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1 Introduction

This paper is devoted to the study of a specific instance of Langlands’ functoriality for GL2. Let us
begin with a conjecture. For any notation with which the reader is unfamiliar, we refer to §3 below. Let K
be a finite Galois extension of the field Q of rational numbers.

Conjecture 1.1 (SPn+1(K)). Let F be a totally real field, linearly disjoint from K over Q. Let (π, χ) be a
RAESDC (regular algebraic, essentially self-dual, cuspidal) representation of GL2(AF ). Suppose that π does

∗Laurent Clozel is a member of Institut Universitaire de France. During the period this research was conducted, Jack Thorne
served as a Clay Research Fellow.
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not have CM, i.e. is not the automorphic induction of an algebraic Hecke character from a quadratic CM
extension. Let n ≥ 1 be an integer.

Then the nth symmetric power lifting of π exists, in the following sense: there exists a RAESDC
automorphic representation (Π, ψ) of GLn+1(AF ) such that for any isomorphism ι : Ql ∼= C, there is an
isomorphism of associated Galois representations Symn rι(π) ∼= rι(Π). 1

Our main result is the following.

Theorem 1.2. Let l ≥ 5 be a prime. Then the following implication holds:

SPl−1(K(ζl))⇒ SPl+1(K(ζl)).

Corollary 1.3. Conjectures SP6(Q(ζ5)) and SP8(Q(ζ35)) are true.

Proof. Indeed, SP4(Q) is known to be true, cf. [KS02]. Now use that 5 and 7 are primes.

For more discussion of Conjecture 1.1, we refer to the paper [CT], of which this one is a sequel. In
that paper we outlined a strategy for proving some cases of SPn+1(K) by reducing it to two other conjectures
about automorphic forms, relating to the existence of automorphic tensor products and the construction of
so-called ‘level-raising’ congruences between automorphic representations on unitary groups.

In this paper we carry this strategy out in the first non-trivial case. Namely, we prove a level-raising
result for automorphic representations on unitary groups with certain local data, and use this to establish
the main theorem above. Our techniques for raising the level seem quite different to previous results in this
direction.

2 Admissible representations of p-adic groups

Let F be a finite extension of Qp, with residue field kF , ring of integers OF , uniformizer $F , and
set q = #kF . In this section we will consider various algebraic F -groups G. We will abuse notation slightly
by writing G both for the group and for its group G(F ) of F -points. We will use the paper [Mor99] as a
convenient reference for the facts about Bruhat-Tits theory that we require here; see [Tit79] or [BT72] for
more information.

Let G be a connected reductive group over F . Let P = MN be a parabolic subgroup of G with
Levi subgroup M and unipotent radical N , and let π be an admissible C[G]-module. The (unnormalized)
Jacquet module πN of π with respect to N is by definition the space of N -coinvariants, equipped with its

natural M -action. We will write πnorm
N = πN ⊗ δ−1/2

P for the normalized Jacquet module.
Let S ⊂ G be a maximal F -split torus. Associated to the pair (G,S) is the apartment A = A(G,S),

affine space under the vector space V = (X∗(S)⊗Z R)∗. We write Φ ⊂ V ∗ for the set of roots with respect
to the pair (G,S), and Σ for the set of affine roots, which are affine functions on A. We fix a choice of
Iwahori subgroup B ⊂ G. This corresponds to a choice of chamber C ⊂ A, and a set of simple affine roots
Π ⊂ Σ. To a choice of parahoric subgroup P containing B, we can associate a subset J ⊂ Π, namely the set
of simple affine roots which vanish on the facet F fixed by P. We associate to P the root subsystem ΦJ of
Φ consisting of the vector parts of the affine roots in J .

We associate to P a standard Levi subgroup of G, as follows. First, let K ⊂ G denote the reductive
subgroup generated by S and the root subgroups Uα ⊂ G for α in the Z-closure of ΦJ inside Φ. Let Y
denote the maximal F -split torus in the center of K. Then the associated Levi subgroup is M = ZG(Y ).

Proposition 2.1. With notation as in the preceding paragraph, let π be an admissible representation of G,
and let P be any parabolic subgroup of G containing L as Levi subgroup. Let N denote the unipotent radical
of P . Then there is an isomorphism πP ∼= πP∩M

N .

1. We caution the reader that this conjecture differs slightly in its statement to the conjecture SPn+1(K) of [CT].
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Proof. By [Mor99, Theorem 2.1] and [Mor99, Lemma 2.4], P has an Iwahori decomposition with respect
to P , in the sense of [Cas, §1.4]. Similarly, B has an Iwahori decomposition with respect to the minimal
parabolic P0 = M0N0 ⊂ G containing ZG(S) and contained inside P . There is a commutative diagram

πB // πB∩M0

N0

πP //

OO

πP∩M
N .

OO

The bottom arrow is surjective, by [Cas, Theorem 3.3.3]. On the other hand, the top arrow is injective, by
[Mor99, Lemma 3.6]. The commutativity of the diagram now implies that the bottom arrow is also injective,
and this completes the proof.

2.1 A ramified unitary group

Now suppose that E/F is a ramified quadratic extension, and that the residue characteristic of F
is not 2. In this case we define a unitary group as follows. Let n = 2m ≥ 6 be an even integer, and define a
matrix by

J =



1

. .
.

1
−1

. .
.

−1


,

and an OF -group by the formula G(R) = {g ∈ GLn(R ⊗OF OE) | tgJgc = J}. Then G is smooth over OF ,
and its generic fiber G = Un is a quasi-split unitary group in n variables. The group K = G(OF ) is a special
maximal parahoric subgroup, and there is a surjective map K → Sp(J, kF ) to the symplectic group over the
residue field of the symplectic form represented by J . The group G is the integral model of G associated
to the maximal parahoric subgroup K as in [Tit79, §3.4]. An Iwahori subgroup B is the inverse image in
K under this map of the subgroup of upper-triangular matrices. A maximal F -split torus S of G is the
subgroup of matrices of the form

diag(t1, . . . , tm, t
−1
m , . . . , t−1

1 ), ti ∈ F×.

It naturally extends to an OF -split torus S ⊂ G.
Let P ⊂ G denote the subgroup consisting of matrices whose (i, j) entries vanish if i > j and

(i, j) 6= (m+1,m). Define P to be the parahoric subgroup of G which is the pre-image of P(kF ) ⊂ Sp(J, kF )
inside K. The parabolic subgroup associated to P by the recipe of the previous section is just P , the generic
fiber of P. We write M for its standard Levi subgroup, isomorphic to (E×)m−1×U2. The base extension of
P to E is, under the canonical isomorphism G(E) ∼= GLn(E), the standard parabolic corresponding to the
partition

n = 1 + · · ·+ 1︸ ︷︷ ︸
(n−2)/2

+2 + 1 + · · ·+ 1︸ ︷︷ ︸
(n−2)/2

.

Proposition 2.1 now implies the following.

Corollary 2.2. Let π be an admissible representation of G, and let P = MN denote the Levi decomposition
with respect to the maximal F -split torus S. Then projection induces an isomorphism πP ∼= πP∩M

N .

Lemma 2.3. The pro-order of B is q∞(q − 1)m.

Proof. Arguing as in [Tit79, §3.7], we see that the prime-to-q part of the pro-order of B is the order of
ZG(S)(kF ), namely (q − 1)m.

3



We now introduce the Iwahori-Hecke algebra HB of G. By definition, this is the convolution algebra
of B-biinvariant functions f : G → Z. If R is a ring, we write HB,R = HB ⊗Z R. If M is a smooth
R[G]-module, then HB,R acts on MB on the left. The algebra HB is non-commutative and has a canonical
anti-involution  given on double cosets by  : [BgB] 7→ [Bg−1B]. It is useful to recall the following facts.

Proposition 2.4. Let K be a field of characteristic zero.

1. The assignment π 7→ πB induces an equivalence of categories between the category of admissible K[G]-
modules which are generated by their B-invariant vectors and the category of left HB,K-modules which
are finite-dimensional as K-vector spaces.

2. Let π be an admissible K[G]-module which is generated by its B-invariant vectors. Then π∨ corre-
sponds, under the above equivalence, to the module HomK(πB,K), which we make into a left HB,K-
module using the anti-involution .

Proof. These facts are proved in [Bor76] for semisimple p-adic groups, but the arguments easily extend to
our case.

Let us now say a little more about the structure of the algebra HB. Fix an element $ ∈ E such
that $2 ∈ F is a uniformizer of F . With respect to the torus S a choice of set of positive roots is

{ti/tj | 1 ≤ i < j ≤ m} ∪ {titj | 1 ≤ i ≤ j ≤ m}.

The corresponding simple roots are the elements

αi = ti/ti+1, i = 1, . . . ,m− 1 and αm = t2m.

This root system is of type Cm. We write W0 for its Weyl group. If α ∈ Φ is a root, we write sα ∈ W0 for
the corresponding reflection. We can identify W0

∼= {±1}m oSm. Here Sm, the symmetric group on the
set {1, . . . ,m}, acts on S by permutation of t1, . . . , tm, and a vector µ = (µi)

m
i=1 in {±1}m sends ti to tµii .

We write w0 ∈W0 for the longest element. It is (−1, . . . ,−1), and is central.
Let Z = ZG(S), the maximal torus of G consisting of elements

diag(t1, . . . , tm, tm
−1
, . . . , t1

−1
), ti ∈ E×.

Let Zc ⊂ Z denote the maximal compact subgroup, and set Λ = Z/Zc ∼= Zm. A basis of Λ is given by the
elements

εi = diag(1, . . . , $, . . . ,−1/$, . . . , 1), 1 ≤ i ≤ m,

where $ occupies the ith position. Let N = NG(S). The triple (G,B, N) is a generalized Tits system, cf.
[Cas80], [Iwa66], and the algebra HB admits the following presentation. The extended affine Weyl group
W = Λ o W0 admits a natural length function l : W → N; on the other hand, it has a subgroup, the
affine Weyl group W af ⊂W generated by the reflections in the affine roots, cf. [Tit79, §1.7]. We may write
G =

∐
w∈W BwB, where the union is disjoint. Writing G0 =

∐
w∈W af BwB, G0 ⊂ G is a normal subgroup,

and (G0,B, N ∩G0) is a Tits system. We write H0 ⊂ HB for the subalgebra of elements supported in G0.
Let Ψ ⊂W denote the subgroup of elements of length zero. There is a decomposition W = W afoΨ,

and G/G0 ∼= Ψ. In our case, the group Ψ has order two, the non-trivial element being represented by the
matrix

ω =


0 0 · · · 0 1/$
0 1 . . . 0 0
... 0

. . . 0
...

0 0 · · · 1 0
$ 0 · · · 0 0

 .

It is easy to check that ω normalizes B. For each i = 1, . . . ,m, let si = sαi . Let s0 denote the conjugate
of s1 by ω. Then the elements s0, . . . , sm ∈ W af are the reflections corresponding to the set of simple
affine roots induced by B. Let BW denote the group generated by the elements Tw, w ∈ W , subject to
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the relations TwTw′ = Tww′ if l(w) + l(w′) = l(ww′), and define BW af similarly. Then there is a canonical
isomorphism between HB and the quotient of the group algebra Z[BW ] by the relations (Tsi−1)(Tsi+q) = 0,
i = 0, . . . ,m, which takes BwB to Tw. Similarly, H0 is canonically isomorphic to the quotient of the group
algebra Z[BW af ] by the same set of relations, and there is an isomorphism

HB
∼= Z[Ψ]⊗̃H0,

where the twisted tensor product is as in [Iwa66, §5].
We now introduce the Bernstein presentation of the algebra HB,C, following [Lus89]. This is defined

in terms of a root system (X,Y,R, Ř,Π). Here we take X = Λ and Y = Hom(Λ,Z). The set R ⊂ X of roots
is taken to consist of the elements

{±εi ± εj | 1 ≤ i < j ≤ m} ∪ {±2εi | 1 ≤ i ≤ m},

the simple roots in Π ⊂ R being given by the formulae

βi = εi − εi+1, 1 ≤ i ≤ m− 1, βm = 2εm.

Writing e1, . . . , em for the basis of Y dual to ε1, . . . , εm, the set Ř of coroots is

{±ei ± ej | 1 ≤ i < j ≤ m} ∪ {±ei | 1 ≤ i ≤ m}.

This root system is isomorphic to that of the group Spm(C). It is now easy to check that the extended affine
Weyl group defined in [Lus89, §1] is just our W above, and the set S of simple reflections constructed there
is equal to {s0, . . . , sm}. (The main point to check is as follows. Let β0 ∈ R be such that β̌0 ∈ Ř is the
lowest root. Then s0 = sβ0

β0 ∈W0 nΛ = W .) Comparing the above discussion with [Lus89, §3] shows that
the algebra H constructed by Lusztig in terms of the data (X,Y,R, Ř,Π) is canonically identified with our
algebra HB,C, once (in the notation there) v is specialized to q1/2 and the function L : S → N takes the
constant value 1.

Lusztig defines a presentation, the Bernstein presentation, of the algebra HB,C as a twisted tensor
product

HB,C ∼= H0⊗̃CC[X],

where H0 ⊂ HB,C is the C-subalgebra spanned by the elements Tw, w ∈W0, and C[X] is the coordinate ring
of the complex algebraic torus Hom(Λ,C×). If β ∈ Π is a simple root and s = sβ ∈W0 is the corresponding
simple reflection, then Ts ∈ H0 and writing Bs = Ts − q, we have the following relation for all θ ∈ C[X]:

θBs = Bsθ
s + (θs − θ)ζβ ,

where ζβ = (q − eβ)/(1 − eβ). Here we write eβ ∈ C[X] for the element corresponding to β ∈ X, and W0

acts on C[X] by its natural right action.
Finally, we relate this presentation to parabolic induction. Let τ ∈ Hom(Λ,C×). Then τ defines a

module Cτ for the group algebra C[X], which is one-dimensional as C-vector space. Following [Ree97], we
define M(τ) = HB,C ⊗C[X] Cτ .

Proposition 2.5. 1. Let V be a left HB,C-module, finite-dimensional as C-vector space. There are func-
torial isomorphisms

HomHB,C(M(τ), V ) ∼= HomC[X](Cτ , V ) and HomHB,C(V,M(w0τ)) ∼= HomC[X](V,Cτ ).

2. Let I(τ) denote the normalized induction of the character τ : Λ → C×, an admissible C[G]-module.
Then there is a canonical isomorphism of left HB,C-modules I(τ)B ∼= M(w0τ).

Proof. The first part follows immediately from [Ree97, (3.7)] and the proof of [Ree97, (3.8), Lemma]. For
the second part, let π be an admissible C[G]-module, generated by its Iwahori-fixed vectors. By Frobenius
reciprocity, [Cas80, Proposition 2.5], and the first part of the proposition, there are functorial isomorphisms

HomG(π, I(τ)) ∼= HomC[X](π
norm
N ,Cτ ) ∼= HomC[X](π

B,Cτ ) ∼= HomHB,C(πB,M(w0τ)).

