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1 Introduction

In this paper we study the relation between Galois representations and the cohomology of arithmetic locally
symmetric spaces. Let F be a number field and let n ≥ 2 be an integer. Associated to any open compact
subgroup U ⊂ GLn(A∞F ) is the topological space defined as a double quotient

XU
GLn = GLn(F )\GLn(AF )/U × R×U∞,

where U∞ is a fixed choice of maximal compact subgroup of GLn(F ⊗Q R). If U is neat (a condition that
can always be achieved by replacing U by a finite index subgroup), then XU

GLn
is naturally an orientable

smooth manifold, and we now assume this. If F = Q and n = 2, then XU
GLn

can be identified with the set
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of complex points of a classical modular curve. In general, however, the space XU
GLn

has no direct link to
algebraic geometry.

Nevertheless, several mathematicians (see e.g. [ADP02]) have conjectured an explicit relation be-
tween the cohomology of the spaces XU

GLn
and the representations of the absolute Galois group GF =

Gal(F/F ). A remarkable feature of this conjectured correspondence is that it should take into account
torsion in the cohomology groups H∗(XU

GLn
,Z), which falls outside the scope of the theory of automorphic

forms and, for example, earlier conjectures of Langlands and Clozel (see e.g. [Clo90]).
Let us now assume that F is an imaginary CM field (for example, an imaginary quadratic field).

In a recent breakthrough work [Sch], Scholze has established this torsion correspondence, in a form that we
now describe. We first introduce some helpful notation. It is enough to work ‘one prime at a time’, so we
fix a prime p. We suppose that our choice of level subgroup U splits as a product U =

∏
v Uv over the finite

places v of F , where each Uv is an open compact subgroup of GLn(OFv ). We let S be a finite set of finite
places of F , containing all the places dividing p, such that for all v 6∈ S, we have Uv = GLn(OFv ).

We also introduce coefficients. Let E be a finite extension of Qp large enough to contain all em-
beddings of F in Qp, and let O be its ring of integers, k its residue field. We can associate to any tuple

λ = (λτ ) ∈ (Zn)Hom(F,E) satisfying the condition

λτ,1 ≥ λτ,2 ≥ · · · ≥ λτ,n

for each τ ∈ Hom(F,E) a local system Mλ of finite free O-modules on XU
GLn

. (The precise definition is given
in §2.2 below, in terms of the algebraic representations of GLn associated to the dominant weights λτ . In
the body of the paper, Mλ is denoted by the symbol A(GLn;λ)

U

GLn
in order to keep track of its relation to

other objects.) Then the cohomology groups

H∗(XU
GLn ,Mλ)

are finite O-modules, and for each finite place v 6∈ S of F we can define a family of Hecke operators
T 1
v , . . . , T

n
v in terms of double cosets. We write TS(H∗(XU

GLn
,Mλ)) for the (commutative) O-subalgebra of

EndO(H∗(XU
GLn

,Mλ)) generated by these operators. We can now state one consequence of Scholze’s results
as follows ([Sch, Theorem V.4.1]):

Theorem 1.1. There exists an integer N = N(d, n) depending only on n and d = [F : Q], an ideal
I ⊂ TS(H∗(XU

GLn
,Mλ)) satisfying IN = 0, and a continuous group determinant

D : GF,S → TS(H∗(XU
GLn ,Mλ))/I

such that for each finite place v 6∈ S of F , the characteristic polynomial of D(Frobv) is

Xn − T 1
vX

n−1 + · · ·+ (−1)jqj(j−1)/2
v T jvX

n−j + · · ·+ (−1)nqn(n−1)/2
v Tnv (1.1)

mod I.

Since group determinants are in bijective correspondence with isomorphism classes of semi-simple
representations over algebraically closed fields, we deduce:

Corollary 1.2. 1. Let φ ∈ H∗(XU
GLn

,Mλ)⊗OQp be an eigenvector for TS(H∗(XU
GLn

,Mλ)), in the sense

that for all T iv, we have T ivφ = aivφ for some numbers aiv ∈ Qp. Then there exists a continuous

representation ρφ : GF,S → GLn(Qp) such that for each finite place v 6∈ S of F , the characteristic

polynomial of ρφ(Frobv) is
∑
j(−1)jq

j(j−1)/2
v ajvX

n−j.

2. Let φ ∈ H∗(XU
GLn

,Mλ) ⊗O Fp be an eigenvector for TS(H∗(XU
GLn

,Mλ)), in the sense that for all

T iv, we have T ivφ = aivφ for some numbers aiv ∈ Fp. Then there exists a continuous representation
ρφ : GF,S → GLn(Fp) such that for each finite place v 6∈ S of F , the characteristic polynomial of

ρφ(Frobv) is
∑
j(−1)jq

j(j−1)/2
v ajvX

n−j.
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The aim of this paper is to improve Theorem 1.1 in ways that will be useful for applications to
modularity of Galois representations, following the schema outlined by Calegari–Geraghty [CG]. The first
goal is to try to remove the nilpotent ideal I; indeed, it seems natural to expect that one should always have
I = 0. The second goal is to replace the Hecke algebra TS(H∗(XU

GLn
,Mλ)) by a derived variant that has

TS(H∗(XU
GLn

,Mλ)) as a quotient, but a priori could be larger.
Let us now discuss these goals in more detail. We first choose a maximal ideal

m ⊂ TS(H∗(XU
GLn ,Mλ))

such that the associated Galois representation ρm (which exists by Corollary 1.2) is absolutely irreducible.
(In the body of the paper, we refer to such an ideal as a non-Eisenstein maximal ideal.) We will work after
localization at m. Since one of our main motivations is the possibility of applying our results in the context
of R = T theorems, this seems like a natural simplifying step.

Now we define our derived Hecke algebra.1 We replace the groups H∗(XU
GLn

,Mλ) by the com-

plex RΓ(XU
GLn

,Mλ), which lives in the derived category D(O) of O-modules, and recovers H∗(XU
GLn

,Mλ)

after taking cohomology. There is a natural way to lift the operators T iv to endomorphisms of the com-
plex RΓ(XU

GLn
,Mλ) in D(O), and we define the algebra TS(RΓ(XU

GLn
,Mλ)) to be the (commutative) O-

subalgebra of
EndD(O)(RΓ(XU

GLn ,Mλ))

generated by these operators. Then TS(RΓ(XU
GLn

,Mλ)) is a finite O-algebra, and taking cohomology gives
rise to a surjective homomorphism

TS(RΓ(XU
GLn ,Mλ))→ TS(H∗(XU

GLn ,Mλ)),

which has nilpotent kernel. We consider TS(RΓ(XU
GLn

,Mλ)) to be the more natural object of study for a
number of reasons. First, as our results show, it also receives Galois representations. Second, for any m ≥ 1
there is a surjective map

TS(RΓ(XU
GLn ,Mλ))→ TS(H∗(XU

GLn ,Mλ ⊗O O/λm)).

Since patching together finite quotients of Hecke algebras plays an essential role in the Taylor–Wiles method,
this is a desirable property. For this in action, together with conjectures about existence of Galois represen-
tations in this context, see the joint work of Khare and the second named author [KT, Conjecture 6.18].

We now state our first main theorem:

Theorem 1.3 (Theorem 5.8). Let F be an imaginary CM field, let U ⊂
∏
v GLn(OFv ) be a neat open

compact subgroup, and let λ = (λτ )τ∈Hom(F,E) ∈ (Zn)Hom(F,E). Let m ⊂ TS(RΓ(XU ,Mλ)) be a non-
Eisenstein maximal ideal.

Suppose that the p-adic places of the maximal totally real subfield F+ of F are all unramified in F .
Then there exists an ideal I ⊂ TS(RΓ(XU

GLn
,Mλ))m satisfying I4 = 0 and a continuous representation

ρm : GF,S → GLn(TS(RΓ(XU ,Mλ))m/I)

satisfying the following condition: for each finite place v 6∈ S of F , the characteristic polynomial of ρm(Frobv)

is equal to Xn − T 1
vX

n−1 + · · ·+ (−1)jq
j(j−1)/2
v T jvX

n−j + · · ·+ (−1)nq
n(n−1)/2
v Tnv mod I.

With a stronger assumption on λ relative to p, we can eliminate the nilpotent ideal I completely, as
in our second main theorem:

1We find it convenient in this paper to use the terminology ‘derived Hecke algebra’, which refers to an enhancement of the
usual notion of Hecke algebra living in the derived category. However, we wish to emphasize that this is not the same as the
derived Hecke algebra considered in recent works of Venkatesh, in which additional ‘derived’ Hecke operators are considered
which act on cohomology by shifting degrees. It is clear that there is a common generalization of these two notions, but we do
not discuss this here.
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Theorem 1.4 (Theorem 5.12). Let F be an imaginary CM field in which the prime p is unramified, and let
U =

∏
v Uv ⊂

∏
v GLn(OFv ) be a neat open compact subgroup such that Uv = GLn(OFv ) for each place v|p.

Let c ∈ Gal(F/F+) denote complex conjugation, and let Ĩp denote a set of embeddings τ̃ : F ↪→ E such that

Ĩp
∐
Ĩpc = Hom(F,E). Let λ = (λτ )τ∈Hom(F,E) ∈ (Zn)Hom(F,E), and suppose that for each τ ∈ Hom(F,E),

we have
λτ,1 > λτ,2 > · · · > λτ,n

and that the condition

[F+ : Q]n(n+ 6 + sup
τ̃∈Ĩp

(λτ̃ ,1 + λτ̃c,1)) +
∑
τ̃∈Ĩp

n∑
i=1

(λτ̃ ,i − λτ̃c,i − 2λτ̃ ,n) < p

holds. Let m ⊂ TS(RΓ(XU ,Mλ))m be a non-Eisenstein maximal ideal. Then there exists a continuous
representation

ρm : GF,S → GLn(TS(RΓ(XU ,Mλ))m)

satisfying the following condition: for each finite place v 6∈ S of F , the characteristic polynomial of ρm(Frobv)

is equal to Xn − T 1
vX

n−1 + · · ·+ (−1)jq
j(j−1)/2
v T jvX

n−j + · · ·+ (−1)nq
n(n−1)/2
v Tnv .

We now describe the strategy of the proof. We follow Scholze (and the earlier work [HLTT]) in
first looking at the arithmetic locally symmetric space of the group G, the quasi-split unitary group in 2n
variables over F+ associated to the quadratic extension F/F+. The group G admits a parabolic subgroup P
with Levi quotient M = ResFF+ GLn. Writing U ⊂ G(A∞F+) for a sufficiently small open compact subgroup,
UP = P (A∞F+) ∩ U , and UM for the image of UP in M(A∞F+), we have a diagram of spaces

XUP
P

//

��

∂X
U

G
// X

U

G

XUM
M XU

G

OO

(1.2)

Here we write X
U

G for the Borel–Serre compactification of XU
G , and ∂X

U

G for its boundary. Let us write TSG =

O[US\G(A∞,SF+ )/US ] for the ‘abstract’ unramified Hecke algebra of G, and TSM = O[USM\GLn(A∞,SF )/USM ]

for the abstract unramified Hecke algebra of ResFF+ GLn. If a = (aτ ) ∈ (Z2n)Hom(F+,E) is a tuple satisfying
the condition

aτ,1 ≥ aτ,2 ≥ · · · ≥ aτ,2n
for each τ ∈ Hom(F+, E), then there is an associated local system Ma of O-modules on XU

G (denoted

A(G; a)
U

G
in the body of this article), and the first step is to use the diagram of spaces (1.2) to construct a

diagram

TSG //

S
��

EndD(O)(RΓ
∂X

U
G
Ma)

��
TSM // HomD(O)(RΓ

X
UM
M ,c

Mλ, RΓ
X
UM
M

Mλ)

(1.3)

for appropriate choices of a and λ. The map S : TSG → TSM is the unnormalized Satake transform, given at
the level of groups by the slogan ‘restriction to P and integration along the fibers of P →M ’.

We then show that the natural map RΓ
X
UM
M ,c

Mλ → RΓ
X
UM
M

Mλ in D(O) becomes an isomorphism

after localizing at m; equivalently, the cohomology of the boundary of the Borel–Serre compactification of
XUM
M vanishes after localization at m. This implies the existence of a homomorphism

TSG(RΓ
∂X

U
G
Ma)S∗(m) → TSM (RΓ

X
UM
M

Mλ)m. (1.4)
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The next step is to construct a Galois group determinant valued in the Hecke algebra TSG(RΓ
∂X

U
G
Ma)S∗(m),

or some quotient by a nilpotent ideal. We accomplish this using the exact triangle in D(O):

RΓXUG ,cMa
//RΓXUGMa

//RΓ
∂X

U
G
Ma

//RΓXUG ,cMa[1]. (1.5)

By reworking Scholze’s arguments slightly, we find Galois group determinants valued in TSG(RΓXUG ,cMa) and

TSG(RΓXUGMa). This leads to a Galois group determinant valued in TSG(RΓ
∂X

U
G
Ma), at least at the cost of a

nilpotent ideal of square 0, and pushing it along the map (1.4) essentially completes the proof of Theorem
1.3.

To prove Theorem 1.4, we make appeal to the results of Lan–Suh [LS13]. The main theorems of
op. cit. imply that under the conditions of Theorem 1.4, the groups Hi(XU

G ,Ma) vanish for i < D =
1
2 dimRX

U
G = [F+ : Q]n2, and consquently there is an isomorphism of truncations τ≤D−2RΓ

∂X
U
G
Ma
∼=

τ≤D−1(RΓXUG ,cMa)[1], using the exact triangle (1.5). The diagram (1.3) is compatible with this truncation,

and the map τ≤D−2RΓ
X
UM
M

Mλ → RΓ
X
UM
M

Mλ is a quasi-isomorphism since dimXUM
M = D − 1 and XUM

M is

non-compact. This is enough to give Theorem 1.4.
We note that in all of the theorems proved here, we work with Hecke algebras only after localization at

a non-Eisenstein maximal ideal. As we show below, the natural map from compactly cohomology of the GLn-
symmetric space to usual cohomology becomes a quasi-isomorphism after such a localization. On the other
hand, Scholze works primarily with interior cohomology (i.e. the image of compactly supported cohomology
in usual cohomology), which does not seem to have a good derived analogue. Since it is imperative for us to
be able to work at the level of complexes rather than at the level of cohomology groups, it seems difficult to
avoid this non-Eisenstein condition.

We now describe the structure of this paper. In §2, we carry out the groundwork necessary to be able
to work in a derived setting. In §3 we introduce the locally symmetric spaces associated to reductive groups
over number fields and discuss their sheaves and cohomology groups. In §4, we carry out the important
step of showing that the cohomology of the boundary of the GLn locally symmetric space vanishes after
localizing at a non-Eisenstein maximal ideal. This has been sketched elsewhere, but we give the full details
of the argument. Finally, in §5, we combine all of these ingredients to prove Theorems 1.4 and Theorem
1.3 by carrying out Scholze’s perfectoid p-adic interpolation argument at the derived level (§5.4), giving us
group determinants at the level of derived Hecke algebras TSG(RΓXUGMa), and then using the other arguments

sketched above to obtain the desired Galois representations for GLn (§5.2 – §5.3).

