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We state the Bloch-Kato conjecture, following the formulation of Fontaine and Perrin-Riou [FPR94|, mostly
following [Fon92|. Then we specialize to the case of pure motives and 1-motives. For simplicity, we will only
consider motives over QQ and do not treat more general coefficients. Please consider this document as a rough
summary. Happy to receive corrections at: jcsl5@cam.ac.uk.

1 Statement of the Bloch-Kato conjecture

1.1 Systems of realizations
Instead of working with a not yet existing abelian category of mixed motives, we phrase our conjecture in a

certain subcategory M of a category of ‘realizations’ C, see Convention 1.10.

Definition 1.1. The category Cy has as objects tuples (Mar, Mp,{M¢},{ic}, joo, {je}) consisting of:

1. A finite-dimensional Q-vector space Myg, equipped with a decreasing, exhaustive and separated filtration
(F'Mgg)icz.

2. A Q-vector space Mg, equipped with a Q-linear involution ¢o,. We set M;E = Mg*zl.

3. For each prime number £, a Qg-vector space M, equipped with a continuous Gg-action. There ezists a
finite set of primes S such that for all £ and all p & S, My is unramified at p if p # ¢ and crystalline
atpifp=~.

together with comparison isomorphisms:
1. (Betti-etale) For each prime £, an isomorphism i,;: Mp ® Qp = My, identifying ¢oo @ Id with complex

conjugation on M.

2. (Betti-de Rham) An isomorphism joo: Mp ® C — Mgr ® C, identitying ¢oo @ ¢ with Idps,, ®c, where
¢ denotes complex conjugation on C.

3. (Etale-de Rham) For each prime £, an isomorphism

it BdR’g RqQ, My, — BdR,g (290 Mygr. (1.1.1)



Here Byry 1s the field of (-adic periods, equipped with a Gg,-action and a decreasing filtration. We
equip Mqr with the trivial Gg,-action and M, with the trivial filtration FO = M,, F' =0. We therefore
obtain Gq,-actions and filtrations on both sides of (1.1.1), and we insist that they are respected by jq.

The morphisms are the evident ones.

Note that for any object M of Cy, the Q-vector space Mp carries a Hodge structure, with (p,q) part the
subspace of Mp @ C given by j ' (FPMygr) N ¢oo (it (FIMyR)).

Example 1.2. We define the Tate object Q(1) as follows:

e Q(1)4r = Q with filtration F~* = Q(1)qr and F° = 0.

e Q1) = (2m)Q (seen as a subset of the same copy of C where Q(1)qr also lives), with ¢ acting as
—1.

e Q(1)r = Qu(1), the l-adic Tate module of G,.

e The Betti-etale and Betti-de Rham isomorphisms are standard. For the etale-de Rham isomorphism,
we need to produce an isomorphism of filtered Gg,-modules Byr ® Qu(1) ~ Byr ® Q(1) where, rather
confusingly, the Qu(1) on the left twists the Galois action and leaves the filtration unchanged while the
Q(1) on the right only twists the filtration. To define such an isomorphism, recall (or accept) that Byg
is the fraction field of the discrete valuation ring BIR. There is a distinguished uniformizer t € BJR
such that F*Byp = thjR and Gg, acts on t through the {-adic cyclotomic character. It follows that
multiplication by t—1 will do the job.

For the next definition, if ¢,p are primes and M an object of Cy we write D,(M,) = MZIP if ¢ # p and
Dy(Mp) = (Beris ®q, MP)G@P otherwise.

Definition 1.3. We say an object M of Cy has an L-function if for each prime p and £ (not necessarily
distinct), the local L-factor L,(M,s) = det(1 — p~®Frob, | D,(M,)) is independent of £, and the product
L(M,s) =1, Lp(M,s) converges for Re(s) large enough.

Definition 1.4. The category C of systems of realizations has as objects a pair (M, WoM) where

e M is an object of Cy.

o WM 1is an increasing, separated and exhaustive filtration by subobjects of M such that the Hodge
structure GrlV Mg is pure of weight i.

The category C has a notion of a tensor product and dual, and is a Q-linear neutral tannakian category. Our
definition of C differs from Fontaine in that we do not require objects to have an L-function.

