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Abstract

We establish the automorphy of some families of 2-dimensional representations of the absolute Galois
group of a totally real field, which do not satisfy the so-called ‘Taylor—Wiles hypothesis’. We apply this
to the problem of the modularity of elliptic curves over totally real ﬁeldsﬂ
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1 Introduction

In this paper, we prove a new automorphy theorem for 2-dimensional Galois representations, and apply
it to the problem of modularity of elliptic curves. We recall that Wiles first proved that all semi-stable
elliptic curves over Q are modular by applying an automorphy lifting theorem to the Galois representations
associated to their 3-adic and 5-adic Tate modules [Wil95]. In order to be able to do this, he first showed that
for a semi-stable elliptic curve over QQ, at least one of the associated mod 3 and mod 5 Galois representations
satisfies a certain non-degeneracy condition (the so-called Taylor-Wiles hypothesis, as discussed below).

More recently, Freitas, Le Hung and Siksek have used similar methods to study the problem of
modularity of elliptic curves over general totally real fields [FLHS|]. By studying certain modular curves,
they show in particular that there are only finitely many non-automorphic elliptic curves over any given
totally real field, which necessarily do not satisfy the Taylor—Wiles hypothesis at the primes 3, 5, and
7. (They then study directly the rational points on these modular curves in order to prove the striking
result that all elliptic curves defined over real quadratic fields are modular.) In this paper, we prove a new
automorphy lifting theorem which does not require the Taylor—Wiles hypothesis to hold, and apply it to
prove the following theorem, which cuts down further the list of possible non-modular elliptic curves:
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Theorem 1.1 (Theorem . Let F be a totally real number field, and let E be an elliptic curve over F.
Suppose that:

1. 5 is not a square in F';
2. and that E has no F-rational 5-isogeny.
Then E s modular.
We deduce Theorem from the following result:

Theorem 1.2 (Theorem. Let F be a totally real number field, let p be a prime, and let @p be an algebraic
closure of Qp. Let p: Gp — GLg (@p) be a continuous representation satisfying the following conditions.

1. The representation p is unramified almost everywhere.

2. For each place v|p of F', p|gy, is de Rham. For each embedding T : F — @p, we have HT(p) = {0,1}.
3. The representation p is totally odd: for each complex conjugation ¢ € Gp, we have det p(c) = —1.
4.

The residual representation p : Gp — GLo(F)) is irreducible, while the restriction Pler,, i a direct
sum of two distinct characters. Moreover, the unique quadratic subfield K/F of F((,) is totally real.

Then p is automorphic: there exists a cuspidal automorphic representation = of GLa(AFr) of weight 2 and
an isomorphism ¢ : Q, — C such that p = r (7).

(For our conventions regarding the Galois representations associated to automorphic forms, we refer
to §2| below. When we say that an elliptic curve E is modular, we mean simply that for any prime p, the 2-
dimensional Galois representation associated to the first étale cohomology group H* (B, @p) is automorphic.
We use the symbol G = Gal(F'/F) to denote to the absolute Galois group of the field F.)

Theorem is new even when F' = QQ, and can be viewed as a special case of the Fontaine-Mazur
conjecture [FM95] which falls outside the cases covered by [Kis09a]. (Note that we need make no hypothesis
of residual automorphy.) In loc. cit., Kisin proves the automorphy of suitable Galois representations under
the assumption that the residual representation p : G — GL2(F,) remains irreducible even after restriction
to Gr(¢,)- This so-called ‘Taylor-Wiles hypothesis’ goes back to the pioneering work of Wiles [Wil95] and
Taylor-Wiles [TW95], and the novelty of the present work is that we can prove a result without making
this assumption. (If 5 is irreducible, but becomes reducible upon restriction to G (¢, ), then it is necessarily
induced from the unique index 2 subgroup of Gr which contains Gp(,). We thus say in this case that p is
residually dihedral.)

Methods. Skinner and Wiles have successfully removed the Taylor—Wiles hypothesis on p in the case where
p is ordinary using Hida’s theory of ordinary automorphic forms, cf. [SW99], [SW0I]. These automorphic
forms fit into positive-dimensional p-adic families. Roughly speaking, by moving in a generic direction over
weight space in these families one can replace p with a residual representation which does satisfy the Taylor—
Wiles hypothesis. Similar techniques have recently been applied by Allen to prove automorphy theorems in
the 2-adic residually dihedral case [All14].

By contrast, the Galois representations that we consider are often (potentially) supersingular, and
a good integral theory of variable weight p-adic automorphic forms is no longer available. We use a tech-
nique which is inspired by works of Khare [Kha03], [Kha04]. In the article [KhaO4], the author proves an
automorphy lifting theorem by first proving an R = T theorem with some additional ramification conditions
imposed. These conditions are not satisfied by p, but they are satisfied by p modulo p™° for some Ny. In
fact, by choosing these conditions carefully, one can force R = W (k) (i.e. the Witt vectors of a finite field)
which immediately implies that R = T. In particular, one shows R = T in this instance without using the
Taylor-Wiles argument. One can then apply Mazur’s principle (cf. [Jar99]) to show that p mod p™¥° appears
in the étale cohomology of a modular curve at a fixed level N, independent of Ny. Taking the limit Ny — oo,
one finds that p itself appears in the étale cohomology of this modular curve, and hence itself is automorphic.



Our method is what one obtains upon re-introducing the Taylor—Wiles argument into Khare’s proof.
The obstruction to applying the Taylor—Wiles argument when p|q,. <) is reducible is the dual Selmer group

of the adjoint representation ad”. This is the group that we will denote H, éT(adO p(1)) below. We first
show that by imposing auxiliary ramification conditions, one can kill off the troublesome part of the dual
Selmer group. These conditions are again satisfied by p mod p™¥° but not by p itself. (More precisely, we
impose a Steinberg-type condition at places v such that ¢, = —1 mod p™°, and p(Frob,) agrees modulo p'Vo
with the image under p of complex conjugation.) This ramification condition has the desired effect on the
dual Selmer group only when ¢ € Gk, where K denotes the field from which p is induced. This is the main
reason for imposing the condition that K is totally real in the statement of Theorem [1.2

Having killed off the dual Selmer group, we can prove an R = T theorem using the techniques of
Taylor, Wiles and Kisin, cf. [Kis09b]. This shows the automorphy of the representation p mod p™o. We
can then use a version of Mazur’s principle to deduce from this the automorphy of the representation p. (In
lowering the level, we also make essential use of an idea of Fujiwara [Fuj].)

Structure of this paper. We now describe the organization of this paper. In §2| below, we describe our
conventions and normalizations. In we prove a slight extension of a result of Boston, Lenstra and Ribet
about 2-dimensional Galois representations that plays an important role in our version of Mazur’s principle.
In §4] we study the cohomology of Shimura curves and their 0-dimensional analogues, and prove a result of
‘automorphy by successive approximation’ (Corollary [4.15)).

In we recall some elements of the deformation theory of Galois representations. We also carry
out our analysis of the dual Selmer groups of the residually dihedral Galois representations described above
and make some remarks about ordinary automorphic forms and Galois representations. (We caution the
reader that we use the word ‘ordinary’ where some authors use ‘nearly ordinary’.) In §6] we prove our R = T
type theorem. Finally, in §7] we combine everything to deduce Theorems [I.1] and [T.2]

2 Notation and normalizations

A base number field F having been fixed, we will also choose algebraic closures F of F and F, of F,
for every finite place v of F. The algebraic closure of R is C. If p is a prime, then we will also write
Sp for the set of places of F' above p, @p for a fixed choice of algebraic closure of Q,, and val, for the
p-adic valuation on @p normalized so that val,(p) = 1. These choices define the absolute Galois groups
Gr = Gal(F/F) and Gp, = Gal(F,/F,). We write Ir, C Gp, for the inertia subgroup. We also fix
embeddings F < F,, extending the canonical embeddings F' < F,. This determines for each place v of F
an embedding Gr, — Gr. We write Ar for the adele ring of F, and A = 1., F, for its finite part. If

vtoo
v is a finite place of F, then we write k(v) for the residue field at v, k(v) for the residue field of F,, and
gy = #k(v). If we need to fix a choice of uniformizer of O, , then we will denote it w,.

If S is a finite set of finite places of F, then we write Fg for the maximal subfield of F' unramified
outside S, and G g = Gal(Fs/F); this group is naturally a quotient of Gr. If v & S is a finite place of F,
then the map G, — GF,s factors through the unramified quotient of G, , and we write Frob, € G, s for the
image of a geometric Frobenius element. We write € : Gp — Z,; for the p-adic cyclotomic character; if v is a
finite place of F, not dividing p, then e(Frob,) = ¢, 1. If p: Gr — GL, (@p) is a continuous representation,
we say that p is de Rham if for each place v|p of F, p|g,, is de Rham. In this case, we can associate to
each embedding 7 : F — @p a multiset HT(p) of Hodge-Tate weights, which depends only on p|g,, , where
v is the place of F' induced by 7. This multiset has n elements, counted with multiplicity. There are two
natural normalizations for HT,(p) which differ by a sign, and we choose the one with HT,(¢) = {—1} for
every choice of 7.

We use geometric conventions for the Galois representations associated to automorphic forms, which
we now describe. First, we use the normalizations of the local and global Artin maps Artp, : F — WI?F
and Artp : Aj — G%b which send uniformizers to geometric Frobenius elements. If v is a finite place
of F, then we write recp, for the local Langlands correspondence for GLy(F, ), normalized as in Henniart
[Hen93] and Harris-Taylor [HT01] by a certain equality of e- and L-factors. We recall that recg, is a bijection



between the set of isomorphism classes of irreducible admissible representations m of GLy(F},) over C and
set of isomorphism classes of 2-dimensional Frobenius—semi-simple Weil-Deligne representations (r, N') over
C. We define recf, (7) = recp, (1 ®| - |=1/2). Then recy, commutes with automorphisms of C, and so makes
sense over any field Q which is abstractly isomorphic to C (e.g. @p).

If v is a finite place of F and x : Wp, — Q% is a character with open kernel, then we write

Sta(x o Artp,) for the inverse image under recgv of the Weil-Deligne representation

(vt (5 5 ))- (21)

If Q = C, then we call Sty = Sto(1) the Steinberg representation; it is the unique generic subquotient of the
normalized induction 32| - [V/2 ® | - |71/2. If (r, N) is any Weil Deligne representation, we write (r, N)F-
for its Frobenius-semi-simplification. If v is a finite place of F and p : Gp, — GL,(Q,) is a continuous
representation, which is de Rham if v|p, then we write WD(p) for the associated Weil-Deligne representation,
which is uniquely determined, up to isomorphism. (If v t p, then the representation WD(p) is defined in
[Tat79, §4.2]. If v|p, then the definition of WD(p) is due to Fontaine, and is defined in e.g. [BM02] §2.2].)
In this paper, the only automorphic representations we consider are cuspidal automorphic repre-
sentations m = @/ m, of GLa(Ap) such that for each v|oo, m, is the lowest discrete series representation of
GL2(R) of trivial central character. (The one exception is in the proof of Lemma [7.3]) In particular, any
such 7 is unitary. We will say that 7 is a cuspidal automorphic representation of GLy(Ar) of weight 2.
If 7 is such a representation, then for every isomorphism ¢ : @p — C, there is a continuous representation

r.(m) : Gr — GL2(Q,) satisfying the following conditions:
1. The representation r, () is de Rham and for each embedding 7 : F — Q,,, HT,(p) = {0, 1}.
2. Let v be a finite place of F. Then WD(r,()|a,, )" = recf, (17 'm,).

3. Let w, denote the central character of 7; it is a character w, : F*\Aj — C* of finite order. Then
detr,(m) = e v (wy 0 Artpt).

For concreteness, we spell out this local-global compatibility at the unramified places. Let v { p be a prime
such that m, = igL"’ X1 ® x2, where x1,x2 : F* — C* are unramified characters and i%LZ again denotes
normalized induction from the upper-triangular Borel subgroup B C GLg. Then the representation r,(7) is
unramified at v, and the characteristic polynomial of v, (m)(Frob,) is (X — ¢'/?x1(w,))(X — ¢"/?x2(w@y)).
If T, S, are the unramified Hecke operators defined in below, and we write t,, s, for their respective

. GLy (O
eigenvalues on 7, 2(Or ”), then we have

(X — ¢'?x1 (@) (X — ¢ %x2(w0)) = X2 — t, X + qus,. (2.2)

With the above notations, the pair (7, w,) is a cuspidal regular algebraic polarized automorphic representa-
tion in the sense of [BLGGT14], and our representation r,(7) coincides with the one defined there. On the
other hand, if o(7) : Gp — GL2(Q,) denotes the representation associated to 7 by Carayol [Car86b], then
there is an isomorphism o () 2 r,(7) ® (1" w, o Artp') 71

We will call a finite extension E/Q), inside @p a coefficient field. A coefficient field F having been
fixed, we will write O or OF for its ring of integers, k or kg for its residue field, and X or Ag for its maximal
ideal. If A is a complete Noetherian local O-algebra with residue field k, then we write my C A for its
maximal ideal, and CNL4 for the category of complete Noetherian local A-algebras with residue field k. We
endow each object R € CNL 4 with its profinite (mpg-adic) topology.

If T is a profinite group and p : I' — GL,, (@p) is a continuous representation, then we can assume
(after a change of basis) that p takes values in GL,(O), for some choice of coefficient field E. The semi-
simplification of the composite representation I' — GL,,(O) — GL, (k) is independent of choices, up to
isomorphism, and we will write p: I' — GL,,(F,) for this semi-simplification.

If E is a coefficient field and p : ' — GLz(k) is a continuous representation, then we write adp
for Endy(p), endowed with its structure of k[I']-module. We write ad”7 C ad 7 for the submodule of trace



0 endomorphisms, and (if I' = Gr) ad’5(1) for its twist by the cyclotomic character. If M is a discrete
Z|Gr]-module (resp. Z[Gp s]-module), then we write H'(F, M) (resp. H'(Fs/F, M)) for the continuous
Galois cohomology group with coefficients in M. Similarly, if M is a discrete Z|Gg,]-module, then we
write H(F,, M) for the continuous Galois cohomology group with coefficients in M. If M is a discrete
k[GFr]-module (resp. k[Gfs]-module, resp. k[Gr,]-module), then H'(F, M) (resp. H'(Fs/F, M), resp.
HY(F,,M)) is a k-vector space, and we write h'(F, M) (resp. h'(Fs/F,M), resp. h'(F,,M)) for the
dimension of this k-vector space, provided that it is finite.

Suppose that a coefficient field F has been fixed. If M is a topological O-module (i.e. an O-
module endowed with a topology making the natural map O x M — M continuous), then we define MV =
Home (M, E/O), the Pontryagin dual of M. If furthermore R is an O-algebra and M is an R-module, then
MY is naturally an R-module: r € R acts by the transpose r¥ € Endp(M").

3 A result on group representations of dimension 2

Let F be a coefficient field, and let A € CNLp. We suppose given a group G and a representation p : G —
Aut4(V), where V' is a free A-module of rank 2, such that p = p ®4 k is absolutely irreducible. We extend
p to an algebra homomorphism p : A[G] = Aut4(V), and write tr : A[G] — A and det : A[G] — A for the
maps obtained by composing p with the usual trace and determinant.

Theorem 3.1. Let W be a finitely generated A-module, and let 0 : G — Auto(W) a representation such
that for all g € G, o(g) satisfies the characteristic polynomial of p(g), i.e. the relation

a(9)* — (trg)o(g) +detg =0 (3.1)

holds in End s (W) for each g € G. Then there exists an A-module Uy and an isomorphism o = p ®4 Uy of
A[G]-modules.

In the case A = k, Theorem is a well-known result of Boston, Lenstra and Ribet [BLRI1]. We
give a proof that follows [BLRII].

Proof of Theorem[3.] Let J C A[G] denote the 2-sided ideal generated by the elements g* — (tr g)g + det g,
g € G, and R = A[G]/J; thus both o and p factor through the quotient A[G] — R. By Morita equivalence,
to prove the theorem it suffices to show that the natural map R — End4 (V) is an isomorphism.

Let % : A[G] — A[G] denote the A-linear anti-involution defined on group elements by g* = g~! det g.
Using the identities gg* = detg and g — (trg)g + detg € J, we deduce that g + ¢g* = trg mod J for all
g € G, hence x + z* = trx mod J for all z € A[G]. This implies that J = J*, and hence * descends to an
anti-involution of R, which we denote by the same symbol.

It follows that z + x* = trzx for all x € R. We now show that zax* = det x for all z € R. Indeed, we
have for any x,y € R, (z+y)(z+y)* = za* +yy* +trzy*, and the same identity holds for the images of x,y
in End4 (V). Consequently, the set {x € R | z2* € A and z2* = det x} is stable under addition. It contains
every A-multiple of an element g € G, so equals the whole of R. In particular, we see that an element x € R
is a unit if and only if detz € A*.

We can now show that the natural map R — Enda(V) is an isomorphism. It is surjective, as
follows from the lemmas of Burnside and Nakayama, so it is enough to show that it is also injective. Choose
an element z € R such that p(z) = 0. Then x = —z*, hence yz = —yz* for all y € R. We also have
zy* +yx* = tray* = 0, hence yr = zy*. Applying this last identity repeatedly, we find that for any y, z € R,
we have yzx = yzz* = x(zy)* = zyz, hence (yz — zy)x = 0. Consequently, Annz = {r € R | re = 0} is a
2-sided ideal of R which contains the set {yz — zy | y, z € R}.

