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1 Introduction

In this paper we study the relation between Galois representations and the cohomology of arithmetic locally
symmetric spaces. Let F' be a number field and let n > 2 be an integer. Associated to any open compact
subgroup U C GL, (A%) is the topological space defined as a double quotient

X& = GL,u(F)\ GL,(Ap)/U x R* U,

where Uy, is a fixed choice of maximal compact subgroup of GL,(F ®qg R). If U is neat (a condition that
can always be achieved by replacing U by a finite index subgroup), then XgLn is naturally an orientable
smooth manifold, and we now assume this. If F' = Q and n = 2, then XgLn can be identified with the set



of complex points of a classical modular curve. In general, however, the space XgLn has no direct link to
algebraic geometry.

Nevertheless, several mathematicians (see e.g. [ADP02]) have conjectured an explicit relation be-
tween the cohomology of the spaces XgLn and the representations of the absolute Galois group Gp =
Gal(F/F). A remarkable feature of this conjectured correspondence is that it should take into account
torsion in the cohomology groups H* (XgLn,Z)7 which falls outside the scope of the theory of automorphic
forms and, for example, earlier conjectures of Langlands and Clozel (see e.g. [Clo90]).

Let us now assume that F is an imaginary CM field (for example, an imaginary quadratic field).
In a recent breakthrough work [Schl, Scholze has established this torsion correspondence, in a form that we
now describe. We first introduce some helpful notation. It is enough to work ‘one prime at a time’, so we
fix a prime p. We suppose that our choice of level subgroup U splits as a product U = [[, U, over the finite
places v of F, where each U, is an open compact subgroup of GL,,(OF,). We let S be a finite set of finite
places of F', containing all the places dividing p, such that for all v € S, we have U, = GL,,(OF,).

We also introduce coeflicients. Let E be a finite extension of @, large enough to contain all em-
beddings of F' in @w and let O be its ring of integers, k its residue field. We can associate to any tuple
A= (\,) € (z7)Hom(FE) satisfying the condition

AT,l Z )\7,2 Z et Z )\T,n

for each 7 € Hom(F, E) a local system M)y of finite free O-modules on XgLn. (The precise definition is given
in §2.2] below, in terms of the algebraic representations of GL,, associated to the dominant weights A,. In
the body of the paper, My is denoted by the symbol A(GL,;A) in order to keep track of its relation to

other objects.) Then the cohomology groups

U
GL,,
H*(X&y, Ma)

are finite O-modules, and for each finite place v € S of F' we can define a family of Hecke operators
Ty,..., T} in terms of double cosets. We write TS (H*(X&y, , Mx)) for the (commutative) O-subalgebra of

Endop (H *(XgLn, M) generated by these operators. We can now state one consequence of Scholze’s results
as follows ([Sch, Theorem V.4.1]):

Theorem 1.1. There exists an integer N = N(d,n) depending only on n and d = [F : Q], an ideal
IcC ']I‘S(H*(XgLn, My)) satisfying IV =0, and a continuous group determinant

D:Gps — T¥(H* (X, , Mx))/I
such that for each finite place v & S of F, the characteristic polynomial of D(Frob,) is
X" —THX" g (1) GgUNRTIX T g (1) g D2 (1.1)
mod 1.

Since group determinants are in bijective correspondence with isomorphism classes of semi-simple
representations over algebraically closed fields, we deduce:

Corollary 1.2. 1. Let¢ € H*(XgLn,MA) ®o @p be an eigenvector for T (H*(XgLn,M)\)), in the sense
that for all T, we have Ty¢ = a,¢ for some numbers a,, € Q,. Then there exists a continuous
representation py : Grs — GLn(Q,) such that for each finite place v & S of F', the characteristic
polynomial of ps(Frob,) is Zj(—l)jq%—(j*l)/za{X”_j.

2. Let ¢ € H*(XE, ,Mx) ®o F, be an eigenvector for T°(H*(XE, , My)), in the sense that for all
T, we have Ti¢ = al¢ for some numbers ai € F,. Then there exists a continuous representation

Py + Grs — GL,,(Fp) such that for each finite place v ¢ S of F, the characteristic polynomial of
By (Froby) is 3. (~1)7 )V~ 2a) X7



The aim of this paper is to improve Theorem in ways that will be useful for applications to
modularity of Galois representations, following the schema outlined by Calegari-Geraghty [CGJ]. The first
goal is to try to remove the nilpotent ideal I; indeed, it seems natural to expect that one should always have
I = 0. The second goal is to replace the Hecke algebra T (H* (X&L, s Mx)) by a derived variant that has
TS(H*(X&y, . Mx)) as a quotient, but a priori could be larger.

Let us now discuss these goals in more detail. We first choose a maximal ideal

m C T%(H* (XL, , Mx))

such that the associated Galois representation p,, (which exists by Corollary is absolutely irreducible.
(In the body of the paper, we refer to such an ideal as a non-Eisenstein maximal ideal.) We will work after
localization at m. Since one of our main motivations is the possibility of applying our results in the context
of R =T theorems, this seems like a natural simplifying step.

Now we define our derived Hecke algebraﬂ We replace the groups H *(XgLn,M ) by the com-
plex RT(X{}, , My), which lives in the derived category D(O) of O-modules, and recovers H*(X&} , M)
after taking cohomology. There is a natural way to lift the operators T to endomorphisms of the com-
plex RI(X&, , Myx) in D(O), and we define the algebra ']TS(RI‘(XgLn,M)\)) to be the (commutative) O-
subalgebra of

EndD(o) (RF(XgL,L s M)\))

generated by these operators. Then T%(RI(X&y, , Mx)) is a finite O-algebra, and taking cohomology gives
rise to a surjective homomorphism

T%(RI(XEL,, Mx)) — T°(H*(X&y,, Ma)),

which has nilpotent kernel. We consider TS (RI'(X{], , Mx)) to be the more natural object of study for a
number of reasons. First, as our results show, it also receives Galois representations. Second, for any m > 1
there is a surjective map

TS(RT(XEL, , My)) — TS (H*(X&L . Mx @0 O/A™)).

Since patching together finite quotients of Hecke algebras plays an essential role in the Taylor—Wiles method,

this is a desirable property. For this in action, together with conjectures about existence of Galois represen-

tations in this context, see the joint work of Khare and the second named author [KT) Conjecture 6.18].
We now state our first main theorem:

Theorem 1.3 (Theorem . Let F be an imaginary CM field, let U C [[, GL,(OF,) be a neat open
compact subgroup, and let X\ = (Ar)rcHom(F,B) € (zmHom(FE) - et m C TS(RI(Xy, My)) be a non-
Eisenstein maximal ideal.

Suppose that the p-adic places of the maximal totally real subfield F of F are all unramified in F.
Then there exists an ideal I C T¥(RT(XEL , Mx))m satisfying I* = 0 and a continuous representation

pum:Grs — GLn(Ts(RF(XUa MA))m/I)

satisfying the following condition: for each finite place v € S of F, the characteristic polynomial of pm (Frob,)
is equal to X" — TPX" 1 4o 4 (—1YglV2Tixm=3 o 4 (1) "V mod 1.

With a stronger assumption on A relative to p, we can eliminate the nilpotent ideal I completely, as
in our second main theorem:

1We find it convenient in this paper to use the terminology ‘derived Hecke algebra’, which refers to an enhancement of the
usual notion of Hecke algebra living in the derived category. However, we wish to emphasize that this is not the same as the
derived Hecke algebra considered in recent works of Venkatesh, in which additional ‘derived’ Hecke operators are considered
which act on cohomology by shifting degrees. It is clear that there is a common generalization of these two notions, but we do
not discuss this here.



Theorem 1.4 (Theorem. Let F be an imaginary CM field in which the prime p is unramified, and let
U=11[,U, CIl,GL.(OF,) be a neat open compact subgroup such that Uy = GLy(OF . ) for each place vl|p.
Let ¢ € Gal(F/F™) denote complex conjugation, and let I denote a set of embeddings T : F — E such that
I HI c = Hom(F, E). Let A = (Ar);cHom(F,E) € (Z")Hom(F “E)and suppose that for each T € Hom(F, E),
we have

)\’T,l > )\7,2 > > )\Tn

)

and that the condition

[F*:QIn(n+6+ sup(Az1 + Aze1)) + D D (Ari — Arei — 2h50) <P

7el, Fel, i=1

holds. Let m C T(RT(Xy, Mx))m be a non-Eisenstein maximal ideal. Then there exists a continuous

representation
pm : Grs = GLa(T¥(RT(Xu, Ma))m)

satisfying the following condition: for each finite place v € S of F, the characteristic polynomial of pm (Frob,)
is equal to X™ — TIX""1 ... 4 (—1)jqf,(J_1)/2TgX”*j +o 4 (—1)”qg(n_1)/2T§.

We now describe the strategy of the proof. We follow Scholze (and the earlier work [HLTT]) in
first looking at the arithmetic locally symmetric space of the group G, the quasi-split unitary group in 2n
variables over F'T associated to the quadratic extension F//FT. The group G admits a parabolic subgroup P
with Levi quotient M = Res§+ GL,. Writing U C G(A%,) for a sufficiently small open compact subgroup,
Up = P(AY¥,)NU, and Uy, for the image of Up in M (A%, ), we have a diagram of spaces

xUr X Xo
l T (1.2)
XU X4

Here we write Yg for the Borel-Serre compactification of XZ, and 8Yg for its boundary. Let us write T2 =
O[US\G(A%;%) /U] for the ‘abstract’ unramified Hecke algebra of G, and T, = O[U},\ GL,(AY®)/U§]
for the abstract unramified Hecke algebra of Reshy GL,. If a = (a,) € (Z2")Hom(F".E) i5 a tuple satisfying
the condition
a'r,l 2 aT,2 Z Tt Z aT,Qn
for each 7 € Hom(F T, E), then there is an associated local system M, of O-modules on X§ (denoted
A(G; a)g in the body of this article), and the first step is to use the diagram of spaces 1D to construct a
diagram
Tg _— EndD(O) (Rrayg Ma)

s l (1.3)
T%/I —_— HOIHD(O) (RFX][\]{M ,CM)‘, RFX]\UJM M)‘)
for appropriate choices of a and A. The map S : ’]I‘g — T%, is the unnormalized Satake transform, given at

the level of groups by the slogan ‘restriction to P and integration along the fibers of P — M.
We then show that the natural map RI’ XU Mx — RT xUn My in D(O) becomes an isomorphism

after localizing at m; equivalently, the cohomology of the boundary of the Borel-Serre compactification of
X ]\UlM vanishes after localization at m. This implies the existence of a homomorphism

TG(RF UM )S *(m) — T]M(RF UMM)\) (14)



The next step is to construct a Galois group determinant valued in the Hecke algebra T, &(RL y% UM a)S*(m)>

or some quotient by a nilpotent ideal. We accomplish this using the exact triangle in D(O):

RT g (Ma——>RT xy Ma——>RT ;o0 My——>RUyy  Ma|1]. (1.5)

By reworking Scholze’s arguments slightly, we find Galois group determinants valued in ']I‘g(Rl" Xg,cMa) and
T2 (RT xyMa ). This leads to a Galois group determinant valued in T &(RL, —UM a); at least at the cost of a
nilpotent ideal of square 0, and pushing it along the map (|1.4) essentially completes the proof of Theorem

I3
To prove Theorem [1.4] we make appeal to the results of Lan-Suh [LS13]. The main theorems of

op cit. imply that under the conditions of Theorem [1.4] . the groups H Z(XG,Ma) vanish for ¢ < D
7d1mR X Y = [F* : Qn? and consquently there is an 1som0rphlsm of truncations 7<p_ 2RT UM

T<p-1(RT xy,M a)[1], using the exact triangle (1.5). The diagram (1.3 is compatible with this truncatlon,
and the map 7<p— 2RI, s My — RT’ xUn My is a quasi- 1somorph1srn since dim XUM =D —1and XJI\QM is

HZ Il

non-compact. This is enough to give Theorem

We note that in all of the theorems proved here, we work with Hecke algebras only after localization at
a non-Eisenstein maximal ideal. As we show below, the natural map from compactly cohomology of the GL,,-
symmetric space to usual cohomology becomes a quasi-isomorphism after such a localization. On the other
hand, Scholze works primarily with interior cohomology (i.e. the image of compactly supported cohomology
in usual cohomology), which does not seem to have a good derived analogue. Since it is imperative for us to
be able to work at the level of complexes rather than at the level of cohomology groups, it seems difficult to
avoid this non-Eisenstein condition.

We now describe the structure of this paper. In §2] we carry out the groundwork necessary to be able
to work in a derived setting. In §3 we introduce the locally symmetric spaces associated to reductive groups
over number fields and discuss their sheaves and cohomology groups. In we carry out the important
step of showing that the cohomology of the boundary of the GL,, locally symmetric space vanishes after
localizing at a non-Eisenstein maximal ideal. This has been sketched elsewhere, but we give the full details
of the argument. Finally, in we combine all of these ingredients to prove Theorems and Theorem
[1.3| by carrying out Scholze’s perfectoid p-adic interpolation argument at the derived level (§5.4), giving us
group determinants at the level of derived Hecke algebras T2 2(RT XY M,), and then using the other arguments
sketched above to obtain the desired Galois representations for GL - .

1.1 Notation

We fix some notation relating to number fields and their Galois groups. A base number field F' having been
fixed, we will fix an algebraic closure F and algebraic closures F, of the completion F, for every place v of
F. We also fix embeddings F — F,. Writing Gr = Gal(F/F) and Gp, = Gal(F,/F,), these embeddings
determine continuous embeddings G, — G for every place v. If S is a finite set of finite places of F', then
we write Fis for the maximal subfield of F' unramified outside S, and set G s = Gal(Fs/F). It is a quotient
of Gp. If v is a finite place of F', then we will write Op, for the ring of integers of F,,, w, € O, for a choice
of uniformizer, k(v) = Op, /(w,) for the residue field, and ¢, = #k(v).

A prime p having been fixed, we will fix an algebraic closure @p of Q, and view finite extensions
E/Q, as being subfields of Q,. If E/Q, is such an extension, then we will generally write O for its ring of
integers, m € O for a choice of uniformizer, and k = O/(n) for the residue field. If F' is a field of characteristic
0, then we will write € : Gp — Z,; for the usual cyclotomic character.

1.2 Acknowledgments
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during the period that Jack Thorne served as a Clay Research Fellow. James Newton is supported by the
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2 Preliminaries

In this section, we will discuss Hecke algebras of locally profinite groups, their module categories, and cat-
egories of equivariant sheaves on spaces. We also set up some machinery which constructs natural objects
in derived categories of smooth representations for a profinite group, whose cohomology groups are the
‘completed cohomology’ groups (see [CE12]) of a tower of arithmetic locally symmetric spaces, or compact-
ifications of such.

2.1 Homological algebra

We first fix notation for derived categories. If A is an abelian category with enough injectives, then we write
K(A) for the homotopy category of complexes in A, and D(A) for the corresponding derived category, if it
exists. Our normalizations are always cohomological, i.e. differentials increase degrees. We write K+ (A) C
K(A) for the full subcategory with objects the bounded below complexes, and D (.A) for its corresponding
derived category; it can be identified with the full subcategory of D(A) with objects the bounded below
complexes ([Wei94, Example 10.3.15]).

If B is another abelian category with enough injectives and F' : A — B is a left exact functor,
then the derived functor RF : Dt(A) — D™ (B) exists ([Wei94, Theorem 10.5.6]), and is characterized
by the following universal property. Let g4 : KT(A) — DT (A) and gz : K*(B) — D*(B) be the usual
projections, and let KF : K*(A) — K*(B) be the induced functor on homotopy categories of complexes.
Then RF comes equipped with a natural transformation £ : g KF — RFq4 such that for any other functor
G : DY(A) — D™ (B) equipped with a natural transformation ¢ : gsKF — Gq4, there is a unique natural
transformation 7 : RF' — G such that (x =7, (x) 0 {x for all X € KT (A).

We will often use this universal property in order to compare different functors between derived
categories, as in the following lemma.

Lemma 2.1. Let A, B,C be abelian categories with enough injectives, and let F': A — C,G : B — C be left
exact functors, i : A — B an exact functor. Suppose given a natural transformation o : F' — G oi. Then
there is a canonical natural transformation n: RF — RG o1 (since i is exact, we write i = Ri).

Proof. Let &p : qc KF — RFqu, &6 : q¢c KG — RGqp, and &; : qgKi — Rig4 be the natural transformations
that exist by universality. We write ¢ : g¢ KF — RGRiq4 for the natural transformation whose value on
X € KT (A) is given by the composite

ax o Ki(x) G(&i x

K F(X ) K GKi (X S O RGasKi (X)X RG Riga(X).

By the universal property of RF, there is a unique natural transformation n : RF — RG Ri with the property
that for all X € K*(A), (x = 14, (x) ©£rx. This is the n of the lemma. O

We now specialize our discussion. Let R be a ring. We will write Mod(R) for the abelian category of
R-modules, and we will simplify our notation by writing K(R) etc. instead of K(Mod(R)). If G is a group,
then we will write Mod(G) for the abelian category of Z[G]-modules, Mod(G, R) for the abelian category
of R[G]-modules, which each have enough injectives, and K(G), K(G, R) etc. in a similar way. If G is
a profinite group, then we will write Modg, (G, R) for the abelian category of smooth R[G]-modules, and
Modsm (G) = Modsm (G, Z), Kem (G, R) = K(Modsn (G, R)), etc.

If G is a group and H C G is a subgroup, then there are functors Ind% : Mod(H, R) — Mod(G, R)
and Res§ : Mod(G, R) — Mod(H, R), where Ind% M = {f : G — M | f(hg) = hf(g)Vh € H} and Res% is
the usual restriction. We recall that Indg is the right adjoint of Res%, that Res$ is exact, and that Indg
is exact and preserves injectives. The functor Res$ also has a left adjoint ind$ : Mod(H, R) — Mod(G, R),
where indeM ={f € Indg M | f finitely supported mod H}. This functor is also exact, showing that
Resg also preserves injectives.

If N C G is a normal subgroup, then there is an inflation functor Infg/N : Mod(G/N,R) —
Mod(G, R), left adjoint to the functor I'y : Mod(G, R) — Mod(G/N, R) of N-invariants. Inflation is exact,
showing that I'y preserves injectives.



We will introduce more abelian categories (in particular, categories of modules over Hecke algebras
and categories of G-equivariant sheaves on a space X)) in the following sections.

Lemma 2.2. Let B — R and B — C be ring maps, with R Noetherian, B,C commutative and C' a flat
B-algebra. Suppose X, Y € D(R) are bounded complezxes of R-modules, with X a bounded complex of finitely
generated R-modules. Then the natural map

C®p HOI’HD(R)(X, Y) — HomD(C®BR)(C R X,C ®p Y)
is an isomorphism.

Proof. This is essentially [Zim12, Lemma 3] (and is probably well known). We denote C ® 5 R by R¢c and
similarly denote the functor ® sC by (—)¢ (this is an exact functor from B-modules to C-modules).
First we claim that for M a finitely generated R-module and N an R-module the natural map

Homp(M,N)c — Hompg.(Mc, N¢) (2.1)

is an isomorphism. In fact, we show this claim without the Noetherian hypothesis on R with M a finitely
presented R-module. Let Fy, Fy be finite free R-modules lying in an exact sequence

Fy, — Fy—> M — 0.
We therefore have an exact sequence
(F1)e = (Fy)e = Me — 0
and a commutative diagram with exact rows

0 —— HOHIR(M,N)C E— HOmR(Fo,N)C E— HOmR(Fl,N)C

| ! l

0 —— HOch(Mc,Nc) E— HOch((FO)C,Nc) E— Hoch((Fl)C;NC)-

The second and third vertical maps are isomorphisms, so the first vertical map is an isomorphism as claimed.
If we consider the functor from finitely generated R-modules to C-modules given by M — Hompg (M, N)c =
Homp, (Mc, N¢), then the higher derived functors are given by Ext (M, N)¢ and Extp  (Mc, Nc) (since
(=) preserves projectives). We conclude that the natural maps

ExtR(M, N)¢ — Exty (Mc, Ne) (2.2)

are also isomorphisms. Note that since the forgetful functor from Mod(B) to Ab is exact, the Ext groups
Ext}(M , N) naturally acquire B-module structures, by identifying them with the image on N of the derived
functors of Hompg(M, —) : Mod(R) — Mod(B).
Next we claim that for a bounded complex X of finitely generated R-modules and an R-module N,
the natural map
Homp gy (X, N[0])c — Hompg.)(Mc, Nc[0])

is an isomorphism. We do this by induction on the length d of the complex X. For d = 1 the claim
holds because of the isomorphism ([2.2)). For the inductive step we do a dévissage using truncation functors.
Suppose the highest degree in which X has a non-zero term is i. We have an exact triangle

T<ianX = X — HY(X)[~i] = 7<i 1 X[1]



and hence a commutative diagram with exact columns

HomD(R) (TSZ',lX[—l], N[ODC Em— HomD(RC)(TSileC[_lL Nc[O])

| |

Homp g) (H*(X)[=i], N[0])c ——— Homp g (H"(X)c[-i], Ne[0])

l l

HOIHD(R)(X,N[O])C e HomD(Rc)(XC>NC[O])C’

l |

HOIIID(R)(TSile,N[O])C —_— HomD(Rc)(TgileC7NC[O])

l l

HomD(R)(Hi(X)[l — iLN[O])C e HomD(R)(Hi(X)C[l — i]7Nc[0]).