1.1 Notation

We fix some notation relating to number fields and their Galois groups. A base number field F having been
fixed, we will fix an algebraic closure F and algebraic closures F v of the completion Fv for every place v of
F . We also fix embeddings F ↪→ F v. Writing GF = Gal(F/F ) and GFv = Gal(F v/Fv), these embeddings
determine continuous embeddings GFv ↪→ GF for every place v. If S is a finite set of finite places of F , then
we write FS for the maximal subfield of F unramified outside S, and set GF,S = Gal(FS/F ). It is a quotient
of GF . If v is a finite place of F , then we will write OFv for the ring of integers of Fv, $v ∈ OFv for a choice
of uniformizer, k(v) = OFv/($v) for the residue field, and qv = #k(v).

A prime p having been fixed, we will fix an algebraic closure Qp of Qp and view finite extensions

E/Qp as being subfields of Qp. If E/Qp is such an extension, then we will generally write O for its ring of
integers, π ∈ O for a choice of uniformizer, and k = O/(π) for the residue field. If F is a field of characteristic
0, then we will write ε : GF → Z×p for the usual cyclotomic character.

1.2 Acknowledgments

We thank Peter Scholze for useful conversations about his work [Sch]. This research was partially conducted
during the period that Jack Thorne served as a Clay Research Fellow. James Newton is supported by the
ERC Starting Grant 306326.
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2 Preliminaries

In this section, we will discuss Hecke algebras of locally profinite groups, their module categories, and cat-
egories of equivariant sheaves on spaces. We also set up some machinery which constructs natural objects
in derived categories of smooth representations for a profinite group, whose cohomology groups are the
‘completed cohomology’ groups (see [CE12]) of a tower of arithmetic locally symmetric spaces, or compact-
ifications of such.

2.1 Homological algebra

We first fix notation for derived categories. If A is an abelian category with enough injectives, then we write
K(A) for the homotopy category of complexes in A, and D(A) for the corresponding derived category, if it
exists. Our normalizations are always cohomological, i.e. differentials increase degrees. We write K+(A) ⊂
K(A) for the full subcategory with objects the bounded below complexes, and D+(A) for its corresponding
derived category; it can be identified with the full subcategory of D(A) with objects the bounded below
complexes ([Wei94, Example 10.3.15]).

If B is another abelian category with enough injectives and F : A → B is a left exact functor,
then the derived functor RF : D+(A) → D+(B) exists ([Wei94, Theorem 10.5.6]), and is characterized
by the following universal property. Let qA : K+(A) → D+(A) and qB : K+(B) → D+(B) be the usual
projections, and let KF : K+(A) → K+(B) be the induced functor on homotopy categories of complexes.
Then RF comes equipped with a natural transformation ξ : qBKF → RFqA such that for any other functor
G : D+(A) → D+(B) equipped with a natural transformation ζ : qBKF → GqA, there is a unique natural
transformation η : RF → G such that ζX = ηqA(X) ◦ ξX for all X ∈ K+(A).

We will often use this universal property in order to compare different functors between derived
categories, as in the following lemma.

Lemma 2.1. Let A,B, C be abelian categories with enough injectives, and let F : A → C, G : B → C be left
exact functors, i : A → B an exact functor. Suppose given a natural transformation α : F → G ◦ i. Then
there is a canonical natural transformation η : RF → RG ◦ i (since i is exact, we write i = Ri).

Proof. Let ξF : qCKF → RFqA, ξG : qCKG→ RGqB, and ξi : qBKi→ RiqA be the natural transformations
that exist by universality. We write ζ : qCKF → RGRiqA for the natural transformation whose value on
X ∈ K+(A) is given by the composite

qCKF (X)
qC(KαX)//qCKGKi(X)

ξG,Ki(X)//RGqBKi(X)
RG(ξi,X)//RGRiqA(X).

By the universal property of RF , there is a unique natural transformation η : RF → RGRi with the property
that for all X ∈ K+(A), ζX = ηqA(X) ◦ ξF,X . This is the η of the lemma.

We now specialize our discussion. Let R be a ring. We will write Mod(R) for the abelian category of
R-modules, and we will simplify our notation by writing K(R) etc. instead of K(Mod(R)). If G is a group,
then we will write Mod(G) for the abelian category of Z[G]-modules, Mod(G,R) for the abelian category
of R[G]-modules, which each have enough injectives, and K(G), K(G,R) etc. in a similar way. If G is
a profinite group, then we will write Modsm(G,R) for the abelian category of smooth R[G]-modules, and
Modsm(G) = Modsm(G,Z), Ksm(G,R) = K(Modsm(G,R)), etc.

If G is a group and H ⊂ G is a subgroup, then there are functors IndGH : Mod(H,R)→ Mod(G,R)
and ResGH : Mod(G,R) → Mod(H,R), where IndGHM = {f : G → M | f(hg) = hf(g)∀h ∈ H} and ResGH is
the usual restriction. We recall that IndGH is the right adjoint of ResGH , that ResGH is exact, and that IndGH
is exact and preserves injectives. The functor ResGH also has a left adjoint indGH : Mod(H,R)→ Mod(G,R),
where indGHM = {f ∈ IndGHM | f finitely supported mod H}. This functor is also exact, showing that
ResGH also preserves injectives.

If N ⊂ G is a normal subgroup, then there is an inflation functor InfGG/N : Mod(G/N,R) →
Mod(G,R), left adjoint to the functor ΓN : Mod(G,R)→ Mod(G/N,R) of N -invariants. Inflation is exact,
showing that ΓN preserves injectives.
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We will introduce more abelian categories (in particular, categories of modules over Hecke algebras
and categories of G-equivariant sheaves on a space X) in the following sections.

Lemma 2.2. Let B → R and B → C be ring maps, with R Noetherian, B,C commutative and C a flat
B-algebra. Suppose X,Y ∈ D(R) are bounded complexes of R-modules, with X a bounded complex of finitely
generated R-modules. Then the natural map

C ⊗B HomD(R)(X,Y )→ HomD(C⊗BR)(C ⊗B X,C ⊗B Y )

is an isomorphism.

Proof. This is essentially [Zim12, Lemma 3] (and is probably well known). We denote C ⊗B R by RC and
similarly denote the functor ⊗BC by (−)C (this is an exact functor from B-modules to C-modules).

First we claim that for M a finitely generated R-module and N an R-module the natural map

HomR(M,N)C → HomRC (MC , NC) (2.1)

is an isomorphism. In fact, we show this claim without the Noetherian hypothesis on R with M a finitely
presented R-module. Let F0, F1 be finite free R-modules lying in an exact sequence

F1 → F0 →M → 0.

We therefore have an exact sequence

(F1)C → (F0)C →MC → 0

and a commutative diagram with exact rows

0 −−−−→ HomR(M,N)C −−−−→ HomR(F0, N)C −−−−→ HomR(F1, N)Cy y y
0 −−−−→ HomRC (MC , NC) −−−−→ HomRC ((F0)C , NC) −−−−→ HomRC ((F1)C , NC).

The second and third vertical maps are isomorphisms, so the first vertical map is an isomorphism as claimed.
If we consider the functor from finitely generated R-modules to C-modules given by M 7→ HomR(M,N)C =
HomRC (MC , NC), then the higher derived functors are given by ExtiR(M,N)C and ExtiRC (MC , NC) (since
(−)C preserves projectives). We conclude that the natural maps

ExtiR(M,N)C → ExtiRC (MC , NC) (2.2)

are also isomorphisms. Note that since the forgetful functor from Mod(B) to Ab is exact, the Ext groups
ExtiR(M,N) naturally acquire B-module structures, by identifying them with the image on N of the derived
functors of HomR(M,−) : Mod(R)→ Mod(B).

Next we claim that for a bounded complex X of finitely generated R-modules and an R-module N ,
the natural map

HomD(R)(X,N [0])C → HomD(RC)(MC , NC [0])

is an isomorphism. We do this by induction on the length d of the complex X. For d = 1 the claim
holds because of the isomorphism (2.2). For the inductive step we do a dévissage using truncation functors.
Suppose the highest degree in which X has a non-zero term is i. We have an exact triangle

τ≤i−1X → X → Hi(X)[−i]→ τ≤i−1X[1]
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and hence a commutative diagram with exact columns

HomD(R)(τ≤i−1X[−1], N [0])C −−−−→ HomD(RC)(τ≤i−1XC [−1], NC [0])y y
HomD(R)(H

i(X)[−i], N [0])C −−−−→ HomD(RC)(H
i(X)C [−i], NC [0])y y

HomD(R)(X,N [0])C −−−−→ HomD(RC)(XC , NC [0])Cy y
HomD(R)(τ≤i−1X,N [0])C −−−−→ HomD(RC)(τ≤i−1XC , NC [0])y y

HomD(R)(H
i(X)[1− i], N [0])C −−−−→ HomD(R)(H

i(X)C [1− i], NC [0]).

By the inductive hypothesis and the five lemma, we are done. Finally, we take our bounded complexes
X,Y as in the statement of the lemma. An induction on the length of the complex Y (using the five lemma
as above) completes the proof of the lemma.

2.2 Hecke algebras

We now introduce the Hecke algebra of a locally profinite group, and discuss various important maps between
Hecke algebras in the context of reductive groups over local fields.

2.2.1 Abstract Hecke algebras

Let G be a locally profinite group, and let U ⊂ G be an open compact subgroup. We write H(G,U) for the
set of compactly supported, U -biinvariant functions f : G→ Z.

Lemma 2.3. 1. The Z-module H(G,U) is in fact an associative Z-algebra under convolution, with unit
element [U ], the characteristic function of U .

2. For any Z[G]-module M , the space MU of U -invariants admits a canonical structure of H(G,U)-
module. This defines a functor ΓU : Mod(G)→ Mod(H(G,U)).

We will write M 7→ M∼ for the exact functor Mod(H(G,U)) → Mod(Z) given by forgetting the
H(G,U)-action.

Proof. Note that H(G,U) is a free Z-module, with basis being given by the characteristic functions [UαU ]
of double cosets UαU ⊂ G. Let us endow G with the unique left-invariant Haar measure giving U volume
1. We observe that H(G,U) ⊗Z R is the space of compactly supported and locally constant U -biinvariant
functions f : G→ R. For functions f1, f2 ∈ H(G,U)⊗Z R, we define their convolution in H(G,U)⊗Z R by
the formula

(f1 ? f2)(g) =

∫
x∈G

f1(x)f2(x−1g)dx. (2.3)

The usual calculation shows that this gives H(G,U)⊗Z R the structure of assocative algebra with unit [U ]
(even in the case where G is not unimodular). We now show that the submodule H(G,U) is closed under
multiplication. It suffices to check this on elements of the form [UαU ], α ∈ G; we compute

[UαU ] ? [UβU ](γ) =

∫
x∈UαU

[UβU ](x−1γ)dx = vol(UαU ∩ γUβ−1U) = #(UαU ∩ γUβ−1U/U),

an integer. This shows the first part of the lemma.
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For the second part, we note that if V is an R[G]-module, then the algebra H(G,U) ⊗Z R acts on
V U by the formula (v ∈ V U , f ∈ H(G,U)⊗Z R):

f · v =

∫
g∈G

f(g)(g · v)dg.

If f = [UαU ] and UαU =
∐
i αiU , then this is easily seen to be equal to

∑
i αi · v. We use the same formula

to define the action of [UαU ] on MU for any Z[G]-module M .
This action is clearly functorial in M , so to complete the proof of the lemma we just need to show

that it is compatible with multiplication of basis elements in H(G,U), i.e. that for all m ∈MU , we have

[UαU ] · ([UβU ] ·m) = ([UαU ] · [UβU ]) ·m. (2.4)

Choose decompositions [UαU ] =
∐
i αiU , [UβU ] =

∐
j βjU . We see finally that it is enough to show that

[UαU ] · [UβU ] =
∑
i,j [αiβjU ] as functions G→ Z. Evaluating at an element γ ∈ G, this is equivalent to the

identity
#(UαU ∩ γUβ−1U/U) = #{(i, j) | γ ∈ αiβjU},

and this is an elementary exercise in group theory.

It will be useful to note that the action of [UαU ] ∈ H(G,U) on MU , M a Z[G]-module, can also be
described as the composite

MU →MU∩αUα−1

→MU ,

where the first map is given by v 7→ α · v and the second by trU/U∩αUα−1 .

2.2.2 The case of a reductive group

Now suppose that F/Qp is a finite extension, and that G is reductive group over F ; then G(F ) is a locally
profinite group. We are going to do homological algebra in Mod(G(F )), Mod(H(G(F ), U)) and related
categories. The reader may object that it would be more natural to work, for example, in the abelian
category of smooth Z[G(F )]-modules. However, in order to understand Hecke actions it will suffice for our
purposes to work simply with abstract G(F )-modules (cf. Corollary 3.3).

2.2.3 Restriction to parabolic subgroup

Let P ⊂ G be a rational parabolic subgroup. Suppose moreover that U ⊂ G(F ) satisfies G(F ) = P (F )U ,
and set UP = P (F ) ∩ U . Then we have (for the left-invariant Haar measures dg on G(F ) and dp on P (F )
giving U and UP volume 1, respectively) the formula∫

g∈G
f(g)dg =

∫
u∈U

∫
p∈P (F )

f(pu)dpdu. (2.5)

(For the proof, see [Car79, §4.1]; the proof uses that G is reductive, so dg is also right invariant.) Restriction
of functions defines a map rP : H(G(F ), U)→ H(P (F ), UP ).

Lemma 2.4. Let G,P,U be as above.

1. The map rP : H(G(F ), U)→ H(P (F ), UP ) is an algebra homomorphism.

2. Let V be a Z[G(F )]-module, W a Z[P (F )]-module, and f : Res
G(F )
P (F ) V → W a homomorphism of

Z[P (F )]-modules. Then the induced map V U →WUP is rP -equivariant in the following sense: for any
t ∈ H(G(F ), U), v ∈ V U , we have f(t · v) = rP (t) · f(v).

3. Let W be a Z[P (F )]-module, and let V = Ind
G(F )
P (F ) W . Then there is a natural isomorphism V U ∼=

r∗P (WUP ) of H(G(F ), U)-modules.
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Proof. For the first part, we can extend scalars to R and calculate for any γ ∈ P (F ), f1, f2 ∈ H(G(F ), U):

(f1 ?G f2)(γ) =

∫
x∈G(F )

f1(x)f2(x−1γ)dx =

∫
p∈P (F )

∫
u∈U

f1(pu)f2(u−1p−1γ)dudp

=

∫
p∈P (F )

f1(p)f2(p−1γ)dp = (f1 ?P f2)(γ).

