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Abstract

Given a smooth plane quartic curve C over a field k of characteristic 0, with Jacobian variety J , and
a marked rational point P ∈ C(k), we construct a reductive group G and a G-variety X, together with
an injection J(k)/2J(k) ↪→ G(k)\X(k). We do this using the Mumford theta group of the divisor 2Θ of
J , and a construction of Lurie which passes from Heisenberg groups to Lie algebras.
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Introduction

Motivation. Let C be a smooth, projective, geometrically connected algebraic curve over a field k of
characteristic 0, and let J denote its Jacobian variety. It is of interest to calculate the group J(k)/2J(k).
For example, when k = Q, this is often the first step in understanding the structure of the finitely generated
abelian group J(Q). Calculating the group J(k)/2J(k) is known as performing a 2-descent.

In order to calculate J(k)/2J(k), it is often very useful to be able to understand this group in terms
of explicit objects in representation theory. This is particularly the case if one wishes to understand the
behaviour of the groups J(k)/2J(k) as the curve C is allowed to vary. A famous example is the description
of this group in terms of binary quartic forms, in the case where C = J is an elliptic curve [BSD63].
More recently, Bhargava, Gross and Wang have given a similar description in the case where C is an odd
hyperelliptic curve, i.e. a hyperelliptic curve with a marked rational Weierstrass point P ∈ C(k) [BG13,
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Wan13]. In this case, the group J(k)/2J(k) is understood in terms of equivalence classes of self-adjoint
linear operators with fixed characteristic polynomial.

The aim of this paper is to give an invariant-theoretic description of the group J(k)/2J(k) when
C is a non-hyperelliptic genus 3 curve with a marked rational point P ∈ C(k). Such a curve is canonically
embedded as a quartic curve in P2

k, which explains the title of this paper. The set of such pairs (C,P ) breaks
up into 4 natural families, according to the behaviour of the projective tangent line to C at P (these are
described below).

Our results can be summarized in broad terms as follows: for each family of curves, we obtain a
reductive group G over k, an algebraic variety X on which G acts, and for each pair x = (C,P ) defined over
k, a closed G-orbit Xx ⊂ X and a canonical injection

J(k)/2J(k) ↪→ G(k)\Xx(k).

If k is separably closed, then the set G(k)\Xx(k) has a single element. In general, the set Xx(k) of k-rational
points breaks up into many G(k)-orbits, which become conjugate over the separable closure. The set of
G(k)-orbits can be described in terms of Galois cohomology, and this allows us to make a link with the
theory of 2-descent.

Two of the spaces X that we construct are in fact linear representations, and our results in these
cases (although not our proofs) parallel those in [BG13, §4]. Bhargava and Gross apply the results of loc.
cit. to understand the average size of the 2-Selmer group of the Jacobian of an odd hyperelliptic curve over
Q. We hope that our results will have similar applications in the future, but we do not pursue the study of
Selmer groups in this paper.

The other two spaces we construct are global analogues of Vinberg’s θ-groups, which have been
previously studied from the point of view of geometric invariant theory by Richardson [Ric82b]. We wonder
if they can have similar applications in arithmetic invariant theory, and if there are similar and simpler
spaces which are related, for example, to elliptic curves.

Description of main results. We now describe more precisely what we prove in this paper. Let k be a
field of characteristic 0. We are interested in the arithmetic of all pairs (C,P ) over k, where C is a smooth
non-hyperelliptic curve of genus 3, and P ∈ C(k) is a marked rational point. We break up such pairs into 4
families, corresponding to the behaviour of the projective tangent line ` = TPC in the canonical embedding:

Case E7: ` meets C at exactly 3 points (the generic case).

Case e7: ` meets C at exactly 2 points, with contact of order 3 at P (` is a flex).

Case E6: ` meets C at exactly 2 points, with contact of order 2 at P (` is a bitangent line).

Case e6: ` meets C at exactly 1 point (` is a hyperflex).

The name for each case indicates the semisimple algebraic group or Lie algebra inside which we will construct
the variety X described above. The definitions are as follows:

Case E7: Let H be a split adjoint simple group of type E7, and let θ : H → H be a split stable involution (see
Proposition 1.9 below). We define G to be the identity component of the θ-fixed group Hθ, and Y to

be the connected component of the identity in the θ-inverted set Hθ(h)=h−1

. (Equivalently, Y can be
realized as the quotient H/G.)

Case e7: Let H, θ, and G be as in case E7. We define V to be the tangent space to Y at the identity, where Y
is as in case E7. Then V is a linear representation of G, and can be identified with the −1-eigenspace
of θ in h = LieH.

Case E6: Let H be instead a split adjoint simple group of type E6, and let θ : H → H be a split stable
involution. We define G to be the identity component of the θ-fixed group Hθ, and Y to be the
connected component of the identity in the θ-inverted set Hθ(h)=h−1

.
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Case e6: Let H, θ, and G be as in case E6. We define V to be the tangent space to Y at the identity, where Y
is as in case E6. Equivalently, V = hθ=−1 ⊂ h.

In case E7 or E6, we let X = Y . In case e7 or e6, we let X = V . In each case the open subscheme Xs ⊂ X
of geometric stable orbits (i.e. closed orbits with finite stabilizers) is non-empty, and can be realized as the
complement of a discriminant hypersurface. A Chevalley restriction theorem holds, and if k is separably
closed then two elements x, y ∈ Xs(k) are G(k)-conjugate if and only if they have the same image in the
categorical quotient X�G. (We remark that the quotients V�G are abstractly isomorphic to affine space.
This is not so for the quotients Y �G, although it would be so if in their definition we replaced the adjoint
group H by its simply connected cover.) The spaces V are linear representations of G of the type arising
from Vinberg theory, and have been studied in the context of arithmetic invariant theory in e.g. [Tho13].
The spaces Y are a ‘global’ analogue of the representations V .

Our first main result is the construction of a point of G(k)\Xs(k) which corresponds to the trivial
element of the group J(k)/2J(k):

Theorem 1. [Theorem 3.5]

1. In case E7 or E6, let S denote the functor k-alg → Sets which classifies pairs (C,P ), where C is a
smooth, non-hyperelliptic curve of genus 3, and P is a point of C as above. Then there is a canonical
map

S(k)→ G(k)\Y s(k).

If k is separably closed, then this map is bijective.

2. In case e7 or e6, let S denote the functor k-alg → Sets which classifies tuples (C,P, t), where C is a
smooth non-hyperelliptic curve of genus 3, P is a point of C as above, and t is a non-zero element of
the Zariski tangent space of C at P . Then there is a canonical map

S(k)→ G(k)\V s(k).

If k is separably closed, this map is bijective.

In any of the above cases, given x ∈ S(k) corresponding to a tuple (C,P, . . . ), we write Jx for the
Jacobian of C and Xx ⊂ X for the geometric stable orbit containing the image of x, where again X = Y in
case E7 or E6, and X = V in case e7 or e6. As noted above, G(k) acts transitively on Xx(k) if k is separably
closed, but in general this is not the case; instead, the orbits comprising G(k)\Xx(k) can be described in
terms of Galois cohomology. Our main theorem shows how to construct orbits in G(k)\Xx(k) using rational
points of Jx(k):

Theorem 2. [Theorem 3.6] Let notation be as above. Then there is a canonical injection Jx(k)/2Jx(k) ↪→
G(k)\Xx(k). The image of the identity element of Jx(k) is the image of x under the map of Theorem 1.

We observe that the Jacobian Jx depends only on the curve C, but the set G(k)\Xx(k) depends
on the choice of auxiliary data; an analogous situation arises when doing 2-descent on the Jacobian of a
hyperelliptic curve which has more than one k-rational Weierstrass point.

Methods. The methods we adopt to prove Theorems 1 and 2 seem to be different to preceding work of
a similar type. This reflects the fact that we are now in the territory of exceptional groups, whereas e.g.
2-descent on hyperelliptic curves can be understood using the invariant theory of Vinberg θ-groups which
are constructed inside classical groups (in fact, groups of type An).

Our starting point is a classical geometric construction. For concreteness, we describe what happens
just in the case of type E6. Let us therefore take a smooth, non-hyperelliptic curve C over C of genus 3, and
let P ∈ C(C) be a marked point where the projective tangent line in the canonical embedding is a bitangent
line. The double cover π : S → P2 branched over C is a del Pezzo surface of degree 2, and the strict transform
of ` is union of two (−1)-curves; blowing down one of these, we obtain a smooth cubic surface S.
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There is a well-known connection between cubic surfaces and the root system of type E6: let Λ =
K⊥S ⊂ H2(S,Z) denote the orthogonal complement of the canonical class of S. Then Λ is in fact a root
lattice of type E6. This does not immediately provide a relation with geometric invariant theory because
there is no functorial construction of a reductive group from a root lattice.

However, Lurie [Lur01] has observed that one can construct in a functorial way the group H corre-
sponding to Λ given the additional data of a double cover of V = Λ/2Λ, i.e. a group extension

1 //{±1} // Ṽ //V //1 (0.1)

satisfying some additional conditions; in particular, that the quadratic form q : V → F2 corresponding to
this extension agrees with the one derived from the natural quadratic form on Λ.

It turns out that the realization of the cubic surface X using the plane quartic curve C is exactly the
data required for input into Lurie’s construction. Indeed, let J denote the Jacobian of the curve C. Then J
has a natural principal polarization Θ, and associated to L = 2Θ is the Mumford theta group

1 // {±1} // H̃L // J [2] // 1. (0.2)

(More precisely, the Mumford theta group is a central extension of J [2] by Gm. The presence of the odd
theta characteristic corresponding to the bitangent ` allows us to refine it to an extension by {±1}.) We show
that there is a canonical isomorphism J [2] ∼= Λ/2Λ; pushing out the sequence (0.2) by this isomorphism,
we obtain a sequence of type (0.1), to which Lurie’s construction applies. We thus obtain from the data
(C, `) an algebraic group of type E6. (We remark here that the isomorphism J [2] ∼= Λ/2Λ is well-known and
classical; see for example [DO88, IX, §1]. We thank the anonymous referee for this reference.)

The principle underlying this paper is that the construction outlined above is sufficiently functorial
that we can recover the arithmetic situation over any field k of characteristic 0 simply by Galois descent. To
construct the orbits whose existence is asserted by Theorem 2, we simply twist the extension (0.2). More
precisely, we recall in §1.3 below how a point of Jx(k) gives rise to a twisted form of the Heisenberg group

H̃L. We then construct additional orbits by applying our version of Lurie’s construction to this twisted
Heisenberg group.

Other remarks. There are some minor subtleties in our construction that we remark on now. One point
is that in cases e6, e7, we associate orbits not to pairs (C,P ) but to triples (C,P, t), where t is a non-zero
Zariski tangent vector at the point P . This reflects the fact that the space X constructed in this case has an
extra symmetry: it is a linear representation of the reductive group G, so we are free to multiply elements
by scalars. This scaling corresponds to scaling the tangent vector t. A similar feature appears in the work
of Bhargava–Gross [BG13], where it allows one to ‘clear denominators’ when working over Q, and restrict
to integral orbits.

Another point is that in the geometric construction sketched above, we associate a point to a pair
(C, `), and do not need the point P which gives rise to the bitangent `. Of course, ` being fixed, there are
exactly two possible choices of point P . It turns out that in each case, the data of the point P is exactly
the data required to rigidify the picture so that we obtain the expected bijection (as in Theorem 1) when k
is separably closed. This is an essential feature, since we rely heavily on Galois descent.

Our modified version of Lurie’s construction associates to an appropriate extension Ṽ with action
by the absolute Galois group of k a triple (h, t, θ) consisting of a Lie algebra over k of the correct Dynkin
type, a Cartan subalgebra t ⊂ h, and a stable involution θ of h which acts as multiplication by −1 on t. For
arithmetic applications, we extend this construction in a surprising way: we show that a representation of
the group Ṽ appearing in the extension (0.1), and on which −1 acts as multiplication by −1, gives rise to a
representation of the θ-fixed Lie algebra hθ.

The features of these constructions suggest that they should have an inverse, i.e. that given a tuple
(h, t, θ) consisting of a simple Lie algebra h over k, a Cartan subalgebra t ⊂ h and an involution θ of h which
acts as −1 on t, one should be able to pass in the opposite direction to obtain a root lattice Λ with Γk-action
and an extension Ṽ of V = Λ/2Λ of type (0.1). The existence of such an inverse has been shown by Tasho

Kaletha, and appears in an appendix to this paper. He finds the group Ṽ inside the simply connected cover
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of the group G = (Hθ)◦, where H is the adjoint simple group over k with Lie algebra h. In §3.2, we apply
these results to calculate the number of orbits with given invariants in the case k = R.

Organization of this paper. In §1 below, we recall some basic facts about quadratic forms, 2-descent for
abelian varieties, and the invariant theory of the G-varieties under consideration here. In §2 we describe our
modifications to Lurie’s constructions. In §3 we apply these constructions to the geometry of plane quartics,
in order to arrive at the results described in this introduction. We conclude in §3.2 with an explicit example
in the case k = R.

