

The Bloch-Kato conjecture on special values of L-functions

Jef Laga

March 10, 2021

We state the Bloch-Kato conjecture, following the formulation of Fontaine and Perrin-Riou [FPR94], mostly following [Fon92]. Then we specialize to the case of pure motives and 1-motives. For simplicity, we will only consider motives over \mathbb{Q} and do not treat more general coefficients. Please consider this document as a rough summary. Happy to receive corrections at: jcs15@cam.ac.uk.

1 Statement of the Bloch-Kato conjecture

1.1 Systems of realizations

Instead of working with a not yet existing abelian category of mixed motives, we phrase our conjecture in a certain subcategory \mathcal{M} of a category of ‘realizations’ \mathcal{C} , see Convention 1.10.

Definition 1.1. *The category \mathcal{C}_0 has as objects tuples $(M_{dR}, M_B, \{M_\ell\}, \{i_\ell\}, j_\infty, \{j_\ell\})$ consisting of:*

1. *A finite-dimensional \mathbb{Q} -vector space M_{dR} , equipped with a decreasing, exhaustive and separated filtration $(F^i M_{dR})_{i \in \mathbb{Z}}$.*
2. *A \mathbb{Q} -vector space M_B , equipped with a \mathbb{Q} -linear involution ϕ_∞ . We set $M_B^+ = M_B^{\phi_\infty=1}$.*
3. *For each prime number ℓ , a \mathbb{Q}_ℓ -vector space M_ℓ equipped with a continuous $G_\mathbb{Q}$ -action. There exists a finite set of primes S such that for all ℓ and all $p \notin S$, M_ℓ is unramified at p if $p \neq \ell$ and crystalline at p if $p = \ell$.*

together with comparison isomorphisms:

1. *(Betti-étale) For each prime ℓ , an isomorphism $i_\ell: M_B \otimes \mathbb{Q}_\ell \xrightarrow{\sim} M_\ell$, identifying $\phi_\infty \otimes \text{Id}$ with complex conjugation on M_ℓ .*
2. *(Betti-de Rham) An isomorphism $j_\infty: M_B \otimes \mathbb{C} \rightarrow M_{dR} \otimes \mathbb{C}$, identifying $\phi_\infty \otimes c$ with $\text{Id}_{M_{dR}} \otimes c$, where c denotes complex conjugation on \mathbb{C} .*
3. *(Étale-de Rham) For each prime ℓ , an isomorphism*

$$j_\ell: B_{dR, \ell} \otimes_{\mathbb{Q}_\ell} M_\ell \rightarrow B_{dR, \ell} \otimes_{\mathbb{Q}} M_{dR}. \quad (1.1.1)$$

Here $B_{dR,\ell}$ is the field of ℓ -adic periods, equipped with a $G_{\mathbb{Q}_\ell}$ -action and a decreasing filtration. We equip M_{dR} with the trivial $G_{\mathbb{Q}_\ell}$ -action and M_ℓ with the trivial filtration $F^0 = M_\ell, F^1 = 0$. We therefore obtain $G_{\mathbb{Q}_p}$ -actions and filtrations on both sides of (1.1.1), and we insist that they are respected by j_ℓ .

The morphisms are the evident ones.

Note that for any object M of \mathcal{C}_0 , the \mathbb{Q} -vector space M_B carries a Hodge structure, with (p, q) part the subspace of $M_B \otimes \mathbb{C}$ given by $j_\infty^{-1}(F^p M_{dR}) \cap \phi_\infty(j_\infty^{-1}(F^q M_{dR}))$.

Example 1.2. We define the Tate object $\mathbb{Q}(1)$ as follows:

