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Abstract

We study the arithmetic of a family of non-hyperelliptic curves of genus 3 over the field Q of rational
numbers. These curves are the nearby fibers of the semi-universal deformation of a simple singularity of
type E6. We show that average size of the 2-Selmer sets of these curves is finite (if it exists). We use
this to show that a positive proposition of these curves (when ordered by height) have integral points
everywhere locally, but no integral points globally.

Introduction

Let k be a field of characteristic 0, and let Y be a smooth, geometrically connected projective curve over
k of genus g > 0. Let J denote the Jacobian of the curve Y . We define a 2-covering of the curve Y to be
an abelian finite étale cover Z → Y , with Z geometrically connected and AutY (Z) a k-form of the group
(Z/2Z)2g. An isomorphism (Z → Y ) → (Z ′ → Y ) of 2-coverings is just an isomorphism Z → Z ′ over Y .
The set Cov2(Y ) of isomorphism classes of 2-coverings (Z → Y ), if non-empty, is a torsor for the group
H1(k, J [2]).

Now suppose that k is a number field. We define the 2-Selmer set of Y to be the subset Sel2(Y ) ⊂
Cov2(Y ) of 2-coverings (Z → Y ) such that Z(kv) 6= ∅ for every place v of k. If Y (k) is non-empty, then the
set Sel2(Y ) is non-empty. On the other hand, Sel2(Y ) can often be effectively computed. In such situations,
Sel2(Y ) is a useful proxy for the set Y (k). (See, for example, the paper [BS09], in which the authors give an
algorithm to calculate a closely related set when Y is hyperelliptic.)

Now suppose further that the curve Y has a marked rational point P∞ ∈ Y (k). In this case, the
Abel-Jacobi map AJ : Y ↪→ J embeds the curve Y in its Jacobian, sending the point P∞ to the origin. The
2-Selmer set Sel2(Y ) is a pointed subset of the 2-Selmer group Sel2(J); these two sets admit the following
cohomological description. If v is a place of k, then there is a canonical map δv : J(kv) → H1(kv, J [2]),
arising from the Kummer exact sequence of J . We then have:

Sel2(Y ) = {x ∈ H1(k, J [2]) | ∀v, Resv(x) ∈ δvAJ(Y (kv))},

Sel2(J) = {x ∈ H1(k, J [2]) | ∀v, Resv(x) ∈ δvJ(kv)}.

In this paper, we investigate the 2-Selmer sets of a family of non-hyperelliptic curves of genus 3:

X : y3 = x4 + y(p2x
2 + p5x+ p8) + p6x

2 + p9x+ p12. (0.1)

Here x, y are co-ordinates, and p2, . . . , p12 are coefficients. The projective closure of this equation in P2 defines
a family Y → B of plane quartic curves, where B = A6

Q is the affine space with co-ordinates p2, . . . , p12.
(Each of these curves has a unique point at infinity.) The open subscheme of B above which Y is smooth is
a fine moduli space for triples (C,P∞, t), where C is a smooth, projective curve which is non-hyperelliptic
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of genus 3, P∞ ∈ C(k) is a marked point such that 4P∞ is a canonical divisor, and t ∈ TP∞C is a non-zero
element of the Zariski tangent space at P∞. We have pi(C,P∞, λt) = λipi(C,P∞, t). (See Lemma 3.1.)

Let us write B = A6
Z, co-ordinates again being given by p2, . . . , p12. We write F0 ⊂ B(Z) for the set

of points b such that Yb is smooth. We say that a subset F ⊂ F0 is defined by congruence conditions if there
exists an integer N ≥ 1 and a non-empty subset A ⊂ B(Z/NZ) such that F is the inverse image of A in F0.
If b ∈ F0, then we define H(b) = supi |pi(b)|72/i.

We can now state our main theorems.

Theorem 0.1 (Theorem 3.3). Let F ⊂ F0 be a subset defined by congruence conditions. Then:

lim sup
X→∞

∑
b∈F

H(b)<X
# Sel2(Yb)∑
b∈F

H(b)<X
1

<∞.

More informally, the average size of Sel2(Yb) is bounded.

We note that we would obtain the same result if we restricted to the average over those points b ∈ F
which are minimal, in some sense, and therefore give a set of representatives for isomorphism classes of pairs
(C,P∞); see Remark 3.5 below.

Theorem 0.2 (Theorem 3.4). Let ε > 0. Then there exists a subset F ⊂ F0 defined by congruence conditions
such that:

lim sup
X→∞

∑
b∈F

H(b)<X
# Sel2(Yb)∑
b∈F

H(b)<X
1

< 1 + ε.

Consequently, we have:

lim inf
X→∞

#{b ∈ F | H(b) < X,# Sel2(Yb) = 1}
#{b ∈ F | H(b) < X}

> 1− ε.

Since we can only control the average size of the 2-Selmer sets Sel2(Yb), and not the full 2-Selmer
groups Sel2(Jb), it does not seem possible to use the above results to follow [PS14] and show, for example,
that for a positive proportion of b ∈ F0 the set of rational points is trivial (i.e. Yb(Q) = {P∞}). However,
control of Sel2(Yb) does have Diophantine consequences for points which are ‘far from infinity’ in some (p-adic
or Archimedean) sense. As an example of this, we use the above theorems to deduce:

Theorem 0.3 (Theorem 3.8). Let ε > 0. Then there exists a subset F ⊂ F0 defined by congruence conditions
satisfying the following conditions:

1. For every b ∈ F and for every prime p, Xb(Zp) 6= ∅.

2. We have

lim inf
X→∞

#{b ∈ F | H(b) < X, Xb(Z(3)) = ∅}
#{b ∈ F | H(b) < X}

> 1− ε.

In particular, a positive proportion of curves in F0 have integral points everywhere locally, but no
integral points globally.

Methods

Our methods are inspired by those of Bhargava and his collaborators, who have proved similar (and in
general, substantially more precise) results for elliptic and hyperelliptic curves; see the papers [BS], [BG],
[Bha]. Roughly speaking, there are 3 main steps:

1. Find a reductive group G over Q and a representation V having the following property: for a field
k/Q, the k-orbits of G(k) on V (k) with prescribed invariants are related to the set J(k)/2J(k), where
J is the Jacobian of an algebraic curve being defined in terms of these invariants.
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2. Show that when k = Q there are sufficiently many orbits to describe the 2-Selmer groups (or sets) of
these curves, and that (appropriate integral models of G and V having been fixed) these orbits all have
integral representatives.

3. Count the integral orbits with bounded invariants, and perform a sieve to remove those orbits not
corresponding to 2-Selmer elements.

Our approach to the first two points is quite different to that taken in earlier works. For the third point, we
follow Bhargava’s ideas closely. (Since we aim only to get the qualitative results Theorem 0.1 and Theorem
0.2 above, we do not need to perform a sieve.) We now describe each of these steps in turn. In an earlier
paper [Tho13], we have associated to each Dynkin diagram D of type An, Dn, or En the following data:

• A pair (G,V ) consisting of a split reductive group over Q and an irreducible representation V of G
over Q which is coregular: by definition, this means that the invariant ring Q[V ]G ⊂ Q[V ] is abstractly
isomorphic to a polynomial ring.

• A family X → B of affine curves over the categorical quotient B = SpecQ[V ]G. In fact, X is a
semi-universal deformation of its central fiber, which has a unique singularity, which is simple of type
D. In particular, when D = E6, this is exactly the family of curves (0.1) above.

Let us write π : V → B for the quotient map. There is also a natural discriminant ∆ ∈ Q[V ]G, defined up
to scalar. If k/Q and b ∈ B(k), then Xb is smooth if and only if ∆(b) 6= 0; in this case, Vb = π−1(b) consists
of a single closed G-orbit in V , and the stabilizer StabG(v) of any v ∈ Vb(k) is a finite k-group, for which
there is a canonical isomorphism StabG(v) ∼= Jb[2]. (In particular, this subgroup is canonically independent
of the choice of v ∈ Vb(k).) Here we write Jb for the Jacobian of the canonical smooth compactification Yb
of the curve Xb. After making some auxiliary choices (in particular, a subregular normal sl2-triple: see §1
below), we obtain a commutative diagram:

Xb(k) //

��

G(k)\Vb(k)

��
Jb(k) // H1(k, Jb[2]).

(For a precise statement and definition of the various arrows here, see §1.2 below. The diagram so obtained
is independent of any choices made.) In particular, taking the above diagram for k = R and k = Qp for every
prime p, together with the Hasse principle for G, shows that the set G(Q)\Vb(Q) contains enough elements
to describe the set Sel2(Yb).

We must show that these elements admit integral representatives. The arrow Xb(k) → G(k)\Vb(k)
in the diagram above has the crucial property that it arises from an inclusion X ⊂ V , defined over Q. In
particular, if we fix integral structures on X and V , then this morphism will have bounded denominators.
This immediately implies that, provided b ∈ B(Z) is ‘sufficiently divisible’, every element of the 2-Selmer set
Sel2(Yb) has an integral representative, cf. §1.5 below. In order to fix an integral structure on V , we find
it convenient to give G the structure of Chevalley group, and to take inside V an admissible lattice, in the
sense of [Bor70].

It remains to count the number of integral orbits with bounded invariants, in order to obtain an
upper bound for the average size of the 2-Selmer set. We accomplish this using Bhargava’s idea of counting
points by taking the average number of points in a set of translated fundamental domains. The arguments
follow those of [BG, §10], with some minor simplifications since we do not aim for an exact count. The only
place where serious work needs to be done is in the cutting off of the cusp of the fundamental domain, cf.
Proposition 2.6; we describe the contributions of the cusp here in terms of the ambient E6 root system, and
eliminate their contribution to the 2-Selmer count by a case-by-case calculation.

The above suffices to prove Theorem 0.1. We note that it seems likely, based on previous results,
that the average size of Sel2(Jb) exists, and equals 3; and that the same remarks apply to the average over
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any subset F ⊂ F0 defined by congruence conditions. On the other hand, the same heuristics suggest that
the average size of Sel2(Yb) can depend on the choice of congruence family, if only because the quantities

#Im(Yb(Qp)→ Jb(Qp)/2Jb(Qp))
#Jb(Qp)/2Jb(Qp)

can vary with b ∈ B(Qp). In §1.10 we exploit this by writing down curves Yb for which the above quantity
is equal to 1

4 . After imposing sufficiently many congruence conditions of this type, we carry out enough
of the sieve to force the set Sel2(Yb) to be small on average, giving Theorem 0.2. This dependence of the
average value of # Sel2(Yb) (assuming it exists) on the subset F is our excuse for not attempting to calculate
it exactly.

Generalizations

For the most part, the arguments of this paper are general, and apply verbatim to any of the families of
curves constructed in [Tho13]. The only part where this is not the case is the process of cutting off the
contribution of the cusp of the fundamental domain, as in Proposition 2.6. We have restricted ourselves to
the case D = E6 here in the interest of brevity and simplicity, but it would be interesting to try to carry out
the argument in other cases, for example when D = E7 or E8. It does seem that in these cases the necessary
calculations (cf. §4) become formidable!

One can also hope that the same circle of ideas will apply to the study of the full 2-Selmer groups
Sel2(Jb), and to the calculation of their exact average. The main barrier to doing this is in the first two steps
of the program outlined above, namely the construction of G(k)-orbits in Vb(k) corresponding to elements
of Jb(k), and the existence of integral representatives for 2-Selmer elements when k = Q. A solution to the
first problem, using techniques different to those used here, will be given in another paper [Tho].

Organization of this paper

The main new ideas in this paper are contained in §1 below. In this section, we define the representation
(G,V ) under consideration, and recall from [Tho13] its relation with the family of curves X → B above. We
also discuss our choice of integral structures, and how this choice interacts with our previous constructions.
In particular, in §1.10, we write down the congruence conditions that will be used to obtain the families
of Theorem 0.2. In §2, we carry out Bhargava’s arguments for counting points in our context. In §3, we
apply these results to deduce our main theorems. Finally, §4 contains information useful in the proof of
Proposition 2.6.

