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Abstract

We study the arithmetic of a family of non-hyperelliptic curves of genus 3 over the field Q of rational
numbers. These curves are the nearby fibers of the semi-universal deformation of a simple singularity of
type Es. We show that average size of the 2-Selmer sets of these curves is finite (if it exists). We use
this to show that a positive proposition of these curves (when ordered by height) have integral points
everywhere locally, but no integral points globally.

Introduction

Let k£ be a field of characteristic 0, and let Y be a smooth, geometrically connected projective curve over
k of genus g > 0. Let J denote the Jacobian of the curve Y. We define a 2-covering of the curve Y to be
an abelian finite étale cover Z — Y, with Z geometrically connected and Auty (Z) a k-form of the group
(Z/27Z)%9. An isomorphism (Z — Y) — (Z' — Y) of 2-coverings is just an isomorphism Z — Z’ over Y.
The set Cova(Y) of isomorphism classes of 2-coverings (Z — Y), if non-empty, is a torsor for the group
H(k, J[2]).

Now suppose that k is a number field. We define the 2-Selmer set of Y to be the subset Sely(Y) C
Cova(Y) of 2-coverings (Z — Y') such that Z(k,) # 0 for every place v of k. If Y (k) is non-empty, then the
set Selz(Y) is non-empty. On the other hand, Sely(Y') can often be effectively computed. In such situations,
Sela(Y) is a useful proxy for the set Y(k). (See, for example, the paper [BS09], in which the authors give an
algorithm to calculate a closely related set when Y is hyperelliptic.)

Now suppose further that the curve Y has a marked rational point Py, € Y (k). In this case, the
Abel-Jacobi map AJ : Y < J embeds the curve Y in its Jacobian, sending the point P, to the origin. The
2-Selmer set Sely(Y') is a pointed subset of the 2-Selmer group Sely(J); these two sets admit the following
cohomological description. If v is a place of k, then there is a canonical map 6, : J(k,) — H'(k,, J[2]),
arising from the Kummer exact sequence of J. We then have:

Sely(Y) = {x € H'(k, J[2]) | Yv, Res,(z) € §,AJ(Y (k,))},

Sely(J) = {x € H' (K, J[2]) | Vv, Res,(z) € 6,.J(ky)}.

In this paper, we investigate the 2-Selmer sets of a family of non-hyperelliptic curves of genus 3:

X :y® = 2" + y(pax® + psz + ps) + pex® + po + pra. (0.1)
Here 2, y are co-ordinates, and po, . . ., p12 are coefficients. The projective closure of this equation in P2 defines
a family Y — B of plane quartic curves, where B = A% is the affine space with co-ordinates po, ..., pis.

(Each of these curves has a unique point at infinity.) The open subscheme of B above which Y is smooth is
a fine moduli space for triples (C, Py, t), where C is a smooth, projective curve which is non-hyperelliptic
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of genus 3, Py, € C(k) is a marked point such that 4P, is a canonical divisor, and t € Tp_C is a non-zero
element of the Zariski tangent space at Ps,. We have p;(C, P, At) = Aip;(C, Ps,t). (See Lemma )

Let us write B = A, co-ordinates again being given by pa,...,p12. We write Fy C B(Z) for the set
of points b such that Y} is smooth. We say that a subset F C Fj is defined by congruence conditions if there
exists an integer N > 1 and a non-empty subset A C B(Z/NZ) such that F is the inverse image of A in Fy.
If b € Fo, then we define H(b) = sup; |p;(b)|7%/*.

We can now state our main theorems.

Theorem 0.1 (Theorem . Let F C Fy be a subset defined by congruence conditions. Then:

> ver #Sela(Vy)
y<X

. H
lim sup < 00.
X—00 > ber 1

H(b)<X

More informally, the average size of Sely(Yy) is bounded.

We note that we would obtain the same result if we restricted to the average over those points b € F

which are minimal, in some sense, and therefore give a set of representatives for isomorphism classes of pairs
(C, Py); see Remark [3.5] below.

Theorem 0.2 (Theorem. Let e > 0. Then there exists a subset F C Fy defined by congruence conditions

such that:
ZH?I;E)]:X # Sely(Y3)
lim su < <l+e.
X%oop > ber 1
H(b)<X

Consequently, we have:

liing 7L € F [H(b) < X, #Sela (V) = 1}

pae #{be FHD) < X} >1-e

Since we can only control the average size of the 2-Selmer sets Sels(Y}), and not the full 2-Selmer
groups Sely(Jy), it does not seem possible to use the above results to follow [PS14] and show, for example,
that for a positive proportion of b € Fy the set of rational points is trivial (i.e. ¥3(Q) = {Px}). However,
control of Sely(Y};) does have Diophantine consequences for points which are ‘far from infinity’ in some (p-adic
or Archimedean) sense. As an example of this, we use the above theorems to deduce:

Theorem 0.3 (Theorem. Let e > 0. Then there exists a subset F C Fy defined by congruence conditions
satisfying the following conditions:

1. For every b € F and for every prime p, Xy(Zy) # 0.

2. We have
_H#HVEF|HD) < X, X(Z) = 0}
lim inf

e #{be F|HD) < X} ~l-e

In particular, a positive proportion of curves in Fy have integral points everywhere locally, but no
integral points globally.

Methods

Our methods are inspired by those of Bhargava and his collaborators, who have proved similar (and in
general, substantially more precise) results for elliptic and hyperelliptic curves; see the papers [BS], [BG],
[Bhal. Roughly speaking, there are 3 main steps:

1. Find a reductive group G over Q and a representation V having the following property: for a field
k/Q, the k-orbits of G(k) on V (k) with prescribed invariants are related to the set J(k)/2J(k), where
J is the Jacobian of an algebraic curve being defined in terms of these invariants.



2. Show that when k = Q there are sufficiently many orbits to describe the 2-Selmer groups (or sets) of
these curves, and that (appropriate integral models of G and V' having been fixed) these orbits all have
integral representatives.

3. Count the integral orbits with bounded invariants, and perform a sieve to remove those orbits not
corresponding to 2-Selmer elements.

Our approach to the first two points is quite different to that taken in earlier works. For the third point, we
follow Bhargava’s ideas closely. (Since we aim only to get the qualitative results Theorem and Theorem
above, we do not need to perform a sieve.) We now describe each of these steps in turn. In an earlier
paper [Thol3|, we have associated to each Dynkin diagram D of type A,, Dy, or E, the following data:

e A pair (G,V) consisting of a split reductive group over Q and an irreducible representation V of G
over Q which is coregular: by definition, this means that the invariant ring Q[V]¢ C Q[V] is abstractly
isomorphic to a polynomial ring.

e A family X — B of affine curves over the categorical quotient B = SpecQ[V]¢. In fact, X is a
semi-universal deformation of its central fiber, which has a unique singularity, which is simple of type
D. In particular, when D = Eg, this is exactly the family of curves (0.1) above.

Let us write 7 : V — B for the quotient map. There is also a natural discriminant A € Q[V]¢, defined up
to scalar. If k/Q and b € B(k), then X, is smooth if and only if A(b) # 0; in this case, Vj, = 7~ 1(b) consists
of a single closed G-orbit in V, and the stabilizer Stabg(v) of any v € Vi (k) is a finite k-group, for which
there is a canonical isomorphism Stabg(v) 2 J3[2]. (In particular, this subgroup is canonically independent
of the choice of v € V;(k).) Here we write Jy, for the Jacobian of the canonical smooth compactification Y}
of the curve Xj;. After making some auxiliary choices (in particular, a subregular normal slo-triple: see §1]

below), we obtain a commutative diagram:

Xp(k) —— G(F)\Vs(k)

| |

Jy(k) —— H(k, Jy[2]).

(For a precise statement and definition of the various arrows here, see below. The diagram so obtained
is independent of any choices made.) In particular, taking the above diagram for £k = R and k = Q,, for every
prime p, together with the Hasse principle for G, shows that the set G(Q)\V;(Q) contains enough elements
to describe the set Sely(Y3).

We must show that these elements admit integral representatives. The arrow X(k) — G(k)\Vs(k)
in the diagram above has the crucial property that it arises from an inclusion X C V', defined over Q. In
particular, if we fix integral structures on X and V, then this morphism will have bounded denominators.
This immediately implies that, provided b € B(Z) is ‘sufficiently divisible’, every element of the 2-Selmer set
Sela(Y;) has an integral representative, cf. below. In order to fix an integral structure on V', we find
it convenient to give G the structure of Chevalley group, and to take inside V' an admissible lattice, in the
sense of [Bor70).

It remains to count the number of integral orbits with bounded invariants, in order to obtain an
upper bound for the average size of the 2-Selmer set. We accomplish this using Bhargava’s idea of counting
points by taking the average number of points in a set of translated fundamental domains. The arguments
follow those of [BGl §10], with some minor simplifications since we do not aim for an exact count. The only
place where serious work needs to be done is in the cutting off of the cusp of the fundamental domain, cf.
Proposition we describe the contributions of the cusp here in terms of the ambient Eg root system, and
eliminate their contribution to the 2-Selmer count by a case-by-case calculation.

The above suffices to prove Theorem We note that it seems likely, based on previous results,
that the average size of Sela(Jp) exists, and equals 3; and that the same remarks apply to the average over



any subset F C Fg defined by congruence conditions. On the other hand, the same heuristics suggest that
the average size of Sela(Y3) can depend on the choice of congruence family, if only because the quantities

#Im(%((@p) - Jb(Qp)/2Jb(Qp))

#Jb(@p)/QJb(Qp)
can vary with b € B(Qy). In §1.10| we exploit this by writing down curves Y;, for which the above quantity
is equal to i. After imposing sufficiently many congruence conditions of this type, we carry out enough

of the sieve to force the set Sely(Y3) to be small on average, giving Theorem This dependence of the
average value of # Sely(Y}) (assuming it exists) on the subset F is our excuse for not attempting to calculate
it exactly.

Generalizations

For the most part, the arguments of this paper are general, and apply verbatim to any of the families of
curves constructed in [Thol3]. The only part where this is not the case is the process of cutting off the
contribution of the cusp of the fundamental domain, as in Proposition We have restricted ourselves to
the case D = Fj here in the interest of brevity and simplicity, but it would be interesting to try to carry out
the argument in other cases, for example when D = E7; or Eg. It does seem that in these cases the necessary
calculations (cf. become formidable!

One can also hope that the same circle of ideas will apply to the study of the full 2-Selmer groups
Sela(Jp), and to the calculation of their exact average. The main barrier to doing this is in the first two steps
of the program outlined above, namely the construction of G(k)-orbits in V;(k) corresponding to elements
of Jp(k), and the existence of integral representatives for 2-Selmer elements when k& = Q. A solution to the
first problem, using techniques different to those used here, will be given in another paper [Tho].

