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We state the Bloch-Kato conjecture, following the formulation of Fontaine and Perrin-Riou [FPR94], mostly
following [Fon92]. Then we specialize to the case of pure motives and 1-motives. For simplicity, we will only
consider motives over Q and do not treat more general coefficients. Please consider this document as a rough
summary. Happy to receive corrections at: jcsl5@cam.ac.uk.

1 Statement of the Bloch-Kato conjecture

1.1 Systems of realizations

Instead of working with a not yet existing abelian category of mixed motives, we phrase our conjecture in a
certain subcategory M of a category of ‘realizations’ C, see Convention 1.10.

Definition 1.1. The category C0 has as objects tuples (MdR,MB , {Mℓ}, {iℓ}, j∞, {jℓ}) consisting of:

1. A finite-dimensional Q-vector space MdR, equipped with a decreasing, exhaustive and separated filtration
(F iMdR)i∈Z.

2. A Q-vector space MB, equipped with a Q-linear involution φ∞. We set M+
B = Mφ∞=1

B .

3. For each prime number ℓ, a Qℓ-vector space Mℓ equipped with a continuous GQ-action. There exists a
finite set of primes S such that for all ℓ and all p ∕∈ S, Mℓ is unramified at p if p ∕= ℓ and crystalline
at p if p = ℓ.

together with comparison isomorphisms:

1. (Betti-etale) For each prime ℓ, an isomorphism iℓ : MB ⊗Qℓ
∼−→ Mℓ, identifying φ∞ ⊗ Id with complex

conjugation on Mℓ.

2. (Betti-de Rham) An isomorphism j∞ : MB ⊗C → MdR ⊗C, identitying φ∞ ⊗ c with IdMdR
⊗c, where

c denotes complex conjugation on C.

3. (Etale-de Rham) For each prime ℓ, an isomorphism

jl : BdR,ℓ ⊗Qℓ
Mℓ → BdR,ℓ ⊗Q MdR. (1.1.1)
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Here BdR,ℓ is the field of ℓ-adic periods, equipped with a GQℓ
-action and a decreasing filtration. We

equip MdR with the trivial GQℓ
-action and Mℓ with the trivial filtration F 0 = Mℓ, F

1 = 0. We therefore
obtain GQp-actions and filtrations on both sides of (1.1.1), and we insist that they are respected by jℓ.

The morphisms are the evident ones.

Note that for any object M of C0, the Q-vector space MB carries a Hodge structure, with (p, q) part the
subspace of MB ⊗ C given by j−1

∞ (F pMdR) ∩ φ∞(j−1
∞ (F qMdR)).

Example 1.2. We define the Tate object Q(1) as follows:

• Q(1)dR = Q with filtration F−1 = Q(1)dR and F 0 = 0.

• Q(1)B = (2πi)Q (seen as a subset of the same copy of C where Q(1)dR also lives), with φ∞ acting as
−1.

• Q(1)ℓ = Qℓ(1), the ℓ-adic Tate module of Gm.

• The Betti-etale and Betti-de Rham isomorphisms are standard. For the etale-de Rham isomorphism,
we need to produce an isomorphism of filtered GQℓ

-modules BdR ⊗ Qℓ(1) ≃ BdR ⊗ Q(1) where, rather
confusingly, the Qℓ(1) on the left twists the Galois action and leaves the filtration unchanged while the
Q(1) on the right only twists the filtration. To define such an isomorphism, recall (or accept) that BdR

is the fraction field of the discrete valuation ring B+
dR. There is a distinguished uniformizer t ∈ B+

dR

such that F kBdR = tkB+
dR and GQℓ

acts on t through the ℓ-adic cyclotomic character. It follows that
multiplication by t−1 will do the job.

For the next definition, if ℓ, p are primes and M an object of C0 we write Dp(Mℓ) = M
Ip
ℓ if ℓ ∕= p and

Dp(Mp) = (Bcris ⊗Qp Mp)
GQp otherwise.