Acknowledgements and a correction

As will be clear to the reader, §2 below owes everything to the ideas of Manjul Bhargava. I wish to thank
him, as well as Arul Shankar, for many helpful conversations about this circle of ideas. I would also like to
thank the anonymous referees for their careful reading of the original version of this paper. In particular,
they observed a mistake in the table in §4 which has now been corrected.

While speaking about the work [Tho13], the author suggested that the methods of this paper might
show that # Sel2(Yb) is 1 on average. This was based on the erroneous belief that the appropriate product of
local densities would converge to 0. On the contrary, it seems likely, although we do not prove this, that this
average is strictly greater than 1 in any subset F ⊂ F0 defined by congruence conditions; for an analogous
statement in the hyperelliptic case, see [BS09, Lemma 4.3]. I would like to again thank Manjul Bhargava
for pointing out this error.
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1 Setup

We begin by recalling, following [Tho13], some basic aspects of the theory of Vinberg’s θ-groups. The reader
could also consult [Spr09] or [Pan05] for more information about algebraic groups or θ-groups, respectively.

Let k be a field of characteristic 0, and let H be a split, adjoint, simple and simply laced group
over k, of rank n. (Thus H is a reductive group over k with trivial center. The Dynkin diagram of H is
connected, because H is simple, and has no double edges, because H is simply laced.) We assume that H
is endowed with a pinning P = (T,B, {Xα}α∈S); thus T ⊂ H is a split maximal torus, S ⊂ Φ = Φ(H,T )
is a root basis, and Xα is a non-zero element of the α-root space hα. Let R denote the based root datum
of H corresponding to P, and let σ ∈ Aut(R) denote the image of −1, as in [Tho13, §2.2]. The pinning P
determines a splitting of the short exact sequence

0→ H → Aut(H)→ Aut(R)→ 0,

and we write σ ∈ Aut(H)(k) also for the corresponding automorphism of H. The principal involution of
H is defined to be θ = ρ̌(−1) · σ, where ρ̌ ∈ X∗(T ) is the sum of the fundamental coweights. We define
G = (Hθ)◦, and V = hdθ=−1. Then the group G is semi-simple, and V is an irreducible representation of G.
We have the following basic theorem (cf. [Pan05, Theorem 1.1]).

Theorem 1.1. V contains Cartan subalgebras of h. If c ⊂ V is a Cartan subalgebra, then the map G →
NH(c)/ZH(c) = W (H, c) is surjective, and the canonical restriction maps

k[h]H → k[V ]G → k[c]W (H,c)

are isomorphisms.

We refer to any Cartan subalgebra c ⊂ h which happens to lie in V as a Cartan subspace.
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1.1 Conjugacy classes

We say that an element v ∈ V is regular, resp. nilpotent, resp. semi-simple, if it is so when considered as an
element of h. We write ∆ ∈ k[V ]G for the restriction of a discriminant polynomial of H; thus ∆ is defined
up to scalar, is homogeneous of degree #Φ, and for v ∈ V we have ∆(v) 6= 0 if and only if v is regular
semi-simple. The restriction of ∆ to a Cartan subspace c vanishes to order 2 along each root hyperplane.
We write B = Spec k[V ]G. We can choose algebraically independent, homogeneous generators pd1 , . . . , pdn of
k[V ]G, where pdi is of degree di, and d1, . . . , dn are the invariant degrees of H; in particular B is isomorphic
to Ank . We write π : V → B for the natural quotient map.

Since H is pinned, V contains a canonical regular nilpotent element E =
∑
α∈S Xα, which is

contained in a unique normal sl2-triple (E,X,F ) ([Tho13, Corollary 2.16]). By definition, this means that
E,F ∈ V and X ∈ g satisfy the relations

[X,E] = 2E, [X,F ] = −2F, [E,F ] = X. (1.1)

We define κ = E + zV (F ) = E + {v ∈ V | [F, v] = 0}, an affine-linear subspace of V of dimension n, and
refer to κ as the Kostant section.

Theorem 1.2. 1. The composite κ→ V → V�G is an isomorphism.

2. Let b ∈ B(k) be such that ∆(b) 6= 0. Then Vb = π−1(b) consists of a single G-conjugacy class.

3. Let κreg. ss ⊂ κ denote the open subscheme of regular semi-simple elements. The natural product
morphism µ : G× κreg. ss → V reg. ss is finite étale.

Let v ∈ V . We say that v is reducible if either ∆(v) = 0, or ∆(v) 6= 0 and v is G(k)-conjugate to
an element of κ(k). This depends on the choice of the base field k; in particular, if k is algebraically closed
then every element of V is reducible. If v ∈ V is not reducible, we say that v is irreducible.

1.2 Subregular curves and Jacobians

If (e, x, f) is any normal sl2-triple (i.e. a tuple of elements e, f ∈ V , x ∈ g satisfying the relation (1.1) then we
can consider the associated slice e+ zV (f) ⊂ V . The group Gm has a contracting action on this affine linear
subspace of V , with fixed point e. We now describe this action. Let ρ : Gm → H be the cocharacter with
dρ(1) = x. If t ∈ Gm and v ∈ e+ zV (f), we define t · v = ρ(t−1) · t2v. This action satisfies π(t · v) = t2 · π(v).
See [Tho13, §3.1] for more details.

Now suppose that (e, x, f) is a normal sl2-triple, and that e is a subregular nilpotent (i.e. e is
subregular when considered as an element of h). Let X = e+ zV (f).

Theorem 1.3. The induced morphism X → B is faithfully flat, with reduced connected fibers of dimension
1. If b ∈ B(k), then Xb is smooth if and only if ∆(b) 6= 0; in this case, let Yb denote the canonical projective
completion of Xb, and let Jb denote the Jacobian variety of Yb. Then there is a canonical isomorphism
StabG(κb) ∼= Jb[2] of finite k-groups.

See [Tho13, Corollary 4.9]. In order to avoid introducing unnecessary notation, we now assume that
H is of type E6. This assumption will remain in effect for the rest of this paper. In this case, we have the
following additional result.

Theorem 1.4. 1. We can choose invariant polynomials p2, p5, p6, p8, p9, p12 ∈ k[V ]G and co-ordinates
x, y ∈ k[X] such that the morphism X → B is given by:

X : y3 = x4 + y(p2x
2 + p5x+ p8) + p6x

2 + p9x+ p12.

2. Let Y → B denote the natural compactification of X as a family of plane quartic curves, and let
P∞ ⊂ Y denote the divisor at infinity. Let b ∈ B(k), and suppose that ∆(b) 6= 0. Then the following
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diagram commutes:

Xb(k) //

��

G(k)\Vb(k)

��
Jb(k) // H1(k, Jb[2]).

There arrows in this diagram as follows. The arrow Xb(k) → Jb(k) is induced by the Abel–Jacobi
map Yb ↪→ Jb, sending P∞ to the origin. The map Xb(k) → G(k)\Vb(k) is induced by the in-
clusion X ↪→ V . The map G(k)\Vb(k) ↪→ H1(k, Jb[2]) is the composite of the classifying map
G(k)\Vb(k) ↪→ H1(k,StabG(κb)), which sends the orbit G(k) · κb to the identity, and the isomorphism
H1(k,StabG(κb)) ∼= H1(k, Jb[2]). The map Jb(k) → H1(k, Jb[2]) is the connecting homomorphism of
the Kummer exact sequence associated to the isogeny [2] : Jb → Jb.

See [Tho13, Theorem 4.14].

1.3 Restricted roots

It is easy to show (using, for example, the results of [Ree10]) that G is abstractly isomorphic to PSp8, and
V corresponds under this isomorphism to the 42-dimensional subrepresentation of ∧48; however, we will not
use this here.

We write Φ = Φ(H,T ) for the root system of H, and Φ = Φ+ ∪ Φ− for the decomposition into
positive and negative parts induced by the root basis S. The root system Φ(G,T θ) will also play a role; in
order to distinguish elements of X∗(T ) and X∗(T θ), we will generally write elements α, β, . . . ∈ X∗(T ) using
Greek letters, and elements a, b, . . . ∈ X∗(T θ) using Roman letters. We write Φ/σ for the set of orbits of σ
on Φ.

Lemma 1.5. 1. The map X∗(T ) → X∗(T θ) is surjective, and the group G is adjoint. In particular,
X∗(T θ) is spanned by Φ(G,T θ).

2. Let α, β ∈ Φ. Then the image of α in X∗(T θ) is non-zero, and α, β have the same image if and only
if either α = β or α = σ(β).

Proof. The fixed group T θ is connected, and contains regular elements of T ; see [Ree10, Lemma 3.1]. The
group G has trivial center, by [Ree10, §3.8]. For the second part, see [Ree10, §3.3].

We identify Φ/σ with its image in X∗(T θ); this makes sense by Lemma 1.5. The Cartan decompo-
sition induces a decomposition into θ-stable subspaces:

h = t⊕
⊕
a∈Φ/σ

ha, (1.2)

with t = tθ ⊕ V0 and ha = ga ⊕ Va. Here V0 ⊂ t is 2-dimensional, and each space ga, Va is either 0 or
1-dimensional. There is a corresponding decomposition

V = V0 ⊕
⊕
a∈ΦV

Va. (1.3)

We distinguish three cases, based on the value of s = (−1)〈α,ρ̌〉:

1. a = {α} and s = 1. In this case Va = 0 and ga is spanned by Xα.

2. a = {α} and s = −1. In this case Va is spanned by Xα and ga = 0.

3. a = {α, σ(α)}, with α 6= σ(α). In this case Va is spanned by Xα − sXσ(α) and ga is spanned by
Xα + sXσ(α).
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We write ΦV for the set of elements a ∈ Φ/σ that appear as characters of T θ in V . We write Φ+
V for the

set of elements in ΦV which are images of elements of Φ+, and define Φ−V similarly. Then ΦV is the disjoint
union of Φ+

V and Φ−V ; we have #Φ+
V = #Φ−V = 20. We write SV ⊂ Φ+

V for the image of the root basis S; we
have #SV = #S/σ = 4.

We now introduce a root basis SG ⊂ Φ(G,T θ). For this, it is convenient to introduce some notation.
We number the simple roots α1, . . . , α6 ∈ S as in [Bou68, Planche V]:

H :
α1 α3 α4 α5 α6

α2

In this diagram, the pinned automorphism σ acts by reflection about the vertical axis. We define
a1, a2, a3, a4 ∈ X∗(T θ) to be the respective images of the roots α3 + α4, α1, α3, and α2 + α4. Then the set
SG = {a1, . . . , a4} ⊂ Φ(G,T θ) is a root basis for G:

G :
a1 a2 a3 a4

We will use the decomposition Φ(G,T θ) = Φ(G,T θ)+∪Φ(G,T θ)− corresponding to this choice of root basis.

Since G is adjoint, an element b ∈ X∗(T θ) admits a unique decomposition b =
∑4
i=1 nai(b)ai. For example,

let a0 ∈ ΦV denote the image of the highest root α0 ∈ Φ+ of H. Then a0 = a1 +2a2 +3a3 +2a4 = (1, 2, 3, 2).
We define a partial order on X∗(T θ): a ≥ b if and only if nai(a − b) ≥ 0 for each i = 1, . . . 4. In §4 below,
we have displayed a list of the elements of ΦV ∪ {0}, along with the Hasse diagram of the induced partial
order on this set. It will be helpful to note the following:

1. We have a0 ≥ a for all a ∈ ΦV .

2. It is not true that nai(a) ≥ 0 for all a ∈ Φ+
V .

3. With the numbering of §4, we have Φ+
V = {1, . . . , 20}, and SV = {17, 18, 19, 20}.

If S′ ⊂ S is a σ-invariant set of simple roots, then we write pS′ ⊂ h for the parabolic Lie subalgebra generated
by the subspaces t and hα (α ∈ Φ− ∪ S′). Thus p∅ is the unique Borel subalgebra of h containing F and
pS = h. We write lS′ ⊂ pS′ for the Lie subalgebra generated by the subspaces t and hα (α ∈ −S′∪S′). Then
lS′ is the standard Levi subalgebra of pS′ (with respect to the maximal torus T ). Each algebra lS′ and pS′

is θ-stable. We write Φ+
V,S′ ⊂ Φ+

V for the subset of weights of T θ which appear in pdθ=−1
S′ .