- $\mathbb{Q}(1)_{dR} = \mathbb{Q}$ with filtration $F^{-1} = \mathbb{Q}(1)_{dR}$ and $F^0 = 0$.
- $\mathbb{Q}(1)_B = (2\pi i)\mathbb{Q}$ (seen as a subset of the same copy of \mathbb{C} where $\mathbb{Q}(1)_{dR}$ also lives), with ϕ_∞ acting as -1 .
- $\mathbb{Q}(1)_\ell = \mathbb{Q}_\ell(1)$, the ℓ -adic Tate module of \mathbb{G}_m .
- The Betti-étale and Betti-de Rham isomorphisms are standard. For the étale-de Rham isomorphism, we need to produce an isomorphism of filtered $G_{\mathbb{Q}_\ell}$ -modules $B_{dR} \otimes \mathbb{Q}_\ell(1) \simeq B_{dR} \otimes \mathbb{Q}(1)$ where, rather confusingly, the $\mathbb{Q}_\ell(1)$ on the left twists the Galois action and leaves the filtration unchanged while the $\mathbb{Q}(1)$ on the right only twists the filtration. To define such an isomorphism, recall (or accept) that B_{dR} is the fraction field of the discrete valuation ring B_{dR}^+ . There is a distinguished uniformizer $t \in B_{dR}^+$ such that $F^k B_{dR} = t^k B_{dR}^+$ and $G_{\mathbb{Q}_\ell}$ acts on t through the ℓ -adic cyclotomic character. It follows that multiplication by t^{-1} will do the job.

For the next definition, if ℓ, p are primes and M an object of \mathcal{C}_0 we write $D_p(M_\ell) = M_\ell^{I_p}$ if $\ell \neq p$ and $D_p(M_p) = (B_{\text{cris}} \otimes_{\mathbb{Q}_p} M_p)^{G_{\mathbb{Q}_p}}$ otherwise.

Definition 1.3. We say an object M of \mathcal{C}_0 has an L -function if for each prime p and ℓ (not necessarily distinct), the local L -factor $L_p(M, s) := \det(1 - p^{-s} \text{Frob}_p \mid D_p(M_\ell))$ is independent of ℓ , and the product $L(M, s) = \prod_p L_p(M, s)$ converges for $\text{Re}(s)$ large enough.

Definition 1.4. The category \mathcal{C} of systems of realizations has as objects a pair $(M, W_\bullet M)$ where

- M is an object of \mathcal{C}_0 .
- $W_\bullet M$ is an increasing, separated and exhaustive filtration by subobjects of M such that the Hodge structure $\text{Gr}_i^W M_B$ is pure of weight i .

The category \mathcal{C} has a notion of a tensor product and dual, and is a \mathbb{Q} -linear neutral tannakian category. Our definition of \mathcal{C} differs from Fontaine in that we do not require objects to have an L -function.

Example 1.5. Let M be an object of \mathcal{C}_0 (which has an L -function) such that M_B is pure of weight i . Then by setting $W_{i-1} = 0$ and $W_i = M$, we may view M as an object of \mathcal{C} . In particular, the weight -2 Tate object $\mathbb{Q}(1)$ defines an object of \mathcal{C} .

1.2 Working category

Let \mathcal{M} be a full abelian subcategory of \mathcal{C} containing the unit object \mathbb{Q} and which is closed under $M \mapsto M^*(1)$. Write

$$\begin{aligned} H^0(M) &= \text{Hom}_{\mathcal{M}}(\mathbb{Q}, M) = \text{Hom}_{\mathcal{C}}(\mathbb{Q}, M), \\ H^1(M) &= \text{Ext}_{\mathcal{M}}^1(\mathbb{Q}, M). \end{aligned}$$

We define the subspace $H_f^1(M) \subset H^1(M)$ consisting of those elements with the property that for all ℓ its ℓ -adic realization lies in the Bloch-Kato Selmer group $H_f^1(\mathbb{Q}, M_{\ell})$, i.e. is unramified at $p \neq \ell$ and crystalline at ℓ . For simplicity, write $H_f^0(M) = H^0(M)$. Although we suppress \mathcal{M} from the notation of $H^1(M)$, this group may certainly depend on the choice of \mathcal{M} .

