
CONGRUENCES BETWEEN MODULAR FORMS
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Abstract. We survey the connections between modular forms and represen-

tations of Galois groups that are predicted by the Langlands programme. We

focus in particular on the applications of congruences between modular forms
(through automorphy lifting theorems) to an improved understanding of these

connections, including the author’s recent joint work with James Newton on

the existence of the symmetric power liftings of Hilbert modular forms.
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Let k be an integer, and let h denote the complex upper half-plane. A modular
form of weight k and level Γ(1) = SL2(Z) is a holomorphic function f : h → C
satisfying the following conditions:

• For every τ ∈ h and γ =

(
a b
c d

)
∈ SL2(Z), we have

f((aτ + b)/(cτ + d))(cτ + d)−k = f(τ).

• The function |f(τ)| is bounded as Im(τ) → ∞.

Modular forms are the most classical incarnation of automorphic representations,
which are the fundamental objects of the Langlands programme. Congruences be-
tween modular forms, to be defined below, are at the heart of many applications of
the Langlands programme to questions in number theory, thanks to their interpre-
tation in terms of deformations (in the sense of Mazur [Maz89]) of representations
of Galois groups.

In this article, we will discuss congruences from this point of view and sketch some
significant applications, including the modularity of elliptic curves over Q [Wil95,
TW95, BCDT01], the modularity of (Serre type) representations of Gal(Q/Q)
[KW09b, KW09c], and functoriality for holomorphic modular forms [NT21a, NT21b].
These applications can all interpreted as saying that certain Galois representations
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are modular (or, synonymously, automorphic). We will not address here some
equally significant applications of congruences (especially, congruences with Eisen-
stein series) to arithmetic, such as the proofs of the Iwasawa main conjecture for
GL1 over totally real fields [Wil90] and the Iwasawa main conjecture for many el-
liptic curves over Q [SU14]. For a recent survey addressing these themes in the
context of the Birch–Swinnerton-Dyer conjecture, see [BST21].

1. Congruences between holomorphic modular forms of level 1

What is a congruence? Congruences can be seen most directly through q-
expansions of modular forms. If f(τ) is a modular form (of weight k and level
SL2(Z), as in the first paragraph above), then it satisfies the relation f(τ+1) = f(τ),
hence has a q-expansion

f(τ) =
∑
n≥0

an(f)q
n,

where q = e2πiτ , and the q-expansion coefficients an(f) are complex numbers. If f, g
are modular forms which happen to have rational q-expansion coefficients, we say
provisionally that they are congruent modulo a prime p (and write f ≡ g mod p)
if for every n ≥ 0, the rational numbers an(f), an(g) are p-integral (i.e. have
denominator prime to p) and satisfy the congruence

(1.1) an(f) ≡ an(g) mod p.

A famous example is Ramanujan’s congruence E12 ≡ ∆ mod 691, where E12 is the
weight 12 Eisenstein series

E12(τ) =
ζ(−11)

2
+
∑
n≥1

σ11(n)q
n, where σ11(n) =

∑
d|n

d11,

and ∆ is Ramanujan’s modular form

∆(τ) = q

∞∏
n=1

(1− qn)24

(also a modular form of weight 12 – in fact, E12, ∆ form a basis for the C-vector
space M12(SL2(Z)) of modular forms of weight 12). Ramanujan showed that we
have

σ11(n) ≡ an(∆) mod 691

for all n ≥ 1, while we can compute

ζ(−11)

2
=

691

65520
≡ 0 = a0(∆) mod 691.

Faced with this example, we have a number of questions, including:

(1) Why is congruence modulo p an interesting concept? What are the number-
theoretic consequences of the existence of a congruence?

(2) For which pairs of modular forms is the existence of a congruence arithmeti-
cally significant? Clearly, the existence of a congruence modulo p between
f and (1 + p)f is not interesting.

(3) How do we describe and/or measure congruences?
(4) How do we define the notion of congruence for automorphic representations,

which may not admit such a concrete interpretation as modular forms (for
example, they may not have analogues of the q-expansion)?
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Our answers to these questions will be based on the point of view that we are inter-
ested in modular forms primarily for their connection with Galois representations.1

A Galois representation is a continuous representation

ρ : Gal(Q/Q) → GLn(K),

where K is a topological ring. The most significant case for us will be when K is a
finite extension of Qp (in which case ρ is said to be a p-adic Galois representation)
or of Fp (in which case ρ is said to be a mod p Galois representation). The modular
forms E12 and ∆ both have attached p-adic Galois representations (for any prime
number p – these representations then collectively form a compatible system). In
the case of E12, we can describe the attached p-adic Galois representation ρE12,p

explicitly: it is a direct sum

ρE12,p = 1⊕ ϵ−11
p ,

where 1 is the trivial character of GQ = Gal(Q/Q) and

ϵp : GQ → Aut(µp∞(Q)) = Z×
p

is the p-adic cyclotomic character (that describes the action of the Galois group on

the subgroup µp∞(Q) ⊂ Q
×

of p-power roots of unity).
To explain the sense in which ρE12,p

is ‘attached’ to E12, we need to describe
some of the additional structures carried by the group GQ, including the notion of

Frobenius element. If l is any prime number, we can fix an algebraic closure Ql

of Ql and an embedding Q → Ql. This in turn gives an embedding GQl
→ GQ

(restriction of automorphisms ofQl/Ql toQ), which is well-defined up to conjugacy.
The group GQl

sits in a short exact sequence

1 → IQl
→ GQl

→ GFl
→ 1,

where IQl
is the inertia subgroup of GQl

, i.e. the automorphisms which act as the

identity on the residue field Fl of Ql. The group GFl
has a canonical topological

generator, namely the Frobenius element Frobl ∈ GFl
.2

A representation ρ : GQ → GLn(K) is said to be unramified at l if IQl
is

contained in its kernel. In this case, it makes sense to evaluate ρ on Frobl and the
conjugacy class of ρ(Frobl) is independent of the choice of embedding GQl

→ GQ.
In particular, the characteristic polynomial det(X − ρ(Frobl)) is well-defined. We
can now explain the sense in which ρE12,p is attached to E12: for any prime number
p ̸= l, ρE12,p is unramified at l, and we have the relation

det(X − ρE12,p(Frobl)) = X2 − al(E12)X + l11 = X2 − σ11(l)X + l11.

This duality between character values of Galois representations on the one hand
and q-expansion coefficients (to be re-interpreted below as the eigenvalues of Hecke
operators) is one of the defining features of the Langlands correspondence.

The Galois representation ρ∆,p : GQ → GL2(Qp) attached to ∆ is also unrami-
fied at any prime number l ̸= p, and satisfies the relation

det(X − ρ∆,p(Frobl)) = X2 − al(∆)X + l11.

1Note, however, that even if one is interested only in number theory, modular forms have many

other applications – see e.g. [Sar90] for examples.
2More precisely, we take Frobl to be the geometric Frobenius, inverse of the usual ‘arithmetic’

Frobenius x 7→ xl, as our preferred normalisation.
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It is relatively easy to show (cf. [Ser68]) that this relation determines ρ∆,p up to
isomorphism, if it exists. Indeed, the Chebotarev density theorem implies that if,
for a finite set S of primes we write GQ,S for the Galois group of the maximal

subextension of Q which is unramified outside S, then the conjugacy classes of
Frobenius elements at primes l ̸∈ S are dense in GQ,S . Since ρ∆,p factors through
the quotient GQ → GQ,{p}, the character of the representation ρ∆,p is determined
by its values on Frobenius elements at primes l ̸= p. Constructing ρ∆,p is another
matter. Its existence was conjectured (in a very precise formulation, with a view
to understanding the congruences satisfied by ∆) by Serre [Ser69] and proved by
Deligne [Del71b], who constructed it in the étale cohomology of a p-adic local system
on a modular curve over Q.

What, then, is the interpretation of the congruence E12 ≡ ∆ mod 691? For
this we need to introduce the (modulo p) residual representation of a p-adic Galois
representation. Let E/Qp be a finite extension of valuation ring O and residue field
k = O/(ϖ). The group GLn(E) has a unique conjugacy class of maximal compact
subgroups, namely the class of GLn(O). It follows that if ρ : GQ → GLn(E) is a
continuous representation, then it can be conjugated to take values in GLn(O). We
write ρ : GQ → GLn(k) for the semisimplification of the composite

GQ → GLn(OE) → GLn(k)

(where the second arrow is reduction modulo (ϖ) – we take semisimplification in
order that the result is independent, up to isomorphism, of the choice of conjugate
of ρ defined over O). We can equivalently characterise ρ as follows: it is the unique
(up to isomorphism) semisimple representation such that for any σ ∈ GQ, we have

det(X − ρ(σ)) mod (ϖ) = det(X − ρ(σ)).

If ρ is known to be (say) unramified at primes l ̸= p, then the Chebotarev density
theorem implies that is equivalent to have

det(X − ρ(Frobl)) mod (ϖ) = det(X − ρ(Frobl))

for every prime l ̸= p.
We can now interpret the existence of the congruence between E12 and ∆ in

Galois-theoretic terms: it implies that the residual representations ρE12,691 and
ρ∆,691 are isomorphic. The representation ρE12,691 is easy to compute (it is the

direct sum of 1 and ϵ−11
691 ) so we see in particular that the irreducible representation

ρ∆,691 becomes reducible after reduction modulo 691. This has consequences for
concrete questions in number theory! An argument of Ribet [Rib76] shows that the
existence of this congruence directly implies:

Proposition 1.1. There exists a non-zero ω ∈ Pic(Z[ζ691])⊗Z F691 such that for
every σ ∈ Gal(Q(ζ691)/Q), we have σ(ω) = ϵ691(σ)

−11ω.

We can now anticipate the answer to the second question above – the modular
forms for which the notion of congruence is interesting are those that have attached
Galois representations. This class of modular forms can be described in purely
modular terms, using the theory of Hecke operators.