Organization of this paper

The main new ideas in this paper are contained in §I] below. In this section, we define the representation
(G, V) under consideration, and recall from [Thol3] its relation with the family of curves X — B above. We
also discuss our choice of integral structures, and how this choice interacts with our previous constructions.
In particular, in we write down the congruence conditions that will be used to obtain the families
of Theorem [0.2] In §2] we carry out Bhargava’s arguments for counting points in our context. In 3] we
apply these results to deduce our main theorems. Finally, contains information useful in the proof of

Proposition [2.6]
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1 Setup

We begin by recalling, following [Thol3], some basic aspects of the theory of Vinberg’s #-groups. The reader
could also consult or [Pan05)] for more information about algebraic groups or #-groups, respectively.

Let k£ be a field of characteristic 0, and let H be a split, adjoint, simple and simply laced group
over k, of rank n. (Thus H is a reductive group over k with trivial center. The Dynkin diagram of H is
connected, because H is simple, and has no double edges, because H is simply laced.) We assume that H
is endowed with a pinning P = (T, B,{ X4 }acs); thus T C H is a split maximal torus, S C & = &(H,T)
is a root basis, and X, is a non-zero element of the a-root space h,. Let R denote the based root datum
of H corresponding to P, and let 0 € Aut(R) denote the image of —1, as in [Thol3, §2.2]. The pinning P
determines a splitting of the short exact sequence

0— H — Aut(H) = Aut(R) — 0,

and we write o € Aut(H)(k) also for the corresponding automorphism of H. The principal involution of
H is defined to be 0 = p(—1) - o, where p € X,.(T) is the sum of the fundamental coweights. We define
G = (H%)?°, and V = h?=—1. Then the group G is semi-simple, and V is an irreducible representation of G.
We have the following basic theorem (cf. [Pan05, Theorem 1.1]).

Theorem 1.1. V contains Cartan subalgebras of . If ¢ C V is a Cartan subalgebra, then the map G —
Ny (0)/Zg(c) = W(H,¢) is surjective, and the canonical restriction maps

ko) — E[V]E — E[WHO
are isomorphisms.

We refer to any Cartan subalgebra ¢ C §h which happens to lie in V' as a Cartan subspace.



1.1 Conjugacy classes

We say that an element v € V is regular, resp. nilpotent, resp. semi-simple, if it is so when considered as an
element of h. We write A € k[V]% for the restriction of a discriminant polynomial of H; thus A is defined
up to scalar, is homogeneous of degree #®, and for v € V we have A(v) # 0 if and only if v is regular
semi-simple. The restriction of A to a Cartan subspace ¢ vanishes to order 2 along each root hyperplane.
We write B = Spec k[V]%. We can choose algebraically independent, homogeneous generators py, , - . - , pq,, of
k[V]Y, where pg, is of degree d;, and dj, . .., d, are the invariant degrees of H; in particular B is isomorphic
to A}. We write 7 : V' — B for the natural quotient map.

Since H is pinned, V' contains a canonical regular nilpotent element E = ¢ X,, which is
contained in a unique normal sly-triple (E, X, F) ([Thol3 Corollary 2.16]). By definition, this means that
E,F €V and X € g satisfy the relations

[X,E] =2F, [X,F] = —2F, [E,F] = X. (1.1)

We define k = E + 3y (F) = E+ {v € V | [F,v] = 0}, an affine-linear subspace of V' of dimension n, and
refer to k as the Kostant section.

Theorem 1.2. 1. The composite k — V — VJJG is an isomorphism.
2. Let b € B(k) be such that A(b) #0. Then Vi, = n=1(b) consists of a single G-conjugacy class.

3. Let k™9 %% C Kk denote the open subscheme of reqular semi-simple elements. The natural product
morphism 1 : G X K™ %5 — V79 55 g finite étale.

Let v € V. We say that v is reducible if either A(v) = 0, or A(v) # 0 and v is G(k)-conjugate to
an element of x(k). This depends on the choice of the base field k; in particular, if k is algebraically closed
then every element of V is reducible. If v € V' is not reducible, we say that v is irreducible.

1.2 Subregular curves and Jacobians

If (e, x, f) is any normal sly-triple (i.e. a tuple of elements e, f € V', x € g satisfying the relation then we
can consider the associated slice e + 31 (f) C V. The group G,, has a contracting action on this affine linear
subspace of V', with fixed point e. We now describe this action. Let p : G,, — H be the cocharacter with
dp(1) =z. Ift € G, and v € e+ 3y (f), we define t-v = p(t~1) - t?v. This action satisfies 7(t-v) = t2 - 7(v).
See [Thol3, §3.1] for more details.

Now suppose that (e,z, f) is a normal sly-triple, and that e is a subregular nilpotent (i.e. e is
subregular when considered as an element of ). Let X = e+ 31 (f).

Theorem 1.3. The induced morphism X — B is faithfully flat, with reduced connected fibers of dimension
1. If b € B(k), then X, is smooth if and only if A(b) # 0; in this case, let Y}, denote the canonical projective
completion of Xy, and let J, denote the Jacobian variety of Y,. Then there is a canonical isomorphism
Stabg (kp) =2 Jp[2] of finite k-groups.

See [Thol3l, Corollary 4.9]. In order to avoid introducing unnecessary notation, we now assume that
H is of type Eg. This assumption will remain in effect for the rest of this paper. In this case, we have the
following additional result.

Theorem 1.4. 1. We can choose invariant polynomials pa,ps, ps, Ps, P, p12 € k[V]® and co-ordinates
x,y € k[X] such that the morphism X — B is given by:

X 1y = 2" + y(pea® + psz + ps) + pex® + pox + pra.

2. Let Y — B denote the natural compactification of X as a family of plane quartic curves, and let
Py CY denote the divisor at infinity. Let b € B(k), and suppose that A(b) # 0. Then the following



diagram commutes:
Xp(k) —— G(k)\Vi (k)

| |

Jy(k) — H(k, Jy[2]).

There arrows in this diagram as follows. The arrow Xp(k) — Jp(k) is induced by the Abel-Jacobi
map Yy, — Jp, sending Ps to the origin. The map Xy(k) — G(k)\Viy(k) is induced by the in-
clusion X — V. The map G(k)\Vy(k) — H*(k,Jy[2]) is the composite of the classifying map
G(k)\Vy(k) — H'(k,Stabg(kp)), which sends the orbit G(k) - Ky, to the identity, and the isomorphism
H'(k,Stabg(kp)) = HY(k, Jy[2]). The map Jy(k) — H'(k, Jy[2]) is the connecting homomorphism of
the Kummer exact sequence associated to the isogeny [2] : Jp — Jp.

See [Thol3, Theorem 4.14].

1.3 Restricted roots

It is easy to show (using, for example, the results of [Reel(]) that G is abstractly isomorphic to PSpg, and
V corresponds under this isomorphism to the 42-dimensional subrepresentation of A%8; however, we will not
use this here.

We write ® = ®(H,T) for the root system of H, and ® = &+ U &~ for the decomposition into
positive and negative parts induced by the root basis S. The root system ®(G,T?) will also play a role; in
order to distinguish elements of X*(7) and X*(T?), we will generally write elements «, 3, ... € X*(T) using
Greek letters, and elements a,b,... € X*(T?) using Roman letters. We write ®/o for the set of orbits of o
on &.

Lemma 1.5. 1. The map X*(T) — X*(T?) is surjective, and the group G is adjoint. In particular,
X*(T%) is spanned by ®(G,TY).

2. Let a, B € ®. Then the image of a in X*(T?) is non-zero, and o, B have the same image if and only
if either a = 8 or a = o(f).

Proof. The fixed group T? is connected, and contains regular elements of T’; see [Reel(, Lemma 3.1]. The
group G has trivial center, by [Reel0) §3.8]. For the second part, see [Reel0)], §3.3]. O

We identify ®/o with its image in X*(7?); this makes sense by Lemma The Cartan decompo-
sition induces a decomposition into 8-stable subspaces:

hb=to P b, (1.2)

acd®/o

with t = ¢ ® V) and b, = g, ® V,. Here V; C t is 2-dimensional, and each space g,, V, is either 0 or
1-dimensional. There is a corresponding decomposition

V=V @ V. (1.3)

acdy
We distinguish three cases, based on the value of s = (—1)(*?):
1. a ={a} and s = 1. In this case V,, = 0 and g, is spanned by X,,.
2. a ={a} and s = —1. In this case V, is spanned by X, and g, = 0.

3. a = {a,0(a)}, with a # o(a). In this case V, is spanned by X, — sX,(,) and g, is spanned by
Xo + SXG(Q).



We write @y for the set of elements a € ®/o that appear as characters of 7% in V. We write <I>‘J§ for the
set of elements in @y which are images of elements of ®*, and define @, similarly. Then ®y is the disjoint
union of <I>‘J§ and ®,; we have #(I)“'; = #®, = 20. We write Sy C @“ﬁ for the image of the root basis S; we
have #Sy = #S/0 = 4.

We now introduce a root basis Sg C ®(G,T?). For this, it is convenient to introduce some notation.

We number the simple roots aq,...,as € S as in [Bou68|, Planche V]:
@

In this diagram, the pinned automorphism o acts by reflection about the vertical axis. We define
a1,az,as,as € X*(T?) to be the respective images of the roots oz + a4, a1, as, and as + ay. Then the set
Sq ={ai,...,as} C ®(G,T?) is a root basis for G:

ay as as ag
G¢: O—O0—O0==0

We will use the decomposition ®(G, T%) = ®(G,T%) T U®(G, T?)~ corresponding to this choice of root basis.
Since G is adjoint, an element b € X*(T?) admits a unique decomposition b = 2?21 Ng, (b)a;. For example,
let ag € @y denote the image of the highest root ag € T of H. Then ag = a; +2as+3a3+2a4 = (1,2, 3,2).
We define a partial order on X*(7%): a > b if and only if n,,(a — b) > 0 for each i = 1,...4. In §4| below,
we have displayed a list of the elements of ®y U {0}, along with the Hasse diagram of the induced partial
order on this set. It will be helpful to note the following:

1. We have ag > a for all a € Py .
2. It is not true that ng, (a) > 0 for all a € 7.
3. With the numbering of §4. we have <I>‘+/ ={1,...,20}, and Sy = {17,18,19,20}.

If 8’ C S is a o-invariant set of simple roots, then we write pg: C b for the parabolic Lie subalgebra generated
by the subspaces t and b, (o € &~ U S’). Thus pp is the unique Borel subalgebra of § containing F' and
ps =bh. We write [g» C pgr for the Lie subalgebra generated by the subspaces t and b, (o« € —=S'US’). Then
ls/ is the standard Levi subalgebra of pgs (with respect to the maximal torus T'). Each algebra [g: and pg
is f-stable. We write &Y, ¢, C @ for the subset of weights of 7% which appear in p&/="".

The following lemma will be used later in the analysis of the irreducible elements in the cusp of a
fundamental domain.

Lemma 1.6. Let v € V, and decompose v = vy + Za@bv Ve according to the Cartan decomposition .
Suppose that one of the following holds:

1. We have v, =0 ifae@f,—Sv and vy #0 ifa € Sy.
2. There is a proper o-invariant subset S’ C S such that v, =0 if a € <I>J‘§ — @;S,.
3. There exists a; € Sg such that v, = 0 if ng,(a) > 0.