Acknowledgements. I am grateful to Manjul Bhargava, Dick Gross, and Tasho Kaletha for many inter-
esting conversations. I would like to thank Tasho again for writing the appendix to this paper. Finally, I
thank the anonymous referee for their helpful comments.

Notation. Throughout this paper, k will denote a field of characteristic 0, and ks a fixed separable closure
of k. We write Γk = Gal(ks/k). If X is a k-vector space or a scheme of finite type over k, then we write
Xks for the object obtained by extending scalars to ks. If X is a smooth projective variety over k, then
we write KX for its canonical class. If G,H, . . . are connected algebraic groups over k, then we use gothic
letters g, h, . . . to denote their Lie algebras. If H is an algebraic group over k, then we write H1(k,H) for
the continuous cohomology set H1(Γk, H(ks)), where H(ks) is endowed with the discrete topology. If θ is
an involution of H, then we write Hθ for the closed subgroup of H consisting of θ-fixed elements, and hθ

for the Lie algebra of H (equivalently, the +1-eigenspace of the differential of θ in h). We will make use
of the equivalence between commutative finite k-groups and Z[Γk]-modules of finite cardinality (given by
H 7→ H(ks)).

By definition, a lattice (Λ, 〈·, ·〉) is a finite free Z-module Λ together with a symmetric and positive-
definite bilinear form 〈·, ·〉 : Λ × Λ → Z. We define Λ∨ = {λ ∈ Λ ⊗Z Q | 〈λ,Λ〉 ⊂ Z}, which is naturally
identified with Hom(Λ,Z). We call Λ a (simply laced) root lattice if it satisfies the following additional
conditions:

• For each λ ∈ Λ, 〈λ, λ〉 is an even integer.

• The set Γ = {λ ∈ Λ | 〈λ, λ〉 = 2} generates Λ as an abelian group.

In this case, Γ is a simply laced root system, each γ ∈ Γ being associated with the simple reflection sγ(x) = x−
〈x, γ〉γ. If Γ is irreducible, then it is a root system of type A, D, or E. In any case, we write W (Λ) ⊂ Aut(Λ)
for the Weyl group of Γ, a finite group generated by the simple reflections sγ , γ ∈ Γ.

In several places, we will consider central group extensions of the form

1 //{±1} //Ẽ //E //1.

If ẽ ∈ Ẽ, then we will write −ẽ for the element (−1) · ẽ. We note that this is not necessarily equal to ẽ−1.
We write e for the image of ẽ in E.

1 Background

We first recall some background material. For proofs of the results in §§1.1–1.2, we refer the reader to
[GH04].

1.1 Quadratic forms over F2

Let V be a finite-dimensional F2-vector space, and let 〈·, ·〉 : V × V → F2 be a strictly alternating pairing.

Definition 1.1. A quadratic refinement of V is a function q : V → F2 such that for all v, w ∈ V , we have
〈v, w〉 = q(v + w) + q(v) + q(w).
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In general, there is no distinguished quadratic refinement of V . However, we have the following
result.

Proposition 1.2. Suppose that the pairing 〈·, ·〉 is non-degenerate.

1. Fix a decomposition V = U ⊕ U ′, where U, U ′ are isotropic subspaces of dimension g ≥ 0. Then the
function qU,U ′(v) = 〈vU , vU ′〉 is a quadratic refinement. (Here we write vU , vU ′ for the projections of
v ∈ V onto the two isotropic subspaces.)

2. The set of quadratic refinements of V is a principal homogeneous space for V , addition being defined
by the formula (v + q)(w) = q(w) + 〈v, w〉.

Definition 1.3. Suppose that the pairing 〈·, ·〉 is non-degenerate, and let q be a quadratic refinement of V .
The Arf invariant a(q) ∈ F2 of q is defined as follows. Fix a decomposition V = U ⊕ U ′ into isotropic
subspaces of dimension g ≥ 0. Let {e1, . . . , eg} be a basis of U , and let {ε1, . . . , εg} denote the dual basis of
U ′. Then a(q) =

∑g
i=1 q(ei)q(εi).

Lemma 1.4. Suppose that the pairing 〈·, ·〉 is non-degenerate, and let dimV = 2g ≥ 0.

1. The Arf invariant a(q) is well-defined.

2. Let Sp(V ) denote the group of automorphisms of the pair (V, 〈·, ·〉). Then Sp(V ) has precisely 2 orbits
on the set of quadratic refinements of V , which are distinguished by their Arf invariants. The set of
refinements with a(q) = 0 has cardinality 2g−1(2g + 1) and the set of refinements with a(q) = 1 has
cardinality 2g−1(2g − 1).

3. If q is a quadratic refinement and v ∈ V , then a(q + v) = a(q) + q(v).

1.2 Theta characteristics

Let k be a field of characteristic 0, and let C be a smooth, projective, geometrically irreducible curve over
k, of genus g ≥ 2. We write KC for the canonical bundle of C, and J = Pic0(C) for the Jacobian of C.
We write V = J [2], a finite k-group. We view V as an F2-vector space of dimension 2g with continuous
Γk-action. The Weil pairing defines a non-degenerate, strictly alternating bilinear form 〈·, ·〉 : V × V → F2

which is Γk-invariant.

Definition 1.5. 1. A theta characteristic is a line bundle L on C such that L⊗2 ∼= KC .

2. Let L be a theta characteristic. We say that L is odd (resp. even) if h0(L) is odd (resp. even).

Here and below we write h0(L) = dimkH
0(C,L) for any line bundle L on the curve C.

Lemma 1.6. 1. As a principal homogeneous space for V , the k-variety of isomorphism classes of theta
characteristics is canonically identified with the k-scheme of quadratic refinements of the Weil pairing:
if L is a theta characteristic, we associate to it the quadratic refinement q : V → F2 defined by the
formula q(v) = h0(L ⊗OC v) + h0(v) mod 2.

2. With notation as above, the Arf invariant of q is a(q) = h0(L) mod 2.

Henceforth we identify the set of theta characteristics of the curve C with the set of quadratic
refinements κ : V → F2.

1.3 Heisenberg groups and descent

We continue with the notation of §1.2. Let Jg−1 denote the J-torsor of degree g − 1 line bundles on C; it
contains the theta divisor Wg−1. Given a theta characteristic κ defined over k, we have the translation map
tκ : J → Jg−1, L 7→ L ⊗ κ, and we define Θκ = t∗κWg−1. It is a symmetric divisor, and all symmetric theta
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divisors arise in this fashion. (This is classical; see [BL04, Ch. 11].) Similarly, if A ∈ J(k) then there is a
translation map tA : J → J , L 7→ L ⊗A.

The isomorphism class of the line bundle Lκ = OJ(2Θκ) is independent of the choice of κ, but there
is no canonical choice of isomorphism as κ varies. In particular, even if κ is defined only over ks, the field of
definition of this bundle is equal to k. We choose a bundle L in this isomorphism class defined over k. We
introduce the Heisenberg group H̃L of pairs (ω, ϕ), where ω ∈ J [2] and ϕ : L → t∗ωL is an isomorphism. It
is an extension

0 //Gm //H̃L //J [2] //0.

Lemma 1.7. 1. Let ω, η ∈ J [2], and let ω̃, η̃ denote lifts of these elements to H̃L. Then ω̃η̃ω̃−1η̃−1 =
(−1)〈ω,η〉.

2. Let Aut(H̃L; J [2]) denote the group of automorphisms of H̃L fixing Gm pointwise and acting as the
identity on J [2]. Then the map

η 7→ ((ω, ϕ) 7→ (ω, (−1)〈η,ω〉ϕ))

defines an isomorphism J [2] ∼= Aut(H̃L; J [2]).

Proof. The first part can be taken as the definition of the Weil pairing. The second part follows from [BL04,
Lemma 6.6.6].

If κ is a theta characteristic defined over k, then we can define a character χκ : H̃L → Gm by the
formula χκ(ω̃) = ω̃2(−1)qκ(ω). (This makes sense since the square of any element of H̃L lies in Gm.) We
then have an exact sequence

1 //{±1} //kerχκ //J [2] //1. (1.1)

This construction will play an important role later on; compare the required data at the beginning of §2
below.

Associated to J is the Kummer exact sequence:

0 //J [2] //J //J //0,

and the associated short exact sequence in Galois cohomology:

0 //J(k)/2J(k)
δ //H1(k, J [2]) //H1(k, J)[2] //0.

The map δ can be written down explicitly as follows: given A ∈ J(k), choose B ∈ J(ks) such that [2](B) = A.
Then the cohomology class δ(A) is represented by the cocycle σ 7→ σB −B.

We now give another interpretation of this homomorphism in terms of the group H̃L. The field of
definition of the line bundle t∗BL is equal to k; we let LB denote a choice of descent to k, unique up to

k-isomorphism. This allows us to define the Heisenberg group H̃LB of pairs (ω, ϕ), where ω ∈ J [2] and ϕ is
an isomorphism LB → t∗ωLB . We also fix a choice of isomorphism f : LB → t∗BL over ks.

The choice of f defines an isomorphism F : (H̃L)ks ∼= (H̃LB )ks , given by the formula

F : (ω, ϕ) 7→ (ω, t∗ωf
−1 ◦ t∗Bϕ ◦ f). (1.2)

We define a cocycle valued in Aut(H̃L; J [2]) by the formula σ 7→ F−1σF .

Lemma 1.8. This cocycle is equal to the cocycle σ 7→ σB −B under the identification of Lemma 1.7.

In particular, this cocycle depends only on B, and not on any other choice.
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Proof. The proof is by an explicit calculation, F−1σF being given by

(ω, ϕ) 7→
(
ω, t∗ω−Bf ◦ t∗−B

[
t∗ω
σf−1 ◦ t∗σBϕ ◦ σf

]
◦ t∗−Bf−1

)
We must show that this expression is equal to (ω, (−1)〈ω,

σB−B〉ϕ). However, writing η = σB − B and

ψ = t∗−σB(f ◦ σf−1), we have (η, ψ) ∈ H̃L and, by Lemma 1.7,

(ω, (−1)〈ω,
σB−B〉ϕ) = (η, ψ)(ω, ϕ)(η, ψ)−1(ω, ϕ)−1(ω, ϕ) = (η, ψ)(ω, ϕ)(η, ψ)−1 = (ω, t∗ω+ηψ ◦ t∗ηϕ ◦ t∗ηψ−1).

Expanding this expression now shows it to be equal to F−1σF .

1.4 Invariant theory of reductive groups with involution

Let k be a field of characteristic 0, and let H be a split adjoint simple group over k of type A, D, or E.

Proposition 1.9. There exists a unique H(k)-conjugacy class of involutions θ of H satisfying the following
two conditions:

1. tr(dθ : h→ h) = − rankH.

2. The group (Hθ)◦ is split.

Proof. The result [Tho13, Corollary 2.15] states that there is a unique H(k)-orbit of involutions θ : H → H
such that tr dθ = − rankH and hdθ=−1 contains a regular nilpotent element. The discussion there also shows
by construction that for each θ in this class, the group (Hθ)◦ is split. We must show that if θ : H → H is
an involution such that tr dθ = − rankH and (Hθ)◦ is split, then hdθ=−1 contains a regular nilpotent. Let
t0 ⊂ hdθ=1 be a split Cartan subalgebra, and let t ⊂ h be a split Cartan subalgebra containing t0.

By [Tho13, Lemma 2.14] and [Tho13, Lemma 2.6], we can find a normal sl2-triple (E,X,F ) in
h⊗k ks (i.e. a tuple of elements E,X,F ∈ h⊗k ks satisfying the relations

[E,F ] = X, [X,E] = 2E, [X,F ] = −2F,

θ(X) = X, θ(E) = −E, and θ(F ) = −F )

with E regular nilpotent and X ∈ t0 ⊗k ks. Since X is part of an sl2-triple, it follows that α(X) ∈ Z for
every root of t in h, hence X ∈ t, hence X ∈ t0. By [dG11, Proposition 7], we can find elements E′ ∈ hdθ=−1

and F ′ ∈ hdθ=−1 ⊗k ks such that (E′, X, F ′) is a normal sl2-triple. In particular, E′ is a regular nilpotent.
This completes the proof.

Henceforth we fix a choice of θ satisfying the conclusion of Proposition 1.9 and write G = (Hθ)◦.
Then G is a split semisimple group. (For a proof that G is semisimple, see §A.2 of the appendix to this
paper.) We will study the invariant theory of two different actions of G. We first consider V = hdθ=−1.
Then V is a linear representation of the group G.

Theorem 1.10. 1. V satisfies the Chevalley restriction theorem: if t ⊂ V is a Cartan subalgebra, then
the map NG(t)→Wt = NH(t)/ZH(t) is surjective, and the inclusion t ⊂ V induces an isomorphism

t�Wt
∼= V�G.

In particular, the quotient V�G is isomorphic to affine space.

2. Suppose that k = ks, and let x, y ∈ V be regular semisimple elements. Then x is G(k)-conjugate to y
if and only if x, y have the same image in V�G.