For any weight k, there is a family (Tn)n∈N of linear endomorphisms ofMk(SL2(Z)),
called Hecke operators. These have the following key properties (see e.g. [Ser73]):

• They commute, and are simultaneously diagonalisable.
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• The simultaneous eigenspaces are 1-dimensional, and the eigenvalues of
each Hecke operator Tn are algebraic integers.

An element f ∈Mk(SL2(Z)) which is an eigenvector for the Hecke operators Tn is
called an eigenform. It is a fact that if f is an eigenform, then a1(f) ̸= 0, so we can
pick out a canonical generator for each eigenspace by specifying a1(f) = 1 (in which
case we say that f is normalised). Moreover, if f is normalised then the eigenvalue
of Tn on f is the q-expansion coefficient an(f) – so we can now reinterpret these
coefficients as Hecke eigenvalues.

We then have the following theorem, the second part being the main theorem of
[Del71a]. We state it just for the subspace Sk(SL2(Z)) ≤ Mk(SL2(Z)) of cuspidal
modular forms, i.e. modular forms f with a0(f) = 0. (This has the effect of ex-
cluding Eisenstein series and restricting to those eigenforms which have irreducible
Galois representations.)

Theorem 1.2. Let k ≥ 0.

(1) The vector space Sk(SL2(Z)) has a unique (up to re-ordering) basis of nor-
malised eigenforms.

(2) Let f ∈ Sk(SL2(Z)) be a normalised eigenform. Then the subfield Kf ⊂ C
generated by the eigenvalues of Tn on f is a number field. For any finite
place λ of Kf , there is a continuous irreducible representation

ρf,λ : GQ → GL2(Kf,λ),

uniquely characterized up to conjugation by the requirement that for any
prime l ∤ λ of Kf , ρf,λ is unramified at l and we have

det(X − ρf,λ(Frobl)) = X2 − al(f)X + lk−1.

To compare the Galois representations associated to different cuspidal eigen-
forms, it is convenient to introduce the following notational device. If f is an
eigenform, p is a prime number, and ι : Qp → C is an isomorphism, then ι−1

induces a p-adic place λ of the coefficient field Kf , and we define

ρf,ι : GQ → GL2(Qp)

to be the composite of ρf,λ with the embedding GL2(Kf,λ) → GL2(Qp) induced
by ι.

Definition 1.3. Let f, g be normalised eigenforms. Fix a prime p and an isomor-
phism ι : Qp → C. We say that they are congruent modulo p if one of the following
equivalent conditions is satisfied:

(1) There is an isomorphism ρf,ι
∼= ρg,ι of representations GQ → GL2(Fp).

(2) For each prime number l ̸= p, we have

ι−1(al(f)) ≡ ι−1(al(g)) mod mZp
.

(3) For all but finitely many prime numbers l, we have

ι−1(al(f)) ≡ ι−1(al(g)) mod mZp
.

Here mZp
is the maximal ideal of the valuation ring Zp of Qp. The definition

depends on the fixed choice of ι, although in a relatively mild way. Indeed, if
ȷ : Qp → C is another choice, then ȷ = σ ◦ ι for some σ ∈ Aut(C). The group
Aut(C) acts on the set of normalised eigenforms (with an(

σg) = σ(an(g))), and if
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f is congruent g with respect to ι, then σf will be congruent to σg with respect to
ȷ.

We caution the reader that Definition 1.3 is different to the provisional defini-
tion adopted in (1.1). In particular, we are now only asking for the coefficients
al(f), al(g) at primes l ̸= p to be congruent modulo p, and not placing a condition
on ap(f), ap(g). The reason for this is that the reductions modulo p of the ap’s are
not determined by the associated Galois representations (although they are when
k ≤ p+ 1, see e.g. [BG09]).

Relatedly, we are focusing now on the coefficients al for primes l and neglecting
the an for general integers n. If f is an eigenform then the coefficients an(f)
are determined by the coefficients al(f) for primes l|n, so in a sense we are not
losing much information. However, when we consider more general automorphic
representations, it is the eigenvalues of Hecke operators at unramified primes l
that we are interested in, and these no longer coincide with Fourier coefficients of
automorphic forms. We adopt this point of view now in preparation for the more
general discussion beginning in §3.

We have thus decided it is of primary interest to look for congruences between
the systems of eigenvalues associated to eigenforms. An effective tool to study these
is the notion of Hecke algebra.

Definition 1.4. Let k ≥ 0 an integer. Then the weight k Hecke algebra is Tk =
T(Sk(SL2(Z))), the Z-subalgebra of End(Sk(SL2(Z))) generated by Hecke operators
Tl (l ∤ p).

This ring has reasonable properties:

Proposition 1.5. (1) Tk is a finite free Z-algebra.
(2) The normalised eigenforms f ∈ Sk(SL2(Z)) are naturally in bijection with

the homomorphisms αf : Tk → C.

(3) Let p be a prime, and let ι : Qp → C be an isomorphism, and let f, g ∈
Sk(SL2(Z)) be normalised eigenforms. Then there is an isomorphism ρf,ι

∼=
ρg,ι if and only if the associated homomorphisms ι−1αf : Tk → Zp have
the same reduction modulo mZp

.

The first point follows from the fact that there is a natural Z-structure on
Sk(SL2(Z)) preserved by the Hecke operators, given by the submodule Sk(SL2(Z),Z)
of cuspidal modular forms with integer q-expansion coefficients. The remainder is
essentially linear algebra (see [Bel21, Ch. 1]).

The introduction of the Hecke algebra means that we can study the set of eigen-
forms which are congruent to a given one by studying the localization and com-
pletion of Tk,m at a maximal ideal m ≤ Tk. If m has residue characteristic p, this
will be a finite free Zp-algebra. In fact, if we are interested in congruences to a
fixed eigenform f , then it is convenient to enlarge the coefficients. We therefore
fix a finite extension E/Qp inside Qp such that the image of ι−1αf is contained in
the ring of integers O ⊂ E, and form Tk(O) = Tk ⊗Z O. Then Tk(O) is a finite
free O-algebra, and if we write now m ≤ Tk(O) for the kernel of the O-algebra
homomorphism

ι−1αf ⊗ 1 : Tk(O) → O,
then we find that there is a bijection between the set of normalised eigenforms
g ∈ Sk(SL2(Z)) congruent to f modulo p, and the set of O-algebra homomorphisms
HomO(Tk(O)m,Qp).
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Various devices from commutative algebra can now be introduced to study and
measure congruences. With notation as in the previous paragraph, the following
objects are all of interest:

• The ringTk(O)m itself. The question of the degree of singularity ofTk(O)m
(for example, whether it is a complete intersection ring, Cohen-Macaulay,
Gorenstein, etc.) is (anticipating the discussion below) related to the degree
of degeneracy of the residual representation ρf,ι.

• The relative cotangent space Φf = pf/p
2
f , where pf is the kernel of the

homomorphism Tk(O)m → O associated to f .
• The congruence module Ψf = Tk(O)m/(pf ,AnnTk(O)m pf ).

The O-modules Φf and Ψf have the property that they are non-zero if and only if f
is indeed congruent to another eigenform. Various relations between them exist. For
example, a famous component of Wiles’s proof of Fermat’s Last Theorem [Wil95]
is his numerical criterion, namely that there is an inequality

#Φf ≥ #Ψf ,

with equality holding if and only if Tk(O)m is a complete intersection ring. (This
statement incorporates an improvement by Lenstra [Len95], who removed the need
to assume that Tk(O)m is Gorenstein.)

A very powerful device for studying these Hecke algebras is Galois deformation
theory. Let k denote the residue field of O. Introduced by Mazur [Maz89], Galois
deformation theory gives a mechanism to study all of the deformations of a given
absolutely irreducible residual representation ρ : GQ → GL2(k) to representations
GL2(A) with coefficients in a complete Noetherian local O-algebra A. We can make
this precise as follows. Let CO denote the category of complete Noetherian local
O-algebras with residue field k – the objects of this category may all be represented
as quotients of rings OJX1, . . . , XgK (for some g ≥ 0). Suppose that ρ is unramified
outside S, for a finite set of primes S containing p. If A ∈ CO, then a lifting of ρ,
unramified outside S, is a continuous homomorphism

ρA : GQ,S → GL2(A)

such that the composite

GQ,S → GL2(A) → GL2(k)

equals ρ. A deformation of ρ is a conjugacy class of liftings under the action
of the group ker(GL2(A) → GL2(k)). If f is a normalised eigenform and ρf,ι is
defined over k and absolutely irreducible, then any choice of eigenform g which is
congruent to f gives rise to a deformation of ρf,ι. Indeed, we can choose a model

ρg,ι which takes values in GL2(Zp). We know that there is an isomorphism between
the composite

GQ,{p} → GL2(Zp) → GL2(Fp)

and ρf,ι. After replacing ρg,ι by a conjugate, we can assume that these are in fact

equal (and that ρg,ι can be defined with coefficients in a subring of Zp which is
an object of CO), making ρg,ι into a lifting, whose associated deformation can be
checked to be independent of any choices.

The universal deformation ring is an object RS,ρ ∈ CO with the following prop-
erties:

• There is a deformation ρunivS : GQ,S → GL2(RS,ρ).
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• For anyA ∈ CO, the map ϕ 7→ ϕ∗ρ
univ
S gives a bijection from HomCO (RS,ρ, A)

to the set of deformations of ρ to A that are unramified outside S.

In other words, RS,ρ represents the functor CO → Sets of deformations unramified
outside S. Yoneda’s lemma implies that this representing object is defined up to
unique isomorphism.