For the second part, we reduce immediately to the universal case W = Res
G(F )
P (F ) V , and must show the formula

t · v = rP (t) · v for any v ∈ V U . It suffices to check this on basis elements [UαU ]. Fix a decomposition
UαU =

∐
αiU with αi ∈ P (F ). It is enough to show that we have in fact (UαU) ∩ P (F ) =

∐
αiUP , but

this is clear.
For the third part, we observe that

V U = {f : G(F )→W | for all p ∈ P (F ), u ∈ U, g ∈ G(F ), f(pgu) = pf(g)}.

There is a map V U →WUP given by f 7→ f(1). This map is injective (since G(F ) = P (F )U) and surjective
(since UP = P (F ) ∩ U). We must show that for all t ∈ H(G(F ), U), we have (t · f)(1) = rP (t)f(1). This
can be checked on basis elements [UαU ]. Again writing UαU =

∐
i αiU with αi ∈ P (F ), we see that this

follows from the formula rP ([UαU ]) =
∑
i[αiUP ].

Continuing with the notation of the lemma, we observe that there is a diagram of functors

Mod(G(F ))
ΓU //

Res
G(F )

P (F )

��

Mod(H(G(F ), U))

Mod(P (F ))
ΓUP

// Mod(H(P (F ), UP )),

r∗P

OO

together with a natural transformation ΓU → r∗P ◦ ΓUP ◦ Res
G(F )
P (F ). The vertical functors are exact and the

horizontal functors are left exact. Applying Lemma 2.1, we deduce:

Corollary 2.5. There is a canonical natural transformation RΓU → r∗PRΓUP Res
G(F )
P (F ). In particular, for

any V ∈ Mod(G(F )), W ∈ Mod(P (F )) equipped with a morphism f : Res
G(F )
P (F ) V → W , there is a canonical

induced morphism RΓUV → r∗PRΓUPW .

Proof. The morphism RΓUV → r∗PRΓUPW is defined as the composite

RΓUV → r∗PRΓUP Res
G(F )
P (F ) V → r∗PRΓUPW,

the first arrow by universality and the second by the existence of f .

There is a variant of this involving induction instead of restriction. Indeed, we observe that there is
another diagram of functors, commutative up to natural isomorphism:

Mod(G(F ))
ΓU // Mod(H(G(F ), U))

Mod(P (F ))
ΓUP

//

Ind
G(F )

P (F )

OO

Mod(H(P (F ), UP ))

r∗P

OO

The vertical functors are exact and the horizontal functors are left exact. Applying Lemma 2.1 once more,
we deduce:

Corollary 2.6. There is a natural isomorphism RΓU Ind
G(F )
P (F )

∼= r∗PRΓUP . In particular, for any V ∈
Mod(P (F )), there is a canonical isomorphism RΓU Ind

G(F )
P (F ) V

∼= r∗PRΓUP V .
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2.2.4 Projection to Levi quotient

We now suppose that P is a not necessarily reductive connected linear algebraic group over F , with unipotent
radical N and reductive quotient M = P/N . Choose a Levi decomposition P = M nN , and suppose given
an open compact subgroup U ⊂ P such that U = (U ∩M(F ))n (U ∩N(F )) = UM nUN , say. (We say that
U is decomposed with respect to the fixed Levi decomposition of P . In this case, U ∩M(F ) is identified with
the image of U under the projection P (F ) → M(F ).) We can then choose left invariant measures dp, dm
and dn on the groups P (F ), M(F ) and N(F ), respectively, giving the groups U , UM and UN measure 1 and
satisfying the identity ∫

p∈P (F )

f(p)dp =

∫
m∈M(F )

∫
n∈N(F )

f(mn)dndm (2.6)

Lemma 2.7. Let P , M , N and U be as above.

1. Integration along fibers defines an algebra homomorphism rM : H(P (F ), U)→ H(M(F ), UM ).

2. Let V be a Z[M(F )]-module, W a Z[P (F )]-module, and let f : Inf
P (F )
M(F ) V → W be a homomorphism

of Z[P (F )]-modules. Then the induced map V UM → WU is rM -equivariant, in the sense that for all
v ∈ V UM , t ∈ H(P (F ), U), we have f(rM (t) · v) = t · f(v).

Proof. We define a map rM : H(P (F ), U) ⊗Z R → H(M(F ), UM ) ⊗Z R by the formula rM (f)(m) =∫
n∈N(F )

f(mn)dn. It follows easily from formula (2.6) that rM is an algebra homomorphism. To prove the

first part of the lemma, it is enough to show that for any α ∈ P (F ), m ∈M(F ), we have rM ([UαU ])(m) ∈ Z.
We calculate

rM ([UαU ])(m) =

∫
n∈N(F )

[UαU ](mn)dn =

∫
n∈m−1UαU∩N(F )

dn = #(m−1UαU ∩N(F ))/UN ,

an integer.

For the second part of the lemma, it is enough to consider the case where W = Inf
P (F )
M(F ) V . Let

α ∈ P (F ), and choose a decomposition UαU =
∐
i αiU . We claim that rM ([UαU ]) =

∑
i[αiUM ], where αi

denotes the image of αi in M(F ). This follows from the easily verified formula∫
n∈N(F )

[αiU ](mn)dn = #(m−1αiUMUN ∩N(F ))/UN = [αiUM ](m).

For any v ∈ V UM , we thus have [UαU ] · v =
∑
i αi · v =

∑
i αi · v = rM ([UαU ]) · v. This completes the proof

of the lemma.

Let us continue with the notation of the above lemma. We have constructed a diagram of functors,
commutative up to natural isomorphism:

Mod(P (F ))
ΓU // Mod(H(P (F ), U))

Mod(M(F ))
ΓUM

//

Inf
P (F )

M(F )

OO

Mod(H(M(F ), UM )).

r∗M

OO

The vertical functors are exact, and the horizontal functors are left exact. We deduce:

Corollary 2.8. There is a canonical natural transformation r∗M ◦RΓUM → RΓU ◦ Inf
P (F )
M(F ).

Proof. By Lemma 2.1, there is a canonical natural transformation

r∗M ◦RΓUM
∼= R(r∗M ◦ ΓUM ) ∼= R(ΓU ◦ Inf

P (F )
M(F ))→ RΓU ◦ Inf

P (F )
M(F ) .
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2.2.5 Adeles

All of the results in this section have obvious analogues for Hecke algebras H(G(ASF ), US), where now F is
a number field, G is a connected linear algebraic group over F , S is a finite set of places of F containing
the infinite places, and US ⊂ G(ASF ) is an open compact subgroup. We omit the formulation of these
generalizations. If US =

∏
v 6∈S Uv decomposes as a product, then we have the usual decomposition of this

global Hecke algebra as a restricted tensor product of local Hecke algebras:

H(G(ASF ), US) = ⊗′v 6∈SH(G(Fv), Uv).

If X is a complex in D(H(G(ASF ), US)), then there is a canonical homomorphism TG : H(G(ASF ), US) →
EndD(Z)(X

∼), and similarly with Z replaced by any commutative ring R of coefficients. Indeed, for any
t ∈ H(G(ASF ), US), the module structure on X defines a map X∼ → X∼ of complexes, hence an element
TG(t) ∈ EndD(Z)(X

∼). It is easy to check that this is independent of choices in the sense that if X → Y is a
quasi-isomorphism in D(H(G(ASF ), US)), the elements TG(t) of EndD(Z)(X

∼) ∼= EndD(Z)(Y
∼) are identified.

We will use this observation in our construction of Hecke algebras.

2.2.6 Application when G is unramified

To obtain situations where the results of this section apply, let us now assume again that F is a finite
extension of Qp, and consider an unramified reductive group G over F with a reductive model G over OF .
Thus G is smooth over OF with connected reductive fibres. We fix a choice S ⊂ G of maximal OF -split
torus, as well as a choice B ⊂ G of Borel subgroup containing T = ZG(S). Then the group X∗(S) of
OF -rational characters is a finite free Z-module, and contains the subset Φ(G,S) = Φ(G,S) of F -rational
roots. The choice of Borel subgroup determines a root basis Rrat ⊂ Φ(G,S), and the G(F )-conjugacy classes
of parabolic subgroups are in bijection with the subsets I ⊂ Rrat. A representative of the conjugacy class
corresponding to a given I is given by the generic fiber of the closed subgroup

P I = M I nN I (2.7)

of G, where P I contains B and M I is the unique Levi subgroup of P I containing T . We then have the
following lemma.

Lemma 2.9. Let U = G(OF ). Then U is a hyperspecial maximal compact subgroup of G(F ) satisfying the
following conditions:

1. For each I ⊂ Rrat, the subgroup UPI = U ∩ PI(F ) is decomposed with respect to the given Levi
decomposition, i.e. UPI = UMI

n UNI .

2. We have G(F ) = P (F )U .

Proof. The first part is immediate from the decomposition (2.7), since UPI = P I(OF ). The second part is
the Iwasawa decomposition [Tit79, 3.3.2].

In the situation of the lemma, we therefore obtain (using Lemma 2.4 and Lemma 2.7) a canonical
homomorphism

S = rMI
◦ rPI : H(G(F ), U)→ H(MI(F ), UM ),

which we call the unnormalized Satake transform.

2.2.7 Representations of U

Keeping the notation of the previous section, we now move in a slightly different direction and describe some
interesting Z[U ]-modules that will later be used to define Hecke-equivariant coefficient systems on arithmetic
locally symmetric spaces. Thus F is a finite extension of Qp and G is a reductive group over OF with generic
fibre G, equipped with maximal torus T and Borel subgroup B.
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Let E/F be a finite extension that splits T (and therefore G). Then the choice of Borel subgroup
TE ⊂ BE determines a root basis Rabs ⊂ Φ(GE , TE), and we write X∗(TE)+ ⊂ X∗(TE) for the set of
B-dominant weights, i.e. the set of λ ∈ X∗(TE) satisfying the condition 〈λ, α∨〉 ≥ 0 for all α ∈ Rabs. We
write X∗(TE)++ ⊂ X∗(TE)+ for the set of regular dominant weights, i.e. satisfying the condition 〈λ, α∨〉 > 0
for all α ∈ Rabs. We also define

X∗(TE)<p = {λ ∈ X∗(TE) | 〈λ+ ρ, α∨〉 ≤ p ∀α ∈ Φabs},

and X∗(TE)+,<p = X∗(TE)+ ∩X∗(TE)<p, and similarly for X∗(TE)++,<p.
Let O denote the ring of integers of E, (π) ⊂ O its maximal ideal, and k = O/(π) its residue field.

If λ ∈ X∗(TE) = X∗(TO), then we write B(G;λ) for the functor defined on O-algebras R by the formula

B(G;λ)(R) = ind
G

B−
λ(R) = {f ∈ R[G]⊗O O(λ) | for all R→ A, f ⊗R A ∈ (A[G]⊗O O(λ))B

−(A)}.

We write B− for the opposite Borel subgroup to B. This functor is defined and studied in [Jan03, I.3.3].
In particular, A(G;λ) = B(G;λ)(O) is an O[U ]-module, finite free as O-module (it is finitely generated by
[Jan03, I.5.12(c)], and is then clearly free); and if λ ∈ X∗(TE)+, then it follows from [Jan03, II.4.5] that for
any O-algebra R the natural map

A(G;λ)⊗O R→ B(G;λ)(R)

is an isomorphism.

Proposition 2.10. Let λ ∈ X(TE)+.

1. The module A(G;λ)⊗O E is an absolutely irreducible E[U ]-module.

2. Let I ⊂ Rrat, so the parabolic subgroup P I = M I n N I ⊂ G is defined. Then there is a direct sum
decomposition

ResUUMI
A(G;λ) = A(MI ;λ)⊕K

of O[UMI
]-modules, and UNI acts trivially on A(MI , λ).

Proof. The first part is a consequence of highest weight theory in characteristic 0 and the Zariski density of
U ⊂ G(E). For the second part, we observe that

Res
GO
TO

B(G;λ) = ⊕µMµ

decomposes as a sum of finitely many non-zero weight spaces (even over O). We define W1 = ⊕µ∈Z≥0·IMλ−µ,

and W2 to be the sum of the complementary weight spaces. Then there is a decomposition Res
GO
TO

B(G;λ) =
W1 ⊕W2.

We claim that this is a decomposition of M I,O-modules, that N I,O acts trivially on W1, and that
there is an isomorphism W1

∼= B(MI ;λ) of M I,O-modules. Let us address each point in turn. By the main
result of [Cab84], as well as [Cab84, 4.1, Proposition], we know that

ResGEMI,E
B(G;λ) = W1 ⊗O E ⊕W2 ⊗O E

as MI,E-modules, that
(B(G;λ)⊗O E)NI,E = W1 ⊗O E,

and that W1⊗OE ∼= B(M ;λ)⊗OE as MI,E-modules. The M I,O-invariance of the decomposition B(G;λ) =
W1⊕W2 can be checked on E-points, so follows from what we have written above. The fact that N I,O acts
trivially on W1 can also be checked on E-points.

It remains to check that there is an isomorphism W1
∼= B(MI ;λ) of M I,O-modules. By Frobenius

reciprocity (i.e. [Jan03, I.3.4, Proposition]), we have for any M I,O-module V an isomorphism

HomMI,O
(V,B(M ;λ)) = HomB−O

(V,O(λ)).
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The module W1 has highest weight λ, so W∨1 has lowest weight −λ, hence there is a non-zero B−O-equivariant
homomorphism O(−λ) → W∨1 (by [Jan03, II.1.19(7)]), hence a non-zero B−O-equivariant homomorphism
W1 → O(λ), hence (by Frobenius reciprocity) a non-zero M I,O-equivariant homomorphism f : W1 →
B(M ;λ). We can assume that f ⊗O k 6= 0. We claim that f is the desired isomorphism. We know that f is
an isomorphism after extending scalars to E, so it is enough to show that the map f ⊗O k is injective.

Suppose for contradiction that ker(f ⊗O k) 6= 0. Then the kernel of f has a non-zero B-socle, so
contains the B-socle of W1 ⊗O k = B(G;λ)NI,O ⊗O k, which equals B(G;λ)N∅,O ⊗O k = k(λ), by [Jan03,
II.2.2, Proposition]. We deduce that f determines a non-zero element of the group

HomMI,O
(W1 ⊗O k/ ker(f ⊗O k), B(G;λ)⊗O k) = HomB−O

(W1 ⊗O k/ ker(f ⊗O k), k(λ))

which contradicts the fact that W1 ⊗O k/ ker(f ⊗O k) does not contain the weight λ, which occurs with
multiplicity 1 in W1 ⊗O k. This contradiction shows that f ⊗O k is injective, and concludes the proof.

We now change notation slightly, and suppose that E ⊂ Qp is a finite extension of Qp which contains

the image of all continuous embeddings F ↪→ Qp. If τ ∈ Hom(F,E), then the above construction gives an
O[U ]-module A(G;λ) for each λ ∈ X∗(TE,τ )+, where the subscript τ indicates that we extend scalars from
F to E via the embedding τ .