3. There exists a discriminant polynomial ∆ ∈ k[V ] such that for all x ∈ V , x is regular semisimple if
and only if ∆(x) 6= 0, if and only if the G-orbit of x is closed in V and StabG(x) is finite.
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Proof. This follows from results of Vinberg, which are summarized in [Pan05] or (in our case of interest)
[Tho13, §2].

We now consider the variety Y ⊂ H, locally closed image of the morphism H → H,h 7→ h−1θ(h).
It is a connected component of the subvariety {h ∈ H | θ(h) = h−1}, and is in particular closed in H. Note
that Y has a marked point (namely the identity element of H), and the tangent space to Y at this marked
point is canonically isomorphic, as G-representation, to the representation V defined above.

Theorem 1.11. 1. Y satisfies the Chevalley restriction theorem: if T ⊂ Y is a maximal torus, then
NG(T )→WT = NH(T )/ZH(T ) is surjective, and the inclusion T ⊂ Y induces an isomorphism

T�WT
∼= Y�G.

2. Suppose that k = ks, and let x, y ∈ Y be regular semisimple elements. Then x is G(k)-conjugate to y
if and only if x, y have the same image in Y�G.

3. There exists a discriminant polynomial ∆ ∈ k[Y ] such that for all x ∈ Y , x is regular semisimple if
and only if ∆(x) 6= 0, if and only if the G-orbit of x is closed in Y and StabG(x) is finite.

Proof. See [Ric82b, §0].

2 A group with involution

Let k be a field of characteristic 0. Suppose that we are given the following data:

• An irreducible simply laced root lattice (Λ, 〈·, ·〉) together with a continuous homomorphism Γk →
W (Λ) ⊂ Aut(Λ).

• A central extension Ṽ of V = Λ/2Λ:

0→ {±1} → Ṽ → V → 0,

together with a homomorphism Γk → Aut(Ṽ ). We suppose that Γk leaves invariant the subgroup {±1},
and that the induced homomorphism Γk → Aut(V ) agrees with the homomorphism Γk → Aut(Λ) →
Aut(Λ/2Λ) = Aut(V ). We also suppose that for ṽ ∈ Ṽ , we have the relation ṽ2 = (−1)〈v,v〉/2.

In terms of this data we will define, following Lurie [Lur01], the following:

1. A simple Lie algebra h over k of type equal to the Dynkin type of Λ.

2. A maximal torus T of H, the adjoint group over k with Lie algebra h, together with an isomorphism
T [2](ks) ∼= V ∨ of Z[Γk]-modules.

3. An involution θ : H → H leaving T stable, and satisfying θ(t) = t−1 for all t ∈ T (k).

Suppose given further the data of a finite-dimensional k-vector space W and a homomorphism ρ : Ṽ →
GL(Wks) such that ρ(−1) = −idW and for all σ ∈ Γk and ṽ ∈ Ṽ , we have ρ(σ ṽ) = σρ(ṽ). Then we will
further define:

4: A Lie algebra homomorphism R : hθ → gl(W ).

(Using the equivalence between Z[Γk]-modules of finite cardinality and commutative finite k-groups, ρ cor-

responds to a homomorphism Ṽ → GL(W ) of k-groups.)

Let Λ̃ = Λ ×V Ṽ , a central extension of Λ by {±1}. Let Γ ⊂ Λ be the set of roots, and Γ̃ ⊂ Λ̃ its

inverse image. Following Lurie [Lur01], we define L′ to be the free abelian group on symbols Xγ̃ for γ̃ ∈ Γ̃,

modulo the relation Xγ̃ = −X−γ̃ . (Thus {γ̃,−γ̃} is the inverse image in Γ̃ of γ ∈ Γ.) We set L = Λ∨ ⊕ L′,
and define a bracket [·, ·] : L× L→ L by the formulae:
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• [λ, λ′] = 0 for all λ, λ′ ∈ Λ∨.

• [λ,Xγ̃ ] = −[Xγ̃ , λ] = 〈λ, γ〉Xγ̃ for λ ∈ Λ∨.

• [Xγ̃ , Xγ̃′ ] = Xγ̃γ̃′ if γ + γ′ ∈ Γ.

• [Xγ̃ , Xγ̃′ ] = εγ̃γ̃′γ if γ + γ′ = 0. (By definition, εγ̃γ̃′ = γ̃γ̃′ ∈ {±1} ⊂ Z.)

• [Xγ̃ , Xγ̃′ ] = 0 otherwise.

Theorem 2.1. 1. L is a Lie algebra over Z. There is a natural action of Γk on L, respecting the Lie
bracket [·, ·].

2. Let h = (L⊗k ks)Γk . Then h is a simple Lie algebra over k of Dynkin type equal to the type of the root
lattice Λ.

Proof. 1. That L is a Lie algebra over Z of the required type follows from [Lur01, §3.1]. The Galois group

Γk acts on Λ and on Γ̃ by the given data. We make it act on L = Λ⊕ L′ by its standard action on Λ
and on L′ by permuting basis vectors Xγ̃ , γ̃ ∈ Γ̃. It is immediate from the definition that this respects
the bracket.

2. By Galois descent, the natural map hks → L⊗k ks is an isomorphism. The result follows immediately
from this.

Let H denote the simple adjoint group over k with Lie algebra h. Let t = (Λ∨ ⊗k ks)Γk ⊂ h; it
is the Lie algebra of a maximal torus T of H, whose module of characters X∗(Tks) is identified with the
Z[Γk]-module Λ. In particular, there is an isomorphism of Z[Γk]-modules T [2](ks) ∼= Λ∨/2Λ∨ ∼= V ∨.

We now define the involution θ. Given γ̃ ∈ Γ̃, we define Yγ̃ = Xγ̃−1 . By definition, then, [Xγ̃ , Yγ̃ ] =
γ ∈ Λ. It easy to check that Y−γ̃ = −Yγ̃ . We define an involution σ : L→ L by taking σ to be multiplication
by −1 on Λ and by taking σ(Xγ̃) = −Yγ̃ .

Proposition 2.2. 1. σ is a well-defined Lie algebra involution, and respects the action of the group Γk.

2. Let θ denote the involution of h induced by σ by functoriality. Then tr θ = − rank h.

Proof. 1. We must check that σ preserves the relations defining [·, ·]. Let us show that σ[Xγ̃ , Xγ̃′ ] =
σXγ̃γ̃′ = −Yγ̃γ̃′ is equal to [σXγ̃ , σXγ̃′ ] = [Xγ̃−1 , Xγ̃′−1 ] = Xγ̃−1γ̃′−1 , when γ+γ′ ∈ Γ. Equivalently, we

must show that γ̃γ̃′ = −γ̃′γ̃. By the definition of Λ̃, it is equivalent to show that 〈γ, γ′〉 is odd. Since
we work in a simply laced root system, this is implied by the condition that γ + γ′ is a root.

2. This follows because θ acts as −1 on t.

We define G = (Hθ)◦. We define NV to be the image of the natural homomorphism V → V ∨;
it is a Z[Γk]-module, and the induced symplectic form on NV is non-degenerate and Γk-equivariant. The
isomorphism T [2] ∼= V ∨ restricts to an isomorphism (T [2] ∩G) ∼= NV (cf. [Tho13, Corollary 2.8]).

It remains to define, given a finite-dimensional k-vector space W and a Galois-equivariant homo-
morphism ρ : Ṽ → GL(Wks) such that ρ(−1) = −idW , a Lie algebra homomorphism R : g→ gl(W ). Let us
first assume that k = ks. Then the Lie algebra g is spanned by the elements Xγ̃ + X−γ̃−1 = Zγ̃ , say. Let

π : Γ̃→ Ṽ denote the natural map. We define a morphism R : g→ gl(W ) of k-vector spaces by the formula

R(Zγ̃) = ρ(π(γ̃))/2.

This is well-defined since Zγ̃ = −Z−γ̃ = −Zγ̃−1 , and π(γ̃) = (−1)〈γ,γ〉/2π(γ̃)−1 = −π(γ̃)−1. In the case
k 6= ks, this defines a homomorphism gks → gl(Wks) which commutes with the action of Γk, and we write
R : g→ gl(W ) for the homomorphism obtained by Galois descent.
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Proposition 2.3. R : g→ gl(W ) is a Lie algebra homomorphism.

Proof. We can again assume that k = ks. We must show that, given γ̃, γ̃′ ∈ Γ̃, we have

R([Zγ̃ , Zγ̃′ ]) = [R(Zγ̃), R(Zγ̃′)].

We now break up into cases according to the value of 〈γ, γ′〉.

1. If 〈γ, γ′〉 = ±2, then γ′ = ±γ, hence γ̃′ = ±γ̃±1, and both sides of the above equation are zero.

2. If 〈γ, γ′〉 = ±1, then γ ∓ γ′ is a root. Let us assume for simplicity that 〈γ, γ′〉 = −1, so that γ + γ′ is
a root, and [Zγ̃ , Zγ̃′ ] = Zγ̃γ̃′ . We must show that

ρ(π(γ̃γ̃′))/2 = ρ(π(γ̃)) · ρ(π(γ̃′))/4− ρ(π(γ̃′)) · ρ(π(γ̃))/4.

This follows from the fact that γ̃′γ̃ = (−1)〈γ,γ
′〉γ̃γ̃′ = −γ̃γ̃′ and ρ(−1) = −idW .

3. If 〈γ, γ′〉 = 0 then neither of γ ± γ′ is a root, and the left hand side of the above equation is zero. On
the other hand, π(γ̃) and π(γ̃′) commute, so the right hand side is also zero.

This concludes the proof.

The above constructions are evidently functorial in Ṽ , in the following sense: given Ṽ , ṼB satisfying
the conditions at the beginning of this section, and a Γk-equivariant isomorphism f : Ṽ → ṼB , we obtain
an isomorphism of associated simple adjoint groups F : H ∼= HB , intertwining θ, θB , and restricting to an
isomorphism T → TB which induces the identity on Λ. In this connection, we have the following lemma.

Lemma 2.4. 1. Let us write Aut(Ṽ ;V ) for the group of automorphisms of Ṽ leaving the central sub-
group {±1} invariant and inducing the identity on V . Then there is a canonical isomorphism V ∨ ∼=
Aut(Ṽ ;V ), given by f 7→ (ṽ 7→ (−1)f(v) · ṽ).

2. Let f ∈ V ∨, and let F denote the induced automorphism of the triple (H, θ, T ). Let s denote the image
of f under the canonical isomorphism V ∨ ∼= T [2](ks). Then F = Ad(s).

Proof. 1. Immediate.

2. The automorphism f induces the automorphism γ̃ 7→ (−1)f(γ)γ̃ of Γ̃. We must therefore show that
(−1)f(γ) = 〈γ, s〉. However, this follows from the definition of the element s.

3 Plane quartic curves

Let k be a field of characteristic 0 and C a smooth (geometrically connected, projective) non-hyperelliptic
curve of genus 3 over k. The canonical embedding then gives C as a plane quartic curve in P2

k; let us write
π : S → P2

k for the double cover of P2
k branched over S. Then S is a del Pezzo surface of degree 2, i.e. a

smooth surface with −KS ample and K2
S = 2. (We note that if k 6= ks, then S depends, up to isomorphism,

on a choice of defining equation of C; a particular choice will be specified below. The set of isomorphism
classes is a torsor for k×/(k×)2.)

Proposition 3.1. 1. The group Pic(Sks) is free of rank 8 over Z. Its natural intersection pairing is
unimodular.

2. The sublattice Λ = K⊥S ⊂ Pic(Sks) is a root lattice of type E7.

3. Suppose that ` is a bitangent line of C in its canonical embedding. Then π−1(`ks) = e ∪ f is a union
of two smooth curves of genus 0. Define Λ` = 〈e, f〉⊥ ⊂ Λ. Then Λ` is a root lattice of type E6.

4. There are natural isomorphisms Λ∨ ∼= Pic(Sks)/ZKS and Λ∨`
∼= Pic(Sks)/〈e, f〉.
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5. Each of Pic(Sks), Λ, and Λ` (when it is defined) has a natural structure of Z[Γk]-module, which respects
the intersection pairings.

Proof. This is all classical; see [GH94, pp. 545–549] and [Dol12, Ch. 8]. It is useful to note that Sks can be
realized as the blow-up of P2

ks at 7 points in general position.

We define NC to be the image of the natural map Λ/2Λ → Λ∨/2Λ∨. Viewing C ⊂ S as the
ramification locus of π, we see that there is a natural Γk-equivariant map Pic(Sks) → Pic(Cks) given by
restriction of line bundles.

Proposition 3.2. There is a commutative diagram of finite k-groups

Λ∨/2Λ∨
∼= // (Pic(C)/ZKC)[2]

NC
?�

OO

∼= // Pic0(C)[2]
?�

OO

Proof. We first define the maps. The top map is induced by the composite

Λ∨ ∼= Pic(S)/ZKS → Pic(C)/ZKC ,

which takes image in (Pic(C)/ZKC)[2] ⊂ Pic(C)/ZKC . It is well-defined since KS |C = −KC , and if D is
any divisor class on S then 2D|C ∼ (D + ι∗D)|C is a multiple of KC (where ι : S → S is the involution
which swaps sheets). The left and right maps are the natural inclusions. To see that the bottom map is
derived from the top one, it is enough to note that if D is a divisor class in Λ, then degD|C = 〈KS , D〉 = 0,
so D|C ∈ Pic0(C)[2].