Definition 1.3. We say an object M of C0 has an L-function if for each prime p and ℓ (not necessarily
distinct), the local L-factor Lp(M, s) := det(1 − p−s Frobp | Dp(Mℓ)) is independent of ℓ, and the product
L(M, s) =

!
p Lp(M, s) converges for Re(s) large enough.

Definition 1.4. The category C of systems of realizations has as objects a pair (M,W•M) where

• M is an object of C0.

• W•M is an increasing, separated and exhaustive filtration by subobjects of M such that the Hodge
structure GrWi MB is pure of weight i.

The category C has a notion of a tensor product and dual, and is a Q-linear neutral tannakian category. Our
definition of C differs from Fontaine in that we do not require objects to have an L-function.

Example 1.5. Let M be an object of C0 (which has an L-function) such that MB is pure of weight i. Then
by setting Wi−1 = 0 and Wi = M , we may view M as an object of C. In particular, the weight −2 Tate
object Q(1) defines an object of C.
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1.2 Working category

Let M be a full abelian subcategory of C containing the unit object Q and which is closed under M (→ M∗(1).
Write

H0(M) = HomM(Q,M) = HomC(Q,M),

H1(M) = Ext1M(Q,M).

We define the subspace H1
f (M) ⊂ H1(M) consisting of those elements with the property that for all ℓ its

ℓ-adic realization lies in the Bloch-Kato Selmer group H1
f (Q,Mℓ), i.e. is unramified at p ∕= ℓ and crystalline

at ℓ. For simplicity, write H0
f (M) = H0(M). Although we suppress M from the notation of H1(M), this

group may certainly depend on the choice of M.

Remark 1.6. These definitions are motivated by the fact that if M would be isomorphic to the conjectural
category of mixed motives over Q and M = Hi(X)(n), then (for most values of i and n) H1(M) should be
isomorphic to the motivic cohomology group Hi+1

M (X,Q(m)) and H1
f (M) should correspond to the ‘integral

part’ of Hi+1
M (X,Q(m)), i.e. those classes coming from Hi+1

M (X ,Q(m)) where X/Z is a regular model for X.

Definition 1.7. We say M is f -admissible if for every object M of M, the following are satisfied:

1. For every prime p, the p-adic regulator map Hi
f (M)Qp → Hi

f (Mp) is an isomorphism for i = 0, 1.

2. If H0
f (M

∗(1)) = H1
f (M

∗(1)) = 0, the archimedean regulator Hi
f (M)R → Exti

MHS+
R
(R, (MB)R) is an

isomorphism for i = 0, 1.

Here MHS+R denotes the category of R-mixed Hodge structures which are defined over R (i.e. carry an
involution φ∞).

Here’s a rather imprecise conjecture.

Conjecture 1.8. There exists a contravariant functor

real :

"
Reduced, irreducible,
finite type Q-schemes

#
→ C

extending the realization functor for smooth projective varieties. For any variety X, real(X)B is isomorphic
to H∗

B(X(C),Q) with its mixed Hodge structure constructed by Deligne [Del74, §8.2].

Such a functor is known to exist on the subcategory of smooth quasi-projective varieties [Fon92, §6.7].

Definition 1.9. An object of C lying in the Tannakian subcategory generated by the image of real is called
of motivic origin.

Strictly speaking, this definition only makes sense when Conjecture 1.8 holds. However since we know how
to define real in many cases (e.g. smooth quasi-projective varieties, 1-motives), we are able to identify many
objects of C of motivic origin.

Convention 1.10. For the remainder of this note, fix an f -admissible subcategory M of C such that every
object of M is of motivic origin.
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1.3 The Deligne period map

Let M be an object of M. Let tM = MdR/F
0 be its tangent space. Since j∞ : MB ⊗ C → MdR ⊗ C sends

φ∞ ⊗ c to Id⊗c, the subspace M+
B ⊗R lands in MdR ⊗R. Quotienting out F 0MdR gives rise to the Deligne

period map

αM : M+
B ⊗ R → tM ⊗ R.