Then v is reducible.

Proof. We consider the first case. We show that v is G(k)-conjugate to an element of x(k). By hypothesis,
we can write v = Eaes AaXao + v + Zaeq}; Vg, for some scalars A\, € k. Since v € V, we have As(a) = Aa
for each « € S. Since the group H is adjoint, we can find ¢ € T'(k) such that «(t) = A\ for each a € Sj it
is clear that we then have t € T?(k).

Replacing v by t - v, we can thus assume that v = ¢ Xo +vo + Zaeq); vq. A standard result
in the theory of the Kostant section (cf. [Kot99l §2.4]) says that the natural product morphism induces an



isomorphism U x k = E + py, where U is the unipotent radical of Borel subgroup of H with Lie algebra
pg. Taking f-invariants, we obtain an isomorphism U? x k = E + p‘ée:*l. Consequently, v € E + pgez*l is
U?(k)-conjugate to an element of x(k).

We now consider the second case, which is equivalent to asking that v € p‘é(?:_l. We will show that
in this case A(v) = 0. Suppose for contradiction that A(v) # 0. Then the Lie centralizer 35(v) is a Cartan
subspace of V, which is contained in a unique Levi subalgebra [, C pgs, which is necessarily §-stable. The
canonical projection Iy, — [g/ is f-equivariant, and we deduce that 6 acts as —1 on the center of g/ (as the
center of Iy, is contained in 34 (v)).

However, this contradicts the fact that the center of s/ is spanned by the elements dw, (1) (a €
S —8"), where the @, € X.(T) (o € S) are the fundamental coweights. Indeed, the involution 6 permutes
the elements @, among themselves, so as long as S # S’ there must exist at least a 1-dimensional subspace
of the center of [g, which is fixed pointwise by 6.

We now consider the third case. We will again show that A(v) = 0, first under the additional
hypothesis that v, = 0 if n,, (a) # 0. Then v is fixed by a non-trivial subtorus of 7%, namely A; = Njx; ker a;.
In particular, v cannot be regular, as regular elements of V have finite stabilizer in G. Now suppose that
v € V satisfies instead the condition v, = 0 if n4,(a) > 0, as in the statement of the lemma. We suppose
for contradiction that v is irreducible; then A(v) # 0, and v is regular semi-simple. In particular, the G-
conjugacy class of v in V is closed. However, the closure of the orbit A; - v contains an element w satisfying
we = 0 if ng,(a) # 0. In particular, w cannot be regular semi-simple. This contradiction concludes the
proof. O

1.4 Integral structures

We now assume that k¥ = Q, and introduce integral structures on G and V. The torus 7% C G is split
maximal, and induces the Cartan decomposition g = t? ® @ae¢(a 70) Ja- We choose a Chevalley basis with

respect to this decomposition. This means (cf. [Bor70]) a choice of vector z, € g, for each a € ®(G,T?)
satisfying the following conditions:

1. Let hq = [#4,Z_4]- Then [hy, 2] = (aV,b).

2. If a,b,a+ b € ®(G,T?), then [z,, 2] = £(pap + 1)Tats, Where p,p is the greatest integer such that
a — papb is a root.

The elements h, and x, give a basis for a Z-form gz C g. Moreover, the notion of admissible Z-form of
V is defined [Bor70, §2]; we choose an admissible Z-form V C V which contains the nilpotent elements
E,e €V fixed above. An integral model of the group G can be obtained by taking the Zariski closure of G
inside GL(V); we will abuse notation slightly by now writing G for this choice of integral model. With these
choices, the Cartan decomposition V' =V ® D, cg,, Va is defined over Z [Bor70, Lemma 2.3]; in particular,
if v € V(Z) is written as v = vy + vq, then we have vg,v, € V(Z). We scale the discriminant A so
that A € Z[V].

Let K C G(R) be a maximal compact subgroup. Let P = TN C G denote the Borel subgroup
containing 7% and corresponding to the root basis Sg, and let P = TN C G denote the opposite Borel
subgroup. A Siegel set is, by definition, any subset & C G(R) of the form & = w- T, - K, where w C N(R) is
a compact subset and T, = {t € T?(R)® | Va € Sg, a(t) < c}. Since G is a Chevalley group, we have access
to the following result:

acdy

Theorem 1.7. 1. G(Z) has a unique cusp: we can choose w C N(R), ¢ > 0 so that G(Z) - & = G(R).

2. G(Z) has class number 1: we have G(A®) = G(Q) - G(Z). (Here A> = H; Q, denotes the ring of
finite adeles of Q.)

Proof. For the first point, see [Bor66), §6, Lemma 1] and [PR94, Theorem 4.15]. For the second, see [PR94l
Theorem 8.11, Corollary 2]. O



In what follows we will fix a choice of w and ¢ so that the condition G(Z) - & = G(R) holds.
We now choose less canonical integral structures for X, Y, and B. A choice of invariant polynomials
P2, ..,p12 € Q[V]Y has been fixed in Theorem after rescaling ps,...,p12 and the co-ordinates z,y on
X, we can assume that ps,...,p12 lie in Z[V]. We define B = SpecZ[pa, ..., p12], and write 7 : V — B for
the induced morphism; the fiber over Q recovers the categorical quotient V' — B = VJ/G.

We define X = SpecZ[z,y,pa, .. .,p12]; then X is isomorphic to AT, and the morphism X — B
extends to a morphism X — B. We write ) for the natural compactification of X as a closed subscheme of
P%. We have the following elementary fact, which we record as a lemma for later reference. (The G,,-actions
on x and X here are the actions coming from the fixed slo-triples, as at the beginning of §I.2] The G,-action
on B is the one arising from the inclusion Q[B] = Q[V]¢ c Q[V].)

Lemma 1.8. Let p be a prime. There exists an integer Ny > 1, not depending on p, such that for any
b e B(Zy,) (resp. v € X(Zy)), we have No - ky € V(Zy) (resp. No-v € V(Zy,)). In particular, if b € N§ -B(Z),
then b € m1(V(Z)).

We conclude this section with a fact about integral orbits.
Theorem 1.9. Let b € B(Z) satisfy A(b) # 0. Then Vy(Z) consists of only finitely many G(Z)-orbits.
Proof. This follows from [BHC62, Theorem 6.9]. O

1.5 Integral orbits and algebraic curves

Let b € B(Z) be such that A(b) # 0. According to Theorem [1.4] we have a canonical inclusion G(Q)\V,(Q) C
HY(Q, J[2]). We write O, C HY(Q, Jp[2]) for the image of V,(Z). In this section we prove the following
result.

Theorem 1.10. There exists an integer N3 > 1 such that if b € N3 - B(Z), then O contains the subset
Sely(Yy) € H'(Q, Jp[2]).

To prove the theorem, it suffices to prove the corresponding local statement. Let p be a prime, and
let b € B(Z,) be a point such that A(b) # 0. Let Oy, C H*(Q,, J5[2]) denote the image of V,(Z,).

Lemma 1.11. There exists an integer N3 > 1, not depending on p, such that if b € N3 - B(Z,), then Oy )
contains the image of Y5(Qy) in H'(Qp, Jp[2]) under the Abel-Jacobi map.

We first explain how Lemma implies Theorem Let c € HY(Q, J,[2]) be a class correspond-
ing to an element of Sely(Y;). We claim that ¢ corresponds to an element of G(Q)\V4(Q); equivalently, that
c lies in the kernel of the natural map H'(Q, J,[2]) = H'(Q,G). The map H'(Q,G) — [], H'(Q,,G) is
injective. Indeed, there is a short exact sequence with G’ the universal cover of G:

1 125 G/ G 1,

hence a commutative diagram

HY(Q,G) H*(Q, p2)

l |

Hv Hl(@va) — Hv H2(Q1)7N2)~

The horizontal arrows are injective (because the cohomology of G’ is trivial), and the right-hand arrow is
injective (by class field theory). It follows that the left-hand arrow is injective. It therefore suffices to show
that for every place v of Q, the image ¢, € H*(Q,, J3[2]) of ¢ has trivial image in H'(Q,,G). However, c,
lies, by hypothesis, in the image of the natural map Y;(Q,) — H'(Q,, J5[2]). It follows from Theorem
that ¢, corresponds to an element of G(Q,)\V,(Q,); this establishes the claim.

Let us now take again b € N3-B(Z) such that A(b) # 0, with N3 > 1 as in the lemma. Take a vector
v € V4(Q) whose image in H'(Q, Jy[2]) lies in Selz(Y;). By Lemma G(Qyp) - v contains an element of
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Vi(Zy); thus, there exists g, € G(Q,) such that g, -v € Vy(Z,). By Theorem [1.7] we can find g € G(Q) such
that gg, ' € G(Zj) for every prime p. It follows that g-v € V(Z,) for every prime p, and hence g-v € V(Z),

as desired.

Proof of Lemma[T.11} Let ¢ € B(Z,). We claim that if ¢ € 24 - B(Z,) (which is no condition if p # 2 — by
definition, 2* - B(Z,) denotes the set of points b € B(Z,,) such that p;(b) is divisible by 2%/ in Z,), then every
element of the image of Y.(Qp) — J.(Qp)/2J.(Q,) is represented either by P, or an element of X.(Z,).
Indeed, this follows from the following observations:

e Let ¢ = 2'.b, b € B(Z,). Let P € Yy(Z,), and suppose that the image of P under the natural
identification Y,(Q,) = Y.(Q,) is not contained in the subset X.(Z,) C V.(Z,). Then P and P, have
the same image in Y, (Z,/2pZ,).

o Let F € Zy[X1,..., X4, Y1,...,Y,] be a g-dimensional formal group law (for some g > 1). If z €
ker(F(pZ,) — F(pZ,/2*pZ,)), then z is 2-divisible in F(pZ,) (as follows from [CX08, Proposition 9]).

e Let b € B(Z,) be such that A(b) # 0, and let J, denote the identity component of Picy, /7 , a smooth
quasi-projective scheme over Z, (see [BLR90, §9.3, Theorem 1]; we use here that the special fiber of
Vb is geometrically irreducible). Let F' now denote the g-dimensional formal group law which is the
completion of Jj, along its identity section. If P € },(Z,) has the same image in V,(Z,/2*pZ,) as the
point Py, at infinity, then the Cartier divisor (P) — (Pw) € J(Z,) lies in the subgroup

ker(F'(pZp) — F(pr/24pr)) C F(pZp) = ker(To(Zp) — Tp(Fp)).

Let Ny > 1 be the integer of Lemma let N3 = 2*NZ, and assume now that b= N§ - ¢, ¢ € 2*B(Z,,). We
then have a commutative diagram:

Xb(Qp) - G(Qp)\W)(@p) —H' (Qp» Ju[2])

—1 —2 -2
| E |

Xe(Qp) — G(Qp)\Ve(Qp) —— H'(Qy, Je[2]).