Remark 1.6. *These definitions are motivated by the fact that if \mathcal{M} would be isomorphic to the conjectural category of mixed motives over \mathbb{Q} and $M = H^i(X)(n)$, then (for most values of i and n) $H^1(M)$ should be isomorphic to the motivic cohomology group $H_{\mathcal{M}}^{i+1}(X, \mathbb{Q}(m))$ and $H_f^1(M)$ should correspond to the ‘integral part’ of $H_{\mathcal{M}}^{i+1}(X, \mathbb{Q}(m))$, i.e. those classes coming from $H_{\mathcal{M}}^{i+1}(\mathcal{X}, \mathbb{Q}(m))$ where \mathcal{X}/\mathbb{Z} is a regular model for X .*

Definition 1.7. *We say \mathcal{M} is f -admissible if for every object M of \mathcal{M} , the following are satisfied:*

1. *For every prime p , the p -adic regulator map $H_f^i(M)_{\mathbb{Q}_p} \rightarrow H_f^i(M_p)$ is an isomorphism for $i = 0, 1$.*
2. *If $H_f^0(M^*(1)) = H_f^1(M^*(1)) = 0$, the archimedean regulator $H_f^i(M)_{\mathbb{R}} \rightarrow \text{Ext}_{\text{MHS}_{\mathbb{R}}^+}^i(\mathbb{R}, (M_B)_{\mathbb{R}})$ is an isomorphism for $i = 0, 1$.*

Here $\text{MHS}_{\mathbb{R}}^+$ denotes the category of \mathbb{R} -mixed Hodge structures which are defined over \mathbb{R} (i.e. carry an involution ϕ_{∞}).

Here’s a rather imprecise conjecture.

Conjecture 1.8. *There exists a contravariant functor*

$$\text{real}: \left\{ \begin{array}{l} \text{Reduced, irreducible,} \\ \text{finite type } \mathbb{Q}\text{-schemes} \end{array} \right\} \rightarrow \mathcal{C}$$

extending the realization functor for smooth projective varieties. For any variety X , $\text{real}(X)_B$ is isomorphic to $H_B^(X(\mathbb{C}), \mathbb{Q})$ with its mixed Hodge structure constructed by Deligne [Del74, §8.2].*

Such a functor is known to exist on the subcategory of smooth quasi-projective varieties [Fon92, §6.7].

Definition 1.9. *An object of \mathcal{C} lying in the Tannakian subcategory generated by the image of real is called of motivic origin.*

Strictly speaking, this definition only makes sense when Conjecture 1.8 holds. However since we know how to define real in many cases (e.g. smooth quasi-projective varieties, 1-motives), we are able to identify many objects of \mathcal{C} of motivic origin.

Convention 1.10. *For the remainder of this note, fix an f -admissible subcategory \mathcal{M} of \mathcal{C} such that every object of \mathcal{M} is of motivic origin.*

1.3 The Deligne period map

Let M be an object of \mathcal{M} . Let $t_M = M_{dR}/F^0$ be its tangent space. Since $j_\infty: M_B \otimes \mathbb{C} \rightarrow M_{dR} \otimes \mathbb{C}$ sends $\phi_\infty \otimes c$ to $\text{Id} \otimes c$, the subspace $M_B^+ \otimes \mathbb{R}$ lands in $M_{dR} \otimes \mathbb{R}$. Quotienting out $F^0 M_{dR}$ gives rise to the Deligne period map

$$\alpha_M: M_B^+ \otimes \mathbb{R} \rightarrow t_M \otimes \mathbb{R}.$$

Lemma 1.11. *There are canonical isomorphisms $\ker(\alpha_M) \simeq \text{coker}(\alpha_{M^*(1)})^*$ and $\text{coker}(\alpha_M) \simeq \ker(\alpha_{M^*(1)})^*$.*

Proof. First note that $M_{dR} \otimes \mathbb{R} \simeq (M_B^+)_\mathbb{R} \otimes (M_B^-)_\mathbb{R}$. Therefore $(M_{dR})_\mathbb{R}^* \simeq (M^*(1)_B^-)_\mathbb{R} \oplus (M^*(1)_B^+)_\mathbb{R}$. On the other hand, the filtration $F^i M^*(1)_{dR}$ is given by $\ker(M_{dR}^* \rightarrow (F^{-i})^*)$. Therefore $(F^0 M_{dR})^* \simeq M_{dR}^*/\ker(M_{dR}^* \rightarrow (F^{-i})^*) \simeq M^*(1)_{dR}/F^0$. It follows that the exact sequence

$$0 \rightarrow \ker \alpha_M \rightarrow (F^0 M_{dR} \otimes M_B^+)_\mathbb{R} \rightarrow (M_{dR})_\mathbb{R} \rightarrow \text{coker}(\alpha_M) \rightarrow 0$$

dualizes to

$$0 \rightarrow \text{coker}(\alpha_M)^* \rightarrow (\textcolor{red}{M^*(1)_B^-})_\mathbb{R} \oplus (M^*(1)_B^+)_\mathbb{R} \rightarrow (\textcolor{red}{M^*(1)_B^-})_\mathbb{R} \oplus M^*(1)_{dR}/F^0 \rightarrow \ker(\alpha_M)^* \rightarrow 0.$$