Example 1.5. Let M be an object of Cy (which has an L-function) such that Mg is pure of weight i. Then
by setting W;_1 = 0 and W; = M, we may view M as an object of C. In particular, the weight —2 Tate
object Q(1) defines an object of C.



1.2 Working category

Let M be a full abelian subcategory of C containing the unit object Q and which is closed under M — M*(1).
Write

H°(M) = Homp (Q, M) = Home(Q, M),

H' (M) = Ext},(Q, M).
We define the subspace H} (M) C HY(M) consisting of those elements with the property that for all ¢ its

l-adic realization lies in the Bloch-Kato Selmer group H} (Q, My), i.e. is unramified at p # ¢ and crystalline

at £. For simplicity, write H}(M) = H(M). Although we suppress M from the notation of H' (M), this
group may certainly depend on the choice of M.

Remark 1.6. These definitions are motivated by the fact that if M would be isomorphic to the conjectural
category of mized motives over Q and M = H'(X)(n), then (for most values of i and n) H*(M) should be
isomorphic to the motivic cohomology group Hﬁll (X,Q(m)) and H}C(M) should correspond to the ‘integral

part’ of Hi (X, Q(m)), i.e. those classes coming from H{' (X, Q(m)) where X /Z is a regqular model for X .

Definition 1.7. We say M is f-admissible if for every object M of M, the following are satisfied:

1. For every prime p, the p-adic requlator map H} (M)q, — H;}(Mp) is an isomorphism for i = 0,1.

2. If H?C(M*(l)) = H}(M*(l)) = 0, the archimedean regulator HZJ}(M)R — EXt;\/[HSD‘{ (R, (Mp)r) is an

isomorphism for i =0,1.

Here MHSE denotes the category of R-mixed Hodge structures which are defined over R (i.e. carry an
involution ¢o).

Here’s a rather imprecise conjecture.

Conjecture 1.8. There exists a contravariant functor

real Reduced, vrreducible,
" | finite type Q-schemes

extending the realization functor for smooth projective varieties. For any variety X, real(X)p is isomorphic
to H(X(C), Q) with its mized Hodge structure constructed by Deligne [Del74, §8.2].

Such a functor is known to exist on the subcategory of smooth quasi-projective varieties [Fon92, §6.7].

Definition 1.9. An object of C lying in the Tannakian subcategory generated by the image of real is called
of motivic origin.

Strictly speaking, this definition only makes sense when Conjecture 1.8 holds. However since we know how
to define real in many cases (e.g. smooth quasi-projective varieties, 1-motives), we are able to identify many
objects of C of motivic origin.

Convention 1.10. For the remainder of this note, fix an f-admissible subcategory M of C such that every
object of M is of motivic origin.



1.3 The Deligne period map

Let M be an object of M. Let ty; = Myr/F° be its tangent space. Since jo: Mp ® C — Myr @ C sends
Poo ® ¢ to Id ®c, the subspace Mg ® R lands in Myr ® R. Quotienting out FOM,pr gives rise to the Deligne
period map

anv: M @R =ty @R,
Lemma 1.11. There are canonical isomorphisms ker(aps) ~ coker(aps«(1))* and coker(apr) ~ ker(apr-(1))*.
Proof. First note that Myr ® R ~ (M3)r ® (Mg)r. Therefore (Mar)g ~ (M*(1)5)r & (M*(1)5)r.
On the other hand, the filtration F*M*(1)4p is given by ker(Mjz — (F~%)*). Therefore (FOMyg)* ~
Mip/ker(Mjip — (F~")*) ~ M*(1)qr/F°. It follows that the exact sequence
0 — keray — (FOMyr ® ME)R — (Mgagr)r — coker(aps) — 0
dualizes to
0 — coker(ans)* = (M*(1)5)r ® (M*(1)E)r — (M*(1)5)r ©@ M*(1)ar/F° — ker(an)* — 0.

When omitting the red terms, the middle map is exactly aps«(1)- O

We now relate aps to MHSE . Write HY (R, Mp) for ExtvaHS+ (R,(Mp)g) for i =0,1. If WoM = M (i.e. all
R

weights are < 0), H(R, Mp) ~ ker(ays) and H (R, Mp) ~ coker(ays). In general:
Lemma 1.12. There is an exact sequence

0— HO(R, MB) — kerayy — keraM/WoM — Hl(R, M) — coker apr — 0. (131)

If M = HY(X)(n) with i — 2n < 0, then H! (R, Mp) is isomorphic to Deligne cohomology Higl(X/R, R(n)).

