrically connected fibres. Then there is an
isomorphism of prime-to-p étale homotopy types

_—— prime— _—— prime—p

Et(X,) "~ Et(X,)

Of course, this only gives information about the prime-to-p part of Et(X). But we should bear in mind
that even innocuous looking objects like Wl(A]%, ) are huge! In particular, even though the étale homotopy
p

type of A} is contractible if char k = 0 (by the comparison theorem), this is very far from true in positive
characteristic.

Just like in topology, higher homotopy groups are invariant under covering spaces:

'In what follows we can replace normal by geometrically unibranch, i.e. the normalization of every local ring of X is again
local.



Proposition 3.6. Let X — Y be a finite étale cover between pointed connected locally noetherian schemes.
Then for every n > 2 it induces an isomorphism

We now discuss varieties over C whose analytification are Eilenberg-Maclane spaces. We need the following
definition due to Serre [Ser02, Chapter 1, Section 2.6].

Definition 3.7. We say a group G is good if the natural maps in group cohomology Hz(é’, M) — HY (G, M)
are isomorphisms for every finite continuous G-module M.

Here are some examples of good groups (no reference given): free groups, surface groups, successive extensions
of finitely generated free groups (e.g. braid groups), groups containing a finitely generated good group with
finite cohomology of finite index (e.g. SL2(Z)).

Proposition 3.8. Let X be a normal, connected finite type C-scheme such that G := w1 (X (C)) is good
and the universal cover of X (C) is contractible. Then Et(X) is weakly equivalent to K(G,1). In particular,
7¢(X) =0 forn > 2.

3.4 Examples

We may use the results of the previous subsection to calculate some examples.

Example 3.9 (Homotopy type of a complex curve). Let X/C be a smooth projective curve of genus g > 1.
(The case of the projective line will be treated Example 3.14.) By the uniformization theorem, the universal
cover of X (C) is C or the hyperbolic plane hence contractible. Moreover its fundamental group is good. Hence
the higher homotopy groups of Et(X) vanish.

We now turn to the homotopy types of fields. We start with a warmup:

Example 3.10 (Homotopy type of SpecR). The étale homotopy type of SpecR is B(Z/2Z), or the infinite
real projective space RP>®. Indeed, the (Cech nerve of the) cover SpecC — SpecR is cofinal among all

hypercoverings of SpecR, and the geometric realization of its connected components is precisely the simplicial
model for B(Z/27).

The same reasoning applies in general if we use the truncated homotopy type:

Example 3.11 (Homotopy type of a field). Let k be a field. The étale homotopy type of Spec k is §-isomorphic
to the pro-object { B(Gal(K/k))} where K/k runs over the system of all finite Galois extensions K /k. Indeed
the Cech nerve of the system of Galois coverings Spec K — Speck is cofinal among all hypercoverings of
Speck in the truncated type Et? (Speck). So Et*(Speck) is isomorphic to the pro-object {B(Gal(K/k))}.
This implies that all the higher homotopy groups vanish so Et(Speck) ~ Etu(Spec k) is isomorphic to
{B(Gal(K/k))} too.

Example 3.12 (Homotopy type of SpecZ). We know that w$*(SpecZ) = 0. Moreover HZ,(SpecZ,Z;) = 0
for all n > 1 and primes 1 by arithmetic duality theorems. By an analogue of Hurewicz’ theorem [AM69,
Corollary 4.15|, this implies that w€(SpecZ) = 0 too. This implies that Et(SpecZ) ~ Et*(SpecZ) is
contractible, in accordance with the heuristic that it should be the punctured three-sphere.

In all of the above examples the higher étale homotopy groups vanished. If this is not the case then in special
situations we might still be able to compute them (cf. [AM69, Theorem 6.7]):



Proposition 3.13. Let X be a pro-object in Ho(Top,). Suppose that m1(X) = 0 and 74(X) is good for all
qg <n. Then

~ —

T (X) = 7, (X).

The definition of goodness in the case of a pro-group is exactly the same.

Example 3.14 (Homotopy type of projective space). Let n > 1 with X =P¢. If n = 1, then X(C) is the
2-sphere S2. Topologists tell us that the group m,(S?) is isomorphic to Z if n = 2,3 and finite if n > 4. We
may therefore apply the above proposition, and see that

7°NX) =Z,2,72/2,2)2,7/12,Z,)2,... ifn=2,3,4,56,7,...
If n > 2, the homotopy type of X(C) can be computed using the fibration
C* — C"\ {0} = X(C)
and the étale homotopy groups of X may be computed similarly in terms of homotopy groups of spheres.

Example 3.15 (Homotopy type of a K3 surface). Let X be a complex K3 surface. Then X(C) is simply
connected, its higher homotopy groups are good and can be computed in terms of homotopy groups of spheres;
see [BB15|. Therefore we have for example:

7(X) = 222,722, 7% ¢ (2/2)2,...  ifn=234,...

n

In fact, any two complex K3 surfaces are diffeomorphic so have the same (étale) homotopy type. This means
that the homotopy type does not detect the Picard number of a variety.
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