When omitting the red terms, the middle map is exactly $\alpha_{M^*(1)}$. \square

We now relate α_M to $\text{MHS}_\mathbb{R}^+$. Write $H^i(\mathbb{R}, M_B)$ for $\text{Ext}_{\text{MHS}_\mathbb{R}^+}^i(\mathbb{R}, (M_B)_\mathbb{R})$ for $i = 0, 1$. If $W_0 M = M$ (i.e. all weights are ≤ 0), $H^0(\mathbb{R}, M_B) \simeq \ker(\alpha_M)$ and $H^1(\mathbb{R}, M_B) \simeq \text{coker}(\alpha_M)$. In general:

Lemma 1.12. *There is an exact sequence*

$$0 \rightarrow H^0(\mathbb{R}, M_B) \rightarrow \ker \alpha_M \rightarrow \ker \alpha_{M/W_0 M} \rightarrow H^1(\mathbb{R}, M) \rightarrow \text{coker} \alpha_M \rightarrow 0. \quad (1.3.1)$$

If $M = H^i(X)(n)$ with $i - 2n < 0$, then $H^1(\mathbb{R}, M_B)$ is isomorphic to Deligne cohomology $H_D^{i+1}(X_{/\mathbb{R}}, \mathbb{R}(n))$.

1.4 The fundamental exact sequence

We define the fundamental exact sequence of M . It has the form:

$$0 \rightarrow H^0(M)_\mathbb{R} \xrightarrow{u_M} \ker \alpha_M \xrightarrow{v'_M} H_f^1(M^*(1))_\mathbb{R}^* \xrightarrow{\delta_M} H_f^1(M)_\mathbb{R} \xrightarrow{v_M} \text{coker}(\alpha_M) \xrightarrow{u'_M} H^0(M^*(1))_\mathbb{R} \rightarrow 0. \quad (1.4.1)$$

The morphism u_M is the composite of the inclusion $H^0(M)_\mathbb{R} \hookrightarrow H^0(\mathbb{R}, M_B)$ and the inclusion $H^0(\mathbb{R}, M_B) \rightarrow \ker \alpha_M$ of (1.3.1). Similarly v_M is the composite $H_f^1(M) \rightarrow H^1(\mathbb{R}, M_B) \rightarrow \text{coker}(\alpha_M)$. The maps u'_M and v'_M are the duals of $u_{M^*(1)}$ and $v_{M^*(1)}$, using the identification of Lemma 1.11.

The middle map δ_M is defined via a (slightly intricate) procedure in \mathcal{M} using computations with extensions, see [FPR94, Proposition III.3.2.5]. It generalizes the Neron-Tate height pairing on elliptic curves. That same proposition also proves:

Proposition 1.13. *Under the assumption that \mathcal{M} is f -admissible, the sequence (1.4.1) is exact.*

1.5 The fundamental line

For a finite-dimensional vector space V , write $\det V$ for its top exterior power. Write $L_f(M) = \det H^0(M) \otimes (\det H_f^1(M))^*$.

The fundamental line is defined as

$$\Delta_f(M) = L_f(M) \otimes L_f(M^*(1)) \otimes \det t_M \otimes \det(M_B^+)^*. \quad (1.5.1)$$

As written, this is just a one-dimensional \mathbb{Q} -vector space. The point is that:

- There exists a canonical isomorphism $i_M: \Delta_f(M)_{\mathbb{R}} \simeq \mathbb{R}$.
- For every prime p , there exists a canonical measure $|\cdot|_p$ on $\Delta_f(M)_{\mathbb{Q}_p}$. (In other words, there exists a canonical \mathbb{Z}_p -lattice inside $\Delta_f(M)_{\mathbb{Q}_p}$.)