The following lemma will be used later in the analysis of the irreducible elements in the cusp of a
fundamental domain.

Lemma 1.6. Let v ∈ V , and decompose v = v0 +
∑
a∈ΦV

va according to the Cartan decomposition (1.3).
Suppose that one of the following holds:

1. We have va = 0 if a ∈ Φ+
V − SV and va 6= 0 if a ∈ SV .

2. There is a proper σ-invariant subset S′ ⊂ S such that va = 0 if a ∈ Φ+
V − Φ+

V,S′ .

3. There exists ai ∈ SG such that va = 0 if nai(a) > 0.

Then v is reducible.

Proof. We consider the first case. We show that v is G(k)-conjugate to an element of κ(k). By hypothesis,
we can write v =

∑
α∈S λαXα + v0 +

∑
a∈Φ−V

va, for some scalars λα ∈ k×. Since v ∈ V , we have λσ(α) = λα

for each α ∈ S. Since the group H is adjoint, we can find t ∈ T (k) such that α(t) = λ−1
α for each α ∈ S; it

is clear that we then have t ∈ T θ(k).
Replacing v by t · v, we can thus assume that v =

∑
α∈S Xα + v0 +

∑
a∈Φ−V

va. A standard result

in the theory of the Kostant section (cf. [Kot99, §2.4]) says that the natural product morphism induces an
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isomorphism U × κ ∼= E + p∅, where U is the unipotent radical of Borel subgroup of H with Lie algebra
p∅. Taking θ-invariants, we obtain an isomorphism Uθ × κ ∼= E + pdθ=−1

∅ . Consequently, v ∈ E + pdθ=−1
∅ is

Uθ(k)-conjugate to an element of κ(k).
We now consider the second case, which is equivalent to asking that v ∈ pdθ=−1

S′ . We will show that
in this case ∆(v) = 0. Suppose for contradiction that ∆(v) 6= 0. Then the Lie centralizer zh(v) is a Cartan
subspace of V , which is contained in a unique Levi subalgebra l′S′ ⊂ pS′ , which is necessarily θ-stable. The
canonical projection l′S′ → lS′ is θ-equivariant, and we deduce that θ acts as −1 on the center of lS′ (as the
center of l′S′ is contained in zh(v)).

However, this contradicts the fact that the center of lS′ is spanned by the elements dω̌α(1) (α ∈
S − S′), where the ω̌α ∈ X∗(T ) (α ∈ S) are the fundamental coweights. Indeed, the involution θ permutes
the elements ω̌α among themselves, so as long as S 6= S′ there must exist at least a 1-dimensional subspace
of the center of lS′ which is fixed pointwise by θ.

We now consider the third case. We will again show that ∆(v) = 0, first under the additional
hypothesis that va = 0 if nai(a) 6= 0. Then v is fixed by a non-trivial subtorus of T θ, namely Ai = ∩j 6=i ker aj .
In particular, v cannot be regular, as regular elements of V have finite stabilizer in G. Now suppose that
v ∈ V satisfies instead the condition va = 0 if nai(a) > 0, as in the statement of the lemma. We suppose
for contradiction that v is irreducible; then ∆(v) 6= 0, and v is regular semi-simple. In particular, the G-
conjugacy class of v in V is closed. However, the closure of the orbit Ai · v contains an element w satisfying
wa = 0 if nai(a) 6= 0. In particular, w cannot be regular semi-simple. This contradiction concludes the
proof.

1.4 Integral structures

We now assume that k = Q, and introduce integral structures on G and V . The torus T θ ⊂ G is split
maximal, and induces the Cartan decomposition g = tθ ⊕

⊕
a∈Φ(G,T θ) ga. We choose a Chevalley basis with

respect to this decomposition. This means (cf. [Bor70]) a choice of vector xa ∈ ga for each a ∈ Φ(G,T θ)
satisfying the following conditions:

1. Let ha = [xa, x−a]. Then [ha, xb] = 〈a∨, b〉.

2. If a, b, a + b ∈ Φ(G,T θ), then [xa, xb] = ±(pa,b + 1)xa+b, where pa,b is the greatest integer such that
a− pa,bb is a root.

The elements ha and xa give a basis for a Z-form gZ ⊂ g. Moreover, the notion of admissible Z-form of
V is defined [Bor70, §2]; we choose an admissible Z-form V ⊂ V which contains the nilpotent elements
E, e ∈ V fixed above. An integral model of the group G can be obtained by taking the Zariski closure of G
inside GL(V); we will abuse notation slightly by now writing G for this choice of integral model. With these
choices, the Cartan decomposition V = V0 ⊕

⊕
a∈ΦV

Va is defined over Z [Bor70, Lemma 2.3]; in particular,
if v ∈ V(Z) is written as v = v0 +

∑
a∈ΦV

va, then we have v0, va ∈ V(Z). We scale the discriminant ∆ so
that ∆ ∈ Z[V].

Let K ⊂ G(R) be a maximal compact subgroup. Let P = T θN ⊂ G denote the Borel subgroup
containing T θ and corresponding to the root basis SG, and let P = T θN ⊂ G denote the opposite Borel
subgroup. A Siegel set is, by definition, any subset S ⊂ G(R) of the form S = ω ·Tc ·K, where ω ⊂ N(R) is
a compact subset and Tc = {t ∈ T θ(R)0 | ∀a ∈ SG, a(t) ≤ c}. Since G is a Chevalley group, we have access
to the following result:

Theorem 1.7. 1. G(Z) has a unique cusp: we can choose ω ⊂ N(R), c > 0 so that G(Z) ·S = G(R).

2. G(Z) has class number 1: we have G(A∞) = G(Q) · G(Ẑ). (Here A∞ =
∏′
pQp denotes the ring of

finite adeles of Q.)

Proof. For the first point, see [Bor66, §6, Lemma 1] and [PR94, Theorem 4.15]. For the second, see [PR94,
Theorem 8.11, Corollary 2].
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In what follows we will fix a choice of ω and c so that the condition G(Z) · S = G(R) holds.
We now choose less canonical integral structures for X, Y , and B. A choice of invariant polynomials
p2, . . . , p12 ∈ Q[V ]G has been fixed in Theorem 1.4; after rescaling p2, . . . , p12 and the co-ordinates x, y on
X, we can assume that p2, . . . , p12 lie in Z[V]. We define B = SpecZ[p2, . . . , p12], and write π : V → B for
the induced morphism; the fiber over Q recovers the categorical quotient V → B = V�G.

We define X = SpecZ[x, y, p2, . . . , p12]; then X is isomorphic to A7
Z, and the morphism X → B

extends to a morphism X → B. We write Y for the natural compactification of X as a closed subscheme of
P2
B. We have the following elementary fact, which we record as a lemma for later reference. (The Gm-actions

on κ and X here are the actions coming from the fixed sl2-triples, as at the beginning of §1.2. The Gm-action
on B is the one arising from the inclusion Q[B] = Q[V ]G ⊂ Q[V ].)

Lemma 1.8. Let p be a prime. There exists an integer N0 ≥ 1, not depending on p, such that for any
b ∈ B(Zp) (resp. v ∈ X (Zp)), we have N0 ·κb ∈ V(Zp) (resp. N0 · v ∈ V(Zp)). In particular, if b ∈ N2

0 · B(Z),
then b ∈ π(V(Z)).

We conclude this section with a fact about integral orbits.

Theorem 1.9. Let b ∈ B(Z) satisfy ∆(b) 6= 0. Then Vb(Z) consists of only finitely many G(Z)-orbits.

Proof. This follows from [BHC62, Theorem 6.9].

1.5 Integral orbits and algebraic curves

Let b ∈ B(Z) be such that ∆(b) 6= 0. According to Theorem 1.4, we have a canonical inclusion G(Q)\Vb(Q) ⊂
H1(Q, Jb[2]). We write Ob ⊂ H1(Q, Jb[2]) for the image of Vb(Z). In this section we prove the following
result.

Theorem 1.10. There exists an integer N3 ≥ 1 such that if b ∈ N3 · B(Z), then Ob contains the subset
Sel2(Yb) ⊂ H1(Q, Jb[2]).

To prove the theorem, it suffices to prove the corresponding local statement. Let p be a prime, and
let b ∈ B(Zp) be a point such that ∆(b) 6= 0. Let Ob,p ⊂ H1(Qp, Jb[2]) denote the image of Vb(Zp).

Lemma 1.11. There exists an integer N3 ≥ 1, not depending on p, such that if b ∈ N3 · B(Zp), then Ob,p
contains the image of Yb(Qp) in H1(Qp, Jb[2]) under the Abel–Jacobi map.

We first explain how Lemma 1.11 implies Theorem 1.10. Let c ∈ H1(Q, Jb[2]) be a class correspond-
ing to an element of Sel2(Yb). We claim that c corresponds to an element of G(Q)\Vb(Q); equivalently, that
c lies in the kernel of the natural map H1(Q, Jb[2]) → H1(Q, G). The map H1(Q, G) →

∏
vH

1(Qv, G) is
injective. Indeed, there is a short exact sequence with G′ the universal cover of G:

1 //µ2
//G′ //G //1,

hence a commutative diagram

H1(Q, G) //

��

H2(Q, µ2)

��∏
vH

1(Qv, G) // ∏
vH

2(Qv, µ2).

The horizontal arrows are injective (because the cohomology of G′ is trivial), and the right-hand arrow is
injective (by class field theory). It follows that the left-hand arrow is injective. It therefore suffices to show
that for every place v of Q, the image cv ∈ H1(Qv, Jb[2]) of c has trivial image in H1(Qv, G). However, cv
lies, by hypothesis, in the image of the natural map Yb(Qv) → H1(Qv, Jb[2]). It follows from Theorem 1.4
that cv corresponds to an element of G(Qv)\Vb(Qv); this establishes the claim.

Let us now take again b ∈ N3 ·B(Z) such that ∆(b) 6= 0, with N3 ≥ 1 as in the lemma. Take a vector
v ∈ Vb(Q) whose image in H1(Q, Jb[2]) lies in Sel2(Yb). By Lemma 1.11, G(Qp) · v contains an element of
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Vb(Zp); thus, there exists gp ∈ G(Qp) such that gp · v ∈ Vb(Zp). By Theorem 1.7, we can find g ∈ G(Q) such
that gg−1

p ∈ G(Zp) for every prime p. It follows that g · v ∈ V(Zp) for every prime p, and hence g · v ∈ V(Z),
as desired.

Proof of Lemma 1.11. Let c ∈ B(Zp). We claim that if c ∈ 24 · B(Zp) (which is no condition if p 6= 2 – by
definition, 24 · B(Zp) denotes the set of points b ∈ B(Zp) such that pi(b) is divisible by 24i in Zp), then every
element of the image of Yc(Qp) → Jc(Qp)/2Jc(Qp) is represented either by P∞ or an element of Xc(Zp).
Indeed, this follows from the following observations:

• Let c = 24 · b, b ∈ B(Zp). Let P ∈ Yb(Zp), and suppose that the image of P under the natural
identification Yb(Qp) = Yc(Qp) is not contained in the subset Xc(Zp) ⊂ Yc(Zp). Then P and P∞ have
the same image in Yb(Zp/24pZp).

• Let F ∈ ZpJX1, . . . , Xg, Y1, . . . , YgK be a g-dimensional formal group law (for some g ≥ 1). If x ∈
ker(F (pZp)→ F (pZp/24pZp)), then x is 2-divisible in F (pZp) (as follows from [CX08, Proposition 9]).