It is now relatively formal to prove that if f is an eigenform such that ρf,ι is
absolutely irreducible, then there is a unique surjective homomorphism

R{p},ρf,ι
→ Tk(O)m

with the property that for each prime l ̸= p, tr ρuniv{p} (Frobl) is mapped to the Hecke

operator Tl. Indeed, there is a natural embedding

Tk(O)m →
∏
g

Zp,

Tl 7→ (ι−1al(g))g

where the product is over the set of normalised eigenforms g which are congruent
to f . The existence of the deformations associated to each such eigenform implies
that there is also a map

R{p},ρf,ι
→
∏
g

Zp,

and we just need to show that the image is exactly Tk(O)m. This is a consequence
of Carayol’s lemma [Car94], which implies that R{p},ρf,ι

is topologically generated

by the elements tr ρuniv{p} (Frobl), therefore that its image under the above map is

generated, as an O-algebra, by the Hecke operators Tl.
Homomorphisms such as R{p},ρf,ι

→ Tk(O)m are one of the main mechanisms for

studying congruences between modular forms, at least in the residually irreducible
case. We see in particular that R{p},ρf,ι

gives an upper bound on the size of

Tk(O)m, completely independent of the world of modular forms. In actual fact,
to obtain a useful upper bound we need to refine the definition of R{p},ρf,ι

by

imposing deformation conditions. To see the necessity of this refinement, we note
that the ring Tk(O)m, being a finite free O-algebra, has Krull dimension 1, while
Mazur’s tangent-obstruction theory [Maz89, Proposition 5] can be used, together
with Tate’s global Euler characteristic formula, to show that the Krull dimension
of R{p},ρf,ι

is at least 4.

We define a deformation condition D = (S, ψ, {Dl}l∈S) to be a tuple consisting
of the following data:

• S, a finite set of primes containing p.
• ψ, a continuous character GQ,S → O×.

• For each l ∈ S, a subfunctor Dl ⊂ D□
l of the functor D□

l of all liftings of
ρf,ι|GQl

to objects of CO which is invariant under the conjugation action of

ker(GL2(A) → GL2(k)). We further require that Dl is representable.

Under these assumptions, we say that a lifting ρA : GQ → GL2(A) of ρf,ι is of type
D if it satisfies the following conditions:

• ρA is unramified outside S.
• det ρA coincides with the pushforward of ψ to a character GQ → A×.
• For each l ∈ S, ρA|GQl

∈ Dl(A).
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The hypothesis that Dl is invariant under conjugation shows that the notion of
‘type D deformation’ makes sense; the hypothesis that Dl is representable implies
that there is a quotient RS,ρf,ι

→ RD with the property that for any A ∈ CO the

homomorphism RS,ρf,ι
→ A corresponding to a deformation [ρA] factors through

RD if and only if [ρA] is of type D. We say that RD is the universal type D
deformation ring.

What is the appropriate choice of deformation condition to study the Hecke
algebra Tk(O)m? The first two pieces of data are easy to specify:

• We already know that we should take S = {p}.
• The representations ρg,ι corresponding to modular forms of weight k have
determinant ϵ1−k

p , so we should take ψ = ϵ1−k
p .

It remains to define Dp. This is hard! The correct conditions to impose on the
restrictions ρA|GQp

come from p-adic Hodge theory. In particular, Fontaine defined

[Fon84] what it means for a representation of GQp on a Qp-vector space to be
‘crystalline’. Such representations have associated numerical invariants, the Hodge–
Tate weights. It follows from work of Faltings and Scholl [Fal89, Sch90] that if g
is a normalised eigenform of weight k, then ρg,ι|GQp

is crystalline, with Hodge–

Tate weights {0, k − 1}. However, Fontaine’s theory works primarily with rational
coefficients, and can be promoted to an integral theory only when k is small relative
to p (see e.g. [FL82]). Kisin [Kis08] showed that one can nevertheless define a

deformation problem Dcr,(0,k−1)
p ⊂ D□

p capturing crystalline representations in the

generic fibre and with good properties. He showed that Dcr,(0,k−1)
p is represented

by a quotient R
cr,(0,k−1)
p ∈ CO of R□

p with the following properties:

• R
cr,(0,k−1)
p is reduced and O-flat.

• R
cr,(0,k−1)
p [1/p] is regular.

• A homomorphism R□
p → Qp factors through R

cr,(0,k−1)
p if and only if the

pushforward ρp : GQp
→ GL2(Qp) of the universal lifting is crystalline with

Hodge–Tate weights {0, k − 1}.
With this choice, we obtain a homomorphism

RD → Tk(O)m

that has a chance of being an isomorphism. This homomorphism is a central motif
in the study of congruences between modular forms. We see that the ring RD
gives a purely Galois-theoretic upper bound for the Hecke algebra, and as such
gives an upper bound for the congruences that can exist. Some of the measures
of congruences introduced above have Galois theoretic analogues. For example, we
recall that pf denotes the kernel of the homomorphism Tk(O)m → O associated to
f . Let qf denote its pullback to RD. Then there is an inequality

#pf/p
2
f ≤ #qf/q

2
f ,

and the quotient qf/q
2
f can be interpreted as the Pontryagin dual of the Selmer

group

H1
D(Q, ad

0 ρf,ι ⊗O E/O)

(where the local conditions defining the Selmer group may be computed in terms
of the deformation condition D, and ad0 ⊂ ad denotes the adjoint action on the
Lie subalgebra of trace 0 matrices).
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In §2 below, we will broaden our discussion to include modular forms of varying
level (or in other words, Galois representations which may be ramified at more than
one prime). In this context, the point of view afforded by the connection to Galois
representations and their deformation theory becomes indispensable. We conclude
this section by mentioning two other generalisations of the ideas considered here.

First, we want to mention that the notion of Hecke algebra is a flexible one and
need not be confined just to a discussion of congruences between modular forms of
fixed weight. For example, we could fix a bound N and define T≤N to be the Hecke
algebra which acts faithfully on ⊕k≤NMk(SL2(Z)), or even p-adically complete and
let N → ∞, in which case we enter the world of p-adic modular forms. A readable
exposition of this situation, which goes on to discuss the more subtle theories of
Hida and Coleman–Mazur and their connections to Galois representations, can be
found in [Eme11].

Second, we need to mention that one can also consider the question of deforming
Galois representations without assuming that ρf,ι is irreducible. This residually
reducible case presents additional technical difficulties. However, it should not be
ignored since theorems proved in this context often have powerful applications. A
rule of thumb is that it is difficult because there are more congruences, and also
interesting for the very same reason! A typical case is when p = 2. There is
(up to conjugacy) a unique semisimple representation ρ2 : GQ,{2} → GL2(F2),
namely the trivial one, corresponding to the fact that there is a unique modulo
2 congruence class of normalised eigenforms of level SL2(Z). The neatest way
to surmount these difficulties is to use the notion of pseudodeformation. A nice
exposition of this theory that works in small characteristic is given by Chenevier
[Che14]. This reference includes a computation of the universal pseudodeformation
ring of ρ2.

2. Varying the level and the weight

We now discuss modular forms of varying level, sticking to the case of cuspidal
modular forms. In the classical theory, one fixes an integer N ≥ 1 and considers
the congruence subgroup

Γ1(N) =

{(
a b
c d

)
∈ SL2(Z) | a ≡ 1 mod N, c ≡ 0 mod N

}
of SL2(Z), defining a vector space Sk(Γ1(N)) of cuspidal modular forms of weight
k and level Γ1(N). One can again define Hecke operators, and the Atkin-Lehner
theory of newforms uses these Hecke operators to single out those modular forms
which should (and do) have associated Galois representations.

We prefer to use the language of automorphic representations of the adele group
GL2(AQ) (i.e. the group of invertible 2 × 2 matrices with coefficients in the adele

ring AQ =
∏′

p Qp×R of Q). The holomorphic cuspidal newforms may be naturally
identified with a subset of the set of ‘algebraic’ cuspidal automorphic representations
of GL2(AQ). Conjecturally, the algebraic cuspidal automorphic representations of
GL2(AQ) are in one-to-one correspondence with those compatible systems of irre-
ducible 2-dimensional representations of GQ which contribute to the cohomology
of algebraic varieties. This correspondence is characterized through the (known)
local Langlands correspondence, which similarly relates irreducible representations
of GL2(Qp) with 2-dimensional Weil–Deligne representations ofWQp

(to be defined
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below). This enlarged point of view is useful even for those automorphic represen-
tations which can be described in more classical terms, since certain phenomena
(especially related to the presence of ramification) become much more transparent.

In this section, we will therefore recall some definitions in the theory of auto-
morphic representations on GL2, before continuing our discussion of congruences in
this context. We first give the definition of a cuspidal automorphic representation
of GL2(AQ). Let χ : Q×\A×

Q → C× be a continuous (Hecke) character, and let
A0,χ denote the C-vector space of functions

f : GL2(Q)\GL2(AQ) → C

satisfying the following conditions:

(1) For all z ∈ A×
Q, g ∈ GL2(AQ), f(zg) = χ(z)f(g).

(2) The span of the right translates of f under the group
∏

p GL2(Zp)×O2(R)
is finite-dimensional.

(3) Writing A∞
Q =

∏′
p Qp for the ring of finite adeles, for all g∞ ∈ GL2(A

∞
Q ),

the function ϕg∞ : GL2(R) → C, ϕg∞(g∞) = f(g∞, g∞) is smooth, and
the span of its images under the centre of the universal enveloping algebra
U(gl2,C) is finite-dimensional.

(4) Writing ∥ · ∥ : A×
Q → R>0 for the adele norm, for every c > 0 and every

compact subset ω ⊂ GL2(AQ), there exist C,N > 0 such that for all g ∈ ω,
a ∈ A×

Q with ∥a∥ > c, we have |f(diag(a, 1)g)| ≤ C∥a∥N .

(5) For all g ∈ A×
Q, we have∫

x∈Q\A
f

((
1 x
0 1

)
g

)
dx = 0

(where the integration is with respect to some choice of Haar measure on
Q\AQ).

This is the space of cuspidal automorphic forms of central character χ. It receives
actions as follows:

• The group GL2(A
∞
Q )×O2(R) acts by right translation.

• The Lie algebra gl2,C acts by the formula (X ∈ gl2, f ∈ A0,χ):

(Xf)(g∞, g∞) =
d

dt
f(g∞, g∞ exp(tX))|t=0.