On the other hand, by Proposition 2.4, there is a functorial isomorphism HomG(π, I(τ)) ∼= HomHB,C(πB, I(τ)B).
The result now follows from Yoneda’s lemma.
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2.2 Unitary groups and functoriality

Now suppose that n is an even integer, and let E/F be a quadratic extension. Let Un denote the
quasi-split unitary group in n variables associated to this extension. Let LF = WF × SU2(R). The L-group
of Un is a semidirect product

LUn = Ĝo Gal(E/F ) = GLn(C) o Gal(E/F ),

where the non-trivial element c ∈ Gal(E/F ) acts on GLn(C) by the automorphism

α(g) = Φn
tg−1Φ−1

n , Φn =



1
−1

1
−1

. .
.

−1


.

We define an admissible parameter to be a homomorphism LF → LUn such that the projection LF →
LUn → Gal(E/F ) is the canonical homomorphism, and Φ(Un) to be the set of admissible parameters taken
up to GLn(C)-conjugation. If n = a+ b is a partition into even integers, then there is an L-homomorphism
ξ : L(Ua × Ub)→ LUn, given by formulae

ξ(g1, g2, w) =

((
g1 0
0 g2

)
, w

)
(w ∈WE),

ξ(wc) =

((
Φa 0
0 Φb

)
Φ−1
n , wc

)
,

where wc ∈WF \WE . On the other hand, there is an injective map Φ(Un)→ Φ(GLn(E)) given by restriction
of parameters to LE . If G = Un or GLn(E) we write Φbdd(G) for the subset of parameters ϕ such that

ϕ(WE) is a bounded subset of Ĝ, and Πtemp(G) for the set of isomorphism classes of irreducible admissible
representations of G which are tempered.

Lemma 2.6. This map induces a bijection between Φ(Un) and the subset of Φ(GLn(E)) consisting of those
parameters which are conjugate symplectic, in the sense of [Mok, §2.2].

Proof. This follows from [Mok, Lemma 2.2.1]. It uses that n is even.

Given ϕ ∈ Φ(G) we define groups

Sϕ = ZĜ(imϕ), Sϕ = Sϕ/Z(Ĝ)ΓF , Sϕ = π0(Sϕ).

In [Mok, Theorem 2.5.1] is associated to each ϕ ∈ Φbdd(Un) a finite set Πϕ of isomorphism classes of
tempered irreducible admissible representations of Un, and a bijective mapping Πϕ → Hom(Sϕ,C×). This
set is characterized by certain character identities. The set Πtemp(Un) is the disjoint union of the sets Πϕ

for ϕ ∈ Φbdd(Un). We refer to Πϕ as the L-packet associated to ϕ. If π ∈ Πϕ and ϕ is a bounded parameter,
then we define the stable base change BC(π) to be the irreducible admissible representation of GLn(E)
corresponding to the restriction of ϕ in Φbdd(GLn(E)).

We will be in interested in a particular L-packet. Suppose once more that E/F is ramified, and that
the residue characteristic of F is not 2. We write Stn,E for the Steinberg representation of GLn(E). The
following description of our L-packet of interest was explained to us by Moeglin, who has kindly written up
a proof in the appendix to this paper.

Theorem 2.7. The representation ΠE = St2,E �Stn−2,E of GLn(E) is in the image of the stable base change
map. The corresponding L-packet of Un contains exactly two elements X,Y which may be characterized as
follows.
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– 〈trX + trY, f〉 = 〈tr ΠE × Ic, fE〉, where the intertwining operator Ic : ΠE
∼= Πc

E is Whittaker
normalized, cf. §3.7 below.

– dimXP = dimXB = 1 and dimY B = n/2 + 1.

– Xnorm
N0

= [n− 3, n− 5, . . . , 1,−1] and (Y norm
N0

)ss = [1, n− 3, n− 5, . . . , 1] +
∑n/2−3
i=1 [n− 3, . . . , n−

1− 2i, 1, n− 3− 2i, . . . , 1] + 2[n− 3, n− 5, . . . , 1, 1] + [n− 3, n− 5, . . . , 1,−1].

Here we write [a1, . . . , an/2] for the character | · |a1/2 ⊗ · · · ⊗ | · |an/2/2 of E× × · · · × E×, the F -
points of the standard Levi subgroup of the minimal parabolic P0 ⊂ Un. We remark that the character
[n − 3, n − 5, . . . , 1, 1] occurs in (Y norm

N0
)ss with multiplicity two, while every other character occurs with

multiplicity one.

Proof. The only assertion which is not in the appendix below is the statement on XP. By Proposition
2.1 it suffices to check that XP∩M

N 6= 0. By Frobenius reciprocity and transitivity of the Jacquet modules,

XN is sent non-trivially to [n− 3, . . . , 1]⊗ IndU2

P 2
0
| · |−1/2, P 2

0 being the Borel subgroup in U2. The induced

representation has the trivial representation as its only submodule.

Proposition 2.8. Let ϕ : HB → C denote the homomorphism giving the action of HB on XB. Then
ϕ ◦  = ϕ.

Proof. This is an immediate consequence of the fact that X is self-dual, which may be checked as follows.
Given the structure of the Jacquet modules of X and Y , it suffices to show that X + Y is self-dual in the
Grothendieck group of admissible C[Un]-modules. The correspondence f ; fE is compatible with the anti-
involutions g 7→ g−1 (on both groups), so it suffices to check that there is an isomorphism ΠE

∼= Π∨E , compat-
ible with the Whittaker functional. However Π∨E is isomorphic to the representation ΠE(Φn

tg−1Φ−1
n ) = ρE ,

say, and an isomorphism ΠE → ρE respects the Whittaker functional.

Fix an odd prime l and an isomorphism ι : Ql ∼= C, and let K ⊂ Ql be a finite extension of Ql, with
ring of integers O and residue field k. We suppose that K contains a square root of q.

Proposition 2.9. 1. ι−1X and ι−1Y are defined over K. We write XK , YK for a choice of admissible
K[Un]-modules satisfying

XK ⊗K,ι C ∼= X, YK ⊗K,ι C ∼= Y.

2. Suppose that l - q(q+ 1)
∏n/2−2
i=1 (qi− 1). Then there exist HB,O-submodules XB

O ⊂ XB
K and Y B

O ⊂ Y B
K

such that the natural maps

XB
O ⊗O K → XB

K and Y B
O ⊗O K → Y B

K

are isomorphisms, and XB
O ⊗O k and Y B

O ⊗O k have no Jordan-Hölder factors as HB,k-modules in
common.

Proof. We give a proof by explicit calculation, using the results of Reeder [Ree97], [Ree00]. We use the
notation for the algebra HB established in the previous section. If M is a C[Λ]-module and τ : Λ→ C× is a
homomorphism, we write M [τ∞] for the subspace which is annihilated by some power of the ideal mτ ⊂ C[Λ],
kernel of the associated homomorphism C[Λ]→ C.

Let τ0 denote the character [n− 3, n− 5, . . . , 1, 1] of Λ. As observed above, Y B[τ∞0 ] has dimension
2. Let τ = w0τ0 = [3 − n, 5 − n, . . . ,−1,−1]. We claim that Y B is isomorphic, as left HB,C-module,
to the submodule of M(τ) generated by M(τ)[τ∞0 ]. Indeed, by Proposition 2.5, there is an injection of
HB,C-modules Y B ↪→ M(τ). As M(τ)[τ∞0 ] also has dimension 2, this inclusion induces an isomorphism
Y B[τ∞0 ] ∼= M(τ)[τ∞0 ], implying the claim. We now use this to compute a model for Y B, and then calculate
its reduction modulo l.

The non-trivial characters of Λ occurring in Y B are τ0, smτ0, and sm−2τ0, sm−3sm−2τ0, . . . ,
s1 . . . sm−3sm−2τ0. Using [Ree00, Proposition 2.1], we can calculate bases for the weight spaces of these
characters in Y B and the matrices of the operators Tsi . Let us treat first the case n = 6, τ0 = [3, 1, 1].
(The module Y B then corresponds to the module V01 of [Ree97, §13.2]; note that our [3, 1, 1] is Reeder’s
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[−3,−1,−1].) The stabilizer of τ in W0 is W0,τ = {1, sm−1} = {1, s2}. One calculates using [Ree00,
Proposition 2.1] and [Ree00, Proposition 2.2] that a basis for Y B ⊂M(τ) is given by the vectors (Reeder’s
notation)

{Hsmw0sm−1
⊗ 1, Hw0

⊗ 1, Hw0sm−1
⊗ 1, Hsm−2w0sm−1

⊗ 1} = {Hs3w0s2 ⊗ 1, Hw0
⊗ 1, Hw0s2 ⊗ 1, Hs1w0s2 ⊗ 1}.

With respect to this basis, the operators Tsi are given by the matrices

Ts1 =


−1 0 0 0
0 −1 0 0
0 q −1 1
0 q(q + 1) 0 q

 ,

Ts2 =


−1 0 0 0
0 −1 1 0
0 0 q 0
0 0 0 −1

 ,

Ts3 =


q 2q(q + 1) 0 0
0 −1 0 0
1 2q −1 0
0 0 0 −1

 .

The group Λ is freely generated by the elements εi, i = 1, 2, 3, and these elements act on Y B by the matrices

ε1 =


q−3/2 0 0 0

0 q−3/2 0 0
0 0 q−3/2 0
0 0 0 q−1/2

 ,

ε2 =


q−1/2 0 0 0

0 q−1/2 0 0
0 q1/2 − q−1/2 q−1/2 0
0 0 0 q−3/2

 ,

ε3 =


q1/2 0 0 0

0 q−1/2 0 0
0 q−1/2 − q1/2 q−1/2 0
0 0 0 q−1/2

 .

(We remark that q1/2 is a canonically defined element of R ⊂ C.) Let YZ[q1/2,q−1/2] denote the free

Z[q1/2, q−1/2]-module spanned by the above basis elements. Then

Y B
Z[q1/2,q−1/2] ⊂ Y

B

is a HB,Z[q1/2,q−1/2]-submodule and the natural map Y B
Z[q1/2,q−1/2]

⊗Z[q1/2,q−1/2] C → Y B is an isomorphism.

The choice of ι induces a homomorphism Z[q1/2, q−1/2]→ O. We set

Y B
O = Y B

Z[q1/2,q−1/2] ⊗Z[q1/2,q−1/2] O,

and choose XB
O ⊂ XB

K arbitrarily. The proposition now follows in this case from the fact that the above
matrices generate, after reduction mod λ, the whole algebra Endk(Y B

O ⊗Ok) = M4(k). Indeed, it is easy to see
that the matrices ε1, ε2, ε2 generate a subalgebra of M4(k) containing the diagonal matrices diag(λ, µ, µ, ν),
λ, µ, ν ∈ k. Multiplying the matrices Ts1 , Ts2 and Ts3 on the left and right by matrices of this form, and
using that 2q(q2 − 1) is non-zero in k, we obtain the elementary matrices E3,4, E4,3, E1,2 and E3,1, where
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Ei,j is the matrix with exactly one non-zero entry in the (i, j) spot, which is equal to 1. Using the matrices
ε2 and Ts2 , we obtain all block diagonal matrices with blocks of size 1 + 2 + 1 = 4. It is now easy to check
that the algebra generated by all of these operators is M4(k).

We treat the general case by induction on n ≥ 8. Suppose the proposition to be true for the group
Un−2. We again choose XB

O ⊂ XB
K arbitrarily. We identify Un−2 as the subgroup of Un consisting of block

diagonal matrices, corresponding to the partition n = 1 + (n− 2) + 1. We write Yn−2 for the corresponding
representation of Un−2. Similarly we write Bn−2 ⊂ Un−2 for the Iwahori subgroup of this group. We can
view HBn−2,C as a subalgebra of HB,C, namely the one generated by the elements Ts2 , . . . , Tsm ∈ H0 and

ε±1
2 , . . . , ε±1

m ∈ C[Λ]. One calculates using [Ree00, Proposition 2.2] that a basis for Y B is given by the
elements

{Hsmw0sm−1
⊗1, Hw0

⊗1, Hw0sm−1
⊗1, Hsm−2w0sm−1

⊗1, Hsm−3sm−2w0sm−1
⊗1, . . . ,Hs1...sm−3sm−2w0sm−1

⊗1}.

We first show that the O-submodule Y B
O of ι−1Y B spanned by these elements is HB,O-invariant. Indeed,

the O-submodule spanned by the first m of these elements is preserved by the subalgebra HBn−2,O, and
is isomorphic to the module Y B

n−2,O (in the obvious notation). The operator Ts1 preserves the subspace
spanned by the vectors

Hs2...sn−3sn−2w0sn−1 ⊗ 1, Hs1...sn−3sn−2w0sn−1 ⊗ 1,

and the matrix of its restriction to this subspace is(
− q−1
qm−2−1 1

q(qm−3−1)(qm−1−1)
(qm−2−1)2

qm−2(q−1)
qm−2−1

)
.

It acts as multiplication by q on the other basis vectors. It is now easy to see that the algebra HB,O preserves
Y B
O . The character of O[Λ] afforded by XB

O is distinct from the other characters of O[Λ] appearing in Y B
O ,

even modulo λ. If Y B
O ⊗O k and XB

O ⊗O k have a common Jordan-Hölder constituent as HB,k-modules, then
they must also have a common Jordan-Hölder constituent as HBn−2,k-modules, contradicting the induction
hypothesis. This completes the proof of the proposition.

Corollary 2.10. Suppose that M an HB,O-module which is finite flat as an O-module, and such that

M ⊗O,ι C ∼= (XB)a ⊕ (Y B)b for some integers a, b ≥ 0. Suppose that l - q(q + 1)
∏n/2−2
i=1 (qi − 1). Let MX

denote the intersection of M with the XB
K -isotypic component of M ⊗O K, and similarly for MY . Then

there is a direct sum decomposition of HB,O-modules

M = MX ⊕MY .

Proof. Consider the map MX ⊕MY → M . It is injective, and surjective after tensoring with K. To show
that it is surjective, it suffices to show that the induced map

MX ⊗O k ⊕MY ⊗O k →M ⊗O k

is injective. However, the kernel of this map can be viewed as a submodule of MX ⊗O k and as a submodule
of MY ⊗O k. By Proposition 2.9, these two spaces have no simple subquotients as HB,k-modules in common.
Therefore the kernel must be trivial, and this implies the result.

3 Automorphic representations

3.1 GLn

Let p be a prime, and let K be a finite extension of Qp. Let Ω denote an algebraically closed field
of characteristic zero. There is a bijection

recK : AdmC GLn(K)↔WDn
CWK ,
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characterized by a certain equality of epsilon- and L-factors on either side, cf. [HT01], [Hen02]. When n = 1,
it is induced by the local Artin map, normalized to take uniformizers to geometric Frobenius elements.
Here we write AdmΩ GLn(K) for the set of isomorphism classes of irreducible admissible representations
of this group over Ω, and WDn

ΩWK for the set of Frobenius-semisimple Weil-Deligne representations (r,N)
of WK valued in GLn(Ω). We define recTK(π) = recK(π| · |(1−n)/2). This is the normalization of the local
Langlands correspondence with good rationality properties; in particular, for any σ ∈ Aut(C) and any
π ∈ AdmC GLn(K) there is an isomorphism

recTK(σπ) ∼= σ recTK(π).

This can be seen using, for example, the characterization of recK and the description given in [Tat79, §3] of
the action of Galois on local ε- and L-factors. It follows that for any Ω we can define a canonical bijection

recTK : AdmΩ GLn(K)↔WDn
ΩWK .