Lemma 1.11. There are canonical isomorphisms ker(αM ) ≃ coker(αM∗(1))
∗ and coker(αM ) ≃ ker(αM∗(1))

∗.

Proof. First note that MdR ⊗ R ≃ (M+
B )R ⊗ (M−

B )R. Therefore (MdR)
∗
R ≃ (M∗(1)−B)R ⊕ (M∗(1)+B)R.

On the other hand, the filtration F iM∗(1)dR is given by ker(M∗
dR → (F−i)∗). Therefore (F 0MdR)

∗ ≃
M∗

dR/ ker(M
∗
dR → (F−i)∗) ≃ M∗(1)dR/F

0. It follows that the exact sequence

0 → kerαM → (F 0MdR ⊗M+
B )R → (MdR)R → coker(αM ) → 0

dualizes to

0 → coker(αM )∗ → (M∗(1)−B)R ⊕ (M∗(1)+B)R → (M∗(1)−B)R ⊕M∗(1)dR/F
0 → ker(αM )∗ → 0.

When omitting the red terms, the middle map is exactly αM∗(1).

We now relate αM to MHS+R . Write Hi(R,MB) for Exti
MHS+

R
(R, (MB)R) for i = 0, 1. If W0M = M (i.e. all

weights are ≤ 0), H0(R,MB) ≃ ker(αM ) and H1(R,MB) ≃ coker(αM ). In general:

Lemma 1.12. There is an exact sequence

0 → H0(R,MB) → kerαM → kerαM/W0M → H1(R,M) → cokerαM → 0. (1.3.1)

If M = Hi(X)(n) with i− 2n < 0, then H1(R,MB) is isomorphic to Deligne cohomology Hi+1
D (X/R,R(n)).

1.4 The fundamental exact sequence

We define the fundamental exact sequence of M . It has the form:

0 → H0(M)R
uM−−→ kerαM

v′
M−−→ H1

f (M
∗(1))∗R

δM−−→ H1
f (M)R

vM−−→ coker(αM )
u′
M−−→ H0(M∗(1))R → 0. (1.4.1)

The morphism uM is the composite of the inclusion H0(M)R ↩→ H0(R,MB) and the inclusion H0(R,MB) →
kerαM of (1.3.1). Similarly vM is the composite H1

f (M) → H1(R,MB) → coker(αM ). The maps u′
M and

v′M are the duals of uM∗(1) and vM∗(1), using the identification of Lemma 1.11.

The middle map δM is defined via a (slightly intricate) procedure in M using computations with extensions,
see [FPR94, Proposition III.3.2.5]. It generalizes the Neron-Tate height pairing on elliptic curves. That same
proposition also proves:

Proposition 1.13. Under the assumption that M is f -admissible, the sequence (1.4.1) is exact.
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1.5 The fundamental line

For a finite-dimensional vector space V , write detV for its top exterior power. Write Lf (M) = detH0(M)⊗
(detH1

f (M))∗.

The fundamental line is defined as

∆f (M) = Lf (M)⊗ Lf (M
∗(1))⊗ det tM ⊗ det(M+

B )∗. (1.5.1)

As written, this is just a one-dimensional Q-vector space. The point is that:

• There exists a canonical isomorphism iM : ∆f (M)R ≃ R.

• For every prime p, there exists a canonical measure | · |p on ∆f (M)Qp . (In other words, there exists a
canonical Zp-lattice inside ∆f (M)Qp .)

The first isomorphism follows immediately from the exact sequence (1.3.1) and the definition of the Deligne
period map. The second assertion follows from Galois cohomology computations and p-adic Hodge theory,
see [FPR94, §II.4] for details.

1.6 Statement of the Bloch-Kato conjecture

Let M be an object of M. To state the conjectures that follow, assume that M has an L-function (Definition
1.3.).