We thus see that the image of Annx in End 4 (V) is non-trivial, and contains all the elements ef — fe
for e, f € End4(V). It follows from Nakayama’s lemma that the image of Annz in End 4 (V') actually equals
End4(V), and hence there exists w € Annx such that p(w) = 1. In particular, w is a unit and wz = 0. This
implies that = 0, and completes the proof. O



4 Shimura curves and Hida varieties

Let F be a totally real number field. We write 71, ..., 74 for the distinct real embeddings of F', and assume
that d is even. In this section, we define Shimura curves and their O-dimensional analogues which, following
[Fuj], we call Hida varieties.

Let @ be a finite set of finite places of F'. We fix for each such @ a choice of quaternion algebra Bg
over F, as follows:

o If #Q is odd, then By is ramified exactly at QU {m,...,74}.
o If #Q is even, then Bg is ramified exactly at Q U {7i,..., 74}

Thus B is uniquely determined, up to isomorphism. We also fix for each such ) a maximal order Og C By
and an isomorphism Og ®o, va(;)oo Op, = vaQoo M5(Op,). We write G for the associated reductive
group over Op; its functor of points is Go(R) = (Og ®o, R)*. We thus obtain for each finite place v & Q
of F an isomorphism Go(OpF,) = GL2(OF,).
Let v be a finite place of F. We define for each n > 1 a sequence of open compact subgroups of
GL2(OF,)
Up(v™) C Uy (v™) C Ut (v™), (4.1)

where:

o Uy(v {( 3 ) mod wﬁ};
e Ui(v { 8 ad_lzl};
e and U} (v {( ) mod w{j}

If n = 1, then we omit it from the notation and write Uy(v) C Uy (v) C Ui (v). By abuse of notation, when
v ¢ @ we will use the same symbols to denote the open compact subgroups of Gg(F,) induced by our
identifications Gg(Op,) = GL2(OF,).

We now fix for the rest of a finite place a of F satisfying ¢, > 4%. In what follows, we will assume
that our sets @) are chosen so that a ¢ (. This being the case, we now single out a convenient class of open
compact subgroups of Gg(A¥). We say that U C Go(AY) is good if it satisfies the following conditions.

N

) mod wy

*
d

e U =1]], U, for open compact subgroups U, C Gg(F,).
e For each v € @, U, is the unique maximal compact subgroup of G(F,).
e We have U, = Ul (a).

We will write Jg for the set of good subgroups U C Gg(A%). (Note that this set depends on the choice of
auxiliary place a, and not just on @Q); since the choice of a is supposed fixed, we omit it from the notation.)

4.1 Hecke operators

We continue with the notation of the previous section. Let () be a finite set of finite places of F', with a € @,
and let U € Jgo. If v is a finite place of F, then we write H(Gq(F,),U,) for the Z-algebra of compactly
supported U,-biinvariant functions f : G(F,) — Z. A basis of this algebra as Z-module is given by the
characteristic functions [U,g,U,] of double cosets, and the identity is the function [U,]. The multiplication
law is given explicitly as follows: if U,g,U, = U;h;U, and U,g,U, = U;h.U,, then [U,g,U,] - [Uyg,Uy] is the
characteristic function of the double coset L;h;h,U,. (This algebra structure is the same as the convolution
algebra structure that results from the choice of Haar measure on G(F,) that gives U, measure 1.)



If M is a smooth Z[Gg(F,)]-module, then MY" is canonically a H(Gq(F,), U,)-module. The action
of the element [U,g,U,] can be given explicitly as follows: write U, g,U, = U;h;U,. Then for any z € MUYv,
UpgoUs) - =", hi - x.

We now define some elements of these algebras that will be of particular interest. If v ¢ @ and
Uy, = GL2(Op,), then we have T,,, S, € H(GL2(F,), GL2(OF,)) = H(Go(F,),U,), where

Wy w, 0

T, = [GL2(OF,) ( 0 (1) ) GL2(OF,)] and S, = [GL2(OF,) ( 0 ) GL2(OF,)],

v

and @, € OF, is a uniformizer. If v ¢ Q, and Ui (v"*) C U, C Up(v™), then we write

UU=[UU< wo )Uv].

It is an abuse of notation to denote elements of different algebras by the same symbol; however, if M is a
smooth Z[Gg(F,)]-module, then the action of U, commutes with all of the inclusions (n > m > 1):

Vo™ AU U™
MUo(@™) MUL@™).

(For the justification of this fact, see [CHTO08|, §3.1].) If v € @, then U, is the unique maximal compact
subgroup of (Bg ®@r F,)* (since U is a good subgroup, by assumption) and we have H(Gg(Fy),U,) =
Z[U,, U, 1], where

UU = [U’U%UU’UL

and @, € Og ®o, OF, is a uniformizer. We note that @, normalizes U,, so the action of U, on M Uo ig
given simply by the action of @,,.
The use of the symbol U, is again an abuse of notation, which is justified by the following lemma.

Lemma 4.1. Let v € Q, let x : F — C* be an unramified character, and let m = Sta(x), an irreducible
admissible representation of GLa(F,). Let JL(m) = xodet denote the 1-dimensional representation of Gg(F)
associated to m by the local Jacquet—Langlands correspondence. Then

rec?, () = (X@x : |_17( 8 (1) ))

The U, -eigenvalues on 770" and JL(7)Yv coincide, and are both equal to the eigenvalue of Frob, on
T (- \N=0

recy, (7) .

Proof. This follows from the definition (2.1)) of St2(x) and a direct calculation: see the proof of [CHTOS,

Lemma 3.1.5] and note that, in the notation there, we have Sta(x) = Spy(x| - |~1/?). O

_ Let 7 be a cuspidal automorphic representation of GLz(AFr) of weight 2. Let p be a prime and let
¢t : Q, — C be an isomorphism, and let v be a place of F' dividing p. For each n > 1, the eigenvalues
1, Ui(w™)

Ty

of the U, operator on ¢~ lie in Zp. We say that 7, is t-ordinary if there exists n > 1 such that

1 n J—
L’lwgl @) # 0 and U, has an eigenvalue on this space which is a p-adic unit, i.e. lies in Z;.

4.2 Hida varieties

We now suppose that #Q) is even. For each U € Jg, there is an associated finite double quotient:

Xo(U) = Go(F)\Gq(AF)/U.



For any g € Go(A%R™), g 1Ug is also a good subgroup, and there is a map:
Xo(U) = Xq(9~'Uy)

induced by right multiplication on G(A$®). This gives rise to a right action of the group Gg(A%™) on the
projective system of sets {Xq(U)}ves,-

Lemma 4.2. Let U € Jg. For each g € Go(AY), we have gGo(F)g~ ' NU C F* C Go(AY).

Proof. We copy the proof of [Jar99, Lemma 12.1]. Let v € Gg(F), u € U, and suppose that gyg~' = w.

We define u(y) = (t(vy)? — 4v(v))/v(y) € F (where ¢,v denote reduced trace and norm, respectively). We
must show that p(y) = 0. Since Go(F ®g R) is compact modulo centre, we have —4 < 7;(u(y)) < 0 for each
i=1,...,d, hence [Np/qu(y)| < 44,

On the other hand, we have U, = U} (a), which implies that u(y) = 0 mod @w2OF,. We then see
that either u(v) =0, or [Np/gu(7)| = ¢a > 4%. The latter possibility leads immediately to a contradiction.
This completes the proof. O

4.3 Shimura curves

We now suppose that #@ is odd. We remind the reader that there are two possible conventions regarding
the definition of canonical models of the Shimura curves associated to the group Gg; the difference between
these is discussed carefully in [CV05l §3.3.1]. In order that we can refer easily to [Car86b], we follow the
convention of Carayol [Car86a], which we now describe. We fix an isomorphism Bg ®@p -, R = My(R), and
write X for the Gq(F ®q R)-conjugacy class of the homomorphism h : S = Resc/r G, — (Resp/g Gg)r
which sends z = = + iy € C* = S(R) to the element

—1 d
r oy
L..1) € [[GoF @pr, R).
<<—y x> ) pale} o(F Orn R)

For each U € Jg, there is an associated topological space:
MqU)(C) = Go(F)\(Ga(AF)/U x X).

According to the theory of Shimura varieties, there exists a canonical projective algebraic curve Mg (U) over
F such that Mqo(U)(C) is its set of complex points (for the embedding 7 : F' < C). There is a natural
right action of the group Gg(A%™) on the projective system {Mq(U)(C)}uey,, given by the system of
isomorphisms
Mq(U)(C) — Mq(g~'Ug)(C).

induced by right multiplication in Go(A%). This extends uniquely to a right action of Go(A%™) on the
projective system {Mq(U)}veyg, of curves over F. For each prime p, we obtain a left action of this group
on the étale cohomology groups: ‘ o

liy H (Mo (U)r, T).

UeJdqg
For each U € Jg and for each isomorphism ¢ : @p — C, we then have (cf. [Car86bl §2]) an explicit
decomposition of H(Gg(A%E™),U") @ Q,|G r]-modules:

H' (Mo(U)7,Q,) 2 @ LY @ (r(r) ® (0 'we 0 Artph)™h), (4.2)
T€AqQ(U)

where Ag(U) denotes the set of cuspidal automorphic representations 7 of GL2(Ag) of weight 2 such that
for each v € Q, 7, is an unramified twist of the Steinberg representation, and JL(7)V # 0. (Here JL denotes
the global Jacquet—-Langlands correspondence.)



4.4 Integral models, case v & ()

Let v # a be a finite place of F, and let @ be a finite > set of finite places of F', not containing v or a, and
of odd cardinality. (The reason for using the notation () is that we want to reserve the notation @ for later
use as the enlarged set Q@ = Q U {v}.)

Theorem 4.3. Let ,J denote the set of good subgroups U =[], Uy C G5(AF) such that U, = GL2(OF,).
Let U € vJg, and let U' = [, U, be the subgroup defined by Uy, = Uy, if w # v and U, = Uy(v). Then the
morphisms

M5(U)F, — Spec F,
M5(U")F, — Spec F,

extend canonically to flat projective morphisms

+Mg(U) — Spec OF,
wMg(U’) — Spec OF,.

Moreover, ;\Mg(U) is smooth over OF,, and ,Mg(U") is regular and semi-stable over OF,, . The actions of the
group Gg(AE"™) on the projective systems {Mg(U)r,}ve,75 and {Mg(U')F,}vre, 75 extend canonically
to actions on the projective systems {,\Mgz(U)}ve, 7, and {Mg(U')}ve,75-

Proof. Let U € ,Jg. The integral models ,Mgz(U) and ,Mg(U’) were constructed by Carayol in the case
that the prime-to-v level U” is sufficiently small [Car86a]. It has been shown by Jarvis [Jar99, Lemma 12.2]
that a model with the desired properties can be constructed for any U € vjé as follows: let V € uJ@ be a
normal subgroup to which Carayol’s construction applies. Then UMQ(U) is the quotient of the action of U
on ,Mz(V), and similarly for ,\Mg(U’). (This uses the fact that U, = Ul(a), in a similar way to Lemma
) To show that ,Mg(U’) is semi-stable over Op,, we must check ([dJ96, 2.16]) that the special fiber
v Q(U ")w(v) is reduced and that its irreducible components intersect transversely. This follows directly from
the results of [Jar99, §10, 12]. O

Let @ = QU{v}andlet U =[], U, € vJg- We now define good subgroups U = [1,UwC G§(A‘;§’)
and U = [[,, Uw C Go(AF) by the following formulae:

o If w # v, then Uw:U;}:Uw.

o If w=w, then UZU = Uy(v) and U,, is the unique maximal compact subgroup of G¢g(F%).

/

). (We recall, cf. that x(v)
is the residue field of the fixed algebraic closure F,.) The special fiber ng(U/)n(v) is reduced, because

We now describe the geometry of the special fiber UMQ(U/)K@) of UMQ(U

vMa(U/) is semi-stable over Op,. If U € vJg, then we write UME(UI),{(U) for the normalization of this

special fiber, and Singé(U ) for the set of singular points of the special fiber.

Proposition 4.4. There is an isomorphism of projective systems of smooth k(v)-schemes with right GQ(A%’”’(’O)-
action

-, _ _
LMG(U)ww)}Te,a5 = 1M (U)ew) U oMag(U)ew toe, 7o
Similarly, there is an isomorphism of projective systems of sets with right GQ(A%”’W)-action
{Singg(U)}ve, gy = {Xe(W}re, 7y

Proof. The first part follows from [Jar99, Theorem 10.2] and [Jar99, Lemma 12.2]. The second part follows

from the determination of the set Singa(U ) in terms of supersingular points; see [Car86al, §11.2]. O



4.5 Integral models, case v € ()

Let v # a be a finite place of F', and let @) be a finite set of finite places of F' with v € Q but a € @, and of
odd cardinality. In this case, integral models of the curves Mg (U) over O, can be constructed using their
uniformization by the v-adic Drinfeld upper half plane, as we now describe.

Let F' denote the completion of the maximal unramified extension of F,, inside F,, and let O denote
its ring of integers. The F,-adic Drinfeld upper half plane is a formal scheme 2 over Spf OF, , formally locally
of finite type, and with connected special fiber. It is equipped with a left action of the group PGLs(F,); see
[BCI1]. We write Qé — Spf O for the base extension to O, and define

M = Q% x [(Bq @r F,)*/(Oq ®or OF,)"]. (4.3)

(As a formal scheme over Spf @, M is thus isomorphic to a countable disjoint union of copies of Qé) Let
Q = Q — {v}. We have already fixed isomorphisms G (A%"O) = GLQ(A%‘X’) and GQ(A%OO) ~ GL, (A%Oo);
we now fix an isomorphism Gq(A3™) = G5(AE™) compatible with these identifications.

The reduced norm gives an isomorphism (Bq ®r F,)* /(O ®o, OF,)* = F)/OF , and we let
Go(Fy) =2 GL2(F,) act on M on the left via its usual action via PGL2(F,) on the first factor, and by the

determinant and this isomorphism on the second factor. We make G (F,) = (Bg ®r F,,)* act on M on the
right via the trivial action on the first factor, and by multiplication on the second factor.

Theorem 4.5. Let U € Jq. (Thus U, = (Oq®o, Or,)*.) Then the morphism Mq(U)r — Spec F extends
canonically to a flat projective morphism ,Mq(U) — O with ;Mq(U) regular and semi-stable over O, and
there is an isomorphism of formal schemes over Spf O:

Mq(U) = Gg(F)\(M x Go(AF™)/U"). (4.4)

(On the left hand side, the hat denotes w,-adic completion.) There is a canonical right Go(A%)-action on
the projective system {,Mq(U)}veyg, of O-schemes, extending the action on {Mq(U)z}ves,, and making
the system of isomorphisms Gq(AR™)-equivariant.

It follows from Lemma that the quotient (4.4)) can be formed in the following naive sense. It is
a finite disjoint union of quotients of the form F\Q%, where I' C G(F) is a subgroup whose image I' in
PGLy(F,) has the following property: the formal scheme Q?o has a covering by Zariski opens €2; such that

for all v € T, if ¥, N Q; # 0, then v = 1. Compare [Thol4, Lemma 3.2].

Proof of Theorem[].5 See [BZ95, Theorem 3.1], and the remark immediately afterwards. We caution the
reader that this reference uses the opposite convention for the definition of the curves Mg(U), cf. the
discussion at the beginning of However, one can easily check using the results of [CV05] §3.3.1] that the
two projective systems of curves over F' with Go(A%)-action become isomorphic over F, so the results of
IBZ95] apply without modification. For this reason, we do not make any assertion about the compatibility of
descent data on either side of the isomorphism . The scheme ,Mg (U) is semi-stable over O because the
formal scheme Q?Q has a reduced special fiber, with irreducible components which intersect transversely. [

We write BT for the Bruhat-Tits tree of the group PGLy(F,); it is an infinite tree with PGLa(F,)-
action, with vertex set BT(0) equal to the set of O, -lattices M C F?2, taken up to F;-multiple. Two
homothety classes [Mp] and [M;] are joined by an edge if and only if we can choose representatives My, M;
such that My C M; and [My : M;] = q,. The irreducible components of the special fiber of Q2 are in
canonical bijection with the set BT(0). Consequently the irreducible components of the special fiber of M
are in bijection with the set BT(0) x GLy(F,)/GLa(F,)°, where GLy(F,)° C GLa(F,) is the open subgroup
consisting of matrices with determinant in Oy, C FX. Moreover, this bijection is GLg(F),)-equivariant.

If U € Jq, we write Irrq(U) for the set of irreducible components of the special fiber ,Mgq(U)(y)-
We write U = [[,, Uy C Gg(AF) for the good subgroup with Uy, =U, if w#vand U, = GLy(OF,).

10



Corollary 4.6. There is an isomorphism of projective systems of sets with right GQ(AL}“’O)-action:

{Irrq(U)}vegy 2 A{X5(U) U Xg(U)}ves,-
Proof. By the above, there is a natural bijection
Irrq(U) = GQ(F)\(BT(O) x GLa(F,)/GLa(Fy)° x Go(AR™)/U").

The group GL2(F),) has two orbits on the set BT(0) x GLo(F,)/GL2(F,)°, representatives being given by
(0%, ,1) and (OF, , diag(w,, 1)). Both of these points have stabilizer GLa(OF, ), so we obtain an isomorphism

It (U) = Go(F)\((GLa(F,)/U.)* x Gg(AE™)/T").