The actions of O2(R) and gl2,C are related by the formula

k ·X · f = (Ad(k)X) · (k · f)

for k ∈ O2(R), X ∈ gl2, and f ∈ A0,χ. These actions give A0,χ the structure of
GL2(A

∞
Q ) × (gl2,C,O2(R))-module (see [Car79], [Wal79] for further discussion of

the relevant local definitions). By definition, a cuspidal automorphic representation
π of GL2(AQ) of central character χ is an irreducible GL2(A

∞
Q )× (gl2,C,O2(R))-

submodule of A0,χ.
If π is a cuspidal automorphic representation, then [Fla79] it is isomorphic to a

restricted tensor product

π ∼=

(⊗
l

′ πl

)
⊗ π∞,

where:
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• For each prime l, πl is an irreducible admissible GL2(Ql)-module.
• π∞ is an irreducible admissible (gl2,C,O2(R))-module.

The Langlands conjectures (in a form made precise by Clozel [Clo90]) predict that
only those cuspidal automorphic representations which are algebraic should have as-
sociated Galois representations. To define the word ‘algebraic’, and to make precise
the word ‘associated’, we need to have in hand the local Langlands correspondence
for GL2. We state this precisely now, treating separately the archimedean and
non-archimedean cases.

The local Langlands correspondence for GL2(R) (established for a general reduc-
tive group over R by Langlands [Lan89]) is a bijection recR between the following
two sets:

• The set of (isomorphism classes of) irreducible admissible (gl2,C,O2(R))-
modules.

• The set of (conjugacy classes of) continuous semisimple representations
WR → GL2(C).

Here WR denotes the Weil group of R, which may be represented as WR = C× ⊔
C×j, where C× is a normal subgroup, j2 = −1 ∈ C, and we have jzj = z for
z ∈ C×.

Definition 2.1. A cuspidal automorphic representation π of GL2(AQ) is said to

be algebraic if recR(π∞⊗| det |−1/2)|C× is conjugate to a representation of the form
z 7→ diag(za1zb1 , za2zb2), where ai, bi are integers. It is said to be regular algebraic
if further a1 ̸= a2 (which implies b1 ̸= b2).

The cuspidal automorphic representations π of GL2(AQ) can be split into classes
depending on the behaviour of π∞ as follows:

• If recR(π∞) is irreducible, then π may be generated by a vector corre-
sponding to a holomorphic newform of weight k ≥ 2. In this case, there is
a character twist of π that is algebraic (even regular algebraic).

• If recR(π∞) is reducible, it is a sum of characters of the abelianized Weil
group W ab

R , which may be identified with R×, therefore of the form x 7→
sgn(x)a1 |x|s1 ⊕ sgn(x)a2 |x|s2 . If a1 ̸= a2 and s1 = s2, then π may be
generated by a vector corresponding to a holomorphic newform of weight
k = 1. In this case, there is a character twist of π that is algebraic, but not
a character twist that is regular algebraic.

• If recR(π∞) is reducible and a1 = a2, then π may be generated by a vector
corresponding in classical terms to a Maass form (see e.g. [Bum97]). In
this case π may or may not admit a character twist which is algebraic.

To define the local Langlands correspondence for GL2(Ql), we first need to recall
the concept of Weil–Deligne representation of WQl

. The Weil group WQl
is, as an

abstract group, the subgroup of GQl
of automorphisms inducing an integer power of

Frobenius on the residue field Fl of Ql. We give it the topology making the inertia
subgroup IQl

an open subgroup with its usual topology. By definition, a Weil–
Deligne representation is a pair (r,N), consisting of a continuous representation
r : WQl

→ GLn(C) and a nilpotent n × n matrix N such that for every σ ∈ WQl

with image Frobal in GFl
, we have the relation r(σ)Nr(σ)−1 = l−aN .

The utility of Weil–Deligne representations is that they are insensitive to the
topology in the field of coefficients, and allow comparison of different representations
in a single compatible system. (Note that the definition of the topology on WQl
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means a continuous representation is simply one where the profinite group IQl

acts through a discrete (and therefore finite) quotient.) This is the content of the
following proposition (see [Tat79, §4.2]):

Proposition 2.2. Let p ̸= l be a prime and let ι : Qp → C. Then there is a
canonical bijection WD between the following two classes of objects:

(1) The set of (conjugacy classes of) continuous representations ρ : GQl
→

GLn(Qp).
(2) The set of (conjugacy classes of) Weil–Deligne representations (r,N) of

rank n.

The first example of a Weil–Deligne representation with non-trivial N is the one
associated to a Tate elliptic curve. Let q ∈ Q×

l with |q| < 1. Then the Tate curve of
parameter q is an elliptic curve Eq over Ql with split multiplicative reduction whose
Weierstrass equation may be given by power series in q with integer coefficients (see
e.g. [Sil94, Ch. V]). There is a GQl

-equivariant isomorphism

Q
×
l /⟨q⟩ ∼= Eq(Ql).

Using this, it is easy to show that for each prime p there is an isomorphism of p-adic
representations associated to H1

ét(Eq,Ql
,Qp):

ρEq,p
∼=
(

1 ∗
0 ϵ−1

p

)
,

this representation cutting out the extension Ql({ζpn , q1/p
n}n≥1)/Ql. This exten-

sion depends on p, but the associated Weil–Deligne representation WD(ρEq,p) =
(r,N) is given by

(2.1) r = 1⊕ | · |−1, N =

(
0 1
0 0

)
(where | · | : WQl

→ C× is the unramified character with |Frobl| = l−1), which is
independent of the choice of prime p.

The local Langlands correspondence for GL2(Ql) (established for a general l-
adic local field in [Kut80], and for higher rank general linear groups in [HT01]) is
a bijection recQl

between the following two sets:

• The set of (isomorphism classes of) irreducible smooth GL2(Ql)-modules
(over C).

• The set of (conjugacy classes of) continuous Frobenius-semisimple Weil–
Deligne representations (r,N).3

We are now ready to begin our discussion of the Galois representations attached to
regular algebraic cuspidal automorphic representations of GL2(AQ), starting with:

Theorem 2.3. Let p be a prime and let ι : Qp → C be an isomorphism. Let π be
a regular algebraic cuspidal automorphic representation of GL2(AQ). Then there
exists a continuous irreducible representation

rι(π) : GQ → GL2(Qp)

3A Weil–Deligne representation is Frobenius-semisimple if r is semisimple. Conjecturally every

Weil–Deligne representation coming from the cohomology of a smooth, projective algebraic variety
satisfies this condition, but this is unknown outside of a few cases. This is why the local-global

compatibility results to follow are generally stated only up to ‘Frobenius semi-simplification’.
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such that for every prime l ̸= p, we have

WD(rι(π)|GQl
)F−ss ∼= recQl

(πl|det |−1/2).

If l ̸= p is a prime such that πl is unramified, then the above relation sim-
ply asserts that rι(π)|GQl

is unramified and that the characteristic polynomial of

rι(π)(Frobl) can be written down in terms of the eigenvalues of the unramified
Hecke operators at the prime l on π. In particular, suppose that f ∈ Sk(SL2(Z)) is
a normalised eigenform (as appearing in the statement of Theorem 1.2), and define
a function ϕ : GL2(AQ) → C by the formula

ϕ(γg∞g∞) = f(g∞ · i)j(g∞, i)−k det(g∞),

for any γ ∈ GL2(Q), g∞ ∈
∏

p GL2(Zp), g∞ ∈ GL2(R)det>0 (any element of

GL2(AQ) admits an expression as a product of such elements). Then one can show
that ϕ ∈ A0,|·|2−k generates a regular algebraic cuspidal automorphic representation
πf , and we can take rι(πf ) = ρf,ι.

Definition 2.4. Let π, π′ be regular algebraic cuspidal automorphic representations
of GL2(AQ), and let ι : Qp → C be an isomorphism. We say that π, π′ are
congruent modulo p (with respect to ι) if there is an isomorphism rι(π) ∼= rι(π

′).

Once again, the Chebotarev density theorem shows that this is equivalent either
to:

• For every prime l ̸= p at which π and π′ are both unramified, the Hecke
eigenvalues of Tl on π, π′ (or their images under ι in Zp) have the same

image in Fp;
• Or, the same requirement but only for all but finitely many primes l ̸= p.

The existence of a congruence between two (regular algebraic, cuspidal) automor-
phic representations π, π′ places constraints on their local behaviour. For example,
suppose that l is a prime such that πl is unramified and π′

l is an unramified twist of
the Steinberg (or special) representation of GL2(Ql). (In classical terms, this means
that if π′ corresponds to a newform of level Γ1(N), then l||N and the Nebentypus
of π′ has conductor prime to l. In terms of the local Langlands correspondence, it
means that recQl

(π′
l) is an unramified character twist of the representation given

by (2.1).) By hypothesis, there is an isomorphism

rι(π) ∼= rι(π
′).

We see that rι(π
′)|GQl

is an infinitely ramified representation whose reduction

modulo p is unramified. The characteristic polynomial of rι(π
′)(Frobl) coincides

with the reduction modulo p of the characteristic polynomial of rι(π
′)(ϕl), where

ϕl ∈ GQl
is any lift of Frobl ∈ GFl

. The eigenvalues of this characteristic polyno-

mial have ratio α, αl for some α ∈ Q
×
l . We conclude that a necessary condition

on π for the existence of π′ with the given behaviour at l is that the eigenvalues of

rι(π) in F
×
l have ratio l±1.

It is a fact that, under mild hypotheses, this necessary condition for the existence
of a congruence is also sufficient. This was first established by Ribet [Rib84]. His
methods can be used to prove:
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Theorem 2.5. Let π be a regular algebraic, cuspidal automorphic representation
of GL2(AQ) such that π∞ is of ‘weight 2’.4 Suppose given distinct primes p, l
satisfying the following conditions:

(1) The representation rι(π) is irreducible.
(2) πl is unramified.

(3) The eigenvalues α, β ∈ F
×
p of rι(π)(Frobl) satisfy α/β = l±1.

Then there exists another regular algebraic, cuspidal automorphic representation π′

of GL2(AQ), also of weight 2, such that rι(π
′) ∼= rι(π) and π′

l is an unramified
twist of the Steinberg representation.