• Let b ∈ B(Zp) be such that ∆(b) 6= 0, and let Jb denote the identity component of PicYb/Zp , a smooth
quasi-projective scheme over Zp (see [BLR90, §9.3, Theorem 1]; we use here that the special fiber of
Yb is geometrically irreducible). Let F now denote the g-dimensional formal group law which is the
completion of Jb along its identity section. If P ∈ Yb(Zp) has the same image in Yb(Zp/24pZp) as the
point P∞ at infinity, then the Cartier divisor (P )− (P∞) ∈ Jb(Zp) lies in the subgroup

ker(F (pZp)→ F (pZp/24pZp)) ⊂ F (pZp) = ker(Jb(Zp)→ Jb(Fp)).

Let N0 ≥ 1 be the integer of Lemma 1.8, let N3 = 24N2
0 , and assume now that b = N2

0 · c, c ∈ 24B(Zp). We
then have a commutative diagram:

Xb(Qp)

N−1
0

��

// G(Qp)\Vb(Qp) //

N−2
0

��

H1(Qp, Jb[2])

N−2
0

��
Xc(Qp) // G(Qp)\Vc(Qp) // H1(Qp, Jc[2]).

The vertical arrows are bijective. The composites of the horizontal arrows agree with the composites of the
descent and Abel–Jacobi maps, by Theorem 1.4.

Suppose that v ∈ Vb(Qp), and let v′ = N−2
0 v. If v has the same image in H1(Qp, Jb[2]) as P∞ (i.e.

if this image is trivial), then the G(Qp)-orbit of v′ contains κc, so by Lemma 1.8, κb = N0 · κc ∈ V(Zp).
If the image of v in H1(Qp, Jb[2]) is non-trivial but still comes from Yb(Qp), then the G(Qp)-orbit of v′

contains an element in the image of Xc(Zp), and so the G(Qp)-orbit of v contains an element in the image
of N0 · Xc(Zp) ⊂ Xb(Zp); applying Lemma 1.8 once more, we see that N0 · Xc(Zp) ⊂ Vb(Zp). This concludes
the proof.

1.6 Height

If b ∈ B(R), we define its height as follows:

H(b) = sup
i
|pi(v)|deg(∆)/i.

If v ∈ V (R), we define H(v) = H(π(v)). By construction, H(v) is homogeneous of degree deg ∆ = 72; if
λ ∈ R×, then H(λv) = |λ|72H(v). We note that this very much depends on the choice of polynomials pi.
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1.7 Measures on G

Let K ⊂ G(R) and P ⊂ G denote respectively the maximal compact subgroup and Borel subgroup fixed in
§1.4. According to the theory of the Iwasawa decomposition, the natural product maps

N(R)× T θ(R)0 ×K → G(R), T θ(R)0 ×N(R)×K → G(R)

are diffeomorphisms. If t ∈ T θ(R), let δ(t) =
∏
a∈Φ(G,T θ)− a(t) = det Ad(t)|LieN(R).

Lemma 1.12. A Haar measure on G(R) is dg = dt dn dk = δ(t)−1dn dt dk. More precisely, let dt, dn, dk be
Haar measures on the groups T θ(R), N(R), and K, respectively. Then the integral∫

g∈G(R)

f(g) dg =

∫
t∈T θ(R)◦

∫
n∈N(R)

∫
k∈K

f(tnk) dt dn dk =

∫
n∈N(R)

∫
t∈T θ(R)◦

∫
k∈K

f(ntk)δ(t)−1 dn dt dk

defines a Haar integral on G(R).

Proof. This follows from well-known properties of the Iwasawa decomposition; see, for example, [Lan75, Ch.
III, §1].

We now fix for the rest of this paper a left-invariant top form ωG on G. If v is a place of Q, then
we define a Haar integral on G(Qv) using the volume element dg = |ωG|v, where | · |v is the usual absolute
value if v = ∞ and |p|v = p−1 if v = p. We use the volume element |ωG|∞ to fix Haar measures on the
groups T θ(R)0, K, and N(R), as follows. We give T θ(R)0 the measure pulled back from the isomorphism∏
a∈SG a : T θ(R)0 ∼= R4

>0; R>0 gets its standard Haar measure d×λ = dλ
λ , where dλ is the usual Lebesgue

measure. We give K its probability Haar measure. There is now a unique choice of Haar measure dn on
N(R) such that |ωG|∞ = dt dn dk; we make this choice.

1.8 Measures on V and B

We fix a differential top form ωV on V induced by the integral structure on V; it is determined up to sign.
If v is a place of Q, then the volume element dv = |ωV |v determines a Haar measure on V (Qv). With this
choice, the spaces V(Zp) (p a prime) and V(Z)\V (R) have volume 1. We write ωB = dp2 ∧ · · · ∧ dp12, and
ωκ for the pullback of this form under the canonical isomorphism κ → B. Again, if v is a place of Q, then
the volume element db = |ωB |v determines a measure on B(Qv). If p is a prime, then B(Zp) has volume 1;
if X > 1 is a real number, then the set {b ∈ B(R) | 1 ≤ H(b) ≤ X} has volume X

∑
i i/72 = X7/12.

Proposition 1.13. 1. Let µκ : G × κ → V denote the product map. Then there exists W0 ∈ Q× such
that µ∗κωV = W0 · ωG ∧ ωκ.

2. Let c ⊂ V be a Cartan subspace, and let µc : G × c → V denote the product map. Then there exists
W1 ∈ Q×, not depending on the choice of c, such that µ∗cωV = W1 · ωG ∧ π|∗cωB.

Proof. 1. The morphism µκ is étale. It follows that there exists a non-vanishing regular function f ∈
Q[G×κ] such that µ∗κωV = fωG∧ωκ. The form ωV is G-invariant, so the function f must be pulled back
from Q[κ]. Since κ is abstractly isomorphic to affine space, the only non-vanishing regular functions
are the constants.

2. Let ωc be an invariant differential top form (with respect to the vector space structure on c). Again,
we can write µ∗cωV = f1ωG ∧ ωc for some function f1 ∈ Q[G× c]G = Q[c]. We write π|∗cωB = f2ωc for
some function f2 ∈ Q[c]. We must show that f1 and f2 are equal, up to scalar.

We define a new action of G×Gm on G×c by (g, λ) ·(h, x) = (gh, λx). Then (g, λ)∗f1 = λdimV−dim cf1;
in particular, f1 is homogeneous of degree dimV − dim c. On the other hand, the function f2 is
homogeneous of degree

∑
i(di − 1). We now use the string of equalities:

#Φ = deg ∆ = 2
∑
i

(di − 1) = 2(dimV − dim c).
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It is easily seen that f1 and f2 vanish along the same set; moreover, f2 vanishes to order 1 along each
root hyperplane, and nowhere else. As the functions f1 and f2 are homogeneous of the same degree,
they must be equal up to scalar. The result follows.

1.9 Constructing special sections over R
The space V (R) contains finitely many G(R)-conjugacy classes of Cartan subalgebras; let c1 . . . , cn be rep-
resentatives. For each i = 1, . . . , n, the natural map π|creg. ss

i
: creg. ss

i → B(R)reg. ss is a proper local

homeomorphism. Consequently, there exists (cf. [BCR98, Proposition 9.3.9]) a finite cover Uij of creg. ss
i

by open semi-algebraic subsets such that each π|Uij is a homeomorphism. Since a semi-algebraic set has
finitely many connected components ([BCR98, Theorem 2.4.4]), we can suppose moreover that each Uij is
connected.

Let L1, . . . , Lr denote the sets π({v ∈ Uij | H(v) = 1}), in any order, and let si : Li → V (R) denote
the corresponding sections. Then Li ⊂ {b ∈ B(R) | ∆(b) 6= 0, H(b) = 1} is a connected semi-algebraic open
subset, and si : Li → V (R) is a semi-algebraic map. We have an equality (Λ = R>0):

V (R)reg. ss = ∪iG(R) · Λ · si(Li).

This union need not be disjoint, but this is not a problem for us. If v ∈ si(Li), let ni = # StabG(R)(v); this
integer is independent of the choice of v.

Proposition 1.14. Let f : V (R)→ C be a continuous function of compact support. Then for any i = 1, . . . , r
we have ∫

v∈G(R)·Λ·si(Li)
f(v) dv =

|W1|∞
ni

∫
b∈Λ·Li

∫
g∈G(R)

f(g · si(b)) dg db,

where W1 ∈ Q× is the scalar of Proposition 1.13. Consequently, we have

vol
(
S · [1, X1/72] · si(Li)

)
≤ |W1|∞ vol(S) · vol([1, X1/72] · Li).

Proof. Let c ⊂ V (R) be the Cartan subspace corresponding to Li. Let us write µi : G(R)× (Λ ·Li)→ V (R)
for the morphism (g, λ · l) 7→ g · λsi(l). It follows from Proposition 1.13 that µ∗iωV = W1ωG ∧ ωB . The
displayed formula now follows from the fact that µi is a proper local diffeomorphism onto its image, with
fibers of cardinality ni.

1.10 Constructing special sections over Qp

In this section, we construct the congruence conditions that will be used to prove Theorem 0.2.

Proposition 1.15. Let p be a prime congruent to 1 modulo 6. There exists an open compact subset Bp ⊂
B(Zp) such that for all b ∈ Bp, we have Jb(Qp)/2Jb(Qp) ∼= (Z/2Z)2, the map Yb(Qp)→ Jb(Qp)/2Jb(Qp) has
image reduced to the identity, and Xb(Zp) 6= ∅.

Proof. We verify by explicit calculation that the curve y3 = x4 − p2 satisfies the conditions of the proposi-
tion. In fact, we show that the special fiber of the minimal regular model contains a unique component of
multiplicity one, and the special fiber of the Néron model has component group Z/2Z× Z/2Z× Z/3Z, and
purely unipotent connected component. In order to do this, we use the quotient method of Lorenzini [LT02,
§2]. Let $ be a 6th root of p, and let K = Qp($). The extension K/Qp is Galois, since 6 divides p− 1. Let
Y denote the projective closure of y3 = x4 − p2 in P2

Qp . The curve YK is isomorphic to the curve Z ⊂ P2
K ,

projective closure of the equation Y 3 = X4 − 1, via the substitutions x = $3X, y = $4Y .
Let OK ⊂ K denote the ring of integers, and let Z ⊂ P2

OK denote the projective closure of the affine
curve cut out by the same equation as Z. Then Z is a smooth, projective curve over OK with generic fiber
Z. In particular, Z is regular. The group G = Gal(K/Qp) acts on Z in a manner covering its action on OK ,
and we write Y for the quotient Z/G. Then Y is normal; it is regular outside of the points in the special
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fiber which are the images of the fixed points of the action of G on ZOK/($). At such points, it has quotient
singularities. Resolving these quotient singularities as in [LT02, §2.15] gives a regular model Y ′ of Y . The
intersection graph of the special fiber of Y ′ is as follows:

3 3 3

6

22

5 4 3 2 1

Here the vertices correspond to the reduced irreducible components of the special fiber of Y ′; two vertices
are connected by an edge if the corresponding components intersect. (It turns out that for this curve, the
non-zero intersection multiplicties are all equal to 1.) Each vertex is labeled with the multiplicity of the
corresponding component in the special fiber of Y ′. The desired properties now follow from the description
of the component group of the Néron model recalled, for example, in [Lor00, Introduction]. To see that our
curve has Zp-points, we observe that there are solutions with x = 1 (since 1− p2 is a cube in Z×p ).

Let b0 ∈ B(Zp) be the point corresponding to the equation y3 = x4 − p2. It is now easy to see that
any sufficiently small open compact neighborhood Bp ⊂ B(Zp) of b0 will have the desired properties.