By the inductive hypothesis and the five lemma, we are done. Finally, we take our bounded complexes
X,Y as in the statement of the lemma. An induction on the length of the complex Y (using the five lemma
as above) completes the proof of the lemma. O

2.2 Hecke algebras

We now introduce the Hecke algebra of a locally profinite group, and discuss various important maps between
Hecke algebras in the context of reductive groups over local fields.

2.2.1 Abstract Hecke algebras

Let G be a locally profinite group, and let U C G be an open compact subgroup. We write H(G, U) for the
set of compactly supported, U-biinvariant functions f : G — Z.

Lemma 2.3. 1. The Z-module H(G,U) is in fact an associative Z-algebra under convolution, with unit
element [U], the characteristic function of U.

2. For any Z|G]-module M, the space MY of U-invariants admits a canonical structure of H(G,U)-
module. This defines a functor T'y : Mod(G) — Mod(H(G,U)).

We will write M +— M~ for the exact functor Mod(H(G,U)) — Mod(Z) given by forgetting the
H(G, U)-action.

Proof. Note that H(G,U) is a free Z-module, with basis being given by the characteristic functions [UaU]
of double cosets UaU C G. Let us endow G with the unique left-invariant Haar measure giving U volume
1. We observe that H(G,U) ®z R is the space of compactly supported and locally constant U-biinvariant
functions f : G — R. For functions fi, fo € H(G,U) @z R, we define their convolution in H(G,U) ®z R by
the formula

(fo % f2)(g) = / @) g (2.3)

The usual calculation shows that this gives H(G,U) ®z R the structure of assocative algebra with unit [U]
(even in the case where G is not unimodular). We now show that the submodule H(G,U) is closed under
multiplication. It suffices to check this on elements of the form [UaU], a € G; we compute

[UaU] % [UBU](v) = /GU U[UﬁU](a:_lfy)dx =vol(UaU NYUB™U) = #(UalU NyUB~U/U),

an integer. This shows the first part of the lemma.



For the second part, we note that if V' is an R[G]-module, then the algebra H(G,U) ®z R acts on
VU by the formula (v € VY, f € H(G,U) @z R):

frv= /geG f(9)(g - v)dg.

If f=[UaU] and UaU =[], a;U, then this is easily seen to be equal to ), ;- v. We use the same formula
to define the action of [UaU] on MY for any Z[G]-module M.

This action is clearly functorial in M, so to complete the proof of the lemma we just need to show
that it is compatible with multiplication of basis elements in H(G, U), i.e. that for all m € MY, we have

[UaU] - ([UBU] - m) = (Ual] - [UB]) - m. (2.4)

Choose decompositions [UaU] = [[; o;U, [UBU] = [], B;U. We see finally that it is enough to show that
[UaU]-[UBU] =3, ;laiB;U] as functions G — Z. Evaluating at an element vy € G, this is equivalent to the
identity
#(UaU NUBT'U/U) = #{(i, ) | 7 € aif3;U},
and this is an elementary exercise in group theory. O
It will be useful to note that the action of [UaU] € H(G,U) on MY, M a Z[G]-module, can also be

described as the composite
MU s ppUnala™? _>MU’

where the first map is given by v = «a - v and the second by try/ynava-1-

2.2.2 The case of a reductive group

Now suppose that F/Q, is a finite extension, and that G is reductive group over F’; then G(F) is a locally
profinite group. We are going to do homological algebra in Mod(G(F)), Mod(H(G(F),U)) and related
categories. The reader may object that it would be more natural to work, for example, in the abelian
category of smooth Z[G(F')]-modules. However, in order to understand Hecke actions it will suffice for our
purposes to work simply with abstract G(F)-modules (cf. Corollary .

2.2.3 Restriction to parabolic subgroup

Let P C G be a rational parabolic subgroup. Suppose moreover that U C G(F) satisfies G(F) = P(F)U,
and set Up = P(F)NU. Then we have (for the left-invariant Haar measures dg on G(F') and dp on P(F)
giving U and Up volume 1, respectively) the formula

[ 1= / B /p o, T (2.5)

(For the proof, see [Car79, §4.1]; the proof uses that G is reductive, so dg is also right invariant.) Restriction
of functions defines a map rp : H(G(F),U) — H(P(F),Up).

Lemma 2.4. Let G, P,U be as above.
1. The map rp : H(G(F),U) — H(P(F),Up) is an algebra homomorphism.

2. Let V' be a Z|G(F)]-module, W a Z[P(F)]-module, and f : Resgggv — W a homomorphism of
Z[P(F)]-modules. Then the induced map VY — WUP is rp-equivariant in the following sense: for any
t € H(G(F),U), v e VY, we have f(t-v) =rp(t) - f(v).

3. Let W be a Z|P(F)]-module, and let V = Indggg W. Then there is a natural isomorphism VU =
rs(WUP) of H(G(F),U)-modules.



Proof. For the first part, we can extend scalars to R and calculate for any v € P(F), f1, fo € H(G(F),U):

(fo %6 f2)(7) = / ooy BB = / £1(pu) fou™ Y ) dudp

peEP(F) JueU

— [ @)= (e £2(0).
pEP(F)
For the second part, we reduce immediately to the universal case W = Res PE ; V', and must show the formula

t-v=rp(t) v for any v € VY. It suffices to check this on basis elements [UaU]. Fix a decomposition
UaU = [[ U with a; € P(F). It is enough to show that we have in fact (UaU) N P(F) = [[a;Up, but
this is clear.

For the third part, we observe that

U={f:G(F)—>W| forallpe P(F),ucUg e G(F), f(pgu) = pf(9)}.

There is a map VYU — WU given by f + f(1). This map is injective (since G(F) = P(F)U) and surjective
(since Up = P(F)NU). We must show that for all t € H(G(F),U), we have (t- f)(1) = rp(t)f(1). This
can be checked on basis elements [UaU]. Again writing UaU = [], U with a; € P(F'), we see that this
follows from the formula rp([UaU]) =Y, [c;Up]. O

Continuing with the notation of the lemma, we observe that there is a diagram of functors

Mod(G(F)) —Y > Mod(H(G(F),U))

ResG () \L Tr;

P(F)
Mod(P(F)) —— Mod(H(P(F),Up)),

Up
together with a natural transformation I'y — 7} o I"UP o Res PE?; The vertical functors are exact and the
horizontal functors are left exact. Applying Lemma we deduce:

Corollary 2.5. There is a canonical natural transformation RI'y — rpRUy, Resgg}l:; In particular, for

any V € Mod(G(F)), W € Mod(P(F)) equipped with a morphism f : Resggg V — W, there is a canonical
induced morphism RI'yV — rp Ry, W.

Proof. The morphism RI'yV — rp Ry, W is defined as the composite
RTyV = rpRUy, Respp) V = rp RTu, W,
the first arrow by universality and the second by the existence of f. O

There is a variant of this involving induction instead of restriction. Indeed, we observe that there is
another diagram of functors, commutative up to natural isomorphism:

Mod(G(F)) —Y> Mod(H(G(F),U))

Tlndggg Tr}
Mod(P(F)) — Mod(H(P(F), Up))
Up
The vertical functors are exact and the horizontal functors are left exact. Applying Lemma once more,
we deduce:
Corollary 2.6. There is a natural isomorphism RI'y Indggg = rpRUy.. In particular, for any V €

Mod(P(F)), there is a canonical isomorphism RI'y Indggg V=rpRly V.
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2.2.4 Projection to Levi quotient

We now suppose that P is a not necessarily reductive connected linear algebraic group over F', with unipotent
radical N and reductive quotient M = P/N. Choose a Levi decomposition P = M x N, and suppose given
an open compact subgroup U C P such that U = (UNM(F)) x (UNN(F)) = Uy x Uy, say. (We say that
U is decomposed with respect to the fixed Levi decomposition of P. In this case, UNM (F) is identified with
the image of U under the projection P(F) — M(F').) We can then choose left invariant measures dp, dm
and dn on the groups P(F'), M(F) and N(F), respectively, giving the groups U, Uy and Uy measure 1 and

satisfying the identity
/ f(p)dp = / / f(mn)dndm (2.6)
pEP(F) meM (F) JneN(F)

Lemma 2.7. Let P, M, N and U be as above.
1. Integration along fibers defines an algebra homomorphism ry; : H(P(F),U) = H(M(F),Upr).

2. Let V be a Z[M(F)]-module, W a Z[P(F)]-module, and let f : Infﬂg)) V — W be a homomorphism
of Z|P(F)]-modules. Then the induced map VUM — WU is ryr-equivariant, in the sense that for all

ve VUM t e H(P(F),U), we have f(rp(t) -v) =t - f(v).

Proof. We define a map ry : H(P(F),U) @z R — H(M(F),Upn) ®z R by the formula rp(f)(m) =
fne N(F) f(mn)dn. Tt follows easily from formula 1' that rj; is an algebra homomorphism. To prove the
first part of the lemma, it is enough to show that for any o € P(F), m € M(F), we have rj([UaU])(m) € Z.
We calculate

rar([Ual])(m) = / [Ual](mn)dn = / dn = #(m~'Ual N N(F))/Ux,
neN(F) nem—1UaUNN(F)
an integer.
For the second part of the lemma, it is enough to consider the case where W = IanA:[(Q) V. Let

a € P(F), and choose a decomposition UaU = [], a;U. We claim that ry/([UaU]) = 3. [@;Un], where @;
denotes the image of «; in M (F'). This follows from the easily verified formula

/ [aZU}(mn)dn = #(m_laiUMUN N N(F))/UN = [aZUM](m)
neN(F)
For any v € VU™ we thus have [UaU]-v =Y, ;- v =3, @;-v = ry([UaU]) - v. This completes the proof

of the lemma. O

Let us continue with the notation of the above lemma. We have constructed a diagram of functors,
commutative up to natural isomorphism:

Mod(P(F)) —Y = Mod(H(P(F),U))

P(F) *
InfM(F) T TTM

Mod(M (F)) —— Mod(H(M(F),Un)).

Unm

The vertical functors are exact, and the horizontal functors are left exact. We deduce:

P(F)

Corollary 2.8. There is a canonical natural transformation r3, o RI'y,, — RI'y o InfM(F).

Proof. By Lemma there is a canonical natural transformation

rir o BTy, = R(ri; oTy,,) = R(Ty o Infy ;) — RTy o Infi ).
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2.2.5 Adeles

All of the results in this section have obvious analogues for Hecke algebras H(G(A%.),U?), where now F is
a number field, G is a connected linear algebraic group over F', S is a finite set of places of F' containing
the infinite places, and U® C G(A%) is an open compact subgroup. We omit the formulation of these
generalizations. If U° = Hves U, decomposes as a product, then we have the usual decomposition of this
global Hecke algebra as a restricted tensor product of local Hecke algebras:

H(G(AR),U®) = @, H(G(F,), Uy).

If X is a complex in D(H(G(A%),U®)), then there is a canonical homomorphism T : H(G(A%R),U?) —
Endp(z)(X™), and similarly with Z replaced by any commutative ring R of coefficients. Indeed, for any
t € H(G(AZ),U?), the module structure on X defines a map X~ — X~ of complexes, hence an element
Te(t) € Endp(z)(X™). It is easy to check that this is independent of choices in the sense that if X — Y is a
quasi-isomorphism in D(#(G(A%), U?)), the elements T (t) of Endpz)(X™~) = Endp(z) (Y ™) are identified.
We will use this observation in our construction of Hecke algebras.

2.2.6 Application when G is unramified

To obtain situations where the results of this section apply, let us now assume again that F' is a finite
extension of Q,, and consider an unramified reductive group G over F' with a reductive model G over Op.
Thus G is smooth over Op with connected reductive fibres. We fix a choice S C G of maximal Opg-split
torus, as well as a choice B C G of Borel subgroup containing T = Zg(S). Then the group X*(S) of
Op-rational characters is a finite free Z-module, and contains the subset ®(G,S) = ®(G, S) of F-rational
roots. The choice of Borel subgroup determines a root basis R C ®(G, S), and the G(F)-conjugacy classes
of parabolic subgroups are in bijection with the subsets I C R™'. A representative of the conjugacy class
corresponding to a given I is given by the generic fiber of the closed subgroup

Py =M;xN; (2.7)

of G, where P; contains B and M is the unique Levi subgroup of P; containing T'. We then have the
following lemma.

Lemma 2.9. Let U = G(Op). Then U is a hyperspecial mazimal compact subgroup of G(F) satisfying the
following conditions:

1. For each I C R™, the subgroup Up, = U N P;(F) is decomposed with respect to the given Levi
decomposition, i.e. Up, = Up, x Uy, .

2. We have G(F) = P(F)U.

Proof. The first part is immediate from the decomposition (2.7)), since Up, = P;(Op). The second part is
the Twasawa decomposition [Tit79, 3.3.2]. O

In the situation of the lemma, we therefore obtain (using Lemma and Lemma [2.7)) a canonical
homomorphism

S = TM; O TPy H(G(F),U) — H(MI(F)vUM)a

which we call the unnormalized Satake transform.

2.2.7 Representations of U

Keeping the notation of the previous section, we now move in a slightly different direction and describe some
interesting Z[U]-modules that will later be used to define Hecke-equivariant coefficient systems on arithmetic
locally symmetric spaces. Thus F' is a finite extension of Q, and G is a reductive group over O with generic
fibre G, equipped with maximal torus T and Borel subgroup B.
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Let E/F be a finite extension that splits T' (and therefore G). Then the choice of Borel subgroup
Tr C Bg determines a root basis R* C ®(Gg,Tg), and we write X*(Tg)*t C X*(Tg) for the set of
B-dominant weights, i.e. the set of A € X*(Tg) satisfying the condition (X, a¥) > 0 for all o € R*®. We
write X*(Tg)™" C X*(Tg)T for the set of regular dominant weights, i.e. satisfying the condition (\,a") > 0
for all @ € R*™S. We also define

X*(Tg)<P ={\ € X*(Tg) | (A + p,a") < p Va € &},

and X*(Tg)"™<P = X*(Tg)™ N X*(Tg)<P, and similarly for X*(Tg)" <P,
Let O denote the ring of integers of F, () C O its maximal ideal, and k = O/(7) its residue field.
If e X*(Tg) = X*(Lp), then we write B(G; A) for the functor defined on O-algebras R by the formula

B(G; \)(R) = ind5_A\(R) = {f € R[G] @0 O(\) | for all R — A, f © A € (A[G] ®0 O(N))2~ M},

We write B~ for the opposite Borel subgroup to B. This functor is defined and studied in [Jan03} I.3.3].
In particular, A(G; ) = B(G; A\)(O) is an O[U]-module, finite free as O-module (it is finitely generated by
[Jan03l 1.5.12(c)], and is then clearly free); and if A € X*(Tg)™, then it follows from [Jan03, I11.4.5] that for
any (O-algebra R the natural map

A(G; ) ®0 R — B(G; M)(R)

is an isomorphism.
Proposition 2.10. Let A € X(Tg)™".
1. The module A(G;\) ®o E is an absolutely irreducible E[U]-module.

2. Let I C R™, so the parabolic subgroup P; = M; x N; C G is defined. Then there is a direct sum
decomposition
Resg,, A(G;A) = A(Mp; ) ® K

of O[Ups,]-modules, and Uy, acts trivially on A(My, \).

Proof. The first part is a consequence of highest weight theory in characteristic 0 and the Zariski density of
U C G(E). For the second part, we observe that

Resgg B(G;\) =@M,

decomposes as a sum of finitely many non-zero weight spaces (even over O). We define W1 = @,¢z.,.1Mxr—,,
and W5 to be the sum of the complementary weight spaces. Then there is a decomposition Res%;9 B(G;\) =
Wi & Ws. B

We claim that this is a decomposition of Mlyo—modules, that ﬁ[,o acts trivially on W7, and that
there is an isomorphism Wy = B(Mp; A) of M o-modules. Let us address each point in turn. By the main
result of [Cab84], as well as [Cab84l 4.1, Proposition], we know that

Res(f . B(G; ) = W1 @0 E@ W, @0 E
as My g-modules, that
(B(G;\) @0 E)YN'2 =W, ®0 E,

and that W1 ®o E = B(M; ) ®0 E as M g-modules. The MI’@—invariance of the decomposition B(G; \) =
W1 @& W5 can be checked on E-points, so follows from what we have written above. The fact that ﬂ[,o acts
trivially on Wi can also be checked on E-points.

It remains to check that there is an isomorphism Wi = B(My; A) of M| o-modules. By Frobenius
reciprocity (i.e. [Jan03] 1.3.4, Proposition]), we have for any M 1. o-module V" an isomorphism

Homyy, , (V, B(M; \)) = Homy_ (V,O(N)).
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The module W7 has highest weight A, so W}’ has lowest weight —\, hence there is a non-zero B,-equivariant
homomorphism O(—X) — Wy (by [Jan03, I1.1.19(7)]), hence a non-zero Bn-equivariant homomorphism
Wi — O()), hence (by Frobenius reciprocity) a non-zero M; o-equivariant homomorphism f : Wi —
B(M;\). We can assume that f ®o k # 0. We claim that f is the desired isomorphism. We know that f is
an isomorphism after extending scalars to E, so it is enough to show that the map f ®o k is injective.

Suppose for contradiction that ker(f ®o k) # 0. Then the kernel of f has a non-zero B-socle, so
contains the B-socle of W) ®¢p k = B(G; \)™1.0 ®¢ k, which equals B(G;\)™0.0 @¢ k = k()\), by [Jan03,
I1.2.2, Proposition]. We deduce that f determines a non-zero element of the group

Homy, (W1 ®o k/ker(f ®o k), B(G;A) ®o k) = Homéc_j(Wl ®o k/ker(f @0 k), k(X))

which contradicts the fact that Wi ®o k/ker(f ®o k) does not contain the weight A, which occurs with
multiplicity 1 in W; ®@ k. This contradiction shows that f ®o k is injective, and concludes the proof. [J

We now change notation slightly, and suppose that £ C @p is a finite extension of @, which contains

the image of all continuous embeddings F' — @p. If 7 € Hom(F, E), then the above construction gives an
O[U]-module A(G;\) for each A\ € X*(Tg )", where the subscript 7 indicates that we extend scalars from
F to E via the embedding 7.

If X = (Ar)rcHom(r,E) is & tuple with A, € X*(Tg,)" for each 7 € Hom(F, E), then we define
A(G; A) = ®,:A(G; A;), the tensor product being over O. Then A(G;A) is an O[U]-module, finite free over
O, and A(G;X) ®o E has a natural structure of absolutely irreducible E[G(F)]-module. Proposition [2.10]
now implies the following result:

Corollary 2.11. Let I C R™ and let A € HTeHom(F’E) X*(Tg-)". Then there is a canonical decomposition
RengI A(G5 ) = A(M;X) @ K of O[Upy,|-modules, where A(M;X) C A(G; X)UNr.

Proof. Since tensor products respect direct sums, this is an immediate consequence of Proposition [2.10] O

2.3 Equivariant sheaves for abstract groups

Let X be a topological space, and let G be a group that acts on the right on X by homeomorphisms. (We
call X a G-space.) In this section, we consider (essentially following [Gro57, Ch. V]) the derived category
of G-equivariant sheaves on X.