The vertical arrows are bijective. The composites of the horizontal arrows agree with the composites of the
descent and Abel-Jacobi maps, by Theorem

Suppose that v € V,(Q,), and let o' = NO_QU. If v has the same image in H'(Q,, J5[2]) as P (i.e.
if this image is trivial), then the G(Q,)-orbit of v’ contains k., so by Lemma kp = No - ke € V(Zy).
If the image of v in H'(Qy, Jy[2]) is non-trivial but still comes from Y;(Q,), then the G(Q,)-orbit of v’
contains an element in the image of X.(Z,), and so the G(Q,)-orbit of v contains an element in the image
of Ny - Xo(Zyp) C Xy(Zp); applying Lemma [L.8 once more, we see that No - X,(Zp) C Vo(Zp). This concludes
the proof. O

1.6 Height
If b € B(R), we define its height as follows:

H(b) = sup |p;(v)|*&&)/",

If v € V(R), we define H(v) = H(n(v)). By construction, H(v) is homogeneous of degree deg A = 72; if
A € RX, then H(\v) = |\|"?H (v). We note that this very much depends on the choice of polynomials p;.
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1.7 Measures on (¢

Let K € G(R) and P C G denote respectively the maximal compact subgroup and Borel subgroup fixed in
1.4l According to the theory of the Iwasawa decomposition, the natural product maps

NR) x T'(R)? x K — G(R), T°(R)® x N(R) x K — G(R)
are diffeomorphisms. If t € T?(R), let §(t) = [ocog,ro)- alt) = det Ad(t)|;e w(w)-

Lemma 1.12. A Haar measure on G(R) is dg = dt dndk = §(t)"tdndtdk. More precisely, let dt,dn, dk be
Haar measures on the groups T°(R), N(R), and K, respectively. Then the integral

/ f(g)dg = / / f(tnk)dtdndk = / / f(ntk)s(t)~' dndt dk
g€G(R) teT9(R)° JneN(R) JkeK neN(R) JteT?(R)° JkeK

defines a Haar integral on G(R).

Proof. This follows from well-known properties of the Iwasawa decomposition; see, for example, [Lan75l Ch.
111, §1]. O

We now fix for the rest of this paper a left-invariant top form wg on G. If v is a place of Q, then
we define a Haar integral on G(Q,) using the volume element dg = |wg/|,, where | - |, is the usual absolute
value if v = oo and |p|, = p~! if v = p. We use the volume element |wg|s to fix Haar measures on the
groups T?(R)?, K, and N(R), as follows. We give T?(R)? the measure pulled back from the isomorphism
[Tiess a: T9(R)? = R% ); Ry gets its standard Haar measure d*\ = %, where d\ is the usual Lebesgue
measure. We give K its probability Haar measure. There is now a unique choice of Haar measure dn on

N(R) such that |wg|eo = dt dn dk; we make this choice.

1.8 Measures on V and B

We fix a differential top form wy on V induced by the integral structure on V; it is determined up to sign.
If v is a place of Q, then the volume element dv = |wy |, determines a Haar measure on V(Q,). With this
choice, the spaces V(Z,) (p a prime) and V(Z)\V(R) have volume 1. We write wp = dpz A --- A dp12, and
wy, for the pullback of this form under the canonical isomorphism x — B. Again, if v is a place of Q, then
the volume element db = |wp|, determines a measure on B(Q,). If p is a prime, then B(Z,) has volume 1;
if X > 1 is a real number, then the set {b € B(R) | 1 < H(b) < X} has volume X2:%/7 = X7/12,

Proposition 1.13. 1. Let py : G x k — V denote the product map. Then there exists Wy € Q* such
that piwy = Wy - wa A wy.

2. Let ¢ C V be a Cartan subspace, and let p. : G x ¢ = V denote the product map. Then there exists
W1 € Q*, not depending on the choice of ¢, such that prwy = Wi -we A nliws.

Proof. 1. The morphism pu, is étale. It follows that there exists a non-vanishing regular function f €
Q[G x k] such that pfwy = fwgAw,. The form wy is G-invariant, so the function f must be pulled back
from Qlk|. Since k is abstractly isomorphic to affine space, the only non-vanishing regular functions
are the constants.

2. Let w, be an invariant differential top form (with respect to the vector space structure on c¢). Again,
we can write ufwy = fiwg A w, for some function f; € Q[G x ¢] = Q[¢]. We write 7|*wp = fow, for
some function fy € Q[c]. We must show that f; and fy are equal, up to scalar.

We define a new action of G x G,,, on G x ¢ by (g,\)-(h,z) = (gh, Ax). Then (g, \)* f; = \dimV—dimeg .
in particular, f; is homogeneous of degree dimV — dimec. On the other hand, the function fs is
homogeneous of degree ) .(d; — 1). We now use the string of equalities:

#® =degA =2 (d; — 1) = 2(dim V — dimc).
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It is easily seen that f; and fo vanish along the same set; moreover, fs vanishes to order 1 along each
root hyperplane, and nowhere else. As the functions f; and f; are homogeneous of the same degree,
they must be equal up to scalar. The result follows.

O

1.9 Constructing special sections over R

The space V(R) contains finitely many G(R)-conjugacy classes of Cartan subalgebras; let ¢y ..., ¢, be rep-
resentatives. For each i = 1,...,n, the natural map m|ces = : ¢ * — B(R)™® * is a proper local
homeomorphism. Consequently, there exists (cf. [BCRO8, Proposition 9.3.9]) a finite cover U;; of ¢;°* ™
by open semi-algebraic subsets such that each 7|y, is a homeomorphism. Since a semi-algebraic set has
finitely many connected components ([BCRIS, Theorem 2.4.4]), we can suppose moreover that each U;; is
connected.

Let Ly, ..., L, denote the sets 7({v € U;; | H(v) = 1}), in any order, and let s; : L; — V(R) denote
the corresponding sections. Then L; C {b € B(R) | A(b) # 0, H(b) = 1} is a connected semi-algebraic open
subset, and s; : L; — V(R) is a semi-algebraic map. We have an equality (A = R<q):

V(R)™® = = U;G(R) - A - 5;(Ly).

This union need not be disjoint, but this is not a problem for us. If v € s;(L;), let n; = # Stabgg)(v); this
integer is independent of the choice of v.

Proposition 1.14. Let f : V(R) — C be a continuous function of compact support. Then for anyi=1,...,r

we have -
/ foya == [ s dgan
vEG(R)-A-s;(L;) g beA-L; JgeG(R)

where W1 € Q* is the scalar of Proposition , Consequently, we have
vol (6 [, X7 si(LZ—)) < [Wi|oe vOl(S) - vol([1, X /7] - L;).

Proof. Let ¢ C V(R) be the Cartan subspace corresponding to L;. Let us write u; : G(R) x (A- L;) = V(R)
for the morphism (g, A1) — g - As;(1). It follows from Proposition that pfwy = Wiwg Awp. The
displayed formula now follows from the fact that u; is a proper local diffeomorphism onto its image, with
fibers of cardinality n;. O

1.10 Constructing special sections over Q,
In this section, we construct the congruence conditions that will be used to prove Theorem [0.2]

Proposition 1.15. Let p be a prime congruent to 1 modulo 6. There exists an open compact subset B, C
B(Z,) such that for all b € B,, we have Ju(Qp)/2J5(Qp) = (Z/2Z)%, the map Y, (Qp) — Jo(Qp)/2J,(Qp) has
image reduced to the identity, and Xy(Z,) # 0.

Proof. We verify by explicit calculation that the curve 3% = 2* — p? satisfies the conditions of the proposi-
tion. In fact, we show that the special fiber of the minimal regular model contains a unique component of
multiplicity one, and the special fiber of the Néron model has component group Z/27Z x Z/2Z x Z./37Z, and
purely unipotent connected component. In order to do this, we use the quotient method of Lorenzini [LT02,
§2]. Let @ be a 61 root of p, and let K = Q,(ww). The extension K/Q, is Galois, since 6 divides p — 1. Let
Y denote the projective closure of 43 = z* — p? in ]P’ép. The curve Yy is isomorphic to the curve Z C P%,
projective closure of the equation Y3 = X* — 1, via the substitutions z = @w>X, y = w?Y.

Let Og C K denote the ring of integers, and let Z C IE%K denote the projective closure of the affine
curve cut out by the same equation as Z. Then Z is a smooth, projective curve over Ok with generic fiber
Z. In particular, Z is regular. The group G = Gal(K/Q,) acts on Z in a manner covering its action on Ok,
and we write ) for the quotient Z/G. Then Y is normal; it is regular outside of the points in the special
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fiber which are the images of the fixed points of the action of G on Z¢, /(). At such points, it has quotient
singularities. Resolving these quotient singularities as in [LT02, §2.15] gives a regular model )’ of Y. The
intersection graph of the special fiber of ) is as follows:

©)
®
®
©

Here the vertices correspond to the reduced irreducible components of the special fiber of )’; two vertices
are connected by an edge if the corresponding components intersect. (It turns out that for this curve, the
non-zero intersection multiplicties are all equal to 1.) Each vertex is labeled with the multiplicity of the
corresponding component in the special fiber of ). The desired properties now follow from the description
of the component group of the Néron model recalled, for example, in [Lor00, Introduction]. To see that our
curve has Z,-points, we observe that there are solutions with z =1 (since 1 — p? is a cube in Z;j).

Let by € B(Z,) be the point corresponding to the equation y* = z* — p%. It is now easy to see that
any sufficiently small open compact neighborhood B, C B(Z,) of by will have the desired properties. O

Proposition 1.16. Let U C B(Z,) be an open compact subset such that for all b € U, A(b) # 0. Let
Vo = (G(Qp) - 5(Qp)) NV(Zy) Nw=Y(U). Then, after possibly shrinking U, the following statements hold:

1. The set {g € G(Qp) | gy € V(Z,)} is independent of b€ U. We write g1,...,gr for representatives of
the G(Zp)-Stabg(q,)(kp)-double cosets in this set.

2. The quantities # Stabg(q,)(ky) and # Stabg(z,)(giks) are independent of b € U.
3. V, CV(Zy) is open compact.

Moreover, the constant Wy € Q* being as in Proposition we have

1
2, (gikn)’

vol(Vy) = [Wolp vol(G(Zy)) vol(U) Z # Stabg
i=1

forany b e U.

Proof. In order to simplify notation, let us use the subscript (-)y to denote intersection with 7=1(U). The
orbit map py : G(Q,) x k(Qp)v — V(Q,)y is finite and a local analytic isomorphism. If b € U, let
G(Q,)" = {9 € G(Q,) | gry € V(Zp)} = ug' (V(Zp)r) Npry ' (b). Choose by € U. Tt is easy to see that the
set {b € U | G(Q,)" = G(Q,)™} is open, so after replacing U by an open compact neighborhood of by, we
can assume that G(Q,)? = G(Q,)" for all b € U.

Let p : Z — k'8 *° denote the stabilizer scheme; it is a finite étale group scheme. Let y1,...,ys
be the distinct elements of p~1(by) in Z(Q,). After possibly shrinking U further, we can find disjoint open
neighborhoods Vi,...,V; of y1,...,ys in Z(Q,) such that each restriction ply, : V; — U is an analytic
isomorphism, and p~1(U) = V; U--- U V;. In particular, # Stabg(q,) (k) is independent of b € U.