Proposition 1.16. Let U ⊂ B(Zp) be an open compact subset such that for all b ∈ U , ∆(b) 6= 0. Let
Vp = (G(Qp) · κ(Qp)) ∩ V(Zp) ∩ π−1(U). Then, after possibly shrinking U , the following statements hold:

1. The set {g ∈ G(Qp) | gκb ∈ V(Zp)} is independent of b ∈ U . We write g1, . . . , gr for representatives of
the G(Zp)-StabG(Qp)(κb)-double cosets in this set.

2. The quantities # StabG(Qp)(κb) and # StabG(Zp)(giκb) are independent of b ∈ U .

3. Vp ⊂ V(Zp) is open compact.

Moreover, the constant W0 ∈ Q× being as in Proposition 1.13, we have

vol(Vp) = |W0|p vol(G(Zp)) vol(U)

r∑
i=1

1

# StabG(Zp)(giκb)
,

for any b ∈ U .

Proof. In order to simplify notation, let us use the subscript (·)U to denote intersection with π−1(U). The
orbit map µU : G(Qp) × κ(Qp)U → V (Qp)U is finite and a local analytic isomorphism. If b ∈ U , let
G(Qp)b = {g ∈ G(Qp) | gκb ∈ V(Zp)} = µ−1

U (V(Zp)U ) ∩ pr−1
2 (b). Choose b0 ∈ U . It is easy to see that the

set {b ∈ U | G(Qp)b = G(Qp)b0} is open, so after replacing U by an open compact neighborhood of b0, we
can assume that G(Qp)b = G(Qp)b0 for all b ∈ U .

Let p : Z → κreg. ss denote the stabilizer scheme; it is a finite étale group scheme. Let y1, . . . , ys
be the distinct elements of p−1(b0) in Z(Qp). After possibly shrinking U further, we can find disjoint open
neighborhoods V1, . . . , Vs of y1, . . . , ys in Z(Qp) such that each restriction p|Vi : Vi → U is an analytic
isomorphism, and p−1(U) = V1 ∪ · · · ∪ Vs. In particular, # StabG(Qp)(κb) is independent of b ∈ U .

We now show that we can choose U so that the quantity

# StabG(Zp)(giκb) = #
(
p−1(b)(Qp) ∩ g−1

i G(Zp)gi
)

is independent of b ∈ U . Since the group g−1
i G(Zp)gi ⊂ G(Qp) is open compact, we can assume, after

possibly shrinking U , that for each j = 1, . . . , s, either Vj ⊂ g−1
i G(Zp)gi or Vj ∩ g−1

i G(Zp)gi = ∅. This
implies the desired property. We can write Vp = ∪ri=1G(Zp) · gi · κ(Qp)U . In particular, Vp is an open
compact subset of V(Zp) and satisfies the points 1–3 above.
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It remains to calculate the volume of Vp. Proposition 1.13 implies the formula

vol(Vp) =

r∑
i=1

|W0|p
∫
b∈U

∫
g∈G(Zp)

1

# StabG(Zp)(giκb)
dg db = |W0|p vol(G(Zp)) vol(U)

r∑
i=1

1

# StabG(Zp)(giκb)
,

as desired.

If v ∈ V(Zp)reg. ss, then we define (following [BS, §3.2])

mp(v) =

r∑
i=1

# StabG(Qp)(v)

# StabG(Zp)(vi)
,

where v1, . . . , vr are representatives for the G(Zp)-orbits of (G(Qp) · v) ∩ V(Zp). The volume of the set Vp

appearing in Proposition 1.16 can thus be written as vol(Vp) = |W0|p mp(v)·vol(U)·vol(G(Zp))
# StabG(Qp)(v) , for any v ∈ Vp.

Similarly, if v ∈ V(Z)reg. ss, then we define

m(v) =

r∑
i=1

# StabG(Q)(v)

# StabG(Z)(vi)
,

where v1, . . . , vr are representatives for the G(Z)-orbits of (G(Q) · v) ∩ V(Z). (There are finitely many by
Theorem 1.9.)

Lemma 1.17. For any v ∈ V(Z)reg. ss, we have m(v) =
∏
pmp(v).

Proof. For each g ∈ G(Q) such that gv ∈ V(Z), we have a natural bijection

StabG(Z)(gv)\StabG(Q)(v) = G(Z)\G(Z)g StabG(Q)(v),

which sends z ∈ StabG(Q)(v) to G(Z)gz. Let v1, . . . , vr ∈ V(Z) be representatives for the set G(Z)\(G(Q) ·
v ∩ V(Z)). We then have

#G(Z)\ {g ∈ G(Q) | gv ∈ V(Z)} =

r∑
i=1

# StabG(Z)(vi)\StabG(Q)(v) = m(v).

The same argument applies locally, to give #G(Zp)\{g ∈ G(Qp) | gv ∈ V(Zp)} = mp(v). The result now
follows from the bijection of sets:

G(Z)\ {g ∈ G(Q) | gv ∈ V(Z)} =
∏
p

G(Zp)\ {g ∈ G(Qp) | gv ∈ V(Zp)} .

The injectivity follows from the fact that G(Z) = G(Q) ∩ G(Ẑ); the surjectivity follows from the fact (cf.

Theorem 1.7) that G(A∞) = G(Q)G(Ẑ).

2 Counting points

In this section, we come to the problem of counting points in V(Z) up to G(Z)-equivalence. We continue
with the notation and assumptions of the previous section; thus we have a semi-simple group G acting on the
representation V , and we have fixed integral structures V and B on the spaces V and B = V�G, respectively.
The height function H is defined on B(R). If A ⊂ V(Z) is any subset, then we write Airr for the subset of
Q-irreducible points of A.

In §1.9, we have constructed open semi-algebraic subsets L ⊂ {b ∈ B(R) | ∆(b) 6= 0, H(b) = 1} and
sections s : L→ V (R) of π; fix one of these. Let Λ = R>0; then the natural product map L× Λ→ B(R) is
an open immersion. We will prove:
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Theorem 2.1. There exist constants C, δ > 0, not depending on the choice of L, such that:

#G(Z)\{v ∈ [G(R) · Λ · s(L)] ∩ V(Z)irr | H(v) < X} ≤ C · vol([1, X1/72] · L) +O(X7/12−δ).

The rest of this section is devoted to the proof of this theorem. We also deduce below a slight
extension (Theorem 2.8), where we impose congruence conditions at finitely many primes; this will be the
version used in applications to the arithmetic of algebraic curves.

Remark 2.2. The constant C is the price we pay for using a Siegel set instead of a true fundamental domain,
and not keeping track of the orders of stabilizers. Since we seek only qualitative results, this is not a problem
for us. One could easily make the leading term here exact by the systematic use of multisets, as in [BG,
§10]. We emphasize that we do not use multisets here.

2.1 Preliminary reductions

Let S = ω · Tc ·K ⊂ G(R) be as in Theorem 1.7; in particular, we have G(Z) ·S = G(R). It follows that
every element of (G(R) · Λ · s(L)) ∩ V(Z) is G(Z)-conjugate to an element of S · Λ · s(L). We obtain

#G(Z)\{v ∈ (G(R) · Λ · s(L)) ∩ V(Z)irr | H(v) < X} ≤ #
(
S · [1, X1/72] · s(L) ∩ V(Z)irr

)
.

The same estimate holds if S is replaced by any right translate Sh, h ∈ G(R). Accordingly, we fix a semi-
algebraic subset G0 ⊂ G(R)× Λ, compact and of non-empty interior, and such that K ·G0 = G0. In order
to simplify some later formulae, we assume that the projection of G0 onto Λ is contained in [1,K0] for some
constant K0 > 1, and that vol(G0) = 1. (A pleasant choice is G0 = KACK × [1, C] for some C > 1, where
AC = {t ∈ T θ(R)0 | ∀a ∈ SG, 1 ≤ a(t) ≤ C}.) If A ⊂ V(Z) is any subset and X ≥ 1, we define (following
[BS, §2.3]):

N(A,X) =

∫
h∈G0

#
(
Sh · Λ · s(L) ∩ {v ∈ Airr | H(v) < X}

)
dh

and

N∗(A,X) =

∫
h∈G0

# (Sh · Λ · s(L) ∩ {v ∈ A | H(v) < X}) dh.

We observe that both N(A,X) and N∗(A,X) are additive in A, in the obvious sense. The following is now
clear.

Lemma 2.3. Let A ⊂ V(Z) be a G-invariant subset. Then:

#G(Z)\{v ∈ (G(R) · Λ · s(L)) ∩Airr | H(v) < X} ≤ N(A,X)

and
#G(Z)\{v ∈ (G(R) · Λ · s(L)) ∩A | H(v) < X} ≤ N∗(A,X).

2.2 Bhargava’s trick

We now introduce a beautiful trick due to Bhargava that gives a new way to estimate the expressions N(A,X)
and N∗(A,X) above.

Lemma 2.4. Let A ⊂ V(Z) be a subset. Given X ≥ 1, n ∈ N(R), t ∈ T θ(R) and λ ∈ Λ, define
E(n, t, λ,X) = ntλG0s(L) ∩ {v ∈ V (R) | H(v) < X}. Then:

N(A,X) ≤ 26

∫
g∈ωTcΛ

#
[
E(n, t, λ,X) ∩Airr

]
δ(t)−1 dn dt d×λ

and

N∗(A,X) ≤ 26

∫
g∈ωTcΛ

# [E(n, t, λ,X) ∩A] δ(t)−1 dn dt d×λ.

The Haar measure on G(R) is as in §1.7, and we write d×λ = dλ
λ for the standard Haar measure on Λ = R>0.
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Proof. It suffices to treat the case of N∗(A,X), when A = {a} consists of a single element. If either a is not
conjugate under G(R)×Λ into s(L), or H(a) ≥ X, then both sides of the above inequality are 0. Otherwise,
let (g1, λ0), . . . , (gk, λ0) ∈ G(R)× Λ be the elements such that a ∈ giλ0s(L). We then have:

N∗(A,X) =

∫
h∈G0

1a∈ShΛ·s(L) dh ≤
k∑
i=1

vol({h ∈ G0 | (gi, λ0) ∈ ShΛ}).

This last sum becomes:

k∑
i=1

∫
λ∈Λ

∫
g∈S

1g∈(gi,λ0)G−1
0
dg d×λ ≤ k

∫
λ∈Λ

∫
g∈S

1a∈(g,λ)G0s(L) dg d
×λ.

Finally, we use the Iwasawa decomposition (cf. Lemma 1.12) and the fact that G0 = KG0 to conclude that
this last expression equals:

k

∫
λ∈Λ

∫
g∈S

1a∈ntkλG0s(L)δ(t)
−1 dk dn dt d×λ = k

∫
λ∈Λ

∫
n∈ω

∫
t∈Tc

1a∈E(n,t,λ,X)δ(t)
−1 dn dt d×λ.

Since k is at most 26, this completes the proof.

We will make use of the following result of Davenport, slightly extended by Bhargava [BG, Propo-
sition 26]:

Proposition 2.5. Let R ⊂ Rn be a bounded semi-algebraic subset, being defined by at most k polynomial
inequalities of degree at most l. Let R′ denote the image of R under any unipotent linear transformation.
Then the number of integer lattice points in R′ is

vol(R) +O(sup{vol(R), 1}),

as R runs over all projections of R to a j-dimensional co-ordinate hyperplane, 1 ≤ j ≤ n − 1. The implied
constant depends only on n, k, and l.

2.3 Cutting off the cusp

We now write a0 ∈ Φ+
V for the restriction to T θ of the highest root of H, as in §1.3. We write S(a0) ⊂ V(Z)

for the subset of points v = v0 +
∑
a∈ΦV

va with va0 = 0.

Proposition 2.6. There exists δ > 0 such that N(S(a0), X) = O(X7/12−δ).

In fact, the argument shows that one can take δ = 1/72.

Proof. If M0,M1 ⊂ ΦV ∪ {0}, we define S(M0,M1) = {v ∈ V(Z) | ∀a ∈ M0, va = 0;∀a ∈ M1, va 6= 0}. We
refer to a pair of subsets M0,M1 ⊂ ΦV ∪ {0} such that M1 ⊂ (ΦV ∪ {0})−M0 as a cusp datum. To prove
the proposition, it is enough to write down a collection C of cusp data satisfying the following conditions:

• If v ∈ S(a0)irr, then there exists (M0,M1) ∈ C such that v ∈ S(M0,M1).