Definition 2.12. A G-equivariant sheaf on X is a sheaf F on X equipped with isomorphisms [g]F : F — g*F
for each g € G, all satisfying the following conditions:

1. If e € G is the identity, then [e]r is the identity.
2. For each g,¢' € G, we have [¢'glr = g*[¢'| 7 o [9] -

We write Sha(X) for the category of G-equivariant sheaves of abelian groups on X. If R is a ring, then we
write Shq(X, R) for the category of G-equivariant sheaves of R-modules on X .

It is easy to see that Shg(X, R) is an abelian category, and that the natural functor Shg (X, R) —
Sh(X, R) (which forgets the G-action) commutes with the formation of kernels and cokernels.

Lemma 2.13. For any ring R, the category Sha (X, R) has enough injectives.

Proof. We just give the argument in the case R = Z. Let F € Shg(X). We must construct a monomorphism
F < T for some injective object Z. Choose for each orbit y € Y = X/G a representative {(y) € X and a
monomorphism F¢(,) — Ay, for some injective G¢(,)-module A,. We then define

I, =Ind§ A, ={f:G— A, |VheHgeG, f(gh)=h""f(g)}.
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We interpret I, as a product of skyscraper sheaves supported on the orbit y, with stalk over g&(y) given by
the set of functions with support in gGe(,y. It has a natural structure of G-equivariant sheaf. We define
T = Hy cy Iy- Then there is a natural G-equivariant inclusion 7 — Z and for any G € Shg(X), we calculate

HomShc(X)(gaI) = H HomGg(y) (gf(y)’Ay)
yey

It follows that Z is injective, and this completes the proof of the lemma. O

To avoid a proliferation of notation, we now restrict to the case R = Z. Everything we say has
a clear analogue for the category Shg (X, R). If H C G is a subgroup, then there is a natural restriction
functor Res% : Sha(X) — Shy(X). We define a functor ind% : Shy(X) — Shg(X) as follows. Let
p: G x X — X denote projection to the second factor, and let G x H act on G x X by the formula
(g,h)-(¢',x) = (99’h~ %, hx). Then the sheaf p* F admits a natural structure of G x H-equivariant sheaf, and
therefore descends naturally to a G-equivariant sheaf 7’ on the quotient G x g X (see Lemm below).
The induced map f : G xg X — X is a G-equivariant local homeomorphism and we define ind; F to be the
subsheaf of f,F’ consisting of sections which stalkwise are supported in finitely many of copies of X under
the isomorphism G x g X = g,z X. (We use the notation ind instead of Ind as the functor indg plays the
role of compact induction.)

If Y is another space with G-action, and f : X — Y is a G-equivariant continuous map, then the
usual pushforward and pullback of sheaves gives rise to functors f, : Shg(X) — Shg(Y) and f* : Shg(Y) —
Shg(X). Y is a point, then we identify Shg(Y) = Mod(G) and write f, = T'x.

Lemma 2.14. Let notation be as above.
1. The functors (ind%, Res%) form an adjoint pair, and both ind$, and Res$ are ezact.
2. The functors (f*, f«) form an adjoint pair, and f* is exact.

Proof. Tt is clear from the definition that there is a natural map F — Res$ ind§ F for any F € Shy(X),
and this gives rise to the desired adjunction. It is useful to note that the stalks of the induced sheaf can be
calculated as

(ind% F)y = {(sg)gec | g € Fy-12,Vh € H, 54, = hsg, finitely supported modulo H}.

There is an isomorphism of underlying sheaves indfl}" & Bgeq/u g ® F. This makes it clear that both

Resg and indg are exact, and proves the first part of the lemma. The second part follows easily from the
corresponding result when G is the trivial group. O

Corollary 2.15. The functors Res$ : Shq(X) — Shy(X) and f. : Sha(X) — Sha(Y) preserve injectives.

Definition 2.16. Let X be a G-space. We say that X is free if the action of G satisfies the following
condition: every point x € X has a neighbourhood U such that for all g € G —{e}, gUNU = 0. This implies
in particular that every point © € X has trivial stabilizer.

If o : G — H is a surjective homomorphism with kernel K, and X is a G-space, and Y is an H-space,
then we say that a map f: X — Y is g-equivariant if we have f(gx) = ¢(g)f(z) forallz € X, g€ G. In
this case, we define a functor fX : Shg(X) — Shg(Y) by the formula fX(F) = f.(F)X (ie. fE(F) C fu(F)
is the subsheaf of K-invariants).

Lemma 2.17. Let ¢ : G — H be a surjective homomorphism with kernel K.

1. Suppose that f : X — 'Y is a p-equivariant continuous map. Then the functors f* : Shy(Y) — Shg(X),
K :Shg(X) — Shy(Y) form an adjoint pair.

2. Suppose instead that X is a G-space on which K acts freely, and Y = X/K, endowed with its quotient
topology. Then the two functors fX : Shg(X) — Shy(Y), f* : Shy(Y) — She(X), are mutually
inverse equivalences of categories.
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Proof. The first part is [BL94, Proposition 8.4.1]. The second part follows from [BL94, Lemma 8.5.1]. O

Now suppose that X is a G-space and that G is a locally profinite group, and let U C G be an open
compact subgroup that acts freely on X. As we have seen, there is a left exact functor I'y : Mod(G) —
Mod(H(G,U)), M ~ MY. We obtain a diagram of functors, commutative up to natural isomorphism:

She (X) —25 Mod(G) —2> Mod(H(G, U)) ~L> Mod(2)

— o 25)

Sh (X) ——— Sh(X/U)

The functors fV and Resg are exact and preserve injectives. As a formal consequence, we obtain:

Proposition 2.18. With notation as above, there is a canonical isomorphism in D(Z), for any F € Shg(X):
R(Ty o Tx)(F)™ = RUxu (f F).

We will often use the following slightly weaker consequence of the proposition: for any F € Shg(X),
there is a canonical homomorphism H(G,U) — Endpz) (R x,u fY' F). (In the context of arithmetic locally
symmetric spaces, such homomorphisms recover the usual action of Hecke operators on cohomology. We
turn to this topic in ) The above homomorphism can be given explicitly on basis elements as follows. We
recall (cf. that the algebra H(G,U) is free over Z, a basis being given by the elements [UaU] with
a€G.

Let V=UnaUa™ !, let p; : X/V — X/U denote the natural projection, ps : X/V — X/U the map
X/V — X/a"'Va — X/U given by acting by «, then projecting. Both p; and py are topological covering
maps. If F € Shg(X), then the isomorphism F 2 o* F induces an isomorphism

PiflF=flF=arfr VOF =pyfUF.

We define an endomorphism () of R, (fY F) as the composite

RUx/u(fYF) 3 RTx v (psfY F) = RT x v (p} f£ F) = RUxju (p1,spi [T F) = RUx 0 (f7 F)
where the final map is the trace, defined by the adjunction (py . = p1.1,p = ).
Lemma 2.19. Let F € Shg(X). For a € G the image of [UaU] in Endpzy(RL x v fCF) equals ().

Proof. Tt suffices to check the same statement for I'x ¢ ( Y F), since applying this to the sheaves appearing
in an injective resolution F — Z* gives the desired result. The lemma can then be proved by comparing the
explicit descriptions of the Hecke action on U-invariants and trace map on global sections. O

We now present a kind of ‘Shapiro’s lemma’ for spaces. Let G be a group, H C G a subgroup, and
X an H-space.

Proposition 2.20. There is a natural equivalence of categories Ind$ : Shy(X) = Shg(G x g X), and a
natural isomorphism I'gx , x © Indfl ~ Indfl ol'x.

Proof. Let m; : G x X — X and 79 : G X X — G xg X be the two projections. Let G x H act on G x X
by the formula (g,h)(g’,x) = (h~1g’g,xh). Then the subgroup G x {1} acts freely on G x X, and 7 is the
corresponding quotient map; and the subgroup {1} x H acts freely on G x X, and 5 is the corresponding
quotient map. We obtain a diagram of functors

; LE
Shy (X) —= Shayu (G x X) —== Sha(G x g X).

It follows from Lemma that Indg = Wf* o} is an equivalence of categories, with inverse given by WE*OWE .
The natural isomorphism I'gy, x © Indg = Indg ol'x is then an easy consequence of the definitions. O
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Corollary 2.21. With notation as in the proposition, we have a natural isomorphism of derived functors
RlGy, x 0Ind$ = Ind$ oRT x.

Proof. This follows from Proposition [2.:20] and the formula for the composition of derived functors. O

2.4 Equivariant sheaves for topological groups

We will also consider G-equivariant sheaves where G is a topological group acting continuously on a topo-
logical space X, following [BL94].

Definition 2.22. Let G be a topological group and X be a topological space.

1. We say that X is a G-space if it is equipped with a continuous right action of G, i.e. the multiplication
map m: X X G — X is continuous. Write p: X x G — X for the projection map.

2. If X is a G-space, a G-equivariant sheaf on X is a sheaf F on X equipped with an isomorphism
0 : p*F = m*F satisfying the usual cocycle condition (see [BL94, §0.2] for the analogous formula in
the case of a left action).

We write Sha(X) for the abelian category of G-equivariant sheaves of abelian groups on X. For a ring R,
we write Shq(X, R) for the abelian category of G-equivariant sheaves of R-modules on X.

If G is endowed with the discrete topology, then the above definition coincides with the one given
in the previous section. We will usually restrict ourselves to the simplest situation, where the action of G
on X is free.

Definition 2.23. Let G be a topological group and X be a G-space. We say that X is free if the quotient
map q : X — X/G is a locally trivial G-torsor. In other words, there exists an open cover {U;}icr of X/G
and G-equivariant isomorphisms U; x G = ¢~ 1(U;).

Lemma 2.24. Let X be a free G-space. Then the functor ¢* : Sh(X/G) — Shg(X) is an equivalence of
categories. An inverse is given by qC (defined by the same formula as in the case where G is discrete, see

before Lemma ,

Proof. This is well known. It is a special case of descent along a torsor [Vis05, Theorem 4.46]. O

One immediate consequence of this lemma is that Shg(X) has enough injectives, when X is a free
G-space.

2.4.1 Equivariant sheaves and smooth representations

Definition 2.25. Let G be a topological group. A representation of G on an abelian group M is smooth if ev-
ery element of M is fixed by an open subgroup of G. Denote the abelian category of smooth G-representations
on abelian groups by Mod,,(G). For a ring R, denote the abelian category of smooth G-representations on
R-modules by Mod (G, R).

Lemma 2.26. Let G be a topological group and X be a G-space. Suppose X is compact. Then for F €
Sha(X) the global sections of F form a smooth G-representation.

Proof. Let s be a global section of F. We consider the two sections 6(p*s) and m*s of m*F over X x G.
For x € X, the stalks of p*s and m*F at (x,e) are both given by F, and € induces the identity map
P Flae) = m* F(ze). In particular, 6(p*s) and m*s have the same image in the stalk at (x,e), and hence
coincide on some open neighbourhood W, C X x G of (x,e). We have U, x G, C W, for U, an open
neighbourhood of z in X and G, an open neighbourhood of e in G.

Since X is compact, we obtain a finite open cover U; of X and open neighbourhoods G; of e such
that for all (x,g) € U; x G4, 8(p*s) and m*s have the image in m* F(U; x G;). We conclude that there is an
open neighbourhood H of e in G such that 8(p*s) and m*s have the same restriction to X x H. In other
words, s is fixed by an open neighbourhood of e in G, and hence its stabilizer is an open subgroup of G. [J

17



If X = pt = {z}, then an object F in Shg(X, R) gives rise to an R-module F, equipped with an
action of G. Lemma shows that this gives a functor Shg (X, R) — Modyw (G, R).

Lemma 2.27. The functor F — F, induces an an equivalence of categories between Shg(pt, R) and
Modg (G, R).

Proof. The functor is clearly fully faithful, so we need to check essential surjectivity. For M € Modyn, (G, R)
we set Fps to be the sheaf on {z} with sections M. We have p*Fp; = m*Fy and this is the sheaf of
locally constant functions from G to M. For U C G an open subset we define 0 : p*Fp (U) = m* Fp (U)
by 0(f)(g) = gf(g), for f a locally constant function U — M and g € U. Since the action of G on M is
smooth, O(f) is again a locally constant function from U to M. The cocycle condition for § can be checked
on stalks, where it amounts to the action of G on M being a group action. O

Definition 2.28. Let X be a compact G-space. Denote the left exact functor obtained by taking global
sections by
Ix : Shg(X, R) — Modg, (G, R).

If X is a compact free G-space, we denote by RI'x the right derived functor
RT'x : DT (Shg(X, R)) — DY, (G, R).

Lemma 2.29. Let X be a compact G-space. The functor T'x : Shg(X,R) — Modg,(G, R) preserves
imjectives.

Proof. The functor I'x can be viewed as the direct image functor Shg(X, R) — Shg(pt, R). This has an
exact left adjoint given by the inverse image functor, so I'x preserves injectives. O

Now suppose that G is a topological group, and H is a locally profinite group. We suppose that
X is a compact G x Hgs-space, where Hs indicates H with the discrete topology. Let U C H be an open
compact subgroup such that G x Us acts freely on X. We obtain a diagram of functors, commutative up to
natural isomorphism, analogous to the diagram :

She iz, (X, B) —X> Modun (G x Hs, R) —> Modyn (G, H(H,U) @5 R) > Modyn(G, R)

2.9

SthU5 (X; R) T Shg(X/U, R)

Note that X/U is a free G-space. We also have an equivalence Shgy pr, (X, R) 2 Shy, (X/G, R), so this cate-
gory has enough injectives. We can therefore define a right derived functor R(I'yol'x) : D(Shax s (X, R)) —
Do (G, H(H,U)). We obtain:

Proposition 2.30. There is a canonical isomorphism in D¢y, (G, R), for any F € Shaxm; (X, R):
R(Ty o Tx)(F)™ = RLx/u (£ F).

As in the discrete case, we will use the following consequence of the proposition: for any F €
Shex s (X, R), there is a canonical homomorphism

H(H, U) — Enstm(G,R)(RFX/UfE-F)~ (210)

For a € H, define an endomorphism 6(c) of RT'x 1z fY F as in the discrete case by pullback and pushforward.
The same proof as before now yields the analogue of Lemma [2.19

Lemma 2.31. Let F € Shexp, (X, R). For a € H, the image of [UaU] under the homomorphism
equals 0(c).
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2.5 Completed cohomology

We now recall some elements of the theory of completed cohomology. We begin by working in a general con-
text as in [CE12) 1.1] and [Hil10l 2.2]. Let G be a profinite group with a countable basis of neighbourhoods
of the identity given by normal open subgroups

- C Gy C-o- C Gy C G
Suppose given a tower of compact topological spaces
e = X, == Xy — X,
each equipped with an action of Gy. We moreover suppose that:
1. The maps X, +1 — X,, are Gy-equivariant.
2. Gy, acts trivially on X,, and X,, is a (locally trivial) Go/G,-torsor over Xj.

Finally, we assume that X, admits an open covering by contractible subsets (for example, X is locally
contractible). In the above situation, we define a topological space

X =lim X,,,

endowed with the projective limit topology. X is a compact Gy-space. We write m,, for the maps X,, — Xy
and 7 for the map X — Xj.

Lemma 2.32. The space X is a free Go-space and the natural map X/Go — Xg is an isomorphism.

Proof. Tt is clear that the canonical map X — X identifies X with the quotient X/Gy. To show that the
Gy action is free, we must show that the quotient map X — Xy is a locally trivial Gy-torsor. Let U be a
contractible open subset of X. For each n, the fibre product X,|y := X,, Xx, U is a torsor over U for the
finite group Go/G,,. We therefore have an isomorphism of Go/G,,-torsors over U:

Tn - Xn|U = U x (Go/Gn)
We are going to construct an isomorphism of Gy-spaces

X|U = an|U = U x G()

by modifying the isomorphisms 7,,.Suppose we have isomorphisms
Ti/ : X1|U =~ U x (Go/Gz)

for 0 < i <n—1, which, for 1 <i <n —1, send the transition maps X; — X; 1 to the obvious projection
U x (Go/Gl) — U x (GO/Gi—1)~

We consider the surjective map of Go-spaces U x (Gy/G,) — U X (Go/Gp—1) induced by the
isomorphisms 7;,_;,7, and the transition map X, — X,—1. This map sends (u,z) to (u,«a(x)), where
a: Go/Gn — Go/Gr_1 is a map of Go-sets. This map is therefore determined by a(l) € Go/Gp—1. We
define 7/, by 7/, (z) = 7, (x)g, where g is any representative of a(1) in Gj.

We set 7, equal to the identity, and by induction we have constructed 7;, as above for all n. Now
taking the projective limit gives the desired trivialisation of X|y. O

Lemma 2.33. Let R be a ring. The category Mod s, (Go, R) has a generator and exact inductive limits. In
particular, Mod g, (Go, R) has enough injectives.

Proof. A generator is given by X =, <, Indg‘; R, since Hom(X, M) = [],,~o M " which is non-zero for all
M € Modgy, (G, R). Tt is clear that inductive limits exist in Modgy, (Go, R), and they are exact by [Gab62,
Proposition 1.6b]. O
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Given Fy € Sh(Xo), we set F,, = 7 Fo € Shg,q, (Xn) and set F = 7*Fy € Shg, (X).

Lemma 2.34. The natural maps U'x, (Fn) — Tx(F) induce an isomorphism

lim Tx, (Fn) = T (F).

Proof. The natural maps T'x, (F,,) — T'x (F) identify I'x, (F,,) with T'x(F)%", by Lemma By Lemma
I'x (F) is smooth, which gives the desired result. O

Lemma 2.35. The functor RT'x : Dt (Shg, (X, R)) — DI (Go, R), when composed with the equivalence
of triangulated categories D' (Sh(Xo, R)) = D1 (Shg, (X, R)), is the right derived functor of the functor
Sh(Xo, R) = Modsm(Go, R) given by

Fo = lim Ty, (Fn)-

n

Proof. This follows from Lemma [2.34] O

Lemma 2.36. There are canonical isomorphisms

H'(RUx (F)) 2= lim H' (X, F).

Proof. The previous lemma identifies RI'x with the derived functor of

For> lim T, (Fn)

from Sh(Xj) to Modgm(Go). Taking an injective resolution Z§ of Fy we get injective resolutions Z? = 75 (Z3)
of F, for each n (m,, is exact, so 7, preserves injectives). Now H*(RTx(F)) is (by definition) given by
Hilling T, (Z3)) = lm H'(Tx, (I3) = lim H¥(X,,, F,). O

Definition 2.37. For a ring R, denote by

RFG : Djm(Go, R) — ])4_((;0/(;77,7 R)

n

the right derived functor of taking G, -invariants.

Since G is compact, the derived functors RI'g, may be computed using standard resolutions. For
M € Modg (Go, R) and r > 0 we denote by X" (M) the object of Modsy, (Go, R) given by locally constant
maps from G§*! to M. The action of Gy is given by (of)(0o,...,0,) = of(c " og,...,0 'a,).

As in [NSW0QO0, I.2], we define a complex X*®(M): there are maps d; : G — G"~! given by omitting

the ith term, which induce maps df : X"~* — X", and the maps in the complex are given by
T
§=> (-1)id; : X" — X"
i=0

The map M — X°(M) given by sending m to the constant function with value m induces a quasi-
isomorphism M — X*(M) in Modsy (Go, R) ([NSWO00, Proposition 1.2.1]).