We now show that the top and bottom maps are isomorphisms. We can assume that k = ks. The
groups in the top row have the same cardinality 27. If ` is a bitangent line of C corresponding to an odd
theta characteristic κ ∈ (Pic(C)/ZKC)[2], and π−1(`) = e∪f , then the image of e ∈ Λ∨ in (Pic(C)/ZKC)[2]
equals κ. The group (Pic(C)/ZKC)[2] is generated by the odd theta characteristics. This shows that the
top arrow is surjective, hence an isomorphism. The groups in the bottom row have the same cardinality 26,
and the bottom arrow is injective. It is therefore also an isomorphism, and this completes the proof.

As pointed out in the introduction, Proposition 3.2 is essentially classical.

Proposition 3.3. 1. Under the isomorphism NC ∼= Pic0(C)[2] of Proposition 3.2, the natural symplectic
form on NC is identified with the Weil pairing on Pic0(C)[2].

2. Let ` be a k-rational bitangent line of C, and let κ denote the corresponding k-rational theta charac-
teristic. Let q` : NC → F2 denote the quadratic form corresponding to the isomorphism Λ`/2Λ` ∼= NC ,
and let qκ : Pic0(C)[2] → F2 be the quadratic form induced by κ. Then, under the isomorphism
NC ∼= Pic0(C)[2] of Proposition 3.2, q` and qκ are identified.

Proof. Since q` and qκ are quadratic refinements of the symplectic forms, it suffices to prove the second part.
These quadratic forms have Arf invariant 1, and therefore have each exactly 28 zeroes. It therefore suffices
to show that q` and qκ have at least 28 zeroes in common. To do this, we can assume that k = ks. If κ′

is any odd theta characteristic of C, then κ− κ′ ∈ Pic0(C)[2] is a zero of qκ, and there are exactly 28 such
elements. (Use the formula a(q + v) = a(q) + q(v) of Lemma 1.4.) We must therefore show that if v ∈ Λ`
has image κ− κ′, then 〈v, v〉 is divisible by 4. This is an easy calculation in Pic(Sks).

We now fix a rational point P ∈ C(k). We define elements of certain tori and their Lie algebras,
following [Loo93, §1]. We break into 4 cases, according to the geometry of the point P . Let ` denote the
tangent line to C at P in P2

k, and K = π−1(`) its inverse image, an anti-canonical curve in S.
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Case E7: ` not a flex

In the most general case, the tangent line at P to C in its plane embedding meets C at 3 distinct points
and therefore has contact of order 2 at P . We define a point of the torus T = Hom(Λ,Gm), up to inversion.
Indeed, in this case K is an irreducible rational curve with a unique nodal singularity at P . There is a
unique choice of S for which the tangent directions of K at P are defined over k; we make this choice.
Restriction of line bundles induces a homomorphism Pic(S)→ Pic(K). An element of Pic(S) is orthogonal
to KS (under the intersection pairing) if and only if its restriction to K has degree 0, so we obtain an
induced homomorphism Λ → Pic0(K). Choosing a group isomorphism Pic0(K) ∼= Gm, we now obtain a
point κC ∈ T (k), well-defined up to inversion.

Case e7: ` a flex, not a hyperflex

We now suppose that the tangent line to C at P has contact of order exactly 3, and fix in addition a non-zero
tangent vector t in the Zariski tangent space of C at P . We define a point κC of the Lie algebra t of the
torus T = Hom(Λ,Gm), well-defined up to multiplication by −1. The curve K is irreducible and rational
with a unique cuspidal singularity, at P . Restriction induces a morphism Λ→ Pic0(K). To write down κC ,
it therefore suffices to give a normalization of the isomorphism Pic0(K) ∼= Ga, at least up to sign.

To do this we find it convenient to introduce explicit co-ordinates. Using Riemann–Roch, it is easy
to show that there are unique functions x, y ∈ k(C)× satisfying the following conditions:

• x ∈ H0(C,OC(2P +Q)) and y ∈ H0(C,OC(3P −Q)).

• Let z ∈ OC,P be a co-ordinate such that dz(t) = 1. Then x = z−2 + . . . and y = z−3 + . . . locally at
P .

• x and y satisfy the equation

y3 = x3y + p10x
2 + x(p2y

2 + p8y + p14) + p6y
2 + p12y + p18

for some p2, . . . , p18 ∈ k.

Then we can choose homogeneous co-ordinates X,Y, Z on P2
k such that C is given by the equation

Y 3Z = X3Y + p10X
2Z2 +X(p2Y

2Z + p8Y Z
2 + p14Z

3) + p6Y
2Z2 + p12Y Z

3 + p18Z
4,

and this equation is uniquely determined by the triple (C,P, t). We use it to define the surface S. Then a
chart in S is the affine surface

w2 = z0 − (x3
0 + p10x

2
0z

2
0 + · · ·+ p18z

4
0),

where x0 = X/Y , z0 = Z/Y , and the curve K is given locally by the equation z0 = 0. Let f : K̃ → K

be the normalization. A co-ordinate in K̃ at the point above P is given by w/x0. We use the isomorphism
Ga ∼= Pic0(K), t 7→ δ(1 + tw/x0), where δ is the connecting homomorphism of the exact sequence of sheaves
on K:

0 //O×K //f∗O×K̃
//f∗O×K̃/O

×
K

//0.

Case E6: ` a bitangent, not a hyperflex

We now suppose that ` meets C at two distinct points, say P , Q, and that it has contact of order 2 at each
point. Then the root subsystem Λ` ⊂ Λ is defined, and we will define a point of the torus T = Hom(Λ`,Gm).
The curve Kks = eks ∪ fks is a union of two smooth conics, which meet transversely at two distinct points.
We choose S so that these conics are defined over k. We thus obtain a homomorphism Λ` → Pic0(K)−,
where (?)− denotes the −1-eigenspace of the involution induced by switching sheets. The group Pic0(K)−

is canonically isomorphic to Gm, the isomorphism being specified as in [Loo93, §1.12]: if s ∈ Gm tends to 0,
then e is contracted to P and f is contracted to Q. We define κC ∈ T (k) to be the point obtained via this
isomorphism. If the roles of e and f are reversed, then κC is replaced by κ−1

C .
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Case e6: ` a hyperflex

We now suppose that ` has contact of order 4 with C at P , and fix in addition a non-zero tangent vector t in
the Zariski tangent space of C at P . Then the root system Λ` ⊂ Λ is defined, and we will define a point κC
of the Lie algebra t of the torus T = Hom(Λ`,Gm). Restriction once more induces a map Λ` → Pic0(K)−,
and we obtain a point κC ∈ t by specifying an isomorphism Pic0(K)− ∼= Ga. To do this, we again introduce
explicit co-ordinates. There are unique functions x, y ∈ k(C)× satisfying the following conditions:

• x ∈ H0(C,OC(3P )) and y ∈ H0(C,OC(4P )).

• Let z ∈ OC,P be a co-ordinate such that dz(t) = 1. Then x = z−3 + . . . and y = z−4 + . . . locally at
P .

• x and y satisfy the equation

y3 = x4 + y(p2x
2 + p5x+ p8) + p6x

2 + p9x+ p12

for some p2, . . . , p12 ∈ k.

Then we can choose homogeneous co-ordinates X,Y, Z on P2
k such that C is given by the equation

Y 3Z = X4 + Y (p2X
2Z + p5XZ

2 + p8Z
3) + p6X

2Z2 + p9XZ
3 + p12Z

4,

and this equation is uniquely determined by the triple (C,P, t). We use it to define the surface S. A chart
in S is the affine surface

w2 = z0 − (x4
0 + · · ·+ p12z

4
0),

where x0 = X/Y and z0 = Z/Y . The curve K = e∪f is a union of 2 smooth conics which are tangent at the
point P , and is given in the above chart by the equation z0 = 0. A co-ordinate at P in both e and f is given
by x0. We use the isomorphism Ga ∼= Pic0(K)−, t 7→ δ(1 + tx, 1), where δ is the connecting homomorphism
in the exact sequence of sheaves on K:

0 //O×K //O×e ⊕O×f //(O×e ⊕O×f )/O×K //0.

If the roles of e and f are reversed, then κC is replaced by −κC .

In each case, we write S : k-alg → Sets for the functor of data (C,P, . . . ) considered above. This
means:

• In case E7, S is the functor of pairs (C,P ), where C is a non-hyperelliptic curve of genus 3 and P is
a point of C which is not a flex or a bitangent in the canonical embedding. More precisely, for each
A ∈ k-alg, S(A) is the set of isomorphism classes of pairs (π, P ) consisting of a proper flat morphism
π : C → SpecA and a section P : SpecA→ C of π such that for each geometric point s of SpecA, the
pair (Cs, Ps) is of this type.

• In case e7, S is the functor of triples (C,P, t), where C is a non-hyperelliptic curve of genus 3, P is a
point of C which is a flex (but not a hyperflex) in the canonical embedding, and t is a non-zero element
of the Zariski tangent space of C at P .

• In case E6, S is the functor of pairs (C,P ), where C is a non-hyperelliptic curve of genus 3 and P is a
point such that TPC is a bitangent in the canonical embedding of C.

• In case e6, S is the functor of triples (C,P, t), where C is a non-hyperelliptic curve of genus 3, P is
a point which is a hyperflex in the canonical embedding, and t is a non-zero element of the Zariski
tangent space of C at P .

We can now state the following reformulation of some results of Looijenga:

Theorem 3.4. Suppose that k = ks.
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• In case E7, let Λ0 be a root lattice of the corresponding type, and let T0 = Hom(Λ0,Gm). Then the
Weyl group W = W (Λ0) acts on T0, and the assignment (C,P ) → κC induces a bijection S(k) →
(T rss

0 �W )(k).

• In case E6, let Λ0 be a root lattice of the corresponding type, and let T0 = Hom(Λ0,Gm). Fix a
non-trivial class e0 ∈ Λ∨0 /Λ0. Then the Weyl group W = W (Λ0) acts on T0, and the assignment
(C,P )→ κC induces a bijection S(k)→ (T rss

0 �W )(k).

• In case e7, let Λ0 be a root lattice of the corresponding type, and let t0 = Hom(Λ0,Ga). Then the
Weyl group W = W (Λ0) acts on t0, and the assignment (C,P, t) → κC induces a bijection S(k) →
(trss0 �W )(k).

• In case e6, let Λ0 be a root lattice of the corresponding type, and let t0 = Hom(Λ0,Ga). Fix a non-trivial
class e0 ∈ Λ∨0 /Λ0. Then the Weyl group W = W (Λ0) acts on t0, and the assignment (C,P, t) → κC
induces a bijection S(k)→ (trss0 �W )(k).

The subscript ‘rss’ indicates the open subset of regular semisimple elements, i.e. the complement of
all root hyperplanes.

Proof. We first explain what happens in the case of type E7. For any field k (not necessarily separably
closed), and any pair (C,P ) ∈ S(k), we have constructed a point κC of the torus T = Hom(Λ,Gm), where
Λ is the root lattice with Z[Γk]-action constructed above using the curve C.

When k = ks, this action is trivial, and we can choose an isomorphism Λ ∼= Λ0 of root lattices,
which is well-defined up to the action of the group Aut(Λ0). The Dynkin diagram of type E7 has no extra
symmetries, so in fact Aut(Λ0) = W (see [Bou02, Ch. VI, No. 1.5, Proposition 16]). We thus obtain an
isomorphism T ∼= T0, well-defined up to the action of W , and a point κC ∈ (T0�W )(k) = T0(k)/W . Note
that κC is well-defined only up to inversion, but W contains the element −1. The result [Loo93, Proposition
1.8] now states that the point κC is regular semisimple, and that the map S(k)→ (T rss

0 �W )(k) is a bijection.
(In fact, the result is stated when k = C, but the proof is algebro-geometric in nature and goes through
without change when k is any separably closed field of characteristic 0.) Indeed, the construction given there
is exactly the one we have explicated above.

We now explain what happens in the case of type E6. Our construction gives a point κC = κ(C,P, e)
of the torus T = Hom(Λ`,Gm), where e is a choice of irreducible component of the strict transform of the
bitangent line ` at P inside S; we have κ(C,P, f) = κ(C,P, e)−1. The automorphism group Aut(Λ0) is
now strictly larger than W , because the Dynkin diagram of type E6 has extra symmetries, the quotient
Aut(Λ0)/W being generated by the automorphism −1. In fact, these ambiguities cancel out.