It is easy to see that this system of isomorphisms is GQ(A%”’N)—equivarian‘c, and we therefore recover the
statement of the corollary. O

4.6 Hecke algebras and modules

Let @ be a finite set of finite places of F' not containing a. We now fix a prime p and a coefficient field F for
the rest of and define collections of Hecke algebras and modules for these algebras with O-coefficients.
Let S be a finite set of finite places of F' containing Q. We write TS"™V for the polynomial algebra over O in
the infinitely many indeterminates T}, S,, for all finite places v € S of F'. We write Tg’umv for the polynomial

algebra over T"™V in the indeterminates U,, v € Q. Thus Tg’univ = TSuniv,

Let U € Jp. If #Q is odd, then we define Ho(U) = H*(Mq(U)g, O). If #Q is even, then we
define Ho(U) = H(Xq(U),0). In either case, Ho(U) is a finite free O-module. Let S be a finite set of
places of F', containing @, such that for all v € S, U, = GL2(OF,). Then the Hecke algebra Tg’umv acts on
Hq(U), each Hecke operator T, S, (v ¢ S) or U, (v € Q) acting by the element of the local Hecke algebra
H(Gg(Fy),U,) of the same name.

If #Q is odd, then this action commutes with the action of the group G, and the Eichler-Shimura
relation holds: for all finite places v ¢ SU S, of F, the action of G, is unramified and we have the relation

Frob? —S; 1T, Frob, +¢,S, ! =0 (4.5)

in Endp(Hg(U)). This can be deduced from local-global compatibility and the decomposition (4.2)), but of
course a more geometric version of this statement plays a key role in the proof of ; see [Car86bl 1.6.4].
(Compare also the corresponding relation for the representations r,(7).)

If M is any TS""V-module, then we write T(M) for the image of TS in Endp(M). If M is
a Tg’univ—module, then we define TZ (M) similarly. We note in particular that if U C Go(AF) is a good
subgroup, then (regardless of the parity of @) the algebras T (Hg(U)) and ']I‘g(HQ(U)) are reduced and
O-torsion free.

Let m C T%U"Y be the kernel of a homomorphism T*""Y — k/_ where k'/k is a finite extension. If
m is in the support of Hg(U) for some @ and some U € Jg (equivalently: if the image of m in T (Hq(U)) is
not the unit ideal) then there is an associated semi-simple Galois representation p,, : Gp — GLo (T /m),
uniquely determined up to isomorphism by the following relation: for all v & SUS,, p, |Gy, is unramified, and
P (Frob,,) has characteristic polynomial X2 —T, X +¢,S, € (T /m)[X]. If 5,, is absolutely reducible, we
say that m is Eisenstein; otherwise, we say that m is non-Eisenstein. If m is the kernel of a homomorphism
T%’“mv — k', we say that m is Eisenstein (resp. non-Eisenstein) if m N TU"V is Eisenstein (resp. non-

Eisenstein). In particular, in either case there is a Galois representation p,, valued in GLQ(Té’“niV /m).

Proposition 4.7. Let #Q be odd, and let m C T°(Hg(U)) be a non-Eisenstein mazimal ideal. Then we
can find the following data.

1. A continuous representation pm : Grp — GLo(T%(Hg(U))m) lifting by, and satisfying the following
condition: for each finite place v  SUS, of F, pul|ay, is unramified, and py(Frob,) has characteristic
polynomial

X2 - E}X + stv-
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2. A finite TS(Hg(U))m-module M, together with an isomorphism of T%(Hg(U))m|[Gr]-modules
HQ(U)m = pm ®TS(HQ(U))m (E det pm)il ®TS(HQ(U))!“ M

Proof. The existence of py, follows from a well-known argument of Carayol; see [Car94 §2]. For each
v & SUS,, (pm 181y (U)). (€det pn)~")(Frob,) has characteristic polynomial X? — ST, X 4 ¢,5,".
The second part of the proposition now follows from the Chebotarev density theorem, the Eichler—Shimura

relation (4.5 and Theorem [3.1] O

4.7 Relations between Hecke modules

Let @ be a finite set of finite places of F' not containing a. Let v € @ be prime to p, and define Q = Q — {v}.
If U =], Us € Jg, then we define U =[], Uy, U = IL, U; € Jg by the following formulae.

/
w

o Ifw+#uv,thenU,=U, =U,.

[ ] Uy == GLQ(OFv) and U; = U()(’U).

Let m be a non-Eisenstein maximal ideal of Tg’univ which is in the support of Hg(U), and let m = mﬂ']l‘%”niv.

In this section, we discuss relations between the modules Hq(U) and Hg(U).

Theorem 4.8. Suppose that #Q is even. Then there is an exact sequence of Tg’”m”[GFv]—modules, finite
free as O-modules:

0= Ho(U)m — H~(T )i — H-(T)2 — 0. 4.6
Q Q Q m

The action of Frob, ' on Ho(U)w is equal to the action of U,; the action of U, € Tg’um” on the middle

term in the sequence is by the element of H(GQ(FU),U;) of the same name. Furthermore, for any N > 1
the natural map
— —
Hg(T)ul* ®0 O/AN = (Hg(U)m @0 O/AN)'r

is an isomorphism.

Remark 4.9. Before giving the proof of Theorem we clarify the meaning of the Tg’univ[GFv]-action
on the terms of the exact sequence (4.6). In the course of the proof, we construct an exact sequence of
T%“nlv—modules:

0= Ho(U)w — Hg(U )i — Hg(U)% — 0. (4.7)

So far, we have defined an action of ’]Tg"miv on the first and second terms, and an action of TZ"™V[G |

v

on the second and third terms. The second arrow is G, -equivariant, so there is an induced Gp,-action
on the first term. Similarly, we will show that the first arrow is equivariant for the action of U,, so that
there is an induced action Tg’“mv on the third term, and the sequence || becomes an exact sequence of

Tg’“niv [GF,]-modules. Localizing further at the maximal ideal m, we obtain the desired sequence (4.6]).

Proof of Theorem[{.8 We use the theory of vanishing cycles, following the summary of [Raj0l}, §1]. Let
A =0 or O/AN. Let X — Spec O, be a flat projective curve, with X regular and semi-stable over Op,.
Then X, is reduced; let ¥ denote its set of singular points. We write RWA and R®A for the complexes of
nearby and vanishing cycles, respectively, on X, ,). There are two exact sequences, the specialization exact
sequence:

0 —— H (X0, A)(1) — H'(Xp , A)(1) — > Gren(RIOA) (1) (4.8)

v

- H2(Xm(v)7 A)(l) - H2(Xf,u s A)(l) - 07

12



and the cospecialization exact sequence:

HO(X ), RFA)) HO(X (1), A) (4.9)
e Bpen HY (X (o), RUA) —2= HY(X,.(), RUA) — > HY (X, (1), A) — 0.

0

(Here )?H(U) denotes the normalization of X, ,).) Moreover, there is a commutative diagram:

HY (Xg,, A)(1) —— image B> B,enRIO(A),(1) (4.10)

|» p l%

H'(Xp,, A) <—— coimage ' ~<— @,exH! (X, REA)

(For the definitions of the various arrows here, we refer to [RajO0l §1]. The arrow we have denoted p is
denoted by A in this reference.) Taking A = O, we define the ‘component group’ ® = coker u, a finite
group. There is a short exact sequence (cf. [Raj01, Proposition 4]):

0——=H"(Xyx(v), O/ ANV )——=H' (X5, , O/ AV) Pe ——=B[AN](~1)——0. (4.11)

We now take X = UMa(ﬁ/), which is allowable by Theorem The sequences l) and 1) become
exact sequences of T%univ-modules. Moreover, the only maximal ideals of ']T%univ in the support of the
modules HQ(XR(U), A) and HO()Z'H(U),A) are Eisenstein (cf. [Jar99l §18]) and the operators N, in 1] are

isomorphisms of free A-modules (as X is regular, cf. [RajoI], §1.1]). In particular, the component group ®
vanishes after localization at m and the natural maps

H (,Mg(U) (), O)iw ®0 O/AY — HY (MU )y, O/N )i = H (Mg(T ), O/AN)iE

are isomorphisms. This establishes the final assertion in the statement of the theorem.
Let 7 : Xy () = Xyu(v) denote the normalization map; it is an isomorphism away from the subset
¥ C Xy (v)- We consider the sheaf T of free A-modules defined by the short exact sequence:

0 A rer* A T 0. (4.12)

Taking the long exact sequence in cohomology, we obtain:

0—— HO(XK(’U)7 A) — HO(Xn(v)u A) I HO(Xn(v)a T)
(4.13)
0.

— Hl(Xn(v)a A) - Hl()?n(v)a A)

We have H(X (), T) = Ho(U), by Proposition Localizing the exact sequence of ’]T%univ—modules
at the maximal ideal m, we obtain the short exact sequence:

0——=Hq(U)s—=Hg(U' )i — H(U)%—=0. (4.14)
To complete the proof of the theorem, it remains to check that the first arrow in the sequence is
equivariant for the action of U,, and that Frob, ! acts as U, on its image. Having done this, the exact
sequence of the theorem will be obtained by localizing at the maximal ideal m C Tg’umv. (It is possible to
write down explicitly the induced action of U, on the third term of the sequence, but since we won’t need
this we don’t do it. For a similar calculation, see [Rib90, Lemma 1].) This check can be carried out after
inverting p, and the desired result now follows from the calculations of [Car86bl §5-6]. (Strictly speaking
this reference assumes that the set () has at most 1 element, but the results are the same provided that

v Q.) O
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We learned the following theorem from the unpublished work of Fujiwara [Fuj].
Theorem 4.10. Suppose that #Q is odd. Then for any N > 1, there is a map of Tg’“"w-modules
(Ho(U)m @0 O/AN)'P — Hg(U)2, ®0 O/AN,
with kernel contained in the submodule
Ho(U)w @0 O/AN € (Ho(U)m ®o O/AN)!.
The action of F‘rob;1 on this kernel equals the action of U,,.
The action of U, on H*(U)?n will be defined in the proof.
Proof of Theorem[].10. Let F denote the completion of the maximal unramified extension of F, inside F,,

and let O denote 1ts ring of integers. Suppose that f: X — O is a flat projective morphism, with X regular
and semi-stable over O. Then there are exact sequences for A = O or A = O/AN (cf. [Fuj, Lemma 3.8)):

0= HY (X7, A)(=1)1p, = H' (Xp, A) = H' (X5, M) — 0; (4.15)
and (if J denotes the set of irreducible components of X, (,)):

0— H'(X,A) » H' (Xp,A) = [] HO (Y™, A)(-1). (4.16)
YeJ

Indeed, the first exact sequence is part of the Hochschild-Serre spectral sequence for the covering Xf — Xp.

For the second, it suffices to treat the case A = O/AN. For each Y € J, let 7}y be a geometric point of X above
the generic point of Y8, Then there is a canonical isomorphism H' (Spec Frac Ox 7., A) = HO(Y™8, A)(—1).
By the Zariski-Nagata purity theorem [Nag62, Theorem 41.1], a A-torsor T — X extends over X if and
only if it extends over Spec Ox 5, for each Y € J, if and only if its image in H'(Spec Frac Oxm,,A) is
trivial; and if this extension exists, then it is unique. This implies the exactness of .

We apply this with X = ,Mg(U), the regular model of Mg(U) defined in Theorem The
sequences @ and then become exact sequences of T%univ—modules. Moreover, we have

HO (X%, N)m =
(again by [Jar99l §18]) and
II #°(y™#,0) = Hg(U)?
YeJ

(by Corollary . We obtain for any N > 1 a commutative diagram with exact rows:

0 —— H'(,Mq(U), O)x Ho(U)Ee Hy(U)%

la w e

0 —— H'(,Mq(U), 0/ AN ) —— (Hq(U)m ©0 O/AN) ' —— Hg(U)Z ©0 O/AN

Since the operator U, on Hg(U) is induced by an automorphism of ,Mqg(U), this is in fact a diagram of
Tg’umv—modules, where the action of U, on Hg(U)% is defined via the isomorphism [[ . ; H°(Y"8, 0) =

HQ(U)Q. (The exact sequence is functorial in automorphisms of X.) The map of the theorem is
obtained from the bottom row after localizing at the ideal m of this algebra.

To finish the proof of the theorem, we must show that image v C image p, or even that « is surjective.
By the proper base change theorem, we have an isomorphism

H?(,Mq(U),0)w = H* (Mg ((U) (), O)s,

and this group is O-torsion free. This implies that « is surjective. O
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4.8 Level-raising

We now fix a finite set R of finite places of F' of even cardinality, disjoint from S, U{a}, and a good subgroup
U =11, Us € Jr. (We allow the possibility that R may be empty.) We also fix another finite set @ of finite
places of F' satisfying the following conditions.

e QN (SpU{a}UR)=0.
e For each w € @), ¢, Z 1 mod p and U,, = GL2(Op,).
o #() is even.
If J C Q is a subset, then we define a subgroup Uy = [[,, Usw C Grus(AF) by the following formulae.
o Ifw¢J, then Uy, = U,.
o If w e J, then Uy, is the unique maximal compact subgroup of Grus(Fy).

Let S be a finite set of finite places of F' containing S, U R U @ and the places such that U,, # GL2(Op, ).
Let m = my C Tg’univ be a non-Eisenstein maximal ideal which is in the support of Hr(U). Thus p,, is
absolutely irreducible, and for each v € Q, py|cy, is unramified. After enlarging the coefficient field E, we
can assume that for all v € @, the eigenvalues «,, 3, of p,,(Frob,) lie in k. We now make the following

additional assumption:
e For each v € Q, B,/ay = q.

In other words, p,, satisfies the well-known level-raising congruence at the place v. Because of our assumption
g» Z 1 mod p, o, and 3, are distinct. We remark that if ¢, = —1 mod p then the roles of «,, and 3, could be
reversed. This will be the case in applications, and we emphasize that our labeling of «,, and 3, represents
a fixed choice in this case.

Lemma 4.11. For each subset J C Q, let my C T.‘j’“m” be the mazimal ideal generated by my and the
elements U, — ay,, v € J. (This makes sense since A C m.) Then my is in the support of Hruy(Uy).

Proof. Choose an isomorphism ¢ : @p — C. The existence of m implies the existence of a cuspidal automor-
phic representation 7 of GLa(Ap) of weight 2, satisfying the following conditions.

e There is an isomorphism 7, (7) & p,,.

e For each finite place v ¢ R of F, 7¥» # 0. For each v € R, 7, is an unramified twist of the Steinberg
representation.

To prove the lemma, it is enough to show the existence of a cuspidal automorphic representation 7 of
GLy(AFp) of weight 2, satisfying the following conditions.

e There is an isomorphism 7, (7) = pp,.

e For each finite place v ¢ RUJ of F, 7J» # 0. For each place v € RUJ, there is an unramified character
Xv @ FY — C* such that m, & Sta(x,).

e For each v € J, 1 x(w,) is congruent to c,, modulo the maximal ideal of Z,. (Compare Lemma )

Let us say that a cuspidal automorphic representation 7 satisfying these 3 conditions is J-good. We will
prove by induction on #J that there exists a J-good w. More precisely, suppose that #J is even, and let
vg,v1 € Q — J be distinct elements. We will establish the existence of a J U {vg}-good representation my,
and a J U {vg, v1 }-good representation 7.
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We first show that there exists a representation 7y which is J U {vg}-good. Let U} = [[, U}, be
the open compact subgroup of Grus(AF) defined by U}, = Uy, if v # v, and U}, = Up(vo). There is a
natural degeneracy map

7: HRuJ(UJ)gnJ — Hprug(U))m,

1 0
(fi9) = f+ ( 0wy, ) g
The map i is injective, even after tensoring with —®e k; this is the analogue of Thara’s lemma in this context,
cf. [SW99l Lemma 3.26]. The image of 7 is preserved by the operator U,,, which acts on this image by the
matrix of unramified Hecke operators
T’UQ q’Uo Sv()
( 1 0 . (4.18)

Moreover, there are natural perfect pairings (-, )y, and (-, ->U/J on Hruj(Uj)m, and Hpyy(U))m,; writing
i* for the adjoint of ¢ with respect to these pairings, we have (cf. [Tay89, Lemma 2])

v - Qe+l ST,
iYoi= ( T, qv: 1) (4.19)

The determinant of this matrix is (gy, + 1)* — S;.'T7, which is topologically nilpotent on H;(Uj)m,. It
follows that ¢* o4 is not surjective. Since the image of ¢ is saturated, this implies the existence of a cuspidal
automorphic representation my satisfying the first 2 points in the definition of J U {vg}-good, and satisfying
the third point for each v € J. If g,, # —1 mod p, then it is immediate that the third point also holds for
v = vg. We therefore now assume that ¢,, = —1 mod p. After possibly enlarging F, we can assume the
existence of a T‘j’u“iv—eigenvector f € Hrus(Up)m, — XHrus(Ujs)m,-

Let f denote the image of f in Hryus(Us) ®o k, and let g = i(ay.f, —f). Since T,, f = 0, we have
1*g = 0. On the other hand, it follows from the expression that U,,g = o,g. Writing g € image ¢
for an arbitrary lift of g, it follows that (g, )y, € A for all # € image i. Let 7 € O be a uniformizer, and
let h € Hpuy(Us)m, be an element such that (h,z)p, = 7r’1<g,m>U} for all z € image 7. Then g — wh is in
the orthogonal complement of the image of ¢ (in other words, the new subspace of Hruj(U))m,). It follows
from the Deligne-Serre lemma [DS74] Lemma 6.11] that after possibly enlarging E once more, we can find a
Tij?;z}—eigenvector ¢’ in the new subspace with Hecke eigenvalues lifting those of g. The form ¢’ generates
an automorphic representation of Gryj(Ar) whose Jacquet-Langlands image on GLo(Ap) has the desired
properties. This establishes the existence of 7.