Lemma 2.38. For i > 0 and r > 0 we have R'Tg, X"(M) = 0. As a consequence, the natural map
X*(M)G» — RTg, X*(M) is a quasi-isomorphism and we have an isomorphism X®(M)% = RTg, M in
D+(GO/GTL7 R)

Proof. First we recall some standard results in continuous group cohomology, see for example [NSWO00,
Chapter I]. The functors M + T%(M) := H*(X*(M)%") define a cohomological §-functor from Modgm (Go, R)
to Mod(G_ /G, R), and we have I''(X"(M)) = 0 for all i > 0 and r > 0 (the modules X" (M) are induced).
The map M — X°(M) induces an isomorphism I'g, M =2 T'%(M). Therefore the functors I'* form a universal
§-functor, and hence R'Tg, X" (M) =T(X"(M)) = 0. O
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Lemma 2.39. Let R — R’ be a flat ring map and denote the extension of scalars functor Mods,(Go, R) —
Mod g, (Go, R') by (—)®@rR'. Then there is a natural isomorphism of functors DY, (Go, R) — D (Go/Gp, R'):

RT¢, (—) ®r R = Rlq, () ®r R/)

Proof. For M € Modgm(Go, R) we have a natural isomorphism X*(M)®r R = X*(M ®pr R') (each function
in X"(M ®r R’) has a finite set of values, so it is a finite R’-linear combination of M-valued functions).
Since we can compute RI'(G,,, —) using resolutions by the acyclic objects X (M), and (—) ® g R’ sends these
acyclic resolutions to acyclic resolutions, we obtain a natural isomorphism between RI'¢ ,(—) ®g R’) and
the derived functor of

M +— (M ®gr RS,

On the other hand, since (—)®g R’ is exact, Rl'g,, (—)) ®g R’ is naturally isomorphic to the derived functor
of
M +— M% @ R'.

To prove the lemma, it suffices to show that the natural map M @g R’ — (M @z R')%" is an isomorphism.
Since the action of G, on M is smooth, it suffices to check that this map is an isomorphism for G,, a finite
group. This follows from the isomorphism in the proof of Lemma as MG = Hom R[G,) (R, M) and
R is a finitely presented R[G,]-module. O

Lemma 2.40. Let R be a ring, and let F € Shg, (X, R) and n > 0. Denote by F,, € Shg,/c, (Xn, R) the
sheaf on X, obtained by descent from F. There are natural isomorphisms in DT (Go/Gp, R):

Rl'g, RI'x F = RI'x, Fy,

extending the natural isomorphism U'q, I'x F = T'x, Fp.

Proof. This follows from Lemma [2:29] O

2.6 Completed cohomology without taking a limit of spaces

We now present a variant of the constructions of which works just with sheaves at ‘finite levels’ X,
instead of passing to the limit X. This variant will then be applicable in a more general situation: for
example, when the group actions are not free (we will later work with minimal compactifications as well as
Borel-Serre compactifications), and the spaces X,, are algebraic varieties or even adic spaces.

In this section a ‘space’ means either: a topological space, an adic space over a complete and
algebraically closed extension of Q,,, or an algebraic variety over an algebraically closed field of characteristic
0. We again let Gg be a profinite group with a countable basis of neighbourhoods of the identity given by
normal open subgroups

- C Gy C--- C Gy C G

Suppose given a tower of spaces
e = X, == Xy — X,

with each X,, equipped with an action of the finite group Go/G,, and the transition maps equivariant with

respect to these actions. Contrary to the last section, we do not assume that these group actions are free.
We now consider categories S,, = Shg, g, (X, R), where we take equivariant sheaves on the topo-

logical space X, or the étale site of the algebraic variety or adic space X, as appropriate. Note that the

transition maps X,, — X,, for m > n give pairs of functors 71'76,7;7{5"7 : Sy — Sp and 7, L, 0 Sy — S By

part 1 of Lemma and its analogue for the other sites, wﬁﬁ{f ™ is a right adjoint to wi‘,m.
Definition 2.41. We define S to be the category whose objects are collections of sheaves (Fy)n>0 with
Fn € S, equipped with morphisms Oy, : 75, Fn — Fm for m > n, which satisfy a cocycle relation: for
1> j >k we have

Oi. = 0ij omi ;0; .
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The morphisms in S are given by families of morphisms f,, : Fr, = Gy, such that for m >n

fm o em,n - Hmm o W:n,n(fn)

We observe that S is the category of R-module objects in the total topos of a fibred topos. In
particular, S has enough injectives. We will also check this explicitly (Lemma [2.45]).

Definition 2.42. Denote by i} the functor S — S, given by (Fp)m>0 — Fn.
Denote by iy, the functor S, — S given by

Fis (0,0 O, F, ooy Fol)s

» Tm,nY

Denote by iy« the functor S, — S given by

Go/Gn Gm/Gn
F i (TnonFE Gy o FOm/ G FL0,0,...).

*
n’

Lemma 2.43. The functor v is a left adjoint to ¢
exact.

and iy « 1s a right adjoint to 1. The functor i, is

Proof. First we check the adjointness properties. Suppose we have F € S,, and G, € S. Then an element of
Homg (1,1 F, G) is given by a collection of maps f,, in Homg,, (7}, ,,Fn,Gm) for m > n such that

fm =0mno W:z,n(fn)

So we see immediately that everything is determined by f,, and Homg(, 1 F,G) = Homg, (F,G,) =
Homg, (F,t5G) as required.

Next, suppose we have F € S and G € S,,. Given a map f, : F, — G there is a natural way to
produce a map Fo — 1y G: for m < n we let f,, : Fp, — 7Tn7m,*]-"Gm/G"g be the map corresponding by

9’”. m . .
adjunction to 7, ., Fm — Fy 4 G. This gives a natural map Homg, (v} F,G) — Homg(F, ¢, +G). To prove
that this is a bijection, we must show that this choice of f,, is the unique map making the following diagram
commute:

)
« Tmdm GG

Trn,m‘FW 7Tn,’mﬂ-nﬂn* g

l On ,m l
f

Fn : g

The right hand vertical arrow here is the counit of the adjunction. So the composition of the top horizontal
and right vertical maps is identified with f,, under the bijection Hom(r;, ., Fm,G) = Hom(F,, wﬁ%{f"g).
This forces f,, to be the map we have defined above.

This implies that ¢}, is exact, so it preserves kernels and images. In particular, kernels and images
of maps in S are given by componentwise kernels and images, so one can check exactness of complexes in .S

componentwise. Since y, . is an exact functor, ¢, is exact. O
,

Lemma 2.44. For F € S an injective object the equivariant sheaf v} F € S,, and the underlying sheaf in
Sh(X,, R) are injective. The functor i, . also preserves injectives.

Proof. The functors ¢} and ¢, , have exact left adjoints, as does the forgetful functor from S,, to Sh(X,,, R)
(by the same construction as in Lemma [2.14]). It follows that all of these functors preserve injectives. O

Lemma 2.45. The category S has enough injectives.

Proof. Let F € S. For each n, we pick a monomorphism ¢ F < Z, to an injective object of S,. By
adjointness we have maps F — ¢y, +Z,, for each n, so we obtain a map 7 — Z := [], < tn,«Z,. Since products
of injectives are injective, Z is injective. The map F — Z is monic, as this can be checked componentwise.
So S has enough injectives. O
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Definition 2.46. We denote by T the functor S — Modgn(Go, R) given by
F H_I}IIFX"(}—”).

n

We denote by R : DV(S) — DY, (Go, R) the right derived functor of T.
Lemma 2.47. There are natural isomorphisms

RT(F) = lim H' (X,,, F).

Proof. We take an injective resolution F — Z°. For each n, 7, — I} is an injective resolution. Since direct
limits are exact in Modgm (Go, R), we have

RT(F) = H'(lmy T'x, (Z3)) = lig H' (T, (Z3)) = lim H'(X,,, F,).
O

Lemma 2.48. Suppose the X,, are compact locally contractible topological spaces and the spaces X,, — Xg
are Go /Gy -torsors. In other words, we suppose that the formalism of the previous section applies to Xo. We
regard RT'x as a functor on Sy, using Lemma[2.35. Then there is a natural isomorphism

RTx = RT o 10,

Proof. We have a natural isomorphism of functors I'y = To tp,. By Lemma we obtain a natural
transformation

RI'xy — RT o L0,1-
Tracing through the constructions and applying Lemma we see that this is an isomorphism. O
Lemma 2.49. Suppose that the X,, are compact Hausdorff topological spaces, let jo : Yo — X be an open

subspace, and let j, : Y, — X, be the pullback of jo for each n > 0. Let Sy denote the analogue of the
category S for the tower (Yy,)n>0, and let 5 : Sy — S denote the exact factor induced by the functors jp .

Let fc : Sy = Modgn(Go, R) be the functor
To(F) = limPe(Yn, Fn) =T 0 ji .
n

Then there is a natural isomorphism of functors
RI', =~ Rl oj: DT(Sy) — DI (R).
Proof. The proof is essentially the same as the proof of Lemma O

2.6.1 Comparing topologies

Suppose given a complete algebraically closed extension C' of Q, with compatible embeddings Q C C and
Q C C, together with a tower X% of proper schemes over Q. We set X!°P = X212(C) with the usual
topology, set X! to be the ‘local isomorphisms’ site on X2!2(C) as defined in [SGA73| XI 4], and set X2¢ to
be the adic space associated to XZ{gC.

If ? € {cl, alg,ad}, then we denote by I'? and RI? the functors obtained by applying the formalism
of to the tower of spaces (X),>o (with the appropriate site). Recall that there is a morphism of sites

€n: XS — (X;{%C‘)ét — (X284

together with an inclusion of sites X! — X'°P inducing an equivalence of topoi. This induces an exact
functor ¢* from S*P to S8, As a result we obtain a base change natural transformation RT®s th‘)pe*,
for example by applying Lemma [2.1] This natural transformation is an isomorphism by Lemma [2.47| and
the usual comparison theorem for cohomology [SGAT3, XVII Corollaire 5.3.5].

Similarly, we obtain a natural isomorphism RT?e Rfade*, where €* is induced by the morphisms
of sites €, : (X2%)¢, — (X'%)e — (X212)g (we use (3.2.8) and Theorem 3.7.2 of [Hub96]).

n7

23



2.7 Almost smooth representations

Fix a complete and algebraically closed extension C' of Q,. Let Oc C C denote the ring of integers and
m C Oc¢ the maximal ideal. Let 7 € m — {0}. Fix N > 1 and let V = O¢/(7"V). Recall [GRO03], [Sch12,
§4] that the almost context (Oc,m) allows us to define a category of almost Oc-modules, or O%-modules,
that we denote Mod(Og%). This is obtained by localising the category Mod(O¢) of O¢c-modules at the Serre
subcategory comprising modules which are killed by m.

One then defines O¢-algebras, and in particular we have an Of-algebra V¢, which we denote by
A. There is an exact localisation functor (—)® from Mod(V) to Mod(A). This functor has a right adjoint
M — M, = Hom4 (A, M), the functor of almost elements; for any M € Mod(A), the adjunction morphism
(M,)* — M is an isomorphism. The functor (—)? also has an exact left adjoint M — M, = m ®p, M, (see
[GRO3, 2.2.21, 2.2.23]), and the adjunction morphism M — (M;)® is again am isomorphism.

Definition 2.50. Let Gy be a profinite group. We say X € Modg,(Go, V) is almost zero if mX = 0. The full
subcategory of almost zero objects in Modgm(Go, V) is a Serre subcategory and we denote by Mod g, (Go, A)
the abelian category obtained as the quotient of Mod g, (Go,V) by this Serre subcategory.

Lemma 2.51. The functor (=) induces an exact left adjoint to the localisation functor Modg,(Go, V) —
Modm(Go, A), which we also denote by (—)1. The unit of the adjunction M — (M)® is a natural isomor-
phism from the identity functor to the composition ((—))®.

Proof. We note that X — m ®p, X defines an exact functor Modsm (Go, V) — Modgm (Go, V) which is zero
on almost zero objects. Therefore we obtain an exact functor (—); from Modgm(Gop, A) to Modgy (Go, V),
by the universal property of a quotient by a Serre subcategory. This is seen to be left adjoint to the
localisation functor by the same argument used to deduce [GRO3|, (2.2.4)]: namely, describe Hom groups
in the localisation Modgy (Go, A) by calculus of fractions and observe that m ® o, X — X is initial in the
category of almost isomorphisms to X € Modgy, (Go, V). In particular, for X, Y € Modgn(Go, V) we obtain
a natural isomorphism of V-modules

Homypod,,, (Go,4) (X, Y?) = Homyioq,,, (Go,v) (M ®o. X,Y).

Finally, for M = X°, the argument mentioned above shows that the unit of the adjunction is given by the
map X? = (m ®p, X)* which is the inverse of the almost isomorphism m ®o, X — X. This implies that
the unit of the adjunction is a natural isomorphism, as required. O

Remark. The functor (—). induces a functor from Modgy(Go, A) to Mod(Gg, V) but the resulting V|G-
module may not always be smooth. To define the functor, we note that for X € Modsw (Go, V), Homa (4, X%) =
Homy(m®e, V, X) is naturally equipped with an action of Gy (which may not be smooth). Taking smooth
vectors gives a functor (=)™ : Modgm (Go, A) = Modgm(Go, V), which can be checked to be a right adjoint
to the localisation functor. However, we will not use this right adjoint in the sequel.

Definition 2.52. We denote by DY, (G, V) (respectively DY, (Go, A)) the bounded-below derived categories
of Mod g, (Go, V) (resp. Modgm(Go, A)).

The (exact) localisation functor (—)* induces a functor D, (Go, V) — DI (Go, A).
Lemma 2.53. The localisation functor Mod g, (Go, V) = Mod g, (Go, A) preserves injectives.
Proof. This follows from exactness of the left adjoint (—);. O
Lemma 2.54. The category Modg,(Go, A) has enough injectives.

Proof. For M € Modgy, (Go, A) we have a monomorphism M, < I, with I an injective object of Modgm (Go, V),
since Modgy, (Go, V) has enough injectives (Lemma [2.33)). Then applying the localisation functor gives a
monomorphism M = M¢ < I*. By Lemma 1% is injective. O
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Definition 2.55. For n > 0 we denote by
FGn : N[Odsm(Gb7 A) — MOdsm(Go/Gn, A)

the functor given by
M — HomModm(GmA) ((1V)a, M)a.

Here, we note that if M = X, Homytoq,,(c,,4)((1v)*, M) = Homyieq,, (G, v) (M@0 V, X) which we view as
an object of Mod(Go/Gr, V) = Modsm(Go/Gp, V), and then apply (=) to get something in Modgm(Go/Ghp, A).

Lemma 2.56. For M, N € Mod,,,(Go,V), the natural map of V-modules
Homyioa,, (Go,v) (M, N) = Homioq,,,(Go,4) (M®, N)
induces an isomorphism of A-modules
Homiod,, (Go,v) (M, N)* = Homuiod,, (Go,4) (M *, N“)*.
In particular, for X € Modg,(Go,V) the map

Homyod,,,(a,,v) (1v, X|g, ) = Homyieq,, (a,,4)((1v)", X|&, )

induces an isomorphism (Ug,X)* = Tq, (X®). Moreover, for M, N € DY (Go,V) we similarly have a
natural isomorphism of A-modules

Hoijm(GO,V)(M, N)* — HomD:rm(GO)A)(M'a7 NoYye,

Proof. We have Homyiod,,, (Go,4)(M*, N) = Homyied,,, (Go,.v) (M@0 M, N), by Lemma and the natural
(multiplication) map m ®o, M — M is an almost isomorphism (the kernel and cokernel are killed by m).
The induced map

Homiod,,, (Go,v) (M, N) — Homyieq,,, (Go,v) (M ®oc M, N)

is therefore an almost isomorphism.

To check the 'moreover’ statement, we work with the homotopy categories K™ = K (Inj,,, (Go, V))
and K™% = K*(Injg, (Go, A)), where Inj denotes the full subcategory of injective objects in Modgy, (Go, V)
and Modgy, (G, A). These categories are equivalent to the bounded below derived categories D (G, V)
and D (Go, A). We denote by Kom™ and Kom™“ the categories of bounded below complexes of injec-
tives. For M,N € ob(K") = ob(Kom™) we set H' = [],.; Homoq,, (Go,v)(M*, N*™1) and set H™* =
[1;cz Homuoa,,, (G, a) (M%), (N=1)*). Since (—)* has a left adjoint, it commutes with direct products, and
so the natural map of V-modules H* — H ™ induces an isomorphism of A-modules (H1)* = (H ™) (by
the first part of the lemma). Now consider the commutative diagram of V-modules, with exact rows

HY — > Homggp+ (M, N) —— Homg+ (M, N) ——= 0

| | |

Ht* —— Homggm+.a (M®, N*) —— Homy+,. (M*, N%) —=0

where the left hand horizontal maps are given by sending (s%);ez to ds + sd. The first part of the lemma
shows that the first two vertical maps are almost isomorphisms. Therefore the third vertical map is an
almost isomorphism, as required. O

Note that I'g, is left exact, as it is a composition of the left exact Hom-functor and the exact
localisation functor.
Definition 2.57. Denote by RTg, : D{, (Go, A) — DY (Go/Gp, A) the right derived functor of T, .
Lemma 2.58. There is a natural isomorphism of functors RUg, (—)* = (RTg,(—))* : DF,,(Go, V) —
D/, .(Go/Gp, A).

Proof. Both functors are the right derived functor of X — I'g (X)* = T'g, (X%), since (—)® is exact and
preserves injectives. O
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3 Arithmetic locally symmetric spaces

In this section, we will describe the spaces associated to linear algebraic groups over number fields, and use
them to define our derived Hecke algebras.

3.1 Symmetric spaces

Let G be a connected linear algebraic group over QQ, and let R;G denote the Q-split part of the radical of
G. Following Borel-Serre [BS73|, we make the following definition.

Definition 3.1. A space of type S — Q for G is a pair consisting of a (left) homogeneous space Xg under
G(R) and a family (L;)zex of Levi subgroups of Gr satisfying the following two conditions:

1. The isotropy groups G, = Stabg)(x) are of the form G, = K - S(R), where S C R4G is a mawimal
torus and K C G(R) is a mazimal compact subgroup normalizing S.

2. For each x € X, we have G, C L, and Ly, = gL,g™* for all g € G(R).

It follows from [BS73, Lemma 2.1] that there is a unique G(R)-conjugacy class of such subgroups
G, = S(R) - K; the homogeneous space X¢ is therefore determined up to isomorphism. It is connected,
because a maximal compact subgroup K meets every connected component of G(R). On the other hand,
the family of Levi subgroups (L, ).cx involves a choice. Henceforth, we write X¢ for a fixed choice of space
of type S — Q. The space X is orientable: in fact, it is diffeomorphic to Euclidean space ([BS73l Remark
2.4]).

These spaces are studied in great generality in [BS73]. For us, examples will arise as follows:

e If (G is reductive, then there is a unique isomorphism class of space of type S — Q for G, as is clear
from the definition.

e If G is reductive and P C G is a rational parabolic subgroup, then P(R) acts transitively on X¢s. For
any © € X¢, there is a unique Levi subgroup L/, C P which is stable under the Cartan involution
of Gy associated to K, the maximal compact subgroup of G, (hence of G(R)); see [BS73, (1.9),
Corollary].

Let Sp = (R4P/(R,P - R4yG)), a Q-split torus, and let Ap = Sp(R)°. There is a canonical action of
Ap on Xg, called the geodesic action, and given by the formula (for a € Ap, x € X¢g) aex = a, -z,
where a, € L/ (R) is any lifting of a € Ap, cf. [BS73, (3.2)]. This action of Ap commutes with the
action of P(R) on X¢, which therefore descends to the quotient Xp = Ap\Xqg. For any a € Ap,
xz € X¢g, we have L, = L,,., and the quotient Xp = Ap\X¢ becomes a space of type S — Q for P

when equipped with the family of Levi subgroups (L,),exp-

For notational purposes it is convenient to allow groups over arbitrary number fields, so now suppose that
F is a number field and that G is a connected linear algebraic group over F. We will write X for a fixed
choice of space of type S — Q for the restriction of scalars Resg G.

We now consider certain adelic arithmetic quotients of X. Choose an element g = (g,), € G(AY),

and consider for each finite place v the subgroup I', C F: , defined as the torsion subgroup of the subgroup
of F: generated by the eigenvalues of g, in any faithful representation of G. The element g is said to be neat

if N,T', is the trivial group. (This intersection has a sense since finite subgroups of @X are invariant under
Galois automorphisms.) An open compact subgroup U C G(A¥) is said to be neat if all of its elements are
neat. (This definition of neatness is the one used by Pink [Pin90].)

If U is neat, then for all ¢ € G(A%), the group I'yy = G(F) N gUg™ ! is neat as an arithmetic
subgroup of G(F ®qgR). In particular, it is torsion-free and acts freely and properly discontinuously on Xq,
preserving orientations. Moreover, if H C G is a subgroup then U N H(AY) is neat, and if G — H is a
surjective homomorphism then the image of U in H(AY) is again neat.