We now show that we can choose U so that the quantity

# Stabg(z,) (gire) = # (p~ ' (0)(Qp) Ng; " G(Zp)g:)

is independent of b € U. Since the group g; 'G(Z,)g: C G(Q,) is open compact, we can assume, after
possibly shrinking U, that for each j = 1,...,s, either V; C gi_lG(Zp)gi or V; N gi_lG(Zp)glv = (). This
implies the desired property. We can write V, = U]_1G(Z,) - ¢; - K(Qp)y. In particular, V, is an open
compact subset of V(Z,) and satisfies the points 1-3 above.

14



It remains to calculate the volume of V,,. Proposition implies the formula

1 1
vol(V Wi / / dgdb = |Wy|, vol(G Z ) vol(U
Z IWoly vev Jgea(z,) # Staba(z,)(giks) g [Wol, vol(G( Z # Stabg(z,)(giks)’

as desired. O

If v € V(Z,)"™ 8 5, then we define (following [BS| §3.2])

# Stabg((@p )
Z # Stabgz,) (v:i)’

where vq,...,v, are representatives for the G(Z)-orbits of (G(Qp) - v) N V(Z,). The volume of the set V,

my (v)-vol(U)-vol(G(Zy))
L #S(;abcwo)(v) 22> for any v € V,.

appearing in Proposition [1.16{ can thus be written as vol(V,) = |[Wy|,
Similarly, if v € V(Z)™# %, then we define

Z #Stabg((@) )
< Staba(zy ()

where vy, ..., v, are representatives for the G(Z)-orbits of (G(Q) - v) N V(Z). (There are finitely many by
Theorem [1.9])

Lemma 1.17. For any v € V(Z)™ **, we have m(v) =[], m;(v).

Proof. For each g € G(Q) such that gv € V(Z), we have a natural bijection

Stabg(z) (9v)\ Stabg q) (v) = G(Z)\G(Z)g Stabg(g) (v),

which sends z € Stabgq)(v) to G(Z)gz. Let vi,...,v, € V(Z) be representatives for the set G(Z)\(G(Q) -
vNV(Z)). We then have

G(Z)\{g € GQ) | gv € V(Z)} = Z#StabG(Z)(vz)\StabG(Q)( ) =m(v).

i=1

The same argument applies locally, to give #G(Z,)\{g € G(Qp) | gv € V(Z,)} = mp(v). The result now
follows from the bijection of sets:

G(Z)\{g € GQ) | gv e V(Z }—HG N{g € G(@Qp) [gv e V(Zy)}.

The injectivity follows from the fact that G(Z) = G(Q) N G(Z); the surjectivity follows from the fact (cf.
Theorem [L.7) that G(A®) = G(Q)G(Z). O

2 Counting points

In this section, we come to the problem of counting points in V(Z) up to G(Z)-equivalence. We continue
with the notation and assumptions of the previous section; thus we have a semi-simple group G acting on the
representation V', and we have fixed integral structures V and B on the spaces V and B = VJ/G, respectively.
The height function H is defined on B(R). If A C V(Z) is any subset, then we write A" for the subset of
Q-irreducible points of A.

In we have constructed open semi-algebraic subsets L C {b € B(R) | A(b) # 0, H(b) =1} and
sections s : L — V(R) of =; fix one of these. Let A = R.y; then the natural product map L x A — B(R) is
an open immersion. We will prove:
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Theorem 2.1. There exist constants C,6 > 0, not depending on the choice of L, such that:
#G(Z)\{v € [GR)-A-s(L)|NV(Z)" | H(v) < X} < C-vol([1, X/™] . L) + O(X7/1279),

The rest of this section is devoted to the proof of this theorem. We also deduce below a slight

extension (Theorem 7 where we impose congruence conditions at finitely many primes; this will be the
version used in applications to the arithmetic of algebraic curves.
Remark 2.2. The constant C is the price we pay for using a Siegel set instead of a true fundamental domain,
and not keeping track of the orders of stabilizers. Since we seek only qualitative results, this is not a problem
for us. One could easily make the leading term here exact by the systematic use of multisets, as in [BGl,
§10]. We emphasize that we do not use multisets here.

2.1 Preliminary reductions

Let 6 =w T, - K C G(R) be as in Theorem in particular, we have G(Z) - & = G(R). It follows that
every element of (G(R) - A - s(L)) N V(Z) is G(Z)-conjugate to an element of & - A - s(L). We obtain

#G(Z)\{v € (GR) - A-s(L)) N V(Z)™ | H(v) < X} < # (e 1L, XY™ s(L) N V(Z)i“) .

The same estimate holds if & is replaced by any right translate &h, h € G(R). Accordingly, we fix a semi-
algebraic subset Gy C G(R) x A, compact and of non-empty interior, and such that K - Gy = Gy. In order
to simplify some later formulae, we assume that the projection of Gy onto A is contained in [1, Ky] for some
constant Ky > 1, and that vol(Go) = 1. (A pleasant choice is Gp = KAcK x [1,C] for some C' > 1, where
Ac ={t e T°(R)° | Va € Sg, 1 < a(t) < C}.) If A C V(Z) is any subset and X > 1, we define (following
BS| §2.3]):
N(A, X) :/ #(6h-A-s(L)yNn{ve A™ | H(v) < X}) dh
heGy
and

NAX) = [ #(SheAs(L)N {0 € A H) < X)) dh.

We observe that both N(A, X) and N*(A, X) are additive in A, in the obvious sense. The following is now
clear.

Lemma 2.3. Let A C V(Z) be a G-invariant subset. Then:
4G(Z)\{v € (G(R) - A-s(L)) N A™ | H(v) < X} < N(4,X)

and
#G(Z)\{ve (GR)-A-s(L))NA|H(v) < X} < N*(4,X).

2.2 Bhargava’s trick

We now introduce a beautiful trick due to Bhargava that gives a new way to estimate the expressions N (A4, X)
and N*(A, X) above.

Lemma 2.4. Let A C V(Z) be a subset. Given X > 1, n € N(R), t € T°(R) and A € A, define
E(n,t, A\, X) =ntAGos(L)N{v € V(R) | H(v) < X}. Then:

N(A,X) < 26/ # [E(n, t,\, X)N A" §(t)" " dndt d* X
gewT A

and

N*(A,X) < 26/ #[EMn, t,\, X)NA]6(t) " dndtd*\.
geEWT . A

The Haar measure on G(R) is as in and we write d* X = % for the standard Haar measure on A = Ry.
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Proof. Tt suffices to treat the case of N*(A, X), when A = {a} consists of a single element. If either a is not
conjugate under G(R) x A into s(L), or H(a) > X, then both sides of the above inequality are 0. Otherwise,
let (g1,X0);---,(gk, Mo) € G(R) X A be the elements such that a € g;A\gs(L). We then have:

k
N*(A,X) = / locena-sr) d Z 1({h € Go | (g5, o) € GhA}).
heGo

This last sum becomes:

Z/ / €(9i,20)Gg " dgd X < k/ / Lac(g,0)Gos(L) dgd* .
AeA Jges AeA Jges

Finally, we use the Iwasawa decomposition (cf. Lemma |1.12)) and the fact that Gy = KGq to conclude that
this last expression equals:

k/ / 1aentkmos(m5(t)*1dkdndthA:k/ / / Locmminx)0(t) "t dndtd A
AEA JgeS AeA JnEw JEeT,

Since k is at most 26, this completes the proof. O

We will make use of the following result of Davenport, slightly extended by Bhargava [BGlL Propo-
sition 26:

Proposition 2.5. Let R C R" be a bounded semi-algebraic subset, being defined by at most k polynomial
inequalities of degree at most l. Let R’ denote the image of R under any unipotent linear transformation.
Then the number of integer lattice points in R’ is

vol(R) + O(sup{vol(R), 1}),

as R runs over all projections of R to a j-dimensional co-ordinate hyperplane, 1 < j < n — 1. The implied
constant depends only on n, k, and .

2.3 Cutting off the cusp

We now write ag € @7 for the restriction to 7% of the highest root of H, as in We write S(ag) C V(Z)
for the subset of points v = vg + Za€<1>v v, With ve, = 0.

Proposition 2.6. There exists § > 0 such that N(S(ag), X) = O(X7/1279).
In fact, the argument shows that one can take § = 1/72.

Proof. It My, My C @y U {0}, we define S(My, M) = {v € V(Z) | Va € My, vq = 0;Va € My, v, # 0}. We
refer to a pair of subsets My, M; C ®y U {0} such that M; C (®y U {0}) — My as a cusp datum. To prove
the proposition, it is enough to write down a collection C of cusp data satisfying the following conditions:

e If v € S(ag)™, then there exists (Mg, M) € C such that v € S(Mo, My).

o If (My, M;) € C, then N*(S(My, M), X) = O(X7/129) for some § > 0.
According to Lemma S(My, My)™ is empty if any of the following conditions holds:

1. My =&} — Sy and M; = Sy.

2. There exists a proper subset S’ C S such that <I>$ — ‘I)&S/ C M.

3. There exists a; € Sg such that My contains all a € &y U {0} such that ngy,(a) > 0.

17



The union of these conditions is hereditary, in the following sense: if (My, M;) and (M], M) are cusp data
such that My C M{, and (Mo, M) satisfies one of these conditions, then so does (M{, M7). This is obvious
if My satisfies the second or third conditions. On the other hand, it is easy to see that if M, satisfies the
first condition, then M| satisfies either the first or second condition.

This suggests the following inductive procedure. First, if My C & U{0}, we write A(My) C &y U{0}
for the set of upper bounds of (®y U{0}) — My in the natural partial order of ®y U {0}:

)\(Mo):{ClE((I)Vu{O})—MO‘Vbe(@VU{O})—M(),()ZCL?[)Z(J,}.

One can easily check using the figures in §4] that )\(@‘t — Sy) = Sy. We now generate a collection C of cusp
data as follows:

1. In step 1, we create the cusp datum ({ag}, A({ao}))-

2. Instep n+1, we create new cusp data for each cusp datum at step n. If (Mg, M;) is a cusp datum at step
n, and we enumerate My = {b1,...,bs}, then the new cusp data created are (Mo U{b;}, \(MoU{b;})),
1=1,...,s.

3. To finish step n + 1, we remove duplicates and delete any newly created cusp data that satisfy any of
the 3 reducibility conditions above.

4. The procedure terminates when no new cusp data are created at step n + 1.

The result of running this procedure is given in below. It is clear that if v € S(ag)™™, then there will
exist exactly one cusp datum (My, M) in C such that v € S(My, M;). It remains to show that for each
(My, M) € C, there exists § > 0 such that N*(S(My, M;), X) = O(X7/1279). We will establish this by a
case-by-case check.

Choose for each a € ®y a generator e, of the free rank 1 Z-module V,, and let e o, eg,1 be a basis
of Vy. Let || - || denote the supremum norm of V(R) with respect to this basis. Fix also a constant J > 0
such that ||v|| < J for all v € w- Gy - s(L).