Conjecture 1.14 (Weak Bloch-Kato). For every object M of M, the order of vanishing of L(M, s) at s = 0
equals dimH1

f (M
∗(1))− dimH0(M∗(1)).

Write L∗(M, 0) for the leading term of L(M, s) at s = 0.

Conjecture 1.15 (Beilinson-Deligne). There exists (a necessarily unique) δf (M) ∈ ∆f (M) such that
iM (δf (M)⊗ 1)L∗(M, 0) = 1.

Conjecture 1.16 (The Bloch-Kato conjecture). Conjecture 1.15 holds and moreover |δf (M)⊗ 1|p = 1 for
all p.

Remark 1.17. The Bloch-Kato conjecture determines the real number L∗(M, 0) up to sign, which can be
easily determined. Indeed, let rM = ords=0L(M, s). Then rM(i) = 0 for i ≥ 0 large enough and the sign of
L∗(M, 0) is given by (−1)

!
i>0 rM(i) .

Remark 1.18. The formulation of the Bloch-Kato conjecture given here differs from the original one given
in [BK90], which puts an emphasis on Tamagawa numbers. The connection between the two is discussed in
[Fon92, §11].

1.7 The f-closed case

There is a special class of mixed motives for which the conjecture is easy to state.

Definition 1.19. We say an object M of M is f -closed if H1
f (M) = H1

f (M
∗(1)) = 0.
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Definition 1.20. Define the equivalence relation ∼f (called f -equivalence) on (isomorphism classes of) the
objects of M as the equivalence relation generated by:

1. If N is an extension of M by Q defining an element of H1
f (M), then M ∼f N .

2. If M ∼f N , then M∗(1) ∼f N∗(1).

Assuming a functional equation between L(M, s) and L(M∗(1),−s), the conjectures for M of §1.6 are true
if and only if they hold for any object f -equivalent to M . It turns out that every element of M is f -
equivalent to an f -closed motive M which even satisfies H0(M) = H0(M∗(1)) = 0 (an explicit recipe is given
in [Sch94, §7.8]). In that case, the fundamental line is trivial and Conjectures 1.14 and 1.15 reduce to:

L(M, 0) ∕= 0 and L(M, 0)/c+(M) ∈ Q.

Here c+(M) is the determinant of the Deligne period map when Q-bases of M+
B and MdR/F

0 are chosen.

Therefore, in principle, it is enough to consider the f -closed case.

Example 1.21. Let E/Q be an elliptic curve of rank zero with finite Tate-Shafarevich group. Let M =
H1(E)(1). Then (M+

B )R → (MdR/F
0)R is an isomorphism between one-dimensional vector spaces, and

choosing suitable Q-generators is given by 1 (→ ΩE =
$
E(R) ω, where ω is a holomorphic differential. It

follows that the Beilinson-Deligne conjecture in this case asserts that L(M, 0)/ΩE ∈ Q×.

Example 1.22. Let M be the Artin motive associated to the one-dimensional Galois representation GQ →
{±1} which cuts out the extension Q(i)/Q. It corresponds to the unique nontrivial Dirichlet character
χ : (Z/4Z)× → {±1}. One can check that M(1) is f -closed and H1

f (M(1)) = H1
f (M

∗) = 0. Therefore
L(χ, 1) is a nonzero rational multiple of c+(M) = π. Indeed:

1− 1/3 + 1/5− 1/7 + · · · = π

4
.

Remark 1.23. We say M is critical if αM is an isomorphism. If M is f -closed and H0(M) = H0(M∗(1)) =
0, then M is critical. Therefore the above remarks are very much related to the conjectures made by Deligne
in the critical case.

2 The pure case

If M is an object of M, its weights are those integers n such that GrWn M ∕= 0.

Lemma 2.1. 1. H0(M) = 0 if 0 is not a weight of M .

2. H1
f (M) = 0 if all weights are > −1.

3. H0(M∗(1)) = 0 if −2 is not a weight of M .

4. H1
f (M

∗(1)) = 0 if all weights are < −1.