The first isomorphism follows immediately from the exact sequence (1.3.1) and the definition of the Deligne period map. The second assertion follows from Galois cohomology computations and p -adic Hodge theory, see [FPR94, §II.4] for details.

1.6 Statement of the Bloch-Kato conjecture

Let M be an object of \mathcal{M} . To state the conjectures that follow, assume that M has an L -function (Definition 1.3.).

Conjecture 1.14 (Weak Bloch-Kato). *For every object M of \mathcal{M} , the order of vanishing of $L(M, s)$ at $s = 0$ equals $\dim H_f^1(M^*(1)) - \dim H^0(M^*(1))$.*

Write $L^*(M, 0)$ for the leading term of $L(M, s)$ at $s = 0$.

Conjecture 1.15 (Beilinson-Deligne). *There exists (a necessarily unique) $\delta_f(M) \in \Delta_f(M)$ such that $i_M(\delta_f(M) \otimes 1)L^*(M, 0) = 1$.*

Conjecture 1.16 (The Bloch-Kato conjecture). *Conjecture 1.15 holds and moreover $|\delta_f(M) \otimes 1|_p = 1$ for all p .*

Remark 1.17. *The Bloch-Kato conjecture determines the real number $L^*(M, 0)$ up to sign, which can be easily determined. Indeed, let $r_M = \text{ord}_{s=0} L(M, s)$. Then $r_{M(i)} = 0$ for $i \geq 0$ large enough and the sign of $L^*(M, 0)$ is given by $(-1)^{\sum_{i>0} r_{M(i)}}$.*

Remark 1.18. *The formulation of the Bloch-Kato conjecture given here differs from the original one given in [BK90], which puts an emphasis on Tamagawa numbers. The connection between the two is discussed in [Fon92, §11].*

1.7 The f -closed case

There is a special class of mixed motives for which the conjecture is easy to state.

Definition 1.19. *We say an object M of \mathcal{M} is f -closed if $H_f^1(M) = H_f^1(M^*(1)) = 0$.*

Definition 1.20. Define the equivalence relation \sim_f (called f -equivalence) on (isomorphism classes of) the objects of \mathcal{M} as the equivalence relation generated by:

1. If N is an extension of M by \mathbb{Q} defining an element of $H_f^1(M)$, then $M \sim_f N$.
2. If $M \sim_f N$, then $M^*(1) \sim_f N^*(1)$.

Assuming a functional equation between $L(M, s)$ and $L(M^*(1), -s)$, the conjectures for M of §1.6 are true if and only if they hold for any object f -equivalent to M . It turns out that every element of \mathcal{M} is f -equivalent to an f -closed motive M which even satisfies $H^0(M) = H^0(M^*(1)) = 0$ (an explicit recipe is given in [Sch94, §7.8]). In that case, the fundamental line is trivial and Conjectures 1.14 and 1.15 reduce to:

$$L(M, 0) \neq 0 \text{ and } L(M, 0)/c^+(M) \in \mathbb{Q}.$$

Here $c^+(M)$ is the determinant of the Deligne period map when \mathbb{Q} -bases of M_B^+ and M_{dR}/F^0 are chosen.

Therefore, in principle, it is enough to consider the f -closed case.

Example 1.21. Let E/\mathbb{Q} be an elliptic curve of rank zero with finite Tate-Shafarevich group. Let $M = H^1(E)(1)$. Then $(M_B^+)_\mathbb{R} \rightarrow (M_{dR}/F^0)_\mathbb{R}$ is an isomorphism between one-dimensional vector spaces, and choosing suitable \mathbb{Q} -generators is given by $1 \mapsto \Omega_E = \int_{E(\mathbb{R})} \omega$, where ω is a holomorphic differential. It follows that the Beilinson-Deligne conjecture in this case asserts that $L(M, 0)/\Omega_E \in \mathbb{Q}^\times$.