If λ = (λτ )τ∈Hom(F,E) is a tuple with λτ ∈ X∗(TE,τ )+ for each τ ∈ Hom(F,E), then we define
A(G;λ) = ⊗τA(G;λτ ), the tensor product being over O. Then A(G;λ) is an O[U ]-module, finite free over
O, and A(G;λ) ⊗O E has a natural structure of absolutely irreducible E[G(F )]-module. Proposition 2.10
now implies the following result:

Corollary 2.11. Let I ⊂ Rrat and let λ ∈
∏
τ∈Hom(F,E)X

∗(TE,τ )+. Then there is a canonical decomposition

ResUUMI
A(G;λ) = A(M ;λ)⊕K of O[UMI

]-modules, where A(M ;λ) ⊂ A(G;λ)UNI .

Proof. Since tensor products respect direct sums, this is an immediate consequence of Proposition 2.10.

2.3 Equivariant sheaves for abstract groups

Let X be a topological space, and let G be a group that acts on the right on X by homeomorphisms. (We
call X a G-space.) In this section, we consider (essentially following [Gro57, Ch. V]) the derived category
of G-equivariant sheaves on X.

Definition 2.12. A G-equivariant sheaf on X is a sheaf F on X equipped with isomorphisms [g]F : F → g∗F
for each g ∈ G, all satisfying the following conditions:

1. If e ∈ G is the identity, then [e]F is the identity.

2. For each g, g′ ∈ G, we have [g′g]F = g∗[g′]F ◦ [g]F .

We write ShG(X) for the category of G-equivariant sheaves of abelian groups on X. If R is a ring, then we
write ShG(X,R) for the category of G-equivariant sheaves of R-modules on X.

It is easy to see that ShG(X,R) is an abelian category, and that the natural functor ShG(X,R) →
Sh(X,R) (which forgets the G-action) commutes with the formation of kernels and cokernels.

Lemma 2.13. For any ring R, the category ShG(X,R) has enough injectives.

Proof. We just give the argument in the case R = Z. Let F ∈ ShG(X). We must construct a monomorphism
F ↪→ I for some injective object I. Choose for each orbit y ∈ Y = X/G a representative ξ(y) ∈ X and a
monomorphism Fξ(y) → Ay, for some injective Gξ(y)-module Ay. We then define

Iy = IndGGξ(y) Ay = {f : G→ Ay | ∀h ∈ H, g ∈ G, f(gh) = h−1f(g)}.
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We interpret Iy as a product of skyscraper sheaves supported on the orbit y, with stalk over gξ(y) given by
the set of functions with support in gGξ(y). It has a natural structure of G-equivariant sheaf. We define
I =

∏
y∈Y Iy. Then there is a natural G-equivariant inclusion F ↪→ I and for any G ∈ ShG(X), we calculate

HomShG(X)(G, I) =
∏
y∈Y

HomGξ(y)(Gξ(y), Ay).

It follows that I is injective, and this completes the proof of the lemma.

To avoid a proliferation of notation, we now restrict to the case R = Z. Everything we say has
a clear analogue for the category ShG(X,R). If H ⊂ G is a subgroup, then there is a natural restriction
functor ResGH : ShG(X) → ShH(X). We define a functor indGH : ShH(X) → ShG(X) as follows. Let
p : G × X → X denote projection to the second factor, and let G × H act on G × X by the formula
(g, h) · (g′, x) = (gg′h−1, hx). Then the sheaf p∗F admits a natural structure of G×H-equivariant sheaf, and
therefore descends naturally to a G-equivariant sheaf F ′ on the quotient G×H X (see Lemma 2.17 below).
The induced map f : G×H X → X is a G-equivariant local homeomorphism and we define indGH F to be the
subsheaf of f∗F ′ consisting of sections which stalkwise are supported in finitely many of copies of X under
the isomorphism G×H X ∼= tG/HX. (We use the notation ind instead of Ind as the functor indGH plays the
role of compact induction.)

If Y is another space with G-action, and f : X → Y is a G-equivariant continuous map, then the
usual pushforward and pullback of sheaves gives rise to functors f∗ : ShG(X)→ ShG(Y ) and f∗ : ShG(Y )→
ShG(X). If Y is a point, then we identify ShG(Y ) = Mod(G) and write f∗ = ΓX .

Lemma 2.14. Let notation be as above.

1. The functors (indGH ,ResGH) form an adjoint pair, and both indGH and ResGH are exact.

2. The functors (f∗, f∗) form an adjoint pair, and f∗ is exact.

Proof. It is clear from the definition that there is a natural map F → ResGH indGH F for any F ∈ ShH(X),
and this gives rise to the desired adjunction. It is useful to note that the stalks of the induced sheaf can be
calculated as

(indGH F)x = {(sg)g∈G | sg ∈ Fg−1x,∀h ∈ H, sgh = hsg, finitely supported modulo H}.

There is an isomorphism of underlying sheaves indGH F ∼= ⊕g∈G/H g ⊗ F . This makes it clear that both

ResGH and indGH are exact, and proves the first part of the lemma. The second part follows easily from the
corresponding result when G is the trivial group.

Corollary 2.15. The functors ResGH : ShG(X)→ ShH(X) and f∗ : ShG(X)→ ShG(Y ) preserve injectives.

Definition 2.16. Let X be a G-space. We say that X is free if the action of G satisfies the following
condition: every point x ∈ X has a neighbourhood U such that for all g ∈ G−{e}, gU ∩U = ∅. This implies
in particular that every point x ∈ X has trivial stabilizer.

If ϕ : G→ H is a surjective homomorphism with kernel K, and X is a G-space, and Y is an H-space,
then we say that a map f : X → Y is ϕ-equivariant if we have f(gx) = ϕ(g)f(x) for all x ∈ X, g ∈ G. In
this case, we define a functor fK∗ : ShG(X)→ ShH(Y ) by the formula fK∗ (F) = f∗(F)K (i.e. fK∗ (F) ⊂ f∗(F)
is the subsheaf of K-invariants).

Lemma 2.17. Let ϕ : G→ H be a surjective homomorphism with kernel K.

1. Suppose that f : X → Y is a ϕ-equivariant continuous map. Then the functors f∗ : ShH(Y )→ ShG(X),
fK∗ : ShG(X)→ ShH(Y ) form an adjoint pair.

2. Suppose instead that X is a G-space on which K acts freely, and Y = X/K, endowed with its quotient
topology. Then the two functors fK∗ : ShG(X) → ShH(Y ), f∗ : ShH(Y ) → ShG(X), are mutually
inverse equivalences of categories.
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Proof. The first part is [BL94, Proposition 8.4.1]. The second part follows from [BL94, Lemma 8.5.1].

Now suppose that X is a G-space and that G is a locally profinite group, and let U ⊂ G be an open
compact subgroup that acts freely on X. As we have seen, there is a left exact functor ΓU : Mod(G) →
Mod(H(G,U)), M 7→MU . We obtain a diagram of functors, commutative up to natural isomorphism:

ShG(X)
ΓX //

ResGU %%

Mod(G)
ΓU // Mod(H(G,U))

(·)∼ // Mod(Z)

ShU (X)
fU∗

// Sh(X/U)

ΓX/U

77

(2.8)

The functors fU∗ and ResGU are exact and preserve injectives. As a formal consequence, we obtain:

Proposition 2.18. With notation as above, there is a canonical isomorphism in D(Z), for any F ∈ ShG(X):

R(ΓU ◦ ΓX)(F)∼ ∼= RΓX/U (fU∗ F).

We will often use the following slightly weaker consequence of the proposition: for any F ∈ ShG(X),
there is a canonical homomorphism H(G,U)→ EndD(Z)(RΓX/Uf

U
∗ F). (In the context of arithmetic locally

symmetric spaces, such homomorphisms recover the usual action of Hecke operators on cohomology. We
turn to this topic in §3.) The above homomorphism can be given explicitly on basis elements as follows. We
recall (cf. §2.2) that the algebra H(G,U) is free over Z, a basis being given by the elements [UαU ] with
α ∈ G.

Let V = U ∩αUα−1, let p1 : X/V → X/U denote the natural projection, p2 : X/V → X/U the map
X/V → X/α−1V α → X/U given by acting by α, then projecting. Both p1 and p2 are topological covering
maps. If F ∈ ShG(X), then the isomorphism F ∼= α∗F induces an isomorphism

p∗1f
U
∗ F = fV∗ F ∼= α∗fα

−1V α
∗ F = p∗2f

U
∗ F .

We define an endomorphism θ(α) of RΓX/U (fU∗ F) as the composite

RΓX/U (fU∗ F)
p∗2→ RΓX/V (p∗2f

U
∗ F) ∼= RΓX/V (p∗1f

U
∗ F) ∼= RΓX/U (p1,∗p

∗
1f
U
∗ F)→ RΓX/U (fU∗ F)

where the final map is the trace, defined by the adjunction (p1,∗ = p1,!, p
∗
1 = p!

1).

Lemma 2.19. Let F ∈ ShG(X). For α ∈ G the image of [UαU ] in EndD(Z)(RΓX/Uf
U
∗ F) equals θ(α).

Proof. It suffices to check the same statement for ΓX/U (fU∗ F), since applying this to the sheaves appearing
in an injective resolution F → I• gives the desired result. The lemma can then be proved by comparing the
explicit descriptions of the Hecke action on U -invariants and trace map on global sections.

We now present a kind of ‘Shapiro’s lemma’ for spaces. Let G be a group, H ⊂ G a subgroup, and
X an H-space.

Proposition 2.20. There is a natural equivalence of categories IndGH : ShH(X) ∼= ShG(G ×H X), and a
natural isomorphism ΓG×HX ◦ IndGH

∼= IndGH ◦ΓX .

Proof. Let π1 : G ×X → X and π2 : G ×X → G ×H X be the two projections. Let G ×H act on G ×X
by the formula (g, h)(g′, x) = (h−1g′g, xh). Then the subgroup G× {1} acts freely on G×X, and π1 is the
corresponding quotient map; and the subgroup {1} ×H acts freely on G×X, and π2 is the corresponding
quotient map. We obtain a diagram of functors

ShH(X)
π∗1 // ShG×H(G×X)

πH2,∗ // ShG(G×H X).

It follows from Lemma 2.17 that IndGH = πH2,∗◦π∗1 is an equivalence of categories, with inverse given by πG1,∗◦π∗2 .

The natural isomorphism ΓG×HX ◦ IndGH
∼= IndGH ◦ΓX is then an easy consequence of the definitions.
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Corollary 2.21. With notation as in the proposition, we have a natural isomorphism of derived functors
RΓG×HX ◦ IndGH

∼= IndGH ◦RΓX .

Proof. This follows from Proposition 2.20 and the formula for the composition of derived functors.

2.4 Equivariant sheaves for topological groups

We will also consider G-equivariant sheaves where G is a topological group acting continuously on a topo-
logical space X, following [BL94].

Definition 2.22. Let G be a topological group and X be a topological space.

1. We say that X is a G-space if it is equipped with a continuous right action of G, i.e. the multiplication
map m : X ×G→ X is continuous. Write p : X ×G→ X for the projection map.

2. If X is a G-space, a G-equivariant sheaf on X is a sheaf F on X equipped with an isomorphism
θ : p∗F ∼= m∗F satisfying the usual cocycle condition (see [BL94, §0.2] for the analogous formula in
the case of a left action).

We write ShG(X) for the abelian category of G-equivariant sheaves of abelian groups on X. For a ring R,
we write ShG(X,R) for the abelian category of G-equivariant sheaves of R-modules on X.

If G is endowed with the discrete topology, then the above definition coincides with the one given
in the previous section. We will usually restrict ourselves to the simplest situation, where the action of G
on X is free.

Definition 2.23. Let G be a topological group and X be a G-space. We say that X is free if the quotient
map q : X → X/G is a locally trivial G-torsor. In other words, there exists an open cover {Ui}i∈I of X/G
and G-equivariant isomorphisms Ui ×G ∼= q−1(Ui).

Lemma 2.24. Let X be a free G-space. Then the functor q∗ : Sh(X/G) → ShG(X) is an equivalence of
categories. An inverse is given by qG∗ (defined by the same formula as in the case where G is discrete, see
before Lemma 2.17).

Proof. This is well known. It is a special case of descent along a torsor [Vis05, Theorem 4.46].

One immediate consequence of this lemma is that ShG(X) has enough injectives, when X is a free
G-space.

2.4.1 Equivariant sheaves and smooth representations

Definition 2.25. Let G be a topological group. A representation of G on an abelian group M is smooth if ev-
ery element of M is fixed by an open subgroup of G. Denote the abelian category of smooth G-representations
on abelian groups by Modsm(G). For a ring R, denote the abelian category of smooth G-representations on
R-modules by Modsm(G,R).

Lemma 2.26. Let G be a topological group and X be a G-space. Suppose X is compact. Then for F ∈
ShG(X) the global sections of F form a smooth G-representation.

Proof. Let s be a global section of F . We consider the two sections θ(p∗s) and m∗s of m∗F over X × G.
For x ∈ X, the stalks of p∗s and m∗F at (x, e) are both given by Fx and θ induces the identity map
p∗F(x,e)

∼= m∗F(x,e). In particular, θ(p∗s) and m∗s have the same image in the stalk at (x, e), and hence
coincide on some open neighbourhood Wx ⊂ X × G of (x, e). We have Ux × Gx ⊂ Wx for Ux an open
neighbourhood of x in X and Gx an open neighbourhood of e in G.

Since X is compact, we obtain a finite open cover Ui of X and open neighbourhoods Gi of e such
that for all (x, g) ∈ Ui ×Gi, θ(p∗s) and m∗s have the image in m∗F(Ui ×Gi). We conclude that there is an
open neighbourhood H of e in G such that θ(p∗s) and m∗s have the same restriction to X ×H. In other
words, s is fixed by an open neighbourhood of e in G, and hence its stabilizer is an open subgroup of G.
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If X = pt = {x}, then an object F in ShG(X,R) gives rise to an R-module Fx equipped with an
action of G. Lemma 2.26 shows that this gives a functor ShG(X,R)→ Modsm(G,R).

Lemma 2.27. The functor F → Fx induces an an equivalence of categories between ShG(pt, R) and
Modsm(G,R).

Proof. The functor is clearly fully faithful, so we need to check essential surjectivity. For M ∈ Modsm(G,R)
we set FM to be the sheaf on {x} with sections M . We have p∗FM = m∗FM and this is the sheaf of
locally constant functions from G to M . For U ⊂ G an open subset we define θ : p∗FM (U) ∼= m∗FM (U)
by θ(f)(g) = gf(g), for f a locally constant function U → M and g ∈ U . Since the action of G on M is
smooth, θ(f) is again a locally constant function from U to M . The cocycle condition for θ can be checked
on stalks, where it amounts to the action of G on M being a group action.

Definition 2.28. Let X be a compact G-space. Denote the left exact functor obtained by taking global
sections by

ΓX : ShG(X,R)→ Modsm(G,R).