Suppose instead that K is a finite extension of R. Then there is a bijection (Langlands’ normaliza-
tion):

recK : AdmC GLn(K)↔ RepnCWK .

Here we write AdmC GLn(K) for the set of infinitesimal equivalence classes of irreducible admissible repre-
sentations of GLn(K) and RepnCWK for the set of continuous semisimple representations of WK into GLn(C).
We define recTK(π) = recK(π| · |(1−n)/2).

Now let E be an imaginary CM field with totally real subfield F , and let c ∈ Gal(E/F ) denote the
non-trivial element.

Definition 3.1. 1. We say that an automorphic representation π of GLn(AE) is RACSDC (regular al-
gebraic, conjugate self-dual, cuspidal) if it satisfies the following conditions:
– It is conjugate self-dual: πc ∼= π∨.
– It is cuspidal.
– It is regular algebraic. By definition, this means that for each place v|∞ of E, the representation

recTEv (πv) is a direct sum of pairwise distinct algebraic characters.

2. We say that a pair (π, χ) of an automorphic representation π of GLn(AE) and a character χ :
F×\A×F → C× is RAECSDC (regular algebraic, essentially conjugate self-dual, cuspidal) if it satisfies
the following conditions:
– It is essentially conjugate self-dual: πc ∼= π∨ ⊗ χ ◦ NE/F .
– π is cuspidal.
– π is regular algebraic.
– χ is an algebraic character such that χv(−1) = (−1)n for each place v|∞.

3. We say that an pair (π, χ) of an automorphic representation π of GLn(AF ) and a character χ :
F×\A×F → C× is RAESDC (regular algebraic, essentially self-dual, cuspidal) if it satisfies the following
conditions:
– It is essentially self-dual: π ∼= π∨ ⊗ χ.
– π is cuspidal.
– π is regular algebraic. By definition, this means that for each place v|∞, the representation recTEv (πv)|C×

is a direct sum of pairwise distinct algebraic characters.
– χ is an algebraic character such that χv(−1) is independent of the place v|∞.

If π is a regular algebraic automorphic representation of GLn(AE), then for each embedding τ :
E ↪→ C, we are given a representation rτ : C× → GLn(C), induced by recEv (πv), where v is the infinite place
induced by τ , and the isomorphism E×v

∼= C× induced by τ . This representation has the form

rτ (z) = ((z/z)aτ,1 , . . . , (z/z)aτ,n) ,

where aτ,i ∈ (n − 1)/2 + Z. We will refer to the tuple a = (aτ,1, . . . , aτ,n)τ∈Hom(E,C), where for each τ
we have aτ,1 > aτ,2 > · · · > aτ,n, as the infinity type of π. We also define a tuple λ = (λτ )τ∈Hom(E,C) =
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(λτ,1, . . . , λτ,n)τ∈Hom(E,C), which we call the weight of π, by the formula λτ,i = −aτ,n+1−i+(n−1)/2−(n−i).
Then for each τ : E ↪→ C, we have λτ,1 ≥ · · · ≥ λτ,n, and the irreducible admissible representation of GLn(C)
corresponding to rτ has the same infinitesimal character as the dual of the algebraic representation of GLn(C)
with highest weight λτ . If π is a regular algebraic automorphic representation of GLn(AF ), then for each
embedding τ : F ↪→ C, we get a representation rτ = recFv (πv)|C× , where v is the place of F corresponding
to τ . In this case we use the same formulae to define the infinity type and the weight of the pair π.

We will also have cause to consider representations which are not cuspidal. Suppose that σ1, σ2

are conjugate self-dual cuspidal automorphic representations of GLn(AE), and that Σ = σ1 � σ2 is regular
algebraic. Then the representations σi| · |(ni−n)/2 are regular algebraic. We call a representation Σ arising
in this way a RACSD sum of cuspidal representations. In this case, define ai = (aiτ )τ∈Hom(E,C) by the

requirement that (aiτ,1 + (ni−n)/2, . . . , aiτ,ni + (ni−n)/2) equal the infinity type of σi| · |(ni−n)/2, and define
b = (bτ )τ∈Hom(E,C) by the formula

(bτ,1, . . . , bτ,n) = (a1
τ,1, . . . , a

1
τ,n1

, a2
τ,1, . . . , a

2
τ,n2

).

Then there is a unique tuple w = (wτ )τ∈Hom(E,C) ∈ S
Hom(E,C)
n such that for each τ ∈ Hom(E,C), the infinity

type of Σ is (bτ,wτ (1), . . . , bτ,wτ (n))τ∈Hom(E,C). (Here Sn denotes the symmetric group on the set {1, . . . , n}.)

Theorem 3.2. 1. Let π be a RACSD sum of cuspidals or a RAECSDC automorphic representation of
GLn(AE), and fix an isomorphism ι : Ql ∼= C. Then there exists a continuous semisimple representation

rι(π) : GE → GLn(Ql)

satisfying the following property: for every finite place v of E not dividing l, there is an isomorphism

WD(rι(π)|GEv )F-ss ∼= recTEv (ι−1πv).

For each place v of E dividing l, rι(π)|GEv is de Rham, and if τ : Ev ↪→ Ql is an embedding and a the
infinity type of π, then the Hodge-Tate weights with respect to this embedding are

HTτ (rι(π)) = {−aι−1τ,1 + (n− 1)/2, . . . ,−aι−1τ,n + (n− 1)/2}.

2. Let (π, χ) be a RAESDC automorphic representation of GLn(AF ), and fix an isomorphism ι : Ql ∼= C.
Then there exists a continuous semisimple representation

rι(π) : GF → GLn(Ql)

satisfying the following property: for every finite place v of F not dividing l, there is an isomorphism

WD(rι(π)|GEv )F-ss ∼= recTFv (ι−1πv).

For each place v of F dividing l, rι(π)|GFv is de Rham, and if τ : Fv ↪→ Ql is an embedding and a the
infinity type of π, then the Hodge-Tate weights with respect to this embedding are

HTτ (rι(π)) = {−aι−1τ,1 + (n− 1)/2, . . . ,−aι−1τ,n + (n− 1)/2}.

Proof. This theorem is due to many people. We give references for the case of a RACSDC automorphic
representation π, from which the others can be deduced. In this case the existence of the representation
rι(π) is proved in [CH, Theorem 3.2.3]. The strong form of local-global compatibility is proved in [Car12].

Lemma 3.3. Let π be one of the above types of automorphic representations, and fix an isomorphism
ι : Ql ∼= C. Let σ be a continuous automorphism of Ql. Then ισι−1

π is defined, by [Clo90b, Theorem 3.13].
There are isomorphisms

rι(
ισι−1

π) ∼= rισ(π) ∼= σrι(π).
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Proof. This follows from local-global compatibility, the rationality of the local Langlands correspondence for
GLn, and the Chebotarev density theorem.

We will use the following convention for residual representations. If ρ : GF → GLn(Ql) is a contin-
uous representation, then after choosing an invariant lattice, defined over a finite extension of Ql, we obtain
by reduction modulo l a residual representation valued in GLn(Fl). By the principle of Brauer-Nesbitt,
the semisimplification of this representation depends, up to isomorphism, only on ρ, and will be denoted
ρ : GF → GLn(Fl).

3.2 Ordinary forms

Let L = E or F . If π is a regular algebraic automorphic representation of GLn(AL) of infinity type
a and weight λ, we define Hecke operators U jλ,v as follows at primes v above l. They depend on a choice of

isomorphism ι : Ql ∼= C, which we fix for the rest of this section, as well as a choice of uniformizer $v of
OLv . Define a matrix

αjv = diag($v, . . . , $v︸ ︷︷ ︸
j

, 1, . . . , 1︸ ︷︷ ︸
n−j

)

and set
U jλ,v =

∏
τ

ι−1τ($v)
−λτ,n+···+λτ,n+1−j

[
Iwc(v)αjv Iwc(v)

]
.

By definition, the subgroup Iwc(v) ⊂ GLn(OLv ) is the subgroup of matrices whose reduction modulo $c
v

is an upper-triangular matrix with 1’s on the diagonal, and the product runs over embeddings τ : L ↪→ C
such that ι−1τ induces the place v of L. We note that by [Ger, Lemma 2.3.3], the Hecke operators U jλ,v

commute with the inclusions ι−1π
Iwc(v)
v → ι−1π

Iwc′ (v)
v when c′ ≥ c. It therefore makes sense to omit c from

the notation defining U jλ,v. We also write Tc(v) ⊂ Iwc(v) for the group of diagonal matrices with integral
entries which are congruent to 1 modulo $c

v, ev for the absolute ramification index of [Lv : Ql], fv for the

absolute residue degree, and val : Q×l → Q for the valuation such that val(l) = 1.

Definition 3.4. Let π be a regular algebraic automorphic representation of GLn(AL) of weight λ. We say

that π is ι-ordinary if for each place v of L dividing l, there is an integer c ≥ 1 and a line inside ι−1π
Iwc(v)
v

which is invariant under each operator U jλ,v, and such that the eigenvalues of these operators on this line
are all l-adic units.

The next lemma follows immediately from [CT, Lemma 2.5] and [CT, Lemma 2.6].

Lemma 3.5. 1. The subspace of lim−→
c

ι−1π
Iwc(v)
v where each operator U jλ,v acts with eigenvalue a unit has

dimension at most one.

2. Suppose that π1, π2 are cuspidal conjugate self-dual automorphic representations of GLn1(AE) and
GLn2(AE), respectively. Suppose that Π = π1 � π2 is regular algebraic. Then the representations
πi| · |(ni−n)/2 are regular algebraic, and Π is ι-ordinary if and only if π1| · |(n1−n)/2, π2| · |(n2−n)/2 are
ι-ordinary and the following condition on infinity types holds. Recall the tuple w = (wτ )τ∈Hom(E,C)

of permutations associated to the infinity types of π1, π2. Then wτ depends only on the place v of E
dividing l induced by the embedding ι−1τ : E ↪→ Ql.

3.3 Definite unitary groups

We now let E be an imaginary CM field with totally real subfield F , and suppose that [F : Q] is
even. Let G be a unitary group in n variables associated to the extension E/F , quasi-split at every finite
place, such that G(R) is compact. Such a group exists since [F : Q] is even, and is uniquely determined up
to isomorphism. We can choose the matrix algebra B = Mn(E) and an involution † of B of the second kind,
so that G is defined by

G(R) = {g ∈ (B ⊗F R)× | g†g = 1}
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for any F -algebra R. We may choose an order OB ⊂ B, stable under †, so that OB,w is maximal for any
place w of E split over F . This defines an integral model of G over OF , and for any place v of F split as
v = wwc in E, we can choose an isomorphism

OB ⊗OF OFv ∼= Mn(OEw)×Mn(OEwc ),

such that † acts as (g1, g2) 7→ (g2,
tg1). Projection onto the first factor induces an isomorphism ιw : G(Fv)→

GLn(Ew) such that ιw(G(OFv )) = GLn(OEw).
Let l be a prime, and suppose that every prime of F above l splits in E. Let Sl denote the set of

primes of F above l. We choose a prime ṽ of E above v for each v ∈ Sl, and let S̃l denote the set of these
primes. Then, as above, we are given an isomorphism ιṽ : G(Fv) → GLn(Eṽ). We write Il for the set of

embeddings F ↪→ Ql, and Ĩl for the set of embeddings E ↪→ Ql inducing an element of S̃l. These two sets
are therefore in canonical bijection.

Let K ⊂ Ql be a finite extension of Ql, with ring of integers O and residue field k. We suppose
that K contains the image of E under every embedding E ↪→ Ql. To a tuple λ = (λτ,1, . . . , λτ,n)τ∈Ĩl of
dominant weights of GLn, we associate a representation Mλ of the group

∏
v∈Sl G(OFv ) as in [Ger, Definition

2.2.3]. It is an O-lattice inside the representation Wλ = ⊗τ∈Ĩl(Wλτ ⊗Fv,τ K), where Wλτ is the algebraic
representation of GLn(Fv) of highest weight λτ , and v is the place of F induced by τ .

Fix λ and an open compact subgroup U =
∏
v Uv ⊂ G(A∞F ), such that Uv ⊂ G(OFv ) for each v ∈ Sl.

Let A be an O-algebra. We can then define a space of automorphic forms with A-coefficients as follows. By
definition, Sλ(U,A) is the set of functions f : G(F )\G(A∞F ) → Mλ ⊗O A such that for all u ∈ U , we have
f(gu) = u−1

l · f(g). Here ul denotes the projection of u to its
∏
v∈Sl G(OFv )-component. If λ = 0, then we

write Sλ(U,A) = S(U,A).
The relation with classical automorphic forms is given by the following result. Let A denote the

space of automorphic forms on G(F )\G(A), and let ι : Ql ∼= C be an isomorphism. There is an algebraic
representation Wιλ of G(F ⊗Q R), defined by the formula ⊗τ∈ĨlWλτ ⊗Fv,ιτ C.

Proposition 3.6. There is a canonical isomorphism(
lim−→
U

Sλ(U,K)

)
⊗K,ι C ∼= HomG(F⊗QR)(W

∨
ιλ,A).

In particular, for any irreducible subrepresentation σ ⊂ A, there is a canonical subspace ι−1(σ∞)U ⊂
Sλ(U,Ql), and lim−→

U

Sλ(U,K) is a semisimple admissible representation of G(A∞F ).

Proof. This is proved just as [CHT08, Proposition 3.3.2].

If π is an automorphic representation of GLn(AE) and σ is an automorphic representation of G(AF ),
we say that π is the base change of σ if for any finite place w of E, the following condition is satisfied:

– If w is split over the place v of F , then πw is the standard base change of σv.
– If w is inert over the place v of F and σv is unramified, then πw is the standard unramified base

change of σv (cf. [Mı́n11, Theorem 4.1]).

Proposition 3.7. 1. Suppose that σ is an automorphic representation of G(AF ). Then there exist dis-
crete and conjugate self-dual representations π1, . . . , πs of GLn(AE) such that π = π1 � · · ·� πs is the
base change of σ in the above sense.

Proof. This follows from [Lab11a, Corollaire 5.3].

Proposition 3.8. Let σ be an automorphic representation of G(AF ). Then there exists a unique continuous
semisimple representation

rι(σ) : GE → GLn(Ql)

satisfying the following condition: for every place w of E split over F , we have

WD(rι(σ)|GEw )F-ss ∼= recTEw(ι−1(σv ◦ ιw)).

13



Let U =
∏
v Uv be an open compact subgroup as above, and suppose that there exists an integer c ≥ 1 such

that for each v ∈ Sl, Uv = ι−1
ṽ Iwc(ṽ). For each prime v ∈ Sl, fix a uniformizer $ṽ of OEṽ , and define the

matrix
αjv = diag($ṽ, . . . , $ṽ︸ ︷︷ ︸

j

, 1, . . . , 1︸ ︷︷ ︸
n−j

).

We define an endomorphism U jλ,v of the space Sλ(U,O) by the formula

U jλ,v =
∏
τ

ι−1τ($ṽ)
−λτ,n+···+λτ,n+1−j ι−1

ṽ

[
Iwc(ṽ)αjv Iwc(ṽ)

]
.

If λ = 0, then we write U jλ,v = U jv . If σ is an automorphic representation of G(AF ), we say that σ is
ι-ordinary if there exists an integer c ≥ 1 and an open compact subgroup U of this form such that these
operators on (ι−1σ∞)U have a common line where they all act with eigenvalues which are l-adic units.