Proof. We only need to show the first two, which follow from the assumption that the p-adic regulator map
is an isomorphism and the corresponding properties of Bloch-Kato Selmer groups.
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Assume now that M is pure of weight w, of the form Hi(X)(n) for some smooth projective variety X/Q and
w = i − 2n. Then the conjecture can be simplified according to different values of w. Since it is expected
that there exists a functional equation relating L(M, s) and L(M∗(1),−s) and we know (by Poincaré duality
and hard Lefschetz) that M∗(1) ≃ M(w+1), we will only consider the case w ≤ −1. See [Nek94, §6] for the
same case distinction but where the conjectures are formulated in terms of motivic cohomology.

2.1 Weight ≤ −3

Lemma 2.1 implies that H0(M) = H0(M∗(1)) = H1
f (M

∗(1)) = 0. It follows that the fundamental line is
given by

∆f (M) = detH1
f (M)∗ ⊗ det tM ⊗ det(M+

B )∗

The Beilinson regulator vM : H1
f (M) → cokerαM and the Deligne period map αM : (M+

B )R ↩→ (MdR/F
0)R

combine to give an isomorphism ∆f (M)R ≃ R. The weak Bloch-Kato conjecture predicts that L(M, 0) ∕= 0,
and the Beilinson-Deligne conjecture predicts that L(M, 0) ∈ (regulator)(period)Q.

It is expected that H1
f (M) ≃ Hi+1

M,Z(X,Q(n)) (the integral part of motivic cohomology), cokerαM ≃
Hi+1

D (X/R,R(n)) (Deligne cohomology defined over R) and the map vM corresponds to the Beilinson regu-
lator. Modulo these identifications, we recover Beilinson’s conjecture in weight ≤ −3.

2.2 Near central point: weight −2

Lemma 2.1 implies that H0(M) = H1
f (M

∗(1)) = 0, but H0(M∗(1)) and H1
f (M) may be nonzero. Weak

Bloch-Kato predicts that L(M, s) has a pole of order dimH0(M∗(1)). The fundamental exact sequence
reduces to

0 → H1
f (M)R → cokerαM → H0(M∗(1))∗R → 0.

Since w = −2, M = H2n−2(X)(n) for some smooth projective variety, it is expected that H0(M∗(1))
is isomorphic to (CHn−1(X)/CHn−1(X)hom∼0) ⊗ Q. Assuming this, the weak Bloch-Kato conjecture is
equivalent to the Tate conjecture.

Example 2.2. Let X/Q be a smooth projective surface. Then the Tate conjecture predicts that L(H2(X), s)
has a pole of order dimQ NS(X)Q at s = 2.

2.3 Central point: weight −1

This is the only case where both H1
f (M) and H1

f (M
∗(1)) may be nonzero. Lemma 2.1 implies that H0(M) =

H0(M∗(1)) = 0. Since αM is injective by weight reasons and M∗(1) ≃ M , Lemma 1.11 shows that αM is an
isomorphism. Therefore the fundamental exact sequence reduces to a perfect pairing

H1
f (M)R ×H1

f (M)R → R.

Weak Bloch-Kato predicts that ords=0L(M, s) = dimH1
f (M); the Beilinson-Deligne conjecture predicts that

L∗(M, 0) ∈ (period)(determinant of pairing)Q.

Since w has weight −1, M = H2n+1(X)(n). Moreover H1
f (M) is expected to be isomorphic to CHn+1(X)hom∼0⊗

Q. Therefore we recover the generalized Birch-Swinnerton-Dyer conjecture.
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3 The case of 1-motives

3.1 Definition of 1-motives

Slogan: A 1-motive is a mixed motive associated to an open semistable curve X/Q.

Slogan: A 1-motive is a mixed motive whose Hodge numbers belong to {(0, 0), (−1, 0), (0,−1), (−1,−1)}.