If X is a compact free G-space, we denote by RΓX the right derived functor

RΓX : D+(ShG(X,R))→ D+
sm(G,R).

Lemma 2.29. Let X be a compact G-space. The functor ΓX : ShG(X,R) → Modsm(G,R) preserves
injectives.

Proof. The functor ΓX can be viewed as the direct image functor ShG(X,R) → ShG(pt,R). This has an
exact left adjoint given by the inverse image functor, so ΓX preserves injectives.

Now suppose that G is a topological group, and H is a locally profinite group. We suppose that
X is a compact G × Hδ-space, where Hδ indicates H with the discrete topology. Let U ⊂ H be an open
compact subgroup such that G×Uδ acts freely on X. We obtain a diagram of functors, commutative up to
natural isomorphism, analogous to the diagram (2.8):

ShG×Hδ(X,R)
ΓX //

Res
G×Hδ
G×Uδ ))

Modsm(G×Hδ, R)
ΓU // Modsm(G,H(H,U)⊗Z R)

(·)∼ // Modsm(G,R)

ShG×Uδ(X,R)
fU∗

// ShG(X/U,R)

ΓX/U

55

(2.9)

Note that X/U is a free G-space. We also have an equivalence ShG×Hδ(X,R) ∼= ShHδ(X/G,R), so this cate-
gory has enough injectives. We can therefore define a right derived functor R(ΓU ◦ΓX) : D(ShG×Hδ(X,R))→
Dsm(G,H(H,U)). We obtain:

Proposition 2.30. There is a canonical isomorphism in Dsm(G,R), for any F ∈ ShG×Hδ(X,R):

R(ΓU ◦ ΓX)(F)∼ ∼= RΓX/U (fU∗ F).

As in the discrete case, we will use the following consequence of the proposition: for any F ∈
ShG×Hδ(X,R), there is a canonical homomorphism

H(H,U)→ EndDsm(G,R)(RΓX/Uf
U
∗ F). (2.10)

For α ∈ H, define an endomorphism θ(α) of RΓX/Uf
U
∗ F as in the discrete case by pullback and pushforward.

The same proof as before now yields the analogue of Lemma 2.19:

Lemma 2.31. Let F ∈ ShG×Hδ(X,R). For α ∈ H, the image of [UαU ] under the homomorphism (2.10)
equals θ(α).

18



2.5 Completed cohomology

We now recall some elements of the theory of completed cohomology. We begin by working in a general con-
text as in [CE12, 1.1] and [Hil10, 2.2]. Let G0 be a profinite group with a countable basis of neighbourhoods
of the identity given by normal open subgroups

· · · ⊂ Gn ⊂ · · · ⊂ G1 ⊂ G0.

Suppose given a tower of compact topological spaces

· · · → Xn → · · · → X1 → X0,

each equipped with an action of G0. We moreover suppose that:

1. The maps Xn+1 → Xn are G0-equivariant.

2. Gn acts trivially on Xn and Xn is a (locally trivial) G0/Gn-torsor over X0.

Finally, we assume that X0 admits an open covering by contractible subsets (for example, X0 is locally
contractible). In the above situation, we define a topological space

X = lim←−
n

Xn,

endowed with the projective limit topology. X is a compact G0-space. We write πn for the maps Xn → X0

and π for the map X → X0.

Lemma 2.32. The space X is a free G0-space and the natural map X/G0 → X0 is an isomorphism.

Proof. It is clear that the canonical map X → X0 identifies X0 with the quotient X/G0. To show that the
G0 action is free, we must show that the quotient map X → X0 is a locally trivial G0-torsor. Let U be a
contractible open subset of X0. For each n, the fibre product Xn|U := Xn ×X0 U is a torsor over U for the
finite group G0/Gn. We therefore have an isomorphism of G0/Gn-torsors over U :

τn : Xn|U ∼= U × (G0/Gn).

We are going to construct an isomorphism of G0-spaces

X|U := lim←−
n

Xn|U ∼= U ×G0

by modifying the isomorphisms τn.Suppose we have isomorphisms

τ ′i : Xi|U ∼= U × (G0/Gi)

for 0 ≤ i ≤ n− 1, which, for 1 ≤ i ≤ n− 1, send the transition maps Xi → Xi−1 to the obvious projection
U × (G0/Gi)→ U × (G0/Gi−1).

We consider the surjective map of G0-spaces U × (G0/Gn) → U × (G0/Gn−1) induced by the
isomorphisms τ ′n−1, τn and the transition map Xn → Xn−1. This map sends (u, x) to (u, α(x)), where
α : G0/Gn → G0/Gn−1 is a map of G0-sets. This map is therefore determined by α(1) ∈ G0/Gn−1. We
define τ ′n by τ ′n(x) = τn(x)g, where g is any representative of α(1) in G0.

We set τ ′0 equal to the identity, and by induction we have constructed τ ′n as above for all n. Now
taking the projective limit gives the desired trivialisation of X|U .

Lemma 2.33. Let R be a ring. The category Modsm(G0, R) has a generator and exact inductive limits. In
particular, Modsm(G0, R) has enough injectives.

Proof. A generator is given by X =
⊕

n≥0 IndG0

Gn
R, since Hom(X,M) =

∏
n≥0M

Gn which is non-zero for all
M ∈ Modsm(G0, R). It is clear that inductive limits exist in Modsm(G0, R), and they are exact by [Gab62,
Proposition I.6b].
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Given F0 ∈ Sh(X0), we set Fn = π∗nF0 ∈ ShG0/Gn(Xn) and set F = π∗F0 ∈ ShG0(X).

Lemma 2.34. The natural maps ΓXn(Fn)→ ΓX(F) induce an isomorphism

lim−→
n

ΓXn(Fn) ∼= ΓX(F).

Proof. The natural maps ΓXn(Fn)→ ΓX(F) identify ΓXn(Fn) with ΓX(F)Gn , by Lemma 2.24. By Lemma
2.26, ΓX(F) is smooth, which gives the desired result.

Lemma 2.35. The functor RΓX : D+(ShG0
(X,R)) → D+

sm(G0, R), when composed with the equivalence
of triangulated categories D+(Sh(X0, R)) ∼= D+(ShG0

(X,R)), is the right derived functor of the functor
Sh(X0, R)→ Modsm(G0, R) given by

F0 7→ lim−→
n

ΓXn(Fn).

Proof. This follows from Lemma 2.34.

Lemma 2.36. There are canonical isomorphisms

Hi(RΓX(F)) ∼= lim−→
n

Hi(Xn,Fn).

Proof. The previous lemma identifies RΓX with the derived functor of

F0 7→ lim−→
n

ΓXn(Fn)

from Sh(X0) to Modsm(G0). Taking an injective resolution I•0 of F0 we get injective resolutions I•n = π∗n(I•0 )
of Fn for each n (πn,! is exact, so π∗n preserves injectives). Now Hi(RΓX(F)) is (by definition) given by
Hi(lim−→n

ΓXn(I•n)) = lim−→n
Hi(ΓXn(I•n)) = lim−→n

Hi(Xn,Fn).

Definition 2.37. For a ring R, denote by

RΓGn : D+
sm(G0, R)→ D+(G0/Gn, R)

the right derived functor of taking Gn-invariants.

Since G0 is compact, the derived functors RΓGn may be computed using standard resolutions. For
M ∈ Modsm(G0, R) and r ≥ 0 we denote by Xr(M) the object of Modsm(G0, R) given by locally constant
maps from Gr+1

0 to M . The action of G0 is given by (σf)(σ0, . . . , σr) = σf(σ−1σ0, . . . , σ
−1σr).

As in [NSW00, I.2], we define a complex X•(M): there are maps di : Gr → Gr−1 given by omitting
the ith term, which induce maps d∗i : Xr−1 → Xr, and the maps in the complex are given by

δ =

r∑
i=0

(−1)id∗i : Xr−1 → Xr.

The map M → X0(M) given by sending m to the constant function with value m induces a quasi-
isomorphism M → X•(M) in Modsm(G0, R) ([NSW00, Proposition 1.2.1]).

Lemma 2.38. For i > 0 and r ≥ 0 we have RiΓGnX
r(M) = 0. As a consequence, the natural map

X•(M)Gn → RΓGnX
•(M) is a quasi-isomorphism and we have an isomorphism X•(M)Gn ∼= RΓGnM in

D+(G0/Gn, R).

Proof. First we recall some standard results in continuous group cohomology, see for example [NSW00,
Chapter I]. The functors M 7→ Γi(M) := Hi(X•(M)Gn) define a cohomological δ-functor from Modsm(G0, R)
to Mod(G−/Gn, R), and we have Γi(Xr(M)) = 0 for all i > 0 and r ≥ 0 (the modules Xr(M) are induced).
The map M → X0(M) induces an isomorphism ΓGnM

∼= Γ0(M). Therefore the functors Γi form a universal
δ-functor, and hence RiΓGnX

r(M) = Γi(Xr(M)) = 0.
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Lemma 2.39. Let R→ R′ be a flat ring map and denote the extension of scalars functor Modsm(G0, R)→
Modsm(G0, R

′) by (−)⊗RR′. Then there is a natural isomorphism of functors D+
sm(G0, R)→ D+(G0/Gn, R

′):

RΓGn(−)⊗R R′ ∼= RΓGn((−)⊗R R′)

Proof. For M ∈ Modsm(G0, R) we have a natural isomorphism X•(M)⊗RR′ ∼= X•(M⊗RR′) (each function
in Xr(M ⊗R R′) has a finite set of values, so it is a finite R′-linear combination of M -valued functions).
Since we can compute RΓ(Gn,−) using resolutions by the acyclic objects X•(M), and (−)⊗RR′ sends these
acyclic resolutions to acyclic resolutions, we obtain a natural isomorphism between RΓGn , (−) ⊗R R′) and
the derived functor of

M 7→ (M ⊗R R′)Gn .

On the other hand, since (−)⊗RR′ is exact, RΓGn , (−))⊗RR′ is naturally isomorphic to the derived functor
of

M 7→MGn ⊗R R′.

To prove the lemma, it suffices to show that the natural map MGn⊗RR′ → (M⊗RR′)Gn is an isomorphism.
Since the action of Gn on M is smooth, it suffices to check that this map is an isomorphism for Gn a finite
group. This follows from the isomorphism (2.1) in the proof of Lemma 2.2, as MG

n = HomR[Gn](R,M) and
R is a finitely presented R[Gn]-module.

Lemma 2.40. Let R be a ring, and let F ∈ ShG0
(X,R) and n ≥ 0. Denote by Fn ∈ ShG0/Gn(Xn, R) the

sheaf on Xn obtained by descent from F . There are natural isomorphisms in D+(G0/Gn, R):

RΓGnRΓXF ∼= RΓXnFn

extending the natural isomorphism ΓGnΓXF ∼= ΓXnFn.

Proof. This follows from Lemma 2.29.

2.6 Completed cohomology without taking a limit of spaces

We now present a variant of the constructions of §2.5 which works just with sheaves at ‘finite levels’ Xn

instead of passing to the limit X. This variant will then be applicable in a more general situation: for
example, when the group actions are not free (we will later work with minimal compactifications as well as
Borel–Serre compactifications), and the spaces Xn are algebraic varieties or even adic spaces.

In this section a ‘space’ means either: a topological space, an adic space over a complete and
algebraically closed extension of Qp, or an algebraic variety over an algebraically closed field of characteristic
0. We again let G0 be a profinite group with a countable basis of neighbourhoods of the identity given by
normal open subgroups

· · · ⊂ Gn ⊂ · · · ⊂ G1 ⊂ G0.

Suppose given a tower of spaces
· · · → Xn → · · · → X1 → X0,

with each Xn equipped with an action of the finite group G0/Gn and the transition maps equivariant with
respect to these actions. Contrary to the last section, we do not assume that these group actions are free.

We now consider categories Sn = ShG0/Gn(Xn, R), where we take equivariant sheaves on the topo-
logical space Xn or the étale site of the algebraic variety or adic space Xn as appropriate. Note that the

transition maps Xm → Xn for m ≥ n give pairs of functors π
Gn/Gm
m,n∗ : Sm → Sn and π∗m,n : Sn → Sm. By

part 1 of Lemma 2.17 and its analogue for the other sites, π
Gn/Gm
m,n∗ is a right adjoint to π∗m,n.

Definition 2.41. We define S to be the category whose objects are collections of sheaves (Fn)n≥0 with
Fn ∈ Sn, equipped with morphisms θm,n : π∗m,nFn → Fm for m ≥ n, which satisfy a cocycle relation: for
i ≥ j ≥ k we have

θi,k = θi,j ◦ π∗i,jθj,k.
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The morphisms in S are given by families of morphisms fn : Fn → Gn, such that for m ≥ n

fm ◦ θm,n = θm,n ◦ π∗m,n(fn).

We observe that S is the category of R-module objects in the total topos of a fibred topos. In
particular, S has enough injectives. We will also check this explicitly (Lemma 2.45).

Definition 2.42. Denote by ι∗n the functor S → Sn given by (Fm)m≥0 7→ Fn.
Denote by ιn,! the functor Sn → S given by

F 7→ (0, . . . , 0,F , . . . , π∗m,nFn, . . .).

Denote by ιn,∗ the functor Sn → S given by

F 7→ (πn,0,∗FG0/Gn , . . . , πn,m,∗FGm/Gn , . . . ,F , 0, 0, . . .).

Lemma 2.43. The functor ιn,! is a left adjoint to ι∗n, and ιn,∗ is a right adjoint to ι∗n. The functor ιn,! is
exact.

Proof. First we check the adjointness properties. Suppose we have F ∈ Sn and G• ∈ S. Then an element of
HomS(ιn,!F ,G) is given by a collection of maps fm in HomSm(π∗m,nFn,Gm) for m ≥ n such that

fm = θm,n ◦ π∗m,n(fn).

So we see immediately that everything is determined by fn, and HomS(ιn,!F ,G) = HomSn(F ,Gn) =
HomSn(F , ι∗nG) as required.

Next, suppose we have F• ∈ S and G ∈ Sn. Given a map fn : Fn → G there is a natural way to
produce a map F• → ιn,∗G: for m ≤ n we let fm : Fm → πn,m,∗FGm/GnG be the map corresponding by

adjunction to π∗n,mFm
θn,m→ Fn

fn→ G. This gives a natural map HomSn(ι∗nF ,G)→ HomS(F , ιn,∗G). To prove
that this is a bijection, we must show that this choice of fm is the unique map making the following diagram
commute:

π∗n,mFm
π∗n,mfm//

θn,m

��

π∗n,mπ
Gm/Gn
n,m∗ G

��
Fn

fn // G

The right hand vertical arrow here is the counit of the adjunction. So the composition of the top horizontal

and right vertical maps is identified with fm under the bijection Hom(π∗n,mFm,G) = Hom(Fm, πGm/Gnn,m,∗ G).
This forces fm to be the map we have defined above.

This implies that ι∗n is exact, so it preserves kernels and images. In particular, kernels and images
of maps in S are given by componentwise kernels and images, so one can check exactness of complexes in S
componentwise. Since π∗m,n is an exact functor, ιn,! is exact.