• If (M0,M1) ∈ C, then N∗(S(M0,M1), X) = O(X7/12−δ) for some δ > 0.

According to Lemma 1.6, S(M0,M1)irr is empty if any of the following conditions holds:

1. M0 = Φ+
V − SV and M1 = SV .

2. There exists a proper subset S′ ⊂ S such that Φ+
V − Φ+

V,S′ ⊂M0.

3. There exists ai ∈ SG such that M0 contains all a ∈ ΦV ∪ {0} such that nai(a) > 0.
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The union of these conditions is hereditary, in the following sense: if (M0,M1) and (M ′0,M
′
1) are cusp data

such that M0 ⊂M ′0, and (M0,M1) satisfies one of these conditions, then so does (M ′0,M
′
1). This is obvious

if M0 satisfies the second or third conditions. On the other hand, it is easy to see that if M0 satisfies the
first condition, then M ′0 satisfies either the first or second condition.

This suggests the following inductive procedure. First, if M0 ⊂ ΦV ∪{0}, we write λ(M0) ⊂ ΦV ∪{0}
for the set of upper bounds of (ΦV ∪ {0})−M0 in the natural partial order of ΦV ∪ {0}:

λ(M0) = {a ∈ (ΦV ∪ {0})−M0 | ∀b ∈ (ΦV ∪ {0})−M0, b ≥ a⇒ b = a}.

One can easily check using the figures in §4 that λ(Φ+
V − SV ) = SV . We now generate a collection C of cusp

data as follows:

1. In step 1, we create the cusp datum ({a0}, λ({a0})).

2. In step n+1, we create new cusp data for each cusp datum at step n. If (M0,M1) is a cusp datum at step
n, and we enumerate M1 = {b1, . . . , bs}, then the new cusp data created are (M0 ∪{bi}, λ(M0 ∪{bi})),
i = 1, . . . , s.

3. To finish step n+ 1, we remove duplicates and delete any newly created cusp data that satisfy any of
the 3 reducibility conditions above.

4. The procedure terminates when no new cusp data are created at step n+ 1.

The result of running this procedure is given in §4 below. It is clear that if v ∈ S(a0)irr, then there will
exist exactly one cusp datum (M0,M1) in C such that v ∈ S(M0,M1). It remains to show that for each
(M0,M1) ∈ C, there exists δ > 0 such that N∗(S(M0,M1), X) = O(X7/12−δ). We will establish this by a
case-by-case check.

Choose for each a ∈ ΦV a generator ea of the free rank 1 Z-module Va, and let e0,0, e0,1 be a basis
of V0. Let ‖ · ‖ denote the supremum norm of V (R) with respect to this basis. Fix also a constant J > 0
such that ‖v‖ ≤ J for all v ∈ ω ·G0 · s(L).

Let (M0,M1) ∈ C be a cusp datum. If the set S(M0,M1) ∩ E(n, t, λ,X) is non-empty, then for
all a ∈ M1 we have λa(t) ≥ 1/J (since there exists v ∈ E(n, t, λ,X) such that ‖va‖ ≥ 1). We also have∏
a∈ΦV

a(t) = 1 for t ∈ T θ(R). In particular, if we write VM0
⊂ V for the subspace given by the equations

va = 0, a ∈ M0, and VM0,M1
⊂ VM0

(R) for the subset given by ‖va‖ ≥ 1, a ∈ M1, we obtain the estimate
(volumes being taken inside VM0

(R)):

vol(E(n, t, λ,X) ∩ VM0,M1
)� λ42−#M0

∏
a∈M0

a(t)−1. (2.1)

Any element a ∈ (ΦV ∪{0})−M0 can be written as a = b−
∑4
i=1 niai for some b ∈M1 and integers ni ≥ 0.

It follows from the definition of the Siegel set S = ω · Tc ·K that

λa(t) = λb(t)

4∏
i=1

ai(t)
−ni ≥ c−

∑4
i=1 niλb(t)� 1.

Consequently, the volume of any projection of E(n, t, λ,X)∩VM0,M1
onto a co-ordinate hyperplane of VM0

(R)
satisfies the same estimate (2.1).

Let T (M0,M1, λ) ⊂ Tc denote the subset defined by the inequalities λa(t) ≥ 1/J , a ∈ M1. To be
completely explicit, we have

T (M0,M1, λ) = {t ∈ T θ(R)0 | ∀a ∈ SG, a(t) ≤ c; ∀a ∈M1, λa(t) ≥ 1/J}.

The above remarks, together with Proposition 2.5, imply that we have

N∗(S(M0,M1), X)�
∫
g∈ωTcΛ

#(S(M0,M1) ∩ E(n, t, λ,X))δ(t)−1 dn dt d×λ

�
∫ X1/72

λ=K−1
0

λ42−#M0

∫
t∈T (M0,M1,λ)

∏
a∈Φ(G,T θ)+

a(t)
∏
a∈M0

a(t)−1 dt d×λ.
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We have thus reduced the proposition to showing that for each cusp datum S(M0,M1) ∈ C we have∫
t∈T (M0,M1,λ)

∏
a∈Φ(G,T θ)+

a(t)
∏
a∈M0

a(t)−1 dt = O(λ#M0−δ), (2.2)

for some δ > 0. This will be established in §4.

2.4 The main body, and the proof of Theorem 2.1

Proposition 2.7. Let N ≥ 1 be an integer, and let v ∈ V(Z). Let Av,N = v + NV(Z). Then there exists
δ > 0 such that:

N∗(Av,N − S(a0), X) ≤ |W1|∞ vol(S)

N42
· vol([1, X1/72] · L) +O(X7/12−δ).

Proof. Let F (n, t, λ,X) = {v ∈ E(n, t, λ,X) | va0 6= 0}. If V(Z)∩F (n, t, λ,X) 6= 0, then, just as in the proof
of Proposition 2.6, we have λa0(t) ≥ 1/J , and consequently #V(Z) ∩ F (n, t, λ,X) = vol(F (n, t, λ,X)) +
O(λ41a0(t)−1). More generally, we have #Av,N ∩ F (n, t, λ,X) = N−42 vol(F (n, t, λ,X)) + O(λ41a0(t)−1).
We obtain:

N∗(Av,N − S(a0), X) ≤
∫
λ∈Λ

∫
g∈ωTc

N−42 vol(F (n, t, λ,X)) δ(t)−1dn dt d×λ

+

∫ X1/72

λ=K−1
0

∫
g∈ωTc

O(λ41a0(t)−1) δ(t)−1dn dt d×λ.

(2.3)

It is easy to see that the second term of (2.3) is O(X7/12−1/72). On the other hand, the first term is at most∫
λ∈Λ

∫
g∈ωTc

N−42 vol(E(n, t, λ,X)) δ(t)−1dn dt d×λ

= N−42

∫
λ∈Λ

∫
g∈S

∫
v∈V (R)

∫
h∈G0

1v∈gλhs(L), H(v)<X dh dg dv d
×λ.

By Proposition 1.14, this expression is bounded above by

|W1|∞
N42

∫
λ∈Λ

∫
g∈S

∫
b∈L

∫
h∈G0

1H(gλhs(b))<X dh db dg d
×λ =

|W1|∞
N42

∫
h∈G0

vol(S) vol([1, X1/72] ·L) dh+O(1).

The result follows.

We now observe that N(V(Z), X) ≤ N∗(V(Z) − S(a0), X) + N(S(a0), X). Theorem 2.1 follows on
combining Lemma 2.3, Proposition 2.6 and Proposition 2.7.

2.5 Counting with congruence conditions

In the applications below, the following slightly more refined version of Theorem 2.1 will be useful. To
state it, we must first introduce some notation. Let p1, . . . , ps be prime numbers, and let Vp1 , . . . , Vps be
G(Zpi)-invariant open compact subsets of V(Zp1), . . . ,V(Zps), respectively.

Theorem 2.8. There exist constants C, δ > 0, not depending on s or the choice of Vpi such that:

#G(Z)\{v ∈ V(Z)irr ∩ (Vp1 × · · · × Vps) | H(v) < X} ≤ C
s∏
i=1

vol(Vpi)X
7/12 +O(X7/12−δ).
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Proof. Let L1, . . . , Lr ⊂ B(R) be the sets constructed in §1.9, with corresponding sections si : Li → V (R).
Let A = V(Z)∩ (Vp1 × · · ·×Vps). We can find an integer N ≥ 1 and vectors v1, . . . , vk ∈ V(Z) such that A is
the disjoint union of the sets vi +NV(Z) = Avi,N . We have k/N42 =

∏s
i=1 vol(Vpi). The result now follows

by summing the result of Proposition 2.6 and Proposition 2.7 over L = L1, . . . , Lr and v = v1, . . . , vk, and
applying Lemma 2.3 once more.

We now record a particular case of this theorem as a corollary. Let p1, . . . , ps be primes congruent
to 1 modulo 6. By combining Proposition 1.15 and Proposition 1.16, we obtain open compact subsets
Bpi ⊂ B(Zpi) satisfying the following conditions:

1. Let b ∈ Bpi . Then # StabG(Qpi )(κb) = 4.

2. Let Vpi = (G(Qpi) · κ(Qpi)) ∩ V(Zpi) ∩ π−1(Bpi). Then Vpi is open compact, and we have

vol(Vpi) = |W0|pi
mpi(v) · vol(Bpi) · vol(G(Zpi))

4
,

where mpi(v) ∈ Z is independent of the choice of v ∈ Vpi .

If A ⊂ V(Z) is a G(Z)-invariant subset, we write G(Q)\A for the quotient by the equivalence relation v ∼ v′
if there exists γ ∈ G(Q) such that γv = v′.

Corollary 2.9. With notation as above, let A = V(Z)∩(Vp1×· · ·×Vps). Then there exist constants C, δ > 0,
not depending on s or the choice of p1, . . . , ps, such that:

#G(Q)\{v ∈ Airr | H(v) < X)} ≤ C

4s

s∏
i=1

vol(Bpi)X
7/12 +O(X7/12−δ).

Proof. If v ∈ V(Z)reg. ss, define n(v) = #G(Z)\(G(Q) · v ∩ V(Z)). We then have

#G(Q)\{v ∈ A | H(v) < X)} =
∑

v∈G(Z)\A
H(v)<X

1

n(v)
≤ 26

∑
v∈G(Z)\A
H(v)<X

1

m(v)
,

since n(v) ≤ m(v) ≤ 26n(v). Using Lemma 1.17, we obtain the inequality m(v)−1 ≤
∏s
i=1mpi(v)−1, hence:

#G(Q)\{v ∈ A | H(v) < X)} ≤ 26C

s∏
i=1

vol(Vpi)

mpi(v)
X7/12 +O(X7/12−δ)

= 26C

s∏
i=1

|W0|pi vol(G(Zpi)) · vol(Bpi)

4
X7/12 +O(X7/12−δ),

by Theorem 2.8. Absorbing terms into the constant now gives the result in the form stated above.

3 Application to 2-Selmer sets

We now use the results of the preceding sections to deduce our main theorems. Let us write B for the affine
space over Z with co-ordinates p2, . . . , p12, and let B denote the fiber of B over Q. We consider the following
family of affine curves over B:

X : y3 = x4 + y(p2x
2 + p5x+ p8) + p6x

2 + p9x+ p12. (3.1)

We write Y → B for the natural compactification of B as a family of plane quartic curves, and X → B and
Y → B for the Q-fibers of these families.
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Lemma 3.1. Let k/Q be a field. The smooth members over k of the family Y → B are in bijection with
the set of isomorphism classes of triples (C,P∞, t), where C is a smooth, projective, connected and non-
hyperelliptic curve over k of genus 3, P∞ ∈ C(k) is a rational point such that 4P∞ is a canonical divisor,
and t ∈ TP∞(C) is a non-zero element of the Zariski tangent space at P∞. If λ ∈ k×, then the triple
(C,P∞, λt) has co-ordinates λipi(C,P∞, t).