We write Xg = G(F)\ [G(A¥) x X¢g], where before forming the quotient G(AY) is endowed with
the discrete topology. Then X¢ is a G(A$)-space, in the sense of It follows that X is isomorphic
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to an uncountable disjoint union of connected smooth manifolds, and for any neat open compact subgroup
U C G(AY), X¢ is a free U-space (in the sense of Definition . If U is such a subgroup, then we write
X g for the quotient

X& =Xa/U =GP\ [GAF)/U x Xq] .

If S is a finite set of finite places of F' then we will write G5 = G(A%X"®), where A% is the ring of finite
adeles, deprived of its S-components, and Gs =[], G(F,). Thus G(A¥) = G° x Gs. In a slight abuse of
notation, we will also write G* = G(A¥) and Go, = G(F ®q R).

In order to describe a reasonable class of level subgroups, we will fix an integral model G of G, i.e. a
flat affine group scheme over O with generic fibre G. Such a structure having been fixed, we will write Jg
for the set of neat open compact subgroups of G(A%¥) of the form U =[], U, with U, C G(Op,) for all v.
When G = GL,, r we will always choose the natural integral structure G = GL;, 0., in which case Jg is the
set of neat open compact subgroups of GL,,(A%) of the form U = [[, U,, with U, C GL,(Op,) for all v.

Lemma 3.2. Let U € Jg.

1. The quotient G(F)\G* /U is finite. Writing g1,...,9s € G™ for a set of representatives and T'y, y =
G(F)n giUgi_l, we have a homeomorphism

Xg = H FgmU\XG’

i=1
that we use to endow X& with the structure of orientable smooth manifold.
2. There is an equivalence of categories Shy(Xg) = Sh(XY).

Proof. The first part is finiteness of the class number for G, which follows from [PR94, Theorem 5.1]. The
second part follows from Lemma [2.17] since U acts freely on X¢. O

We will need to consider some naturally arising families of sheaves on the spaces X, g . Let S be a set
of finite places of F' and let Ug C HUGSQ(OH) be an open compact subgroup. We will write J¢ v, C Ja
for the set of U € Jg of the form U = UgU®. If S is finite and M is a Z[Ug]-module, viewed as an object
of Shgs s (pt), then we write M, for its pullback to Shgs«p,(X¢g), and M for its image in Sh(XY).
Lemma [3:2] then implies:

Corollary 3.3. There is a natural isomorphism for any Z[Ug|-module M :
RUGRTx o Mg = RT xy M.

This shows that our use of the discrete topology on G*° does not cause pathologies.

3.1.1 Quotient by unipotent radical

We continue to denote by G a connected linear algebraic group over a number field F. As a warm-up
for later, we now discuss what happens when when we consider the morphism G — H = G/N, with
N = R,G the unipotent radical of G. In this case, the group N(F ®g R) acts freely on X and we can
take Xy = N(R)\X¢g (see [BST3, (2.8)]). Let S be a finite set of finite places of F', and let Us C Gg
be a fixed open compact subgroup. We will freely use the identification H(G® x Ug,U) = H(G®,U?),
and similarly for the groups H and N. For any U € Jg,us, we write Ug € Ju,uy, ¢ for its image in H*°
and Uy € Jnuy, s for its intersection with N°°. There is a natural projection 7g g : Xg — Xpg, and
for any U € Jo.us a quotient projection myr,, @ X& — X5, The map 7y, is smooth with compact
nilmanifold fibres. Now fix a Levi decomposition G = H x N, and fix a subgroup U € Jg s which is
decomposed, i.e. such that U = Uy x Uy. In this case we have constructed in Lemma[2.7]a homomorphism
ri s H(G®,US) — H(H®,UZ) and a corresponding functor 7% : Mod(H(H®,U%)) — Mod(H(G®,U?)). In
this situation, we want to construct for any Uy s-module A a homomorphism in D(H(G*®,U?)):

i:rgRTy, Rl %, Ay — RUyRTx A
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To this end, we consider the following diagram of functors:

g,
Shgs wug (Xa) —— Shgs v (Pt)

s
GaSxu
* Inf” o s
HSxUp g

ShHSXUyws(xH) FH ShHSXUH)s(pt)'
XH

S
Pullback of global sections gives a natural transformation Infg Sigi; $° I'x,, = 'y, om*; by Lemma , we

obtain a canonical morphism for any A € Mod(Ug,s):

S *Us  RIPw A, — RUg m"A, =~ RTx A
XplH XeT Ay = Xc£G-

HSXUH’S

S S
(Note that there is a canonical natural isomorphism InfgSXX[UJiI PRUEFES R(InfngXZSH . I'x,).) Combining

this with Corollary 2:8] we obtain our desired morphism ¢ as the composite

TF—IRFUHRF%HAH — RFU Inf%ii%i,s RF%HAH — RFURFXGAG-

We now want to construct for each A € Mod(Up,g) a splitting
S (RFURFxGﬂ'*AH)N — (RFUHRFXHAH)N

of ™. To this end, we introduce a new space Qg = H(F)\ [H(AYF) x X¢], the action of H(F') on X¢ induced
by our fixed Levi decomposition G = H x N. There is a natural H-equivariant map 6 : Yy — X, and
the composite 0 : Yy — X¢ — Xy is a fibre bundle with fibre N(F ®g R). In particular, the endofunctor
Ro.o* of DT (Shys Xp) is naturally isomorphic to the identity functor, by adjunction (cf. [KS94, Proposition
2.7.8]).

There is a natural transformation RI';yRI'x, — RI'y;, Rl'y 0", Applying this to a sheaf 7% Ay we
obtain our desired morphism s as the composite

RTyRUxom* Ay — Ty, RUy, 0°1* Ay = T, RTy, 0" Ay =T, RUx, Ro,0" Ay =Ty, RTx, Ay.

It is easy to see that s is a splitting of the morphism i~ : RI';;, Rl'x, Ay — RIGRCx 7" Ay in D(Z).
Putting all of this together, we have proved the following:

Proposition 3.4. For any A € Mod(Un,s), there are natural morphisms
i:ryRUy, Rlx,, Ay — RUyRUx 7" Ay

in D(H(G®,U®)) and
s: Ry RTx,m" Ay — Ry, Rlx, Ay

in D(Z), satisfying si~ = 1. In particular, there is a commutative diagram of Z-algebras:

H(GS,US) — %> Endp g (RTg RTx,m* Ay)
THJ/ lm—wtr
H(HS,U§) —> Endp(z) (RTy, RUx, Ag).

Proof. Tt remains to check that the diagram is commutative. For this, it is enough to show that for any
t € H(H®,Uy), the equality Tg(t)i™~ = i~ Ty (ru(t)) holds inside

Hompz) (RI'y,, RT'x,,, RU Rl x 7" Ay ).

This follows immediately from the fact that i~ arises from a map in D(H(G®,U?)). O
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We now generalize this slightly.

Proposition 3.5. Let B be a Z[Ug|-module, and let C = Resgz . B. Suppose that C' admits a decomposition
C =A® K of Z[Uy s|-modules, where A C BUN.s. Then:

1. We have n*Apy = Ag.
2. There are natural morphisms
7 T?{RFUHRFXHAH — RFURFI{GEG

in D(H(G®,U®)) and
s RUy RTx, By, — RUy, RTx, Ay

in D(Z), satisfying si~ = 1. In particular, there is a commutative diagram of Z-algebras:

T
'H(GS7 US) Y EndD(Z)(RFERFxGEG)

TH i itHstiN

,H(HS, UI‘?I) TH> EndD(Z)(RFEHRFXHAH)-

Proof. The isomorphism 7*A, = A is clear from the definitions. The inclusion A C BYNs implies the
existence of a Ug-equivariant map A — B, hence 7* A — B,. We define ¢ as the composite

ry Ry, Rlx, Ay — RUy R x 7" Ay — RU'yRT'x, Be,s

where the first arrow is the one constructed in Proposition [3.:4] and the second arrow arises from the map
1Ay — Bg. We define s as the composite

RIGRTx.Bg — Ry, Ry, 0"Bg = Ry, Ry, 0"Cy = RI';, RUx,,Cyy

= Ry, RUx, (A @ Ky) — RUy, RUx, Ay
The first arrow is constructed as in the proof of Proposition the isomorphism 6* B = ¢*Cy; follows from
the definitions, the second isomorphism follows as in the proof of Proposition the third isomorphism
follows from the isomorphism C' = A@® K, and the final arrow is projection onto the first factor of C = AG K.

To complete the proof of the proposition, it remains to show that the equality si™~ = 1 holds inside
Endpz) (RI'f, RT'x, Apy). The composite si™ is equal to the composite

RTy, RTx, Ay — RTy, RTx,Cy — RUy, RUx, Ay,

where the first arrow is induced by the inclusion A C C of Z[Uy s]-modules and the second by projection
along the direct sum decomposition C = A @ K. It follows that si™ is induced by the identity morphism of
A, hence is equal to the identity. This completes the proof. O

In the applications, we will need this result in a slightly different form:
Corollary 3.6. With assumptions as in Proposition[3.5, there exists a commutative diagram

Te t—tF

H(GS,U®) Endpz) (R xy Be) Homp,z) (RT vy .Bg, RT xy Bg)

TH ltn—mti“’ \Lt'—mtic

H(HS, Uf;) == Endp(z) (RT o, AY) 2= Homp o) (RT o, AGf, BT oy AGF).

29



Proof. We first define the relevant morphisms. The maps s and i are as in the statement of the proposition,
we write F' for the natural ‘forget supports’ maps RI'. — RI', and i, is the natural pullback

R vy AR = RUxy (A — RUxy BE,

which exists because 7y r7,, is proper. The corollary now follows from the proposition and the commutativity
of the following diagram for any ¢ € Endpz)(RI'xy BY):

F t

RTyy Bg RTyy B Ry Bg

N

Uy F U sti™ Un
RFXZH,CAH HRFXZHAH HRPXZHAH'

3.1.2 Borel-Serre compactifications and restriction to parabolic subgroups

We continue to suppose that G is a connected linear algebraic group over the number field F. Let U € Jg.
According to Borel-Serre [BST3|, we can add boundary strata to Xg in order to obtain compact manifolds
with corners. We now discuss some elements of this theory.

Let P denote the set of F-rational parabolic subgroups of G (which includes G itself). For each
P € B, we have defined the group Ap and observed that the quotient e(P) = Ap\X¢ admits a canonical
structure of space of type S — Q for Resg P, with respect to which the map Xg — e(P) is P(F ®qg R)-
equivariant. Accordingly, we define

X =[] eP),

Pey
endowed with the structure of smooth manifold with corners described in [BS73| §7.1]. For each P € B, the
subset X (P) = [[55p e(Q) is an open subset of X, the structure of which can be described explicitly, see

[BS73, §5]. In particular, e(G) = Xg C X¢ is an open submanifold. If g € G(F), then there is a natural
isomorphism X (P) — X (PY); the action of G(F) on X extends naturally to X in a way compatible with
these isomorphisms, see [BS73, Proposition 7.6].

We define X¢ = G(F)\ [G(A)F>) x X ], where as in the previous section, G(A%) gets the discrete
topology in the formation of the quotient. For any U € J¢, we define

X =Xa/U = G(P)\ [G(AF)/U x X¢] .

As in the previous section, we can choose representatives ¢i,...,gs € G(A%) for the finite double quotient
G(F)\G(A®)/U and calculate

—U s _
Xg= Hng,U\XG'

i=1

For each g € G(A%), the neat arithmetic subgroup I'y, v C G(R) acts freely on Yg, and the quotient
Iy, v\X¢ is compact ([BS73, Theorem 9.3]).

We define 0%¥g = X¢ — ¥¢ and 8Yg = Yg - X g . Then we have similarly

0X ¢ = 0% /U = [[ Lo\ 0X -
=1

Suppose given a finite set S of finite places of F' and a fixed open compact subgroup Us C Gg. For any
Z[Us]-module A, we will write Ay € Shgs .y, (Xg) for its pullback from Shgs g (pt). Since the pullback
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of A to the G®-invariant open submanifold X¢ C X¢ agrees with the equivariant sheaf previously denoted
as Aq, we hope that this will not cause confusion.

We can use the Borel-Serre compactification to define a Hecke action on the compactly supported
cohomology of the spaces X (U; . More precisely, we can define for any Z[Ug]-module A a homomorphism

H(GS, US) — EndD(Z)(RFXgpAg)
which is compatible with the natural morphism

. . = . . , U
To do this, let us write jo : Xg — X¢g for the natural open immersion and jg : Xg — X for the

corresponding open immersion at finite level. We can take RI'yy AY = RI'gv i& JAY. Tt now suffices to
: lay

observe that jg induces a functor jg 1 : Shge (Xg) — Shges (?G) and that there is a canonical isomorphism
RUGRT% jaiAs = RT—uvjY AY:
vttt x,JG A xUJG 4G
this follows easily from the observation that U acts freely on X, as in Corollary The Hecke actions we
have defined are related by Verdier duality as follows.

Proposition 3.7. Let R be a Noetherian ring and let A € Mod(Us, R) be finite free as R-module; let
B =Hompg(A, R).

1. There is a natural Verdier duality isomorphism in D(R):

RHomp(RT xy Ag, R) = R xy B¢ (3.1)
2. Let S be a Noetherian R-algebra and let As = A®gr S, Bs = B®gr S. Then there are natural
isomorphisms
Rrxg,c&g = (Rrxg,cég) @R S
and

RTyy B¢, = (Rl xy Be:) ©F S.

3. For g € G®, the Verdier duality isomorphism (@ identifies the transpose of the operator [Ug~'U] on
the left hand side with the operator [UgU] on the right hand side.

Proof. The first part follows from the usual Verdier duality isomorphism [Ver95]. We have used the fact
that the derived sheaf Hom RHompg in Sh(XZ, R) satisfies RHompg(AY, R) = BY. The second part follows
as in [Del7T, Chapitre 2, 4.12]; note that the functors T’ Xy and T’ XY have finite cohomological dimension
(IKS94, Proposition 3.2.3]). The third part follows from the explicit formula of Lemma and its analogue
for cohomology with compact support and the functoriality of Verdier duality. O

Now suppose that G is reductive and that P is a maximal proper parabolic subgroup of G. Then
e(P) C 90X is an open submanifold, and we write jp : Xp — 0X¢g for the induced P*°-equivariant open
immersion. This leads to an exact functor jpy : Shpsyy, (Xp) = Shps,y, ;(0Xa). By passage to quotient,

. . L —U
we obtain an open immersion 5% : Xgp —0Xq.

Proposition 3.8. Let G be a reductive group and let P C G be a mazimal proper parabolic subgroup. Let
U € Ja,us and let B be a Z[Ug]-module. We consider B also as a Up g-module by restriction.

1. We have a canonical isomorphism

RPEP Rraich,IEP = RFXgP’CEP'
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2. There are natural morphisms
p: Ry RUgx jpBp = RIG R g% Bg
in D(Z) and
q: RUyRT yx Bg — rpRIy,. R, Bp

in D(H(GS,U®)). The morphism q~p in Hompz)(RL v, cBgP,RFXUPBgP) is the canonical one
P P

(arising from the ‘forget supports’ map RI'. — RI), and we obtain a commutative diagram of Z-

modules:

H(GS,US) — T+ Endp g, (RT v BY)

TP it»—nftp

H (P, UR) —— Homp ) (BT yvp Bp°, RT vy BEF).

Proof. For the first part, it is enough to note that there is a canonical isomorphism

RUy, RL gz, jpiBp = RT jzvjp Bp,

because U acts freely on 9Xg. The isomorphism with RT +Ur Bp then follows from the fact that 7Y, takes
p ¢ )

injectives to soft sheaves, which are I'.-acyclic, see [Ive86], Proposition I11.7.2].
We now construct the morphisms p and q. First, p is the morphism

U .U,
Rraygjp,ﬂp "Bg — Rraygﬁe

which arises from the natural map jg’!jg’*ﬁg — ﬁg (note that j5 B, = Bp). Next, ¢ is obtained by applying

gzigis RTy%.Be — RI'x,Bp induced by pullback. To complete the

proof of the proposition, it remains to check that ¢™p is the morphism induced by the natural ‘forget supports’
transformation RI'. — RI'. However, it follows from the definitions that ¢™p is equal to the composite

Corollary to the morphism Res

RTvp Bp = RUyvjp Bp — RUyxvBg — R vn Bp,
which the map in the middle is induced by jgy, jg’*EG — B¢ and the last by pullback. This is the correct
thing. O

Corollary 3.9. Let notation and assumptions be as in Proposition[3.8, Fiz a Levi decomposition P = M x N
and suppose that Up = Uy - Uy is decomposed. Let B be a Z[Ug|-module equipped with a decomposition
Resg; B= A® K, where A C BUN.S. Then there exists a commutative diagram.:

T
H(G®,U%) ————— Endpz)(RT ;xv Bg)

: |

H(PS,US) —2 ~ Homp z) (RT vy 7052’37 RT v, BY)

rM i

H(MS,US;) —> Hompz) (RT vy AU, RT oy AL
M M

Proof. This follows immediately by combining Corollary and Proposition [3.8 O
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An important fact is that the boundary 0Xg admits a G-invariant stratification, with strata
indexed by conjugacy classes of rational parabolic subgroups of G. More precisely, let P be a rational
parabolic subgroup of G. Then there is a G*°-equivariant isomorphism

Indg< Xp = P(F)\ [G(AF) x e(P)],

and the induced map Indgz Xp — 0X¢ is a G>®-equivariant locally closed immersion. (We define Indgz Xp=
G™ X po Xp.) We then have the following lemma.

Lemma 3.10. Let Py,... Ps be representatives of the distinct G(F)-conjugacy classes of proper rational
parabolic subgroups of G. Then:

1. The natural maps jp, : Indg: Xp, — 0Xg are locally closed immersions, and the induced map

L Indg: Xp, — 0X¢ is a continuous bijection.

2. For each U € Jg, the quotient maps jgi : (IndG: Xp,)/U — 8Yg are locally closed immersions, and

the induced map Hi[lndq;o Xp]/U — 3Yg is a continuous bijection.

Proof. The second part follows from the first. For the first, we need to show this map is bijective. We simply
calculate
0%c = G(P\[G™ x0Xa] =[] T] GP\G™ xe(P)),
i P'~P;
where the second disjoint union is over rational parabolics P’ which are G(F)-conjugate to P;. Since a
parabolic subgroup is its own normalizer, this becomes

[T P(PVNG™ x e(P)] = [[ndE= X,
as desired. O]

3.2 Derived Hecke algebras and the idempotents associated to maximal ideals

We now introduce some more ‘automorphic’ notation. Let F' be a number field, and G a connected reductive
group over F. Fix a prime p and a choice of finite extension E/Q, with ring of integers O, uniformizer r,
and residue field k = O/(r). Let S be a finite set of finite places of F', containing the p-adic places. Let G
be an integral model of the group G such that G, , is reductive, and let Us = [l,gs G(OF).

We write T® = H(G®,U®) ®z O; then T? is a commutative O-algebra, because U is a product of
hyperspecial maximal compact subgroups. When we wish to emphasize the ambient group G, we will write
TS = TZ2,. If C* is a perfect complex of O-modules (which in this context just means that H*(C*) is a finite
O-module) equipped with a homomorphism T — Endp)(C*) of O-algebras, then we will write T3 (C*)
for the quotient of T which injects into Endp(o)(C®). Thus T9(C*®) is a commutative finite O-algebra,
equipped with a surjective map

T%(C®) = T*(H*(C*))
which has nilpotent kernel (because C*® is perfect).

Being a finite O-algebra, we can decompose T(C*®) as a product T¥(C®) = [],, T(C*)wm over the
finitely many maximal ideals m C T (C*®). For each such maximal ideal there is a corresponding idempotent
em € T¥(C*®) C Endp(0)(C*), which is the projector onto the factor T¥(C*®)w. The derived category D(O)
is idempotent complete, so we deduce the existence of a direct sum decomposition C* = C @ D*® in D(O).
The summand Cg, is defined uniquely up to unique isomorphism in D(O), and the composite map

T%(C%)m — T¥(CR)

~

is an isomorphism. Similarly, there is a canonical identification H*(C®)n = H*(Cy). (For a similar but
more detailed discussion, see [KT), §2.4].)
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Fix U € Jgus, and let A be an O[Ug]-module, finite over O. Then RI‘XgAg is a perfect complex
of O-modules, equipped with a canonical homomorphism

T% — Endp o) (RI xu AZ).