Indeed, the quotient Λ∨` /Λ` is cyclic of order 3, and the quotient Aut(Λ0)/W acts faithfully on it.
We can mark the non-trivial elements of Λ∨` /Λ` by e and f as follows: the class corresponding to e is the
one containing the classes of the 27 lines on S which intersect e (but not f), and the class corresponding
to f is the one containing the classes of the 27 lines which intersect f (but not e). Let λe : Λ` → Λ0 be
an isomorphism which sends the class in Λ∨` /Λ` corresponding to e to e0. Then λe is determined up to the
action of W (Λ0). The point λeκ(C,P, e) ∈ (T0�W )(k) is therefore well-defined, and we have λfκ(C,P, f) =
(λeκ(C,P, e)−1)−1 = λeκ(C,P, e) mod W0. This gives a map S(k) → (T0�W )(k) which is independent of
any choices, and which is shown to be a bijection into (T rss

0 �W )(k) by [Loo93, Proposition 1.13].
The Lie algebra cases are very similar, making reference to [Loo93, Proposition 1.11] and [Loo93,

Proposition 1.15].

3.1 Construction of orbits

We now come to the most important part of this paper. In each of the cases E7, e7, E6 and e6 described above,
we give a semisimple group G over k, together with a G-variety X, and write down orbits in G(k)\X(k)
corresponding to elements of the groups J(k)/2J(k). We must first fix ‘reference data’. This means:

• In cases E7 and e7, we fix a choice of pair (H, θ), where H is a split adjoint simple group over k of
type E7, and θ is an involution satisfying the conditions of Proposition 1.9. We define G = (Hθ)◦, and
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fix an inner class of isomorphisms g ∼= sl8; equivalently, we distinguish one of the two 8-dimensional
representations of g as the ‘standard representation’. The group H has no outer automorphisms, but
the group Hθ has two connected components, and the non-identity component acts on the identity
component G by outer automorphisms, exchanging the two choices of standard representation. Indeed,
the component group can be calculated using [Ree10, Proposition 2.1] and the Kac co-ordinates of the
inner automorphism θ, which appear in the tables in [RLYG12]. The proof of [Ree10, Proposition 2.1]
shows that we can find a representative of the non-trivial component which normalizes a maximal torus
of G but which does not act on this torus in the same way as any Weyl element of G; the induced
automorphism of G must therefore be outer.

• In cases E6 and e6, we fix a choice of pair (H, θ), where H is a split adjoint simple group over k of type
E6, and θ is an involution satisfying the conditions of Proposition 1.9. We define G = (Hθ)◦ = Hθ,
and distinguish one of the two 27-dimensional representations of h as the ‘standard representation’.
The connectedness of Hθ can be shown as above using the papers [Ree10, RLYG12].

We recall that in §1.4 we have defined two G-varieties Y and V in terms of the pair (H, θ). We use these to
define the G-variety X as follows:

• In cases E7 and E6, we define X = Y ⊂ H.

• In cases e7 and e6, we define X = V ⊂ h.

In each case there is a G-invariant open subscheme Xs ⊂ X of regular semisimple (equivalently, stable)
orbits. We can now state our first main theorem:

Theorem 3.5. In each case, the assignment (C,P, . . . ) 7→ κC determines a map

S(k)→ G(k)\Xs(k). (3.1)

If k = ks, then this map is bijective.

We observe that the theorem has already been proved in the case k = ks. Indeed, in this case, the
set G(k)\Xs(k) can be understood, via the Chevalley isomorphisms of §1.4, in terms of Weyl group orbits
in a maximal torus or Cartan subalgebra. Via this isomorphism, the theorem becomes Theorem 3.4. Our
problem, then, is to lift this construction so that it works over any field. This also explains the need for the
‘reference data’ described at the beginning of §3.1: it will provided the correct rigidification, in analogy with
what happens in the proof of Theorem 3.4.

We remark that in cases e7 and e6, the functor S is representable (as the triples (C,P, t) have
no automorphisms). This implies that for any field k, the map S(k) → G(k)\V s(k) is injective, and the
composite S(k)→ G(k)\V s(k)→ (V s�G)(k) is bijective.

Proof. Let us first treat the E7 case. Let (C,P ) ∈ S(k), and let V = Λ/2Λ. The point κC defined above lies

in T (k), where T = Hom(Λ,Gm), and is well-defined up to inversion. We are going to define an extension Ṽ

of V , with Γk-action, and then apply the constructions of §2 to build a group around the torus T . Let H̃L
be the Heisenberg group defined in §1.3; it fits into an exact sequence

1 //Gm //H̃L //Pic0(C)[2] //1.

According to Proposition 3.2, there is a canonical injection Pic0(C)[2] ↪→ V ∨ of finite k-groups. Dualizing,
we obtain a surjection V → Pic0(C)[2], and we push out the above extension by this surjection to obtain a
central extension

1 //Gm //Ẽ //V //1.

The commutator pairing of Ẽ descends to the natural symplectic form on V (since this is true for H̃L, by
Lemma 1.7, and the kernel of V → Pic0(C)[2] is exactly the radical of this symplectic form). Since V is

endowed with a Γk-invariant quadratic form q : V → F2, we can define a character χq : Ẽ → Gm by the
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formula ẽ 7→ (−1)q(e)ẽ2. This makes sense since for any ẽ ∈ Ẽ, we have ẽ2 ∈ Gm. Taking Ṽ = kerχq then
gives the desired extension

1 //{±1} // Ṽ //V //1.

(This is a slight variant on the procedure leading to the extension (1.1).) Note that if W = H0(Pic0(C),L),

then there is a natural homomorphism of k-groups Ṽ → GL(W ). Indeed, the group H̃L acts on W by

definition by pullback of sections; we can then pull back this action along the homomorphism Ṽ → H̃L. If
k = ks, then this is an 8-dimensional irreducible representation of the abstract group Ṽ (ks), which sends −1
to −idWks

.

In §2 we have associated to the triple (Λ, Ṽ ,W ) a simple adjoint group H0 of type E7, together with
a stable involution θ and maximal torus T ⊂ H0, and a representation of g0 = hθ0 on W . By definition, the
torus T is canonically isomorphic to Hom(Λ,Gm), and θ acts on it by t 7→ t−1. The group H0 is split; in
fact, since g0 is a form of sl8 with an 8-dimensional representation which is defined over k, g0 is split. The
Lie algebras g0 and h0 are semisimple Lie algebras of rank 7, so this implies that h0 must also be split.

By Proposition 1.9, there is an isomorphism ϕ : H → H0 satisfying θ0ϕ = ϕθ. This isomorphism
is defined uniquely up to Hθ(k)-conjugacy. The group Hθ is disconnected, with two connected components;
the non-trivial component acts on the connected component G = (Hθ)◦ by outer automorphisms. In order
to pin down the isomorphism ϕ up to G(k)-conjugacy, we observe that ϕ∗(W ) is an irreducible 8-dimensional
representation of g, which is therefore isomorphic either to the fixed ‘standard representation’ or its dual.
After possibly modifying ϕ, we can therefore assume that ϕ carries W to the standard representation of g.
The isomorphism ϕ is then indeed determined uniquely up to G(k)-conjugacy.

It follows that the orbit G(k) · ϕ−1(κC) ∈ G(k)\Y (k) is well-defined. (Note in particular that κC
is defined only up to inversion, but that θ acts on κC by inversion and lies in G(k) (in fact in the centre of
G(k)), so the orbit is independent of any choices.) To complete the proof in this case, we must show that
ϕ−1(κC) is stable (equivalently, regular semisimple in T ), and that the map we have defined is a bijection if
k = ks. This follows from the discussion preceding the proof of this theorem, and Theorem 3.4.

Let us now treat the E6 case. The inverse image π−1(`) = e ∪ f of the bitangent ` at P in the
surface S determines the root lattice Λ`, and we set V = Λ`/2Λ`. The natural symplectic pairing on V is
non-degenerate, and the quadratic form q : V → F2 arising from the form on on Λ` agrees with the quadratic
form on V arising from the isomorphism V ∼= Pic0(C)[2] and the odd theta characteristic κ corresponding

to `, by Proposition 3.3. We then have the Heisenberg group H̃L:

1 //Gm //H̃L //Pic0(C)[2] //1.

Pushing out by the isomorphism V ∼= Pic0(C)[2], we obtain an extension (isomorphic to H̃L):

1 //Gm //Ẽ //V //1.

We define a character χq : Ẽ → Gm by the formula ẽ 7→ (−1)q(e)ẽ2, and set Ṽ = kerχq. Then Ṽ is an
extension

1 //{±1} // Ṽ //V //1.

We define W = H0(Pic0(C),L); then Ṽ acts on W through the homomorphism Ṽ → H̃L. Applying the

constructions of §2 to the triple (Λ`, Ṽ ,W ), we obtain an adjoint group H0 of type E6 equipped with a stable
involution θ0, together with an action of the Lie algebra g0 = hθ00 on W . Since g0 is an inner form of sp8

and has an 8-dimensional representation defined over k, it must be split. This implies that H0 has split rank
at least 4; by the classification of forms of E6 [Tit66, pp. 58–59], we see that H0 must be quasi-split, and
split by a quadratic extension. This quadratic extension is the smallest extension splitting the Galois action
on Λ∨` /Λ`. Since the geometric irreducible components e and f of π−1(`) are defined over k, this action is
trivial, and we see that H0 is also split.

Applying Proposition 1.9 once more, we see that there is an isomorphism ϕe : H → H0 such that
ϕeθ = θ0ϕe. Such an isomorphism is determined up to Hθ(k) = G(k)-conjugacy (as Hθ is connected in this
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case). Moreover, we can assume that under the isomorphism ϕe, the minuscule representation of H0 with
weights in Λ∨` /Λ` corresponding to e is identified with the ‘standard representation’ of H.

The orbit G(k) · ϕ−1
e (κC) is then well-defined: reversing the roles of e and f in our construction

replaces κC = κ(C,P, e) by κ(C,P, f) = κ(C,P, e)−1, and θ0 is an outer automorphism, acting on Λ∨` /Λ`
∼=

Z/3Z as multiplication by −1, so we can take ϕf = ϕe ◦ θ0. Then we have

G(k) · ϕ−1
f (κ(C,P, f)) = G(k) · ϕ−1

f (θ0(κ(C,P, e)) = G(k) · ϕ−1
e (κ(C,P, e)).

This shows that we have constructed a well-defined map S(k) → G(k)\X(k). The rest of the theorem in
this case follows from the discussion preceding the proof of this theorem, and Theorem 3.4.

The arguments in the Lie algebra cases are very similar, with maximal tori replaced by Cartan
subalgebras. We omit the details.

Fix x = (C,P, . . . ) ∈ S(k). Let π : X → X�G denote the natural quotient map, and let Xx =
π−1π(x). Then we know that Xx ⊂ Xs consists of a single G-orbit (see §1.4), but Xx(k) may break up into
several G(k)-orbits which all become conjugate over ks. Let Jx denote the Jacobian of C. We now state our
second main theorem, which shows how to construct elements of the set G(k)\Xx(k) from the set Jx(k):

Theorem 3.6. With notation as above, there is a canonical map

Jx(k)/2Jx(k) ↪→ G(k)\Xx(k). (3.2)

It is functorial in k in the obvious sense.

The map (3.2) will extend the map of Theorem 3.5, in the sense that the image of the identity
element of Jx(k)/2Jx(k) under (3.2) equals the image of x ∈ S(k) under (3.1).

Proof. The proof is a twist of the proof of Theorem 3.5, using the ideas of §1.3. We treat first the E7 case.
Let A ∈ Jx(k) be a rational point. Choose B ∈ Jx(ks) such that [2](B) = A. Then the field of definition of
the line bundle t∗BL is equal to k, and we choose a bundle LB over k which becomes isomorphic to t∗BL over

ks. We continue to denote Λ = Pic(Sks), V = Λ/2Λ, and associate to LB the Heisenberg group H̃LB , which
fits into an exact sequence

1 //Gm //H̃LB //Jx[2] //1.

Arguing exactly as in the proof of Theorem 3.5, we obtain an extension

1 //{±1} // ṼB //V //1,

together with a homomorphism ṼB → H̃LB through which the group ṼB acts on the space WB = H0(Jx,LB),
an 8-dimensional k-vector space. Over ks, this defines an irreducible representation of the abstract group
ṼB(ks).

Using the constructions of §2, we associate to the triple (Λ, ṼB ,WB) a group HB with involution θB ,
maximal torus TB ∼= Hom(Λ,Gm), and an action of the Lie algebra gB = hθBB on WB . Just as in the proof of
Theorem 3.5, the existence of WB implies that the groups HB and GB are split, and TB(k) has a point κC ,
well-defined up to inversion. By Proposition 1.9, we can find an isomorphism ϕB : H → HB which intertwines
θ and θB , and under which WB corresponds to the ‘standard representation’ of g ∼= sl8. The choice of ϕB is
then unique up to the action of G(k), and we associate to the point B the orbit G(k) · ϕ−1

B (κC) ⊂ Yx(k).
We observe that if A = B = 0, the identity of Jx(k), then the above construction reduces to that of

Theorem 3.5. In general, we must show that the orbit G(k) · ϕ−1
B (κC) ⊂ Px(k) depends only on the image

of A in Jx(k)/2Jx(k) (and not on the choice of B), and that distinct elements of Jx(k)/2Jx(k) give rise to
distinct orbits. Let ϕ−1

0 (κC) ∈ Yx(k) be the point constructed in the proof of Theorem 3.5. Since G(ks) acts
transitively on Px(ks), a well-known principle asserts that there is a canonical bijection

G(k)\Yx(k) ∼= ker
(
H1(k, ZG(ϕ−1

0 (κC)))→ H1(k,G)
)
, (3.3)
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under which the base orbit G(k) · ϕ−1
0 (κC) corresponds to the marked element; see, for example, [BG14,

Proposition 1]. By [Tho13, Corollary 2.10] and Proposition 3.2, there is a canonical isomorphism

ZG(ϕ−1
0 (κC)) ∼= ZG0(κC) ∼= image (V → V ∨) ∼= Jx[2].