Let (Mo, M;) € C be a cusp datum. If the set S(My, M1) N E(n,t, A\, X) is non-empty, then for
all a € My we have Aa(t) > 1/J (since there exists v € E(n,t, A\, X) such that ||v,| > 1). We also have
[loco, a(t) =1fort e T?(R). In particular, if we write Vaz, C V for the subspace given by the equations
ve = 0,a € My, and Vg v, C Vg, (R) for the subset given by [[vg] > 1, a € M, we obtain the estimate
(volumes being taken inside Vyy, (R)):

vol(E(n,t, X\, X) N Vg ar, ) < N27#M0 TT a(t) ™. (2.1)
a€ My

Any element a € (& U{0}) — My can be written as a = b — Z?:l n;a; for some b € M; and integers n; > 0.
It follows from the definition of the Siegel set & = w - T, - K that

4
Aa(t) = Mb(t) [ ai(t) ™™ > ¢ == mixb(t) > 1.
=1

Consequently, the volume of any projection of E(n,t, A, X )NV, a, onto a co-ordinate hyperplane of Vi, (R)
satisfies the same estimate (2.1]).

Let T'(My, M1, ) C T. denote the subset defined by the inequalities Aa(t) > 1/J, a € M;. To be
completely explicit, we have

T (Mo, My, ) = {t € T°(R)° | Va € Sq,a(t) < ¢; Ya € My, da(t) > 1/J}.

The above remarks, together with Proposition [2.5] imply that we have

N*(S(My, My), X) < / #(S(Mo, My) N E(n,t,\, X))6(t) "  dndtd*

gEWTA
x1/72

< / A2 #Mo / IT a® ] a®)'ata<x
/\:Ko—l teT (Mo, Mi,\) a€®(G,TO)+ ac M,
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We have thus reduced the proposition to showing that for each cusp datum S(Mj, M7) € C we have

/ [T a® ] a®)~"dt=0n#M2), (2.2)
LET(Mo. M) ea(Groyt e Mo
for some § > 0. This will be established in §4} O

2.4 The main body, and the proof of Theorem 2.1

Proposition 2.7. Let N > 1 be an integer, and let v € V(Z). Let A, x = v+ NV(Z). Then there exists
6 > 0 such that:

_ Wilog vol(8)
— N42

Proof. Let F(n,t,\,X) ={v € E(n,t,\,X) | vg, # 0}. f V(Z)NF(n,t,\, X) # 0, then, just as in the proof
of Proposition we have Aao(t) > 1/J, and consequently #V(Z) N F(n,t, A\, X) = vol(F(n,t,\, X)) +
O(M'ag(t)™1). More generally, we have #A, y N F(n,t, A\, X) = N=*2vol(F(n,t,\, X)) + O(A\ag(t)71).
We obtain:

N (Ao = S(ao), X) vol([1, XY™ L) + O(X7/1275),

N*(A, N — S(ao), X) g/ / N2 v0l(F(n,t,\, X)) 6(t) " *dndtd* )
AEAN JgewT,

X1/72 (23)
+/ / O\ ag(t)™1) 6(t) Ldn dt d* ).
A\=K;"' JgewT.

It is easy to see that the second term of (2.3)) is O(X7/*2~/72). On the other hand, the first term is at most

/ / N~=2vol(E(n,t,\, X)) 6(t) " *dndt d* )
AeA JgewT,

_N® / / / / Locorna(ry. i(oy<x dhdg dv d” .
AEA JgeS JveV (R) JheGy

By Proposition this expression is bounded above by

|W14|200/ / / / 1 (gans(v))<x dhdbdgd* X\ = |W14|2°°/ vol(G)vol([l,Xl/”}-L) dh+0O(1).
N eA Jges JveL Jheag, N heGo

The result follows. O
We now observe that N(V(Z), X) < N*(V(Z) — S(ap), X) + N(S(ap), X). Theorem follows on

combining Lemma [2.3] Proposition [2.6 and Proposition 2.7

2.5 Counting with congruence conditions

In the applications below, the following slightly more refined version of Theorem [2.I] will be useful. To
state it, we must first introduce some notation. Let pi,...,ps be prime numbers, and let V,,,...,V, be
G(Z,,)-invariant open compact subsets of V(Z,, ), ..., V(Z,,), respectively.

Theorem 2.8. There exist constants C,é > 0, not depending on s or the choice of V,,, such that:

#GZ)\{v € V()™ N (Vp, x ---x Vp,) | H(v) < X} < CﬁVOI(Vpi)XWl? +O(XT/1279),
=1
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Proof. Let Ly, ..., L, C B(R) be the sets constructed in with corresponding sections s; : L; — V(R).
Let A=V(Z)N(V,, x---%xV,,). We can find an integer N > 1 and vectors vy, ...,vx € V(Z) such that A is
the disjoint union of the sets v; + NV(Z) = A,, n. We have k/N*? = T]’_, vol(V,,). The result now follows
by summing the result of Proposition [2.6] and Proposition 2.7 over L = Ly,..., L, and v = vy,..., vy, and
applying Lemma [2.3| once more. O

We now record a particular case of this theorem as a corollary. Let p1,...,ps be primes congruent
to 1 modulo 6. By combining Proposition [1.15] and Proposition we obtain open compact subsets
B,, C B(Z,,) satisfying the following conditions:

1. Let b € By,. Then # Stabgq, ) (xs) = 4.
2. Let Vp,, = (G(Qp,) - k(Qp,)) NV(Zy,,) N T (B,,). Then V), is open compact, and we have

my, (v) - vol(By,) - vol(G(Zy,))

VOI(VPi) = |WO Pi 4 ’

where m,, (v) € Z is independent of the choice of v € V},,.

If ACV(Z) is a G(Z)-invariant subset, we write G(Q)\ A for the quotient by the equivalence relation v ~ v’
if there exists v € G(Q) such that yv = v'.

Corollary 2.9. With notation as above, let A =V(Z)N(Vp, x---xV,,). Then there exist constants C,§ > 0,
not depending on s or the choice of p1,...,ps, such that:

HG@\ o € A7 | HE) < X)) < § T vol(B,) X712+ O(x7127),

i=1

Proof. If v € V(Z)* %5, define n(v) = #G(Z)\(G(Q) - vNV(Z)). We then have

IA

1 1

#CGQ\WveA|Hu) <X)} = > (o) 20 )’
vEG(Z)\A vEG(Z)\A
H(v)<X H((v)<X

since n(v) < m(v) < 25n(v). Using Lemma we obtain the inequality m(v)~! < [];_; my, (v) ™!, hence:

#GQ)\{fve A|H(v) < X)} < 260f[ MX”” + O(XT/1279)

_ 26Cf[ [Wolp, VOI(G(im)) 'VOl(Bpi)X7/12 n O(X7/12—6)7

i=1

by Theorem [2.8] Absorbing terms into the constant now gives the result in the form stated above. O

3 Application to 2-Selmer sets

We now use the results of the preceding sections to deduce our main theorems. Let us write B for the affine
space over Z with co-ordinates ps, ..., p12, and let B denote the fiber of B over Q. We consider the following
family of affine curves over B:

X y? =2t + y(p22® + psx + ps) + pex’ + pox + pra. (3.1)

We write ) — B for the natural compactification of B as a family of plane quartic curves, and X — B and
Y — B for the Q-fibers of these families.
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Lemma 3.1. Let k/Q be a field. The smooth members over k of the family Y — B are in bijection with
the set of isomorphism classes of triples (C, Pso,t), where C is a smooth, projective, connected and non-
hyperelliptic curve over k of genus 3, Py, € C(k) is a rational point such that 4P, is a canonical divisor,
and t € Tp_(C) is a non-zero element of the Zariski tangent space at Poo. If A € k™, then the triple
(C, Py, At) has co-ordinates \'p;(C, Pso,t).

Proof. This follows from a theorem of Pinkham: let I be the sub-semigroup of (N, +) generated by 3 and
4. The family X — B is a semi-universal deformation of the monomial singularity SpecQ[I']. If C is a
non-hyperelliptic genus 3 curve and P, € C(k) is a point such that 4P, is a canonical divisor, then P,
is a Weierstrass point with Weierstrass semigroup I'. Pinkham’s theorem relates X — B and the family of
genus 3 curves described above. (See [NM04] for more details.)

We now give a proof of the lemma that is essentially a working-out of Pinkham’s theorem in this
special case. If (C, P, t) is a triple as above, then we calculate (using that C' is non-hyperelliptic and 4P,
is canonical):

10 11 12
8 9 10.

n 001 2 3 456 789
dim, H(C,Oc(nPx)) |1 1 1 2 3 3 4 5 6 7
We choose x € H°(C,O¢(3Px)) with a pole of exact order 3 at P, and y € H°(C, O¢(4Px)) with a pole
of exact order 4. Let z be a co-ordinate at P, with dz(t) = 1; then we can choose x and y so that their
Laurent expansions at P, are respectively z = 2724 ... and y = 2~* +.... Then z is uniquely determined
by (C, P, t) up to the addition of constants, and y is uniquely determined up to the addition of constants
and constant multiples of x.

The 11 monomials 1, z, y, 2%, vy, y?, 23, 22y, 2y%, 2%, ¥ lie in the 10-dimensional space H°(C, O¢(12Py,)).
The first 9 of these monomials are linearly independent and lie in H°(C,O¢(11Py,)). It follows that they
must satisfy a unique linear relation of the form

v’ =2 + qay’ + @’y + 7 + @y’ + sy + 4617 + gsy + Qo + 1.

At this point we still have the freedom to replace « by  + a and y by y + bz + ¢ for any constants a, b, ¢ € k.
It is now easy to check that there is a unique choice of a,b,c € k for which ¢; = ¢35 = ¢4 = 0, giving an
equation of type . We have shown that any triple (C, Px,t) determines uniquely an equation of this
type; conversely, if po, ..., p12 € k and the projective closure C' of the equation is smooth, then it is easy
to check that C is non-hyperelliptic of genus 3, with a unique point P, at infinity, and 4P, is a canonical
divisor (equivalently: P, is a hyperflex in the canonical embedding). We recover a non-zero tangent vector
t € Tp_(C) by the requirement that the functions z,y € k(C) have Laurent expansions x = 273 + ...,
y=z2"1+... at Py, where z is any co-ordinate at P, satisfying dz(t) = 1. This completes the proof. [

We define the height of an element b € B(R) by the formula H(b) = sup; |p;(b)|">/?. The function H
is homogeneous of degree 72: for any A € R*, H(A\b) = |\|"2H (b). We write Fy C B(Z) for the set of points b
such that Y} is smooth over Q. We say that a subset F C Fy is defined by congruence conditions if there exist
primes p1, ..., ps and open compact subsets B,, C B(Z,,),i=1,...,s, such that F = FoN(Bp, X ---x Bp,).
The following is an immediate consequence of Proposition

Proposition 3.2. Let F C Fy be a subset defined by congruence conditions, as above. Then there exists
0 > 0 such that:

#{be F|H(®b) < X} =[] vol(B,,)X/*? + O(X7/1279).
i=1

We can now state our main theorems.