1.4 The fundamental exact sequence

We define the fundamental exact sequence of M. It has the form:

0 — HO(M)g ™% ker any —% HH(M*(1))% RN HY (M)g 25 coker(aps) —% HO(M*(1)g — 0. (1.4.1)

The morphism uy; is the composite of the inclusion HO(M)r — H°(R, Mp) and the inclusion H(R, Mp) —
ker aps of (1.3.1). Similarly vy is the composite Hy(M) — H'(R, Mp) — coker(aps). The maps uj, and
v}, are the duals of upz- (1) and vps-(1), using the identification of Lemma 1.11.

The middle map dy; is defined via a (slightly intricate) procedure in M using computations with extensions,
see [FPR94, Proposition I11.3.2.5]. It generalizes the Neron-Tate height pairing on elliptic curves. That same
proposition also proves:

Proposition 1.13. Under the assumption that M is f-admissible, the sequence (1.4.1) is exact.



1.5 The fundamental line
For a finite-dimensional vector space V, write det V for its top exterior power. Write L¢(M) = det H*(M) ®
(det H}(M))*.
The fundamental line is defined as
Ap(M)=Ly(M)® L(M*(1)) ® det tpy @ det(M7)*. (1.5.1)

As written, this is just a one-dimensional Q-vector space. The point is that:

e There exists a canonical isomorphism iyr: Ayp(M)r >~ R.

e For every prime p, there exists a canonical measure |- |, on Ay(M)g,. (In other words, there exists a
canonical Z,-lattice inside Ay(M)q,.)

The first isomorphism follows immediately from the exact sequence (1.3.1) and the definition of the Deligne
period map. The second assertion follows from Galois cohomology computations and p-adic Hodge theory,
see [FPR94, §I1.4] for details.

1.6 Statement of the Bloch-Kato conjecture

Let M be an object of M. To state the conjectures that follow, assume that M has an L-function (Definition
1.3.).

Conjecture 1.14 (Weak Bloch-Kato). For every object M of M, the order of vanishing of L(M,s) at s =0
equals dim H} (M*(1)) — dim HO(M*(1)).

Write L*(M,0) for the leading term of L(M,s) at s = 0.

Conjecture 1.15 (Beilinson-Deligne). There exists (a necessarily unique) d;(M) € Ap(M) such that

Conjecture 1.16 (The Bloch-Kato conjecture). Conjecture 1.15 holds and moreover |6;(M) ® 1|, =1 for
all p.

Remark 1.17. The Bloch-Kato conjecture determines the real number L*(M,0) up to sign, which can be
easily determined. Indeed, let vy = ords—oL(M,s). Then ry;y = 0 for i > 0 large enough and the sign of
L*(M,0) is given by (—1)2i>0 ™M@,

Remark 1.18. The formulation of the Bloch-Kato conjecture given here differs from the original one given
in [BK90|, which puts an emphasis on Tamagawa numbers. The connection between the two is discussed in

[Fon92, §11].

1.7 The f-closed case

There is a special class of mixed motives for which the conjecture is easy to state.

Definition 1.19. We say an object M of M is f-closed if H}y(M) = H}(M*(1)) = 0.



Definition 1.20. Define the equivalence relation ~ (called f-equivalence) on (isomorphism classes of ) the
objects of M as the equivalence relation generated by:

1. If N is an extension of M by Q defining an element of H}(M), then M ~¢ N.
2. If M ~5 N, then M*(1) ~y N*(1).

Assuming a functional equation between L(M,s) and L(M*(1),—s), the conjectures for M of §1.6 are true
if and only if they hold for any object f-equivalent to M. It turns out that every element of M is f-
equivalent to an f-closed motive M which even satisfies HY(M) = H°(M*(1)) = 0 (an explicit recipe is given
in [Sch94, §7.8]). In that case, the fundamental line is trivial and Conjectures 1.14 and 1.15 reduce to:

L(M,0) # 0 and L(M,0)/ct (M) € Q.

Here ¢t (M) is the determinant of the Deligne period map when Q-bases of M7, and Myr/F° are chosen.

Therefore, in principle, it is enough to consider the f-closed case.