We will show that under the composite

G(k)\Yx(k) ↪→ H1(k, ZG(ϕ−1
0 (κC))) ∼= H1(k, Jx[2]),

the orbit G(k) · ϕ−1
B (κC) is mapped to the image of A under the 2-descent homomorphism of §1.3.

The pullback t∗B defines a canonical isomorphism Ṽ ∼= ṼB over ks by the formula of (1.2). This gives
rise to an isomorphism of triples F : (H0, θ0, T0) ∼= (HB , θB , TB) which induces the identity on Hom(Λ,Gm)
under the identification of this torus with T0 and TB . According to Lemma 2.4, we can identify F−1σF with
an element of V ∨. Lemma 1.8 now implies that this element in fact lies in the image of the homomorphism
V → V ∨, and that under the identification of this image with Jx[2], is identified with the cocycle σ 7→ σB−B.
This identity of cocycles implies the desired identity of cohomology classes, and completes the proof in this
case.

The proof of the theorem in the remaining cases E6, e7, and e6 simply requires analogous modifica-
tions to the proof of Theorem 3.5. We work out the E6 case here. Let us therefore take x = (C,P ) ∈ S(k),
so that P is a point such that TPC = ` is a bitangent in the canonical embedding of the curve C. The root
lattice Λ` is defined, and we define V = Λ`/2Λ`. The natural symplectic pairing on V is non-degenerate, and
the quadratic form q : V → F2 arising from the form on on Λ` agrees with the quadratic form on V arising
from the isomorphism V ∼= Jx[2] and the odd theta characteristic κ corresponding to `, by Proposition 3.3.
Let A ∈ Jx(k), and choose a point B ∈ Jx(ks) with [2](B) = A. Let LB be a descent of the line bundle t∗BL
to k. We then have the Heisenberg group H̃LB :

1 //Gm //H̃LB //Jx[2] //1.

Arguing exactly as in the proof of Theorem 3.5, we obtain an extension

1 //{±1} // ṼB //V //1,

and ṼB acts on the 8-dimensional k-vector space WB = H0(Jx,LB) through a homomorphism ṼB → H̃LB .

We can apply the constructions of §2 to the triple (Λ`, ṼB ,WB) to obtain a group HB with involution θB ,
maximal torus TB ∼= Hom(Λ,Gm), and an action of the Lie algebra gB = hθBB on WB . The existence of WB

implies that the groups HB and GB are split, and TB(k) has a point κC = κ(C,P, e) which depends on a
choice of component e of π−1(`) = e ∪ f . By Proposition 1.9, we can find an isomorphism ϕB,e : H → HB

which intertwines θ and θB , and under which the ‘standard representation’ of h corresponds to the minuscule
representation of hB corresponding to the class of e in Λ∨` /Λ`. The choice of ϕB,e is then unique up to the
action of G(k), and we associate to the point B the orbit G(k) · ϕ−1

B,e(κ(C,P, e)) ⊂ Yx(k). Just as in the

E7 case, we can check that the map B 7→ G(k) · ϕ−1
B,e(κ(C,P, e)) descends to an injection Jx(k)/2Jx(k) ↪→

G(k)\Yx(k). This completes the proof.

3.2 An example

To illustrate our theorem, we describe explicitly what happens in the e6 case, when k = R. Then the reference
group H is a split adjoint group of type E6 over R, Hθ = G is isomorphic to PSp8, a projective symplectic
group in 8 variables, and V = hdθ=−1 is a 42-dimensional irreducible subrepresentation of ∧4(8). The
corresponding family of curves is the family (C,P, t) of smooth non-hyperelliptic genus 3 curves, equipped
with a point P which is a hyperflex in the canonical embedding, and a non-zero Zariski tangent vector
t ∈ TPC. It consists of the smooth members in the family

y3 = x4 + y(p2x
2 + p5x+ p8) + p6x

2 + p9x+ p12
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(here we are using the affine chart which makes P the unique point at infinity). For each tuple

(p2, p5, p8, p6, p9, p12) ∈ R6

for which this curve is smooth, we can write down the following data:

• Topological invariants of the curve C(R) ⊂ P2(R): following [GH81], we write n(C) for the number
of connected components of C(R), and a(C) = 0 or 1 depending on whether or not C(C) − C(R) is
disconnected.

• A stable G-orbit Vx ⊂ V s, and an H(R)-conjugacy class of maximal tori T ⊂ H (T is the stabilizer in
H of the base orbit in Vx(R), which is regular semisimple).

• An injection J(R)/2J(R) ↪→ G(R)\Vx(R), where J is the Jacobian of the curve C.

The isomorphism classes of tori in H are in bijection with the conjugacy class of elements in the Weyl group
W of order 2 [Ree11, §6]. It turns out that these correspond to the possible topological types of the curve
C(R) in P2(R), as follows:

conjugacy class n(C) a(C) no. of real bitangents #J(R)/2J(R) #G(R)\Vx(R)
1 4 0 28 23 36
s1 3 1 16 22 10
s1s2 2 1 8 2 3
s1s2s3 1 1 4 1 1
τ 2 0 4 2 3

The table should be interpreted as follows: suppose that a curve C has the given invariants. (It follows from
the table on [GH81, p. 174] that the only possible values for the pair (n(C), a(C)) are the ones listed above.)
Then the real structure on the torus T is the one determined by the Weyl element in the left-hand column,
and the data in the remaining three columns is as given. Here s1, s2, s3 ∈W are commuting simple reflections,
and τ ∈ W may be constructed as follows: choose a D4 root system inside Λ. Then −1 ∈ W (D4), and τ is
the element that acts as −1 on the span of the D4 roots, and as +1 on their orthogonal complement. The
elements 1, s1, s1s2, s1s2s3, and τ are pairwise non-conjugate in W and every involution in W is conjugate
to one of these. (For the classification of conjugacy classes of involutions in Weyl groups, see [Ric82a].)

One can check explicitly that each of the above combinations of (n(C), a(C)) does indeed occur. The
table can be verified as follows. It follows from our theory that there is an isomorphism J [2](C) ∼= Λ`/2Λ`
under which the action τ of complex conjugation corresponds to the action of an involution w ∈W (Λ`) = W
and which identifies the Weil pairing on the left-hand side with the natural symplectic pairing on the right.
On the other hand, [GH81, Proposition 4.4] shows that the data of the pair (J [2](C), τ) (as symplectic
F2-vector space with involution) is sufficient to recover n(C) and a(C). A calculation shows that the Weyl
involutions biject with the possible choices for the pair (n(C), a(C)). This determines the number of real
bitangents and the quantity #J(R)/2J(R).

We justify the final column using the results in the appendix. The set G(R)\Vx(R) is in canonical
bijection with the set ker(H1(R, J [2])→ H1(R, G)), the marked element corresponding to the trivial element
of J(R)/2J(R). We analyze this kernel using the diagram of R-groups with exact rows, whose existence is
asserted by the main result in the appendix to this paper:

1 // µ2
// Sp8

// PSp8
// 1

1 // µ2
//

OO

Ṽ //

OO

J [2] //

OO

1,

where Ṽ is the extension used in the proof of Theorem 3.5; it is a subgroup of the Heisenberg group H̃L.
Using the triviality of the set H1(R,Sp8), we get an identification

G(R)\Vx(R) ∼= ker(H1(R, J [2])→ H1(R, G)) ∼= ker(H1(R, J [2])→ H2(R, µ2)),
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where the arrow q : H1(R, J [2])→ H2(R, µ2) ∼= Z/2Z is the connecting map arising from the bottom row of
the above commutative diagram. (Note that we are working here with non-abelian Galois cohomology; the
connecting map is defined, because µ2 is central, but it need not be a homomorphism of groups.)

Tate duality gives a perfect pairing on H1(R, J [2]), with respect to which J(R)/2J(R) is a maximal
isotropic subspace. The map q is a quadratic refinement of this pairing, in the sense of §1.1, which is
identically zero on the subspace J(R)/2J(R) (see [PR12, Corollary 4.7]). It follows that a(q) = 0, and the
set q−1(0) has 2g−1(2g + 1) elements, where g = dimF2 J(R)/2J(R). This leads to the final column in the
above table.
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Appendix A. A converse to Lurie’s functorial construction of simply
laced Lie algebras

By Tasho Kaletha1

In §2 a construction due to Lurie was recalled, which associates in a functorial way a semi-simple Lie algebra
h to a simply laced root lattice Λ equipped with an extension Ṽ of V = Λ/2Λ by {±1}. In fact, the
construction produces not just h, but also some additional structure, including a Cartan subalgebra t. This
construction was moreover refined in several ways. It was shown that an action of the Galois group of a field
k on Ṽ is translated to a k-structure on h; it was shown that h comes equipped with a stable involution θ
(i.e. an involution satisfying the first condition of Proposition 1.9); and finally a construction was described
that produces from a rational representation ρ of the finite algebraic k-group Ṽ with ρ(−1) = −1 a rational
representation dπ of the Lie-algebra g = hθ.

The purpose of this appendix is to provide a converse to this refinement of Lurie’s construction. The
basic question is: given h, t, and θ, is it possible to recover the extension Ṽ in a concrete way? That this
should be the case, and in fact where the extension is to be found, was suggested to us by Jack Thorne. His
idea was that the extension Ṽ should be the preimage in Gsc of the 2-torsion subgroup of Tsc, where Tsc is
the maximal torus of the simply connected group Hsc with Lie-algabra h given by the Cartan subalgebra t,
and Gsc is the simply connected group with Lie-algebra g. In this appendix we will show that this preimage
is indeed an extension of V by {±1} and we will moreover construct an isomorphism from this extension to
Ṽ that preserves the action of the Galois group of k and intertwines the representations ρ and π.

We thank Jack Thorne for sharing with us this interesting question and for including our results
into his paper.

A.1 Statement of two propositions

Let k be a field of characteristic 0, ks a fixed separable closure, Γk = Gal(ks/k). Let Λ be a finite free
Z-module equipped with a symmetric bilinear form 〈−,−〉 : Λ⊗ Λ→ Z and satisfying the conditions

• rkΛ > 1.

• For any non-zero λ ∈ Λ, the value 〈λ, λ〉 is a positive even integer.

• The set Γ = {λ ∈ Λ|〈λ, λ〉 = 2} generates Λ.

As discussed in [Lur01], these are precisely the root lattices of simply laced root systems. Here we are
excluding the system A1. The subset Γ ⊂ Λ is the set of roots. We shall place the additional assumption
that Γ is irreducible. This assumption is made just for convenience and can easily be removed.

Write q(λ) = 1
2 〈λ, λ〉, this is a quadratic form. Let V = Λ/2Λ and let

1→ {±1} → Ṽ → V → 0

be an extension of groups (we write the group law of Ṽ multiplicatively) with the property that for each
ṽ ∈ Ṽ and its image v ∈ V , the equality ṽ2 = (−1)q(v) holds. This equation characterizes the isomorphism
class of this extension.

Assume we are given an action of Γk on Λ that preserves 〈−,−〉, as well as an action of Γk on Ṽ that
preserves the subgroup {±1}, such that the two actions on V induced from these coincide. Let Λ̃ = Λ×V Ṽ
and let Γ̃ ⊂ Λ̃ be the preimage of Γ. The extension Λ̃ of Λ by {±1} inherits an action of Γk and this action
preserves Γ̃.

Let h be the Lie algebra associated to this data as described in §2. It comes equipped with a Cartan
subalgebra t and a map Γ̃→ h sending each γ̃ to a non-zero root vector Xγ̃ ∈ hγ and having the properties

• X−γ̃ = −Xγ̃ ;

1This research is supported in part by NSF grant DMS-1161489.
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• [Xγ̃ , Xγ̃′ ] = Xγ̃γ̃′ if γ + γ′ ∈ Γ (by assumption γ̃γ̃′ ∈ Γ̃);

• [Xγ̃ , Xγ̃′ ] = (γ̃γ̃′)Hγ if γ′ = −γ, where Hγ ∈ t is the coroot for γ (by assumption γ̃γ̃′ ∈ {±1}).

Let H = Aut(h)◦ be the corresponding adjoint group, Hsc its simply connected cover, and θ the
involution of h which acts by −1 on t and by θ(Xγ̃) = −Xγ̃−1 on the root subspaces. It induces an involution
on H and Hsc as well and this involution acts by inversion of the maximal tori T and Tsc whose Lie algebra
is t. Let g = hθ be the fixed Lie subalgebra and G = Hθ,◦ the connected component of the fixed subgroup.
Let G′ = Hθ

sc. According to [Ste68, Theorem 8.1] G′ is connected. Its image in H is equal to G. Since θ
commutes with the action of Γk, the groups G and G′ are defined over k.