The algebras T* (RFXgAg) are the derived Hecke algebras referred to in the introduction of this paper.

In the forthcoming sections, we will use the decomposition of the complex RT’ XY Ag according to maximal
ideals of this algebra in order to study their associated Galois representations.
The following results will be useful later.

Lemma 3.11. Let M and N be perfect complexes of O-modules. Then the natural map

Homp o) (M, N) — lim Homp (o /-0) (M ®6 O/7"O, N @ O/1"0)

is an isomorphism.

Proof. For r = oo (resp. 7 € N) let K, denote the category with objects bounded complexes of finite
projective O-modules (resp. O/n"O-modules) and morphisms given by morphisms of complexes modulo
homotopy. The obvious functors K., — D(0), K, — D(O/n"0O) are fully faithful, so it suffices to prove
that the natural map

Homg _(M,N) — lim Homg, (M ®5 0/1"O,N @% O/1"0)

T

is an isomorphism for all M, N € K. This is the content of [KT] Lemma 2.13, (iii)]. O

Lemma 3.12. Let M be a perfect complex of O-modules endowed with a homomorphism 'I[‘% — Endp o) (M).
Let Too = T2(M), and for each N > 1, let Ty = T2(M*®0 O/(x™)). Then the natural map Too — Hm Ty
N

is an isomorphism.

Proof. The map is injective, by Lemma It is surjective because each map To, — Ty and Ty — T
is surjective, and T, is compact. It is therefore an isomorphism. O

Lemma 3.13. If C is a triangulated category, A — B — C — A[l] is an exact triangle in C, and
s,t: B — B are morphisms making the diagram

A B C Al
Pk
A B C Al

(and its analogue with s replaced by t) commute, then st = ts =0 in Endc(B).

Proof. The proof is an easy diagram chase (apply the functor Hom(B, —)). O

4 The boundary cohomology of the GL, locally symmetric space

We fix throughout this section a base number field F, a prime p, and an integer n > 1. Let G = GL,, . We
fix as well a finite set S of finite places of F', containing the p-adic places, and set U = vazs GL,(OF,) C
G(A?’S). Finally, we fix a finite extension E/Q,, and let O denote the ring of integers of E, m € E a
choice of uniformizer, and k = O/(7) the residue field. We write Gp g for the Galois group of the maximal
extension of F' which is unramified outside S.
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If m > 1 is an integer, then the Hecke algebra T = H(GLy (A7), [[ogs GLm(OF,)) ®z O is a

commutative O-algebra, generated by the elements T, i = 1,...,m, v € S, where
T! = |GL,(OF,) diag(wy, - - ., @y, 1, ..., 1) GLy, (OR,) |,
K3 m—1

together with (77)~!. We will say that a perfect complex C'* of O-modules equipped with a map TéLm —
Endp(0)(C*) is of S-Galois type if for each maximal ideal m C TéLm(C"), there exists a continuous semi-
simple representation p,, : Grs — GLy (T(C®)/m) such that for every finite place v € S of F, p,, (Frob,)
has characteristic polynomial

XU TIX" o (—1)gUV2TIX T o (<)M Y2T e (TS (C0) /m) [ X]. (4.1)

If C* is of S-Galois type and a representation p,, is absolutely reducible, then we say that the maximal ideal
m is Eisenstein. If C* is of S-Galois type and every maximal ideal m C T(S;Lm (C*) is Eisenstein, we say that
the complex C* itself is Eisenstein. Note that these conditions hold for a given complex C* if and only if
they hold for the cohomology H*(C*).

We now suppose for the rest of §4] that the following hypothesis holds:

e For every integer 1 < m < n and for every U € JaL,, » ] 25 CLim(Or,)s the complex RFXgL k is of
i1, v »

m,

S-Galois type.
If F' is an imaginary CM or totally real field, then this hypothesis is true, by Corollary [T.2]

Lemma 4.1. This hypothesis is equivalent to: for every integer 1 < m < n and for every open compact
subgroup U € jGLm,Fvvas QL (OF,)s the complex RI‘XgL ok is of S-Galois type.

)
m,F

Proof. We show that our hypothesis implies the given condition on the cohomology with compact support;
the other direction is similar. We can assume that m = n. All maximal ideals occur in the support of
cohomology groups. By Proposition there is a perfect Poincaré duality pairing of finite-dimensional
k-vector spaces

<'7'>U : H:(ngk) X H*(Xg7k) — k

satisfying the equation (x, [UgUly)y = ([Ug~ U]z, y)y for any g € G°. For unramified Hecke operators T7,
v € S, this implies that the action of T/ on H*(X, k) is dual to the action of /" ~*(T7)~! on H}(XZ, k).
We must therefore show that for any maximal ideal m of ']I‘g in the support of H*(XZ, k), there exists a
continuous semi-simple representation Gy, : Grs — GL,,, (T (H* (XY, k))/m) such that for each finite place
v ¢S of F, 5y (Frob,) has characteristic polynomial

X" = TP U T X e (<1 UV RTINS (T
A calculation shows that we can take oy = py ® ! 7™, O

Subject to this hypothesis, we will prove the following theorem:

Theorem 4.2. For every U € Jg ys and for every smooth O[Ug]-module A, finite as O-module, the complex
RT j<u (AZ) is Eisenstein. In particular, for every non-Eisenstein mazimal ideal m C ’]I‘S(RI‘XgA(U;), the
G

natural morphism
(Rrxg,cég)m - (Rrxgég)m

in D(O) is a quasi-isomorphism.

The proof of Theorem will be an exercise in understanding the structure of the Borel-Serre
boundary. We begin with some preliminary reductions.
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Lemma 4.3. To prove Them"em it is enough to treat the case where A =k is the trivial k[Ug]-module.

Proof. Since A is a finite O-module, we can find a normal subgroup U’ C U such that U’ € Jg; ys and
U§ acts trivially on A. We will show that Suppqs RT' XY Ag C Supprs RI’ Xg/k. There is a ']I‘g—equivariant
spectral sequence N

By = H'(U/U',H (X§& , Ag ) = H'(Xg, Ag),
which shows that Supprs RFXgAg C Supprs RFXg/ Ag/. But A(U;/ is the constant sheaf associated to a
finite O-module, and the result follows by the theorem on universal coefficients. O

Lemma 4.4. To prove Theorem[].3, it is enough to show that for each proper standard parabolic subgroup
P C G, the complex RT (a6 xp)uk is Eisenstein.

Proof. By Poincaré duality (i.e. by the same argument as in the proof of Lemma , the vanishing of
RF[Indcoo %p] /Uk at non-Eisenstein maximal ideals implies that of the compactly supported cohomology
Poo XP

RF[Indggz xp)/u,ck. By Lemma and the long exact sequence in cohomology with compact supports
associated to the inclusion of an open subspace, we deduce the corresponding result for the full boundary
0X . O

Let us therefore fix a proper partition n = ny + --- + n,, and let P C G the corresponding stan-
dard parabolic subgroup, M = GL,, x--- x GL,, its standard Levi subgroup. We will now show that
RU(146 2] suk is Eisenstein. Since every rational proper parabolic subgroup of G is conjugate to one of

this form, this will complete the proof of Theorem
We have an isomorphism in D(H(G®,U?)):

Ry Ress g RTacs v,k = RUys H(P(F)\G™ /Us, k)
~ RTys ndSs HY(P(F)\P® x Gs/Us, k).
The first isomorphism in follows from Proposition the quasi-isomorphism
RTx, k= H(Xp, k) = H(P(F)\P>, k)
in D(P*°), and the fact that the representation
Ind$= HY(P(F)\P*>, k) = H(P(F)\G™, k)
is Ug-acyclic. The second isomorphism follows directly from the definition of induction. By Corollary [2.6]

the complex in (4.2)) is quasi-isomorphic with

* S
@ rpRTys Indp(pyngusg-1 K

9EP(F)\Gs/Us (4.3)

= @ rpRUys « (PsngUsg—1) Resng(PSmgUsg—l) RTx k.
geEP(F)\Gs/Us

(The index set is finite by weak approximation for P. We can apply Corollary because our assump-
tions imply that P°Us = G®.) By varying Ug, we can therefore reduce to showing that the complex
rp Ry, Resg;x; Up s BUxpk is Eisenstein. To show this, we write 7 : Xp — X for the canonical projection
and observe that there is a quasi-isomorphism in Mod(H(P*,U3)):

RFUP RFRQSP?

PSxUp g

%Pk = RFUEXUM,SRFIMPSXUM,S x RWEN)Sk' (4'4)

MSxUp g M

The sheaf 7.k € Shps,y, ; X is constant on connected components, with stalk at a point [(D,2)] € X
given by the formula

(mek)p.0) = HO(P(F)\P(F)pN(AF), k) = Ind (g k, ypn = pnp ™. (4.5)
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By strong approximation, there is an isomorphism of Z[Uy|-modules, where I'1 7, = N(F) N Uy as usual:
N> ~ U
IndN(F) k = IndeUN k'

Since Un s acts freely on the set 'y, \Un, Indlgivu k is an injective Z[Un, s]-module, and the natural
YN

map ﬁiJN’Sk‘ — RWEN’S in D(ShpstM,S X)) is a quasi-isomorphism. We deduce the existence of a quasi-
isomorphism
Ry, R R P xpk = Rlys

PSxUp g

BT pscvy T VS, (4.6)

xU
M,S n M

MSxUp s
We now construct a morphism k — 7.k in Shpsyy, s Xa. Since the constant sheaf £ is pulled back from a
point, it is equivalent to give a PS x U p,s-equivariant map

k — H°(Xp, k) = HO(P(F)\P™, k),

which we take to be the inclusion of the constant functions. Taking derived Uy g-invariants, we obtain a
natural map R1YV5k — Rr/V5k = zU¥ 5k hence a map

Un,s
RFUEXUNT,SRFIanSXUJ\LS x Rl* k — RFUEXUNIWSRFIII{‘

UN,57. ~
pstM’S X T k= RFUPRFRCSPOO ka7
MSxUpy g M MSxUps g

PSxUp g

(4.7)
the last isomorphism by (4.6). We claim that this is a quasi-isomorphism of complexes of H(P°,U g)-
modules. It suffices to check this after applying forgetful functors, which reduces us to showing that the
natural map

RIUN R1UMS | o R1UNE - RIUNS7UNS | = RaUng

is a quasi-isomorphism. After taking cohomology and looking at stalks, we must show that the maps

H (Un, k) = H (Ux,IndZY k)= HY(Ty s, k)

oy
are isomorphisms. This is part of the following lemma.

Lemma 4.5. Let 'y yy o = N(F)NUn,s (intersection inside Ng). Then the natural maps in (discrete)
group cohomology
H*(UN,S,]G) — H*(FLUN,svk) — H*(FLUN,]C)

are all isomorphisms, while H'(Ux, k) = 0 for i > 0.

Proof. Let S, C S denote the set of places dividing p. Nilpotent groups have the congruence subgroup
property, so the natural map I'y v, — Un,s, identifies Uy s, with the p-profinite completion of I'y y,, and
hence ([BK72, Ch. VI, 5.6]) the natural map H*(Uy,s,,F,) = H*(I'1,uy,Fp) is an isomorphism. Let T be
the set of places of S which are prime to p. Then the group Uy, r is uniquely p-divisible, hence is Z[1/p]-
complete in the terminology of op. cit., hence satisfies H(Un 1, Z) = H (Un 7, Z[1/p]) and H*(Un 1,Fp) =0
for i > 0, by [BK72, Ch. V, 3.3]. The Kiinneth theorem in group cohomology then implies that the natural
map
H*(Un,s,Fp) = H*(Ty,uy, Fp)

is an isomorphism. Essentially the same argument shows that the same holds when I'y r, is replaced by
I'uy s the group U ;\q, is again uniquely p-divisible and nilpotent, so another application of [BK72, Ch. V,
3.3] shows that it has trivial F,-cohomology. O

Let us now take stock. We have shown that there is a quasi-isomorphism

RTy, RTgor=

~ Un,s
0 xR E B, (BT psuy, s BRIk

MSxUyN g M
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of complexes of H(P°,U3)-modules, and we wish to show that these complexes become Eisenstein after
applying the exact functor r}. It is enough to show that for each ¢ > 0, the complex

* 7 UN,S
TPRFUSXU]\/I,SRFIanSXUI\/I,S %MR L. k
MSxUpy s

is Eisenstein. The sheaf RI1V¥ %k € Shps v, s Xm can be calculated explicitly as follows: it is pulled back

from the sheaf on a point associated to the k[Uys s]-module A = H(Uy,s,k). In the remainder of this
section, we will show that there is a quasi-isomorphism

i1UN,s
RPUEXUM,SRFI fPSXUM,s x R'1 k= TXJRFUM RF:*:JMAM
n MSXUM,S M

of complexes of H(P*,U ﬁ)—modules, and that these last complexes become Eisenstein after applying the
exact functor rj. This will complete the proof of Theorem
There is a natural morphism

TX/[RFUMRF%MAM - RFUPXUM,SRF PSxUp s AM’
InfMS <Unt.s x
by Corollary 28 It is a quasi-isomorphism; indeed, we can check this after applying the exact forgetful
functor (+)~, which reduces us to showing that the natural map

Uy UpxUnm,s
Ay — RN Tnf2xes 4,

of complexes of sheaves in D(Shyssy,, ; Xar) is a quasi-isomorphism. This can be checked on stalk coho-
mology, where it reduces to the assertion that H"(Uj?,7 k) = 0if ¢ > 0, which is part of Lemma
We now show that the complex

T;;TX/IRFUM RUx, Ay = S*RFUIM Rlx,\ Ay

is Eisenstein. After possibly shrinking U, we can assume that the action of Uy s on H*(Uy s,k) induced
by conjugation is trivial, implying that the sheaf A, is in fact constant on X;. This reduces us to showing
that the complex

T}TX/[RFUMRFka‘

is Eisenstein. After further shrinking U, we can assume that Uy, = Uy X --- X U for neat open compact
subgroups U; C GL,,,(A%¥). In this case, we have a commutative diagram

H(G% Tlogs GLn(OF,)) ——= H(M? [ g5 [T;=1 GLn,(OF,)) Endy,(H* (X7, k))

| |

©3_1 H(GLY, I], g5 GLn, (OF,)) — Endi(@;_ H* (X, k)
We now use the following lemma:
Lemma 4.6. For each place v € S of F, there is a commutative diagram
H(GLH(Fv)v GLn(OFU)) - R[Ylilv s 7Yni1}sn

| |

@31 H(GLn, (F), GLy, (OF,)) —= @i RIZT -, 235,

1,5

[

The horizontal arrows are induced by the usual (normalized) Satake isomorphisms. The left vertical arrow

is the unnormalized Satake transform S, = ryr orp. The right hand arrow is defined by the bijective
correspondence for each i =1,...,s:
(Voitotni 41 Yoy g, } 43 qreertotmad btz 7,00}
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Proof. The proof is very similar to the proof of Proposition-Definition[5.3]below, and is therefore omitted. [

We can now complete the proof of Theorem If m is a maximal ideal of vaf in the support of
H *(XI({[M , k) with residue field &k (which we can always assume after possibly enlarging the field of scalars),

then we can find for each i = 1,..., s a maximal ideal m; of ’]TéLn‘ with residue field & and appearing in the
support of H* (Xgin , k) such that m is the product of my,..., m, in the obvious sense.
By assumption, then, we can find for each i = 1,...,s a semi-simple Galois representation

ﬁmi : GF,S — GLm (TéLM /ml)
such that for each finite place v € S of F', p,.(Frob,) has characteristic polynomial
XM TIXMT g (gD € (T fmo)[X]

If $*(m) denotes the pullback of m to Tg,, we see that S*(m) is in the support of H*(X M, k) as TS-module,
and (using Lemma and the fact that the normalized Satake isomorphism for GL,, is characterized by
the formula 7! s ¢"("=9/2¢;(Y7,...,Y},), where e; denotes the i*" symmetric polynomial) that the Galois
representation

S
Ps*(m) = @ﬁmi ® e (Mititdns)
i=1
satisfies the desired relation (4.1)). We observe that this Galois representation is reducible, by construction.
Since every maximal ideal of T2, which is in the support of H*(X5M, k) is of the form S*(m) for some
m C T7,, this shows that S*H*(XJ[\J/IM , k) is Eisenstein, as desired.

5 The boundary cohomology of the U(n,n) locally symmetric space

In this section, we will prove the main theorems of this paper.

5.1 Groups and local systems

Let F be an imaginary CM number field with totally real subfield F't, and let ¢ € Gal(F/F™) denote
complex conjugation. Let d = [FT : Q], and let n > 2 be an integer. Let ¥,, denote the n x n matrix with
1’s on the anti-diagonal and 0’s elsewhere, and

0 v,
R

Then J,, defines a perfect Hermitian pairing (-,-) : O x 02" — Op, given by the formula (z,y) = ‘z.J,y°.
We write G for the group over Op+ given by the formula for any Op+-algebra R:

G(R) = {g € GLyn(Or ®0,, R) | '9Jng" = Ju}.

We write P C G for the closed subgroup which leaves invariant the subspace O% & 0" C 0%, and M C P
for the closed subgroup which leaves invariant the direct factors O% @ 0™ and 0" ® O%. We write I’ C G
for the standard diagonal torus and B C G for the standard upper-triangular subgroup. We write S C T
for the subtorus consisting of matrices with elements in Op+. We will denote base change to the F-fibre of
these groups by omitting the underline.

Thus P is a parabolic subgroup of G, and M is the unique Levi subgroup of P containing 7. The
torus S is a maximal F'"-split torus of G, T'= Z(S), and G = U(n,n) is quasi-split. We have the equalities

dimg X¢ = 2dn?, dimg Xp = 2dn? — 1, dimg Xy = dn® — 1.

We set D = dn?.
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Lemma 5.1. Let notation be as above.

1. If v is a place of F™ which is unramified in F, then G, . 18 reductive, and hence G+ is unramified.

2. Let N C P denote the closed subgroup which acts trivially on the factors O% @ 0" and 0™ ® O%. Then

P=Mx N. There is an isomorphism M = Res8§+ GL,,.

Proof. The first part follows easily from the definitions; indeed, one can check that if w is a place of F
lying above F'*, then G, is isomorphic to GLg,. For the second part, we make things explicit. Let (-)*

denote the anti-involution of Resgi . GL, given by A* = ¥, A°¥1. (Explicitly, A* is given by reflection
in the anti-diagonal of A and conjugation of coefficients.) Then P can be identified with the subgroup of
Reng GLy,, consisting of matrices of the form

Ft
_(D* B
g - 0 D 9

with B = B* and no condition on D. The subgroup N C P is given by the condition D = 1, and the subgroup
M by the condition B = 0. It is easy to see that the natural map M x N — P given by multiplication of
components is an isomorphism. We identify M with Resgi . GL,, via the map g — D. O

For each place v of F'™ which is unramified in F', the group U, = G(Op+) C G(F;") is a hyperspecial
maximal compact subgroup. Moreover, the subgroups M and P = M x N satisfy the conditions of Lemma
and Lemma with respect to U,, and Ups, = M(OFJ) = GL,(OF R0,y OFJ)' We thus have the
map

Sy =rm, orp, t H(G(F,),Uy) = H(M(E]), Un,w)-
In our situation, it can be given explicitly as in the following two propositions.

Proposition-Definition 5.2. Let v be a place of F* which is unramified in F, and let w be a place of F
dividing v.

1. Suppose that v splits in F'. Then G(F,) = GLan(Fy), and the Satake isomorphism gives a canonical
isomorphism
H(G(F),U,) @z R = RV, ... Vi S,

For each i =1,...,2n, we write Tg ., for the element of H(G(F,}),U,) ®z Z[q, '] which corresponds

under the Satake transform to the element qi§2n7i)/26i(Yh e, Yo

2. Suppose that v is inert in F'. The Satake isomorphism gives a canonical isomorphism

n

H(G(F)),U,) @z R = R[XT, ... X;F]ox(2/20)
The unramified endoscopic transfer from G(F, ) to GLa,(F,) is dual to the map
R[Y, ..., V% o RIXEL .. XELShx(@/2D)"

which puts the set {Y1,...,Ya,} in bijection with {Xlﬂ, o, XEYY. For each i = 1,...,2n, we write
TG w.i for the element of H(G(F,"),U,) ®zZ[q, '] which corresponds under the Satake transform to the
. i(2n—1i)/2

image of qu ei(Y1,...,Ya,).