We refer to the result of the theorem as ‘level-raising’. If π, π′ correspond
to classical newforms f, f ′ of levels Nf , Nf ′ , then Nf is prime to l, while Nf ′ is
divisible by l. We note that it is easy, by applying the Chebotarev density theorem
to the extension of Q cut out by rι(π), to find infinitely many primes l satisfying
the hypothesis of the theorem. We also note that some global hypothesis (like the
irreducibility of rι(π)) is necessary; see again [Rib84] for examples.

Ribet’s theorem was proved using automorphic techniques: the theory of Galois
representations plays essentially no role. Other authors improved Ribet’s results,
classifying the possible levels of pairs of congruent newforms and proving level-
raising results producing more general ramified local components (see e.g. [DT94]).
Mazur and Ribet also proved level-lowering results [Rib90] (where one e.g. starts
with π′ and hopes to produce π), which played an essential role in the first proof
of Fermat’s Last Theorem [Wil95].

A different and very useful point of view on these problems is given by Galois
deformation theory: the necessary local conditions for level-raising at l to occur
can be naturally expressed in this framework. Furthermore, Khare–Wintenberger
(on their way to the proof of Serre’s conjecture, which we will discuss in §4 below)
were able to use Galois deformation theory to eventually establish a very strong
local-global principle for the existence of congruences. This approach subsumes the
results mentioned in the previous paragraph, and also gives an important guide
to understanding the much more subtle question of the existence of congruences
between modular forms of differing weights.

To describe this, we take up again the notation introduced for Galois deformation
theory in the previous section. Let π be a regular algebraic, cuspidal automorphic
representation of weight k ≥ 2. Let p be a prime such that rι(π) is irreducible, and
let S be a finite set of primes containing p and the primes l such that πl is ramified.
At this stage, we suppose for simplicity that πp is unramified. We introduce a

coefficient ring O ⊂ Qp such that rι(π) may be defined over O, as well as the
following data:

(1) The residual representation rι(π) : GQ,S → GL2(k) and its deformation

problem D = (S, det rι(π), {Dl}l∈S), where Dp = Dcr,(0,k−1) and if l ∈
S − {p} then Dl = D□

l .
(2) The Hecke algebra Tπ: it is a finite flat O-algebra which classifies cuspidal

automorphic representations π′ with the following properties:
(a) There is a congruence π ≡ π′ mod p, i.e. an isomorphism rι(π) ∼=

rι(π
′).

(b) π′ has weight k and is unramified away from S − {p}.

4That is, of the form associated to holomorphic newforms of weight 2.
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(3) A surjective O-algebra homomorphism RD → Tπ.

One conjectures (and can often prove) that the map RD → Tπ is an isomorphism;
in particular, that RD is a finite flat O-algebra. Even without knowing this, we can
associate a discrete invariant to any homomorphism RD → Qp, namely the inertial
equivalence class of the associated Weil–Deligne representations at primes l ∈ S.
We give the relevant definitions.

Definition 2.6. (1) Let (r,N), (r′, N ′) be Weil–Deligne representations ofWQl

of rank n over C. We say that they are inertially equivalent if the restric-
tions (r|IQl

, N), r′|IQl
, N ′) are conjugate.

(2) Let [(r,N)] be a conjugacy class of pairs consisting of a continuous represen-
tation r : IQl

→ GLn(C) and a nilpotent n×n matrix N ∈Mn(C). We call
[(r,N)] an inertial type if (r,N) extends to a Weil–Deligne representation
of WQl

.

Thus two Weil–Deligne representations of WQl
are inertially equivalent if they

have the same inertial type. Given the global representation rι(π) : GQ → GL2(k),
and a prime l ̸= p, we define Il(rι(π)) to be the set of inertial types [(r,N)] over
Qp with the following property: there exists a continuous lift ρl : GQl

→ GL2(Zp)
of ρ|GQl

such that WD(ρl)|IQl

∼= (r,N). This is a finite set. We can now state a

version of Khare–Winterberger’s local-global principle [KW09a]:

Theorem 2.7. Let p ≥ 7 be prime, and suppose that π has weight 2, that πp is
unramified, and that rι(π) is irreducible. Let S be a finite set of primes, including
p and the primes at which π is ramified, and choose for each l ∈ S−{p} an inertial
type [(rl, Nl)] ∈ Il(rι(π)). Then there exists another regular algebraic cuspidal
automorphic representation π′ of GL2(AQ) with the following properties:

(1) π′
∞ has weight 2 and π′

p is unramified.
(2) For each l ∈ S − {p}, the inertial type of WD(rι(π)) is [(rl, Nl)].

Thus rι(π
′) is an automorphic lift (i.e. a lift of the form rι(π

′)) of rι(π) which
can have any allowed ramification at each prime l ̸= p. We leave it to the reader to
explain how to deduce Theorem 2.5 from Theorem 2.7 by making an appropriate
choice of inertial types. It is important to note that Khare–Wintenberger also prove
a version of this theorem which does not have automorphic representations in the
statement: instead, one starts with a residual representation ρ : GQ → GL2(Fp)

and produces a lift ρ : GQ → GL2(Zp) with prescribed local behaviour, which
(like an automorphic lift) sits in a compatible system. However, the proof still uses
automorphic forms!

Let us sketch the proof of Theorem 2.7. Let l ∈ S − {p} and let τl = [(rl, Nl)] ∈
Il(rι(π)). The first ingredient is the definition of a suitable deformation problem
Dl(τl). It turns out that a naive definition has good properties. If x : R□

l → Qp is
an O-algebra homomorphism, then we get (by pushforward of the universal lifting)
a representation ρx : GQl

→ GL2(Qp). Let Rl(τl) denote the smallest reduced

quotient of R□
l such that for any x such that ρx has inertial type τl, x factors

through Rl(τl). We then have the following proposition (see [Sho18, §3.3]):

Proposition 2.8. With notation as in the previous paragraph:

(1) SpecRl(τl) is a union of irreducible components of SpecR□
l .

(2) For any homomorphism x : Rl(τl) → Qp such that WD(ρx) is non-degenerate,
the inertial type of WD(ρx) is τl.



CONGRUENCES BETWEEN MODULAR FORMS 17

We do not define the ‘non-degenerate’ condition here, but note that it is satisfied
by any x such that ρx is isomorphic to rι(π

′)|GQl
, for a regular algebraic cuspidal

automorphic representation π′ of GL2(AQ).
To define a global deformation problem, we also need to specify a local de-

formation problem at the prime p. In the situation of Theorem 2.7, we can

simply take Dp = Dcr,(0,1)
p . We then have a global deformation problem D =

(S,det rι(π), {Dl}l∈S). Our task is to find a homomorphism RD → Qp correspond-

ing to an automorphic lift ρ : GQ,S → GL2(Zp).
Mazur explained how to give a lower bound for the Krull dimension of the un-

restricted deformation ring Rρ,S using obstruction theory and Tate’s Euler charac-
teristic formula. The same idea can be adapted to give a lower bound for the Krull
dimension of RD, which turns out in our situation to give the estimate dimRD ≥ 1.
The observation of [KW09a, §3] is that if we can show as well that RD is a finite
O-algebra, then we will necessarily have RD[1/p] ̸= 0, implying the existence of
a homomorphism RD → Qp. One way to establish this finiteness is to show that
there is an isomorphism RD → Tπ with a suitable Hecke algebra. If we are in the
more general situation of a residual representation which is not known to be auto-
morphic, then this step is replaced by an appeal to Taylor’s technique of potential
automorphy [Tay02], together with an ‘R = T’ theorem over a suitable base exten-
sion. We will discuss representations (Galois and automorphic) over more general
bases than Q in §3 below.

In the above discussion we have adopted simplifying hypotheses (in particular,
low weight and no ramification) at the prime p. Following Kisin [Kis08], it is

possible to define a local deformation problem Dpst,(0,k−1),τp
p , corresponding to ‘de

Rham liftings of Hodge–Tate weights (0, k − 1) of inertial type τp’. It is then
natural to guess that if the associated lifting ring is non-zero then one can again
find an automorphic lift of the given residual representation with prescribed inertial
type at places l ∈ S − {p} and also prescribed inertial type at p and infinity type
π∞ of weight k. This question is subtle, leading to problems such as ‘the weight
part of Serre’s conjecture’ (see e.g. [BDJ10]) and the Breuil–Mézard conjecture
[BM02]. Although they have largely been resolved for GL2(AQ) (see e.g. [Kis09a]),
analogous questions for more general groups are very much open (see [GHS18]).

3. Generalisation to other base fields and higher rank

We now broaden the class of Galois and automorphic representations under con-
sideration. We do this both in order to be able to consider more general questions,
but also because the technique of base change plays an essential role even in proofs
of theorems (such as Theorem 2.7) in the case of GL2 over Q.

Let F be a number field, and let n ≥ 1. A cuspidal automorphic representation
of GLn(AF ) is an irreducible admissible GLn(A

∞
F ) × (glF,C,K∞)-module which

appears in the space of cusp forms on GLn(AF ) (the definition generalising the case
of GL2(AQ), see e.g. [BJ79]). Such a representation π admits a restricted direct
product factorisation π = ⊗′

vπv running over the set of places v of F ; moreover,
for each place v we have the local Langlands correspondence recFv

for the group
GLn(Fv), the Weil groups WFv being defined in an analogous way (see [Tat79] for
more details). We can give the analogue of Definition 2.1:
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Definition 3.1. A cuspidal automorphic representation π of GLn(AF ) is said to
be algebraic if for each place v|∞ of F , recFv

(π∞⊗| det |(1−n)/2)|C× is conjugate to
a representation of the form z 7→ diag(zav,1zbv,1 , . . . , zav,nzbv,n), where av,i, bv,i are
integers. It is further said to be regular algebraic if for each such v, the numbers
av,1, . . . , av,n are distinct (which implies that the numbers bv,1, . . . , bv,n are also
distinct)5.