Theorem 3.3. Let F C Fy be a subset defined by congruence conditions. Then:
> ver #Sela(Ys)

lim sup HO)<X < 00
X —oo Z beF 1
H(b)<X
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Theorem 3.4. Let € > 0. Then there exists a subset F C Fy defined by congruence conditions such that:

> ver #Sela(Vy)

lim sup Hb)<X

<l+e.
X —oo Z beF 1

Consequently, we have:

liming TR0 EF [H(b) <X, #Sely(Vy) =1}

o #be FIHb) < X} >1-e

The proofs of Theorem [3.3] and Theorem [3.4] are very similar, so we give here only the proof of the
second result.

Proof of Theorem[3.]} Let p1,pa,... be a strictly increasing sequence of primes congruent to 1 mod 6. For
each i > 1, let B,, C B(Z,,) and V,, C V(Z,,) be the open compact subsets obtained by combining
Proposition [I.15] and Proposition [I.16] cf. Corollary 2.9 If s > 0, let F C Fy be the family defined
by imposing the congruence conditions B,, C B(Z,,) of Proposition [1.16] at the primes py,...,ps, and let
A C V(Z) be the corresponding set of points. Applying Theorem @ and Corollary we find that there

are constants C,9 > 0, not depending on s, such that:

Y (#Sela(V) - 1) < #G(Q)\{v € A™ | H(v) < N*X}

beF
H(b)<X

<c]lI %(N?X)W +O(XT/1279),
i=1

Combining this with Proposition [3.2] we obtain:
> ver (#Sela(Yy) —1)

H(b)<X < Ni2C +0(X™?)
> ver 1 T A+ 0(X0)
H(b)<X
Choosing s to be sufficiently large and taking the limit X — oo now gives the result. O

Remark 3.5. Let us say that a point b € Fy is minimal if it satisfies the following conditions:
1. There does not exist a prime p and ¢ € B(Z) such that b=p - c.
2. We have p5(b) > 0, and if p5(b) = 0 then py(b) > 0.

It follows from Lemma that any pair (C, Py,) is represented by a unique minimal b € Fy. The analogues
of Theorem and Theorem for the averages taken over the set of minimal equations follow immediately
on noting that (with appropriately chosen congruence conditions) a positive proportion of points b € Fy are
minimal.

We now use the above theorems to deduce some Diophantine consequences for the curves Y. We
begin with some preparatory lemmas.

Lemma 3.6. There exists an open subset U C B(Z3) such that for allb € U, A(b) # 0 and the image of the
map Xp(Zs) = Jp(Q3)/2J,(Q3) is non-trivial and does not contain the identity.

Compare Proposition [[.15}

Proof. Consider the curve Xj, given by the equation y* = 2* — 2y. Then A(bg) # 0, and there is map from
Yy, to the elliptic curve € over Zs which is the projective closure of the affine piece £° : 22 = w?® 4+ 2w. (The
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map is given by (w, 2) = (y,2?)). The curve £ has good reduction, and &(F3) = Z/27Z x Z/27Z. In particular,
28 (FF3) is trivial, £°(F3) = £(F3) — {Og}, and the map £°(Z3) — £(Q3)/2£(Q3) factors

E°(Z3) — E°(F3) — E(Fs3) = £(Qs)/26(Qs).

By Albanese functoriality, there is a commutative diagram

Xy (Z3) ——= Jb, (Q3) /26, (Q3)

l |

50(23) — £(Q3)/2E(Q3).

It follows that the image of Xy, (Z3) in Jp, (Q3)/2Jp,(Q3) does not contain the identity. To finish the proof
of the lemma, we take U to be any sufficiently small open neighborhood of by in B(Z3). O

Lemma 3.7. 1. Let p be a prime. Then there exists an open compact subset U C B(Z,) such that for
every b e U, A(b) # 0 and X,(Zy) # 0.

2. There exists an integer M such that for all primes p > M and for all b € B(Z,), X,(Z,) # 0.

Proof. 1t follows from Hensel’s lemma that if b € B(Z,), T € &(F,) and A r, is smooth at T, then T is the
reduction modulo p of a point & € A,(Z,); in particular, X(Z,) is not empty. It is easy to write down for
every prime p a point b € B(F,) such that A} is smooth and has F,-rational points. This proves the first
part of the lemma.

For the second part, we observe that the fibers of the morphism ) — B are geometrically irreducible.
Indeed, this morphism is proper, flat, and of finite type, which implies that the subset of points of B where
the fibers are geometrically irreducible is open; moreover, this subset is stable by the action of the natural
contracting action of G,, on B, and contains the point 0 € B(F,). It follows from the Weil bounds that for
p sufficiently large and for every b € B(F,), X,(F,) contains a point at which X}, is smooth. This completes
the proof of the lemma. O

Theorem 3.8. Let ¢ > 0. Then there exists a subset F C Fo defined by congruence conditions satisfying
the following conditions:

1. For every b € F and for every prime p, Xy(Z,) # 0.

2. We have
b e FIHQO) <X, Xy(Z) =0}
lim inf

fmini #lbe FIHD) < X} >1l-e

(We recall that Z3) C Q denotes the subring of rational numbers of denominator prime to 3.)
In particular, a positive proportion of b € Fy have the property that for every prime p, Xy(Z,) # 0, yet
X (Z) = 0.

Proof. We choose for every prime p an open compact subset U, C B(Z,) satisfying the following conditions.
e For every prime p and every b € Up, the set X(Z,) is non-empty.
e If p = 3, then U, satisfies the conclusion of Lemma
e There exists an integer M such that for all p > M, U, = B(Z,).

(We can make such a choice because of Lemma ) Let p1,po, ... be astrictly increasing sequence of primes
such that for each ¢ > 1, p; > M and p; = 1 mod 6, and write By, C B(Z,,) for the set that results from
applying Proposition [1.15| and Proposition [1.16] If s > 1 is an integer, then we define F5 C F{ to be the
subset defined by the congruence conditions U, (p < M) and By, , ..., B,,.
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Arguing as in the proof of Theorem we find that for any € > 0 we can choose s > 1 such that

o #be F | H(b) < X, #Sely(Vy) = 1}
lin inf #{be F. | Hb) < X}

>1—e

We claim that for each b € F such that # Sely(Y3) = 1, we have Ay (Z3)) = 0. Indeed, for each b € F there
is a commutative diagram

Xy(Zz)) —— X(Zs)
| l

Sely (Yp) —— J5(Q3)/2J5(Qs).

Because of our choice of Us, the image of the composite of the top and right-hand arrows does not contain the
identity. Because Sely(Y}) is trivial, the composite of the left-hand and bottom arrows has image contained
in the trivial subgroup. It follows that A}(Zs)) must be empty. This completes the proof. O
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4 The proof of Proposition

We take up the notation and assumptions of In the 2 figures on this page, we display the characters
a € X*(T?) which appear in the weight decomposition of V. There are 41 weights; each weight space is
1-dimensional, except for the weight space of the trivial character, which is 2-dimensional. In the table on
the left, we list the characters that appear, giving each a number. In the figure on the right, we display the

Hasse diagram of the set ®y U0, now identified with 1,...,41, with respect to the natural partial order on
this set.
# Weight 1
1 1 2 3 2 |
2 1 2 3 1
311 2 2 1 2
401 1 2 1 |
501 2 1 1 3
6 1 1 1 1
7 1 0 1 1 5/ \4
8 1 2 1 0
oo 1 2 VANVAN
10 0 1 1 1 8 6 9
1ml1 1 1 0 | / | \ |
12 ] 1 1 0 0
1B3lo 0o 1 1 1 7 10
M1 0 1 0 / M
151 0 1 1 0 12 14 15 3
. P
1710 1 0 O
811 0 1 1 17 16 19 18
190 0 1 0 \K\ / \ /
20 | 1 0O -1 0 20 21 22
2000 0 O O
22\-1.0 10 24/ \23/ %25
2310 0 -1 O
2|1 0 -1 -1 | / | |
210 -1 0 O 29 27 28 30
2%|-1 0 0 0 M /
2000 -1 -1 O
%11 0 -1 0 32 35 31
2910 0 -1 -1 |\ | / |
301-1 -1 0 O 33 36 34
31 -1 -1 -1 0 \ / \ /
3210 -1 -1 -1
3310 -1 -2 -1 38 37
34|-1 -2 -1 0 \ /
3 1-1 0 -1 -1 39
36 | -1 -1 -1 -1 |
371-1 -2 -1 -1
381-1 -1 -2 -1 40
39-1 -2 -2 -1 |
40 | -1 -2 -3 -1 41
41 (-1 -2 -3 -2
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In the following table, we give the result of running the inductive procedure of Proposition |2.6]
We recall that this procedure gives a collection C of cusp data; by definition, a cusp datum is a pair
(Mo, M) of subsets of ®y U {0} such that My C (®y U{0}) — My. For each cusp datum, we must compute
the corresponding cusp integral , and show that it is O(A#Mo=9) for some § > 0. For the reader’s
convenience, we recall that this integral is given by the formula

/tGT(Mo,Ml,)\) H a(?) H a(t)™ dt:/ w(t)dt, (4.1)

a€®(G,T9)+ a€ My teT (Mo, My,\)

where
T (Mo, My, \) = {t e TP(R)® |Vi=1,...,4,a;(t) < ¢; Ya € My, \a(t) > 1/J}. (4.2)

These integrals can be evaluated in elementary terms, and this is one way to finish the proof of the proposition.
In the last column of the table below, we have written the corresponding integrand in (4.1) as a vector
w(t) = t752t5%ty*, where t; = a;(t). Thus, for example, the cusp integral in the first column can be

rewritten as . . . .
/ / / / EE 1 - Ly zese,>1yg - 40 d*ta d™t3 d" ty.
t1=0 Jt2=0 Jt3=0 Jt4=0

As the table has 68 rows, the procedure just described involves calculating 68 integrals. We now discuss
a trick, due to Bhargava (cf. the proof of [Bhal(, Lemma 11]), which allows one to reduce the amount of
computation required to bound the integrals . Namely, let (Mg, M7) be a cusp datum appearing in the
table below. Given a function p : My — Ry, we have [, ¢, (Aa(t))P(®) > 1 inside T'(Mo, My, A), hence

/ w(t) dt < AEaern P / w(t)- T oty dt. (4.3)
teT (Mo, M1,\)

t€T (Mo, My, \) ae M,

If the exponent of each ¢; (i = 1,...,4) in the function w(t) - [[,cas, a(t)P(@) is (strictly) positive, then the
second integral in (4.3)) is bounded independently of A\, and we obtain

/ w(t) dt < AZeem P(@),
teT (Mo, M1,\)
The problem of bounding the cusp integral (4.1]) is thus reduced to the problem of finding a function
p: My — R>o which satisfies the following 2 conditions:
e We have )\, p(a) < #Mo.
e For each i =1,...,4, we have w; + ) ), p(a) - ng,(a) > 0.

It is easy to check (especially using a computer) that such a function p exists for all of the cusp data appearing
in the table below. This completes our proof of the proposition.