Lemma 2.44. For F ∈ S an injective object the equivariant sheaf ι∗nF ∈ Sn and the underlying sheaf in
Sh(Xn, R) are injective. The functor ιn,∗ also preserves injectives.

Proof. The functors ι∗n and ιn,∗ have exact left adjoints, as does the forgetful functor from Sn to Sh(Xn, R)
(by the same construction as in Lemma 2.14). It follows that all of these functors preserve injectives.

Lemma 2.45. The category S has enough injectives.

Proof. Let F ∈ S. For each n, we pick a monomorphism ι∗nF ↪→ In to an injective object of Sn. By
adjointness we have maps F → ιn,∗In for each n, so we obtain a map F → I :=

∏
n≥0 ιn,∗In. Since products

of injectives are injective, I is injective. The map F → I is monic, as this can be checked componentwise.
So S has enough injectives.
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Definition 2.46. We denote by Γ̃ the functor S → Modsm(G0, R) given by

F 7→ lim−→
n

ΓXn(Fn).

We denote by RΓ̃ : D+(S)→ D+
sm(G0, R) the right derived functor of Γ̃.

Lemma 2.47. There are natural isomorphisms

RiΓ̃(F) ∼= lim−→
n

Hi(Xn,Fn).

Proof. We take an injective resolution F → I•. For each n, Fn → I•n is an injective resolution. Since direct
limits are exact in Modsm(G0, R), we have

RiΓ̃(F) = Hi(lim−→
n

ΓXn(I•n)) = lim−→
n

Hi(ΓXn(I•n)) = lim−→
n

Hi(Xn,Fn).

Lemma 2.48. Suppose the Xn are compact locally contractible topological spaces and the spaces Xn → X0

are G0/Gn-torsors. In other words, we suppose that the formalism of the previous section applies to X•. We
regard RΓX as a functor on S0, using Lemma 2.35. Then there is a natural isomorphism

RΓX ∼= RΓ̃ ◦ ι0,!.

Proof. We have a natural isomorphism of functors ΓX ∼= Γ̃ ◦ ι0,!. By Lemma 2.1 we obtain a natural
transformation

RΓX → RΓ̃ ◦ ι0,!.
Tracing through the constructions and applying Lemma 2.47, we see that this is an isomorphism.

Lemma 2.49. Suppose that the Xn are compact Hausdorff topological spaces, let j0 : Y0 ↪→ X0 be an open
subspace, and let jn : Yn ↪→ Xn be the pullback of j0 for each n ≥ 0. Let SY denote the analogue of the
category S for the tower (Yn)n≥0, and let j! : SY → S denote the exact factor induced by the functors jn,!.

Let Γ̃c : SY → Modsm(G0, R) be the functor

Γ̃c(F) = lim−→
n

Γc(Yn,Fn) = Γ̃ ◦ j!F .

Then there is a natural isomorphism of functors

RΓ̃c ∼= RΓ̃ ◦ j! : D+(SY )→ D+
sm(R).

Proof. The proof is essentially the same as the proof of Lemma 2.47.

2.6.1 Comparing topologies

Suppose given a complete algebraically closed extension C of Qp with compatible embeddings Q ⊂ C and
Q ⊂ C, together with a tower Xalg

n of proper schemes over Q. We set Xtop
n = Xalg

n (C) with the usual
topology, set Xcl

n to be the ‘local isomorphisms’ site on Xalg
n (C) as defined in [SGA73, XI 4], and set Xad

n to

be the adic space associated to Xalg
n,C .

If ? ∈ {cl, alg, ad}, then we denote by Γ̃? and RΓ̃? the functors obtained by applying the formalism
of §2.6 to the tower of spaces (X?

n)n≥0 (with the appropriate site). Recall that there is a morphism of sites

εn : Xcl
n → (Xalg

n,C)ét → (Xalg
n )ét

together with an inclusion of sites Xcl
n → Xtop

n inducing an equivalence of topoi. This induces an exact

functor ε∗ from Stop to Salg. As a result we obtain a base change natural transformation RΓ̃alg → RΓ̃topε∗,
for example by applying Lemma 2.1. This natural transformation is an isomorphism by Lemma 2.47 and
the usual comparison theorem for cohomology [SGA73, XVII Corollaire 5.3.5].

Similarly, we obtain a natural isomorphism RΓ̃alg → RΓ̃adε∗, where ε∗ is induced by the morphisms
of sites εn : (Xad

n )ét → (Xalg
n,C)ét → (Xalg

n )ét (we use (3.2.8) and Theorem 3.7.2 of [Hub96]).
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2.7 Almost smooth representations

Fix a complete and algebraically closed extension C of Qp. Let OC ⊂ C denote the ring of integers and
m ⊂ OC the maximal ideal. Let π ∈ m − {0}. Fix N ≥ 1 and let V = OC/(πN ). Recall [GR03], [Sch12,
§4] that the almost context (OC ,m) allows us to define a category of almost OC-modules, or OaC-modules,
that we denote Mod(OaC). This is obtained by localising the category Mod(OC) of OC-modules at the Serre
subcategory comprising modules which are killed by m.

One then defines OaC-algebras, and in particular we have an OaC-algebra Va, which we denote by
A. There is an exact localisation functor (−)a from Mod(V) to Mod(A). This functor has a right adjoint
M 7→ M∗ = HomA(A,M), the functor of almost elements; for any M ∈ Mod(A), the adjunction morphism
(M∗)

a →M is an isomorphism. The functor (−)a also has an exact left adjoint M 7→M! = m⊗OC M∗ (see
[GR03, 2.2.21, 2.2.23]), and the adjunction morphism M 7→ (M!)

a is again am isomorphism.

Definition 2.50. Let G0 be a profinite group. We say X ∈ Modsm(G0,V) is almost zero if mX = 0. The full
subcategory of almost zero objects in Modsm(G0,V) is a Serre subcategory and we denote by Modsm(G0, A)
the abelian category obtained as the quotient of Modsm(G0,V) by this Serre subcategory.

Lemma 2.51. The functor (−)! induces an exact left adjoint to the localisation functor Modsm(G0,V) →
Modsm(G0, A), which we also denote by (−)!. The unit of the adjunction M → (M!)

a is a natural isomor-
phism from the identity functor to the composition ((−)!)

a.

Proof. We note that X 7→ m⊗OC X defines an exact functor Modsm(G0,V)→ Modsm(G0,V) which is zero
on almost zero objects. Therefore we obtain an exact functor (−)! from Modsm(G0, A) to Modsm(G0,V),
by the universal property of a quotient by a Serre subcategory. This is seen to be left adjoint to the
localisation functor by the same argument used to deduce [GR03, (2.2.4)]: namely, describe Hom groups
in the localisation Modsm(G0, A) by calculus of fractions and observe that m ⊗OC X → X is initial in the
category of almost isomorphisms to X ∈ Modsm(G0,V). In particular, for X,Y ∈ Modsm(G0,V) we obtain
a natural isomorphism of V-modules

HomModsm(G0,A)(X
a, Y a) = HomModsm(G0,V)(m⊗OC X,Y ).

Finally, for M = Xa, the argument mentioned above shows that the unit of the adjunction is given by the
map Xa → (m⊗OC X)a which is the inverse of the almost isomorphism m⊗OC X → X. This implies that
the unit of the adjunction is a natural isomorphism, as required.

Remark. The functor (−)∗ induces a functor from Modsm(G0, A) to Mod(G0,V) but the resulting V[G0]-
module may not always be smooth. To define the functor, we note that forX ∈ Modsm(G0,V), HomA(A,Xa) =
HomV(m⊗OC V, X) is naturally equipped with an action of G0 (which may not be smooth). Taking smooth
vectors gives a functor (−)sm

∗ : Modsm(G0, A)→ Modsm(G0,V), which can be checked to be a right adjoint
to the localisation functor. However, we will not use this right adjoint in the sequel.

Definition 2.52. We denote by D+
sm(G0,V) (respectively D+

sm(G0, A)) the bounded-below derived categories
of Modsm(G0,V) (resp. Modsm(G0, A)).

The (exact) localisation functor (−)a induces a functor D+
sm(G0,V)→ D+

sm(G0, A).

Lemma 2.53. The localisation functor Modsm(G0,V)→ Modsm(G0, A) preserves injectives.

Proof. This follows from exactness of the left adjoint (−)!.

Lemma 2.54. The category Modsm(G0, A) has enough injectives.

Proof. ForM ∈ Modsm(G0, A) we have a monomorphismM! ↪→ I, with I an injective object of Modsm(G0,V),
since Modsm(G0,V) has enough injectives (Lemma 2.33). Then applying the localisation functor gives a
monomorphism M ∼= Ma

! ↪→ Ia. By Lemma 2.53, Ia is injective.
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Definition 2.55. For n ≥ 0 we denote by

ΓGn : Modsm(G0, A)→ Modsm(G0/Gn, A)

the functor given by
M 7→ HomModsm(Gn,A)((1V)a,M)a.

Here, we note that if M = Xa, HomModsm(Gn,A)((1V)a,M) = HomModsm(Gn,V)(m⊗OC V, X) which we view as
an object of Mod(G0/Gn,V) = Modsm(G0/Gn,V), and then apply (−)a to get something in Modsm(G0/Gn, A).

Lemma 2.56. For M,N ∈ Modsm(G0,V), the natural map of V-modules

HomModsm(G0,V)(M,N)→ HomModsm(G0,A)(M
a, Na)

induces an isomorphism of A-modules

HomModsm(G0,V)(M,N)a → HomModsm(G0,A)(M
a, Na)a.

In particular, for X ∈ Modsm(G0,V) the map

HomModsm(Gn,V)(1V, X|Gn)→ HomModsm(Gn,A)((1V)a, X|aGn)

induces an isomorphism (ΓGnX)a ∼= ΓGn(Xa). Moreover, for M,N ∈ D+
sm(G0,V) we similarly have a

natural isomorphism of A-modules

HomD+
sm(G0,V)(M,N)a → HomD+

sm(G0,A)(M
a, Na)a.

Proof. We have HomModsm(G0,A)(M
a, Na) = HomModsm(G0,V)(m⊗OCM,N), by Lemma 2.56, and the natural

(multiplication) map m ⊗OC M → M is an almost isomorphism (the kernel and cokernel are killed by m).
The induced map

HomModsm(G0,V)(M,N)→ HomModsm(G0,V)(m⊗OC M,N)

is therefore an almost isomorphism.
To check the ’moreover’ statement, we work with the homotopy categories K+ = K+(Injsm(G0,V))

and K+,a = K+(Injsm(G0, A)), where Inj denotes the full subcategory of injective objects in Modsm(G0,V)
and Modsm(G0, A). These categories are equivalent to the bounded below derived categories D+

sm(G0,V)
and D+

sm(G0, A). We denote by Kom+ and Kom+,a the categories of bounded below complexes of injec-
tives. For M,N ∈ ob(K+) = ob(Kom+) we set H+ =

∏
i∈Z HomModsm(G0,V)(M

i, N i−1) and set H+,a =∏
i∈Z HomModsm(G0,A)((M

i)a, (N i−1)a). Since (−)a has a left adjoint, it commutes with direct products, and
so the natural map of V-modules H+ → H+,a induces an isomorphism of A-modules (H+)a ∼= (H+,a)a (by
the first part of the lemma). Now consider the commutative diagram of V-modules, with exact rows

H+

��

// HomKom+(M,N)

��

// HomK+(M,N)

��

// 0

H+,a // HomKom+,a(Ma, Na) // HomK+,a(Ma, Na) // 0

where the left hand horizontal maps are given by sending (si)i∈Z to ds + sd. The first part of the lemma
shows that the first two vertical maps are almost isomorphisms. Therefore the third vertical map is an
almost isomorphism, as required.

Note that ΓGn is left exact, as it is a composition of the left exact Hom-functor and the exact
localisation functor.

Definition 2.57. Denote by RΓGn : D+
sm(G0, A)→ D+

sm(G0/Gn, A) the right derived functor of ΓGn .

Lemma 2.58. There is a natural isomorphism of functors RΓGn(−)a ∼= (RΓGn(−))a : D+
sm(G0,V) →

D+
sm(G0/Gn, A).

Proof. Both functors are the right derived functor of X 7→ ΓGn(X)a = ΓGn(Xa), since (−)a is exact and
preserves injectives.
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3 Arithmetic locally symmetric spaces

In this section, we will describe the spaces associated to linear algebraic groups over number fields, and use
them to define our derived Hecke algebras.

3.1 Symmetric spaces

Let G be a connected linear algebraic group over Q, and let RdG denote the Q-split part of the radical of
G. Following Borel–Serre [BS73], we make the following definition.

Definition 3.1. A space of type S −Q for G is a pair consisting of a (left) homogeneous space XG under
G(R) and a family (Lx)x∈X of Levi subgroups of GR satisfying the following two conditions:

1. The isotropy groups Gx = StabG(R)(x) are of the form Gx = K · S(R), where S ⊂ RdG is a maximal
torus and K ⊂ G(R) is a maximal compact subgroup normalizing S.

2. For each x ∈ X, we have Gx ⊂ Lx and Lg·x = gLxg
−1 for all g ∈ G(R).

It follows from [BS73, Lemma 2.1] that there is a unique G(R)-conjugacy class of such subgroups
Gx = S(R) · K; the homogeneous space XG is therefore determined up to isomorphism. It is connected,
because a maximal compact subgroup K meets every connected component of G(R). On the other hand,
the family of Levi subgroups (Lx)x∈X involves a choice. Henceforth, we write XG for a fixed choice of space
of type S − Q. The space XG is orientable: in fact, it is diffeomorphic to Euclidean space ([BS73, Remark
2.4]).

These spaces are studied in great generality in [BS73]. For us, examples will arise as follows:

• If G is reductive, then there is a unique isomorphism class of space of type S − Q for G, as is clear
from the definition.

• If G is reductive and P ⊂ G is a rational parabolic subgroup, then P (R) acts transitively on XG. For
any x ∈ XG, there is a unique Levi subgroup L′x ⊂ PR which is stable under the Cartan involution
of GR associated to Kx, the maximal compact subgroup of Gx (hence of G(R)); see [BS73, (1.9),
Corollary].

Let SP = (RdP/(RuP · RdG)), a Q-split torus, and let AP = SP (R)◦. There is a canonical action of
AP on XG, called the geodesic action, and given by the formula (for a ∈ AP , x ∈ XG) a • x = ax · x,
where ax ∈ L′x(R) is any lifting of a ∈ AP , cf. [BS73, (3.2)]. This action of AP commutes with the
action of P (R) on XG, which therefore descends to the quotient XP = AP \XG. For any a ∈ AP ,
x ∈ XG, we have L′x = L′a•x, and the quotient XP = AP \XG becomes a space of type S − Q for P
when equipped with the family of Levi subgroups (L′x)x∈XP .