Lemma 3.9. 1. Let σ be an automorphic representation of G(AF ), and let π denote its base change to
GLn(AE). Then σ is ι-ordinary if and only if π is ι-ordinary.

2. Let v ∈ Sl. Then the subspace ι−1σord
v of lim−→

c

ι−1σ
ι−1
ṽ

Iwc(ṽ)
v where each operator U jλ,v acts with

eigenvalues which are l-adic units has dimension at most one. If σ
ι−1
ṽ

Iwc(ṽ)
v 6= 0 then we have

ι−1σord
v ⊂ ι−1σ

ι−1
ṽ

Iwc(ṽ)
v .

Proof. Since l is split, by assumption, this follows from the corresponding facts for GLn(AE) and the defi-
nition of base change.

Let σ be an automorphic representation of G(AF ). We will write (ι−1σ∞)ord for the subspace

ι−1σl,∞ ⊗
⊗
v∈Sl

ι−1σord
v ⊂ ι−1σ∞.

This is an admissible representation of G(Al,∞F ), and is non-zero precisely when σ is ι-ordinary.

Proposition 3.10. Let σ be an ι-ordinary automorphic representation of G(AF ) of weight λ. Let U =∏
v Uv ⊂ G(A∞F ) be an open compact subgroup as above, and suppose that σU 6= 0. Let λ′ be another choice

of weight. Then there exists an ι-ordinary automorphic representation σ′ of G(AF ) of weight λ′ such that
rι(σ) ∼= rι(σ′) and for every finite place v of F not dividing l, (σ′v)

Uv 6= 0.

Proof. This is an easy consequence of Hida theory, cf. [Ger, Lemma 2.6.4]. In this reference it is assumed
that the extension E/F is everywhere unramified, but in our situation this makes no difference.

3.4 Endoscopic transfer

We continue with the notation and assumptions of the previous section. We make the following
further hypotheses:

– n ≥ 6 is even.
– There exist places v0, . . . , vs of F not dividing 2l which are ramified in E. We write w0, . . . , ws

for the places of E above v0, . . . , vs.
– E/F is unramified at every finite place v 6= v0, . . . , vs.
– For each place v of F dividing l, the local degree [Fv : Ql] is even.

We fix for each place v of F inert in E a hyperspecial maximal compact subgroup Uv ⊂ G(Fv). We fix also
an isomorphism ι : Ql ∼= C. For each i = 0, . . . , s we have defined an L-packet {Xi, Yi} of representations of
G(Fvi), cf. Theorem 2.7. Define a function εi : {Xi, Yi} → {±1}, by

εi(Xi) = −1, εi(Yi) = +1.
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Theorem 3.11. 1. Let π1, π2 be RACSDC automorphic representations of GL2(AE), GLn−2(AE), re-
spectively. Suppose that π = π1 � π2 satisfies the following:
– π has weight zero.
– π is ι-ordinary.
– If w 6= w0, . . . , ws is a place of E at which πw is ramified, then w is split over F .
– For each i = 0, . . . , s we have π1,wi

∼= St2,Ewi
and π2,wi

∼= Stn−2,Ewi
.

Then there are exactly 2s automorphic representations σ of G(AF ) which have base change equal to π,
and such that if v is a place of F inert in E, then σUvv 6= 0. They are in bijective correspondence with
elements d ∈

∏s
i=1{Xi, Yi}, this correspondence being characterized by the relation

σ(d)vi
∼= di, i = 1, . . . , s.

These representations each appear with multiplicity one, and satisfy the further condition

ε0(σ(d)v0) ·
s∏
i=1

εi(di) = 1.

2. Suppose that π is a RACSDC automorphic representation of GLn(AE) satisfying the following:
– If w 6= w0, . . . , ws is a place of E at which πw is ramified, then w is split over F .
– π has weight zero.
– For each i = 0, . . . , s, πwi

∼= St2,Ewi
�Stn−2,Ewi

.

Then there are exactly 2s+1 automorphic representations σ of G(AF ) such that π is the base change
of σ and such that if v is a place of F inert in E, then σUvv 6= 0. They are in bijective correspondence
with elements d ∈

∏s
i=0{Xi, Yi}, this correspondence being characterized by the relation

σ(d)vi
∼= di, i = 0, . . . , s.

These representations each appear with multiplicity one.

3. Suppose that π is a RACSDC automorphic representation of GLn(AE) satisfying the following:
– If w 6= w0, . . . , ws is a place of E at which πw is ramified, then w is split over F .
– π has weight zero.
– πw0

is an unramified twist of the Steinberg representation.
– For each i = 1, . . . , s, πwi

∼= St2,Ewi
�Stn−2,Ewi

.
Then there are exactly 2s automorphic representations σ of G(AF ) such that π is the base change of σ
and such that if v is a place of F inert in E, then σUvv 6= 0. They are in bijective correspondence with
elements d ∈

∏s
i=1{Xi, Yi}, this correspondence being characterized by the relation

σ(d)vi
∼= di, i = 1, . . . , s.

These representations each appear with multiplicity one.

The proof of this theorem depends on the stabilization of the trace formula for the definite unitary
group G, and the rest of §3 will be devoted to its proof. We write G∗ for the quasi-split inner form of G.
The other elliptic endoscopic groups of G are isomorphic to U(a)×U(b), where U(m) denotes the quasi-split
unitary group in m variables attached to the extension E/F . We will be especially interested in the group

H = U(2)× U(n− 2).

We recall that we have defined an L-embedding ξ : LH → LG as

ξ(g1, g2, w) =

((
g1 0
0 g2

)
, w

)
(w ∈WE),

ξ(wc) =

((
Φ2 0
0 Φn−2

)
Φ−1
n , wc

)
,
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where wc ∈WF is a representative of complex conjugation. Stable base change is associated to the L-group
homomorphism

LG = LG∗ → L(ResE/F G) = GLn(C)×GLn(C) oWF ,

(g, w) 7→ (g, g, w)

(cf. [Mı́n11, p. 402], [Mok, (2.1.9)]). The analogue of the above theorem with G replaced by its quasi-
split inner form G∗ has been proved by Mok [Mok, Theorem 2.5.2]. Let π be one of the automorphic
representations of GLn(AE) appearing in the statement of the theorem, and let S be a finite set of places
of F containing the archimedean primes and the places below which π is ramified. Let ψ denote the data of
the Hecke matrix tπw for w coprime to S (this is the data used by Arthur [Art12] and Mok). By unramified
base change [Mı́n11], ψ defines an unramified representation σv of G∗(Fv) for v 6∈ S, characterized for v inert
in E by the property σUvv 6= 0.

Mok describes the full subspace of L2
disc(G∗(F )\G∗(AF )) associated to ψ. At the archimedean places

and the places v0, . . . , vs, there is an L-packet Π(ψv) of representations of G∗(Fv) and the choice of a local
representation σv ∈ Π(ψv) is subject to a global sign condition, cf. [Mok, Theorem 2.5.2]. If π is cuspidal,
then this condition is vacuous and every representation σ in the global L-packet (product of local L-packets)
appears with multiplicity one.

We need the analogous result, however, for G and not G∗, and Arthur’s description of the spectrum
has not been achieved in this case. We will deduce what we need from Mok’s results; we apologize for the
obvious redundancy of our arguments.

3.5 Geometric transfer factors

Assume f = ⊗vfv is a decomposed, smooth, K∞-finite function on G(AF ). We will need the
associated functions fH on H(AF ), where H is an endoscopic group for G (or G∗). This depends on a choice
of transfer factors ∆(γ, δ), where (γ, δ) are associated (strongly regular) elements in H(Fv), G(Fv).

At the finite places, we use the Whittaker normalization of transfer factors [KS99, §5.3], [Mok, §3].
This is possible since G is quasi-split at the finite places. At the archimedean places we will use Kottwitz’s
transfer factors, explicitly described for unitary groups in [Clo11]. We must check that such choices are
compatible, i.e. that they satisfy a product formula for rational elements (γ, δ). The local factors at the
finite places are defined by the formula

∆(γ, δ) = ε(V, ψ)∆0(γ, δ),

where ∆0 is the Langlands-Shelstad factor in the quasi-split case [KS99, p. 65]. Here V = VG − VH is a

virtual representation of Gal(F v/Fv), with VG = X∗(T̂G) ⊗ C, and similarly for VH , and ψ is an additive
character. In our case, VG ∼= VH and ∆(γ, δ) = ∆0(γ, δ).

For γ, δ ∈ H(F∞), G(F∞), consider now the product ∆∞K (γ, δ) of Kottwitz’s transfer factors at the
real primes. If G is replaced by G∗, then

∆∞,G
∗

K (γ, δ) = (±(i)2(n−2))d∆∞0 (γ, δ)

([Lab11b, p. 414]), where i =
√
−1 and d = [F : Q]. We now use Labesse’s argument: the groups G, G∗,

and H can be chosen so as to contain the diagonal torus T = U(1)n (compatibly with [Clo11]). For γ ∈ T ,

∆∞,G
∗

K (γ, γ) =
∏
v|∞

(−1)q(G
∗)−q(G)∆∞,GK (γ, γ),

where q(G) is half the real dimension of the symmetric space of G [Lab11b, p. 414]. In our case, then,

∆∞,GK (γ, γ) = εd∆∞0 (γ, γ)

on T , where ε = ±i2(n−2)(−1)n/2. The two factors therefore coincide on T . The compatibility of the factors
∆0 thus implies that of our chosen factors on T and therefore on (G,H) by the essential uniqueness of local
transfer factors.
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3.6 Spectral transfer factors, real places

Once we have defined the association of f and fH , there follow identities between (signed) traces
of f and fH in associated L-packets. We describe this in the case of interest to us, namely when the global
parameter ψ arises from a regular algebraic automorphic representation π = π1 � π2 of weight zero, and
π1, π2 are RACSDC. Note that the datum of ψ, outside an arbitrary set S, uniquely determines π1 and π2,
thus their infinity types, by the theorems of Jacquet-Shalika. In particular, it makes sense to consider the
induced local parameter ψv at an infinite place v of E, cf. [Mok, §2.3].

Let us write a, b for the infinity types of π1, π2, respectively, cf. §3.1. We recall that we have defined
a tuple of permutations w = (wτ )τ :E↪→C in terms of these infinity types. The Langlands parameters of π1,
π2 are the infinite place induced by an embedding τ : E ↪→ C are given by homomorphisms

z 7→ ((z/z)aτ,1 , (z/z)aτ,2),

z 7→ ((z/z)bτ,1 , (z/z)bτ,2 , . . . , (z/z)bτ,n−2).

Let ψv,H : WR → LH be the sum of our two parameters, uniquely extended to WR. Let σv denote the trivial
representation of G(Fv) for v|∞, associated to the parameter

ψv : z 7→ ((z/z)(n−1)/2, . . . , (z/z)(1−n)/2)

(extended to WR). There is a spectral transfer factor ∆v(ψv,H , σv) satisfying the identity, for fv, f
H
v associ-

ated:
〈Θψv,H , f

H
v 〉 = ∆v(ψv,H , σv)〈Θσv , fv〉.

In this identity Θψv,H is the stable character on H(Fv) associated to the L-packet given by ψv,H ; Θσv is the
character of the trivial representation. (We note once and for all that in the identity

SOδ(f
H) =

∑
γ

∆(γ, δ)Oγ(f)

there is an implicit choice of Haar measures on H(Fv) and G(Fv). The same measures are used to define
the integrals against Θψv,H and Θσv .)

Lemma 3.12. For any v|∞, ∆(ψv,H , σv) = detwτ , where τ : E ↪→ C is an embedding inducing the place v
of F .

Proof. This follows immediately from the exposition in [Clo11].

3.7 Spectral transfer factors, p-adic places

We now describe the character identities at the p-adic primes vi, for the particular representations
which will concern us. We first recall the characterization of the L-packet {Xi, Yi} associated to the rep-
resentation ΠE = St2,Ewi

�Stn−2,Ewi
. Recall that stable base change associates to f ∈ C∞c (G∗(Fvi)) a

function fE ∈ C∞c (GLn(Ewi)), characterized by its stable orbital integrals. Then

〈trXi + trYi, f〉 = 〈ΠE × Ic, fE〉

where Ic is the intertwining operator ΠE
∼= Πc

E , normalized by the Whittaker model, cf. [Mok, Theorem
3.2.1]. Consider now the endoscopic group H = U(2) × U(n − 2). The parameter ψvi can be seen as a
parameter ψvi,H for H, which defines the tensor product StH of the two Steinberg representations.

Proposition 3.13. For any f ∈ C∞c (G(Fvi)), we have

〈trYi − trXi, f〉 = 〈εi(Xi) trXi + εi(Yi) trYi, f〉 = 〈tr StH , f
H〉.
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Before sketching the proof we note that this is plausible. One property of the signs εi (for the
Whittaker normalization) is that we should have ε(Z) = 1 when Z is the representation in the L-packet
for G having a Whittaker model. The computation of the Jacquet modules shows that Yi is the “bigger”
representation in the L-packet. Presumably it has a Whittaker model, although we have not checked this.

Proof. We sketch the proof in the case n = 6; it will be clear that the proof extends. For the duration of this
proof we also simplify notation by removing the dependence of the various objects on the subscript i. Thus

Xnorm
N0

= [3, 1,−1]

(Y norm
N0

)ss = [3, 1,−1] + 2[3, 1, 1] + [1, 3, 1].

Let T0 = ZUn(S) denote the maximal torus consisting of elements

diag(t1, t2, t3, t3
−1
, t2
−1
, t1
−1

), ti ∈ E×.

The torus T0 (or a stably conjugate torus in H) has trivial Galois cohomology, so the relation between f
and fH on elements conjugate to this torus is simply:

Oδ(f
H) = ∆(δ, γ)Oγ(f)

(δ ∈ H, γ ∈ G regular semisimple and associated).
We choose f to be supported on the G-conjugates of the following subset of T0:

T+
0 = {(t1, t2, t3) | |t1| < |t2| < |t3| < 1}.

Similarly in H we have
T+

0 (H) = {(t1, t2, t3) | |t1| < 1, |t2| < |t3| < 1}.
Assume that f is such a function on a quasi-split group G′ (which may be G or H), and let π be an admissible
representation of G′. The identity [Clo90a, (2.4)] (note that G need not be unramified there) yields

〈trπ, f〉 =

∫
t∈T+

0

Θ(πnorm
N0

)(t)(δ
−1/2
P0

∆)(t)Ot(f) dt.

Here πnorm
N0

= πN0δ
−1/2
P0

is the normalized Jacquet module, and Θ(πnorm
N0

) is its trace. We have used the
identity

f
P0

(t) = δ
−1/2
P0

(t)∆(t)Ot(f)

(t regular in T0), where ∆(t) = |det(1− Adn0(t))|, cf. [Clo85, Lemme 1]. Moreover, δ
−1/2
P0

(t)∆(t) = D(t) =∏
α>0 |tα/2 − t−α/2|.