We now no longer make any assumption on g, (except for our running assumption in this section
that ¢,, # 1 mod p). The existence of a J U {vg,v1}-good 7 now follows from the argument of [Raj0ll
Theorem 5], applied with p = vp and q = v;. We note that in the context of loc. cit., the set J is empty,
but this plays no role in the proof. The assumption that 5, (Frob,,) is conjugate to the image of a complex
conjugation is also superfluous, as it is used only to ensure that the level-raising congruence is satisfied at
the place vy. O]

Proposition 4.12. With notation as above, we have:
1 < dimy,(Hruo(Ug) ®o k)[mg] < 47€ dimy, (Hg(Up) ®o k)[my).

Proof. The lower bound follows immediately from Lemma [I.11] applied with J = Q. We now establish the
upper bound. By induction, it suffices to establish the following claim. Let J C @) be a non-empty subset,
veJ,and J =J — {v}. Then we have:

dimg (Hrus(Us) @0 k)[m;] < 4dimg,(Hg 7(U7) ®@o k)[m7].

We prove the claim, splitting into cases according to the parity of #.J. We suppose first that #.J is odd.
Then there exists, by Theorem an exact sequence

0— (HRuj(UJ)mJ KXo k)[mJ] — (HRuj(Ulj)mJ XRo k)IF” [mJ] — (HRuj(Uj)?nJ Ko k)[mj], (4.20)
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where UZ = [[,, U7 = satisfies U2 = Us , unless w = v, in which case U2 = Up(v). By Theorem (3.1 and
the Eichler-Shimura relation (4.5) (cf. Proposition , (Hp 7(US)m, ®o k)[m,] is isomorphic to a direct

sum of copies of p, ® (edetp,)~! as k[Gp]-module. Since py|a,, is unramified, we can rewrite (4.20) as
follows, replacing the third term by a possibly larger k[G g]-module:

0= (Hrus (Us)m, @0 k)[my] = (Hp 7(U5)m, @0 k)[my] = (Hp,7(U7)n, @o k)[m7], (4.21)

where Frob, ! acts as the scalar «, on the first term. Comparing the dimensions of the eigenspaces of Frob, !
in the terms of the exact sequence (4.21]), we obtain

dimy,(Hprus (Ug)m, ®0 k)[my] < dimg(Hp 7 (U5 m, @ k)[m]Frebs =o

= dimy (H 5 (U5, ®0 k)[my]Frobs =a o

S dlmk(HRUj(Uj)gn7 Ko k,) [mj] Frob;lzqglay
1.

= 5 dimg(Hp 5 (U7, ©o k)lm;]

= dimy (H g 7(U7)m; ®o k)[m7],

which proves the claim in this case.
We now suppose that #.J is even. By Theorem there is a map

(Hrug(Us)m, @0 k)™ [my] = (Hgp 3(U7)m, ®o k)*[my], (4.22)

with kernel contained in the submodule

(HRUJ(UJ);Ff @0 k)[my] € (Hrus(Us)m, ®o k)7 [my],

on which Frob, ! acts by the scalar U, mod m; = a,. By assumption, PmlGp, is unramified. By Theorem
we thus have
(Hrus(Us)m, @0 k)™ [ms] = (Hrus(Us)m, ®o k)[m,].

We see that the g; v, -eigenspace of Frob, ! in (Hpys(Us)m, ®ok)[ms] injects into (H z 7(U5)m, @ok)?[m],
and thus

This establishes the claim in this case, and completes the proof. O
The method of proof of Lemma easily yields the following variant. We omit the proof.

Lemma 4.13. Let 0 C Sy, let ¢ : @p — C be an isomorphism, and let ™ be a cuspidal automorphic
representation of GLo(Ar) of weight 2 which satisfies the following conditions.

o The residual representation r,(m) is irreducible.

e Ifv € o, then m, is t-ordinary and o) #£0.

o Ifve S, —o, then m, is not t-ordinary and m, is unramified.

If v € R, then m, is an unramified twist of the Steinberg representation.

If v=a, then W([ljll(a) #0.
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o Ifv & S,URU{a} is a finite place of F, then m, is unramified. If v € Q, then the eigenvalues
ay, By € Fy of r.(m)(Froby,) satisfy By /o = qu.

Then there exists a cuspidal automorphic representation © of GLo(Agr) of weight 2 which satisfies the
following conditions.

e There is an isomorphism r,(m) = r (7).
o Ifv € o, then ', is t-ordinary and (m)Vo) £ 0.

e Ifve S, —o, then m, is not t-ordinary and w,, is unramified.

Ifve RUQ, then m, = Sta(xy) for some unramified character x, : F) — C*. Ifv € Q, then
17 Xy (wy) is congruent to o, modulo the mazimal ideal of L.

If v = a, then (W;)Ull(a) # 0.

Ifv ¢ S,URUQU{a} is a finite place of F, then 7, is unramified.

4.9 Level-lowering mod p"

We now fix again a finite set R of finite places of F' of even cardinality, disjoint from S, U {a}, and a good
subgroup U = [[,, Uy € Jg. If Q is any finite set of finite places of F', disjoint from S, U {a} U R, and such
that for each v € Q, U, = GL2(OF, ), then we define a good open compact subgroup Ug = [[, Ug.» € Jrug
by the following conditions.

o If v €Q, then Uy, = U,.
o If v € Q, then Uy, is the unique maximal compact subgroup of G rug(Fy)-

Let S be a finite set of finite places of F, containing S, and such that for all v & S, U, = GL3(OF,). We
suppose given a non-Eisenstein maximal ideal m C TV which is in the support of Hg(U).

Theorem 4.14. Fiz an integer N > 1, and a lifting of p,, to a continuous representation p : Gp —
GL2(O/AN). We assume that p satisfies the following properties:

1. p is unramified outside S.

2. There exists a set Q) as above, of even cardinality, and a homomorphism f : TgUQ (Hruo(Ug)) — OJAN
satisfying:

(a) For each v € Q, q, Z1 mod p.
(b) For every finite place v ¢ SUQ of F, we have f(T,) = tr p(Frob,).
(¢c) Let I =ker f. Then (Hrug(Ug) @0 O/AN)[I] contains a submodule isomorphic to O/A\N.

Then there exists a homomorphism f' : TSYQ(Hg(U)) — O/AN such that for all v ¢ S UQ, we have
f(T,) = tr p(Frob,).

Corollary 4.15. Let p : Gp — GL2(O) be a continuous lifting of p.,, unramified outside S. Suppose
that for every integer N > 1, there exists a set Q as above, of even cardinality, and a homomorphism
I ’H‘ZUQ(HRUQ(U)) — O/AN satisfying:

1. For eachv € Q, q, # 1 mod p.
2. For every finite place v & SUQ of F, we have f(T,) = tr p(Frob,).
3. Let I =ker f. Then (Hrug(Ug) ® O/AN)[I] contains a submodule isomorphic to O /AN .
Then p is automorphic: there exists a cuspidal automorphic representation m of GLa(AFr) of weight 2, and

an isomorphism p ®o Q, = r,().
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Proof of Corollary[{.15, Take N,Q satisfying these conditions. Then the natural map T*Y?(Hg(U)) —
T3 (HRr(U))m is surjective. Indeed, there exists a lifting of p,, to a continuous representation

pm : Grs — GLa(T* (Hg(U))m)

with the property that tr pn,(Frob,) = T, and det py (Frob,) = ¢, S, for all v € S (cf. Proposition . It
follows from the Chebotarev density theorem and a result of Carayol ([Car94, Théoreme 2]) that TS (Hg(U))m
can be generated by the unramified Hecke operators T, v € S U @), which proves the claim.

Applying Theoremto the map f, we obtain a homomorphism f’ : TSYY(Hg(U)) — O/AN with
the property that f'(T},) = tr p(Frob,) mod A\ for all v ¢ S U Q. It follows from the previous paragraph
that this map factors

TSUQ(Hp(U))—2>TS (Hp(U))m—sO AV,

where ay is surjective. Moreover, the map by satisfies the condition by (7T,) = tr p(Frob,) mod AV for all
v ¢ S. Indeed, it satisfies this condition for all v & S U @, by construction. Applying [Car94, Théoreme 1],
we see that by o pm and p mod AV are equivalent, which implies the relation

tr(by © pm)(Frob,) = by (T,) = tr p(Frob,) mod AV

for all v ¢ S. Letting N go to infinity, we obtain a homomorphism by, : T(Hg(U))m — O such that
for all finite places v &€ S of F, boo(Ty,) = tr p(Frob,). It follows that there exists a cuspidal automorphic
representation m of GLa(Afp) of weight 2 such that r,(7) and p have, by the Chebotarev density theorem,
the same character; in particular, they become isomorphic after extending scalars to @p. O

The remainder of this section is devoted to the proof of Theorem By induction, it will suffice
to prove the following result:

Proposition 4.16. Fiz an integer N > 1, and a lifting of p,, to a continuous representation p : Gp —
GL2(O/AN). We assume that p satisfies the following properties:

1. p is unramified outside S.
2. There exists a set @ as above and a homomorphism f : TgUQ(HRUQ(UQ)) — O/AN satisfying:

(a) For each v € Q, q, 1 mod p.
(b) For every finite place v & SUQ of F, we have f(T,) = tr p(Frob,).
(c) Let I =ker f. Then (Hrug(Ug) @ OJAN)[I] contains an O-submodule isomorphic to OJAN.

Choose v € Q, and let @ = Q — {v}. Then there exists a homomorphism f' : T%UQ(HRUQ(UQ)) — O/A\N
such that for all v ¢ QU S, f'(T;,) = tr p(Frob,). Moreover, writing I' = ker f', (Hp 5(Ug) ® O/A\M)[I']

contains an O-submodule isomorphic to OJ\N.

Proof. We first assume that #@Q is even. Let mg C TzUQ’univ denote the pullback of the maximal ideal

(I,\) C ']I‘gUQ (Hrug(Ug)). Taking the exact sequence of Theorem and passing to I-torsion, we obtain
an exact sequence:

0 = (Hrug(UQ)me ®o O/AN)I] = (Hp g(Ug)me ®o O/AN)17[I] = (Hp 5(Ug)n, ®o O/AV)].

By hypothesis, (Hrug(Ug) ®o O/AN)[I] contains an O-submodule isomorphic to O/AN; hence the same is
true of (HRL@(Ué)mQ ®o O/AN)IP (1], By Theorem there is an O/A\"-module Uy and an isomorphism

(Hrug(Ug)mg ®o O/AN)[I] 2 Uy ©o p.

We see that Uy contains an O-submodule isomorphic to O/AY. Since plar, is unramified, we obtain an
inclusion

Pler, © (Hpg(Usmg @0 O/AN )T [1]
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of O[GF,]-modules. We now observe that p,, (Frob,) has 2 distinct eigenvalues, hence the same is true for p.
On the other hand, Frob, ! acts as the scalar f(U,) on (Hrug(Ug) @0 O/AN)[I]. Tt follows that the image
of play, in (Hp 5(Ug)° ®o O/AN)[I] contains an O-submodule isomorphic to O/AN. Writing

T (Hpig(Ug)) = T Y (Hpug(Ug)® ®@o O/AN)(I]) = 0/AN

for the induced homomorphism proves the proposition in this case.
We now assume that #Q is odd. Let mg C ']I‘gUQ’“mV denote the pullback of the maximal ideal
(I,\) C ']I‘ZUQ(HRUQ(UQ)). Taking the morphism of Theorem and passing to I-torsion, we obtain a
TSUQ,univ
Q

morphism of -modules

IFv
(Hrug(Uq) ®0 O/A g [I] = (Hp g (Ug) ®o O/AN)5 (1], (4.23)
with kernel contained in the submodule
(Hru(Ug)'™ @0 O/AN )uy 1] € (Hrug(Ug) ®o O/ AN )us 1], (4.24)

on which Frob, ! acts by f(U,) € O/AN. By hypothesis, (Hrug(Ug) @0 O/AN)[I] contains an O-submodule
isomorphic to O/A\Y. By Theorem m there is an O/AY-module Uy and an isomorphism of ']I‘gUQ[G Fl-
modules:

(Hruo(Ug) ®o O/AY)[I] = Uy @0 p.

Since p,, (Frob,) has 2 distinct eigenvalues, the image of the map (4.23) must contain an O-submodule
isomorphic to O/AN. We now take

f T%UQ(HRUQ(U§)) — T%UQ((HRUQ(UQ)Q ®0 O/ AV ), 1)) = O/AY

to complete the proof of the proposition. O

5 Galois theory

In this section, we recall some of the basics of Galois deformation theory, and make our study of some
residually dihedral Galois representations. Since we want to allow deformations which have variable Hodge—
Tate weights at some places above p and fixed Hodge—Tate weights at others, our definition of a Galois
deformation problem includes the data of an additional coefficient ring (denoted A, below) at places where
ramification is allowed. We begin by making a study of ordinary Galois representations.

5.1 Ordinary Galois representations

Let p be an odd prime, and let K be a finite extension of Q,. Let p : Gx — GLQ(@p) be a de Rham
representation such that for each embedding 7 : K — @p, we have HT.(p) = {0,1}. In this paper, we say
that p is ordinary if it is isomorphic to a representation of the form

L *
p~ ( 0 wge—l ) (51)
where 1,19 : Gg — @; are continuous characters with restriction to inertia of finite order. Otherwise, we

say that p is non-ordinary. The condition of being ordinary depends only on WD(p):

Lemma 5.1. Letp: Gg — GLQ(@p) be a continuous de Rham representation such that for each embedding
7T: K< @p, we have HT-(p) = {0,1}. Then one of the following is true:

e WD(p)f™** is irreducible. In this case, p is non-ordinary.
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e WD(p)f%* is indecomposable. In this case, p is ordinary.

e WD(p)f™* = x1 @ x2 is decomposable; x1,x2 : Wk — @; are smooth characters. Let Frobg € Wi be
a geometric Frobenius element, and assume that val,(x1(Frobg)) < val,(x2(Frobg)). Then

val, (x1(Frobg)) + val,(x2(Frobg)) = [Ko : Q)

and
val,(x1(Frobg)) > 0,

and p is ordinary if and only if equality holds.

Proof. This follows from an easy calculation with filtered (¢, N, Gx)-modules; cf. the proof of [Tholbl
Theorem 2.4]. O

We now fix a totally real field F' and an isomorphism ¢ : @p — C. We recall that if 7 is a cuspidal
automorphic representation of GLy(Ar) of weight 2 and v € S, then we have defined in what it means
for the local component 7, to be t-ordinary.

Lemma 5.2. Let 7 be a cuspidal automorphic representation of GLa(Ap) of weight 2, and let v € S,. Then
exactly one of the following is true.

1. m, is supercuspidal. In this case m, is not t-ordinary.
2. There is a character x : F,} — @; of finite order and an isomorphism
Ty =2 Sta(Lx).

(In this case, 7, is t-ordinary and we have an equivalence

nman ~ (G g ).

with 11, = al1m, = (x 0 Artp")|1,, )

3. There are characters x1,x2 : F,} — @: with open kernel and an isomorphism

~ GL
Ty =1p 2LX1 & Lx2-

Suppose that valy, x1(w,) < val, x2(w,). Then —val,(g,)/2 < val, x1(w,), and 7, is t-ordinary if and
only if equality holds. (If m, is t-ordinary, then we have an equivalence

’I"L(7T)|GFU ~ ( 1161 '11212:71 ) )

with P1] 1, = (x1 0 Art )1, and Polr,, = (x2 0 Artp!)|r,, )

Proof. This follows Lemma and local-global compatibility; see again the proof of [Thol5l Theorem
2.4]. O

Lemma 5.3. Let 7 be a cuspidal automorphic representation of GLo(Ar) of weight 2, and let v € S),.
1. The representation r,(7)|G, is ordinary if and only if 7, is t-ordinary.

2. Suppose that m, is supercuspidal. Let K/F, be a finite extension inside F., such that rech, (m,)|wy is
unramified. Then r,(7)|c, s crystalline and non-ordinary.
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Proof. The first part is an immediate consequence of Lemma [5.1] and Lemma The second part follows
immediately from the observation that if r : Wp, — GL2(Q,) is an irreducible representation with open
kernel, and |y, is unramified, then all of the eigenvalues of r(Froby) have the same p-adic valuation. [

Lemma 5.4. Suppose that [F : Q] is even, and let © be a cuspidal automorphic representation of GLa(AR)
of weight 2. Suppose that for each finite place v € S, of F', either m, is unramified or ¢, =1 mod p and 7, is

an unramified twist of the Steinberg representation, while for every v € Sy, m, s t-ordinary and wif‘)(”) #£0.