Proof. This follows from a theorem of Pinkham: let Γ be the sub-semigroup of (N,+) generated by 3 and
4. The family X → B is a semi-universal deformation of the monomial singularity SpecQ[Γ]. If C is a
non-hyperelliptic genus 3 curve and P∞ ∈ C(k) is a point such that 4P∞ is a canonical divisor, then P∞
is a Weierstrass point with Weierstrass semigroup Γ. Pinkham’s theorem relates X → B and the family of
genus 3 curves described above. (See [NM04] for more details.)

We now give a proof of the lemma that is essentially a working-out of Pinkham’s theorem in this
special case. If (C,P∞, t) is a triple as above, then we calculate (using that C is non-hyperelliptic and 4P∞
is canonical):

n 0 1 2 3 4 5 6 7 8 9 10 11 12
dimkH

0(C,OC(nP∞)) 1 1 1 2 3 3 4 5 6 7 8 9 10.

We choose x ∈ H0(C,OC(3P∞)) with a pole of exact order 3 at P∞, and y ∈ H0(C,OC(4P∞)) with a pole
of exact order 4. Let z be a co-ordinate at P∞ with dz(t) = 1; then we can choose x and y so that their
Laurent expansions at P∞ are respectively x = z−3 + . . . and y = z−4 + . . . . Then x is uniquely determined
by (C,P∞, t) up to the addition of constants, and y is uniquely determined up to the addition of constants
and constant multiples of x.

The 11 monomials 1, x, y, x2, xy, y2, x3, x2y, xy2, x4, y3 lie in the 10-dimensional spaceH0(C,OC(12P∞)).
The first 9 of these monomials are linearly independent and lie in H0(C,OC(11P∞)). It follows that they
must satisfy a unique linear relation of the form

y3 = x4 + q1xy
2 + q2x

2y + q3x
3 + q4y

2 + q5xy + q6x
2 + q8y + q9x+ q12.

At this point we still have the freedom to replace x by x+ a and y by y+ bx+ c for any constants a, b, c ∈ k.
It is now easy to check that there is a unique choice of a, b, c ∈ k for which q1 = q3 = q4 = 0, giving an
equation of type (3.1). We have shown that any triple (C,P∞, t) determines uniquely an equation of this
type; conversely, if p2, . . . , p12 ∈ k and the projective closure C of the equation (3.1) is smooth, then it is easy
to check that C is non-hyperelliptic of genus 3, with a unique point P∞ at infinity, and 4P∞ is a canonical
divisor (equivalently: P∞ is a hyperflex in the canonical embedding). We recover a non-zero tangent vector
t ∈ TP∞(C) by the requirement that the functions x, y ∈ k(C) have Laurent expansions x = z−3 + . . . ,
y = z−4 + . . . at P∞, where z is any co-ordinate at P∞ satisfying dz(t) = 1. This completes the proof.

We define the height of an element b ∈ B(R) by the formula H(b) = supi |pi(b)|72/i. The function H
is homogeneous of degree 72: for any λ ∈ R×, H(λb) = |λ|72H(b). We write F0 ⊂ B(Z) for the set of points b
such that Yb is smooth over Q. We say that a subset F ⊂ F0 is defined by congruence conditions if there exist
primes p1, . . . , ps and open compact subsets Bpi ⊂ B(Zpi), i = 1, . . . , s, such that F = F0∩ (Bp1×· · ·×Bps).
The following is an immediate consequence of Proposition 2.5:

Proposition 3.2. Let F ⊂ F0 be a subset defined by congruence conditions, as above. Then there exists
δ > 0 such that:

#{b ∈ F | H(b) < X} =

s∏
i=1

vol(Bpi)X
7/12 +O(X7/12−δ).

We can now state our main theorems.

Theorem 3.3. Let F ⊂ F0 be a subset defined by congruence conditions. Then:

lim sup
X→∞

∑
b∈F

H(b)<X
# Sel2(Yb)∑
b∈F

H(b)<X
1

<∞.
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Theorem 3.4. Let ε > 0. Then there exists a subset F ⊂ F0 defined by congruence conditions such that:

lim sup
X→∞

∑
b∈F

H(b)<X
# Sel2(Yb)∑
b∈F

H(b)<X
1

< 1 + ε.

Consequently, we have:

lim inf
X→∞

#{b ∈ F | H(b) < X, # Sel2(Yb) = 1}
#{b ∈ F | H(b) < X}

> 1− ε.

The proofs of Theorem 3.3 and Theorem 3.4 are very similar, so we give here only the proof of the
second result.

Proof of Theorem 3.4. Let p1, p2, . . . be a strictly increasing sequence of primes congruent to 1 mod 6. For
each i ≥ 1, let Bpi ⊂ B(Zpi) and Vpi ⊂ V(Zpi) be the open compact subsets obtained by combining
Proposition 1.15 and Proposition 1.16, cf. Corollary 2.9. If s ≥ 0, let F ⊂ F0 be the family defined
by imposing the congruence conditions Bpi ⊂ B(Zpi) of Proposition 1.16 at the primes p1, . . . , ps, and let
A ⊂ V(Z) be the corresponding set of points. Applying Theorem 1.10 and Corollary 2.9, we find that there
are constants C, δ > 0, not depending on s, such that:∑

b∈F
H(b)<X

(# Sel2(Yb)− 1) ≤ #G(Q)\{v ∈ Airr | H(v) < N72
3 X}

≤ C
s∏
i=1

vol(Bpi)

4
(N72

3 X)7/12 +O(X7/12−δ).

Combining this with Proposition 3.2, we obtain:∑
b∈F

H(b)<X
(# Sel2(Yb)− 1)∑
b∈F

H(b)<X
1

≤ N42
3 C +O(X−δ)

4s +O(X−δ)
.

Choosing s to be sufficiently large and taking the limit X →∞ now gives the result.

Remark 3.5. Let us say that a point b ∈ F0 is minimal if it satisfies the following conditions:

1. There does not exist a prime p and c ∈ B(Z) such that b = p · c.

2. We have p5(b) ≥ 0, and if p5(b) = 0 then p9(b) ≥ 0.

It follows from Lemma 3.1 that any pair (C,P∞) is represented by a unique minimal b ∈ F0. The analogues
of Theorem 3.3 and Theorem 3.4 for the averages taken over the set of minimal equations follow immediately
on noting that (with appropriately chosen congruence conditions) a positive proportion of points b ∈ F0 are
minimal.

We now use the above theorems to deduce some Diophantine consequences for the curves Yb. We
begin with some preparatory lemmas.

Lemma 3.6. There exists an open subset U ⊂ B(Z3) such that for all b ∈ U , ∆(b) 6= 0 and the image of the
map Xb(Z3)→ Jb(Q3)/2Jb(Q3) is non-trivial and does not contain the identity.

Compare Proposition 1.15.

Proof. Consider the curve Xb0 given by the equation y3 = x4 − 2y. Then ∆(b0) 6= 0, and there is map from
Yb0 to the elliptic curve E over Z3 which is the projective closure of the affine piece E0 : z2 = w3 + 2w. (The
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map is given by (w, z) = (y, x2)). The curve E has good reduction, and E(F3) ∼= Z/2Z×Z/2Z. In particular,
2E(F3) is trivial, E0(F3) = E(F3)− {OE}, and the map E0(Z3)→ E(Q3)/2E(Q3) factors

E0(Z3)→ E0(F3) ↪→ E(F3) ∼= E(Q3)/2E(Q3).

By Albanese functoriality, there is a commutative diagram

Xb0(Z3) //

��

Jb0(Q3)/2Jb0(Q3)

��
E0(Z3) // E(Q3)/2E(Q3).

It follows that the image of Xb0(Z3) in Jb0(Q3)/2Jb0(Q3) does not contain the identity. To finish the proof
of the lemma, we take U to be any sufficiently small open neighborhood of b0 in B(Z3).

Lemma 3.7. 1. Let p be a prime. Then there exists an open compact subset U ⊂ B(Zp) such that for
every b ∈ U , ∆(b) 6= 0 and Xb(Zp) 6= ∅.

2. There exists an integer M such that for all primes p > M and for all b ∈ B(Zp), Xb(Zp) 6= 0.

Proof. It follows from Hensel’s lemma that if b ∈ B(Zp), x ∈ Xb(Fp) and Xb,Fp is smooth at x, then x is the
reduction modulo p of a point x ∈ Xb(Zp); in particular, Xb(Zp) is not empty. It is easy to write down for
every prime p a point b ∈ B(Fp) such that Xb is smooth and has Fp-rational points. This proves the first
part of the lemma.

For the second part, we observe that the fibers of the morphism Y → B are geometrically irreducible.
Indeed, this morphism is proper, flat, and of finite type, which implies that the subset of points of B where
the fibers are geometrically irreducible is open; moreover, this subset is stable by the action of the natural
contracting action of Gm on B, and contains the point 0 ∈ B(Fp). It follows from the Weil bounds that for
p sufficiently large and for every b ∈ B(Fp), Xb(Fp) contains a point at which Xb is smooth. This completes
the proof of the lemma.

Theorem 3.8. Let ε > 0. Then there exists a subset F ⊂ F0 defined by congruence conditions satisfying
the following conditions:

1. For every b ∈ F and for every prime p, Xb(Zp) 6= ∅.

2. We have

lim inf
X→∞

#{b ∈ F | H(b) < X, Xb(Z(3)) = ∅}
#{b ∈ F | H(b) < X}

> 1− ε.

(We recall that Z(3) ⊂ Q denotes the subring of rational numbers of denominator prime to 3.)
In particular, a positive proportion of b ∈ F0 have the property that for every prime p, Xb(Zp) 6= ∅, yet
Xb(Z) = ∅.

Proof. We choose for every prime p an open compact subset Up ⊂ B(Zp) satisfying the following conditions.

• For every prime p and every b ∈ Up, the set Xb(Zp) is non-empty.

• If p = 3, then Up satisfies the conclusion of Lemma 3.6.

• There exists an integer M such that for all p > M , Up = B(Zp).

(We can make such a choice because of Lemma 3.7.) Let p1, p2, . . . be a strictly increasing sequence of primes
such that for each i ≥ 1, pi > M and pi ≡ 1 mod 6, and write Bpi ⊂ B(Zpi) for the set that results from
applying Proposition 1.15 and Proposition 1.16. If s ≥ 1 is an integer, then we define Fs ⊂ F0 to be the
subset defined by the congruence conditions Up (p < M) and Bp1 , . . . , Bps .
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Arguing as in the proof of Theorem 3.4, we find that for any ε > 0 we can choose s ≥ 1 such that

lim inf
X→∞

#{b ∈ Fs | H(b) < X, # Sel2(Yb) = 1}
#{b ∈ Fs | H(b) < X}

> 1− ε.

We claim that for each b ∈ Fs such that # Sel2(Yb) = 1, we have Xb(Z(3)) = ∅. Indeed, for each b ∈ Fs there
is a commutative diagram

Xb(Z(3)) //

��

Xb(Z3)

��
Sel2(Yb) // Jb(Q3)/2Jb(Q3).

Because of our choice of U3, the image of the composite of the top and right-hand arrows does not contain the
identity. Because Sel2(Yb) is trivial, the composite of the left-hand and bottom arrows has image contained
in the trivial subgroup. It follows that Xb(Z(3)) must be empty. This completes the proof.
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4 The proof of Proposition 2.6

We take up the notation and assumptions of §2. In the 2 figures on this page, we display the characters
a ∈ X∗(T θ) which appear in the weight decomposition of V . There are 41 weights; each weight space is
1-dimensional, except for the weight space of the trivial character, which is 2-dimensional. In the table on
the left, we list the characters that appear, giving each a number. In the figure on the right, we display the
Hasse diagram of the set ΦV ∪ 0, now identified with 1, . . . , 41, with respect to the natural partial order on
this set.