We first apply this to G, giving for such functions:

〈trY − trX, f〉 =

∫
t∈T+

0

(2e1 + e2)(t)DG(t)Ot(f)dt,

where e1 = [3, 1, 1] and e2 = [1, 3, 1] are characters of T0.
Consider now fH on H. The exponent of the normalized Jacquet module of StH = StU(2)⊗StU(4) is,

with the same notation, e = [1; 3, 1]. The orbital integrals of fH need not be supported in T+
0 (H). However,

we can write fH =
∑
w χwf

H =
∑
fHw , where w ∈W (H,T0) and χw is the characteristic function of the set

of elements contracting w ·N0. An easy calculation then shows that the formula

〈tr StH , f
H〉 =

∫
t∈T+

0 (H)

e(t)DH(t)Ot(f
H)dt

remains true (note that DH(t) is invariant). Now if t = (t1, t2, t3) ∈ T+
0 then it has three distinct conjugates

in T+
0 (H), namely

(t1, t2, t3), (t2, t1, t3), and (t3, t1, t2).
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We then see

〈tr StH , f
H〉 =

∫
t∈T+

0

(2e1 + e2)(t)DH(tH)OtH (fH)dt,

where t ∈ T+
0 comes from tH ∈ T+

0 (H), e(t1, t2, t3) = e2(t) and e(t2, t1, t3) = e(t3, t1, t2) = e1(t). Thus we
have to check the identity

DH(tH)OtH (fH) = DG(t)Ot(f),

where f, fH are related by the identity OtH (fH) = ∆(tH , t)Ot(f). Recall that

∆(tH , t) = ∆I∆II∆III,1∆III,2∆IV ,

where ∆IV is simply DG(t)/DH(tH). We check that the other factors are equal to 1, for the Langlands-
Shelstad transfer factors (quasi-split case) of [LS87], which coincide with the Whittaker-normalized transfer
factors in our case, cf. §3.5.

The factors ∆I [LS87, p. 241] and ∆III,1 [LS87, p. 245] are defined by a cup-product withH1(F, Tsc);
here T = T0, Tsc = T ∩ SU6 and H1(F, Tsc) = {1} (apply Hilbert 90 twice). The factor ∆II is defined in
[LS87, p. 243]. It requires the choice of data aα ∈ E× and χα (a character of E×) for the roots α of (G,T0).
In our case it is easily checked that aα = 1, χα = 1 are suitable and then ∆II = 1, by definition.

There remains the term ∆III,2 [LS87, p. 246 –247], possibly the most complicated. However [LS87,
Definition p. 247], we have

∆III,2(tH , t) = χ(tH),

where χ is a character of T0(H) defined by Langlands functoriality for tori. By [Mok, Theorem 3.2.1], we
have only to check a sign. Thus we know, after the preceding computations, that∫

T+
0

(2e1 + e2)(t)ϕG(t)dt = ±
∫
T+
0

(2e1 + e2)(t)ϕG(t)χ(tH)dt

where however (cf. [LS87]) the character χ may depend on the isomorphism T0
∼= T0(H), i.e. on the ‘Weyl

chamber’ in T+
0 . Here we have written ϕG(t) = DG(t)Ot(f). The function ϕG(t) can be an arbitrary

smooth, compactly supported function in the Weyl chamber. A character χ cannot be equal to −1 in
{|t1| < 1, |t2| < |t3| < 1}. This completes the proof.

3.8 Transfer

We now note that by [Lab11a, Proposition 5.6] there is an identity

TGdisc(f) =
∑
E
ι(G, E)ST Edisc(fE)

for f, fH which are associated, the sum being over the elliptic endoscopic data of G. The terms ST Edisc(fE)
have been computed by Mok, cf. [Mok, Theorem 5.1.2]. If f = ⊗vfv = f∞f∞ = fSfS is chosen so that
f∞ is an Euler-Poincaré function for the trivial representation of G(F∞) (e.g. the constant function), then
f traces in only finitely many automorphic representations of G. By a separation of eigenvalues argument
(cf. [CHL11, p. 487]), we can even choose fS so that the only non-trivial contributions in the above formula
come from the groups G∗ and H, and only the parameter ψ contributes in the expression for the stable trace
of [Mok, Theorem 5.1.2].

Let us first suppose that the parameter ψ corresponds to a RACSDC automorphic representation of
GLn(AE), as in the theorem. In this case we obtain a formula (Mok’s notation):

TGdisc(f) = fG
∗
(ψ) =

∏
v-∞

fG
∗

v (ψv).

(Strictly speaking we use here the analogue of Proposition 3.12 for the endoscopic group G∗ of G, which
states that ∆v(ψv,G∗ , σv) = 1 for each infinite place v of F .) The theorem now follows in this case from the
identity

fGvi(ψvi) = 〈trXi + trYi, fvi〉,
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when πwi
∼= St2,Ewi

�Stn−2,Ewi
.

Now suppose that the parameter ψ corresponds to a sum π = π1 � π2 of RACSDC automorphic
representations of GL2(AE) and GLn−2(AE), respectively, such that π is ι-ordinary and regular algebraic of
weight zero, as in the theorem. It follows that π1 and π2 are ι-ordinary and the infinity types a, b satisfy
the following condition (cf. Lemma 3.5):

– Let w = (wτ )τ :E↪→C ∈ S
Hom(E,C)
n be the tuple of permutations associated to π1, π2, cf. §3.1. Then

wτ depends only on the place of E induced by the embedding ι−1τ : E ↪→ Ql.
Choose for each place v of F dividing l an embedding τ(v) : E ↪→ C such that ι−1τ induces the place v. We
have by Lemma 3.12 a formula ∏

v|∞

∆(ψv,H , σv) =
∏
v|l

detw
[Fv :Ql]
τ(v) .

Since the local degrees [Fv : Ql] are even by hypothesis, this product is equal to 1 and we obtain a formula

TGdisc(f) = (fG
∗
(ψ) + fH(ψH))/2 =

∏
v-∞

fGv (ψv) +
∏
v-∞

fHv (ψv,H)

 /2.

The contribution from the places v0, . . . , vs is (by Proposition 3.13):(
s∏
i=0

fGvi(ψvi) +

s∏
i=0

fHvi (ψvi,H)

)
/2 =

∑
d

[
(1 +

s∏
i=0

εi(di))/2

s∏
i=0

〈tr di, fvi〉

]
,

where the notation d is as in the statement of the theorem. This completes the proof.

4 Raising the level

Let E be an imaginary CM field with totally real subfield F . We fix a prime l ≥ 5 and an isomorphism
ι : Ql ∼= C. Let n = l + 1. We make the following hypotheses:

– For each place v|l of F , v splits in E and [Fv : Ql] is even. In particular, [F : Q] is even and there
exists a unitary group G in n variables over F such that G(F∞) is compact and G is quasi-split
at every finite place.

– Let v0, . . . , vs be the places of F ramified in E. Then s ≥ 1, qv0 ≡ −1 mod l and for each

i = 1, . . . , s, l does not divide qvi(qvi + 1)
∏n/2−2
j=1 (qjvi − 1). (This will be the case if, for example,

qvi is a primitive root modulo l.)
We write w0, . . . , ws for the places of E above v0, . . . , vs. We fix RACSDC automorphic representations π2,
πl−1 of GL2(AE) and GLl−1(AE), respectively, satisfying the following hypotheses:

– π2 and πl−1 are ι-ordinary. For each embedding τ : E ↪→ C, the infinity type of πl−1 at τ is

((n− 3)/2, (n− 5)/2, . . . , (5− n)/2, (n− 3)/2)

and the infinity type of π2 at τ is

((n− 1)/2, (1− n)/2).

– The residual representations r2 = rι(π2) and rl−1 = rι(πl−1) are irreducible.
– For each i = 0, . . . , s we have isomorphisms

π2,wi
∼= St2,Ewi

and πl−1,wi
∼= Stl−1,Ewi

.

The residual representations r2|GEwi and rl−1|GEwi are ramified and send a generator of tame

inertia at each of these places to a regular unipotent element (that is, having a single Jordan
block).

– Any finite place w 6= w0, . . . , ws of E at which π2 or πl−1 is ramified is split over F .
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In this section we intend to prove the following theorem.

Theorem 4.1. With hypotheses as above, there exists a RACSDC automorphic representation Π of GLn(AE)
which is ι-ordinary of weight 0, such that rι(Π) ∼= rι(π2 � πl−1), and such that Πw0

is an unramified twist
of the Steinberg representation.

In §2.2 we introduced L-packets {Xi, Yi} of representations of the groups G(Fvi) corresponding to the
representations St2,Ewi

�Stl−1,Ewi
of GLn(Ewi). Let Bvi denote an Iwahori subgroup of G(Fvi). Then these

representations are characterized within their L-packet by the equations dimX
Bvi
i = 1, dimY

Bvi
i = n/2+1,

cf. Theorem 2.7. By Theorem 3.11, there exists an automorphic representation σ0 of G(AF ) with base
change π2 � πl−1. We observe that σ0 is ι-ordinary, by Lemma 3.5.

We define an open compact subgroup U1 =
∏
v U1,v of G(A∞F ) as follows:

– U1,v0 = Pv0 , the subgroup containing the Iwahori subgroup defined in §2.1.
– For each i = 1, . . . , s, U1,vi = Bvi .
– For each place v|l of F , choose a place ṽ of E above it, and set U1,v = ι−1

ṽ Iwc(ṽ) for some integer
c > 0.

– For each place v of F inert in E, U1,v is a hyperspecial maximal compact subgroup of G(Fv).
– For some place v, U1,v contains no non-trivial elements of finite order. (This condition is sometimes

referred to by saying that U1 is sufficiently small.)
– σU1

0 6= 0.
We define another open compact subgroup U =

∏
v Uv by the formulae Uv0 = Bv0 and Uv = U1,v if v 6= v0.

Thus U ⊂ U1 and [U1 : U ] = [U1,v0 : Uv0 ] = qv0 + 1.
Fix a finite extension K ⊂ Ql of Ql, with ring of integers O, residue field k, and maximal ideal λ.

We write S(U1,O) for the space of automorphic forms on G with trivial coefficients and level U1, as defined
in §3.3. Let T denote the set of finite places of F above which E of π is ramified or such that U1,v is not
hyperspecial maximal compact. (Thus T contains the places dividing l.) We then define the Hecke algebra
T(U1,O) to be the O-subalgebra of EndO(S(U1,O)) generated by the unramified Hecke operators at places
of F not in T and split in E, and the operators U jv for each v|l. It is a finite flat O-algebra. (We recall that
the definition of U jv depends on a choice of place ṽ of E above v and a uniformizer of Eṽ, but these choices
play no role here.)

The representation σ0 gives rise to a homomorphism T(U1,O)→ Fl, and we write m for the kernel
of this homomorphism. Then S(U1,O)m is an O-direct summand of S(U1,O), and every automorphic
representation σ of G(AF ) which contributes to S(U1,O)m is ι-ordinary. Moreover, T(U1,O)m ⊗O K is a
semisimple K-algebra.

Now suppose that V =
∏
v Vv ⊂ U1 is an open compact subgroup such that for each place v of F

such that either v|l or v 6∈ T , Vv = U1,v. We can define the space S(V,O) and Hecke algebra T(V,O) and a
natural surjective homomorphism T(V,O)→ T(U1,O). In an abuse of notation, we will write m also for the
pullback of this maximal ideal to T(V,O).

Using Theorem 3.11, we see that there is a direct sum decomposition

S(U,O)m ⊗O Ql =
⊕
σ

(ι−1σ∞)U,ord =
⊕
π

⊕
σ

BC(σ)=π

(ι−1σ∞)U,ord.

Here the first sum in the third term runs over automorphic representations π of GLn(AE). The second, inner,
sum in the third term runs over automorphic representations σ of G(AF ) which contribute to S(U,O)m and
such that π is the base change of σ. We will say that a representation π for which the π-summand in the
above expression is non-trivial is relevant.

Proposition 4.2. Let π be relevant. Then one of the following is true:
– π = πa � πb, where πa, πb are RACSDC automorphic representations of GL2(AE), GLl−1(AE),

respectively, and for each i = 0, . . . , s, πwi
∼= St2,Ewi

�Stl−1,Ewi
.

– π is cuspidal and for each i = 0, . . . , s, πwi
∼= St2,Ewi

�Stl−1,Ewi
.

– π is cuspidal and πw0
is an unramified twist of the Steinberg representation, and for each i =

1, . . . , s, πwi
∼= St2,Ewi

�Stl−1,Ewi
.
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Proof. Let π be as in the statement of the theorem. By Proposition 3.7, we can write π ∼= π1 � · · · � πr,
where the πi are discrete and conjugate self-dual automorphic representations of GLni(AF ). Let ρ = rι(π).
Then ρ is a direct sum of two irreducible representations of distinct dimensions. In particular, we must have
either r = 1 and π is cuspidal, or r = 2, n1 = 2, n2 = n− 2 = l− 1 and π1 and π2 are both cuspidal. In this
case π1 and π2 are also regular algebraic. We now apply the following.

Lemma 4.3. Let π be relevant. Then for each i = 0, . . . , s, πwi has an Iwahori-fixed vector.

Proof. We fix i to be one of 0, . . . , s for the duration of the proof. Assume first that π is cuspidal. By the
identity at the beginning of §3.9 and [Lab11a, Theorem 4.12] we obtain, after separation of Hecke eigenvalues:∑

σ

〈trσ, f〉 = 〈trπ × Ic, fE〉.

Here f is a function on G(F∞×
∏s
i=0 Fvi), fE is the function on G(E∞×

∏s
i=0Ewi) associated to f by stable

base change, and σ runs over the local components of automorphic representations of G(AF ) associated to
π. We may further assume that f∞ = 1. (If we use Mok’s full results then the sum is finite, each term
occurring with multiplicity one, since the same identity obtains for G∗, isomorphic to G at the finite places.
We do not need this.)

Now fix v = vi, w = wi for some i = 0, . . . , s. Choosing the functions for v′ 6= v suitably we obtain

c
∑
σ

〈trσ, fv〉 = 〈trπw × Ic, fEw〉,

with c 6= 0. The representation of G(AF ) is admissible, so the left-hand side contains a finite number of
semistable representations σ with finite multiplicity. (A semistable representation is, by definition, one that
has a non-zero Jacquet module for N0, composed of unramified characters.)

Consider a function fv with support in the elements contracting N0. We may further assume that

the constant term f
P0

(t) (cf. §3.8) is an unramified function. By Casselman’s theorem (§3.8), the left-hand
side is then a finite sum, over the semistable representations:

c
∑
σ

〈trσnorm
N0

, f
P0〉T0 .

By assumption, the sum contains a representation σ0 such that (σ0)N0
is a sum of unramified characters;

note that there is no cancellation in the sum. However, the identity of orbital integrals shows that we can
take for fEw a function whose orbital integrals have the same property. The right-hand side of the identity
is then equal to

〈trπnorm
N0(E), (fEw)P0〉

and this implies that πw is semistable. (Moeglin [Mœg07] shows that in fact the resulting identity of Jacquet
modules extends from the contracting elements to all of T0 and T0(E).)