Suppose furthermore that () is irreducible and [F((,) : F] > 4. Let o C S, be a (possibly empty) subset.
Then there exists a cuspidal automorphic representation ' of GLa(Ar) of weight 2, satisfying the following
conditions:

~

e There is an isomorphism of residual representations v, (nw') = r, (), and m and ' have the same central
character.

e Ifv € o, then ml, is t-ordinary. If v € S, — o, then 7, is supercuspidal.

e Ifvtpoo is a place of F and m, is unramified, then w. is unramified. If m, is ramified, then 7 is a
ramified principal series representation.

Proof. We omit the proof, which is an easy consequence of the theory of types; cf. [Kis09b, Lemma 3.1.5],
[Gee09, Theorem 1.1] and [CHTO8, Lemma 4.4.1]. The assumptions that r,(7) is irreducible and [F((,) :
F] > 4 are imposed so that one can apply [Jar99, Lemma 12.3] (existence of auxiliary primes where r, ()
satisfies no level-raising congruences, cf. Lemma below). O

5.2 Galois deformation theory

We now establish notation that will remain in effect until the end of §5 Let p be an odd prime, and let
E be a coefficient field. We fix a continuous, absolutely irreducible representation p : Gp — GLa(k) and a
continuous character u : Gp — O which lifts det p. We will assume that k contains the eigenvalues of all
elements in the image of p. We also fix a finite set .S of finite places of F', containing the set S, of places
dividing p, and the places at which p and p are ramified. For each v € S, we fix a ring A, € CNLp and we
define A = ®,cgA,, the completed tensor product being over @. Then A € CNLp.

Let v € S. We write DY : CNL,, — Sets for the functor that associates to R € CNLy, the set of
all continuous homomorphisms 7 : Gr, — GL2(R) such that » mod mgr = p|g,, and detr agrees with the
composite G, — O* — R* given by pu|g, and the structural homomorphism O — R. It is easy to see
that DY is represented by an object RS € CNLy,, .

Definition 5.5. Let v € S. A local deformation problem for plg,., is a subfunctor D, C DY satisfying the
following conditions:

e D, is represented by a quotient R, of RE.
e For all R € CNL,,, a € ker(GLa(R) — GLa(k)) and r € Dy(R), we have ara™" € Dy(R).

We will write plJ : G, — GLy(RY) for the universal lifting. If a quotient R, of RS corresponding
to a local deformation problem D, has been fixed, we will write p, : Gp, — GL2(R,,) for the universal lifting
of type D,,.

Definition 5.6. A global deformation problem is a tuple

§= (ﬁa ey S, {Av}vGSa {D’U}’UGS)a

where:
e The objects p: Gp — GLa(k), u: Gp — k™, S and {A, }ves are as at the beginning of this section.

e For cachv € S, D, is a local deformation problem for plg,. .
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Definition 5.7. Let S = (p, 11,5, { Ay }ves, {Duv}oes) be a global deformation problem. Let R € CNLy, and
let p: Gp — GLa(R) be a continuous lifting of p. We say that p is of type S if it satisfies the following
conditions:

e p is unramified outside S.

e detp = u. More precisely, the homomorphism detp : Gg — R™ agrees with the composite Ggp —
O* — R* induced by p and the structural homomorphism O — R.

e For each v € S, the restriction p|a,, lies in D,(R), where we give R the natural A,-algebra structure
arising from the homomorphism A, — A.

We say that two liftings p1, p2 : G — GLo(R) are strictly equivalent if there exists a matriz a € ker(GLa(R) —
GLz(k)) such that pa = apia='.

It is easy to see that strict equivalence preserves the property of being of type S. We write DE
for the functor CNL)y — Sets which associates to R € CNLy the set of liftings p : Grp — GL2(R) which
are of type S. We write Dg for the functor CNL, — Sets which associates to R € CNL, the set of strict
equivalence classes of liftings of type S.

Definition 5.8. If T' C S and R € CNLy, then we define a T-framed lifting of p to R to be a tuple
(p, {owtver), where p : Ggp — GLa(R) is a lifting and for each v € T, oy, is an element of ker(GLy(R) —
GLa(k)). Two T-framed liftings (p1,{cw tver) and (p2,{Bsver) are said to be strictly equivalent if there is
an element a € ker(GL2(R) — GLa(k)) such that p; = apra™' and B, = aa, for each v € T.

We write Dg for the functor CNLj — Sets which associates to R € CNLy the set of strict equivalence
classes of T-framed liftings (p, {@, }ver) to R such that p is of type S.

Theorem 5.9. Let S = (p, 1, S, {Av }ves, {Du }ves) be a global deformation problem. Then the functors Ds,
DE and Dg are represented by objects Rg, RE and Rg, respectively, of CNLy .

Proof. This is well-known; see [Gou01l Appendix 1] for a proof that Dg is representable. The representability
of the functors DY and DL can be deduced easily from this. O

We will generally write ps : G — GLo(Rs) for a choice of representative of the universal deforma-
tion [ps] of type S.

Let S = (B, 1, S, {Av}ves, {Dv}ves) be a global deformation problem, and for each v € S let
R, € CNL,, denote the representing object of D,,. We write AL = ®uer Ry for the completed tensor product,
taken over O, of the rings R,. The ring AL has a canonical Ar-algebra structure, where Ay = RuerMy; it
is easy to see that Ag represents the functor CNLy, — Sets which associates to a Ar-algebra R the set of
tuples (py)ver, where for each v € T, p, : G, — GLa(R) is a lifting of p|g,, such that p, € D,(R) when
we give R the A,-algebra structure arising from the homomorphism A, - Ar — R.

The natural transformation (p, {ow}ver) — (ay'plG s, @w)ver induces a canonical map AL — RE,
which is a homomorphism of Ar-algebras. We will generally use this construction only when A, = O for
each v € S — T, in which case there is a canonical isomorphism Ar = A.

5.3 Galois cohomology

Let S = (p, 4, S, {As }oes; {Dy }ves) be a global deformation problem. For each v € S, let R, denote the
representing object of D,. There are canonical isomorphisms

Z'(Fy,ad” p) 2 Homy(mpo / (30, ma, ), k) 2 Homent,,, (R, K[d/(e)), (5.2)

where we write Z1(F,,, ad’ p) for the space of continuous 1-coycles ¢ : G, — ad’ p. The isomorphism between
the first and third terms associates to a cocycle ¢ € Z'(F,,ad’p) the classifying homomorphism of the lifting
(1+e€¢)plcy, ; the isomorphism between the third and second terms is given by restriction to mpo. We write
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Ll c Z'(F,,ad’p) for the pre-image of the subspace Homy (mp, /(m3, ,myp, ), k) under the isomorphism
. It follows from the definitions that £ is also the pre-image of a subspace £, C H'(F,,ad’p).

Now let T" C S be a non-empty subset, and suppose that A, = O for each v € S — T. Then there
is a canonical isomorphism A7 = A, and the map AL — R is a morphism of A-algebras. In this case, we
define (following [CHTO8, §2]) a complex C"§7T(ad0 7) by the formula

CO(Fs/F,ad?) i=0

i (ad'p) = 4 CLUES/E ad’ p) Gyer CO(F,,adp) i=1

STWEPI= N C2(Fg/F,ad’p) @pes—r CH(F,,ad’p)/L) i=2
Ci(Fs/F,ad’p) @pes C*(F,,ad’ p) otherwise.

(Here, for example, C*(Fs/F, ad’ p) denotes the usual complex of continuous inhomogeneous cochains
Grs — ad’ P, which calculates the continuous group cohomology of the discrete Z[Gp s|-module ad’ 0
cf. [Ser94, Ch. 1, §2.2].) The boundary map is given by the formula

Cs.r(ad’p) — Ci'p(ad’ p)
(¢a (7/}1))11) = (8¢; (¢|GFU - awv)v)

There is a long exact sequence of cohomology groups

00— HY ;(ad’ p) —— H'(Fs/F,adp) ©oerHO(F,,ad p) (5.3)

—— H} 1(ad’p) — H'(Fs/F,ad’p) — ®per H'(F,,ad" ) ®pes—1 H' (F,,ad’ p)/ Lo
> H§7T(ad0p) —— H*(Fs/F, adoﬁ) @Uest(FU,adoﬁ)

and consequently an equation
xs.r(ad’p) = x(Fs/F,ad’p) = Y x(F,,ad’p) — Y (dim L, —h*(F,,ad’p)) + 1 —#T  (5.4)
veS veS-T

relating the Euler characteristics of these complexes (which are all finite; see [Mil06, Ch. 1, Corollary 2.3]

and [Mil06, Ch. 1, Corollary 4.15]). We also define a group that plays the role of the dual Selmer group in

this setting. Since p is odd, there is a perfect duality of Galois modules
ad’ 7 x ad®B(1) — k(e)

(X,Y) — tr XY. (5:5)

In particular, this induces for each finite place v of F a perfect duality between the groups H*(F,, ad® p) and
HY(F,,ad’5(1)) (by Tate duality; see [Mil06, Ch. 1, Corollary 2.3] again). We write £ ¢ H'(F,,ad’5(1))
for the annihilator under this pairing of £,,, and we define

Hg r(ad”p(1)) = ker <H1(FS/F7 ad’p(1)) » [ H'(F,,ad P(l))//ii) : (5.6)
veS-T

Proposition 5.10. Let S = (p, i, S, {Av }ves, {Dv}ves) be a global deformation problem, and let T C S be
a non-empty subset. Suppose that A, = O for eachv e S —T.

1. The ring RE is a quotient of a power series ring over AL in r variables, where r = h}g)T(adO 7).

2. Ifves, letl, =dimy L,. There is an equality

hsp(ad’p) = hs r(ad’p(1)+ D (by — hO(F,y,ad’ p)) —hO(F,ad’ p(1)) =Y h(F,,ad’ p) —1+#T.
veS-T v|oo
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Proof. The global analogue of (5.2)) is the chain of isomorphisms
Hé’T(adO D) = Homk(ng/(m%g, mAg), k) = Homeny, (Rg/(mAg), kle]/(€2)). (5.7)

We explain the isomorphism between the first and third terms. A T-framed lifting of 5 to k[e]/(€?) can be
written in the form ((1+ €¢)p, (1 + €ay)ver), With ¢ € Z'(Fs/F,ad’5). The condition that it be of type S
is equivalent to the condition @|g,, € L} for v € S. The condition that it give the trivial lifting at v € T is
equivalent to the condition

(1 - eav)(l + 6¢|GF1, )5|GFU (1 + EOév) = ﬁ|GFv .
Two pairs ((1 + €9)p, (1 + e, )ver) and ((1 + €d')p, (1 + €8y)ver) give rise to strictly equivalent T-framed
liftings if and only if there exists b € ad® p satisfying
¢ (0) = ¢(0) + (1 —ad" B(e))0,
By =0y + b
for each ¢ € G, v € T. This is exactly the equivalence relation imposed on cocycles in the definition of

the group Hé’T(adO D), and this proves the first part of the proposition. For the second part, we recall that

H'(Fs/F,ad"p) = 0 if i > 3 (by [Mil06, Ch. 1, Theorem 4.10], and since p is odd), while Tate’s local and
global Euler characteristic formulae (see [Mil06, Ch. 1, Theorem 2.8] and [Mil06, Ch. 1, Theorem 5.1],
respectively) give

> x(F,,ad’p) = —3[F : Q)

veES
X(Fs/F,ad’p) = > h°(F,,ad’p) —3[F : Q)
v|oco
hence
xsr(ad’p) =D h(Fy,ad’p) = > (L= hO(Fy,ad"p) +1 - #T (5.8)
v|oo veES-T

(use (5.4)). We now observe that there are exact sequences

H'(Fs/F,ad’ p) — @per H' (F,,ad’ p) @yes—r H' (Fy,ad’5)/L,
— H2 ;(ad’ p) —— H?(Fs/F,ad’p) GuesH(F,,ad" p)

—— H} ;(ad”p) ——— 0
and
H'(Fs/F,ad’ p) — @yerH' (F,,ad’ p) @yes—r H' (F,,ad’ p)/L,
—— H ;(ad’ p(1))Y ——— H*(Fs/F,adp) BvesH2(F,,ad" p)
— HO(Fs/F,ad’5(1))V 0.

(The first sequence is part of (5.3]), while the second is part of the Poitou-Tate exact sequence (see [Mil06,
Ch. 1, Theorem 4.10]).) Comparing these two exact sequences, we obtain

h?s,T(adO p) = hgls,T(adO p(1)),
h% r(ad’ p) = h°(Fs/F,ad" p(1)),

and so (5.8) gives
hsr(ad’p) = by p(ad® p(1)) — B (Fs/F,ad’ p(1)) = Y B (Fy,ad’ D)+ Y (by — hO(Fy,ad’p)) — 1 + #T

v|oo veS-T

(we have h%)T(adO p) = 0, since T is assumed to be non-empty). Re-arranging this equation completes the
proof. O
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Corollary 5.11. Suppose further that F is totally real, p is totally odd, [F((p) : F)] > 2, and R, is formally
smooth over O of dimension J for each v € S —T. Then RL is a quotient of a power series ring over AL in
h}s)T(adO p(1)) = [F: Q] — 1 4+ #T variables.

Proof. 1f [F(¢,) : F] > 2, then h%(Fs/F,ad”5(1)) = 0. If R, is formally smooth over O of dimension 4,
then we have £, — h°(F,,ad"p) = ¢} —3 = dim R, — 4 = 0. If F is totally real and 7 is totally odd, then
2o hO(F,,ad’5) = [F : Q]. The result now follows immediately from Proposition W O

5.4 Local deformation problems

We continue with the notation of and now define some local deformation problems. The following
lemma is often useful.

Lemma 5.12. Let R, € CNLp, be a quotient of RE satisfying the following conditions:
1. The ring R, is reduced, and not isomorphic to k.

2. Let r : Gp, — GLa(R,) denote the specialization of the universal lifting, and let a € ker(GL2(R,) —
GLy(k)). Then the homomorphism RS — R, associated to the representation ara™' by universality
factors through the canonical projection RE — R,.

Then the subfunctor of DU‘:' defined by R, is a local deformation problem.
Proof. The proof is essentially the same as the proof of [BLGHT11, Lemma 3.2]. O

5.4.1 Ordinary deformations

Let v € Sp, and suppose that 5|g r, 18 trivial. We assume that E contains the image of all embeddings F, —
Q,. We write O (p) = ker(Op — k(v)*), the maximal pro-p subgroup of O} , and set A, = O[O} (p)].
We write n"™iV : (’);u (p) — A} for the universal character. We also write I %E(p) for the maximal pro-p
subgroup of the inertia subgroup of the Galois group of the maximal abelian extension of F),; then Artp,
restricts to an isomorphism O (p) = I3"(p). We now define a deformation problem D™ in terms of its
corresponding local lifting ring R9™. The rings we consider were first defined by Geraghty [Ger] for liftings
valued in GL,; we follow here the presentation of Allen [All14] for liftings valued in GLo.

We define £ as the closed subscheme of P}{D whose R-points, R an RE-algebra, consist of a free

A-direct summand L C A? of rank 1 on which I3"(p) acts by the character 7" o Art;:. We define R to
be the maximal reduced, O-torsion free quotient of the image of the map RE — HY(L,0p).

Proposition 5.13. The ring R2™ defines a local deformation problem. For each minimal prime Q, C A,
Ro™/Q, is geometrically irreducible of dimension 4+2[F, : Q,], and its generic point is of characteristic 0. If

ord ;

T RE — Q,, is a homomorphism, then x factors through Ry™ if and only if p, = asopgI is GLo (Zp)—conjugate

to a representation
1 ox
p.’IJ ( 0 ,(/}2 )

Proof. The fact that R is a local deformation problem follows easily from its definition and Lemma m
The other assertions follow from [AIl14] Proposition 1.4.4] and [All14] Proposition 1.4.12]. O

where 11 |I;‘bl (p) =TO N o Art;j.

We define D' to be the local deformation problem represented by Ro™.
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5.4.2 Crystalline non-ordinary deformations

Let v € S, and suppose that p|g,, is trivial. Let A, = O.

Proposition 5.14. There is a reduced, O-torsion free quotient R™™°™ of R satisfying the following
property: for any coefficient field L/E and any homomorphism x : RE — L, z factors through R7°™°d
if and only if x o pE is crystalline of Hodge-Tate weights HT, = {0,1} and non-ordinary, in the sense of
45.1L Moreover, if RM™°™ £ 0 then R'™°™ defines a local deformation problem and R"™°" is integral
of dimension 4+ [F, : Q).

Proof. See [Kis09bl Corollary 2.5.16] and [Gee06l, Proposition 2.3]. O

In the case that R2e™ord o£ (0 we define D™ to be the local deformation problem represented
by Rgon-ord.

5.4.3 Special deformations, case ¢, =1 mod p

Let v € S — S, and suppose that g, = 1 mod p and p|g,, is trivial. Let A, = O.

Proposition 5.15. There is a reduced, O-torsion free quotient th of RUD satisfying the following property:
for any homomorphism = : RY — L, © factors through RSt if and only if x o p5) is GLy(OL)-conjugate to a

representation of the form
O X *
X o pv ~ ( O Xe_l > )

where x : Gp, — L* is an unramified character. Moreover, RS defines a local deformation problem and R3*
is integral of dimension 4.