Example 3.1. Let X be the curve obtained by identifying the points 1 and t ∈ Q× on Gm transversally. It
embeds in the curve X, obtained by identifying two points of P1 transversally. We have Pic0 X ≃ Pic0 X/〈[0]−
[∞]〉, and Pic0 X ≃ Gm. Therefore Pic0 X is the cokernel of the morphism Z u−→ Gm sending 1 to t.

The previous example motivates the following definition [Del74, §10]:

Definition 3.2. A 1-motive over Q is a morphism X → G of commutative group schemes over Q, where
G is a semi-abelian variety (i.e. an extension of an abelian variety by a torus) and X is a locally constant
group scheme of finite free Z-modules.

In other words, X(Q) is a finite free Z-module equipped with a GQ-action with open kernel, and the morphism
X(Q) → G(Q) is Galois-equivariant. With an obvious definition of morphisms between 1-motives, we obtain
an additive category MM1.

Definition 3.3. Let MM1(Q) be the isogeny category of 1-motives: the objects of MM1(Q) are those of
MM1 and the morphisms are given by

HomMM1(Q)(M1,M2) = Q⊗HomMM1
(M1,M2).

It can be useful to view an object of MM1(Q) as a morphism [X → G], where G/Q is a semi-abelian
variety, X is a finite dimensional Q-vector space with a GQ-action with open kernel and u : X → G(Q) a
Galois equivariant morphism. Just as is the case with abelian varieties, MM1(Q) is a Q-linear abelian
category; however it is not semisimple. It contains the category of abelian varieties and Q-valued Galois
representations.

3.2 Realizations

In [Del74, §10], a realization functor

Real1 : MM1(Q) → C

is described, landing in the subcategory of C of objects of Hodge numbers ⊂ {(0, 0), (−1, 0), (0,−1), (−1,−1)}.
(We follow the convention of using homology, so the weights are ≤ 0.) The part GrWi Real1(M) for i =
−2,−1, 0 depends only on the toric, abelian and discrete part respectively. Let’s briefly describe the different
realizations of M = [X

u−→ G].

Betti realization: Consider G(C) as a complex manifold and let Lie(G(C)) → G(C) be the exponential
map. Then MB is defined as the pullback of this map along u, tensorized with Q. It fits in an exact sequence

0 → H1(G(C),Q) → MB → X → 0.

Etale realization: Mℓ = lim←−M [ℓn], where M [n] = {(x, g) ∈ X × G | u(x) = ng}/{(nx, u(x)) | x ∈ X}.
When X = 0, we recover the Tate module of G. When G = 0, we recover X ⊗ Zℓ.
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de Rham realization: MdR is the Lie algebra of the universal vectorial extension of M ; we omit the details.

The Tate conjecture for abelian varieties implies:

Proposition 3.4. The functor Real1 is fully faithful.

We denote its essential image by M1. It is an abelian subcategory of C containing the unit object Q =
Real1([Q → 0]) and is stable under M (→ M∗(1).

Proposition 3.5. The category M1 is f -admissible if and only if for every abelian variety over Q and every
p, the p-primary part of the Tate-Shafarevich group of A is finite.

3.3 Example

We examine what our conjectures say for L-functions of 1-motives. Since we have already discussed the case
of pure motives in the previous section, we consider a mixed example.

Example 3.6. Let p be a prime number and M = Real1([Z
1 (→p−−−→ Gm]). This M arises from Example

3.1, and defines an element M ∈ Ext1M1
(Q,Q(1)). It turns out that M is critical and f -closed, and the

Deligne period is log p. We have L(M, s) = ζ(s)ζ(s+1)(1− p−s), so L(M, 0) = − 1
2 log p, as predicted by the

Deligne-Beilinson conjecture.
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[Nek94] Jan Nekovář, Bĕılinson’s conjectures, Motives (Seattle, WA, 1991), 1994, pp. 537–570. MR1265544

[Sch94] A. J. Scholl, Height pairings and special values of L-functions, Motives (Seattle, WA, 1991), 1994, pp. 571–598.
MR1265545

9