For notational purposes it is convenient to allow groups over arbitrary number fields, so now suppose that
F is a number field and that G is a connected linear algebraic group over F . We will write XG for a fixed
choice of space of type S −Q for the restriction of scalars ResFQ G.

We now consider certain adelic arithmetic quotients of XG. Choose an element g = (gv)v ∈ G(A∞F ),

and consider for each finite place v the subgroup Γv ⊂ F
×
v , defined as the torsion subgroup of the subgroup

of F
×
v generated by the eigenvalues of gv in any faithful representation of G. The element g is said to be neat

if ∩vΓv is the trivial group. (This intersection has a sense since finite subgroups of Q× are invariant under
Galois automorphisms.) An open compact subgroup U ⊂ G(A∞F ) is said to be neat if all of its elements are
neat. (This definition of neatness is the one used by Pink [Pin90].)

If U is neat, then for all g ∈ G(A∞F ), the group Γg,U = G(F ) ∩ gUg−1 is neat as an arithmetic
subgroup of G(F ⊗Q R). In particular, it is torsion-free and acts freely and properly discontinuously on XG,
preserving orientations. Moreover, if H ⊂ G is a subgroup then U ∩ H(A∞F ) is neat, and if G → H is a
surjective homomorphism then the image of U in H(A∞F ) is again neat.

We write XG = G(F )\ [G(A∞F )×XG], where before forming the quotient G(A∞F ) is endowed with
the discrete topology. Then XG is a G(A∞F )-space, in the sense of §2.3. It follows that XG is isomorphic
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to an uncountable disjoint union of connected smooth manifolds, and for any neat open compact subgroup
U ⊂ G(A∞F ), XG is a free U -space (in the sense of Definition 2.16). If U is such a subgroup, then we write
XU
G for the quotient

XU
G = XG/U = G(F )\ [G(A∞F )/U ×XG] .

If S is a finite set of finite places of F then we will write GS = G(A∞,SF ), where A∞,SF is the ring of finite
adeles, deprived of its S-components, and GS =

∏
v∈S G(Fv). Thus G(A∞F ) = GS ×GS . In a slight abuse of

notation, we will also write G∞ = G(A∞F ) and G∞ = G(F ⊗Q R).
In order to describe a reasonable class of level subgroups, we will fix an integral model G of G, i.e. a

flat affine group scheme over OF with generic fibre G. Such a structure having been fixed, we will write JG
for the set of neat open compact subgroups of G(A∞F ) of the form U =

∏
v Uv with Uv ⊂ G(OFv ) for all v.

When G = GLn,F we will always choose the natural integral structure G = GLn,OF , in which case JG is the
set of neat open compact subgroups of GLn(A∞F ) of the form U =

∏
v Uv, with Uv ⊂ GLn(OFv ) for all v.

Lemma 3.2. Let U ∈ JG.

1. The quotient G(F )\G∞/U is finite. Writing g1, . . . , gs ∈ G∞ for a set of representatives and Γgi,U =
G(F ) ∩ giUg−1

i , we have a homeomorphism

XU
G
∼=

s∐
i=1

Γgi,U\XG,

that we use to endow XU
G with the structure of orientable smooth manifold.

2. There is an equivalence of categories ShU (XG) ∼= Sh(XU
G ).

Proof. The first part is finiteness of the class number for G, which follows from [PR94, Theorem 5.1]. The
second part follows from Lemma 2.17, since U acts freely on XG.

We will need to consider some naturally arising families of sheaves on the spaces XU
G . Let S be a set

of finite places of F and let US ⊂
∏
v∈S G(OFv ) be an open compact subgroup. We will write JG,US ⊂ JG

for the set of U ∈ JG of the form U = USU
S . If S is finite and M is a Z[US ]-module, viewed as an object

of ShGS×US (pt), then we write MG for its pullback to ShGS×US (XG), and MU
G for its image in Sh(XU

G ).
Lemma 3.2 then implies:

Corollary 3.3. There is a natural isomorphism for any Z[US ]-module M :

RΓ∼URΓXGMG
∼= RΓXUGM

U
G.

This shows that our use of the discrete topology on G∞ does not cause pathologies.

3.1.1 Quotient by unipotent radical

We continue to denote by G a connected linear algebraic group over a number field F . As a warm-up
for later, we now discuss what happens when when we consider the morphism G → H = G/N , with
N = RuG the unipotent radical of G. In this case, the group N(F ⊗Q R) acts freely on XG and we can
take XH = N(R)\XG (see [BS73, (2.8)]). Let S be a finite set of finite places of F , and let US ⊂ GS
be a fixed open compact subgroup. We will freely use the identification H(GS × US , U) ∼= H(GS , US),
and similarly for the groups H and N . For any U ∈ JG,US , we write UH ∈ JH,UH,S for its image in H∞

and UN ∈ JN,UN,S for its intersection with N∞. There is a natural projection πG,H : XG → XH , and

for any U ∈ JG,US a quotient projection πU,UH : XU
G → XUH

H . The map πU,UH is smooth with compact
nilmanifold fibres. Now fix a Levi decomposition G = H n N , and fix a subgroup U ∈ JG,US which is
decomposed, i.e. such that U = UH nUN . In this case we have constructed in Lemma 2.7 a homomorphism
rH : H(GS , US)→ H(HS , USH) and a corresponding functor r∗H : Mod(H(HS , USH))→ Mod(H(GS , US)). In
this situation, we want to construct for any UH,S-module A a homomorphism in D(H(GS , US)):

i : r∗HRΓUHRΓXHAH → RΓURΓXGAG.
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To this end, we consider the following diagram of functors:

ShGS×US (XG)
ΓXG // ShGS×US (pt)

ShHS×UH,S (XH)

π∗

OO

ΓXH

// ShHS×UH,S (pt).

Inf
GS×US
HS×UH,S

OO

Pullback of global sections gives a natural transformation InfG
S×US

HS×UH,S ◦ΓXH → ΓXG ◦ π∗; by Lemma 2.1, we

obtain a canonical morphism for any A ∈ Mod(UH,S):

InfG
S×US

HS×UH,S RΓXHAH → RΓXGπ
∗AH

∼= RΓXGAG.

(Note that there is a canonical natural isomorphism InfG
S×US

HS×UH,S RΓXH
∼= R(InfG

S×US
HS×UH,S ΓXH ).) Combining

this with Corollary 2.8, we obtain our desired morphism i as the composite

r∗HRΓUHRΓXHAH → RΓU InfG
S×US

HS×UH,S RΓXHAH → RΓURΓXGAG.

We now want to construct for each A ∈ Mod(UH,S) a splitting

s : (RΓURΓXGπ
∗AH)∼ → (RΓUHRΓXHAH)∼

of i∼. To this end, we introduce a new space YH = H(F )\ [H(A∞F )×XG], the action of H(F ) on XG induced
by our fixed Levi decomposition G = H n N . There is a natural H∞-equivariant map θ : YH → XG, and
the composite σ : YH → XG → XH is a fibre bundle with fibre N(F ⊗Q R). In particular, the endofunctor
Rσ∗σ

∗ of D+(ShHS XH) is naturally isomorphic to the identity functor, by adjunction (cf. [KS94, Proposition
2.7.8]).

There is a natural transformation RΓ∼URΓXG → RΓ∼UHRΓYH
θ∗. Applying this to a sheaf π∗AH we

obtain our desired morphism s as the composite

RΓ∼URΓXGπ
∗AH → Γ∼UHRΓYH

θ∗π∗AH
∼= Γ∼UHRΓYH

σ∗AH
∼= Γ∼UHRΓXHRσ∗σ

∗AH
∼= Γ∼UHRΓXHAH .

It is easy to see that s is a splitting of the morphism i∼ : RΓ∼UHRΓXHAH → RΓ∼URΓXGπ
∗AH in D(Z).

Putting all of this together, we have proved the following:

Proposition 3.4. For any A ∈ Mod(UH,S), there are natural morphisms

i : r∗HRΓUHRΓXHAH → RΓURΓXGπ
∗AH

in D(H(GS , US)) and
s : RΓ∼URΓXGπ

∗AH → RΓ∼UHRΓXHAH

in D(Z), satisfying si∼ = 1. In particular, there is a commutative diagram of Z-algebras:

H(GS , US)

rH

��

TG // EndD(Z)(RΓ∼URΓXGπ
∗AH)

t 7→sti∼

��
H(HS , USH)

TH // EndD(Z)(RΓ∼UHRΓXHAH).

Proof. It remains to check that the diagram is commutative. For this, it is enough to show that for any
t ∈ H(HS , USH), the equality TG(t)i∼ = i∼TH(rH(t)) holds inside

HomD(Z)(RΓ∼UHRΓXH , RΓ∼URΓXGπ
∗AH).

This follows immediately from the fact that i∼ arises from a map in D(H(GS , US)).
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We now generalize this slightly.

Proposition 3.5. Let B be a Z[US ]-module, and let C = ResUSUH,S B. Suppose that C admits a decomposition

C = A⊕K of Z[UH,S ]-modules, where A ⊂ BUN,S . Then:

1. We have π∗AH = AG.

2. There are natural morphisms

i : r∗HRΓUHRΓXHAH → RΓURΓXGBG

in D(H(GS , US)) and
s : RΓ∼URΓXGBG → RΓ∼UHRΓXHAH

in D(Z), satisfying si∼ = 1. In particular, there is a commutative diagram of Z-algebras:

H(GS , US)
TG //

rH

��

EndD(Z)(RΓ∼URΓXGBG)

t7→sti∼

��
H(HS , USH)

TH

// EndD(Z)(RΓ∼UHRΓXHAH).

Proof. The isomorphism π∗AH
∼= AG is clear from the definitions. The inclusion A ⊂ BUNS implies the

existence of a US-equivariant map A→ B, hence π∗AH → BG. We define i as the composite

r∗HRΓUHRΓXHAH → RΓURΓXGπ
∗AH → RΓURΓXGBG,

where the first arrow is the one constructed in Proposition 3.4 and the second arrow arises from the map
π∗AH → BG. We define s as the composite

RΓ∼URΓXGBG → RΓ∼UHRΓYH
θ∗BG

∼= RΓ∼UHRΓYH
σ∗CH

∼= RΓ∼UHRΓXHCH
∼= RΓ∼UHRΓXH (AH ⊕KH)→ RΓ∼UHRΓXHAH .

The first arrow is constructed as in the proof of Proposition 3.4, the isomorphism θ∗BG
∼= σ∗CH follows from

the definitions, the second isomorphism follows as in the proof of Proposition 3.4, the third isomorphism
follows from the isomorphism C ∼= A⊕K, and the final arrow is projection onto the first factor of C = A⊕K.

To complete the proof of the proposition, it remains to show that the equality si∼ = 1 holds inside
EndD(Z)(RΓ∼UHRΓXHAH). The composite si∼ is equal to the composite

RΓ∼UHRΓXHAH → RΓ∼UHRΓXHCH → RΓ∼UHRΓXHAH ,

where the first arrow is induced by the inclusion A ⊂ C of Z[UH,S ]-modules and the second by projection
along the direct sum decomposition C = A⊕K. It follows that si∼ is induced by the identity morphism of
A, hence is equal to the identity. This completes the proof.

In the applications, we will need this result in a slightly different form:

Corollary 3.6. With assumptions as in Proposition 3.5, there exists a commutative diagram

H(GS , US)
TG //

rH

��

EndD(Z)(RΓXUGB
U
G)

t7→sti∼

��

t 7→tF // HomD(Z)(RΓXUG ,cB
U
G, RΓXUGB

U
G)

t7→stic
��

H(HS , USH)
TH // EndD(Z)(RΓ

X
UH
H

AUHH )
t 7→tF // HomD(Z)(RΓ

X
UH
H ,c

AUHH , RΓ
X
UH
H

AUHH ).
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Proof. We first define the relevant morphisms. The maps s and i are as in the statement of the proposition,
we write F for the natural ‘forget supports’ maps RΓc → RΓ, and ic is the natural pullback

RΓ
X
UH
H ,c

AUHH → RΓXUG ,cA
U
G → RΓXUG ,cB

U
G,

which exists because πU,UH is proper. The corollary now follows from the proposition and the commutativity

of the following diagram for any t ∈ EndD(Z)(RΓXUGB
U
G):

RΓXUG ,cB
U
G

F // RΓXUGB
U
G

t // RΓXUGBG

s

��
RΓ

X
UH
H ,c

AUHH
F //

ic

OO

RΓ
X
UH
H

AUHH
sti∼ //

i∼

OO

RΓ
X
UH
H

AUHH .

3.1.2 Borel–Serre compactifications and restriction to parabolic subgroups

We continue to suppose that G is a connected linear algebraic group over the number field F . Let U ∈ JG.
According to Borel–Serre [BS73], we can add boundary strata to XU

G in order to obtain compact manifolds
with corners. We now discuss some elements of this theory.

Let P denote the set of F -rational parabolic subgroups of G (which includes G itself). For each
P ∈ P, we have defined the group AP and observed that the quotient e(P ) = AP \XG admits a canonical
structure of space of type S − Q for ResFQ P , with respect to which the map XG → e(P ) is P (F ⊗Q R)-
equivariant. Accordingly, we define

XG =
∐
P∈P

e(P ),

endowed with the structure of smooth manifold with corners described in [BS73, §7.1]. For each P ∈ P, the
subset X(P ) =

∐
Q⊃P e(Q) is an open subset of XG, the structure of which can be described explicitly, see

[BS73, §5]. In particular, e(G) = XG ⊂ XG is an open submanifold. If g ∈ G(F ), then there is a natural
isomorphism X(P )→ X(P g); the action of G(F ) on XG extends naturally to XG in a way compatible with
these isomorphisms, see [BS73, Proposition 7.6].

We define XG = G(F )\
[
G(A)F∞)×XG

]
, where as in the previous section, G(A∞F ) gets the discrete

topology in the formation of the quotient. For any U ∈ JG, we define

X
U

G = XG/U = G(F )\
[
G(A∞F )/U ×XG

]
.

As in the previous section, we can choose representatives g1, . . . , gs ∈ G(A∞F ) for the finite double quotient
G(F )\G(A∞F )/U and calculate

X
U

G =

s∐
i=1

Γgi,U\XG.

For each g ∈ G(A∞F ), the neat arithmetic subgroup Γgi,U ⊂ G(R) acts freely on X
U

G, and the quotient
Γgi,U\XG is compact ([BS73, Theorem 9.3]).

We define ∂XG = XG − XG and ∂X
U

G = X
U

G −XU
G . Then we have similarly

∂X
U

G = ∂XG/U =

s∐
i=1

Γgi,U\∂XG.

Suppose given a finite set S of finite places of F and a fixed open compact subgroup US ⊂ GS . For any
Z[US ]-module A, we will write AG ∈ ShGS×US (XG) for its pullback from ShGS×US (pt). Since the pullback

30



of AG to the G∞-invariant open submanifold XG ⊂ XG agrees with the equivariant sheaf previously denoted
as AG, we hope that this will not cause confusion.