We make the following conjecture concerning the existence of Galois representa-
tions associated to a regular algebraic cuspidal automorphic representation π. (We
stick to the regular algebraic case as this is the context in which most unconditional
results have been proved.)

Conjecture 3.2. Let π be a regular algebraic cuspidal automorphic representation
of GLn(AF ). Let ι : Qp → C be an isomorphism. Then there exists a continuous

semisimple representation rι(π) : GF → GLn(Qp) such that if v|p then rι(π)|GFv
is

potentially semistable, in the sense of p-adic Hodge theory, and for any finite place
v of F , there is an isomorphism

(3.1) WD(rι(π)|GFv
)F−ss ∼= ι−1recFv (πv| · |(1−n)/2).

(If v|p, we are using the recipe for the Weil–Deligne representation of a potentially
semistable representation given by Fontaine [Fon94]. It is further expected that
rι(π) is always irreducible, although this is not known in general, even in many of
those cases that rι(π) has been proved to exist.) We now discuss what is known
regarding this conjecture, sticking to the case where π is regular algebraic. If n = 1,
it follows from class field theory. If n = 2 and F = Q, then the conjecture is known
in its entirety. The same is true if n = 2 and F is a totally real number field; in
this case most of the associated Galois representations rι(π) be may be constructed
inside the étale cohomology of Shimura curves defined over the field F [Car86], with
the general case completed either using congruences [Tay89] or more complicated
Shimura varieties [BR89]. The proof of relation (3.1) in this case, including at the
places v|p, was completed in [Ski09], using earlier work of Saito and Kisin.

The next case to consider is when n > 2 and π is polarizable, in the sense of
[BLGGT14]:

Definition 3.3. Let π be a cuspidal automorphic representation of GLn(AF ). We
say that π is polarizable if either:

(1) F is totally real and there is a Hecke character χ : F×\A×
F → C×, with

χv(−1) independent of v|∞, such that π ∼= π∨ ⊗ χ.
(2) F is a CM field (i.e. a totally imaginary quadratic extension of a totally real

number field F+) and there is a Hecke character χ : (F+)×\A×
F+ → C×,

with χv(−1) independent of v|∞, such that πc ∼= π∨ ⊗ (χ ◦NF/F+). (Here

c ∈ Gal(F/F+) is the non-trivial element.)

The existence of Galois representations associated to regular algebraic cuspidal
automorphic representations which are polarizable can be reduced, by base change
and twisting by characters, to the case where F is CM and π is conjugate self-
dual (i.e. πc ∼= π∨). In this case π often descends (in the sense of Langlands
functoriality) to an automorphic representation of a unitary group over the maximal

5This equivalence uses the fact that π is cuspidal, in order to able to invoke the ‘purity lemma’
[Clo90, Lemme 4.9].
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totally real subfield F+ ⊂ F and the corresponding Galois representations may be
constructed inside the étale cohomology of unitary Shimura varieties. For a guide
to the (extensive) literature in this case, we refer to [Shi20].

If π is a conjugate self-dual, regular algebraic, cuspidal automorphic repre-
sentation of GLn(AF ), then its associated Galois representations rι(π) satisfy
rι(π)

c ∼= rι(π)
∨ ⊗ ϵ1−n

p . It is therefore natural to the consider the deformation
theory of n-dimensional representations of GF satisfying this conjugate-self duality
condition. This turns out to be a powerful and flexible context that has many
of the good features of the situation for GL2 over Q. In particular, one can prove
analogues of the local-global principle of Khare–Wintenberger (see e.g. [BLGGT14,
Theorem 4.3.1]). The theorems we discuss in §4 below are proved in this context.

When F is totally real or CM, but π is not polarizable, the compatible system of
Galois representations rι(π) associated to π has been constructed [HLTT16, Sch15],
but the representations rι(π) are not known to be de Rham in general and the local-
global compatibility relation (3.1) is known to hold only at all but finitely places v of
F (although progress is rapidly being made – see [ACC+23] for some positive results
in this direction). This is a reflection of the fact that the Galois representations
are not known to have a geometric realization (i.e. a realization inside the étale
cohomology of an algebraic variety), but instead may only be constructed by a
p-adic limiting process.

It is important to note that the local-global principle (i.e. the analogue of Theo-
rem 2.7) fails in this context! On the Galois side, this may be seen as a reflection of
the fact that the ‘expected dimension’ of the deformation ring RD that one writes
down (which comes from obstruction theory and the Euler characteristic formula)
is negative (see e.g. [CG18]). For some local conditions, one may expect that the
deformation ring RD does not have any characteristic 0 points. On the automorphic
side, it may be seen as a reflection of the fact that regular algebraic automorphic
representations are relatively sparse (see e.g. [Mar12]). Here is an interesting open
question in this direction:

Question 3.4. Let F be an imaginary quadratic field, and let ρ : GF → GL2(Fp)

be an irreducible representation. Does there always exist a lift ρ : GF → GL2(Zp),
unramified almost everywhere and de Rham at the p-adic places of F?

Finally, we must mention the case when n ≥ 2 and F is not totally real or CM (for
example, when F is a mixed-signature cubic field), when we can say almost nothing.
Progress in this direction appears as difficult, at present, as understanding algebraic
Maass forms (e.g. proving the analogue of Conjecture 3.2 in the case algebraic
cuspidal automorphic representations of GL2(AQ) not arising from holomorphic
modular forms).

4. Applications of congruences to modularity

In this section we will discuss three significant applications of the construction
of congruences between modular forms (and automorphic representations) to the
modularity (or automorphy) of Galois representations. We first discuss what is
expected to hold, restricting to the regular algebraic context introduced in §3. The
following conjecture encapsulates conjectures of Langlands, Clozel, and Fontaine–
Mazur [FM95]:
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Conjecture 4.1. Let F be a number field, let n ≥ 1, let p be a prime number, and
let ι : Qp → C be an isomorphism. Then the map π 7→ rι(π) of Conjecture 3.2
exists, and defines a bijection between the following two sets:

(1) The set of regular algebraic, cuspidal automorphic representations of GLn(AF ).
(2) The set of isomorphism classes of irreducible representations ρ : GF →

GLn(Qp) which are geometric, in the sense that they are unramified at all
but finitely many places of F and such that for each place v|p of F , ρ|GFv

is de Rham, and which are regular, in the sense that for each embedding τ :
F → Qp, the set HTτ (ρ) of τ -Hodge–Tate weights has n distinct elements.

(We use the definition of τ -Hodge–Tate weights given e.g. in [BLGGT14].) A
Galois representation ρ which is of the form rι(π) is said to be automorphic. The
applications we discuss will include some special cases of this theorem. They will
all combine the existence of suitable congruences with automorphy lifting theorems.
The first automorphy lifting theorems were proved in [Wil95, TW95]. Many such
theorems now exist in the literature, generally of the following form:

Theorem Schema 4.2. Let ρ : GF → GLn(Qp) be a representation satisfying the
following conditions:

(1) (Residual automorphy) There exists a regular algebraic, cuspidal automor-
phic representation π of GLn(AF ) and an isomorphism ρ ∼= rι(π) of resid-
ual representations GF → GLn(Fp).

(2) (Necessary conditions) e.g. ρ is geometric, ρ is irreducible, etc.
(3) (Technical conditions) e.g. ρ is irreducible, rι(π) and ρ have the same

Hodge–Tate weights, etc.

Then ρ is automorphic: there exists a regular algebraic, cuspidal automorphic rep-
resentation Π of GLn(AF ) and an isomorphism ρ ∼= rι(Π).

Proving an automorphy lifting theorem usually requires controlling certain Selmer
groups (e.g. the subgroup of H1(F, ad ρ) by suitable local conditions) and under-
standing the geometry of the local deformation rings associated to ρ (especially at
the p-adic places), and these requirements are often the source of the technical con-
ditions. Conversely, automorphy lifting theorems with fewer technical conditions
can often have striking applications.

4.3. First application: modularity and FLT. Let E be an elliptic curve over a
number field F such that EndF (E) = Z. For any prime p we have a 2-dimensional
representation ρE,p : GF → GL2(Qp), afforded by the 2-dimensional Qp-vector
space H1

ét(EF ,Qp). This representation is absolutely irreducible and Hodge–Tate
regular. Under Conjecture 4.1, there should exist a regular algebraic, cuspidal
automorphic representation π of GL2(AF ) such that ρE,p

∼= rι(π). When F = Q,
this is the conjecture variously known as the Taniyama–Shimura–Weil conjecture
or the modularity conjecture for elliptic curves over Q, proved for semistable curves
in [Wil95] and in general in [BCDT01]. This application indicates the usefulness
of stronger automorphy lifting theorems: the main innovation in [BCDT01] is to
analyse the structure of certain potentially crystalline deformation rings, beyond
the crystalline or semistable cases used in [Wil95].

Famously, the modularity conjecture implies Fermat’s Last Theorem, i.e. the
non-existence of a solution to the equation an + bn = cn in non-zero integers a,
b and c and exponent n ≥ 3. We explain how this follows from the modularity
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conjecture and the local-global principle Theorem 2.7. We may assume p ≥ 5.
Following the recipe of Frey [Fre87], we write down the elliptic curve

E : y2 = x(x− ap)(x+ bp).

Provided we first permute a, b and c (assumed coprime) so that a ≡ 3 mod 4
and b is even, a computation (see e.g. [Ser87, §4]) shows that the elliptic curve
E is semistable, with minimal discriminant 2−8(abc)2p. Mazur’s classification of
torsion subgroups [Maz77] implies that ρE,p is irreducible. We see (using the Tate

uniformization introduced above and the fact that the discriminant is a local pth

power) that for each prime l|abc, l ∤ 2p, that ρE,p|GQl
is unramified and so Il(ρE,p)

contains the unramified inertial type. Similarly one sees that ρE,p|GQp
admits a

crystalline weight 2 lift (which we can take to be ρE,p|GQp
if p ∤ abc, and construct

by hand otherwise). Therefore Theorem 2.7 (with a slight extension if p|abc) implies
the existence of an automorphic lift rι(π

′) of ρE,p, with π′ unramified away from
2 and with π′

2 an unramified twist of the Steinberg representation. Such a π′ is
associated (in classical terms) to a newform of weight 2 and level Γ0(2). However,
it is easy to show that no such newform exists, leading to the contradiction that
proves the theorem.