Example 1.22. Let M be the Artin motive associated to the one-dimensional Galois representation $G_\mathbb{Q} \rightarrow \{\pm 1\}$ which cuts out the extension $\mathbb{Q}(i)/\mathbb{Q}$. It corresponds to the unique nontrivial Dirichlet character $\chi: (\mathbb{Z}/4\mathbb{Z})^\times \rightarrow \{\pm 1\}$. One can check that $M(1)$ is f -closed and $H_f^1(M(1)) = H_f^1(M^*) = 0$. Therefore $L(\chi, 1)$ is a nonzero rational multiple of $c^+(M) = \pi$. Indeed:

$$1 - 1/3 + 1/5 - 1/7 + \dots = \frac{\pi}{4}.$$

Remark 1.23. We say M is *critical* if α_M is an isomorphism. If M is f -closed and $H^0(M) = H^0(M^*(1)) = 0$, then M is critical. Therefore the above remarks are very much related to the conjectures made by Deligne in the critical case.

2 The pure case

If M is an object of \mathcal{M} , its weights are those integers n such that $Gr_n^W M \neq 0$.

Lemma 2.1. 1. $H^0(M) = 0$ if 0 is not a weight of M .

2. $H_f^1(M) = 0$ if all weights are > -1 .

3. $H^0(M^*(1)) = 0$ if -2 is not a weight of M .

4. $H_f^1(M^*(1)) = 0$ if all weights are < -1 .

Proof. We only need to show the first two, which follow from the assumption that the p -adic regulator map is an isomorphism and the corresponding properties of Bloch-Kato Selmer groups. \square

Assume now that M is pure of weight w , of the form $H^i(X)(n)$ for some smooth projective variety X/\mathbb{Q} and $w = i - 2n$. Then the conjecture can be simplified according to different values of w . Since it is expected that there exists a functional equation relating $L(M, s)$ and $L(M^*(1), -s)$ and we know (by Poincaré duality and hard Lefschetz) that $M^*(1) \simeq M(w+1)$, we will only consider the case $w \leq -1$. See [Nek94, §6] for the same case distinction but where the conjectures are formulated in terms of motivic cohomology.

2.1 Weight ≤ -3

Lemma 2.1 implies that $H^0(M) = H^0(M^*(1)) = H_f^1(M^*(1)) = 0$. It follows that the fundamental line is given by

$$\Delta_f(M) = \det H_f^1(M)^* \otimes \det t_M \otimes \det(M_B^+)^*$$

The Beilinson regulator $v_M: H_f^1(M) \rightarrow \text{coker } \alpha_M$ and the Deligne period map $\alpha_M: (M_B^+)_\mathbb{R} \hookrightarrow (M_{dR}/F^0)_\mathbb{R}$ combine to give an isomorphism $\Delta_f(M)_\mathbb{R} \simeq \mathbb{R}$. The weak Bloch-Kato conjecture predicts that $L(M, 0) \neq 0$, and the Beilinson-Deligne conjecture predicts that $L(M, 0) \in (\text{regulator})(\text{period})\mathbb{Q}$.

It is expected that $H_f^1(M) \simeq H_{\mathcal{M}, \mathbb{Z}}^{i+1}(X, \mathbb{Q}(n))$ (the integral part of motivic cohomology), $\text{coker } \alpha_M \simeq H_{\mathcal{D}}^{i+1}(X/\mathbb{R}, \mathbb{R}(n))$ (Deligne cohomology defined over \mathbb{R}) and the map v_M corresponds to the Beilinson regulator. Modulo these identifications, we recover Beilinson's conjecture in weight ≤ -3 .

2.2 Near central point: weight -2

Lemma 2.1 implies that $H^0(M) = H_f^1(M^*(1)) = 0$, but $H^0(M^*(1))$ and $H_f^1(M)$ may be nonzero. Weak Bloch-Kato predicts that $L(M, s)$ has a pole of order $\dim H^0(M^*(1))$. The fundamental exact sequence reduces to

$$0 \rightarrow H_f^1(M)_\mathbb{R} \rightarrow \text{coker } \alpha_M \rightarrow H^0(M^*(1))_\mathbb{R}^* \rightarrow 0.$$

Since $w = -2$, $M = H^{2n-2}(X)(n)$ for some smooth projective variety, it is expected that $H^0(M^*(1))$ is isomorphic to $(\text{CH}^{n-1}(X)/\text{CH}^{n-1}(X)_{\text{hom} \sim 0}) \otimes \mathbb{Q}$. Assuming this, the weak Bloch-Kato conjecture is equivalent to the Tate conjecture.