As an example, we discuss the cusp datum appearing in the final row of our table. We must find
non-negative real numbers p13, p17, P24 such that p13 + p17 + p2a < 16 and the vector

(=5 + paa, =3 + p17, —1 + p13 — P24, P13 — P24)

has strictly positive entries. It is not possible to choose the p; all to be integers, but one possible choice is
(p13, P17, p2a) = (65,31,51).
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My M,y #My | Weight of integrand
1 2 1 7T 12 15 8
1,2 3 2 6 10 12 7
1,2,3 4,5 3 5 8 10 6
1,2,3,4 5,9 4 4 7 8 5
1,2,3,5 4,8 4 4 6 9 5
1,2,3,4,5 6,8,9 5 3 5 7 4
1,2,3,4,9 5 5 4 6 6 4
1,2,3,5,8 4 5 3 4 8 5
1,2,3,4,5,6 7,8,9 6 2 4 6 3
1,2,3,4,5,8 6,9 6 2 3 6 4
1,2,3,4,5,9 6,8 6 3 4 5 3
1,2,3,4,5,6,7 8,9 7 1 4 5 2
1,2,3,4,5,6,8 7,9,11 7 1 2 5 3
1,2,3,4,5,6,9 7,8,10 7 2 3 4 2
1,2,3,4,5,8,9 6 7 2 2 4 3
1,2,3,4,5,6,7,8 9,11 8 0o 2 4 2
1,2,3,4,5,6,7,9 8,10 8 1 3 3 1
1,2,3,4,5,6,8,9 7,10,11 8 1 1 3 2
1,2,3,4,5,6,8,11 7,9,12 8 0o 1 4 3
1,2,3,4,5,6,9,10 7,8 8 2 2 3 1
1,2,3,4,5,6,7,8,9 10,11 9 0o 1 2 1
1,2,3,4,5,6,7,8,11 9,12,14 9 -1 1 3 2
1,2,3,4,5,6,7,9,10 8,13 9 1 2 2 0
1,2,3,4,5,6,8,9,10 7,11 9 1 0 2 1
1,2,3,4,5,6,8,9,11 7,10,12 9 0o 0 2 2
1,2,3,4,5,6,8,11,12 7,9 9 -1 0 4 3
1,2,3,4,5,6,7,8,9,10 11,13 10 0o o0 1 0
1,2,3,4,5,6,7,8,9,11 10,12,14 10 -1 0 1 1
1,2,3,4,5,6,7,8,11,12 9,14 10 2 0 3 2
1,2,3,4,5,6,7,8,11,14 9,12 10 2 1 2 2
1,2,3,4,5,6,7,9,10,13 8,18 10 1 2 1 -1
1,2,3,4,5,6,8,9,10,11 7,12,15 10 0o -1 1 1
1,2,3,4,5,6,8,9,11,12 7,10 10 -1 -1 2 2
1,2,3,4,5,6,7,8,9,10,11 12,13,14,15 | 11 -1 -1 0 0
1,2,3,4,5,6,7,8,9,10,13 11,18 11 0 0 O -1
1,2,3,4,5,6,7,8,9,11,12 10,14 11 2 -1 1 1
1,2,3,4,5,6,7,8,9,11,14 10,12 11 2 0 0 1
1,2,3,4,5,6,7,8,11,12,14 9,16 11 3 0 2 2
1,2,3,4,5,6,8,9,10,11,12 7,15 11 -2 1 1
1,2,3,4,5,6,8,9,10,11,15 7,12 11 0 -2 0 1
1,2,3,4,5,6,7,8,9,10,11,12 13,14,15 12 2 -2 0 0
1,2,3,4,5,6,7,8,9,10,11,13 12,14,15,18 | 12 -1 -1 -1 -1
1,2,3,4,5,6,7,8,9,10,11,14 12,13,15 12 2 -1 -1 0
1,2,3,4,5,6,7,8,9,10,11,15 12,13,14 12 -1 -2 -1 0
1,2,3,4,5,6,7,8,9,11,12,14 10,16 12 3 -1 0 1
1,2,3,4,5,6,7,8,11,12,14,16 9,20 12 4 0 2 2
1,2,3,4,5,6,8,9,10,11,12,15 7,17 12 -1 -3 0 1
1,2,3,4,5,6,7,8,9,10,11,12,13 14,15,18 13 -2 -2 -1 -1
1,2,3,4,5,6,7,8,9,10,11,12,14 13,15,16 13 3 -2 -1 0
1,2,3,4,5,6,7,8,9,10,11,12,15 13,14,17 13 2 -3 -1 0

Continued on next page ‘
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My M,y #My | Weight of integrand
1,2,3,4,5,6,7,8,9,10,11,13,14 12,15,18 13 2 1 2 1
1,2,3,4,5,6,7,8,9,10,11,13,15 12,14,18 13 -1 -2 -2 -1
1,2,3,4,5,6,7,8,9,10,11,14,15 12,13 13 2 -2 -2 0
1,2,3,4,5,6,7,8,9,11,12,14,16 10,20 13 4 -1 0 1
1,2,3,4,5,6,7,8,11,12,14,16,20 9,24 13 5 0 3 2
1,2,3,4,5,6,7,8,9,10,11,12,13,14 15,16,18 14 3 2 2
1,2,3,4,5,6,7,8,9,10,11,12,13,15 14,17,18 14 2 3 2 1
1,2,3,4,5,6,7,8,9,10,11,12,14,15 13,16,17 14 3 -3 -2 0
1,2,3,4,5,6,7,8,9,10,11,12,14,16 13,15,20 14 4 -2 -1 0
1,2,3,4,5,6,7,8,9,10,11,13,14,15 12,18,19 14 -2 -2 -3 -1
1,2,3,4,5,6,7,8,9,11,12,14,16,20 10,24 14 5011 1
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 16,17,18,19 | 15 3 3 3 1
1,2,3,4,5,6,7,8,9,10,11,12,13,14,16 15,18,20 15 -4 -2 -2 -1
1,2,3,4,5,6,7,8,9,10,11,12,14,15,16 13,17,20 15 -4 -3 -2 0
1,2,3,4,5,6,7,8,9,10,11,12,14,16,20 13,15,24 15 5 -2 0 0
1,2,3,4,5,6,7,8,9,10,11,13,14,15,19 12,18 15 2 -2 4 -1
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,19 | 16,17,18 16 3 3 4
1,2,3,4,5,6,7,8,9,10,11,12,14,15,16,20 | 13,17,24 16 503 -1 0

References

[BCRI8| Jacek Bochnak, Michel Coste, and Marie-Frangoise Roy. Real algebraic geometry, volume 36 of
Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas
(8)]. Springer-Verlag, Berlin, 1998. Translated from the 1987 French original, Revised by the
authors.

[BG] Manjul Bhargava and Benedict H. Gross. The average size of the 2-Selmer group of Jacobians of
hyperelliptic curves having a rational Weierstrass point. Preprint.

[Bhal Manjul Bhargava. Most hyperelliptic curves over Q have no rational points. Preprint.

[BhalO] Manjul Bhargava. The density of discriminants of quintic rings and fields. Ann. of Math. (2),
172(3):1559-1591, 2010.

[BHC62] Armand Borel and Harish-Chandra. Arithmetic subgroups of algebraic groups. Ann. of Math. (2),
75:485-535, 1962.

[BLRO0] Siegfried Bosch, Werner Liitkebohmert, and Michel Raynaud. Néron models, volume 21 of Ergeb-
nisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)].
Springer-Verlag, Berlin, 1990.

[Bor66] Armand Borel. Density and maximality of arithmetic subgroups. J. Reine Angew. Math., 224:78—
89, 1966.

[Bor70] Armand Borel. Properties and linear representations of Chevalley groups. In Seminar on Algebraic
Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69),
Lecture Notes in Mathematics, Vol. 131, pages 1-55. Springer, Berlin, 1970.

[Bou68] N. Bourbaki. Eléments de mathématique. Fasc. XXXIV. Groupes et algebres de Lie. Chapitre

IV: Groupes de Cozeter et systéemes de Tits. Chapitre V: Groupes engendrés par des réflexions.
Chapitre VI: systemes de racines. Actualités Scientifiques et Industrielles, No. 1337. Hermann,
Paris, 1968.

28



[BS]

[BS09]

[CX08]

[Kot99]

[Lan75]
[Lor00]

[LTO02]

INMO4]

[Pan05]

[PRO4]

[PS14]

[Reel0)]

[Spr09]

[Tho]

[Thol3]

Manjul Bhargava and Arul Shankar. Binary quartic forms having bounded invariants, and the
boundedness of the average rank of elliptic curves. To appear in Annals of Math.

Nils Bruin and Michael Stoll. Two-cover descent on hyperelliptic curves. Math. Comp.,
78(268):2347-2370, 2009.

Pete L. Clark and Xavier Xarles. Local bounds for torsion points on abelian varieties. Canad. J.
Math., 60(3):532-555, 2008.

Robert E. Kottwitz. Transfer factors for Lie algebras. Represent. Theory, 3:127-138 (electronic),
1999.

Serge Lang. SLa(R). Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1975.

Dino Lorenzini. Reduction of points in the group of components of the Néron model of a Jacobian.
J. Reine Angew. Math., 527:117-150, 2000.

Dino Lorenzini and Thomas J. Tucker. Thue equations and the method of Chabauty-Coleman.
Invent. Math., 148(1):47-77, 2002.

Tetsuo Nakano and Tatsuji Mori. On the moduli space of pointed algebraic curves of low genus—a
computational approach. Tokyo J. Math., 27(1):239-253, 2004.

Dmitri I. Panyushev. On invariant theory of #-groups. J. Algebra, 283(2):655-670, 2005.

Vladimir Platonov and Andrei Rapinchuk. Algebraic groups and number theory, volume 139 of
Pure and Applied Mathematics. Academic Press Inc., Boston, MA, 1994. Translated from the 1991
Russian original by Rachel Rowen.

Bjorn Poonen and Michael Stoll. Most odd degree hyperelliptic curves have only one rational point.
Ann. of Math. (2), 180(3):1137-1166, 2014.

Mark Reeder. Torsion automorphisms of simple Lie algebras. Enseign. Math. (2), 56(1-2):3-47,
2010.

T. A. Springer. Linear algebraic groups. Modern Birkhéuser Classics. Birkhduser Boston, Inc.,
Boston, MA, second edition, 2009.

Jack A. Thorne. On the 2-Selmer groups of plane quartic curves with a marked rational point.
Preprint.

Jack A. Thorne. Vinberg’s representations and arithmetic invariant theory. Algebra Number Theory,
7(9):2331-2368, 2013.

29



	Setup
	Conjugacy classes
	Subregular curves and Jacobians
	Restricted roots
	Integral structures
	Integral orbits and algebraic curves
	Height
	Measures on G
	Measures on V and B
	Constructing special sections over R
	Constructing special sections over Qp

	Counting points
	Preliminary reductions
	Bhargava's trick
	Cutting off the cusp
	The main body, and the proof of Theorem 2.1 
	Counting with congruence conditions

	Application to 2-Selmer sets
	The proof of Proposition 2.6