Proof. See [Kis09bl Proposition 2.6.6]. O

5.4.4 Special deformations, case ¢, = —1 mod p

Let v € S — S, and suppose that ¢, = —1 mod p and that p|g,, is unramified, and that p(Frob,) takes two
distinct eigenvalues «,, 3, € k such that a, /8, = —1. Let A, = O. We now define directly a subfunctor
DIt of DY, Let R € CNLp, and let 7 : Gf, — GLa(R) be an element of DY(R). Let ¢, € Gr, be a choice
of geometric Frobenius element. By Hensel’s lemma, r(¢,) has characteristic polynomial (X — A,)(X — B,),
where the elements A, B, € R* lift «,, 5,. We say that r € Dst(a”)(R) if B, = ¢, A, and Ip, acts trivially
on (r(¢y) — B,)R?, a direct summand R-submodule of R?. This condition is independent of the choice of

Po-

Proposition 5.16. The functor D?,t(“v) s a local deformation problem. The representing object Rqs,t
formally smooth over O of dimension 4.

() 18

We omit the easy proof.

5.5 The existence of auxiliary primes

We continue with the notation of and now consider representations p : Gp — GLa(k) of a particular
special form. We assume that F' is totally real, and that p is totally odd, i.e. u(c) = —1 for every choice of
complex conjugation ¢ € Gp. We write ¢, € F for a P root of unity, K for the unique quadratic subfield
of F(¢,)/F, and w € G for a fixed choice of element with non-trivial image in Gal(K/F). We fix a choice
¢ € G of complex conjugation.

We also assume that the field K is totally real and that ﬁ\GF< o) is a direct sum of 2 distinct
characters. (We recall that one of our running assumptions is that 7 itself is absolutely irreducible.) The
assumption that K is totally real is equivalent to the assumption that 4 divides [F((p) : F]. In particular,
we see that p = 1 mod 4.
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It then follows from Clifford theory that p = Indgi X, for some continuous character ¥ : Gx — k*.
Let ¥ = X/x". By hypothesis, 7 is non-trivial, even after restriction to G F(¢,)- We have the following
elementary observation.

Lemma 5.17. We have ad® p = k(or/r) @Indgf( 75, where 0k : Gal(K/F) — k* is the unique non-trivial
character.

We write Mo = k(dx/rp) and M; = Indgf( 7, so that ad’p = My & M;. We can assume, after
conjugating, that p has the following form:

o) = (X ) ) ito €6

X" (o
s = (7 X6 ).

After possibly reversing the roles of y and X, we can assume as well that Y(¢) = 1. Having fixed this form
for p, we fix the following standard basis of ad® 7

e (8 )= 5)r-(00)

Then Mj is spanned by H and M is spanned by the vectors E, F. We observe that under the natural perfect
pairing ad’ 7 x ad® (1) — k(e), the spaces My and M (1) are mutual annihilators; similarly, the spaces M
and My(1) are mutual annihilators.

Lemma 5.18. Let v1p be a finite place of F, and suppose that the local deformation problem D, = Dls,t(a"’)

is defined.
1. The subspace L, C H'(F,,ad’p) respects the decomposition ad’ p = My & M, ; that is, we have

L, = (L,NH(F,,My)) ® (L, N H'(F,, My)) C H'(F,, M) ® H'(F,, M) = H'(F,,ad’p).

2. Similarly, the subspace L C H*(F,,ad" 5(1)) respects the decomposition ad’ p(1) = My(1) ® M;(1).

Proof. The second part is the dual of the first part. We prove the first part. Our assumption that the local
deformation problem D, = D5 5 defined means that ¢y = —1 mod p, plg, is unramified, and p(Frob,)
has distinct eigenvalues «,,, 8, with «,/8, = —1. Since K is assumed to be totally real, the assumption
¢y = —1 mod p implies that v splits in K. We thus have My = k, My = k(e) ® k(e) as k[Gp,]-modules; note
that e = ¢! in this case. The subspace £, C H'(F,,ad"5) is 1-dimensional, and lies in H'(F,, M}), being
spanned by either H(F,,k(e)) ® E or H'(F,, k(¢)) ® F. This implies the result. O

Remark 5.19. This lemma is false without the assumption that K is totally real. This is the main reason
for making this assumption.
Let S = (p, 11, S, {Av }ves; {Dy tves) be a global deformation problem, and let T C S be a subset

containing all the places above p. Suppose that for each v € S\ T, D, = Dls)t(a'”). The lemma then implies

that we can decompose

Hg 7(ad’ (1)) = ker <H1(F5/F, ad’p(1)) — [[ H'(F,ad’ P(U)/&f) = Hg r(Mo(1)) ® Hg 7(M(1)),
veS-T

where by definition
Hg p(Mo(1)) = H 7(ad” p(1)) N H' (Fs /F, Mo(1))

and
H ¢ (Mi(1)) = Hg 1 (ad’ p(1)) N H' (Fs/F, My (1)).

We define b (Mo(1)) and hg (M (1)) accordingly.
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Proposition 5.20. Let S = (p, i1, S, {Ay }ves, {Dv }ves) be a global deformation problem, and let T = S. Let
No > 1 be an integer. Let p: Grp — GLy(O) be a lifting of type S. Then for any integer q > hgﬁT(Ml(l)),
there exists a set Qg of primes, disjoint from S, and elements o, € k™, satisfying the following conditions:

1. #Qo =q.
St(ay)

2. For each v € Qy, the local deformation problem Dy is defined. We define the augmented deforma-
tion problem

SQ() = (ﬁ7 M, Su Q07 {A'U}UGS U {O}UEQoa {D’U}’UES U {Dzs;t(av)}ver)~

3. Let pn, = p mod ANo : G — GLa(O/ANO). Then py,(c) = pn,(Frob,) for each v € Qq, at least up
to conjugacy in the image of pn, -

4. We have HéQO,T(Ml(l)) =0.
Before giving the proof of the proposition, we prove some lemmas.

Lemma 5.21. Let T’ be a group, and o : I' — k™ a character. Let k' C k be the subfield generated by
the values of a.. Then k'(a) is a simple Fp[I']-module. If 5 : T' — k* is another character, then k'(a) is
isomorphic to a Fy[I'|-submodule of k(B) if and only if there is an automorphism F of k such that § = Foa.

Proof. Since the image of « is cyclic, we can find x € T such that ¥’ = F,(a(z)). It follows that k'(«) is
generated as a Fy[I'-module by any non-zero element. If there is a non-zero homomorphism k'(a) — k(3)
then the same argument shows that we get an embedding I : k¥’ — k such that 8 = F o a. O

Lemma 5.22. With notation and assumptions as above, the F,[G|-module k() has no Jordan-Hélder
factors in common with the modules k, k(3) or k(7). The characters 5 and €5 are non-trivial.

Proof. Since K is real, the character €7 is totally even, while the characters 7 and 7! are totally odd. This
rules out a non-trivial morphism of F,[Gx]-modules between k(¢¥) and k() or k(77 '). The characters ¥
and €y are non-trivial since we have assumed that 7 remains non-trivial even after restriction to Gp(c,). U

Lemma 5.23. Let p : Gr — GLy(O) be a lifting of type S. Let N > 1 be an integer, and let py =
pmod \N. Let Ky = F((n,pn), i.e. Ky is the splitting field of the representation PNIGre - Then

)
HY(Gal(Ky/F), Mi(1)) = 0.
Proof. We have, by Shapiro’s lemma and inflation-restriction:
HY(Gal(Kn/F), M;(1)) = H'(Gal(Kx/K), k(7)) = H (Gal(Kx /K1), k).

(The superscript in the last term indicates the subspace where the group Gal(K;/K) acts by the character
€y.) Let k' C k denote the subfield generated by the values of 5. It suffices to show that

HY(Gal(Kn /K1), k) =0.

We first show that H'(Gal(K;((,n~)/K1), k)7 = 0. Indeed, an element of this group is represented
by a homomorphism f : Gal(Ki((,~)/K1) — k' such that for all 2 € Gk, y € Gal(K1(¢n)/K1),
f(zyz™") = ey(z)f(y). The conjugation action of Gk on the group Gal(Ki((,~)/K1) is trivial, so any
such homomorphism must be zero.

It therefore suffices to show that H'(Gal(Ky/K1(¢,~)), k') = 0. An element of this group is again
represented by a homomorphism f : Gal(Ky/K1((,~)) — k' transforming according to the character ey
under conjugation by Gg. Let f be such a homomorphism, and suppose that f is non-zero; then f factors
through an abelian quotient Hy of Gal(Kx/K1((,~)), invariant under conjugation by Gg, and f induces
an isomorphism Hy = k’(e7) of simple Fy[G k|-modules.

On the other hand, py induces an injection Gal(K /K1 ((n)) < 1+Ma(A/AY), which is equivariant
for the conjugation action of G'x. There exists a decreasing filtration Fy C 1+ My(A/AY) by G g-invariant
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normal subgroups, such that each F;/F;;; is an abelian group, isomorphic to one of k, k() or k(') as
F,[Gk]-modules. Pulling this filtration back via py to the group Gal(Ky/Ki((,~)), we find that Hy is
isomorphic to a submodule of one of these F,[Gk]-modules. The desired vanishing statement will therefore
follow from the claim that neither k, k() nor k(') contains a non-zero F,[Gk]-submodule isomorphic to
k' (€7). This follows immediately from Lemma and Lemma O

We now come to the proof of Proposition [5.20

Proof of Proposition[5.20. We wish to find a set Qo of auxiliary primes such that h}SQO,T(Ml(l)) = 0.
Suppose r = h}gﬁT(Ml(l)) > 0. By induction, it is enough to find a single auxiliary place v, satisfying the
conditions of the proposition, such that hé{,U%T(Ml(l)) = max(r — 1,0). The case r = 0 is easy, so let us
assume r > 1.

Let ¢ be a cocycle representing a non-trivial element of HS (M7 (1)). It will suffice for our purposes
to find a place v € S satisfying the following conditions: l

e We have pp, (Frob,) = pn,(c), up to G g-conjugacy.

e We have g, = —1 mod p™o.

e The image of  in H!(F,, M;(1)) is non-trivial.
Indeed, the first two conditions imply (at least, up to conjugacy) that p(Frob,) = diag(l,—1) and the
deformation problem Dst(a”) is defined, for a,, = 1 or a,, = —1. There is an exact sequence

0— Hg, , p(Mi(1)) = Hs p(Mi(1)) = k,

the last map being given on cocycles by ¢ — (E, o(Frob,)) (if a,, = 1) or by ¢ — (F, o(Frob,)) (if o, = —1).
By choosing «,, appropriately, we can thus ensure that this sequence is also exact on the right.

By the Chebotarev density theorem, it even suffices to find an element o € Gp satisfying the
following conditions:

® PNy (0) = PNy (C)
e ¢(0) = —1 mod pMo.
* ¢(o) #0.

Choose any element oy € G lifting the image of ¢ in Gal(K,/F'); then o satisfies the first two conditions.
If o satisfies the third condition, then we can take o = 0g. Suppose instead that ¢(cg) = 0. By Lemmam
the image of ¢ in H'(Kx,, M;(1)) is non-zero; this restriction is represented by a non-zero G g-equivariant
homomorphism f : Ky, — M;(1). We can therefore find 7 € Ky, such that f(7) # 0. The element o = 70y
now has the desired properties. O

Proposition 5.24. Let S = (p, i1, S, {Ay }ves, {Dyv }ves) be a global deformation problem. Let T C S, and

suppose that for eachv € S — T, D, = ’Dls)t(a"). Suppose further that h}sj(Ml(l)) =0, and let Ny > 1 be
an integer. Then there exists a finite set Q1 of finite places of I, disjoint from S, satisfying the following
conditions:

1. #Q1 = h}g,T(Mo(l)) and for each v € Q1, ¢, = 1 mod pN* and p(Frob,) has distinct eigenvalues.
2. Define the augmented deformation problem:
SQl = (pa:uv Su Qla {AU}UGS U {O}U€Q13 {DU}UGS U {DE}UGQl)'
Then h‘lsQl’T(adO p(1)) =0.

We first prove a lemma.
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Lemma 5.25. Let N > 1. Then H'(Gal(F((,~)/F), My(1)) = 0.

Proof. By restriction, this group is identified with the group of homomorphisms f : Gal(F(¢,~)/F((p)) — k
such that for all # € Gal(F(()/F), y € Gal(F((,~)/F((p)), we have f(zyz~') = dx/re(x)f(y). Since the
character g, pe is odd and the conjugation action on Gal(F'(¢,~)/F((p)) is trivial, any such homomorphism
must be 0. O

Proof of Proposition[5.2} Let r = h} 7(Mo(1)) = h 7(ad” p(1)); we may assume that r > 1. We observe
that if v € S is any place satisfying the first point above, then hg{v}7T(M1(1)) = hg p(Mi(1)) = 0. By
induction, it is therefore enough to find a place v ¢ S satisfying the first point above, and such that
By (Mp(1) =7 — 1.
Let ¢ be a cocycle representing a non-trivial element of h}57T(M0( 1)). Tt will suffice for our purposes
to find a place v € S satisfying the following conditions:
e ¢, =1 mod p™.

e X(Frob,) # X" (Frob,). (This makes sense since the first point implies that v splits in K.)

e o(Frob,) # 0.

Indeed, the first two points show that the place v satisfies the first point of Proposition [5.24, We then have
an exact sequence:
0— Hg,  r(Mo(1)) = Hg 1(Mo(1)) — k,

the last map being given on cocycles by ¢ — @(Frob,). The third point implies that this sequence is exact
on the right. By the Chebotarev density theorem, it will even suffice for our purposes to find an element
o € G satisfying the following conditions:

e ¢(0) =1 mod pM.
* X(o) # X" (0)-
o o(0) £0.

If N > 1, write Fiy = F((,~). We have Xlcr, # Yw|GF1, by assumption. Since X has order prime to p, we
also have Y|GFN1 # Y“’|GFN1 . Let 09 € GFy, be an element such that X(oo) # X" (00). If ¢(00) # 0, then
we can take o = oy.

Assume instead that ¢(og) = 0. We can then take 0 = 70(, where 7 € GKl(Cval) is any element

such that p(7) # 0. To see that such an element exists, it is enough to note that the image of ¢ in
H' (K1 (¢~ ), Mo(1)) is non-zero, since Lemma and the fact that Gal(K((,~,)/Fn,) has order prime
to p together imply that the restriction map is injective. O

6 R=T

Let p be an odd prime, let E be a coefficient field, and let F' be a totally real number field of even degree
over Q. We fix an absolutely irreducible and continuous representation p : Gp — GLy(k), satisfying the
following conditions.

e Let K C F((p) denote the unique quadratic subfield of F'({;)/F. Then there is a continuous character
X : Gx — k™ and an isomorphism p & Indgi X. We write w € Gal(K/F) for the non-trivial element.

e The extension K/F is totally real. In particular, 4 divides [F((p) : F], which in turn divides (p — 1).
e The character ¥ = X/X" : Gk — k* is non-trivial, even after restriction to G (¢, )-

e For each place v { p of F, p|q,, is unramified.
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e For each place v|p of F, p|q,, is trivial.
e The character € det p is everywhere unramified.

We assume k large enough that it contains the eigenvalues of every element of the image of p. We write
Y 1 G — O* for the Teichmiiller lift of edetp. In what follows, we will abuse notation slightly by also
writing 1 for the character 1) o Artp : A% — O*. We will also suppose given the following data.

e A finite set R of even cardinality of finite places of F', such that for each v € R, ¢, = 1 mod p and
Play, is trivial.

e A finite set () of finite places of F' of even cardinality, disjoint from S, U R, and a tuple (o )yeq, of

elements of k, such that for each v € @y the deformation problem DS“"‘“) is defined. (By definition,

this means that for each v € Qo, we have ¢, = —1 mod p and p|g,, is unramified, p(Frob,) having
eigenvalues «,,, —,.)

e An isomorphism ¢ : @p — C, and a cuspidal automorphic representation 7y of weight 2 satisfying the
following conditions.

— There is an isomorphism r,(7g) = p.
— The central character of my equals ¢1).

— For each finite place v € S, U RU Qg of F, mg , is unramified.

— For each v € R U @, there is an unramified character x, : F — @; and an isomorphism
7.0 = Sta(txw). For each v € Qo, xu(w,) is congruent to «, modulo the maximal ideal of Z,.

— Let o C S, denote the set of places v such that g, is t-ordinary. For each v € o, wé{f)(v) # 0. For
each v € S, — 0, mp,, is unramified.

Lemma 6.1. There exists a place a € S, U Qo U R such that q, > 4% and tr p(Frob,)?/ det p(Frob,) #
(1+¢a)?/4a-

Proof. This follows from Chebotarev’s theorem and [Jar99, Lemma 12.3]. O

We fix such a place a.
We consider the global deformation problem

S= (ﬁa 6_1¢7 Sp U QO U R7 {Av}vEU U {O}UESPUQOUR—aa
{Dgrd}vea U {Dgon—ord}vespig U {Dgt(a'”)}ver U {Dqs;t}veR)~

We set T = S, UR. Then Rs and RY are defined. (We observe that R4 £ 0 for each v € S, — 0, since
r.(mo)|ay, defines a Q,-point of this ring.)