Proof. For concreteness, we recall the definition of the normalized Satake isomorphism. We temporarily let
notation be as at the beginning of Thus F is a finite extension of Q,, G is a reductive group over Op,
S is a maximal Op-split torus of G, T is the maximal torus which centralizes S, and B is a Borel subgroup
containing T. Let N C B denote the unipotent radical. The Satake isomorphism is then the isomorphism
([Car79l p. 147]):

N : H(G(F),G(OF)) @z R — H(T(F), T(0r))" " @7 R
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given by the formula f — (t — dp(t)!/? fneN(F) f(tn)dn). (We use the notation A to emphasize that
this is the ‘normalized’ Satake isomorphism, in contrast to the ‘unnormalized’ Satake transform S that we
hvae used elsewhere in this paper, in which the factor 5,13/ % does not appear.) Here d5(t) is the character
dp : T(F) — Rsg given by the formula d5(t) = |detr Adpie n(t)|F, where | - | is the usual normalized
absolute value on F (satisfying the formula |w|p = (#kr)~! = ¢7! for @ € O a uniformizer).

It follows from the proof given in loc. cit. that A/ in fact defines an isomorphism
N : H(G(F),G(Or)) @z Z[g* 2] = H(T(F), T(Op)" O @7 Zlg*2).

If the character dp takes values in ¢?%, then it even defines an isomorphism over Z[g~!]. More generally, if

pc € X*(G) is a character such that ¢ — dp(t)'/2|pa(t) }/2 takes values in g%, then we get an isomorphism

N H(G(F),G(OF)) @z Zlg ] = H(T(F), T(0p))" 4T @ Zlg™]

given by the formula N”(f) = (t — |pa ()|} >N (f)(1)).
We now return to the notation of the proposition. To complete the first part, we must check that
1
the element T 4, which a priori lies in H(G(F,"),U,) ®z Zlgs 2], in fact lies in H(G(F),U,) @z Zlq; Y.
We could use the stronger fact, used already in @, that T ., is actually equal to one of the canonical basis
elements of H(G(F;"),U,). Alternatively, we can apply the above formalism with pg = det?” ™. Then we
find that
N'(Tg ) = [V r,a?" (Y1, ., Yan)

w

=, V2 (Y1,. .. Yay,) € H(T(F), T(OF)V' D) @y Zlg, "),

hence TG w,; € H(G(F)),U,) @z Zlg, ]

We now prove the second part of the proposition. By definition, the unramified endoscopic transfer
is the map on unramified Hecke algebras dual to the standard unramified base change map defined, for
example, in [Minlll §4.1]. This is easily seen to correspond under the respective Satake isomorphisms to
the map appearing in the statement of the proposition above. To finish the proof, we must again show that
Tewi € H(G(F,),U,) @z Z|g, ']. We observe that since g, = ¢2, the image of @026y, .. Yap) lies
in H(T(F),T(Op))V(ET) @5 Z[q; 1. Tt is easy to check that for the unramified unitary group, the character
§p takes values in ¢?%, and hence the normalized Satake isomorphism is itself defined over Z[g,!]. These

facts together imply the result. O
Proposition-Definition 5.3. Let v be a place of F* which is unramified in F, and let w be a place of F
dividing v.
1. Suppose that v splits in F. The unnormalized Satake transform S, corresponds under the Satake
isomorphism to the map
R[YEL, . Va5 RIWEL, L o WEL Z5E L 2] S xS
which puts the set {Y1,...,Ya,} in bijection with {qg/2Z;1, e qﬂ/zZl_l, P, ,q[ann}. For
eachi=1,...,n, let Tnfwi € H(M(F)),Un ) ®z Z[g, ] correspond to q%n_z)/zei(Wh oo, Wh), and
let Tag e i € H(M(E,),Un,w) correspond to qﬁn_z)/zei(Zh ces Zn)-
2. Suppose instead that v is inert in F. Then the unnormalized Satake transform S, corresponds under
the Satake isomorphism to the map
RIXT, .. XES @D o RIWES, L WES
—n/2

which puts the set {X1,...,X,} in bijection with the set {q;n/QWl,...,qw Wy.}. For each i =
1,...,n, we let Tngwi € H(M(F)),Un ) ®z Zlg, ] correspond under the Satake isomorphism to the

element qfﬂ("_i)mei(Wl, s W),
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Proof. In either case, we have a diagram

H(G(F),U,) @z R —2% H(M(FF), Unro) @z R

kx lNM

H(T(F,)),Ury) @z R,

where the maps N, Ny are the Satake isomorphisms defined in proof of Proposition-Definition [5.2] This
diagram commutes up to multiplication by the ratio of the modulus characters for G and M, by the transi-
tivity of the formation of constant terms. More precisely, let Byy = BN M. Then for any f € H(G(F;}H),U,),
t € T(F,"), we have the formula

(NarSuf)(t) = b, (1) 205 (1) 2 (NG f)(2).

A calculation now gives the claimed formulae for the Satake transform. To finish the proof of the proposition,
we must show the rationality of the element T/, ; in each case. This step is essentially the same as in
Proposition-Definition [5.2] so we omit the details. O

With the above definitions, if w is a finite place of ' unramified over the place v of F'™ then we
define a polynomial in H(G(F,}),U,)[q,; ][ X]

Pow(X) = X? — T X2 o 4 (=110 D2 i X2 o 2P DT 0
and polynomials in H(M (F,"),U,)[q, *][X]
Pyr(X) = X" — TM’,wlenfl N (_1)jq1j;)(j71)/2TM7w,anfj NS qg("*l)/QTMyw,n

and
PJ\\iI,w(X) = (*1)71(qg(nil)/QTM,w,n)71anw(X71)~

Then the relation S, Pgu(X) = Parw(X)gu”" Py, . (a5 >"X) holds inside H(M (F,"), U,)[q; '][X].
Now let p be a prime, and let S be a finite set of finite places of F*, containing the p-adic places and

the places which are ramified in F'. We assume that the primes of '™ above p are unramfied in F; this implies

that the group QOF . Isreductive for each place v|p of FT, so we can use the construction in to describe

families of local systems on the spaces XZ. Let E be a finite extension of Q, which contains the image of
every embedding F' — Q,, let O denote its ring of integers, 7 a choice of uniformizer, and k its residue

field. We now describe a parameterization of certain p-adic local systems on the spaces Xg and XJ\U4M . For
convenience, we let I, denote the set of embeddings 7: F* < E, and choose for each 7 € I, an embedding
7: F — FE extending it. We let fp denote the set of such embeddings. Let T, C Resgl’;r GL,, = M denote
the standard diagonal maximal torus. The fixed Levi embedding M — G induces an isomorphism T, = T,
and we will use this isomorphism to relate the parameterization of local systems on X g and X ]l\f[M.

Fix a place v € S, and let 7 € I, be an embedding inducing v. Then the choice of 7 determines
canonical isomorphisms M ®p+ , £ = GL, x GL,, and T,, ®p+ , £ = GL} x GLY, hence X*(T), g ) =
Z™ x Z™. An element (A7, A7) € Z™ x Z™ lies in the dominant subset X*(T}, g )" if and only if it satisfies
the conditions

A71 2 Ao > 2 Aey
A‘T’c,l > )\?672 > 2 /\'T'c,na

i.e. if and only if it lies in the subset Z’} x Z', where we define
Zi :{(xlﬂ"wxn) eZn |£L'1 Z-TQ > Zl’n}

In this case, we have associated to the pair (A7, \z.) an O[M(Op+)]-module A(M; 7, A7), finite free as
O-module. Given a tuple

n om n n om(FT,
A= () € (Z3)RomED) = (27 x 27y Homr 8,
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we define A(M,\) = ®rcr, A(M; A7, A=), the tensor product being taken over O. Then A(M;A) is an
O[M(Op+ ®z Zp)]-module, finite free as O-module.

Now choose again a place v € S, and let 7 € I, be an embedding inducing v. Then the choice of
7 induces canonical isomorphisms G ®p+ , E = GLgy, and T ®p+ , I = GL3", hence X*(Tg,) 2 Z*. An
element a, € X*(Tg ;) lies in the dominant subset X*(Tg ;)" if and only if it satisfies the conditions

a‘r,l 2 a7'72 2 Tt Z a/T,2n~
Under the isomorphism X*(Tg ;) =2 X*(T),, g ), we have
()\;,1, ceey )\F,m )\‘70,1» ceey )‘7'0771) & ar = (—)\;c,n, Ceey —/\;071, )\;717 ey )\;,n). (5.1)

In particular, the subset X*(Tg )" C X*(T,,,5,-)" is described by the single extra condition —Az.1 > A7 ;.
We have associated to each a, € X*(Tg)" an O[G(Op+)]-module A(G;a,), finite free as O-module. Given
a tuple

a = (a,) € (23)Hom(F"E),

we define A(G;a) = ®,¢1,A(G; a;), the tensor product being taken over 0. Then A(G;a) is an O[G(Op+ ®z
Zy))-module, finite free as O-module, and we have the following lemma (cf. Corollary [2.11]):

Lemma 5.4. Fiz an element a € (Zi")H"m(F+’E) corresponding to X € (Z7)HomEE) ynder 1) Let
U € Jg be such that U, = Uprp X Un,p s decomposed. Then there is a direct sum decomposition

Resgid‘p A(G;a) = A(M;N\) @ K

of O[Unr p]-modules, with A(M; ) C A(G;a)U~».

Let X € (Zﬁ)Hom(F "E) " Although the weight A may not be dominant for G, it becomes so after
twisting. More precisely, let 1 € (Z7%)Hem(F:E) he the element with all entries equal to 1; it is the highest
weight of the determinant of the standard representation of Res(g GL,, r. For any w € Z, the weight A+w-1

is associated to the tensor product of A(M; ) with this determinant character, raised to the power w. For w

sufficiently negative (more precisely, for w < —sup ¢y (A7e,1 +A7,1)/2), we have A+w-1 € (Zi”)Hom(FJr’E).

In this connection, we have the following useful lemma.

Lemma 5.5. For any w € Z and U € Ty, there is a canonical isomorphism in D(O):

RU(X{p, AMM A +w-1)] ) = RU(X{), AM,N)Y).

This isomorphism intertwines the action of T on the left hand side and ¢ T on the right hand side.
Consequently, there is a canonical isomorphism

U\ ~ U
T3 (RU(Xfp, AXM; A + w - 1)) = T3 (RU(X Gy, AGM; A )

which sends T! to q*T".

Proof. There is an isomorphism

AM;A) @0 A(M;w-1) 2 A(M; A+ w-1).

The w'™ power of the cyclotomic character defines a class in H°(XY,, A(M;w - l)U ). The isomorphism
in the lemma is defined by cup product with this class. The rest of the lemma f(gllows easily from the
definitions. O
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5.2 Application to Galois representations, I

We now prove our first main theorem about the existence of Galois representations. It will be convenient
to introduce some notation. Let S be a finite set of finite places of F', containing the p-adic places, and let
Us C HUGSQ(OF;) be an open compact subgroup. If N > 1, a € (Zi”)Hom(FJr*E) and U € Jg,us, then we
define ideals

Juan = ker (Tg} — Endp(o) (R xy A(G;a)!, @0 O/(WN)))

and
Juaey = ker (T = Endpo) (R xy A(G:a)%; @0 0/(x")).

Thus we have, for example,
T/ Jvan = TE(RT xy A(G; a), ®0 O/ (xN)).
Our starting point will be the following result:

Theorem 5.6. Fiz N > 1. For each U € Jg,ug, there exists an ideal Jy n C ']I‘g satisfying the following
conditions:

1. There exists a continuous group determinant of dimension 2n
Day : Grs — Tg/Jun
such that for every finite place w ¢ S of F, Dg uy(Frob,,) has characteristic polynomial Pg ,(X).

+
2. For any a € (22")HomF"E) “we have Jyn C Juan and Jun C Juaen-

Proof. We can find an open normal subgroup V,, C U, such that the action of V,, on A(G;a)/(7") is trivial

for all a € (227)Hom(F".E) Lot V = UPV,,. We define
Ju,n = ker(Tg = Endpuv.0/(x)) (RU xy O/ (7).

The existence of Dg,y thus follows from Theorem to be proved in below, and [Sch, Corollary
V.1.11]. There is a canonical isomorphism in D(O/(7'")):

RUxy . (AGINE @0 0/(x™)) = Rl (RTxy O/ (xV) @ (o) AGN/ (V).

This implies the inclusion Jy ny C Jy,a,c,n. The inclusion Jy y C Jya,n follows by Verdier duality, in the
guise of Proposition [3.7] O

We use this to prove the following result.

Proposition 5.7. Let A € (27 )Hom(FE) qnd letm C T3, (RT yun A(M; )\)ZM) be a non-Eisenstein maximal
M

ideal. Let N > 1 be an integer. For every continuous character x : Gp,g — O of finite odd order, prime to
p, there exists an ideal
Iy © TR (BT vy AMN) M ©0 Of (1))

of square 0 and a continuous group determinant

Dumuy : Grs — ’]I‘i[(RPXgIMA(M; AN @0 O/(1V))m/Ivx

of dimension 2n such that for every finite place w & S of F', Dy (Froby,) has characteristic polynomial
given by X(Frobw)"PM,w(X(Frobw)_lX)X(Frobwc)_"qﬂ,(%*l)Pﬁwc (gL=2"x(Frobye)X).
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Proof. By Lemma [5.5] we can and do replace A by A 4+ w - 1, where

w=—sup|[(Ar1+ Arc1)/2].

T€I,

Then the weight a € (Zi”)HOI“(F+’E) corresponding to A is dominant, so the coefficient module A(Gj;a) is
defined. We first treat the case y = 1. There is an exact triangle in D(O):

RTxy (A(Gsa);, ©o O/ (rV)—=RD xy A(Gia) , @0 O/ (x")—=RT yzv A(G;a),, ®0 O/ (V).
Define
S U N
Juaon = ker (T& = Endpo) (BT 50 A(G;a)}; @0 0/(x")).
It follows from Lemma [3.13] that

2
Jon CJvan - Juaen CJuasnN-

By Theorem|5.6] we find that there exists a continuous group determinant D¢ s : Gp,s — Tf;/(JU,a,a,N, Ju,N)
such for each finite place w € S of F', D¢ v 0(Frob,,) has characteristic polynomial Pg ., (X).
By Corollary [3.9] and Theorem there is a commutative diagram

Tg — Endp (o)) (R jzv A(G; a)g ®0 O/(TN))s=(m))

T3 — EndD(O/(TrN))((RFX;;M A(M; A)ZM ®0 O/(®))m),

and hence a canonical map
U U
Tg(RraygA(G; a), ®0 O/(m"))s+(m) = Tﬂ(Rrxng AWM M ©0 O/ (7)) m, (5.2)

which is induced by the unnormalized Satake transform. The proof of the proposition is completed in this
case on taking Dysy,1 to be the image of D¢ oy under the map (5.2) and I, iy to be the image of the ideal
Jun-

We now treat the case of an arbitrary character y. We can find a normal subgroup Vs € Jym vy, s
of Ups such that the index [Ups : V] is prime to p and the character x o Artp : AP — O is trivial on
det Vas. We can find V € Jg v, such that VN M = Vi, (so the notation is consistent). In this case we can
find a class ¢, € HO(X}*,0) on which GL,(A%) acts by the character x o Art' odet and such that the
character ¢, is not divisible by 7 in H 0 (XXIM ,O). Pullback and cup product with the class ¢, then defines
a map . v

E, RFXJ[\]/IMA(M; )‘)]V[M Ro O/(ﬂ-N) — RFXI‘QMA(M; )\)]\4M Ro O/(’]TN)

which is an isomorphism onto a direct summand A® in D(O/(7"V)) which is invariant under the action of
T3;. We obtain a commutative diagram

T3 —— Endp (o, (xv) (BT xva A A) T @0 O/ (x))

Téwxmobv)"ﬁl: ZLFX(»FX !

TTJS\V/[ EndD(@/(WN))(A')
T% E— EndD(O/(ﬂN))(RFXI\CIM A(M, A)LM ®o O/(’TTN))
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This diagram gives a morphism of Hecke algebras
P s TR(BE oo AL AT @0 O/ (w7)) = TR (A%) = TR (RT oy AM N 00 O/ (n)

which sends the operator T? to x(Frob, )*T. The proof is completed in this case on taking the ideal Iy, to

be the image under f, of the ideal S(Jy,n) in T, (R v, A(M; /\)][\ZM ®o O/(7N)), and Dyrp.,, to be the
M\, A)

image under f, of Dy v,1. O

Using Proposition [5.7] we can prove our first main theorem.

Theorem 5.8. Let A € (Z7)Hom(E) and let U € Jgu,. Let m C ']I‘]SV[(RFXIL\;MA(M;)\)ZM) be a non-

Fisenstein mazimal ideal. Then there exists an ideal I C T%(RI‘XUM A(M, )\)]\U/[M)m satisfying I* =0 and a
M
continuous representation

P Grs = GLn (T3 (RE yvy A(M; X))/ 1)
such that for each place w & S of F, we have the equality
det(X - 1,, — pm(Froby)) = Parw(X)
inside (T%(RI‘X;M A(M;)\)ZM)m/I)[X]-

Proof. Given Proposition exactly the same ‘separation of parts’ argument as in [Schl V.3] implies that
for each N > 1, there is an ideal

In € T (RT o, AM;N) Y @0 O/ (m)m = T,

say, satisfying Ijlv = 0, and a continuous group determinant Dy .y : Grs — Tn/In of dimension n and
with the expected characteristic polynomial. Let Ty = T%(RFXUMA(M;)\)[AJ/[M)T“. By Lemma [3.12 the
M

natural map T, — ]’ngN is an isomorphism. Let I, = NyIy; then we have IZ = 0, and the group
N

determinants glue into a group determinant Dys o : Grs = Too/Ioo-

In order to obtain a true representation py, at the end, instead of just the group determinant D/,
we recall that the deforming the determinant Dy, = det(X - 1,, — p,,) is equivalent to deforming p,,, because
of the assumption that the residual representation p,, is absolutely irreducible (see [Chel Theorem 2.22]). O

To deduce Theorem [I.3] of the introduction from Theorem [5.8] we need only observe that for any
Ve jGLerues GL,(OF,), W€ can find U € jG7Hv€S GO, 1) such that Uy, = V.

5.3 Application to Galois representations, II

We now prove our second main theorem. We will make use of the following result of Lan-Suh ([LS13|
Theorem 10.1]). Let U, = G(Op+ Qg Zp).

Theorem 5.9. Suppose that p is unramified in F, and choose a € (Zi’;)Hom(FJr’E), U e Jau,. Suppose
that a satisfies the following further condition:

dn(n+1) 4+ Z Z(am- —2lar2n/2]) < p. (5.3)
Then _ _
H'(XE, A(GA)g) = H'(XE, A(G: N, ®0 k) =0
foreach 0 <i< D —1.
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Proof. We show how to deduce this from [LS13]. The necessary conditions on a € (Z?ﬂ)Hom(F T.E) appearing
in [LS13, Theorem 10.1] are |ale+ < D, |a|L <p-—2,and for all 7 € I, a;1 — ar 2, < p. According to
ILS13] Definition 9.7], we have

comp

[@leomp = 1+ D +lalr = 14 dn® +[alr,
where ([LS12] Definition 3.2])

alL =) Z ari—2[ar2n/2]).

Tel, 1=1

According to |[LS12] (7.22)] and [LS12l Definition 3.9], we have
=l|ale +dn=D+|a|, +dn=dn(n+ 1)+ |a|L.