Proposition A.1. The group G′ is semi-simple and its fundamental group has order 2.

Let Gsc be the simply connected cover of G. We will from now on denote the fundamental group of
G′ by {±1} ⊂ Gsc. For a root γ ∈ Γ, let γ∨ be the corresponding coroot. The map

V → Tsc, [γ] 7→ γ∨(−1)

identifies V with the 2-torsion subgroup of Tsc and this subgroup belongs to G′. We form the pull-back
extension

1 // {±1} // Gsc
// G′ // 1

1 // {±1} // X //

OO

V //

OO

1

This extension inherits an action of Γk.
Finally, given a rational representation ρ : Ṽ → GL(W ) of the algebraic k-group Ṽ on a finite-

dimensional k-vector space W such that ρ(−1) = −1, we define a representation dπ : g → gl(W ) by
dπ(Xγ̃ − Xγ̃−1) = ρ(γ̃)/2, and let π : Gsc → GL(W ) be the corresponding rational representation of Gsc.
Recall that Proposition 2.3 asserts that dπ is indeed a Lie-algebra representation.

Proposition A.2. There exists an isomorphism of extensions Φ : Ṽ → X which is Γk-equivariant and
intertwines ρ with π|X for all representations ρ as above.

A.2 Proof of Proposition A.1

According to [RLYG12, §5.3], the involution θ is stable and hence its conjugacy class is uniquely determined.
A description of this conjugacy class for each Dynkin type is given in [RLYG12, §8] in terms of Kac diagrams.
The normalized Kac diagram of the stable involution contains a unique node with label 1, and all other nodes
have label 0. According to [Ree10, §3.7], this implies that the center of G is finite. Thus G, and hence also
G′ is semi-simple. Its Dynkin diagram is obtained by removing the unique node with label 1 from the Kac
diagram of the stable involution. In order to prove that the fundamental group of G′ has order 2, we argue
as follows. According to [Ree10, §3.7], the order of the center of G is given by bι, where ι is the index of the
unique node with label 1 in the Kac diagram, and bι is an integer defined in [Ree10, §3.3], which according
to Theorem 3.7 in loc. cit. is equal to 2 if θ is inner and to 1 if θ is outer. Since θ acts by −1 on the Cartan
subalgebra t, it is inner if and only if −1 belongs to the Weyl group of (t, h).

The kernel of the map G′ → G is equal to Z(Hsc)θ. Thus the center of G′ has size |Z(Hsc)θ| · bι.
The proof will be complete once we show that this number is equal to one half of the connection index of
the Dynkin diagram of G. This can be done by inspection of the individual cases An, n > 1, Dn, E6, E7,
E8. We give the examples of the exceptional types E6, E7, and E8, and leave the discussion of the classical
types An and Dn to the reader.

For type E6, the Kac diagram of θ is given by the last row of Table 3 of [RLYG12, §8.1] and has the
form 0 0 0⇐ 0 1, so G has type C4. Since θ is outer, G is adjoint. There are no θ-fixed points in the center
of Hsc, thus G′ ∼= PSp4.
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For type E7, the Kac diagram of θ is given by the last row of Table 4 and has the form 0 0 0 0 0 0 0
1 , so

G is of type A7. The center of G has now order 2, because θ is inner, and moreover the fixed points of θ in
Z(Hsc) also have order 2, so the center of G′ has order 4.

For type E8, the Kac diagram of θ is given by the last row in Table 5 and has the form 1 0 0 0 0 0 0 0
0 ,

so G is of type D8. The center of G has order 2, because θ is inner. Since Z(Hsc) = 1, the center of G′ also
has order 2.

For the classical types, the relevant diagrams are those in row 2 of Table 10 (H is of type A2n and
G is of type Bn), row 3 of Table 11 with k = n− 1 (H is of type A2n−1 and G is of type Dn), row 3 of Table
14 for k = n even (H is of type Dn and G is of type Dn

2
×Dn

2
), and row 3 of Table 15 with l = n odd (H

is of type Dn and G is of type Bn−1
2
×Bn−1

2
). Note that θ is inner for Deven and outer for An and Dodd.

A.3 Proof of Proposition A.2

A.3.1 The group SOn

We define the group SOn to be the subgroup of SLn fixed by the transpose-inverse automorphism. This
group is semi-simple when n > 2. For n = 2, it is non-canonically isomorphic to Gm over ks. One can
specify an isomorphism by fixing a 4-th root of unity i ∈ ks. Then we have

Gm → SO2, x 7→ 1

2

[
x+ x−1 i(x− x−1)
−i(x− x−1) x+ x−1

]
.

For future reference, we record the formula[
a b
−b a

]2

=

[
a2 − b2 2ab
−2ab a2 − b2

]

for the squaring map SO2
( )2−→ SO2.

A.3.2 Construction of the isomorphism Ṽ → X

Choose a set of simple roots ∆ ⊂ Γ. The image ∆V of ∆ in V is a set of generators for this group, and
the relations on this set are 2v = 0 for all v ∈ ∆V . Let ∆̃ be the preimage of ∆ in Λ̃, and ∆̃V be the
image of ∆̃ in Ṽ . Then ∆̃V is a set of generators for Ṽ , and the relations on this set are ṽ2 = (−1) and
ṽw̃ = (−1)〈v,w〉w̃ṽ.

We now define a map φ : ∆̃ → X. Given γ̃ ∈ ∆̃ we obtain a monomorphism ηγ̃ : SL2 → Hsc with
θ-stable image that translates the action of θ on its image to the action of transpose-inverse on SL2. The
fixed subgroup SO2 of this action therefore lands in G′.

Lemma A.3. The preimage of ηγ̃(SO2) in Gsc is connected.

The proof of this lemma will be given in section A.3.6. Granting this lemma, it follows from
Proposition A.1 that there exists a unique homomorphism φγ̃ : SO2 → Gsc making the following diagram
commute.

SO2

φγ̃ //

( )2

��

Gsc

��
SO2

ηγ̃ // G′

This homomorphism is injective. We let φ(γ̃) = φγ̃

([
1

−1

])
. By the above diagram, the image of φ(γ̃)

in G′ is equal to γ∨(−1), which shows that φ(γ̃) ∈ X. Moreover, φ(γ̃)2 = φγ̃(−1) is a non-trivial element of
Gsc whose image in G′ is trivial, hence φ(γ̃)2 = −1.

We thus obtain a map φ : ∆̃→ X which descends to a map Φ : ∆̃V → X and whose image contains
a set of generators for X. We claim that Φ is Γk-equivariant. Given σ ∈ Γk we have ησγ̃ = σ ◦ ηγ̃ , and
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hence φσγ̃ = σ ◦ φγ̃ , where on the right sides of these equations σ denotes the action of σ on G′ and Gsc

respectively. Thus φ(σγ̃) = σφ(γ̃) for all γ̃ ∈ Γ̃ and this establishes the Γk-equivariance of Φ.
Our task is to show that Φ respects the relation ṽw̃ = (−1)〈v,w〉w̃ṽ. Once this is done, it will extend

to a surjective homomorphism Φ : Ṽ → X, which will then have to be bijective because its source and target
have the same cardinality. It will furthermore be Γk-equivariant.

A.3.3 The isomorphism PGL2 → SO3

Consider the adjoint action of PGL2 on its Lie-algebra sl2. Fix a 4-th root of unity i ∈ ks as well as an
element

√
2 ∈ ks. The basis

√
2
−1
[
1
−1

]
(i
√

2)−1

[
1

−1

] √
2
−1
[

1
1

]
is an orthonormal basis for the symmetric bilinear form tr(AB) and provides an isomorphism PGL2 → SO3

defined over ks, which is explicitly given by

[
a b
c d

]
7→ (ad− bc)−1

 ad+ bc i(ac+ bd) bd− ac
−i(ab+ cd) a2+b2+c2+d2

2 ia
2−b2+c2−d2

2

−(ab− cd) i c
2+d2−a2−b2

2
a2−b2−c2+d2

2

 .
Its derivative sl2 → so3 is given by

[
a b
c d

]
7→

 0 i(b+ c) b− c
−i(b+ c) 0 2ia
c− b −2ia 0

 .
A.3.4 The relation ṽw̃ = (−1)〈v,w〉w̃ṽ

In section A.3.2 we constructed a map Φ : ∆̃V → X. In order to show that it extends to an isomorphism
Ṽ → X, it remains to check that for ṽ, w̃ ∈ ∆̃V with images v, w ∈ ∆V we have

Φ(ṽ)Φ(w̃) = (−1)〈v,w〉Φ(w̃)Φ(ṽ). (A.4)

Let γ̃, δ̃ ∈ Γ̃ be preimages of ṽ, w̃, and γ, δ ∈ ∆ be their images. We have either 〈γ, δ〉 = 0 or 〈γ, δ〉 = −1.
In the first case, the cocharacters ηγ̃ and ηδ̃ commute and hence their images are contained in a common
maximal torus of G′. The preimage in Gsc of this maximal torus is a maximal torus of Gsc and contains the
images of φγ̃ and φδ̃, and we conclude that these two cocharacters also commute. This proves (A.4) in the
case 〈γ, δ〉 = 0 and we are left with the case 〈γ, δ〉 = −1. Then the elements {Xγ̃±1 , Xδ̃±1 , X(γ̃δ̃)±1} generate
a subalgebra of h isomorphic to sl3. Even more, there is a preferred embedding µγ̃,δ̃ : sl3 → h given by0 1

0
0

 7→ Xγ̃

0
0 1

0

 7→ Xδ̃

0 1
0

0

 7→ Xγ̃δ̃.

It integrates to an embedding µγ̃,δ̃ : SL3 → Hsc. The embeddings ηγ̃ , ηδ̃ : SL2 → Hsc factor through µγ̃,δ̃
and give embeddings

SO2 → SO3,

[
a b
−b a

]
7→

 a b
−b a

1


and

SO2 → SO3,

[
a b
−b a

]
7→

1
a b
−b a

 .
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We compose these with the isomorphism SO3 → PGL2 of section A.3.3, for which we fix the elements
i,
√

2 ∈ ks as discussed there. This gives two embeddings SO2 → PGL2.
The first one is characterized by [

a b
−b a

]
7→
[
α β
β α

]
where α2 + β2 = a and 2iαβ = b. The composition of this with the squaring map on SO2 lifts to the map

SO2 → SL2,

[
a b
−b a

]
7→
[
a b/i
b/i a

]
.

The image of

[
0 1
−1 0

]
under this map is equal to

[
0 −i
−i 0

]
.

The second embedding SO2 → PGL2 is given by[
a b
−b a

]
7→

[√
a− ib √

a− ib−1
.

]
Note that this is well-defined with an arbitrary choice of

√
a− ib. Its composition with the squaring map

on SO2 lifts to the map

SO2 → SL2,

[
a b
−b a

]
7→
[
(a− ib)

(a− ib)−1

]
.

The image of

[
0 1
−1 0

]
under this map is equal to

[
−i

i

]
. The claim now follows from[

0 −i
−i 0

]
·
[
−i

i

]
= −

[
−i

i

]
·
[

0 −i
−i 0

]
.

A.3.5 Intertwining property of Φ : Ṽ → X

Let ρ : Ṽ → GL(W ) be a rational representation of the finite algebraic k-group Ṽ on a finite-dimensional k-
vector space W , having the property that ρ(−1) = −1. Let π : Gsc → GL(W ) be the rational representation
obtained from it. We want to show that Φ intertwines ρ with π|X . It is enough to show that, for γ̃ ∈ ∆̃ with
image ṽ ∈ Ṽ , we have the following equality in GL(W )(ks):

π(Φ(ṽ)) = ρ(ṽ).

Let γ ∈ ∆ be the image of γ̃. Choose δ ∈ ∆ with 〈γ, δ〉 = −1 and let δ̃ ∈ ∆̃ be a preimage. Let w̃ ∈ Ṽ be
the image of δ̃. Let Q ⊂ Ṽ be the subgroup generated by ṽ, w̃. It is isomorphic to the quaternion group.

Let µγ̃,δ̃ : sl3 → h be the embedding determined by γ̃ and δ̃ as in section A.3.4. It determines an
embedding µγ̃,δ̃ : SL3 → Hsc.

Decompose W = ⊕ni=1Wi under ρ|Q into irreducible representations over ks. The condition ρ(−1) =
−1 forces all Wi to be isomorphic to the unique 2-dimensional representation of Q. Moreover, by construction
of dπ, each subspace Wi of W is preserved by the action of dπ(µγ̃,δ̃(so3)), hence also by the action of
π(µγ̃,δ̃(SO3)). We can thus focus on a single Wi. Choosing a suitable basis for Wi over ks, we obtain from
ρ|Q the embedding Q→ SL2(ks) given by

ṽ 7→
[

−i
−i

]
w̃ 7→

[
−i

i

]
ṽw̃ 7→

[
1

−1

]
.