Example 2.2. Let X/\mathbb{Q} be a smooth projective surface. Then the Tate conjecture predicts that $L(H^2(X), s)$ has a pole of order $\dim_{\mathbb{Q}} \text{NS}(X)_\mathbb{Q}$ at $s = 2$.

2.3 Central point: weight -1

This is the only case where both $H_f^1(M)$ and $H_f^1(M^*(1))$ may be nonzero. Lemma 2.1 implies that $H^0(M) = H^0(M^*(1)) = 0$. Since α_M is injective by weight reasons and $M^*(1) \simeq M$, Lemma 1.11 shows that α_M is an isomorphism. Therefore the fundamental exact sequence reduces to a perfect pairing

$$H_f^1(M)_\mathbb{R} \times H_f^1(M)_\mathbb{R} \rightarrow \mathbb{R}.$$

Weak Bloch-Kato predicts that $\text{ord}_{s=0} L(M, s) = \dim H_f^1(M)$; the Beilinson-Deligne conjecture predicts that $L^*(M, 0) \in (\text{period})(\text{determinant of pairing})\mathbb{Q}$.

Since w has weight -1 , $M = H^{2n+1}(X)(n)$. Moreover $H_f^1(M)$ is expected to be isomorphic to $\text{CH}^{n+1}(X)_{\text{hom} \sim 0} \otimes \mathbb{Q}$. Therefore we recover the generalized Birch-Swinnerton-Dyer conjecture.

3 The case of 1-motives

3.1 Definition of 1-motives

Slogan: A 1-motive is a mixed motive associated to an open semistable curve X/\mathbb{Q} .

Slogan: A 1-motive is a mixed motive whose Hodge numbers belong to $\{(0,0), (-1,0), (0,-1), (-1,-1)\}$.

Example 3.1. Let X be the curve obtained by identifying the points 1 and $t \in \mathbb{Q}^\times$ on \mathbb{G}_m transversally. It embeds in the curve \overline{X} , obtained by identifying two points of \mathbb{P}^1 transversally. We have $\mathrm{Pic}^0 X \simeq \mathrm{Pic}^0 \overline{X} / \langle [0] - [\infty] \rangle$, and $\mathrm{Pic}^0 \overline{X} \simeq \mathbb{G}_m$. Therefore $\mathrm{Pic}^0 X$ is the cokernel of the morphism $\mathbb{Z} \xrightarrow{u} \mathbb{G}_m$ sending 1 to t .

The previous example motivates the following definition [Del74, §10]:

Definition 3.2. A 1-motive over \mathbb{Q} is a morphism $X \rightarrow G$ of commutative group schemes over \mathbb{Q} , where G is a semi-abelian variety (i.e. an extension of an abelian variety by a torus) and X is a locally constant group scheme of finite free \mathbb{Z} -modules.

In other words, $X(\overline{\mathbb{Q}})$ is a finite free \mathbb{Z} -module equipped with a $G_{\overline{\mathbb{Q}}}$ -action with open kernel, and the morphism $X(\overline{\mathbb{Q}}) \rightarrow G(\overline{\mathbb{Q}})$ is Galois-equivariant. With an obvious definition of morphisms between 1-motives, we obtain an additive category \mathcal{MM}_1 .

Definition 3.3. Let $\mathcal{MM}_1(\mathbb{Q})$ be the isogeny category of 1-motives: the objects of $\mathcal{MM}_1(\mathbb{Q})$ are those of \mathcal{MM}_1 and the morphisms are given by

$$\mathrm{Hom}_{\mathcal{MM}_1(\mathbb{Q})}(M_1, M_2) = \mathbb{Q} \otimes \mathrm{Hom}_{\mathcal{MM}_1}(M_1, M_2).$$

It can be useful to view an object of $\mathcal{MM}_1(\mathbb{Q})$ as a morphism $[X \rightarrow G]$, where G/\mathbb{Q} is a semi-abelian variety, X is a finite dimensional \mathbb{Q} -vector space with a $G_{\mathbb{Q}}$ -action with open kernel and $u: X \rightarrow G(\overline{\mathbb{Q}})$ a Galois equivariant morphism. Just as is the case with abelian varieties, $\mathcal{MM}_1(\mathbb{Q})$ is a \mathbb{Q} -linear abelian category; however it is not semisimple. It contains the category of abelian varieties and \mathbb{Q} -valued Galois representations.