After rearranging, the condition |al. + < p becomes (5.3) above, and it is easy to see that this implies the
other two conditions. O

Corollary 5.10. Let N > 1. With assumptions as in Theorem the map RT ;v A(G; a)g®o O/(xN) =
e\ )
Rl'xy A(G; a)g ®o O/(7V)[1] induces an isomorphism

T<p_oRT —uA(G a) ®o O/ (rN) = T<p-1(Rl'xy A(G; a)g ®o O/(x)[1]

in D(O/ (7).
In the situation of Corollary we can prove the following refinement of Proposition
Proposition 5.11. Let A € (27 )HomE) et U € Jgu,, and let m C T%(RFXUMA(M; )\)]\U/IM) be a
M

non-Fisenstein mazimal ideal. Suppose that p is unramified in F' and that X satisfies the following condition:
dn(n +6 +sup(\z.1 + A1) + > Z 50— Arei — 205 0) <D (5.4)
T€l, i=1

Let N > 1. For every continuous character x : Gps — O of finite odd order, prime to p, there exists a
continuous group determinant

Dty = Grs = TRy (BT vy AGM; X) AN @0 O/ (TN)m
of dimension 2n such that for every finite place w & S of F', Dy (Frob,,) has characteristic polynomial
given by x(Froby,)™ Pas w (X (Froby,) 71 X) x (Froby.) g n(2n— I)PJ\VLU)C (gL=2"x(Frobye)X).
Proof. By Lemma we can and do replace A by A + w - 1, where
= —sup|[(A71 + Aze1)/2] — 1.

Tel,

Then the inequality implies that the weight a € (Ziﬂ)Hom(F T.E) associated to A satisfies the conditions
of Corollary [5.10] In the remainder of the proof we just treat the case y = 1, since the modifications in the
case x # 1 are exactly the same as in the proof of Proposition

By Corollary Theorem and Corollary there is a commutative diagram

EndD(O/(ﬂN))((Rer A(G )\) R O/( ))S*(m))

|

TgHEndD(O/(ﬂN))((T<D 1RFXU A(G )\) ®O O/( )) (m))

| |

T3 — Endp(o/xn)) (T<p-2(RT s AM; N) [ @0 O/ (7V))im).-
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We have dimg Xj; = D — 1, and the top degree cohomology of X]\U4M is 0 (as le\f[M is non-compact). It
follows that the natural map

T<p 2R vy AM; M) T ®0 O/ () = RT vy AM; M) 00 O/(7Y)
M M —"
is a quasi-isomorphism. We find that the unnormalized Satake transform induces a map
T&(RT xy A(G;A)2 @0 Of (7)) (m) = TSM(RFXZMA(M; N 20 O/(N))m.

The proposition now follows from the existence of this map and Theorem O
We finally obtain our second main theorem.

Theorem 5.12. Suppose that p is unramified in F and let U, = G(Op+ ®7 Zp). Let X € (Z)HomUnE)
and let U € Jgu,. Letm C T, (RL yup A(M; )\)X[M) be a non-Eisenstein mazimal ideal. Suppose that there
M

exists a set fp = {7 | 7 € Hom(F™", E) such that X satisfies the following condition:
n
[F*:Qln(n+6+  sup  rit+dre))+ Y. > (Asi— Aeei —2X0) <p. (5.5)

T€Hom(F*,E) r€Hom(F+,E) i=1

Then there exists a continuous representation
pm:Grs — GLn(Tg/[(RI‘X][iIM A(M;A);M)m)
such that for each place v € S of F, we have the equality
det(X - 1, — pm(Froby,)) = Pasw(X)

o U
inside ']I‘*I?/[(RI‘XJz\JlMA(M; A ) [X].

Proof. The deduction of Theorem from Proposition is essentially the same as the deduction of
Theorem from Proposition although slightly easier (since there is no longer any nilpotent ideal to
worry about). We therefore omit the details. O

5.4 The proof of Theorem [5.6, by p-adic interpolation

In this section we state Theorem , which was used in the proof of Theorem w Let Up = [[,c s, U,

where the U, are compact open subgroups of G(F,\). Let V, be a normal compact open subgroup of U,,.
Fix U =U,U? € Jg,u, and set V = V,UP. Note that V € Jg,v,. Fix N > 1, and set A = O/(x).

Definition 5.13. Denote by AU/V the U/V -equivariant sheaf on XY given by pulling back the constant
sheaf A on X§.

There is a canonical homomorphism
T% = T¢ — Endpag/v)) (Rl xy Auv)-

We write TS (RT xY.cAy/v) for the image of this map. Note that this image is a finite (commutative)
ring. We are going to show that T (R’ Xg’CAU /V) is a quotient of a Hecke algebra acting faithfully on spaces
of classical cuspidal automorphic forms for G of (varying) regular weight. First we define this ’classical’ Hecke
algebra, as in the statement of [Schl Theorem IV.3.1]. We denote by Xg’alg /Q the algebraic model over Q
for XZ provided by [Fal84, Theorem 1], and denote by Xg’* /Q its minimal compactification. We write
Xg’*’ad /C (and the same thing without %) for the adic space obtained by base changing the appropriate
scheme to C' (a fixed complete and algebraically closed extension of Q,,, with a fixed embedding Q C C) and
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then taking the associated adic space over Spa(C, O¢). We write Z for the subsheaf of O xUwad corresponding
to the boundary Xo**\ X5

Fix an embedding (G, D) — (Spag, Dsp,, ) of (connected) Shimura data, and following Scholze [Sch,
before Theorem IV.1.1] write Xg ™ for the scheme theoretic image of Xg’* in the minimal compactification

of a Siegel modular variety of suitable level. We write wy for the ample line bundle on Xg’* obtained by

pullback from the natural ample line bundle on the locally symmetric space for (szg, Dsng), and we also

write wy for the (ample) pullback to Xg’* and the line bundle on the associated adic space. Since Xg’* is

normal and the boundary has codimension > 2 (we can handle the case of modular curves separately, or just
ignore this case), wy coincides with the usual automorphic line bundle on Xg’* extending wy | v .als.
G
The following theorem will be proved in the remainder of the paper:

Theorem 5.14. Fiz some integer m > 1. Let ']I‘fl be the mazimal quotient of T over which all maps
T5 — Endc(HO(X& ™™, wi™ @ 1))

factor, for varying k > 1 and varying U € Jg,ur. Then the surjective map TS — TS(RFX&CAU/V) factors
over sz-

5.5 Comparison theorems

Let V= 0¢/(7") = A ®0 Oc and A for the O%-algebra V. We are going to compare various complexes
in the derived categories D (U,, A) and D, (U,, A) (as defined in Sections and [2.7).
We first put ourselves in the situation of Section We set Xy = Y and let the tower X,, be

. —Up,nU?
given by X,, = X", where U, , runs over a cofinal system of compact open normal subgroups of U,,.

Set U,, = Up ,UP. We set X = I&nn X,. We have a functor (Definition [2.28])
RT'x : D' (Sh(Xg,A)) — Djm(Up,A).

Denote by j,, the open embedding j,, : X&" < Yg

Definition 5.15. Let K*°P = Rl x (jo,A) € DY, (Up, A).

sm

Next, we work in a number of different settings where we can apply the formalism of Section 2.6
We set ¥, = XY and Y2 = XZ*8. As above, we write X2'8 = XZ%*'&* /@ for the scheme theoretic
image of the minimal compactification of Xg” in the minimal compactification of a Siegel modular variety
of suitable level. Denote by j/ the open immersion j/ : Y218 <5 X218 We also have associated adic spaces
Vod = (v8)*d and X34 = (X2%)d,

We let X be the topological space given by the complex points of Xz{%. We write j/, for the maps
Y, < X and Y*d < X24 induced by the algebraic j/. We also write 7, for all of the projection maps
X = X5, Y, = Y, ete.

The formalism of Section applies to the tower of spaces (X), where ? is *, alg, ad or nothing,
and we obtain categories S’. We denote the associated functors from S? to Modgy (U, A) (denoted T in
Definition by f?, with right derived functors RI”.

Lemma 5.16. There is a natural isomorphism K°P = Rf*(j,’A).

Proof. This follows from the discussion in Section both complexes are naturally quasi-isomorphic to
a complex RI'.(A) defined using the tower (Y},)n>0. O

Definition 5.17. Denote by K& the complex Rfalg(j!’A) and denote by K*! the complex Rfad(j{A).

Lemma 5.18. There are natural isomorphisms in DY, (U,, A): K& = K'P gnd K4 = K218,
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Proof. This follows from the discussion in Section [2.6.1 O

We also consider the functor f%,d : S2d — Modgm (Uy, V) together with its right derived functor

Rf%,d. Here 524 is defined in the same way as S®d, but with coefficients in V. For F € She,(X24,V) there
are natural isomorphisms
DX F)oa V(X2 Fo, V).

Since direct limits commute with tensor products we also obtain a natural isomorphism
T(F) @A VETH(F @1 V).
Lfimma 5.19. For~.7-" € 524 the natural isomorphism [ad (F)@pV = f%,d (FRAV) extends to an isomorphism
RI*(F) @, V=2 R (F @, V).
Proof. Tt suffices to show that for an injective object Z € S2¢ the higher derived functors
RT* T @, V)
vanish for ¢ > 0. We have

n

RIT(T @ V) = li HY (X3, 00 V) = ling 1 (X2

n n
since Z,, is injective. We are using the fact that we can compute cohomology of a sheaf of V-modules after
applying the forgetful functor to sheaves of A-modules and [Del77, Rapport, 4.9.1]. O

Lemma 5.20. The natural maps V — O;ad/(ﬂ'N> in She (Y24 A) induce a map
K% © V = REF(IV) = RIS, 1O a/ (7Y o)

in D (Up, V) which becomes an isomorphism in D, (Up, A).

Proof. This follows from Scholze’s comparison theorem: the induced maps on cohomology are the natural
maps ‘ .
lim (Y2, A) @p A — Tim (V2% OF,0 /(™))"

which are isomorphisms by [Sch13] Theorem 3.13] (and induction on N). O

5.5.1 Hecke operators

We now define a Hecke action on the complex RT x (jiA). We set X5 = ng‘"Us and X9 = Jim XJ. Now

X% is a U, x GS-space, where U, has the profinite topology and G?® has the discrete topology. We have
X = (XS)US. Therefore, by Proposition we have a natural map

0 : H(G®,U®) = Endpu, a) (R x (jiA)) = Endp(y, ) (K™P).

For g € G°, we can describe explicitly the image 6(g) of [U9gU?] in Endp_, v, ) (RCx (jiA)). Set X' =
(XS)USmgUsgfl, and consider the two maps p1,p2 : X’ — X, where p; is the natural projection and ps is
given by the (right) action of g followed by the natural projection. The maps p; are finite étale and we have
a natural isomorphism pijiiA = p5jiA. We also set X/ = (X;?)USHQUS-‘f1 and denote the two projection
maps X, — X, by p1,pa.

Lemma 5.21. The endomorphism 6(g) is given by the composition of natural maps:

RTx (jiA) B3 R x/(p3jiA) = RUx/ (pijiA) & RTx (p1.piiA) — R x (iA)

where the final map is the trace, defined by the adjunction (p1,+« = p1,1,p; = Ph).
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Proof. This is Lemma [2.31 O

The description of the above lemma can be translated into a description of the Hecke operators as
a limit of Hecke operators at finite level. We apply the formalism of Section to the towers of spaces X,
and X/ . with associated categories S and S’. Let A — Z* be an injective resolution in S. Since we have

an isomorphism p3jiA = pijiA, we have a map of complexes (unique up to homotopy) p5Z® — piZ®, and an

induced map of complexes p5Z% — piZs. Now for each n we have maps (compatible as n varies)

D(Xn, Z3) 5 DX, p3T8) — T(X, piT8) = T (X, p1,opiTh) — T(X,, 7).

1-n

Taking the limit over n gives the map 6(g), under the equivalence of Lemma

Remark. The following observation will be useful: to define the trace map p; .piZ, — Z; we only need to
use the fact that p; is étale over Y,,. Indeed, we have a map of sheaves on Y;,: p1 .pJA — A, and applying
Ji gives a map of sheaves on X,,: p1«pj 1A — jiA. These maps lift (uniquely up to homotopy) to a map of
complexes

p1,«p1L® — I°

and this induces the desired compatible system of trace maps
P11 Ly — L.

Given the above remark, the description of 6(g) we have given applies immediately to define endo-
morphisms 0(g) of K& and K. Under the comparison isomorphisms of Lemma and Lemma we
obtain the action of H(G®,U®) on K = RTx(jiA).

Similarly, this description gives endomorphisms 6(g) of RI™(( 3105 00/ (T ))n>0), and hence of

Rfad((jgo;ad/(wN))nzo)“ such that the isomorphism

(£ @a V)" 2 (RE((1OF /(7)) )
in Dy (U, A) is 6(g)-equivariant.

5.5.2 Comparison with Cech cohomology

Finally, we are going to compute RT*!((j1O5../(7V))n>0) (and its Hecke action) using a Cech complex.
Recall that by [Schl Theorem IV.1.1] there is a perfectoid space X2¢ over Spa(C, O¢) with

ad 1 ad
X5~ l%an .
Definition 5.22. A U,-admissible cover of the perfectoid space X2 is an open cover V = (V;)ier of X4
by finitely many affinoid perfectoids (with affinoid perfectoid multiple intersections), such that
o There exists ng such that each V; is the inverse image of an affinoid open V; », in X?LS
o ForyeU, andicl, (V;)yeV.
For n > ng we denote by V,, the affinoid cover of X2 given by the inverse images of the V; n,.

We now recall some more of the results contained in [Schl, Theorem IV.1.1]. Denote by Fl the flag
variety over C' which is the flag variety of totally isotropic subspaces of C?9 (i.e., the flag variety associated
with (Spyg, Dsp,,))- There is a G(Qp)-equivariant Hodge-Tate period map

WHT:X23—>FZ.

For a subset J C {1,...,2g} of cardinality g we denote by s; the corresponding Pliicker coordinate on Fl
and denote by Fl; the open affinoid subspace of Fl defined by |s;/| < |s;]| for all J’. Now for J C {1,...,2g}
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of cardinality g we denote by X('jg)J the preimage 755 (Fly) in X2, By [Sch, Theorem IV.1.1] the subsets
X2d . provide an affinoid perfectoid cover of X24. Moreover, they satisfy the first condition in Definition

- This means that there are only finitely many U, translates of each X3 ad ; (they are each stabilised
by a compact open subgroup of U,), and so by adjomlng these translates we obtaln a U,-admissible cover
(Xoo,s " ¥)~.s of X2, This is the only U,-admissible cover we will use in practice.

Lemma 5.23. Fory € U, and J C {1,...,2¢g} of cardinality g, the open affinoid subspace Flj -~ of Fl is
defined by the inequalities |(') " sy/| < |y~ ts;| for ally' € U, and J' C {1,...,2g} of cardinality g.

As a consequence, the cover (Xoo j-7Y)~y,7 Of X2d together with the ‘homogeneous coordinates’ Yy~ 1s s
descends to covers of X4 (for n > ng) which satisfy the conditions of [Sch, Lemma I1.1.1].

Proof. We have x € Fl;-v if and only if [y 1s;(z)| = |ss(zy~1)| > |sy(zy~1)| for all J'. For the statement
of the lemma, it suffices to show that if z € Fl; then |s;(x)| > |s; (zy~1)| for all J’ and v (i.e. we set v = 1

and 7/ = 7).

The action of U, on the coordinates s is given by the action of elements of GLa,4(Z,) (in fact they are
elements of Spy,(Zy)) on basis elements of A\? Std, where Std is the standard 2g-dimensional representation
of GLyg /Z,. In particular, we have Ny lsp = Yo gnagnsyr with ayr € Zy. So if x € Fl; we have

’ = " // < " =
|5 (ay7 )] = I;w sy (@) < max(|sy (2)]) = |ss(2)|

O

Remark. To illustrate the process of adjoining U, translates to an affinoid cover we discuss the case of Pl
with its right action of GLy(Z,). We begin with the aﬂinmd cover glven by {|z] < 1} and {|z]| > 1}. These
are the complements of the (open) residue discs red ' (0) and red ' (oco) where red is the reduction map to
]P’Ilpp. These affinoids are stable under the action of 1+ pMs(Z,), and the translates by GLo(IF,) are the p+1
affinoids given by the complements of the residue discs red™!(z) for z € P]%p. Since the action of GL2(Z))
on I%p extends to an action on ]P’%p, the formal model of I%)p obtained from this cover by p + 1 affinoids is
again the formal completion of IP’%F along the special fibre.

Remark. If we first apply the [Schl, Lemma I1.1.1] to the cover X2%, = Spa(Ry,, R:,J) of X24 (for n > ng) we

obtain a formal model X,, for X2% over O¢ with an affine cover by Spf(R;! ;). Fory € U, and J' C {1,...,2g}
of cardinality g, the intersection Xf;fiJ N XS?J, -y C XzfiJ is defined by

v ts
SJ

This in turn defines an affine open formal subscheme

SJ +
f f
o < nJ<718J/>) R (Rn’J)’

and so we see that the cover (X24 7).~ of X2 is the generic fibre of a cover of X,, by formal affine opens.

Therefore the formal model for Xﬁd given by applying [Schl Lemma I1.1.1] to the cover (X24 V) of X5 ad
is the same as the formal model coming from the cover (X2%); .

Definition 5.24. Let F € S and let V be a U,-admissible cover of X23. We define a Cech complex
C*(V, F) with entries in Mod e, (Up, V) by

CP(V,F) = lim CP(V, Fr)

n>ng

where C*(V,,, Fy) is the usual Cech complex for the sheaf F,, on X4 with respect to the cover V,, endowed
with its natural U, /U, ,-action (for example, g € U, maps a section in F,(Vy, i) to a section in F,,(Vyig71)).
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Lemma 5.25. Let F € S and let V be a Uy-admissible cover of X23. Then there is a natural map in
D, (Up, V):
C*(V,F) — RI{(F).

If F = (105.a /(7)) n>0 then this map becomes an isomorphism in D g (U, A).
Proof. The first part is [Thel5 Tag 03AX]: let F — Z° be an injective resolution. Define a double complex

v = Gr(, 7o),
and denote by sA® the total complex. The natural maps fad(Iq) — A% induce a quasi-isomorphism
a: T%(Z%) — sA®. The maps CP(V, F) — AP¥ induce a map of complexes

C*(V,F) — sA°.

Composing this map with the inverse of « gives the desired map in the derived category.
The second statement is proved as in [Schl Theorem IV.2.1]: we just need to check that the natural
map described above induces an isomorphism on cohomology groups. O

5.6 The end of the proof of Theorem |5.14
Lemma 5.26. The action of T° on Rfad((jIO;ad/(wN))nzo)“ factors through T%,.

Proof. This is implied by Lemma following the proof of [Schl, Theorem IV.3.1]. Indeed, T acts on
cach term of the Cech complex C*(V, (jiO5.a/(7V))n>0), so it suffices to show that it acts via T% on each

term H°(N;e Vi, #OT /(7)) We set V to be the U,-admissible cover (Xoo,s - ).+, and proceed exactly
as in loc. cit., using the sections 7y~ 's; of the line bundle w. O

Corollary 5.27. The action of T° on RTxy Ayyv ©n A factors through T%.

Proof. By Lemma .20 we have an isomorphism RI'(V},, Rfad((j10¢ad/(wN))n20)a) >~ RI(V,, (K2 @, V)9).

By Lemma this is isomorphic to RT'(V,, (K'*P @, V)), and by Lemma m this is isomorphic to
RT(V,, K*P @, V)*. Finally, by Lemma m this is isomorphic to RI'(V,, K*P) @, A, and the Corollary
follows from the preceding lemma and Lemma [2.40 O

Lemma 5.28. RI'xy Ay )y is isomorphic to a bounded complex of finitely generated A[U/V]-modules.

Proof. We know that the R'T XY, Ayy are all finitely generated and non-zero for only finitely many . So
our statement follows from [Mum08, §5, Lemma 1]. O

We can now finish the proof of Theorem We restate the result:
Theorem. The action of T® on RFXg7cAU/V factors through ']I‘fl.

Proof. Write I for the kernel of the quotient map T — Tfl. We need to show that the map of A-modules
/(7™M — Endp ajw/v)) (RT xy Ay/v) is zero. It suffices to show that the map of A-modules

I/(m™)I @ A = Endp(aw/v)) (Rl xy Ap/yv) @a A
is zero (see [Schl p. 71]). Now the target of this map is naturally isomorphic to
Endpw/v)) (BT xy Ay ®a V)" = Endp vy (Bl xy Ayjy @4 A)%,
by Lemma (which applies because of Lemma and Lemma Finally, since the map
I/(7™)I — EHdD(A[U/V])(Rrxg,cAU/V @n A)
is zero by Lemma, the map
I/ (7™ @p A — Endp (awv)) (BT xy Ay @1 A)°

is zero, as desired. O
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