# Weight
1 1 2 3 2
2 1 2 3 1
3 1 2 2 1
4 1 1 2 1
5 1 2 1 1
6 1 1 1 1
7 1 0 1 1
8 1 2 1 0
9 0 1 2 1
10 0 1 1 1
11 1 1 1 0
12 1 1 0 0
13 0 0 1 1
14 1 0 1 0
15 0 1 1 0
16 1 0 0 0
17 0 1 0 0
18 -1 0 1 1
19 0 0 1 0
20 1 0 -1 0
21 0 0 0 0
22 -1 0 1 0
23 0 0 -1 0
24 1 0 -1 -1
25 0 -1 0 0
26 -1 0 0 0
27 0 -1 -1 0
28 -1 0 -1 0
29 0 0 -1 -1
30 -1 -1 0 0
31 -1 -1 -1 0
32 0 -1 -1 -1
33 0 -1 -2 -1
34 -1 -2 -1 0
35 -1 0 -1 -1
36 -1 -1 -1 -1
37 -1 -2 -1 -1
38 -1 -1 -2 -1
39 -1 -2 -2 -1
40 -1 -2 -3 -1
41 -1 -2 -3 -2

1

2

3

5 4

8 6 9

11 7 10

12 14 15 13

17 16 19 18

20 21 22

24 23 26 25

29 27 28 30

32 35 31

33 36 34

38 37

39

40

41
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In the following table, we give the result of running the inductive procedure of Proposition 2.6.
We recall that this procedure gives a collection C of cusp data; by definition, a cusp datum is a pair
(M0,M1) of subsets of ΦV ∪ {0} such that M1 ⊂ (ΦV ∪ {0})−M0. For each cusp datum, we must compute
the corresponding cusp integral (2.2), and show that it is O(λ#M0−δ) for some δ > 0. For the reader’s
convenience, we recall that this integral is given by the formula∫

t∈T (M0,M1,λ)

∏
a∈Φ(G,T θ)+

a(t)
∏
a∈M0

a(t)−1 dt =

∫
t∈T (M0,M1,λ)

w(t) dt, (4.1)

where
T (M0,M1, λ) = {t ∈ T θ(R)0 | ∀i = 1, . . . , 4, ai(t) ≤ c; ∀a ∈M1, λa(t) ≥ 1/J}. (4.2)

These integrals can be evaluated in elementary terms, and this is one way to finish the proof of the proposition.
In the last column of the table below, we have written the corresponding integrand in (4.1) as a vector
w(t) = tw1

1 tw2
2 tw3

3 tw4
4 , where ti = ai(t). Thus, for example, the cusp integral in the first column can be

rewritten as ∫ c

t1=0

∫ c

t2=0

∫ c

t3=0

∫ c

t4=0

t71t
12
2 t

15
3 t

8
4 · 1λt1t22t33t4≥1/J · d×t1 d×t2 d×t3 d×t4.

As the table has 68 rows, the procedure just described involves calculating 68 integrals. We now discuss
a trick, due to Bhargava (cf. the proof of [Bha10, Lemma 11]), which allows one to reduce the amount of
computation required to bound the integrals (4.1). Namely, let (M0,M1) be a cusp datum appearing in the
table below. Given a function p : M1 → R≥0, we have

∏
a∈M1

(λa(t))p(a) � 1 inside T (M0,M1, λ), hence∫
t∈T (M0,M1,λ)

w(t) dt� λ
∑
a∈M1

p(a)

∫
t∈T (M0,M1,λ)

w(t) ·
∏
a∈M1

a(t)p(a) dt. (4.3)

If the exponent of each ti (i = 1, . . . , 4) in the function w(t) ·
∏
a∈M1

a(t)p(a) is (strictly) positive, then the
second integral in (4.3) is bounded independently of λ, and we obtain∫

t∈T (M0,M1,λ)

w(t) dt� λ
∑
a∈M1

p(a).

The problem of bounding the cusp integral (4.1) is thus reduced to the problem of finding a function
p : M1 → R≥0 which satisfies the following 2 conditions:

• We have
∑
a∈M1

p(a) < #M0.

• For each i = 1, . . . , 4, we have wi +
∑
a∈M1

p(a) · nai(a) > 0.

It is easy to check (especially using a computer) that such a function p exists for all of the cusp data appearing
in the table below. This completes our proof of the proposition.

As an example, we discuss the cusp datum appearing in the final row of our table. We must find
non-negative real numbers p13, p17, p24 such that p13 + p17 + p24 < 16 and the vector

(−5 + p24,−3 + p17,−1 + p13 − p24, p13 − p24)

has strictly positive entries. It is not possible to choose the pi all to be integers, but one possible choice is
(p13, p17, p24) =

(
6 1

2 , 3
1
4 , 5

1
4

)
.
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M0 M1 #M0 Weight of integrand
1 2 1 7 12 15 8
1,2 3 2 6 10 12 7
1,2,3 4,5 3 5 8 10 6
1,2,3,4 5,9 4 4 7 8 5
1,2,3,5 4,8 4 4 6 9 5
1,2,3,4,5 6,8,9 5 3 5 7 4
1,2,3,4,9 5 5 4 6 6 4
1,2,3,5,8 4 5 3 4 8 5
1,2,3,4,5,6 7,8,9 6 2 4 6 3
1,2,3,4,5,8 6,9 6 2 3 6 4
1,2,3,4,5,9 6,8 6 3 4 5 3
1,2,3,4,5,6,7 8,9 7 1 4 5 2
1,2,3,4,5,6,8 7,9,11 7 1 2 5 3
1,2,3,4,5,6,9 7,8,10 7 2 3 4 2
1,2,3,4,5,8,9 6 7 2 2 4 3
1,2,3,4,5,6,7,8 9,11 8 0 2 4 2
1,2,3,4,5,6,7,9 8,10 8 1 3 3 1
1,2,3,4,5,6,8,9 7,10,11 8 1 1 3 2
1,2,3,4,5,6,8,11 7,9,12 8 0 1 4 3
1,2,3,4,5,6,9,10 7,8 8 2 2 3 1
1,2,3,4,5,6,7,8,9 10,11 9 0 1 2 1
1,2,3,4,5,6,7,8,11 9,12,14 9 -1 1 3 2
1,2,3,4,5,6,7,9,10 8,13 9 1 2 2 0
1,2,3,4,5,6,8,9,10 7,11 9 1 0 2 1
1,2,3,4,5,6,8,9,11 7,10,12 9 0 0 2 2
1,2,3,4,5,6,8,11,12 7,9 9 -1 0 4 3
1,2,3,4,5,6,7,8,9,10 11,13 10 0 0 1 0
1,2,3,4,5,6,7,8,9,11 10,12,14 10 -1 0 1 1
1,2,3,4,5,6,7,8,11,12 9,14 10 -2 0 3 2
1,2,3,4,5,6,7,8,11,14 9,12 10 -2 1 2 2
1,2,3,4,5,6,7,9,10,13 8,18 10 1 2 1 -1
1,2,3,4,5,6,8,9,10,11 7,12,15 10 0 -1 1 1
1,2,3,4,5,6,8,9,11,12 7,10 10 -1 -1 2 2
1,2,3,4,5,6,7,8,9,10,11 12,13,14,15 11 -1 -1 0 0
1,2,3,4,5,6,7,8,9,10,13 11,18 11 0 0 0 -1
1,2,3,4,5,6,7,8,9,11,12 10,14 11 -2 -1 1 1
1,2,3,4,5,6,7,8,9,11,14 10,12 11 -2 0 0 1
1,2,3,4,5,6,7,8,11,12,14 9,16 11 -3 0 2 2
1,2,3,4,5,6,8,9,10,11,12 7,15 11 -1 -2 1 1
1,2,3,4,5,6,8,9,10,11,15 7,12 11 0 -2 0 1
1,2,3,4,5,6,7,8,9,10,11,12 13,14,15 12 -2 -2 0 0
1,2,3,4,5,6,7,8,9,10,11,13 12,14,15,18 12 -1 -1 -1 -1
1,2,3,4,5,6,7,8,9,10,11,14 12,13,15 12 -2 -1 -1 0
1,2,3,4,5,6,7,8,9,10,11,15 12,13,14 12 -1 -2 -1 0
1,2,3,4,5,6,7,8,9,11,12,14 10,16 12 -3 -1 0 1
1,2,3,4,5,6,7,8,11,12,14,16 9,20 12 -4 0 2 2
1,2,3,4,5,6,8,9,10,11,12,15 7,17 12 -1 -3 0 1
1,2,3,4,5,6,7,8,9,10,11,12,13 14,15,18 13 -2 -2 -1 -1
1,2,3,4,5,6,7,8,9,10,11,12,14 13,15,16 13 -3 -2 -1 0
1,2,3,4,5,6,7,8,9,10,11,12,15 13,14,17 13 -2 -3 -1 0

Continued on next page
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M0 M1 #M0 Weight of integrand
1,2,3,4,5,6,7,8,9,10,11,13,14 12,15,18 13 -2 -1 -2 -1
1,2,3,4,5,6,7,8,9,10,11,13,15 12,14,18 13 -1 -2 -2 -1
1,2,3,4,5,6,7,8,9,10,11,14,15 12,13 13 -2 -2 -2 0
1,2,3,4,5,6,7,8,9,11,12,14,16 10,20 13 -4 -1 0 1
1,2,3,4,5,6,7,8,11,12,14,16,20 9,24 13 -5 0 3 2
1,2,3,4,5,6,7,8,9,10,11,12,13,14 15,16,18 14 -3 -2 -2 -1
1,2,3,4,5,6,7,8,9,10,11,12,13,15 14,17,18 14 -2 -3 -2 -1
1,2,3,4,5,6,7,8,9,10,11,12,14,15 13,16,17 14 -3 -3 -2 0
1,2,3,4,5,6,7,8,9,10,11,12,14,16 13,15,20 14 -4 -2 -1 0
1,2,3,4,5,6,7,8,9,10,11,13,14,15 12,18,19 14 -2 -2 -3 -1
1,2,3,4,5,6,7,8,9,11,12,14,16,20 10,24 14 -5 -1 1 1
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 16,17,18,19 15 -3 -3 -3 -1
1,2,3,4,5,6,7,8,9,10,11,12,13,14,16 15,18,20 15 -4 -2 -2 -1
1,2,3,4,5,6,7,8,9,10,11,12,14,15,16 13,17,20 15 -4 -3 -2 0
1,2,3,4,5,6,7,8,9,10,11,12,14,16,20 13,15,24 15 -5 -2 0 0
1,2,3,4,5,6,7,8,9,10,11,13,14,15,19 12,18 15 -2 -2 -4 -1
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,19 16,17,18 16 -3 -3 -4 -1
1,2,3,4,5,6,7,8,9,10,11,12,14,15,16,20 13,17,24 16 -5 -3 -1 0

References

[BCR98] Jacek Bochnak, Michel Coste, and Marie-Françoise Roy. Real algebraic geometry, volume 36 of
Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas
(3)]. Springer-Verlag, Berlin, 1998. Translated from the 1987 French original, Revised by the
authors.

[BG] Manjul Bhargava and Benedict H. Gross. The average size of the 2-Selmer group of Jacobians of
hyperelliptic curves having a rational Weierstrass point. Preprint.

[Bha] Manjul Bhargava. Most hyperelliptic curves over Q have no rational points. Preprint.

[Bha10] Manjul Bhargava. The density of discriminants of quintic rings and fields. Ann. of Math. (2),
172(3):1559–1591, 2010.

[BHC62] Armand Borel and Harish-Chandra. Arithmetic subgroups of algebraic groups. Ann. of Math. (2),
75:485–535, 1962.

[BLR90] Siegfried Bosch, Werner Lütkebohmert, and Michel Raynaud. Néron models, volume 21 of Ergeb-
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