4.4. Second application: Serre’s conjecture. Serre’s conjecture, published in
1987 [Ser87], is an antecedent of the Fontaine–Mazur conjecture that concerns rep-
resentations over Fp (and can therefore be formulated without using p-adic Hodge
theory). Here is the statement:

Conjecture 4.5. Let p be a prime, and let ρ : GQ → GL2(Fp) be a continuous
irreducible representation which is odd, in the sense that det ρ(c) = −1. (Such a
representation is said to be of S-type.) Then:

(1) There exists a holomorphic newform f and an isomorphism ι : Qp → C
such that ρ ∼= ρf,ι;

(2) and moreover, f can be chosen to be of level N = N(ρ), the prime-to-p
Artin conductor of ρ, and of weight k = k(ρ), where k(ρ) depends only on
ρ|IQp

and is given by the recipe in [Ser87, §2].

It is hard to overstate the importance of this conjecture in the development of the
themes discussed in this paper. It has many significant arithmetic consequences, of
which we mention a few, referring to [Ser87, Kha10] for further discussion:

• It implies Fermat’s Last Theorem, essentially by the route discussed in §4.3
above.

• It implies that for a given prime number p and bound X > 0, the set of
conjugacy classes of S-type representations ρ : GQ → GL2(Fp) of prime-
to-p conductor N(ρ) < X is finite.

• It implies the modularity conjecture for elliptic curves, and more generally
for abelian varieties of GL2-type over Q.

Moreover, Serre’s conjecture represents an enlarged point of view on the Langlands
programme: rather than expecting only a bijection between objects in characteristic
0, it is expected under this conjecture that we should have a similar correspondence
in positive characteristic. This in turn makes it reasonable to ask for a correspon-
dence over general bases (such as finite rings), motivating eventually the existence
of an isomorphism R ∼= T.



22 JACK A. THORNE

Serre’s conjecture was proved by Khare–Wintenberger [Kha06, KW09b, KW09c].
The proofs makes essential use of automorphy lifting theorems and the local-global
principle Theorem 2.7, which was in fact proved with the application of Serre’s
conjecture in mind [KW09a].

Let us sketch some ideas of the proof in [KW09b]. First, we note that the
the second part of Conjecture 4.5 follows directly from an appropriate version of
Theorem 2.7, so we need only focus on the first part, namely the residual modularity
of S-type representations. We first treat the level 1 case (i.e. when N(ρ) = 1),
which is proved by induction on the prime p. If ρ is an S-type representation,
then a suitably souped-up purely Galois-theoretic version of Theorem 2.7 implies
the existence of a compatible system (ρȷ)ȷ of representations containing a p-adic
representation that lifts ρ, each ρȷ being crystalline and unramified away from the

residue characteristic. Choosing a prime l < p and an isomorphism ȷ : Ql → C, and
reducing modulo l, we find that the residual representation ρȷ : GQ,{l} → GL2(Fl)
is modular (by induction). A powerful enough automorphy lifting theorem would
imply that ρȷ (and therefore any other member of the compatible system containing
it) is automorphic, yielding the modularity of ρ by reduction modulo p.

The base case of the induction is the case p = 2. Tate [CS15, T.2.7.73] showed
that in this case there is no S-type representation of prime-to-p conductor 1, in
response to Serre’s first steps towards the general conjecture formulated in [Ser87]!

The case of N > 1 is treated by induction on N . Given an S-type representation
of conductor N(ρ), we first apply (a souped-up purely Galois-theoretic version of)
Theorem 2.7 to lift ρ to a compatible system (ρι)ι of conductor N(ρ). We then
choose a prime l|N(ρ), fix an isomorphism ȷ : Ql → C, and consider the reduced
representation ρȷ. This now has conductor N(ρȷ) < N(ρ) (indeed, the conductor is
at most the prime-to-l part of N(ρ)), so the modularity of ρȷ follows by induction,
and the automorphy of the compatible system (ρι)ι should follow on application of
a suitable automorphy lifting theorem.

A significant difficulty in the proof is presented by the need to arrange the lifts
so that the reduced representations satisfy the technical conditions of available
automorphy lifting theorems. Since the publication of [KW09b, KW09c] more
general automorphy lifting theorems have been proved, notably in the residually
reducible case (see [Pan22]), that make it possible to give a shorter proof (see e.g.
[DP22]).

4.6. Third application: Symmetric power functoriality. Symmetric power
functoriality is a special case of the Langlands functoriality conjectures, which
were outlined for the first time in [Lan70], for automorphic representations of a
general reductive group. Here we recall the statement of these conjectures for
general linear groups. (The general statement requires the notion of L-group and
L-homomorphism. These play a fundamental role in the theory of automorphic
forms but we do not have space to introduce them here.)

Conjecture 4.7. Let F be a number field, and let π be a cuspidal automorphic
representation of GLn(AF ). Let R : GLn → GLm be an algebraic representation
(i.e. a morphism of linear algebraic groups). Then there exists an automorphic
representation R∗(π) of GLm(AF ), the ‘functorial lift of π along R’, such that for
every place v of R, there is an isomorphism

(4.1) recFv
(R∗(π)v) ∼= R ◦ recFv

(πv)
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of (Weil–Deligne, if v ∤ ∞) representations of WFv
.

Let us discuss some special cases of this conjecture. First, we can restrict, by
the theory of Eisenstein series [BJ79, Supplement], to the case that R is irreducible
(in other words, is a highest weight representation of the reductive group GLn over
Q).

If n = 1, then the irreducible representations of GL1 = Gm are exactly the
characters x 7→ xN , for N ∈ Z – while the automorphic representations of GL1(AF )
are simply the continuous characters χ : F×\A×

F → C×. In this case, the functorial
lift R∗(χ) is the power χN . The defining relation (4.1) can be checked using the
interpretation of recFv for n = 1 in terms of local class field theory.

If n = 2 (which is as far as we will go here), the situation is much harder. Using
the n = 1 case, we are free to twist R by a power of the determinant. The irreducible
algebraic representations of GL2 are, up to character twist, precisely the symmetric
powers Symm : GL2 → GLm+1 (m ≥ 0) of the standard 2-dimensional representa-
tion of GL2. The truth of the conjecture in this case would have many applications,
including most famously the Ramanujan conjecture, which states that if π is a cus-
pidal automorphic representation of GL2(AF ) with unitary central character, then
the parameters recFv

(πv) have relatively compact image (suitably interpreted at
finite places v with Nv ̸= 0). It also implies that the family of symmetric power
L-functions L(π,R, s) associated to π has good properties, including meromorphic
continuation to the whole complex plane, an observation which is at the basis of
the proof of the Sato–Tate conjecture for elliptic curves over Q [BLGHT11].

Conjecture 4.7 has been proved for Symm andm = 2, 3 and 4 by Gelbart–Jacquet
[GJ78], Kim–Shahidi [KS02], and Kim [Kim03], respectively. By restricting the
class of automorphic representations under consideration, one can go considerably
further. Our final goal in this article is to discuss the application of congruences
between modular forms to the proof of the following theorem:

Theorem 4.8 (Newton-T., 2022). Let F be a totally real number field, and let π be
a cuspidal automorphic representation of GL2(AF ) which is regular algebraic. Then
for each m ≥ 2, Symm

∗ (π) exists, as an automorphic representation of GLm+1(AF ),
and is cuspidal if and only if π is not automorphically induced.

We first proved this theorem in the case F = Q in 2020 [NT21a, NT21b] using
overconvergent modular forms. This proof is surveyed in [New22] and [Tho22b].
Our proof of this theorem in the case of a general totally real field does not make
use of overconvergent modular forms or eigenvarieties and is new even in the case
F = Q.

The reason we are able to prove anything in this case is because of the connec-
tion with Galois representations. Let π be a regular algebraic cuspidal automorphic
representation of GL2(AF ) with is not automorphically induced (in the automor-
phically induced case, the symmetric power liftings can be written down easily by
hand.) If Symm

∗ (π) exists, then it is regular algebraic, and for any prime number p
and isomorphism ι : Qp → C, there is an isomorphism

rι(Sym
m
∗ (π)) ∼= Symm rι(π)

of representations GF → GLm+1(Qp). Conversely, if the Galois representation
Symm rι(π) is automorphic, associated to an automorphic representation Π of
GLm+1(AF ), then Π should be the functorial lift of π (and one would hope to check
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the key relation (4.1) using local-global compatibility for rι(Π)). Since automorphy
lifting theorems give a way to prove Galois representations are automorphic, this is
a new way approach to the problem of functoriality, which will be successful pro-
vided we can construct sufficiently many congruences. The main question is then
how to force the existence of these congruences.

Our strategy to prove Theorem 4.8 goes back to [CT14], and is by induction on
m (taking the cases m ≤ 4 to be known, as we may). Suppose that m ≥ 5, and let
p be a prime number such that p < m + 1 < 2p. Such a prime always exists, by
Bertrand’s postulate.6 The choice of this prime forces the existence of congruences
between symmetric power Galois representations in characteristic p.

Indeed, the representation Symm of GL2, although irreducible in characteristic
0, becomes irreducible in characteristic p when m + 1 > p. If ι : Qp → C is an

isomorphism and rι(π) has large enough image7 (as will generically be the case),
then there is an isomorphism

(4.2) (Symm rι(π))
ss ∼= (det rι(π)

r⊗Symp−r−1 rι(π))⊕ (φprι(π)⊗Symr−1 rι(π)),

where the summands on the right-hand side are irreducible, and we write m+ 1 =
p + r for some 0 < r < p, and φp ∈ GFp for the arithmetic Frobenius, which is
acting here on the coefficients of rι(π). In [Tho15, ANT20] an automorphy lifting
theorem that applies to residually reducible Galois representations is proved that
could potentially be used to deduce the automorphy of Symm rι(π), provided one
can overcome the following hurdles:

• First, verify the residual automorphy of the two summands on the right-
hand side. We have p−r−1 < m, so the factor (det rι(π)

r⊗Symp−r−1 rι(π))
is, by induction, the residual representation of a regular algebraic cuspi-
dal automorphic representation of GLp−r(AF ). The same logic applies to

Symr−1 rι(π). The hard part therefore is to establish the residual automor-
phy of the tensor product representation.