Example 1.21. Let E/Q be an elliptic curve of rank zero with finite Tate-Shafarevich group. Let M =
HY(E)(1). Then (MA)r — (Mar/F°)r is an isomorphism between one-dimensional vector spaces, and
choosing suitable Q-generators is given by 1 — Qp = fE(R)w, where w s a holomorphic differential. It

follows that the Beilinson-Deligne conjecture in this case asserts that L(M,0)/Qp € Q*.

Example 1.22. Let M be the Artin motive associated to the one-dimensional Galois representation Gg —
{£1} which cuts out the extension Q(i)/Q. It corresponds to the unique nontrivial Dirichlet character
X: (Z/AZ)* — {£1}. One can check that M(1) is f-closed and Hy(M(1)) = H}(M*) = 0. Therefore
L(x,1) is a nonzero rational multiple of ¢t (M) = m. Indeed:

1—1/3+1/5—1/7+---=£

Remark 1.23. We say M is critical if apyr is an isomorphism. If M is f-closed and H°(M) = HO(M*(1)) =
0, then M 1is critical. Therefore the above remarks are very much related to the conjectures made by Deligne
in the critical case.

2 The pure case

If M is an object of M, its weights are those integers n such that Gr}Y M # 0.
Lemma 2.1. 1. HY(M) =0 if 0 is not a weight of M.

2. Hy(M) = 0 if all weights are > —1.

3. HO(M*(1)) = 0 if —2 is not a weight of M.

4. Hp(M*(1)) = 0 if all weights are < —1.

Proof. We only need to show the first two, which follow from the assumption that the p-adic regulator map
is an isomorphism and the corresponding properties of Bloch-Kato Selmer groups. O



Assume now that M is pure of weight w, of the form H?(X)(n) for some smooth projective variety X/Q and
w = i — 2n. Then the conjecture can be simplified according to different values of w. Since it is expected
that there exists a functional equation relating L(M, s) and L(M*(1), —s) and we know (by Poincaré duality
and hard Lefschetz) that M*(1) ~ M (w + 1), we will only consider the case w < —1. See [Nek94, §6] for the
same case distinction but where the conjectures are formulated in terms of motivic cohomology.

2.1 Weight < -3

Lemma 2.1 implies that H?(M) = H(M*(1)) = H}(M*(1)) = 0. It follows that the fundamental line is
given by

Af(M) = det Hy(M)* @ det ty ® det(M)x
The Beilinson regulator vy : H}(M) — coker aps and the Deligne period map ay: (M7)r = (Mar/FO)r

combine to give an isomorphism Af(M)r ~ R. The weak Bloch-Kato conjecture predicts that L(M,0) # 0,
and the Beilinson-Deligne conjecture predicts that L(M,0) € (regulator)(period)Q.

It is expected that H}(M) o~ Hﬂ}Z(X,Q(n)) (the integral part of motivic cohomology), cokerays =~

Hg‘ (X /s R(n)) (Deligne cohomology defined over R) and the map vys corresponds to the Beilinson regu-
lator. Modulo these identifications, we recover Beilinson’s conjecture in weight < —3.

2.2 Near central point: weight —2

Lemma 2.1 implies that HO(M) = H}(M*(1)) = 0, but H’(M*(1)) and H}(M) may be nonzero. Weak
Bloch-Kato predicts that L(M,s) has a pole of order dim H°(M*(1)). The fundamental exact sequence
reduces to

0— H}(M)]R — coker apy — HY(M*(1))5 — 0.

Since w = —2, M = H?""2(X)(n) for some smooth projective variety, it is expected that H°(M*(1))
is isomorphic to (CH" '(X)/CH" " (X)nom~o) ® Q. Assuming this, the weak Bloch-Kato conjecture is
equivalent to the Tate conjecture.

Example 2.2. Let X/Q be a smooth projective surface. Then the Tate conjecture predicts that L(H?*(X), s)
has a pole of order dimg NS(X)q at s = 2.

2.3 Central point: weight —1

This is the only case where both H} (M) and H}(M*(1)) may be nonzero. Lemma 2.1 implies that H(M) =

HO(M*(1)) = 0. Since ayy is injective by weight reasons and M*(1) ~ M, Lemma 1.11 shows that ayy is an
isomorphism. Therefore the fundamental exact sequence reduces to a perfect pairing

Hj(M)g x Hy(M)g — R.