Consider now the case where π = π2�πn−2 with π2, πn−2 cuspidal. In this case the relevant equality
is given by §3.9. The sum

∑
σ〈trσ, f〉 is equal to the sum of two terms, one pertaining to G∗:

1/2〈trπ × Ic, fE〉,

where however π is an Eisenstein representation π = π2 � πn−2. This is the term (4.4.2) in [CHL11]; the
proof is identical. The second term is

1/2〈tr(π2 ⊗ πn−2)× Ic, fHE 〉,

where H = U(2)× U(n− 2) is the endoscopic group of our datum. We choose fv and the fv′ for v′ 6= v as
above, so the previous argument applies to

∑
σ, non-zero by assumption. If the first term does not vanish,

π2 � πn−2 and therefore π2, πn−2 are semistable. If the H-term does not vanish, the computation of the
transfer in §3.8 shows that we may choose fH unramified, with regular support, thus also fHE , the transfer
being obvious on the split torus. Again this implies that π2 and πn−2 are semistable.
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We now return to the proof of Proposition 4.2. Suppose first that r = 2, so that ρ = ρa(1 −
n/2)⊕ ρb(−1), where ρa = rι(πa) and ρb = rι(πb). The hypotheses on the residual representations ρa

∼= r2,
ρb
∼= rl−1 now imply that for each i = 0, . . . , s, the representation πa,wi (resp. πb,wi) is an unramified twist

of St2,Ewi
(resp. Stl−1,Ewi

). Indeed, it is easy to see that since πwi has an Iwahori-fixed vector, the same
must be true for the representations πa,wi and πb,wi . We therefore have, for example, an isomorphism

πb,wi
∼= Stb1,Ewi (ψ1) � · · ·� Stbt,Ewi (ψt),

where b1 + · · · + bt = n − 2 = l − 1 and each ψ1, . . . , ψt : E×wi → C× is an unramified character. Let
twi ∈ Iwi denote a generator of the l-part of tame inertia. Local-global compatibility in its strong form (cf.
[Car12]) now implies that ρb(twi) is a unipotent matrix with Jordan form corresponding to the partition
b1 + · · · + bt = l − 1. After conjugating and possibly enlarging K, we can assume that ρb takes values in
GLl−1(O), and that the composite GE → GLl−1(O)→ GLl−1(k) is equal to rl−1. By hypothesis, rl−1(twi)
is a regular unipotent matrix. It follows that we must have t = 1, and then πb,wi is an unramified twist of
the Steinberg representation, as claimed. To see that the first bullet point holds in this situation, we must
check that these twists are all actually trivial. To do this we look at the Frobenius eigenvalues of ρa and
ρb. Let us treat, for example, πb,w0

∼= Stl−1,Ew0
(ψ). Since ψψc = 1 (as πb is of unitary type) and ψ = ψc

(as ψ is unramified), we see that ψ2 = 1 and we must rule out the case that ψ is the non-trivial unramified
character of order 2.

Let $w0
be a uniformizer of Ew0

, and let N = ρb(tw0
)− 1 ∈Ml−1(O). Then N mod λ is a regular

nilpotent element, by hypothesis, and the natural map

(kerN)⊗O k → ker(N mod λ)

is an isomorphism. In particular, ρb preserves the line ker(N mod λ) and Frobenius acts with eigenvalue

ι−1ψ($w0)ε(Frobw0)−1ql−2
w0
≡ ι−1ψ($w0) mod λ.

Since πl−1,w0
is, by hypothesis, the untwisted Steinberg representation, performing the same calculation for

rl−1 gives ι−1ψ($w0
) ≡ 1 mod λ, and hence ψ = 1.

Now suppose that r = 1, so that π is cuspidal. Let 0 ≤ i ≤ s. Since πwi has Iwahori-fixed vectors,
there is an isomorphism

πwi
∼= Stn1,Ewi

(ψ1) � · · ·� Stnt,Ewi (ψt)

for some t ≥ 1, where the ψi are unramified characters of E×wi . The congruence ρ ∼= rι(σ0) implies that
the nilpotent conjugacy class of GLn corresponding to the partition n = n1 + · · · + nt specializes to the
class corresponding to the partition 2 + (n − 2). This rules out all but the possibilities n = 2 + (n − 2),
n = 1 + (n− 1), and n = n. We must rule out the case n = 1 + (n− 1) and show that in case n = 2 + (n− 2)
the characters ψ1, ψ2 are trivial, and that in case n = n we necessarily have i = 0. This will complete the
proof of the proposition.

To rule out the case n = 1 + (n− 1), we note that no representation ψ1 � Stn−1,Ewi
(ψ2) with ψ1, ψ2

unramified is in the image of the stable base change map, as the corresponding parameter is not conjguate
symplectic, cf. Lemma 2.6. Suppose instead that πwi

∼= St2,Ewi
(ψ1) � Stl−1,Ewi

(ψ2). After conjugating, we
may assume that ρ takes values in GLn(O) and that ρ mod λ is semisimple. Let N = ρ(twi)− 1. For each
j ≥ 0 the natural map (kerN j) ⊗O k → ker(N j mod λ) is an isomorphism and comparing the eigenvalues
of Frobenius on ker(N mod λ) of ρ and r2(1− n/2)⊕ rl−1(−1), we get

ι−1ψ1($wi)q
n/2
wi ≡ q

n/2
wi mod λ and ι−1ψ2($wi)q

l−1
wi ≡ q

l−1
wi mod λ.

We again have ψ2
1 = ψ2

2 = 1. It follows that ψ1 and ψ2 are both trivial. Finally, suppose that we have
πwi
∼= Stn,Ewi (ψ) for some unramified character ψ : E×wi → C×. Comparing the Frobenius eigenvalues at wi

of ρ and rι(σ0) shows that

ι−1ψ($wi){qlwi , q
l−1
wi , . . . , qwi , 1} ≡ {q

n/2
wi , q

n/2−1
wi , ql−1

wi , q
l−2
wi , . . . , qwi} mod λ,
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where again ψ($wi) = ±1. Suppose for contradiction that i > 0. If ψ($wi) = 1 then the above equality

of sets of eigenvalues cannot hold, since q
n/2−1
wi = q

(l−1)/2
wi ≡ −1 mod l. If ψ($wi) = −1, then the injection

(kerN3)⊗O k ↪→ ker(N3 mod λ) shows that

{−qlwi ,−q
l−1
wi ,−q

l−2
wi } mod λ ⊂ {qn/2wi , q

n/2−1
wi , ql−1

wi , q
l−2
wi , q

l−3
wi } mod λ,

or equivalently
{−qwi ,−1,−1/qwi} mod λ ⊂ {−qwi ,−1, 1, 1/qwi , 1/q

2
wi} mod λ.

It follows that −1/qwi mod λ ∈ {1, 1/qwi , 1/q2
wi} mod λ, again giving a contradiction. This completes the

proof.

Corollary 4.4. Let π be relevant. Then each automorphic representation σ of G(AF ) with base change π
and (σ∞)U 6= 0 occurs with multiplicity one in the space of automorphic forms on G. Moreover, we have the
following possibilities:

1. If π is not cuspidal then there are exactly 2s such representations σ. We index them by a choice
of element d = (d1, . . . , ds) ∈

∏s
i=1{Xi, Yi}. The corresponding automorphic representation σ(d) is

uniquely characterized by the condition

σ(d)vi
∼= di, i = 1, . . . , s.

It satisfies the condition

ε0(σ(d)v0) ·
s∏
i=1

εi(di) = 1,

where εi : {Xi, Yi} → {±1} is defined by εi(Xi) = −1, εi(Yi) = 1.

2. If π is cuspidal and πw0
∼= St2,Ew0

�Stl−1,Ew0
then there are exactly 2s+1 such representations, corre-

sponding as above to a choice of element of
∏s
i=0{Xi, Yi}.

3. If π is cuspidal and πw0
is an unramified twist of the Steinberg representation then there are exactly 2s

such representations, corresponding as above to a choice of element of
∏s
i=1{Xi, Yi}.

Proof. This follows from Proposition 4.2 and Theorem 3.11.

This corollary has the following consequence. Let d = (X1, . . . , Xs) if s is odd, and d = (Y1, X2, . . . , Xs)
is s is even. Let π be relevant, and suppose that π is not cuspidal. Then σ(d)v0

∼= X0. We fix this choice of
d for the remainder of this section. (In fact, any choice of d ∈

∏s
i=1{Xi, Yi} with

∏s
i=1 εi(di) = −1 would

suffice for what follows.)
Now let V ⊂ U be an open compact subgroup of the kind considered above. There is a perfect

pairing
〈·, ·〉V : S(V,O)× S(V,O)→ O,

which satisfies the formula 〈[VvgvVv]x, y〉 = 〈x, [Vvg−1
v Vv]y〉 for any gv ∈ G(Fv), x, y ∈ S(V,O). This pairing

need not restrict to a perfect duality on S(V,O)m. In fact, for any automorphic representation σ of G(AF )
which contributes to S(V,O), its admissible dual σ∨ also contributes. We write m∨ ⊂ T(U,O) for the
maximal ideal corresponding to the Hecke eigenvalues of σ∨0 . We have the following result.

Proposition 4.5. – The above pairing restricts to a perfect duality

〈·, ·〉V,m : S(V,O)m × S(V,O)m∨ → O.

– The induced pairing
〈·, ·〉U,m : S(U, k)m × S(U, k)m∨ → k

vanishes on restriction to the subspace S(U1, k)m × S(U1, k)m∨ . (Note that for any subgroup
V ⊂ U1, there are isomorphisms

S(V,O)⊗O k ∼= S(V, k)

compatible with the action of Hecke operators.)
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Proof. For the first part, we decompose

S(V,O)⊗O Ql ∼=
⊕
σ

(ι−1σ∞)V .

A separation of eigenvalues argument shows that if f ∈ (ι−1σ∞)V , g ∈ (ι−1(σ′)∞)V , then 〈f, g〉V = 0 unless
σ′ ∼= σ∨. The claim of the proposition easily follows from this statement.

For the second part, let i : S(U1, k) → S(U, k) denote the natural inclusion. This can be identified
with the trivial Hecke operator for the pair of subgroups U ⊂ U1, and so for any f, g ∈ S(U1, k) we find the
formula

〈if, ig〉U = 〈f, i∗ig〉U1
,

where i∗ denotes adjoint with respect to the different dualities. An easy calculation (cf. [Tay89, Lemma 2])
shows that i∗i, viewed as endomorphism of S(U1, k), is multiplication by [U1 : U ] = [Pv0 : Bv0 ] = qv0 + 1 ≡
0 mod λ. Restricting to the given subspace gives the desired result.

We now come to the proof of Theorem 4.1. Suppose for contradiction that there are no relevant
automorphic representations π such that πv0 is an unramified twist of the Steinberg representation. The
space M = S(U,O)m receives commuting actions of the Iwahori-Hecke algebras HBv0

,O, . . . ,HBvs ,O. By
Corollary 2.10, it admits a direct sum decomposition

M =
⊕

d′∈
∏s
i=1{Xi,Yi}

M(d′),

each summand being characterized by the equality (the first sum running over relevant π):

M(d′)⊗O Ql =
⊕
π

⊕
σ

BC(σ)=π
σvi
∼=d′i,i=1,...,s

(ι−1σ∞)ord,U .

By choice of d, if σ appears in the decomposition of M(d)⊗O Ql and the base change of σ is not cuspidal,
then σv0

∼= X0. In particular, there is an isotypic decomposition of HBv0 ,C-modules

M(d)⊗O,ι C ∼= (X
Bv0
0 )a ⊕ (Y

Bv0
0 )b,

where a > b. Indeed, a, b can be calculated as follows. For each relevant automorphic representation π,
let σ(π) = ι−1σ(d)v0l∞ ⊗

⊗
v|l ι
−1σ(d)ord

v , an admissible representation of G(Av0l∞F ), where σ(d) is as in
Corollary 4.4. We have

a =
∑
π

dimσ(π)U
v0l

, b =
∑

π cuspidal

dimσ(π)U
v0l

.

Let M =M(d). We define N = S(U,O)m∨ and N = N (d) in an analogous manner. Let M1 = MU1 ⊂M ,
and N1 = NU1 ⊂ N . The perfect duality 〈·, ·〉U,m restricts to a perfect duality 〈·, ·〉 : M ×N → O satisfying
the relation 〈hx, y〉 = 〈x, (h)y〉 for all h ∈ HBv0 ,O, x ∈M , y ∈ N . By Proposition 4.5, the induced perfect
duality M ⊗O k ×N ⊗O k → k vanishes on the subspace M1 ⊗O k ×N1 ⊗O k.

We recall the abelian subalgebra O[Λ] ⊂ HBv0
,O, cf. §2.1. If η : O[Λ] → k is a character of this

algebra, we write M(η) for its generalized eigenspace, i.e. the localization at ker η as O[Λ]-module. Given a
homomorphism η : O[Λ]→ k we obtain a new homomorphism η : O[Λ]→ k, and the pairing restricts to a
perfect pairing 〈·, ·〉η : M(η)×N(η)→ O, where we write N(η) for the generalized η-eigenspace of O[Λ].

By Theorem 2.7, the characters of K[Λ] appearing amongst the Jordan-Hölder constituents of M⊗O
K as K[Λ]-module are amongst the characters

[1, n−3, n−5, . . . , 1], [n−3, . . . , n−1−2i, 1, n−3−2i, . . . , 1], i = 1, . . . , n/2−2, and [n−3, n−5, . . . , 1,−1].

These all arise from characters O[Λ] → O, and the last of these, the character [n − 3, n − 5, . . . , 1,−1], has
distinct reduction modulo λ from the others. Write η0 for the character O[Λ] → k arising from reduction
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modulo λ of this character. Then M(η0) is a direct summand O[Λ]-submodule of M and (in the notation of
Proposition 2.9, with X = X0 and B = Bv0) XB

O = XB
O (η0).

Let MX denote the intersection of M with the X0-isotypic piece of M ⊗O,ι C. Thus MX ⊂ M is a
finite free O-module of rank a, and M/MX is O-torsion free. We have MX ⊂M1, by Theorem 2.7 applied at

the place v0, which shows that X
Bv0
0 = X

Pv0
0 . Defining NX ⊂ N in the same manner, we have NX ⊂ N1 and

NX is a finite free O-module of rank a. Moreover, we have MX = MX(η0). We also have NX = NX(η0),
since XB

O = XB
O (η0), by Proposition 2.8.

We now see that the perfect pairing

〈·, ·〉η0 : M(η0)⊗O k ×N(η0)⊗O k → k

vanishes on the subspace MX ⊗O k × NX ⊗O k. By construction, M(η0) ⊗O k has dimension a + b as a
k-vector space, and the subspaces MX ⊗O k, NX ⊗O k have dimension a. Since they annihilate each other,
we must therefore have a ≤ b. This contradicts the assumption above that a > b, and this contradiction
completes the proof of the theorem.

5 Construction of a special automorphic representation

Let E be an imaginary CM field with totally real subfield F , and let π be a RACSDC automorphic
representation of GL2(AE) of weight zero. Let l ≥ 5 be prime, and let n = l + 1. Fix an isomorphism
ι : Ql ∼= C. In order to reduce notation, we now write ρ = rι(π). We suppose that the following hypotheses
are in effect.

– For each place v|l of F , v is split in E and [Fv : Ql] is even. Moreover, π is ι-ordinary.
– The residual representation ρ : GE → GL2(Fl) is irreducible, and its image contains SL2(Fla) up

to conjugation for some a > 1.
– The (l − 2)th symmetric power of π exists, in the following sense: there exists a RACSDC auto-

morphic representation πl−1 of GLl−1(AE) such that rι(πl−1) ∼= Syml−2 ρ.
– Let y0, . . . , ys denote the places of F ramified in E. Then s ≥ 1. Let zi denote the place of E

above yi. For each i = 0, . . . , s, πzi
∼= St2,Ezi

, ρ is ramified at zi, and qzi is a primitive element
modulo l, and is odd.