Reviewing the construction of dπ, we see that the restriction to Wi of dπ ◦ µγ̃,δ̃ provides the isomorphism
so3 → sl2 given by 0 1

−1 0
0

 7→ 1

2

[
−i

−i

]
,

0
0 1
−1 0

 7→ 1

2

[
−i

i

]
,

 0 1
0

−1 0

 7→ 1

2

[
1

−1

]
,
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which one easily checks to be the inverse of the isomorphism of section A.3.3. Thus, the composition of the
isomorphism SL2 → Spin3 of section A.3.3 with the embedding µγ̃,δ̃ : Spin3 → Gsc provides a representation
of SL2 on Wi which in the chosen basis of Wi is given by the identity map SL2 → SL2. However, the discussion

of section A.3.4 shows that Φ(ṽ) ∈ Gsc is the image of the element

[
−i

−i

]
under the composition of the

isomorphism SL2 → Spin3 of section A.3.3 with the embedding µγ̃,δ̃ : Spin3 → Gsc. We conclude that ρ(ṽ)
and π(Φ(ṽ)) are represented by the same matrix in SL2(ks) ⊂ GL(Wi)(k

s).

A.3.6 Proof of Lemma A.3

We note first that the statement of the lemma is equivalent to the claim that the preimage of γ∨(−1) in
Gsc has order 4. Indeed, if the preimage of ηγ̃(SO2) in Gsc is connected, then identifying SO2 with Gm we
obtain via pull-back along ηγ̃ the non-split extension 1→ {±1} → Gm → Gm → 1, and the element γ∨(−1)
corresponds to the element −1 of the right copy of Gm, which evidently has two preimages of order 4. On
the other hand, if the preimage of ηγ̃(SO2) in Gsc is disconnected, the the corresponding extension is the
split extension 1→ {±1} → {±1} ×Gm → Gm → 1 and the element −1 ∈ Gm has two lifts of order 2.

We have the element γ̃ ∈ Γ̃ and the corresponding element γ ∈ Γ. The chosen base ∆ of Γ in the
discussion of section A.3.2 will be unimportant. We first claim that there exists a maximal torus Ssc ⊂ Hsc,
a Borel subgroup C containing Ssc, and a root α of Hsc with respect to Ssc such that θ preserves the
pair (Ssc, C) as well as the root α and γ∨(−1) = α∨(−1). Indeed, choose a base ∆ for Γ such that the
corresponding Kostant cascade M (see [Kos]) contains γ. For each β ∈M , choose a preimage β̃ ∈ Γ̃. Let

g =
∏
β∈M

ηβ̃

[
i/2 1
−1/2 −i

]
∈ Hsc.

Then one checks that Ssc := Ad(g)Tsc is normalized by θ. If we transport the action of θ on Ssc back
to Tsc via the isomorphism Ad(g), we obtain the automorphism Ad(g−1θ(g)) ◦ θ and one computes that
Ad(g−1θ(g)) acts as the product of reflections

∏
β∈M sβ , which according to [Kos, Prop. 1.10] represents the

longest element of the Weyl group with respect to the basis ∆. This shows that Ad(g−1θ(g))◦θ preserves the
basis ∆. It also evidently fixes the root γ. Let α = Ad(g)γ, and let C be the Borel subgroup corresponding
to the basis Ad(g)∆. Finally, α∨(−1) = γ∨(−1) follows from the fact that the element g ∈ Hsc centralizes
γ∨(−1) ∈ Hsc. Indeed, the image of ηβ̃ for β ∈ M \ {γ} centralizes the image of γ∨, while the image of ηγ̃
centralizes the element γ∨(−1). The claim is proved.

We are now interested in showing that the preimage of α∨(−1) in Gsc has order 4. For this it is
convenient to use again the equivalent formulation that the preimage of α∨(Gm) in Gsc is connected. By
passing from γ to α we are now in the more advantageos situation that this preimage belongs to the preimage
in Gsc of G′ ∩Ssc = Sθsc, which is a maximal torus. Call this maximal torus S̃ ⊂ Gsc. We form the pull-back
diagram

1 // {±1} // S̃ // Sθsc // 1

1 // {±1} // ? //

OO

Gm

α∨

OO

// 1

and would like to show that the bottom extension is not split. Passing to character modules we obtain the
push-out diagram

0 // X∗(Ssc)θ //

α∨

��

X∗(S̃)

��

// Z/2Z // 0

0 // Z // X∗(?) // Z/2Z // 0

and would still like to show that the bottom extension is not split. This is equivalent to showing that for
one, hence any, lift 1̇ ∈ X∗(?) of 1 ∈ Z/2Z, we have 21̇ ∈ Zr 2Z. This in turn is equivalent to showing that
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for one, hence any, lift 1̇ ∈ X∗(S̃) of 1 ∈ Z/2Z, we have α∨(21̇) /∈ α∨(2X∗(Ssc)θ). Now X∗(Ssc) is the weight
lattice of the group Hsc with respect to the torus Ssc. Since α∨ is a coroot, we have α∨(X∗(Ssc)θ) = Z. Our
task is then to show that the image in Q of X∗(S̃) under α∨ is not contained in Z. But X∗(S̃) is equal to the
weight lattice of the group Gsc relative to the maximal torus S̃. We thus have to show that α∨ ∈ X∗(Ssc)θ

does not belong to the coroot lattice of G′.
To that end, we need to describe the root and coroot systems of G′. Let R ⊂ X∗(Ssc) and R∨ ⊂

X∗(Ssc) be the root and coroot systems of Hsc, and let ∆ ⊂ R be the base given by the Borel subgroup C.
We choose a non-zero root vector Xβ ∈ hβ for each β ∈ ∆ subject to the condition Xθβ = θXβ provided
θβ 6= β. For β ∈ ∆ satisfying θβ = β we have θXβ = εXβ with ε ∈ {1,−1}. Letting {ω̌β |β ∈ ∆} be the
system of fundamental coweights, we set s ∈ S to be the product of ω̌β(−1) for all β ∈ ∆ with θβ = β and
θXβ = −Xβ . Then s ∈ Sθ is of order 2 and θ = Ad(s)θ0, with θ0 an automorphism of Hsc preserving the
splitting (Ssc, C, {Xβ}). The root system of G′ is a subset R′ ⊂ X∗(Sθsc) = X∗(Ssc)θ. The duality between
X∗(Ssc) and X∗(Ssc) induces a duality between X∗(Ssc)θ and X∗(Ssc)θ. The coroot system of G′ is a subset
R′∨ ⊂ X∗(Ssc)θ. The system R′ ⊂ X∗(Ssc)θ and its dual system R′∨ ⊂ X∗(Ssc)θ can be described using
the results of [Ste68], which are summarized in [KS99, §1.1,§1.3]. As evident from the discussion there, the
root system A2n behaves differently from all other root systems, a phenomenon that manifests itself in the
occurrence of restricted roots of type R2 and R3. It is therefore convenient to treat the special case of A2n

separately. Fortunately, this special case is rather easy.
Assuming that R is of type A2n, we enumerate ∆ = {α1, . . . , α2n} with θ(αi) = α2n+1−i. Since θ

has no fixed points in ∆, we have θ0 = θ. Thus the projection of ∆ to X∗(Ssc)θ forms a set of simple roots
for R′. Let α′i ∈ R′ denote the projection of αi. Then α′1, . . . , α

′
n−1 are of type R1, and the corresponding

coroots are given by α′∨i = α∨i + α∨2n+1−i. On the other hand α′n is of type R2 and its coroot is given by
2(α∨n + α∨n+1). It follows that the coroot lattice of G′ is the sublattice of X∗(Ssc)θ spanned by the points
{α∨1 + α∨2n, . . . , α

∨
n−1 + α∨n+2, 2(α∨n + α∨n+1)}. On the other hand, we may assume without loss of generality

that α is the highest root of R (by making the same assumption on the root γ, bearing in mind that the
highest root is always part of the Kostant cascade). Then α∨ = α∨1 + · · ·+α∨2n evidently does not belong to
the coroot lattice of G′. This completes the discussion of the case A2n.

The remaining root systems can now be treated uniformly, because all occurring restricted roots are
of type R1. According to the discussion in [KS99, §1.3], the root system R′ is given by the image of the set

Ṙ′ = {β ∈ R|θβ = β ⇒ β(s) = 1}

under the natural projection X∗(Ssc)→ X∗(Ssc)θ. For the description of R′∨, we have the following lemma.

Lemma A.4. For any element of β′ ∈ R′ represented by β ∈ Ṙ′, the coroot β′∨ ∈ X∗(Ssc)
θ is given by{

β∨ , θβ = β

β∨ + θβ∨ , θβ 6= β

Proof. Since β′ is of type type R1, we know that if θβ 6= β then θβ ⊥ β. According to [Bou02, Chap. VI,
§1, no. 1], β′∨ is the unique element of the dual space of X∗(Ssc)θ ⊗ Q with the properties 〈β′∨, β′〉 = 2
and sβ′,β′∨(R′) ⊂ R′, where sβ′,β′∨(x) = x − 〈β′∨, x〉β′ is the reflection determined by β′, β′∨. We need to
check that the elements given in the statement of the lemma satisfy these properties. The first property
is immediate. For the second property we take β1, β2 ∈ Ṙ′ and let β′1, β

′
2 ∈ R′ be their images. Let

β′∨1 ∈ X∗(Ssc)θ be given by the table above. We need to show that sβ′1,β′∨1 (β′2) ∈ R′. If β2 is perpendicular
to both β1 and θβ1, or if β′1 = ±β′2, then the claim is clear. We thus assume that this is not the case.

If β1 is fixed by θ, then sβ′1,β′∨1 (β′2) is the image of sβ1,β∨1
(β2). This element of R belongs to Ṙ′,

because it is fixed by θ precisely when β2 is, and in this case it kills s, since both β1 and β2 do.
If β1 is not fixed by θ, but β2 is, then we have 〈β∨1 + θβ∨1 , β2〉 = 2〈β∨1 , β2〉 = 2ε 6= 0 and conclude

that sβ′1,β′∨1 (β′2) is the image of β2 − 2εβ1, which coincides with the image of β2 − εβ1 − εθβ1. The latter

element belongs to R, because β1 ⊥ θβ1. It is furthermore fixed by θ and kills s, so belongs to Ṙ′.
Now assume that both β1, β2 are not fixed by θ. If 〈β∨1 , β2〉 and 〈θβ∨1 , β2〉 are both non-zero and

have opposite signs, then sβ′1,β′∨1 (β′2) = β′2. If 〈β∨1 , β2〉 and 〈θβ∨1 , β2〉 are both non-zero and have the same
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sign ε ∈ {1,−1}, then sβ′1,β′∨1 (β′2) is equal to the image of β2 − 2εβ1, which coincides with the image of

β2 − εβ1 − εθβ1. As above this element belongs to R. It is moreover not θ-fixed, thus belongs to Ṙ′. It
remains to consider the cases where exactly one of 〈β∨1 , β2〉 and 〈θβ∨1 , β2〉 is non-zero. We will give the
computation only in the case 〈β∨1 , β2〉 = 0, 〈θβ∨1 , β2〉 = −1, the other cases being analogous. The element
sβ′1,β′∨1 (β′2) ∈ X∗(Ssc)θ is equal to the image of β2 + β1 ∈ R and we claim that this element is not θ-fixed. If
it were, we’d have β2 = θβ2 + θβ1 − β1 and applying 〈θβ∨1 ,−〉 we would obtain −1 = 0 + 2− 0.

Armed with this lemma we complete the proof of Lemma A.3 as follows. We have the element
α∨ ∈ X∗(Ssc)θ, which is a coroot for the group Hsc. We wish to show that it does not belong to the coroot
lattice for the group G′. Assume the contrary. Then inside of the lattice X∗(Ssc)θ we have the equation
α∨ =

∑
niβ
′∨
i for some integers ni and some roots β′i ∈ R′. We choose for each β′i a lift βi ∈ Ṙ′ and apply

the previous lemma, thereby obtaining

α∨ =
∑

niβ
∨
i +

∑
ni(β

∨
i + θβ∨i ),

where we have subdivided the set of {βi} into the cases corresponding to the statement of above lemma.
This equation holds inside the coroot lattice of Hsc. Since R is a simply laced root system, the bijection
R → R∨, β 7→ β∨ extends to a Z-linear bijection from the root lattice to the coroot lattice. This tells us
that we have the equation

α =
∑

niβi +
∑

ni(βi + θβi)

in the root lattice of Hsc, i.e. in X∗(S). However, the right hand side is a character of S which kills the
element s ∈ S. This would imply that α ∈ Ṙ′, which would then imply that θ acts trivially on the root space
hα. This is however false, because for X = Ad(g)Xγ̃ ∈ hα we have

θ(X) = Ad(g)Ad(g−1θ(g))θ(Xγ̃) = Ad(g)Adηγ̃

[
−i

−i

]
(−Xγ̃−1) = −X.

The proof of Lemma A.3 is now complete.
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