3.2 Realizations

In [Del74, §10], a realization functor

$$\mathrm{Real}_1: \mathcal{MM}_1(\mathbb{Q}) \rightarrow \mathcal{C}$$

is described, landing in the subcategory of \mathcal{C} of objects of Hodge numbers $\subset \{(0,0), (-1,0), (0,-1), (-1,-1)\}$. (We follow the convention of using homology, so the weights are ≤ 0 .) The part $Gr_i^W \mathrm{Real}_1(M)$ for $i = -2, -1, 0$ depends only on the toric, abelian and discrete part respectively. Let's briefly describe the different realizations of $M = [X \xrightarrow{u} G]$.

Betti realization: Consider $G(\mathbb{C})$ as a complex manifold and let $\mathrm{Lie}(G(\mathbb{C})) \rightarrow G(\mathbb{C})$ be the exponential map. Then M_B is defined as the pullback of this map along u , tensorized with \mathbb{Q} . It fits in an exact sequence

$$0 \rightarrow \mathrm{H}_1(G(\mathbb{C}), \mathbb{Q}) \rightarrow M_B \rightarrow X \rightarrow 0.$$

Etale realization: $M_\ell = \varprojlim M[\ell^n]$, where $M[n] = \{(x, g) \in X \times G \mid u(x) = ng\} / \{(nx, u(x)) \mid x \in X\}$. When $X = 0$, we recover the Tate module of G . When $G = 0$, we recover $X \otimes \mathbb{Z}_\ell$.

de Rham realization: M_{dR} is the Lie algebra of the universal vectorial extension of M ; we omit the details.

The Tate conjecture for abelian varieties implies:

Proposition 3.4. *The functor Real_1 is fully faithful.*

We denote its essential image by \mathcal{M}_1 . It is an abelian subcategory of \mathcal{C} containing the unit object $\mathbb{Q} = \text{Real}_1([\mathbb{Q} \rightarrow 0])$ and is stable under $M \mapsto M^*(1)$.

Proposition 3.5. *The category \mathcal{M}_1 is f -admissible if and only if for every abelian variety over \mathbb{Q} and every p , the p -primary part of the Tate-Shafarevich group of A is finite.*

3.3 Example

We examine what our conjectures say for L -functions of 1-motives. Since we have already discussed the case of pure motives in the previous section, we consider a mixed example.

Example 3.6. *Let p be a prime number and $M = \text{Real}_1([\mathbb{Z} \xrightarrow{1 \mapsto p} \mathbb{G}_m])$. This M arises from Example 3.1, and defines an element $M \in \text{Ext}_{\mathcal{M}_1}^1(\mathbb{Q}, \mathbb{Q}(1))$. It turns out that M is critical and f -closed, and the Deligne period is $\log p$. We have $L(M, s) = \zeta(s)\zeta(s+1)(1-p^{-s})$, so $L(M, 0) = -\frac{1}{2}\log p$, as predicted by the Deligne-Beilinson conjecture.*

References

- [BK90] Spencer Bloch and Kazuya Kato, *L -functions and Tamagawa numbers of motives*, The Grothendieck Festschrift, Vol. I, 1990, pp. 333–400. MR1086888
- [Del74] Pierre Deligne, *Théorie de Hodge. III*, Inst. Hautes Études Sci. Publ. Math. **44** (1974), 5–77. MR498552
- [Fon92] Jean-Marc Fontaine, *Valeurs spéciales des fonctions L des motifs*, 1992, pp. Exp. No. 751, 4, 205–249. Séminaire Bourbaki, Vol. 1991/92. MR1206069
- [FPR94] Jean-Marc Fontaine and Bernadette Perrin-Riou, *Autour des conjectures de Bloch et Kato: cohomologie galoisienne et valeurs de fonctions L* , Motives (Seattle, WA, 1991), 1994, pp. 599–706. MR1265546
- [Nek94] Jan Nekovář, *Beilinson’s conjectures*, Motives (Seattle, WA, 1991), 1994, pp. 537–570. MR1265544
- [Sch94] A. J. Scholl, *Height pairings and special values of L -functions*, Motives (Seattle, WA, 1991), 1994, pp. 571–598. MR1265545