– There exists an everywhere unramified totally real quadratic extension F ′/F , linearly disjoint over
F from the extension of E(ζl) cut out by ρ, in which each place y0, . . . , ys is inert. We write ωF ′/F
for the corresponding quadratic character of GF .

– If w 6= z0, . . . , zs is a place of E at which π is ramified, then w is split over F .
Let χ = det ρ, and let ϕ denote a continuous automorphism of Ql lifting the arithmetic Frobenius. There is
an isomorphism (cf. [CT, §4]):

(Syml ρ)ss ∼= ϕρ⊕ χ⊗ Syml−2 ρ.

In this section we will prove the following result.

Theorem 5.1. There exists a soluble CM extension M/E, linearly disjoint over E from the extension of
E(ζl) cut out by ρ, and a RACSDC automorphic representation Π of GLn(AM ) satisfying the following:

1. Π is ι-ordinary of weight zero.

2. There is an isomorphism rι(Π) ∼= (Syml ρ)ss|GM .
3. There exists a place w of M above z0 such that Πw is an unramified twist of the Steinberg representation.

By Proposition 3.10 and base change for U2, we can find a RACSDC automorphic representation π2

of GL2(AE) satisfying the following:
– π2 is ι-ordinary. Writing ρ′ = rι(π2), we have HTτ (ρ′) = {(1− l)/2, (1+ l)/2} for every embedding
τ : E ↪→ Ql.

– For each i = 0, . . . , s, π2,zi has an Iwahori-fixed vector.
– ρ′ ∼= ω(l−1)/2 ⊗ ρ, where ω denotes the Teichmüller lift of the mod l cyclotomic character.
– If π2 is ramified at a place w 6= z0, . . . , zs of E, then w is split over F .
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Then the representation πl+1 = ϕπ2 � πl−1 ⊗ ιεχ is conjugate self-dual and regular algebraic of weight zero,
and we have

rι(πl+1) = ε(1−l)/2 ⊗ ϕρ′ ⊕ χ⊗ Syml−2 ρ.

In particular, the reduction modulo l of this representation is the same as that of Syml ρ. For each i = 0, . . . , s
there is an isomorphism πl+1,zi

∼= St2,Ezi
(ωF ′/F ) � Stl−1,Ezi

.
Now let L denote the extension of E(ζl) cut out by ρ. We may choose a set S1 of places of E such

that every place of F below a place of S1 is split in F ′, and any finite extension E′/E which is S1-split
is linearly disjoint over E from L. We can moreover assume that π and L are unramified above S1 (see
[BLGGT, Lemma A.2.2]). Let S0 denote the set of places of F below a place of S1. Let b denote the least
positive integer such that qbz0 ≡ −1 mod l, and choose a cyclic totally real extension F1/F of degree b which
is S0-split and in which y0 is inert and each place y1, . . . , ys splits. (This is possible, by the Grunwald-Wang
theorem, since qz0 is odd.) We write v0 for the place of F1 above y0 and v1, . . . , vbs for the places of F1 above
y1, . . . , ys. Let E1 = E · F1, and let wi denote the place of E1 above vi. Let π′l+1 denote the base change
of ϕπ2 ⊗ ωF ′/F � πl−1 ⊗ ιεχ to E1. Then π′l+1 is regular algebraic and conjugate self-dual. Moreover, for
each i = 0, . . . , bs, we have π′l+1,wi

∼= St2,E1,wi
�Stl−1,E1,wi

. We can therefore apply Theorem 4.1 to π′l+1 to
deduce the existence of an automorphic representation Π′ of GLn(AE1

) such that Π′ is ι-ordinary of weight
zero, Π′w0

is an unramified twist of the Steinberg representation, and

rι(Π′) ∼=
(
ωF ′/F ⊗ ϕρ⊕ χ⊗ Syml−2 ρ

) ∣∣∣
GE1

.

Now let M = E1 ·F ′. Then M/E is a soluble extension, and S1-split. Let Π denote the base change of Π′ to
M . Then Π is a RACSDC automorphic representation of GLn(AM ) which is ι-ordinary of weight zero, such
that Πw is an unramified twist of the Steinberg representation for any place w of M above w0, and such that

rι(Π) ∼=
(
ϕρ⊕ χ⊗ Syml−2 ρ

) ∣∣∣
GM

.

This completes the proof of Theorem 5.1.

6 Proof of Theorem 1.2

In this section we prove the theorem from the introduction. Fix throughout this section a prime
l ≥ 5 and an isomorphism ι : Ql ∼= C, and a finite Galois extension K/Q. We assume throughout this section
the following hypothesis:

Conjecture 6.1 (SPl−1(K(ζl))). Let F be a totally real number field, linearly disjoint over Q from K(ζl).
Let (π, χ) be a RAESDC automorphic representation of GL2(AF ) without CM. Then the (l− 2)th symmetric
power lifting exists, in the following sense: there exists an RAESDC automorphic representation (πl−1, χl−1)
of GLl−1(AF ) and an isomorphism

Syml−2 rι(π) ∼= rι(πl−1).

We must show that SPl+1(K(ζl)) holds. We begin by proving a special case, using the results
accumulated above. We will reduce the general case to this one.

Theorem 6.2. Let F be a totally real number field. Let (π, χ) be a RAESDC automorphic representation
of GL2(AF ), and suppose that the following hypotheses hold:

– π is ι-ordinary of weight zero.
– Let ρ = rι(π). Then the residual representation ρ : GF → GL2(Fl) is irreducible, and its image

contains SL2(Fla), up to conjugation, for some a > 1.
– There exists a place v of F such that πv is an unramified twist of the Steinberg representation and
qv is a primitive root mod l. Moreover, ρ is ramified at v.

Then Syml ρ is automorphic.
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Proof. Let F0/F denote a totally real quadratic extension in which v is inert, and let ωF0/F : GF → Q×l
denote the corresponding quadratic character. Let E/F be a CM imaginary quadratic extension which is
ramified at v, and in which every place of F dividing l splits. By [CHT08, Lemma 4.1.4] we can find an

algebraic character ψ : GE → Q×l , unramified above v, such that ψψc = rι(χ)|GE . Let F1/F be a soluble
extension satisfying the following:

– The place v splits in F1.
– Let E1 = E · F1. If w - v is a place of E1 at which πE or ψE is ramified, then w is split over F1.
– The extension E1/F1 is unramified away from places dividing v. The extension F1 · F0/F1 is

everywhere unramified.
– For each place v|l of F1, the local degree [F1,v : Ql] is even.

By choosing these extensions so that certain auxiliary primes split, we can force F0 · E1 to be disjoint over
F from the extension of F (ζl) cut out by ρ (see [BLGGT, Lemma A.2.2]). The hypotheses of §5 are now
satisfied, either for the automorphic representation (π⊗ιψ−1)E1

of GL2(AE1
), or its twist (π⊗ιψ−1ωF0/F )E1

.
(Since the representation (π ⊗ ιψ−1)E1

is conjugate self-dual, its local component at a prime w dividing v
is isomorphic either to St2,E1,w or its twist by the quadratic unramified character of E×1,w.) We may assume
without loss of generality that it is the former. We deduce by Theorem 5.1 the existence of a soluble CM
extensionM/E1 disjoint over E1 from the extension of E1(ζl) cut out by ρ, and an automorphic representation
Π of GLl+1(AM ) such that Π is ι-ordinary, such that for some place w of M above v, Πw is an unramified
twist of the Steinberg representation, and such that

rι(Π) ∼= (Syml(ρ⊗ ψ−1
))|ssGM .

We claim that the hypotheses of [Tho, Theorem 7.1] now apply, and thus Syml ρ⊗ ψ−1|GM is automorphic.
Indeed, it remains to check the following points:

– The irreducible constituents of (Syml ρ)ss|GM(ζl)
are adequate, in the sense of [Tho12, §3].

– The extension M(ζl) is not contained in the extension of M cut out by ad ρ.
The first point follows from our hypothesis on the image of ρ and [Gur, Theorem 1.5]. For the second point,
we note that by construction we have M ∩ Q(ζl) = Q, while the image of ad ρ contains a simple normal
subgroup of index at most 2. It follows that Syml ρ is automorphic, and this completes the proof.

We now reduce the general case of SPl+1(K(ζl)) to the above one using a chain of congruences.
The arguments are similar to those of [CT, §5], but since the hypotheses of the above theorem are more
stringent we work a little harder. We begin by fixing a totally real field F , linearly disjoint over Q from
K(ζl), and a RAESDC automorphic representation (π, χ) of GL2(AF ) without CM. Arguing as in the proof
of [CT, Proposition 5.3], we can assume (after replacing F by a soluble extension and passing to a congruent
automorphic representation) that there is a finite set T of places of F , a place u of F not in T , and that π
satisfies the following:

1. π is unramified outside T ∪ {u}.
2. π is of weight zero.

3. For each place v|l, πv is an unramified twist of the Steinberg representation (and hence π is ι-ordinary).

4. There exists a rational prime t > l2 such that qu ≡ −1 mod t and

rι(π)|IFu ∼=
(
ψu 0
0 ψquu

)
,

where ψu : IFu → Q×l is a character of order t. Moreover, the place u is split in the maximal abelian
extension of F of exponent 2 which is unramified away from T .

Fix an open compact subgroup U ⊂ GL2(A∞F ) such that (π∞)U 6= 0, and let π1, . . . , πn denote the RAESDC
automorphic representations of GL2(AF ) such that (π∞i )U 6= 0 and πi satisfies the above conditions. We can
assume after renumbering that π1 = π.

For each i = 1, . . . , n, the residual representation rι(πi) is irreducible, and its image contains SL2(Fla)
up to conjugation, for some a > 1. This follows from an argument of Khare-Wintenberger, as follows. Let us

28



write ρ = rι(πi). Since t > l2, the projective image of ρ contains an element of order t > 5. The classification
of finite subgroups of PGL2(Fl) implies that the projective image of ρ is conjugate either to PSL2(Fla) or
PGL2(Fla), or to a dihedral subgroup. In the first case, we must have a > 1 since t > l2, by hypothesis.
If the projective image is dihedral, then there exists a totally imaginary quadratic extension M/F and a

continuous character α : GM → F×l such that ρ ∼= IndFM α.
If the extension M/F is ramified at a place y of F , then ρ and hence π is ramified at y, and so

y ∈ T ∪ {u}. In fact, we have y ∈ T , since ρ(IFu) has order t, prime to 2. Thus M/F is unramified outside
T , and the place u splits in M . This implies that the representation ρ|GFu is reducible, a contradiction.

Proposition 6.3. There exists a prime p > 2(l + 2), an isomorphism ιp : Qp ∼= C, and an automorphic
representation π′ satisfying conditions 2 – 4 above, as well as the following conditions:

– rιp(π′) ∼= rιp(π).

– The image of the residual representation rι(π′) contains SL2(Fla) up to conjugation, for some
a > 1.

– There exists a place v of F such that qv is odd and is a primitive root modulo l and π′v is an
unramified twist of the Steinberg representation, and the restriction of rι(π′) to GFv is ramified.

– The symmetric lth power lifting of π exists if and only if the symmetric lth power lifting of π′

exists.

Proof. We construct π′ by raising the level from π, modulo p. To ease notation, let us write ρi = rι(πi) for
i = 1, . . . , n. Choose a prime p > t and an isomorphism ιp : Qp ∼= C such that the image of rιp(π) contains

SL2(Fp) up to conjugation, and set ρ0 = rιp(π). We say that one of the representations ρi admits level
raising at the place v of F if ρi is unramified at v and the eigenvalues α, β of ρi(Frobv) satisfy α = q±1

v β.
This condition depends only on the image of Frobv under the projective representation associated to ρi.

We claim that to prove the proposition, it suffices to exhibit a place v of F such that qv is odd and
is a primitive root modulo l, and ρ0 admits level-raising at the place v of F , but none of ρ1, . . . , ρn admits
level raising at v. Indeed, in this case we can construct using e.g. [Gee11, Corollary 3.1.7] an automorphic
lift of ρ0 which corresponds to a RAESDC automorphic representation π′ unramified outside T ∪ {u, v} and
satisfying the desired properties, except possibly for the following:

– rι(π′) is irreducible, and its image contains SL2(Fla), up to conjugation, for some a > 1.
– The restriction of rι(π′) to GFv is ramified.

We check that these conditions also hold. We first note that rι(π′) is, by construction, irreducible even
after restriction to GFu . We claim that it is ramified after restriction to GFv . If not, then applying [Gee11,
Corollary 3.1.7] once more we can find a RAESDC automorphic representation π′′ which satisfies conditions
1–4 above and such that rι(π′′) ∼= rι(π′). Then there exists 1 ≤ i ≤ n such that π′′ = πi, and this implies that
ρi admits level-raising at v, a contradiction. In particular, the image of rι(π′) contains an element of order
l. Since it also contains an element of order t, the classification of finite subgroups of GL2(Fl) now shows
that the image must contain a conjugate of SL2(Fla) for some a > 1. To complete the proof of the claim, we
must show that the symmetric lth power lifting of π exists if and only if the symmetric lth power lifting of
π′ exists. Since both rιp(π) and rιp(π′) are potentially Barsotti-Tate, hence potentially diagonalizable, and
their symmetric lth powers are adequate, this follows from [BLGGT, Theorem 4.2.1] (cf. the proof of [CT,
Proposition 5.2]).

We now introduce some more notation. Let Fi denote the extension of F cut out by the projective
representation associated to ρi, i = 0, . . . , n. Let L denote the compositum of the extensions F1, . . . , Fn. Let
us write Lab and F ab

0 for the maximal subextensions of L and F0, respectively, which are abelian over F .
Let G = Gal(L/F ), Gi = Gal(Fi/F ). For each i = 1, . . . , n there is a surjective homomorphism pi : G→ Gi.
The group Gi contains a simple normal subgroup of index at most 2, isomorphic to PSL2(Fla) for some a > 1.
By the Chebotarev density theorem, it now suffices to construct an element σ ∈ Gal(L · F0 · F (ζp, ζl)/F )
satisfying the following conditions:

1. The projection of σ to Gal(F (ζl)/F ) generates this group.

2. The projection of σ to Gal(F0(ζp)/F ) is trivial.
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3. For each i = 1, . . . , n, the eigenvalues α, β (which are defined only up to scalars) of pi(σ) satisfy

α 6= ε(σ)±1β.

We first note that the extensions F (ζl) and F0(ζp) are linearly disjoint over F . Indeed, F ab
0 (ζp) is unramified

at the primes dividing l. It follows that we can choose an element σ0 ∈ Gal(L · F0 · F (ζp, ζl)/F ) satisfying
the first two requirements above. We now claim that we can choose τ ∈ Gal(L · F0(ζp, ζl)/F0(ζp, ζl)) such
that σ = τ · σ0 satisfies all three requirements. Note that multiplying by such an element τ does not disturb
the first two points.