6.1 Automorphic forms with fixed central character

Let B be a quaternion algebra ramified exactly at Qo U R U {v|oo}. (This is the algebra we have denoted
by Bg,ur in % In this section, the set Q¢ U R will remain fixed, and we therefore drop it from the
notation.) Let Op C B be a maximal order. The choice of Op determines a group G over Op, its functor
of points being given by G(R) = (O ®o, R)*. If v € Qo U R is a finite place of F, then we fix an
isomorphism Op ®o, Op, = M(Op,); this determines compatible isomorphisms G(F,) = GLy(F,) and
G(Op,) = GL2(Op,). We define an open compact subgroup U = [[, U, C G(A¥) as follows:

o Ifw ¢ QQ URU {a}, then Uv = G<OFU) = GLQ(OFU)

e If v € Qo UR, then U, is the unique maximal compact subgroup of G(F,).
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e If v = a, then U, = Ui (a). (For the definition of this open compact subgroup of GL2(OF,), we refer

the reader to §4.1])

For technical reasons, we must define spaces of automorphic forms with fixed central character. If V =
[I, Vo C U is any open compact subgroup and A is an O-module, then we write Hy(V, A) for the set of
functions f : G(F)\G(A¥) — A satisfying the relation f(zgv) = 1(2)f(g) for all z € AY"™, g € G(AY),
and v € V. Choosing a double coset decomposition

G(AF) = LiG(F)t; VAT,
there is an isomorphism
Hy(V, A) = @ A(p~1)t GELNV-AT),
[ (F)i

where A(1p71) is the O[U - A% ]-module with underlying O-module A on which U acts trivially and A%
acts by ¢~!. Each of the groups (t; 'G(F)t; N (V - A%"*))/F* is finite of order prime to p (use [Tay06}
Lemma 1.1} and the fact that G(F') contains no elements of order p, as [F((,) : F] > 4). It follows that
the natural maps Hy(V,0) @ A — Hy(V, A) are isomorphisms. With the notation of we see that

Hy(U,0)is a Tg’(’)i%oURU{G}’uniV—submodule of Ho,ur(U).

For any open compact subgroup V' = [[, Vi, C U, we define a pairing
(v s Hy(V,0) x Hy(V,0) = O (6.1)
by the formula
(fisfohv =D fr(@) fa(w)ip(det z) ey (z) ),

where the sum ranges over € G(F)\G(A®)/V - A% and cy(z) = #(@ 'G(F)z N (V - AZ))/F*. As
noted above, ¢y (z) is a p-adic unit, so this pairing is in fact perfect. Moreover, for any finite place v of F,
fi,fo € Hy(V,0) and g € G(F,), we have the relation

(VogVilf1, f2)v = ¥(det g)(f1, [Vog™ Vol fo)v
(see [Tay00], p. 741]).

Lemma 6.2. Let V; = Hv Vipw CVa= Hv Va.» be open compact subgroups of U, with Vi normal in Vo and
Vo A%O’X =Vn A;O’X. Suppose that the quotient Vo /V7 is abelian of p-power order. Then:

1. The trace map try, v, : Hy(V1,0) = Hy(Va,O) factors through an isomorphism Hy(Vi,O)y, =
Hy(Va,0).

2. Hy(V1,0) is a free O[Va/Vi]-module.

Proof. The proof is the same as the proof of [Tay06, Lemma 2.3]. O

6.2 Partial Hida families

We now introduce some more open compact subgroups of U. If n > 1 is an integer, then we define Uy(c™) =
[1, Uo(c™)y and Uy (c™) = [, Ui(c™)s as follows.

e If v € 0, then Uy(c™), = Up(v™) and Uy (™), = Uy (v").
e If v & g, then Uy(c™), = Ur(c™)y = U,.
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If n = 1, then we omit it from the notation. If v € o, then we have defined A, = O[O (p)]. We write

A = ®ypeoly, the completed tensor product being over @. We emphasize that this algebra depends on
the choice of o, even though we do not include it in the notation. The universal deformation ring Rg is a
A-algebra, since (by definition) it classifies deformations to A-algebras. If S is a finite set of finite places
of F, then we write TSV for the polynomial ring over A in the infinitely many indeterminates T, S,
(vg8). If QCS, then we write Tg,s,umv for the polynomial ring over T4V in the indeterminates U,,

v € Q. In fact, we now fix § = 0 UQp U RU {a}. In particular, if v € S, — o, then T, € TASwiv_ If M/
is a TAS"iV_module (resp. Tg’s’univ-module), then we write T(M) (resp. ']Tgs(M)) for the image of
TAS:unlv (regp. Tg’s’univ) in Endp (M).

We now define a structure of ’]I’g’os’univ—module on the spaces Hy (U, (0™),A), n > 1 and x € {0,1}.
The elements T, S,, U, € ']I‘g’os’univ act by the Hecke operators of the same name. To define the A-module
veo O, (p) on the O-module Hy(U.(0™), A). We
define such an action by letting a € OIX% (p) act by the double coset operator

structure, it is enough to define an action of the group []

@ =0 (5§ )

The operators U, and (a) commute with all inclusions Hy (U.(0™), A) C Hy(U.(c™*!), A), so these maps
become maps of Tg’os’“niv—modules. The operator U, does depend on the choice of uniformizer w,, but this
will not be important for us. We set U, = Huea U,.

For each n > 1, the ordinary idempotent e = limy_, U acts on Hy (U1 (0™), O), and hence on

Hy(Ui(o™),A) = Hy(U1(0"),0) @p A
for any O-module A. We define H;Zrd(Ul (6™),A) =eHy(Ur(c™), A), and

HY (U3 (0%9)) = i

=

HyY(Uy(o™), E/O).

=]

Then the algebra
i

1B

T, (H3(U1(0™))) = Im TG (Hy (U1 (07), B/O))

is reduced (since it is an inverse limit of reduced algebras).
Lemma 6.3. For any O-module A and any integers n > m > 1, the natural inclusions
H(Uo(0), A) = H™(Uo(a™), A), (6.2)
H (U (™), A) = HZ™(U1(a™) N Up(c™), A)
are isomorphisms.
Proof. This follows from the same calculation with Hecke operators that appears in [Gerl, Lemma 2.5.2]. O

If v e oandn > 1, we define A, ,, = O[(1 + w,OF,)/(1 + @w]!OF,)]. (Thus A; = O.) We define
Ay, = ®peoAy,n. There is a canonical surjection A — A,,, and we write a,, for the kernel of this surjection.
By Lemma [6.3] for any n > m > 1 we have

H;/’fd(Ul(a”)7 A)lan] = ;Zrd(Uo(a") NU(c™),A) = Hzrd(Ul(Um),A).
Proposition 6.4. 1. For each n > 1, there is a canonical isomorphism
HY (UL(0™))Y [an H(U1(0™))Y 2 Home (HY™ (U1 (0™), 0), 0).

(We recall that ()Y denotes E-Pontryagin dual; see §3)
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2. The space Ho™ (U1 (0™))Y is a free A-module of rank dimy HY(U, (o), k).
¥ »

3. The algebra Tg’OS(Hird(Ul(U"o))) is a finite faithful A-algebra.
Proof. We have isomorphisms
HP 4 (U1(0%))" fa, HY 4 (Ur(0%))" 2 HF (U1 (0°°)) ]
— :Zrd(Ul(U"),E/O)V
= Homo (HY (U1 (0™), 0), 0).

by Lemma By Lemma the space H;Zrd(Ul(a”), 0) is a free O[(Up(c™) NU1(0))/U1(c™)]-module. It
follows that for all n > 1 the module

Hy(U1(0%))" /a, HY (Ui (0%))"
is free over A/a, A = A,,, hence H;Zrd(Ul (c°°))V is free over A of rank dimy Hird(Ul (0),k). Combining these
facts completes the proof of the proposition. O

Associated to the automorphic representation 7 is a homomorphism ’]I‘g’OS(H fl’fd (Ui(0), E/O)) — Fp,

which in fact takes values in k (since 7,(mo) = p ®y, F,, can be defined over k, and the elements «, (v € Qo)
lie in k by construction). We write m C Tg’os(Hird(Ul(aoo))) for the kernel of the composite

A,S or oo A,S or
Ton (HY(U(0™))) = Toy (HYF (Ui (o), E/O)) — k.
Proposition 6.5. There is a lifting of p to a continuous representation
pm : Gp = GLo(Ty  (HY(U1(0%°)))m)

such that for all finite places v & S, UQoURU{a} of F, pw is unramified and py (Frob,) has characteristic
polynomial X? — T, X + q,S,. (This lifting is then unique, up to strict equivalence.) Moreover, py is of type
S.

Proof. It suffices to construct, for each n > 1, a homomorphism Rs — ']I‘g’OS(HQ‘;rd(Ul (c™), E/O))m satisfying
the relation tr ps(Frob,) — T, and det ps(Frob,) — ¢,S, for all v &€ Qo U RU S, U {a}. Indeed, these
conditions characterize such a homomorphism uniquely, because the ring Rgs is topologically generated as
a A-algebra by the traces of Frobenius elements, by [Car94]. We can then pass to the limit to obtain the
desired homomorphism Rs — Tg’OS(Hl‘Zrd(Ul (%)) m-

For each n > 1, there is an isomorphism of algebras:

A,S or! n n o~ o)
Tey (HY (Ur(6™), E/O))m ®0 Q, = ©2Q,
and a corresponding isomorphism of spaces of automorphic forms:
HFA(U1(0"), O)m 00 T & (i 1) (7o,

(Here, we write (:~17>°)Vord C (,717°)U for the largest subspace where U, operates with eigenvalues that
are p-adic units.) In each case, the direct sum runs over the set of cuspidal automorphic representations 7
of GLy(AF) of weight 2 which satisfy the following conditions:

o (1 1g)Ure")ord £ o In particular, for each v € o, 7, is t-ordinary.

e There is an isomorphism r,(7) = 7.
e The central character of 7 is 1.

e For each place v € S, — 0, m, is not t-ordinary.
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e For each finite place v € o U Qg U R of F, m, is unramified.

e For each place v € Qo U R, 7, is an unramified twist of the Steinberg representation. For each place

v € Qo, the eigenvalue of U, on :~'75°™) is congruent to a, modulo the maximal ideal of Zp.

There is a corresponding homomorphism Rs — ©,Q,,, with image contained in Tg’os(H ;Zrd(Ul(U"), E/O))n.
This gives the desired map Rs — Tg’OS(Hzrd(Ul (6™),E/O))m. O

It follows that H, fjfd(Ul (0°°))m has a structure of Rg-module. We can now state the main theorem
of this section.

Theorem 6.6. Suppose that hs (M (1)) = 0 (notation as in . Then Fittp, H;’”d(Ul (a>)) = 0.
The proof of Theorem [6.6] will be given in below.

Corollary 6.7. Let C,N,n > 1 be integers. Suppose that dimy H;rd(Ul (c™),k)[m] < C, and suppose that
there is a diagram
A——=A,

|
Rs — O/AN,

corresponding to a lifting py : Gp — GLo(O/A\N) of 5 which is of type S. Let I = ker(Rs — O/AN/C1).
Then (Hy(U1(0™),0)m @0 O/ANN/CI[I] contains an O-submodule isomorphic to O/ANN/C1 and the map
Rs — O/AWN/CI factors

Rs — T 5 (HZ (UL (™), E/O)m) — O/AN/C.

Proof of Corollary[6.7 Let J = ker(Rs — O/AN), so that I = (J, \LV/€]). Since formation of the Fitting
ideal commutes with base extension, Theorem [6.6] implies that Fitto,x~ HY(U1(0™))y, ®rs O/AN = 0.
We have isomorphisms

Hy (UL (0%))m @rs O/AY = HZ(Ur(0%)) 3/ THY (U1 (0%))
= Hy (Ui (0%))m[J]"
= Hy(Ui(0™), 0/AY )m[J]".
Similarly, there is an isomorphism
HE (U1 (0%)) @ e b = HIYU, (0™), K)fm] -

It follows that Hf]fd(Ul (6™), O/AN) [ J]Y is generated as O/AN-module by at most C elements. Since its

Fitting ideal as O/AN-module is trivial, it contains a copy of O/ ALN/CL . The desired result follows on taking
Pontryagin duals. O

6.3 Patching and the proof of Theorem

We continue with the notation of the previous section. Suppose given a finite set (Q; of finite places of F,
disjoint from S, U Qo U RU {a}, and satisfying the following conditions.

e For each v € @1, we have ¢, = 1 mod p.

e For each v € @1, p(Frob,) has distinct eigenvalues ay,, 8, € k.
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We write Ag, for the maximal p-power quotient of [[,cq, £(v)*, ag, C O[Aq,] for the augmentation ideal,
and Sg, for the Taylor-Wiles augmented deformation problem:

SQ1 = (ﬁa 6_1¢7 Sp U QO URU Qh {AW}UEU U {O}UESPUQOURUQ1*U7
{Dy e U{D Y ues, —o U{DS Yueq, U{DS boer U{D }ueq))-
Let PSq, - Gr — GLy (RSQl) be a representative of the universal deformation. Then for each v € ()1 there

are continuous characters A,, B, : G%b — R§Q which modulo Mps, are unramified and take Frob, to
v 1 1
Qy, By, Tespectively, and an isomorphism

A, 0
PSq, ‘GF'U ~ 0 B, )

The universal deformation ring Rs, then acquires a natural structure of O[Aq,]-algebra, built from the
maps (v € Q1):
X X
k(v)* — Rs,,
o — Ay(Artp, (0)).

Moreover, the map Rs,, / aQ, Rs,, — Rs is an isomorphism. We now introduce auxiliary Hecke modules.
Let H() Hord(Ul( ))m

Lemma 6.8. With notation as above, there evists an Rs, -module Hq,, free over A[Aq,], and equipped
with a canonical isomorphism Hg, /ag, Ho, = Hy of Rs-modules.

Proof. We define open compact subgroups Up(Q1) = [[, Uo(Q1)» and U1(Q1) =[], U1(Q1), of U as follows.
o Ifw ¢ Ql, then Uo(Ql)v = Ul(Ql)v =U, Ifve Ql, then UO(Ql)U = Uo(’U).

e If v € @)1, then there is a canonical homomorphism from Up(v) to the maximal p-power quotient of

k(v)*, given by
( CCL Z > — ad™ L.

We define U (Q1), to be the kernel of this homomorphism.

Thus U1 (Q1) is a normal subgroup of Up(Q1), and there is a canonical isomorphism Uy (Q1)/U1(Q1) = Ag, .
The Hecke algebra Tg’OSUUQ%l’umV acts on each space HY (U1 (a™)NUp(Q1), A) and H (U1 (o™)NUL(Q1), A).
We recall that there is a homomorphism f : ']I‘A’OS (qurd(Ul (0), E/O)) — k with kernel m. We write

mg, for the maximal ideal of ']Tg iUQQl (Hord(Ul (0)NUp(Q1), E/O)) generated by my, the elements T, — f(T5,)
(v & SUQ) and the elements U, — vy, (v € Qo U Q). We also write mg, for the pullback of this maximal

ideal to ’]I’g SUUQQl (Hord(Ul (o)NUL(Q1), E/O)). Then, just as in [Tay006}, §2], one can show the following facts:

e for each n > 1, there is an isomorphism

TAOSUUQQll (HZY (U (6™) NTU(Q1), E/O))mg, = TA SUQI(HOYd(Ul(a”), E/O))m

QoUQ1

of A-algebras, and a corresponding isomorphism
H(Ui(0") NU(Q1), B/O)mg, = HY (Ui ("), E/O)m
of Hecke modules;

e and for each n > 1, the A-subalgebra of Endx(HZ™ (U1 (0™) NUL(Q1), E/O))mg, generated by O[Ag,]
is contained inside TgOSUUQQll (Hord(Ul (™) NU1(Q1), E/O))mq,, and there is a natural map Rs, —
Tgoiucﬁl (Hord(U1( "NUL(Q1), E/O))mg, of A[Aq, J-algebras satisfying the condition tr ps,, (Frob,) —
T, and det ps,, (Frob,) = S, for all v ¢ S, URU Qo U {a} U Q1.
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We therefore define

Hy (U (0%) N Us(Q1)) = 1_D}H°rd( 1(0") NUo(G1), E/O)

so that
T (HY (Ui(0) NU(Q1))) = lim Teyt i (HZ (Ur(0™) N Uo(Q1), E/O))
and
H (U (%) N U(Q) = lim HE (Ua(0™) N 11(Q1). E/O)
so that
T (HY (U (™) NUL(Q1)) = jm m T (HE (U1 (0™) N UL (Q1), B/O))
and finally

Hg, Hord(U( OO)QUI(QI))XlQI = (@Hﬁfd((]ﬂa")ﬂU1(Q1),E/O)mQ1> )

It follows from Lemma [6.2] that each
HY (Ui (™) NUL(Q1), E/O)Y = Homo (Hy' Uy (6™) N U1(Q1), 0), O)

is free over A,,[Ag, ], and hence that Hg, is free over A[Ag,]. We already know that Hg, is a Rs,, -module;
it remains to show that there is an isomorphism Hg, /ag, Hg, = Hy of Rs-modules. However, we have seen
that there is an isomorphism

H [ag,] = HF(U1(0%°) NUL(Q1))me, [80,] = HY (U1(0™) N Uo(Q1))mg, = HF (U1(0™))m = Hy
of Rs-modules, and dualizing this statement now gives the desired result. O
The following lemma is a consequence of Proposition and Proposition [5.10)

Lemma 6.9. Let g = hg (Mo(1)). (We recall that hg (M1 (1)) = 0, by assumption.) Then for all integers
N > 1, there exists a set Qn of primes satisfying the following conditions:

e QnN(SpUQoURU{a}) =0 and #Qn = q.
e For eachv € Qn, ¢, = 1 mod p" .
e For each v € Qn, p(Froby,) has distinct eigenvalues o, By € k.

B, r(ad®B(1)) = 0.