Weak Bloch-Kato predicts that ords—oL(M, s) = dim H}c (M); the Beilinson-Deligne conjecture predicts that
L*(M,0) € (period)(determinant of pairing)Q.

Since w has weight —1, M = H?"™!(X)(n). Moreover H}(M) is expected to be isomorphic to CH" ™ (X) hom~o®
Q. Therefore we recover the generalized Birch-Swinnerton-Dyer conjecture.



3 The case of 1-motives

3.1 Definition of 1-motives

Slogan: A 1-motive is a mixed motive associated to an open semistable curve X/Q.

Slogan: A l-motive is a mixed motive whose Hodge numbers belong to {(0,0), (—1,0), (0,—1),(—1,—-1)}.

Example 3.1. Let X be the curve obtained by identifying the points 1 and t € Q* on Gy, transversally. It
embeds in the curve X, obtained by identifying two points of P* transversally. We have Pic® X ~ Pic® X /([0]—
[00]), and Pic® X ~ G,,. Therefore Pic’ X is the cokernel of the morphism 7 = G,, sending 1 to t.

The previous example motivates the following definition [Del74, §10]:

Definition 3.2. A 1-motive over Q is a morphism X — G of commutative group schemes over Q, where
G is a semi-abelian variety (i.e. an extension of an abelian variety by a torus) and X is a locally constant
group scheme of finite free Z-modules.

In other words, X (Q) is a finite free Z-module equipped with a Gg-action with open kernel, and the morphism

X(Q) — G(Q) is Galois-equivariant. With an obvious definition of morphisms between 1-motives, we obtain
an additive category MM.

Definition 3.3. Let MM;(Q) be the isogeny category of 1-motives: the objects of MM1(Q) are those of
MMy and the morphisms are given by

HomMMl(Q)(MhMg) =0Q® HomMMl(Ml,Mg).

It can be useful to view an object of MM;(Q) as a morphism [X — G], where G/Q is a semi-abelian
variety, X is a finite dimensional Q-vector space with a Gg-action with open kernel and u: X — G(Q) a
Galois equivariant morphism. Just as is the case with abelian varieties, MM;(Q) is a Q-linear abelian
category; however it is not semisimple. It contains the category of abelian varieties and Q-valued Galois

representations.

3.2 Realizations

In [Del74, §10], a realization functor
Real;: MM;1(Q) = C

is described, landing in the subcategory of C of objects of Hodge numbers C {(0,0), (—1,0), (0, 1), (=1, —1)}.
(We follow the convention of using homology, so the weights are < 0.) The part Gr}YReal;(M) for i =
—2,—1,0 depends only on the toric, abelian and discrete part respectively. Let’s briefly describe the different
realizations of M = [X % G).

Betti realization: Consider G(C) as a complex manifold and let Lie(G(C)) — G(C) be the exponential
map. Then Mp is defined as the pullback of this map along u, tensorized with Q. It fits in an exact sequence

0 —)Hl(G(C),Q) — Mp - X — 0.

Etale realization: M, = I'&nM[E"L where M[n] = {(z,9) € X x G | u(z) = ng}/{(nz,u(zx)) | x € X}.
When X = 0, we recover the Tate module of G. When G = 0, we recover X ® Z,.



de Rham realization: Mg is the Lie algebra of the universal vectorial extension of M; we omit the details.

The Tate conjecture for abelian varieties implies:

Proposition 3.4. The functor Realy is fully faithful.

We denote its essential image by M;. It is an abelian subcategory of C containing the unit object Q =
Real; ([Q — 0]) and is stable under M — M*(1).

Proposition 3.5. The category M is f-admissible if and only if for every abelian variety over Q and every
p, the p-primary part of the Tate-Shafarevich group of A is finite.

3.3 Example

We examine what our conjectures say for L-functions of 1-motives. Since we have already discussed the case
of pure motives in the previous section, we consider a mixed example.

Example 3.6. Let p be a prime number and M = Real ([Z 12w, Gm]). This M arises from Example
3.1, and defines an element M € Ext}\/ll(@,(@(l)). It turns out that M is critical and f-closed, and the
Deligne period is logp. We have L(M, s) = ((s)((s+1)(1—p~*), so L(M,0) = —3logp, as predicted by the
Deligne-Beilinson conjecture.
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