We will in fact choose an element τ ∈ Gal(L · F0 · F (ζp, ζl)/L
ab · F0(ζp, ζl)) = H, say. The group H

is a product of simple groups, each isomorphic to PSL2(Fla) for some a > 1, and each map pi|H : H → Gi
has image of index at most 2. We show by induction on j that we can choose τ such that the condition
on eigenvalues is satisfied for i = 1, . . . , j. For the case j = 1, we look at the image of σ0 in G1. Either
the condition is satisfied for p1(σ0) ∈ PGL2(Fla) or we can choose x ∈ PSL2(Fla) such that the condition is
satisfied for p1(σ0)x. We now take τ be be an arbitrary lift of x to H.

For the induction step, we look at pj+1(τσ0) ∈ PGL2(Fla). If the condition is satisfied for this
element, then we are done. If the condition is not satisfied, then the extensions Fj+1 · Lab(ζp, ζl) and
F1 · · · · · Fj · Lab(ζp, ζl) are linearly disjoint over Lab(ζp, ζl). For otherwise, there exists i = 1, . . . , j such
that Fi ·Lab(ζp, ζl) = Fj+1 ·Lab(ζp, ζl); on the other hand one knows that every automorphism of PSL2(Fla)
is a composite of conjugation by an element of PGL2(Fla) and the automorphism induced by a power of
Frobenius, and such an automorphism does not affect the condition α 6= ε(σ)±1β. We can therefore choose
an element τ ′ ∈ H such that pi(τ) = pi(τ

′) for each i = 1, . . . , j and pj+1(τ ′σ0) satisfies the condition on
eigenvalues.

This proposition implies the result, since Theorem 6.2 now shows that the symmetric lth power
lifting of π′ exists.
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Appendix A : Calculation of Jacquet modules

By Colette Mœglin

6.1 Le cas quasi déployé, introduction

On fixe une extension quadratique E/F de corps p-adiques ; on s’intéresse au groupe U(n,E/F ) et

G̃L(n,E) est la composante non neutre qui intervient dans l’endoscopie tordue.
On écrit abusivement les induites en oubliant le parabolique mais on considère les paraboliques

standard, le Borel étant les triangulaires supérieures de sorte que la représentation de Steinberg de U(n,E/F )
a pour module de Jacquet pour le Borel

⊗
`∈[(n−1)/2,1/2] | |`.

Pour π une représentation de U(n,E/F ) et pour χ un caractère de E× (en général une puissance
d’une valeur absolue | |x, avec x demi-entier), on note Jacχπ l’élément du groupe de Grothendieck de U(n−
2, E/F ) tel que le module de Jacquet de π pour le parabolique maximal de Levi E× ×U(n− 2, E/F ) est de

la forme χ ⊗ Jacχπ ⊕
⊕

χ′ 6=χ,π′ χ
′ ⊗ π′. Pour π̃ une représentation de G̃L(n,E), on note JacGLχ π̃ la même

chose sauf que l’on regarde le Levi E× × G̃L(n − 2, E) × E× (on peut avoir n = 2 mais je ne l’utiliserai
pas) et le module de Jacquet est la somme de χ⊗ JacGL

χ π̃⊗χ−1 plus d’autres termes où au moins l’une des

composantes E× agit par un autre caractère. Comme π̃ est muni d’une action de θ, de fait JacGL
χ (π) en a

une aussi tout à fait canoniquement. Pour nous, cela n’interviendra pas car on évite cette difficulté.

6.1.1 Le cas de U(4, E)

Proposition. L’induite de la représentation de Steinberg de GL(2, E) à U(4, E/F ) est réductible.

Voir [Gol93].

Lemme. L’induite de la proposition précédente est de longueur deux. L’un de ses sous-modules a un module
de Jacquet (pour le Borel) de longueur 3 ; on note cette représentation π4,+. L’autre représentation π4,− a
un module de Jacquet irréductible. Avec des notations intuitives, le semi-simplifié du module de Jacquet de
π4,+ contient le terme :

| |1/2 ⊗ | |1/2 (1)

avec multiplicité 2 et le module de Jacquet de π4,+ et π4,− contiennent tous deux avec multiplicité 1 le terme

| |1/2 ⊗ | |−1/2. (2)

Le module de Jacquet de toute l’induite contient exactement les 2 termes décrits, chacun avec
multiplicité 2 et chacune des sous-représentations irréductibles contient au moins avec multiplicité 1 le terme
(2) par réciprocité de Frobenius. Fixons π′, un des sous-modules irréductible dont le module de Jacquet
contient avec multiplicité au moins 1, le terme

| |1/2 ⊗ | |1/2.

On montre qu’il contient ce terme avec multiplicité au moins 2 : en effet on calcule le module de Jacquet de
π′ par rapport au parabolique, P2, de Levi GL(2, E). Par transitivité le calcul du module de Jacquet de π′

par rapport au Borel se calcule en prenant d’abord le module de Jacquet par rapport au parabolique P2 puis
en passant de GL(2, E) au Borel de GL(2, E). Donc dans la première opération, on a nécessairement une
représentation de GL(2, E) de support cuspidal | |1/2, | |1/2. Il n’y a qu’une représentation de GL(2, E) ayant
cette propriété, c’est l’induite de | |1/2 ⊗ | |1/2 qui est irréductible. Le module de Jacquet de cette induite a
bien le terme (1) de l’énoncé avec multiplicité 2. D’où le lemme.

6.2 Le cas de U(n,E), n pair et > 4

6.2.1 Nombre de séries discrètes dans le paquet

Proposition. Il existe exactement 2 représentations elliptiques dans le paquet associé à St(2), St(n− 2) et
ce sont des séries discrètes.
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J’admets essentiellement cette proposition : [Mœg] 7.1 où ici Jord(π) est, par définition, l’ensemble
à deux éléments (trivial, 2), (trivial, 4).

6.2.2 Rappel d’un petit lemme technique

Lemme. Soit π une série discrète irréductible pour U(n,E/F) et χ un caractère de E× de la forme | |x.
(i) Jacχπ est soit nul soit x > 0 ; si Jacχπ 6= 0, alors Jacχπ est irréductible. De plus si Jacχπ n’est

pas nul alors π est un sous-module irréductible de l’induite de χ ⊗ Jacχπ pour le parabolique standard de
Levi E× × U(n− 2, E/F ).

(ii) Soit π et π′ deux séries discrètes irréductibles et inéquivalentes ; alors on ne peut avoir Jacχπ =
Jacχπ

′ sauf si ces deux modules sont nuls.

En fait il y a unicité du sous-module irréductible dans (i) mais on n’en a pas besoin.
La première assertion de (i) est uniquement le critère de Casselman pour les séries discrètes. Pour

l’irréductibilité de (i), c’est [Mœg] corollaire de 2.7 (i). Montrons l’inclusion : la non nullité de Jacχπ entrâıne
que le module de Jacquet de π pour le parabolique standard de Levi isomorphe à E× × U(n − 2, E/F ) a
un quotient irréductible de la forme χ ⊗ σ ; par irréductibilité de Jacχπ, nécessairement σ = Jacχπ. Par
réciprocité de Frobenius, on a alors une inclusion de π dans l’induite comme annoncé.

Pour (ii) c’est [Mœg] corollaire 2.7 (ii) avec le fait que toute série discrète est dans un paquet stable
([Mœg] 2.4, où n’importe quelle autre référence)

6.2.3 Calcul des modules de Jacquet

On peut aller plus loin, en utilisant le fait que le module de Jacquet commute au transfert. On a,
pour n ≥ 6, JacGL

χ (St(2)×St(n−2)) = 0 sauf exactement si χ = | |1/2 ou χ = | |(n−3)/2. On a JacGL
| |1/2St(2)×

St(n − 2) = St(n − 2) et JacGL
| |(n−3)/2St(2) × St(n − 2) = St(2) × St(n − 4) et il n’y a pas de multiplicité ;

donc l’action de θ est bien déterminée à un signe près, dont on se moque.

Proposition. On suppose que n ≥ 6
(i) On suppose que π est dans le paquet de séries discrètes associées à St(2), St(n − 2). Alors

Jacχπ = 0 sauf éventuellement si χ = | |1/2 ou χ = | |(n−3)/2.
(ii) Jac| |1/2(π) = 0 ou est la représentation de Steinberg de U(n − 2, E/F ),chacun de ces deux cas

se produisant pour un bon choix de π dans le paquet ; on note πn,+ celle des deux représentations du paquet
telle que Jac| |1/2π 6= 0 et πn,− l’autre représentation.

(iii) Avec la définition glissée dans (ii) et celle du paragraphe 6.1.1, pour tout n ≥ 6, on a pour
ζ = ±, Jac| |(n−3)/2πn,ζ = πn−2,ζ .

Le (i) est juste la compatibilité des modules de Jacquet au transfert. Pour (ii) et (iii) on introduit
les notations suivantes : soit πi pour i = 1, 2 les deux séries discrètes dans le paquet considéré. Soit ai des
nombres complexes non nuls tels que σ := a1π1 + a2π2 est stable.

Montrons (ii) Jac| |1/2σ est une distribution stable (compatibilité de la stabilité à la restriction) et
elle se transfère (à un scalaire près ) en la trace tordue de la représentation de Steinberg de GL(n − 2, E) ;
donc Jac| |1/2σ est nécessairement (à un scalaire près) la représentation de Steinberg de U(n− 2, E/F ). Par
l’irréductibilité rappelée ci-dessus (6.2.2 (i)) et le fait que Jacχπ1 6= Jacχπ2 si l’un des deux modules de
Jacquet est non nul (6.2.2 (ii)), il existe exactement un i tel que Jac| |1/2πi 6= 0 et ce module de Jacquet vaut
alors la représentation de Steinberg de U(n− 2, E/F ).

Pour (iii), Jac| |(n−3)/2(a1π1 + a2π2) est (via la trace) une distribution stable et elle se transfère
à un scalaire près en la trace tordue de IndSt(2) ⊗ St(n − 4). Si n = 6, l’induite IndSt(2) ⊗ St(n − 4)
n’est pas θ-elliptique c’est une induite à partir d’une représentation θ-stable. Son caractère est le transfert
de la représentation de U(4, E/F ), IndStGL(2,E)(2) et on a calculé cette distribution ; c’est le caractère de
π4,+ + π4,−. On montre par récurrence sur n que a1 = a2 et l’égalité d’ensembles non ordonnés :

(Jac| |(n−3)/2π1, Jac| |(n−3)/2π2) = (πn−2,+, πn−2,−).

Initialiser la récurrence avec n = 6 se fait en même temps que le pas général.
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En effet, quitte à multiplier a1 et a2 par le même nombre complexe non nul Jac| |(n−3)/2(a1π1+a2π2) =
πn−2,+ + πn−2,−, car c’est (à un scalaire près) la distribution stable portée par πn−2,+ et πn−2,− que l’on
connâıt pour n = 6, on vient de le rappeler, et par l’hypothèse de récurrence pour n > 6. Le membre de
gauche vaut

a1Jac| |(n−3)/2π1 + a2Jac| |(n−3)/2π2

et chaque terme est soit nul soit une représentation irréductible, les deux ne pouvant être simultanément
non nuls et égaux (6.2.2(i) et (ii)). Ainsi a1 = a2 = 1 et l’égalité d’ensemble non ordonné annoncée.

Supposons que Jac| |(n−3)/2π1 = πn−2,+ donc Jac| |(n−3)/2π2 = πn−2,−. On sait (6.2.2 (i)) que π2 ↪→
Ind | |(n−3)/2 ⊗ πn−2,−.

On traite d’abord le cas de n = 6 qui est le seul cas où Jac| |1/2πn−2,− 6= 0. Dans ce cas, par les
formules générales de calcul de module de Jacquet, on a :

Jac| |1/2Ind(| |5/2 × π4,−) = Ind | |5/2 ⊗ | |−1/2,

car Jac| |1/2π4,− = | |−1/2 d’après la description donnée dans le paragraphe 6.1.1. Par exactitude du module
de Jacquet, on a l’inclusion :

Jac| |1/2π6,− ↪→ Ind | |5/2 ⊗ | |−1/2 ' Ind | |−1/2 ⊗ | |5/2;

l’isomorphisme est, par transitivité, une propriété de GL(2, E) et dans ce groupe l’induite de | |5/2⊗| |−1/2 est
irréductible. Ainsi si Jac| |1/2π6,− est non nul c’est un sous-module irréductible de l’induite Ind | |−1/2⊗| |5/2.
D’où une inclusion (cf. 6.2.2 (i))

π6,− ↪→ Ind (| |1/2 ⊗ Jac| |1/2π6,−) ↪→ Ind | |1/2 ⊗ | |−1/2 ⊗ | |5/2.

Ceci est impossible pour une série discrète car 1/2 + (−1/2) = 0 et cela contredit le critère de Casselman.
Ainsi Jac| |1/2π6,− = 0.

On suppose n > 6. Par hypothèse de récurrence Jac| |1/2πn−2,− = 0 et (n − 3)/2 6= ±1/2 ; donc les
formules standard de calcul de module de Jacquet donnent

Jac| |1/2Ind | |(n−3)/2 ⊗ πn−2,− = Ind (| |(n−3)/2 ⊗ Jac| |1/2πn−2,−) = 0,

par l’hypothèse de récurrence puisque n − 2 ≥ 6. Par exactitude des modules de Jacquet cela force aussi
Jac| |1/2π2 = 0 donc π2 6= πn−2,+ ; d’où π1 = πn−2,+ par (ii). Cela termine la preuve de (iii).

Corollaire. Ici on suppose n ≥ 4.
(i) Le module de Jacquet (pour le Borel) de πn,− est de longueur 1 ; il est réduit à⊗

`∈[(n−3)/2,−1/2]

| |`

où on décale de 1 en 1 (et non 1/2 )
(ii) Le module de Jacquet (pour le Borel) de πn,+ est de longueur (n − 2)/2 + 2. Il contient avec

multiplicité 1 le terme ⊗
`∈[(n−3)/2,−1/2]

| |`

avec multiplicité 2 le terme ⊗
`∈[(n−3)/2,1/2]

| |` ⊗ | |1/2

et avec mutliplicité 1 tous les termes ⊗
`∈[(n−3)/2,1/2]

| |`

et où on glisse | |1/2 juste à gauche de l’un des | |` avec ` > 1/2.
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Le corollaire est vrai pour n = 4 grâce au paragraphe 6.1.1. Pour n > 4 on le démontre ainsi.
Le (i) se démontre par récurrence : on sait que Jacχπn,− = 0 sauf pour χ = | |(n−3)/2 et Jac| |(n−3)/2πn,− =

πn−2,−. Par transitivité, le module de Jacquet pour le Borel de πn,− est le produit tensoriel de | |(n−3)/2 avec
le module de Jacquet (pour le Borel) de πn−2,−.

Pour (ii) le même argument que pour (i) calcule tous les termes du module de Jacquet de πn,+ qui
commence par | |(n−3)/2 et il faut ajouter les termes qui commencent par | |1/2. Mais il n’y a en qu’un puisque
Jac| |1/2 = StU(n−2) et c’est la description de l’énoncé.

References

[Art12] James Arthur. The endoscopic classification of representations: orthogonal and symplectic groups.
Colloquium Publication Series. AMS, 2012. To appear.

[BLGGT] Thomas Barnet-Lamb, Toby Gee, David Geraghty, and Richard Taylor. Potential automorphy
and change of weight. Preprint.

[Bor76] Armand Borel. Admissible representations of a semi-simple group over a local field with vectors
fixed under an Iwahori subgroup. Invent. Math., 35:233–259, 1976.
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