• Second, bridge the gap to the hypotheses of the main automorphy lifting
theorem of [ANT20]. This theorem requires in particular that we verify
the residual automorphy of Symm rι(π) by producing a regular algebraic
automorphic representation Π of GLm+1(AF ) which is cuspidal (and which
even has a local component which is square-integrable).

In [CT14] we were able to deal with these points only under two big assump-
tions, namely the existence of tensor product Langlands functoriality (for the group
GL2×GLr, taking care of the first point) and the existence of suitable level-raising
congruences (allowing us to construct a cuspidal Π, taking care of the second point).

In [NT22], we prove unconditional results by proving enough in the direction of
these assumptions. Let us take the second point first: the required level-raising
congruences are constructed in [Tho22a] using a study of the geometry of Shimura
varieties, a possibility that, at some level, goes back to the work of Ribet [Rib84,
Rib90]. We have to take this route, instead of using a result like the powerful
Theorem 2.7 (generalised e.g. in [BLGGT14]), because those results require us to
be in a situation where we can apply automorphy lifting theorems – which we are
not yet in a position to assume.

6Curiously, Bertrand’s postulate also features in Khare–Wintenberger’s proof of Serre’s

conjecture!
7Here ‘large’ can be taken to mean e.g. ‘contains a conjugate of SL2(Fp2 )’.
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The key to tackling the first point is ultimately again the construction of suf-
ficiently many congruences. We first choose a congruence π ≡ π′ mod p so that
there is an isomorphism

φprι(π)⊗ Symr−1 rι(π) ∼= φprι(π)⊗ Symr−1 rι(π
′)

and such that the p-adic representation φprι(π) ⊗ Symr−1 rι(π
′) is Hodge–Tate

regular (for any choice of lift of φp to an element of GQp
). We then show that this

p-adic tensor product representation is automorphic.
We in fact show something stronger. To formulate the stronger statement, we

first recall that the group Aut(C) acts on the set of regular algebraic cuspidal auto-
morphic representations of GLn(AF ). Indeed, given such an automorphic represen-
tation Π, and an element σ ∈ Aut(C), there is a unique representation σΠ with the
property that (σΠ)∞ ∼= Π∞ ⊗C,σ−1 C as C[GLn(A

∞
F )]-modules. This statement is

proved in [Clo90] as a consequence of the existence of the rational structure on Π∞

afforded by the singular cohomology of the locally symmetric spaces associated to
GLn(F ). The proof shows in particular that the representation Π∞ may be defined
over its field of definition KΠ, and thus that σΠ only depends on the restriction of
σ to KΠ.

It follows from the definitions that there is an isomorphism φprι(π) ∼= rι(
ιφpι

−1

π).
The stronger statement that we will prove is that for any σ ∈ Aut(C), the tensor
product

rι(
σπ)⊗ Symr−1 rι(π

′)

is automorphic, or equivalently, that every member of the compatible system

(4.3) (rȷ(
σπ)⊗ Symr−1 rȷ(π

′))ȷ

(where ȷ runs over isomorphisms ȷ : Ql → C for varying primes l) is automorphic.

The proof is a kind of induction argument. Let K̃π denote the Galois closure of

the number field Kπ ⊂ C. For any prime number l and place v|l of K̃π, there

is the associated (finite) inertia group Iv/l ⊂ Gal(K̃π/Q). These groups are non-
trivial only for the finitely many primes v which are ramified over Q. However, they

generate Gal(K̃π/Q): their fixed field would be an everywhere unramified extension
of Q, and Minkowski’s theorem implies that there is no such extension except Q

itself. In particular, any σ ∈ Gal(K̃π/Q) admits an expression as σ = δ1 . . . δs for

some primes l1, . . . , ls, places vi|li of K̃π, and elements δi ∈ Ivi/li . We prove the
automorphy of the compatible system (4.3) by induction on s.

The base case s = 0 occurs when σ is the identity. We prove the automorphy
of rι(π) ⊗ Symr−1 rι(π

′) by observing that there is an isomorphism of residual
representations

(4.4)
(
rι(π)⊗ Symr−1 rι(π

′)
)ss ∼= (rι(π)⊗ Symr−1 rι(π)

)ss
∼= (det rι(π)⊗ Symr−2 rι(π))⊕ Symr rι(π).

The origin of this isomorphism is similar to (4.2), in that both come from reducibil-
ities of representations of GL2 as an algebraic group. They differ in that (4.2)
arises from a reducibility that occurs only in characteristic p, while (4.4) arises
from a reducibility in characteristic 0. One might worry that the p-adic representa-
tion rι(π)⊗ Symr−1 rι(π

′) is reducible, but happily this tensor product is forced to
be irreducible provided the Hodge–Tate weights of π, π′ are chosen correctly (see
[NT22, Lemma 3.2]). Taking this all in hand, we verify the residual automorphy
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of the summands of (4.4) by induction (as r < m) and get the automorphy of the
p-adic representation using the automorphy lifting theorem proved in [ANT20].

Before describing the induction step, let us consider the case s = 1, where

σ ∈ Iv/l for some l-adic place v of K̃π. In this case, we choose ȷ : Ql → C to be an

isomorphism such that ȷ−1|K̃π
induces the place v. Then there is an isomorphism

of residual representations

rȷ(
σπ) ∼= rȷ(π)

(because σ, being an element of the inertia group, acts trivially on the residue field
k(v)), hence

rȷ(
σπ)⊗ Symr−1 rȷ(π

′) ∼= rȷ(π)⊗ Symr−1 rȷ(π
′).

At this point we know (by the case s = 0) that the right-hand side is residually
automorphic, and we would like to use an automorphy lifting theorem to deduce
that rȷ(

σπ)⊗ Symr−1 rȷ(π
′) is automorphic. This looks difficult: it seems impossi-

ble to control the set of primes l that ramify in Kπ, and we may well have to deal
with l = 2 (a case which is often particularly troublesome when trying to prove
automorphy lifting theorems). We are able to circumvent this difficult by prov-
ing what we call a ‘functoriality lifting theorem’, that is specially adapted to this
question. We first proved such a theorem for symmetric powers of 2-dimensional
representations in [NT21b]; here we prove a functoriality lifting theorem for tensor
products with 2-dimensional representations. The key simplification is that we need
control the Galois deformation theory only of the 2-dimensional factor, and this is
now reasonably well-understood (even in the case l = 2), courtesy of the works of
Khare–Wintenberger [KW09c] and Kisin [Kis09b] needed to complete the proof of
Serre’s conjecture.

It remains to describe the general case. We repeat the argument of the case
s = 1, linking the compatible systems

(rȷ(π)⊗ Symr−1 rȷ(π
′))ȷ and (rȷ(

σπ)⊗ Symr−1 rȷ(π
′))ȷ

by a chain of s congruences, the ith congruence taking place in characteristic li.
Finally, taking σ = ιφpι

−1 completes the proof.

4.9. Outlook. As these examples show, the construction of congruences between
modular forms (and, dually, the linking of compatible systems by isomorphisms
of residual representations) is an effective tool to establish the modularity of Ga-
lois representations. New automorphy lifting theorems make it possible to exploit
‘degenerate’ congruences, such as those forced to exist by the reducibility of the
symmetric powers of the standard representation of GL2 in positive characteristic.
This strategy is particularly effective when combined with mathematical induction.

However, there are important open questions which are not obviously within the
scope of these techniques. We end this article by mentioning the analogue of Serre’s
Conjecture 4.5 over a totally real field F , which might be phrased as follows:

Conjecture 4.10. Let F be a totally real field, let p be a prime, and let ρ : GF →
GL2(Fp) be a continuous, irreducible representation which is totally odd, in the
sense that for each place v|∞ of F with associated complex conjugation cv ∈ GF , we
have det ρ(cv) = −1 (again, we say that such a representation is of S-type). Then
ρ is modular: there exists a regular algebraic, cuspidal automorphic representation
π of GL2(AF ) and an isomorphism ι : Qp → C such that ρ ∼= rι(π).



CONGRUENCES BETWEEN MODULAR FORMS 27

More precisely, this generalises the first part of Conjecture 4.5 – the analogue of
the second part is already relatively well understood. The difficulty in establishing
this conjecture by induction is that we no longer know how to deal with the base
case! Indeed, when F = Q the base case was given by the non-existence of S-type
representations of tame level 1 when p = 2. However, over a general base field F ,
S-type representations of tame level 1 in characteristic 2 certainly can exist (see
[Dem09] for an example). Further progress will require new ideas!
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baki. Vol. 1968/69: Exposés 347–363, volume 175 of Lecture Notes in Math., pages

Exp. No. 355, 139–172. Springer, Berlin, 1971.

[Del71b] Pierre Deligne. Travaux de Shimura. In Séminaire Bourbaki, 23ème année
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[Dem09] Lassina Dembélé. A non-solvable Galois extension of Q ramified at 2 only. C. R.

Math. Acad. Sci. Paris, 347(3-4):111–116, 2009.
[DP22] Luis Victor Dieulefait and Ariel Mart́ın Pacetti. A simplified proof of Serre’s conjec-

tures, 2022.

[DT94] Fred Diamond and Richard Taylor. Nonoptimal levels of mod l modular representa-
tions. Invent. Math., 115(3):435–462, 1994.

[Eme11] Matthew Emerton. p-adic families of modular forms (after Hida, Coleman, and
Mazur). Number 339, pages Exp. No. 1013, vii, 31–61. 2011. Séminaire Bourbaki.
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