The ring REQN can be written as a quotient of a power series ring over AgQN = AL in q — [F :
Q] — 1 + #T variables.

We can now prove Theorem Let Ry = AL[Xy,... y Xq—r:g—14#7]. Then (cf. [BLGHTTI]
Lemma 3.3]) Ry is reduced, and for each minimal prime @ C A, Spec R /(Q) is geometrically irreducible
of dimension

dmAL +q—[F:Q -1+ #T =1+ 2[F,:Q+ Y [F:Q+3#T+q—[F:Q]—1+#T

vET vES,—0

= dimA + g — 1 + 4#T,
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and its generic point is of characteristic 0. Fix vg € T', and let 7 = O[{Y};"; }oer]/(Y}"}). Fix a representative
ps of the universal deformation over Rg, and for every N a representative PSq, over Rs,  that specializes
to this ps. We then get compatible isomorphisms

RL = Rs®oT, (6.4)
Rg, = Rsy ®oT
corresponding to the strict equivalence classes of the universal T-framed liftings
(ps, (14 (Vi) ver),
(Psqy» (L+ (Yi%))ver)-

We write Ao, = Z%, and fix for each N a surjection Ay, — Ag,. Let So = A[[AOO]]@)(Q’T, and let

oo C Ss denote the kernel of the augmentation homomorphism S,, — A. Then the rings RL and REQN

become S..-algebras, via the isomofphisms (16.4) and 1] and the modules HI = Hy ® g4 Rg and HgN =

Hoy ®rs, REQN are free over AQoT[Ag,]- By a standard patching argument (cf. [Thol2] Lemma 6.10]
N

or the proof of [Ger, Theorem 4.3.1]), we can construct the following data:

e A finitely generated R..-module H.
e A homomorphism of A-algebras S, — R, making H, a free Soo-module.
e A surjection Ry /0o Re — Rs and an isomorphism Ho, /as Hoo = Hp of Rs-modules.

Let @ C A be a minimal prime. Then H/(Q) is a free Soo/(Q)-module and S, /(Q) is a regular local ring.
In particular, we have

By [Tay08, Lemma 2.3], we see that H.,/(Q) is a nearly faithful R./(Q)-module. Since @ was arbitrary,
we see that Hy is a faithful R.-module. (R is reduced.) It follows that Fittg_ Hoo = 0, hence

FittRS (HOO QR RS) = FittRS Hy =0,

as desired.

7 Deduction of the main theorem

In this section, we deduce the results stated in the introduction. There are 3 main steps. First, we verify
the residual automorphy of the Galois representations under consideration. We then use this to prove an
automorphy result under favorable local hypotheses. Finally, we show that the general situation can always
be reduced to this one using soluble base change.

7.1 Some preliminary results

We will often refer to the following lemma without comment.

Lemma 7.1. Let F be a totally real number field, and F'/F a soluble totally real extension. Let p be a
prime, and fix an isomorphism v : Q, — C.

1. Let w be a cuspidal automorphic representation of GLa(Ap) of weight 2, and suppose that r,(7)|c,,
is irreducible. Then there exists a cuspidal automorphic representation wp: of GLa(Ap/) of weight 2,
called the base change of m, such that r,(7p) = r,(7)|a,, -
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2. Let p: Gp — GLQ(QP) be a continuous representation such that p|GF, 18 irreducible, and let 7 be a
cuspidal automorphic representation of GLa(Ap/) of weight 2 such that p|g,, = r.(7"). Then there
exists a cuspidal automorphic representation ™ of GLa(Ar) of weight 2 such that p = r, (7).

Proof. The lemma may be deduced from the main results of [Lan80], using the argument of [BLGHTT1]
Lemma 1.3]. O

Theorem 7.2. Let F' be a totally real field, let p be an odd prime, and let p : Gp — GLg (@p) be a continuous
representation. Suppose that the following conditions hold.

1. [F : Q)] is even, and [F((p) : F| is divisible by 4. We write K for the unique quadratic subfield of
F((p)/F, which is therefore totally real.

2. There exists a continuous character ¥ : Gxg — ﬁ; and an isomorphism p = Indgi X-

3. Let w € Gal(K/F) denote the non-trivial element. Then the character ¥ =X/X" remains non-trivial,
even after restriction to Gp(,). In particular, p is irreducible.

4. The character v = edet p is everywhere unramified.
5. The representation p is almost everywhere unramified.

6. For each place v|p, pla,, is semi-stable and plg,, is trivial. For each embedding T : F — @p, we have
HT, (p) = {0,1}.

7. If vt pis a finite place of F at which p is ramified, then g, = 1 mod p, WD(p|q,. ) = reca (St2(xv)),

, X _ o ,
for some unramified character x, : F* — Q,,, and play, is trivial. The number of such places is even.

8. There exists a cuspidal automorphic representation m of GLa2(Ar) of weight 2 and an isomorphism
t: Q, — C satisfying the following conditions:

(a) There is an isomorphism r,(mw) = p.

(b) If v|p and p is ordinary, then m, is t-ordinary and rlo® # 0. If vlp and p is non-ordinary, then
Ty 1S not t-ordinary and m, is unramified.

(c) If vt poo and plgy, is unramified, then m, is unramified. If v { poo and plg,, is ramified, then

m, 18 an unramified twist of the Steinberg representation.

Then p is automorphic: there exists a cuspidal automorphic representation @ of GLa(AFr), of weight 2 and
an isomorphism p = r, (7).

Proof. After possibly replacing p by a conjugate, we can find a coefficient field F such that p is valued in
GL3(0) and Y is valued in k*. We prove the theorem by showing that p satisfies the conditions of Corollary
To do this, we will apply Theorem and its corollary. We therefore fix an integer N > 1. We write
o C S, for the set of places such that p|g,, is ordinary, and R for the set of places not dividing p at which

T, 1s ramified.
We consider the global deformation problem

S§= (ﬁu 5_1’¢a Sp U R, {Av}vev U {O}UGSPURfm {Dgrd}vea U {Dgon_ord}vGSpfo U {Dzs;t}vGR)a

and set T' = S, U R. By Proposition [5.20] we can find a finite set Qq of finite places of F, disjoint from
Sp U R, and elements «, € k (v € Q) all satisfying the following conditions:

o #Qo = 2[h5 p(Mi(1))/2].

e For each v € Qg, the local deformation problem DS’““") is defined.
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o If Sp, denotes the augmented global deformation problem
SQO = (ﬁa 6_1’(/), Sp URU Q07 {A’U}’UEO' U {O}UESPURUQ0—0'7
(DY Y oeo U{DL" Y es,—o U{DS Yoer U{D ™ e, ),
then h}SQO,T(Ml(l)) =0.

By Lemma we can find an cuspidal automorphic representation mg of GLa(Ar) of weight 2, satisfying
the following conditions:

(a3

e There is an isomorphism of residual representations r,(mg)

e If v € g, then 7y, is t-ordinary and ﬂg[’(v)

Ky
unramified.

7.

#0. If v e S, — o, then 7y, is not t-ordinary and g, is

o Ifv ¢ S,URUQ) is a finite place of F', then 7y , is unramified. If v € RUQyo, then mg , is an unramified
twist of the Steinberg representation. If v € Qq, then the eigenvalue of U, on L_lwg %(v) is congruent

to «, modulo the maximal ideal of Zp.

(In order to apply Lemma we must first fix a choice of auxiliary place a. We choose any place a
satisfying the conclusions of Lemma ) After replacing 7y by a character twist, we can assume in addition
that 7o has central character t). (We use here that p is odd.) The hypotheses of Theorem are then
satisfied with respect to the deformation problem Sg,.

Let S = S, URU{a}, and let my C TSunv he the maximal ideal corresponding to the automorphic
representation ; thus my is in the support of Hr(U). We set Cy = dimy(Hg(U) ®0 k)[mg]. It follows from
Proposition that (notation being as in

dim (Hrug, (Ug,) ®o k)[mg,] < 4#°C.

We can then apply Corollary |6.7] with C' = 4#%Cj and n = 1 (use that, in the notation of that corollary,
H;Zrd(UQO, k) is a submodule of Hrug, (Ug,)®@0k). It follows that there is a homomorphism TZEQO (Hrug, (Ug,)) —
O/AN/C1 with the following properties:

e For each finite place v € S UQq of F, we have f(T,) = tr p(Frob,) mod ALN/CI,
e (Hpug,(Ug,) ®0 OJAN/CI)[I] contains an O-submodule isomorphic to O/AV/C1,
The conditions of Corollary are therefore satisfied. Indeed, it suffices to remark that the quantity
C = 4#Q0(Cy = 42hs.rMW)/2 Gimy (Hp(U) ®0 k) [my)]
is independent of N. This completes the proof. O

Lemma 7.3. Let F be a totally real field, let p be an odd prime, let ¢ : @p — C be an isomorphism, and
let p: Gp — GLg (E)) be a continuous representation. Suppose that detp is totally odd, that p is absolutely
irreducible and unramified at the places of F' above p, and that there exists a quadratic extension K/F such
that p|lc, 1s reducible. Then there exists a cuspidal automorphic representation m of GLa(AFr) of weight 2

and satisfying the following conditions.
1. For each place v|p, 7, is t-ordinary.

2. There is an isomorphism r,(m) = p.

3. For each finite place v € S, of F' at which p is unramified, m, is unramified.
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Proof. By automorphic induction, there exists a Hilbert modular newform f of parallel weight 1 (in the sense
of [Wil88]) associated to the Teichmiiller lift of p, which has level prime to p. By [Wil88, Theorem 3], there
exists a cuspidal automorphic representation 7 of GLo(Ag) of weight 2 such that r,(7) & p, with associated
Hilbert modular newform contained in a A-adic eigenform F passing through f. In particular, 7 is t-ordinary
by construction, and is ramified only at places of F' dividing p or at which p is ramified. O

Corollary 7.4. Let F be a totally real field, let p be an odd prime, let ¢ : @p — C be an isomorphism, and
let p: Grp — GLa(F,) be a continuous representation. Suppose that detp is totally odd, that p is absolutely
irreducible and unramified at the places of F' above p, and that there exists a quadratic extension K/F such
that pla, is reducible. Let Vi be a finite set of finite places of F, not containing any place above p or at
which p is ramified, and let o be a set of places dividing p. Then there exists a soluble totally real extension
F'/F in which every place of Vi splits, and a cuspidal automorphic representation w' of GLa(Ap/) of weight
2 and satisfying the following conditions.

1. If v is a place of F' above a place of o, then 7l is t-ordinary. If v is a place of F' dividing p but not
dividing a place of o, then w is unramified and not t-ordinary.

2. If vt poo, then w is unramified.

8. There is an isomorphism r,(1') = plg,,, and p|a,, is absolutely irreducible.

Proof. Let E/F denote the extension of F' cut out by p. After possibly enlarging V{), we can assume that it
satisfies the following conditions:

e For any Galois subextension E/M/F with Gal(M/F') simple and non-trivial, there exists v € V; which
does not split in M.

e The set 1} does not contain any place dividing p or at which p is ramified.

Then any Galois extension F’/F in which each place of V4 splits is linearly disjoint from F; in particular,
Pla,, will be absolutely irreducible.

Let 7 be an automorphic representation of GLa(Af) satisfying the conclusion of Lemma After
possibly replacing F' with a preliminary Vp-split soluble extension (and 7 by its base change), we can assume
that [F : Q] is even, and that for each place v of F, either m, is unramified, or v € S, and 7, is an
unramified twist of the Steinberg representation, or ¢, = 1 mod p and m, is an unramified twist of the
Steinberg representation. By Lemma we can find a cuspidal automorphic representation 7" of GLa(AF)
of weight 2 with the following properties:

e If v € o then 7/ is t-ordinary. If v € S, — o then 7/ is supercuspidal.
e If v { poo and 7, is ramified, then 7]/ is a ramified principal series representation.

e There is an isomorphism of residual representations r,(m) = r, (7).

It now suffices to choose F'/F to be any soluble Vj-split extension with the property that ' = #/%, is
everywhere unramified (except possibly at the places of F’ above o). Indeed, it only remains to check that
if v is a place of I above S, — o, then r,(7’)|g,, is crystalline non-ordinary, and this follows from Lemma

B3l O

7.2 The main theorem

Theorem 7.5. Let F be a totally real number field, let p be an odd prime, and let p : Gp — GLQ(@p) be a
continuous representation satisfying the following conditions.

1. The representation p is almost everywhere unramified.

2. For each place v|p of F, pla,, is de Rham. For each embedding T : F — Q,,, we have HT,(p) = {0, 1}.
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3. For each complex conjugation ¢ € G, we have det p(c) = —1.

4. The residual representation p is absolutely irreducible, yet mGF(cp) is a direct sum of two distinct
characters. The unique quadratic subfield K of F((,)/F is totally real.

Then p is automorphic: there exists a cuspidal automorphic representation m of GLo(Ap) of weight 2, an
isomorphism ¢ : Q, — C, and an isomorphism p = r (7).

Proof. Replacing p by a twist, we can assume that € det p has order prime to p. Let E/F denote the extension
of F(¢p) cut out by ﬁ|GF( " Let Vj be a finite set of finite places of F' satisfying the following conditions:

e For any Galois subextension E/M/F with Gal(M/F) simple and non-trivial, there exists v € Vj which
does not split in M.

e The set Vj does not contain any place dividing p or at which p is ramified.

To prove the theorem, it will suffice to construct a soluble extension F’/F in which every place in Vj splits,
and such that p|g - satisfies the conditions of Theorem Indeed, it then follows that there exists an
automorphic representation 7’ of GLa(Afpr) of weight 2 such that p|g,, = r,(7"), and the automorphy of p
follows by Lemma (We note that since F" is Vj-split it is linearly disjoint from the extension E/F, and
in particular the representation p|q,, is irreducible, even after reduction modulo p.)

In fact, it will even suffice to construct a possibly non-Galois extension F”/F which is Vj-split, which
has soluble Galois closure, and such that p|g,, satisfies the conditions of Theorem Indeed, the preceding
argument can then be applied to the Galois closure of F’'/F. We now construct such an extension.

Replacing F' by a Vj-split soluble extension, we can assume that p satisfies in addition the following
conditions:

e For each place v|p of I, p|q,, is semi-stable and p|q,, is trivial.

)F—ss ~

e If v { p is a finite place of I at which p is ramified, then WD(p|g,, = rect, (St(xv)), for some

. =X _ o
unramified character x, : [, — Q,, and p|g,, is trivial.

Fix an isomorphism ¢ : @p — C. By Corollary we can assume after again replacing F' by a soluble
extension that there exists a cuspidal automorphic representation 7"/ of weight 2 satisfying the following
conditions:

e There is an isomorphism W =D.

e If v|p and p is ordinary, then 7/ is t-ordinary.

e If v|p and p is non-ordinary, then 7 is unramified and r,(7")|g,, is non-ordinary.
e If v { poo then 7/ is unramified.

Arguing as in the proof of [Kis09bl Lemma 3.5.3] and replacing F' by a further soluble extension, we can
assume that there exists a cuspidal automorphic representation = of weight 2 satisfying the following condi-
tions:

e There is an isomorphism r,(7w) & p.
e If v|p and p is ordinary, then 7, is t-ordinary and rlo®) #0.
e If v|p and p is non-ordinary, then 7, is unramified and r,(7)|g, is non-ordinary.

e If v { poo and p is unramified, then 7, is unramified. If v t poo and p is ramified, then , is an
unramified twist of the Steinberg representation.

The hypotheses of Theorem [7.2] are now satisfied, and this completes the proof. O
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7.3 Application to elliptic curves
We now prove Theorem

Theorem 7.6. Let F be a totally real number field, and let E be an elliptic curve over F. Suppose that:
1. 5is not a square in F;
2. and E has no F-rational 5-isogeny.

Then E is modular.

Proof. Let p : Gp — GL3(Qs) denote the representation associated to the action of Galois on the étale
cohomology H'(Ex,Zs), after a choice of basis. We must show that p is automorphic. The condition that E
has no F-rational 5-isogeny is equivalent to the assertion that p is irreducible, hence absolutely irreducible
(because of complex conjugation). If ﬁ‘GF(C5) is absolutely irreducible, then p is automorphic by [FLHS|
Theorem 3].

We therefore assume that p|g F i) is absolutely reducible. It then follows from [FLHS| Proposition
9.1, (b)] that the projective image of p in PGLy(F5) is isomorphic to Fo x Fo. In particular, plg, ., is
non-scalar, as Gal(F((s)/F) is cyclic. The hypotheses of Theorem are now satisfied, and we deduce the
automorphy of p in this case as well. O

As an example of Theorem we consider the elliptic curve over Q:
E:y* +y=2®—350x + 1776.

Let p = pps : Gg = GL2(Qs) denote the representation afforded by HI(E@, Zs) after a choice of basis.
The j-invariant of E is 552960000/161051 = 2% x 3% x 5% x 117°. The curve E acquires good supersingular
reduction over the extension Q5(\6/5) of Q5. One can check that the curve E has no 5-isogeny defined over
Q, but acquires a 5-isogeny over Q(1/5). (We performed these calculations using sage [ST13].)

More generally, if F' is any totally real number field such that FNQ({5) = Q and p|¢,. is irreducible,
then the elliptic curves E’ over F with pp 5 = p|g, are parameterized by P'(F) (see the proof of [DDT97,
Lemma 3.49]), and Theorem [7.6] implies that all of these curves are modular.
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