We can use the Borel–Serre compactification to define a Hecke action on the compactly supported
cohomology of the spaces XU

G . More precisely, we can define for any Z[US ]-module A a homomorphism

H(GS , US)→ EndD(Z)(RΓXUG ,cA
U
G)

which is compatible with the natural morphism

RΓXUG ,cA
U
G → RΓXUGA

U
G.

To do this, let us write jG : XG → XG for the natural open immersion and jUG : XU
G → X

U

G for the
corresponding open immersion at finite level. We can take RΓXUG ,cA

U
G = RΓ

X
U
G
jUG,!A

U
G. It now suffices to

observe that jG induces a functor jG,! : ShG∞(XG)→ ShG∞(XG) and that there is a canonical isomorphism

RΓ∼URΓXG
jG,!AG

∼= RΓ
X
U
G
jUG,!A

U
G;

this follows easily from the observation that U acts freely on XG, as in Corollary 3.3. The Hecke actions we
have defined are related by Verdier duality as follows.

Proposition 3.7. Let R be a Noetherian ring and let A ∈ Mod(US , R) be finite free as R-module; let
B = HomR(A,R).

1. There is a natural Verdier duality isomorphism in D(R):

RHomR(RΓXUG ,cA
U
G, R) ∼= RΓXUGB

U
G. (3.1)

2. Let S be a Noetherian R-algebra and let AS = A ⊗R S, BS = B ⊗R S. Then there are natural
isomorphisms

RΓXUG ,cAS
U
G
∼= (RΓXUG ,cA

U
G)⊗L

R S

and
RΓXUGBS

U
G
∼= (RΓXUGB

U
G)⊗L

R S.

3. For g ∈ GS, the Verdier duality isomorphism (3.1) identifies the transpose of the operator [Ug−1U ] on
the left hand side with the operator [UgU ] on the right hand side.

Proof. The first part follows from the usual Verdier duality isomorphism [Ver95]. We have used the fact
that the derived sheaf Hom RHomR in Sh(XU

G , R) satisfies RHomR(AUG, R) = BUG . The second part follows
as in [Del77, Chapitre 2, 4.12]; note that the functors ΓXUG and ΓXUG ,c have finite cohomological dimension

([KS94, Proposition 3.2.3]). The third part follows from the explicit formula of Lemma 2.19 and its analogue
for cohomology with compact support and the functoriality of Verdier duality.

Now suppose that G is reductive and that P is a maximal proper parabolic subgroup of G. Then
e(P ) ⊂ ∂XG is an open submanifold, and we write jP : XP → ∂XG for the induced P∞-equivariant open
immersion. This leads to an exact functor jP,! : ShPS×UP,S (XP )→ ShPS×UP,S (∂XG). By passage to quotient,

we obtain an open immersion jUP : XUP
P → ∂X

U

G.

Proposition 3.8. Let G be a reductive group and let P ⊂ G be a maximal proper parabolic subgroup. Let
U ∈ JG,US and let B be a Z[US ]-module. We consider B also as a UP,S-module by restriction.

1. We have a canonical isomorphism

RΓ∼UPRΓ∂XGjP,!BP
∼= RΓ

X
UP
P ,c

BP .
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2. There are natural morphisms

p : RΓ∼UPRΓ∂XGjP,!BP → RΓ∼URΓ∂XGBG

in D(Z) and
q : RΓURΓ∂XGBG → r∗PRΓUPRΓXPBP

in D(H(GS , US)). The morphism q∼p in HomD(Z)(RΓ
X
UP
P ,c

BUPP , RΓ
X
UP
P

BUPP ) is the canonical one

(arising from the ‘forget supports’ map RΓc → RΓ), and we obtain a commutative diagram of Z-
modules:

H(GS , US)

rP

��

TG // EndD(Z)(RΓ
∂X

U
G
BUG)

t 7→q∼tp
��

H(PS , USP )
TP

// HomD(Z)(RΓ
X
UP
P ,c

BUPP , RΓ
X
UP
P

BUPP ).

Proof. For the first part, it is enough to note that there is a canonical isomorphism

RΓ∼UPRΓ∂XGjP,!BP
∼= RΓ

∂X
U
G
jUP,!BP ,

because U acts freely on ∂XG. The isomorphism with RΓ
X
UP
P ,c

BP then follows from the fact that jUP,! takes

injectives to soft sheaves, which are Γc-acyclic, see [Ive86, Proposition III.7.2].
We now construct the morphisms p and q. First, p is the morphism

RΓ
∂X

U
G
jUP,!j

U,∗
P BG → RΓ

∂X
U
G
BG

which arises from the natural map jUP,!j
U,∗
P BUG → BUG (note that j∗PBG = BP ). Next, q is obtained by applying

Corollary 2.5 to the morphism ResG
S×US

PS×UP,S RΓ∂XGBG → RΓXPBP induced by pullback. To complete the

proof of the proposition, it remains to check that q∼p is the morphism induced by the natural ‘forget supports’
transformation RΓc → RΓ. However, it follows from the definitions that q∼p is equal to the composite

RΓ
X
UP
P ,c

BP
∼= RΓ

∂X
U
G
jUP,!BP → RΓ

∂X
U
G
BG → RΓ

X
UP
P

BP ,

which the map in the middle is induced by jUP,!j
U,∗
P BG → BG and the last by pullback. This is the correct

thing.

Corollary 3.9. Let notation and assumptions be as in Proposition 3.8. Fix a Levi decomposition P = MnN
and suppose that UP = UM · UN is decomposed. Let B be a Z[US ]-module equipped with a decomposition
ResUSUM,S B = A⊕K, where A ⊂ BUN,S . Then there exists a commutative diagram:

H(GS , US)
TG //

rP

��

EndD(Z)(RΓ
∂X

U
G
BUG)

��
H(PS , USP )

TP //

rM

��

HomD(Z)(RΓ
X
UP
P ,c

BUPP , RΓ
X
UP
P

BUPP )

��
H(MS , USM )

TM // HomD(Z)(RΓ
X
UM
M ,c

AUMM , RΓ
X
UM
M

AUMM )

Proof. This follows immediately by combining Corollary 3.6 and Proposition 3.8.
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An important fact is that the boundary ∂XG admits a G∞-invariant stratification, with strata
indexed by conjugacy classes of rational parabolic subgroups of G. More precisely, let P be a rational
parabolic subgroup of G. Then there is a G∞-equivariant isomorphism

IndG
∞

P∞ XP ∼= P (F )\ [G(A∞F )× e(P )] ,

and the induced map IndG
∞

P∞ XP → ∂XG is aG∞-equivariant locally closed immersion. (We define IndG
∞

P∞ XP =
G∞ ×P∞ XP .) We then have the following lemma.

Lemma 3.10. Let P1, . . . Ps be representatives of the distinct G(F )-conjugacy classes of proper rational
parabolic subgroups of G. Then:

1. The natural maps jPi : IndG
∞

P∞i
XPi → ∂XG are locally closed immersions, and the induced map∐

i IndG
∞

P∞i
XPi → ∂XG is a continuous bijection.

2. For each U ∈ JG, the quotient maps jUPi : (IndG
∞

P∞i
XPi)/U → ∂X

U

G are locally closed immersions, and

the induced map
∐
i[IndG

∞

P∞i
XPi ]/U → ∂X

U

G is a continuous bijection.

Proof. The second part follows from the first. For the first, we need to show this map is bijective. We simply
calculate

∂XG = G(F )\[G∞ × ∂XG] =
∐
i

∐
P ′∼Pi

G(F )\[G∞ × e(P ′)],

where the second disjoint union is over rational parabolics P ′ which are G(F )-conjugate to Pi. Since a
parabolic subgroup is its own normalizer, this becomes∐

i

Pi(F )\[G∞ × e(P )] =
∐
i

IndG
∞

P∞i
XPi ,

as desired.

3.2 Derived Hecke algebras and the idempotents associated to maximal ideals

We now introduce some more ‘automorphic’ notation. Let F be a number field, and G a connected reductive
group over F . Fix a prime p and a choice of finite extension E/Qp with ring of integers O, uniformizer π,
and residue field k = O/(π). Let S be a finite set of finite places of F , containing the p-adic places. Let G
be an integral model of the group G such that GOF,S is reductive, and let US =

∏
v 6∈S G(OF ).

We write TS = H(GS , US)⊗Z O; then TS is a commutative O-algebra, because US is a product of
hyperspecial maximal compact subgroups. When we wish to emphasize the ambient group G, we will write
TS = TSG. If C• is a perfect complex of O-modules (which in this context just means that H∗(C•) is a finite
O-module) equipped with a homomorphism TS → EndD(O)(C

•) of O-algebras, then we will write TS(C•)
for the quotient of TS which injects into EndD(O)(C

•). Thus TS(C•) is a commutative finite O-algebra,
equipped with a surjective map

TS(C•)→ TS(H∗(C•))

which has nilpotent kernel (because C• is perfect).
Being a finite O-algebra, we can decompose TS(C•) as a product TS(C•) =

∏
m TS(C•)m over the

finitely many maximal ideals m ⊂ TS(C•). For each such maximal ideal there is a corresponding idempotent
em ∈ TS(C•) ⊂ EndD(O)(C

•), which is the projector onto the factor TS(C•)m. The derived category D(O)
is idempotent complete, so we deduce the existence of a direct sum decomposition C• = C•m ⊕D• in D(O).
The summand C•m is defined uniquely up to unique isomorphism in D(O), and the composite map

TS(C•)m → TS(C•m)

is an isomorphism. Similarly, there is a canonical identification H∗(C•)m ∼= H∗(C•m). (For a similar but
more detailed discussion, see [KT, §2.4].)
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Fix U ∈ JG,US , and let A be an O[US ]-module, finite over O. Then RΓXUGA
U
G is a perfect complex

of O-modules, equipped with a canonical homomorphism

TS → EndD(O)(RΓXUGA
U
G).

The algebras TS(RΓXUGA
U
G) are the derived Hecke algebras referred to in the introduction of this paper.

In the forthcoming sections, we will use the decomposition of the complex RΓXUGA
U
G according to maximal

ideals of this algebra in order to study their associated Galois representations.
The following results will be useful later.

Lemma 3.11. Let M and N be perfect complexes of O-modules. Then the natural map

HomD(O)(M,N)→ lim←−
r

HomD(O/πrO)(M ⊗L
O O/πrO, N ⊗L

O O/πrO)

is an isomorphism.

Proof. For r = ∞ (resp. r ∈ N) let Kr denote the category with objects bounded complexes of finite
projective O-modules (resp. O/πrO-modules) and morphisms given by morphisms of complexes modulo
homotopy. The obvious functors K∞ → D(O), Kr → D(O/πrO) are fully faithful, so it suffices to prove
that the natural map

HomK∞(M,N)→ lim←−
r

HomKr
(M ⊗L

O O/πrO, N ⊗L
O O/πrO)

is an isomorphism for all M,N ∈ K∞. This is the content of [KT, Lemma 2.13, (iii)].

Lemma 3.12. Let M be a perfect complex of O-modules endowed with a homomorphism TSG → EndD(O)(M).

Let T∞ = TSG(M), and for each N ≥ 1, let TN = TSG(ML⊗OO/(πN )). Then the natural map T∞ → lim←−
N

TN

is an isomorphism.

Proof. The map is injective, by Lemma 3.11. It is surjective because each map T∞ → TN and TN+1 → TN
is surjective, and T∞ is compact. It is therefore an isomorphism.

Lemma 3.13. If C is a triangulated category, A → B → C → A[1] is an exact triangle in C, and
s, t : B → B are morphisms making the diagram

A //

0

��

B

s

��

// C

0

��

// A[1]

0

��
A // B // C // A[1]

(and its analogue with s replaced by t) commute, then st = ts = 0 in EndC(B).

Proof. The proof is an easy diagram chase (apply the functor Hom(B,−)).

4 The boundary cohomology of the GLn locally symmetric space

We fix throughout this section a base number field F , a prime p, and an integer n ≥ 1. Let G = GLn,F . We
fix as well a finite set S of finite places of F , containing the p-adic places, and set US =

∏
v/∈S GLn(OFv ) ⊂

G(A∞,SF ). Finally, we fix a finite extension E/Qp, and let O denote the ring of integers of E, π ∈ E a
choice of uniformizer, and k = O/(π) the residue field. We write GF,S for the Galois group of the maximal
extension of F which is unramified outside S.
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If m ≥ 1 is an integer, then the Hecke algebra TSGLm
= H(GLm(ASF ),

∏
v 6∈S GLm(OFv )) ⊗Z O is a

commutative O-algebra, generated by the elements T iv, i = 1, . . . ,m, v 6∈ S, where

T iv =

GLm(OFv ) diag($v, . . . , $v︸ ︷︷ ︸
i

, 1, . . . , 1︸ ︷︷ ︸
m−i

) GLm(OFv )

 ,
together with (Tmv )−1. We will say that a perfect complex C• of O-modules equipped with a map TSGLm

→
EndD(O)(C

•) is of S-Galois type if for each maximal ideal m ⊂ TSGLm
(C•), there exists a continuous semi-

simple representation ρm : GF,S → GLm(TS(C•)/m) such that for every finite place v 6∈ S of F , ρm(Frobv)
has characteristic polynomial

Xn − T 1
vX

n−1 + · · ·+ (−1)jqj(j−1)/2
v T jvX

n−j + · · ·+ (−1)nqn(n−1)/2
v Tnv ∈ (TS(C•)/m)[X]. (4.1)

If C• is of S-Galois type and a representation ρm is absolutely reducible, then we say that the maximal ideal
m is Eisenstein. If C• is of S-Galois type and every maximal ideal m ⊂ TSGLm

(C•) is Eisenstein, we say that
the complex C• itself is Eisenstein. Note that these conditions hold for a given complex C• if and only if
they hold for the cohomology H∗(C•).

We now suppose for the rest of §4 that the following hypothesis holds:

• For every integer 1 ≤ m ≤ n and for every U ∈ JGLm,F ,
∏
v 6∈S GLm(OFv ), the complex RΓXUGLm,F

k is of

S-Galois type.

If F is an imaginary CM or totally real field, then this hypothesis is true, by Corollary 1.2.

Lemma 4.1. This hypothesis is equivalent to: for every integer 1 ≤ m ≤ n and for every open compact
subgroup U ∈ JGLm,F ,

∏
v 6∈S GLm(OFv ), the complex RΓXUGLm,F

,ck is of S-Galois type.

Proof. We show that our hypothesis implies the given condition on the cohomology with compact support;
the other direction is similar. We can assume that m = n. All maximal ideals occur in the support of
cohomology groups. By Proposition 3.7, there is a perfect Poincaré duality pairing of finite-dimensional
k-vector spaces

〈·, ·〉U : H∗c (XU
G , k)×H∗(XU

G , k)→ k

satisfying the equation 〈x, [UgU ]y〉U = 〈[Ug−1U ]x, y〉U for any g ∈ GS . For unramified Hecke operators T iv,
v 6∈ S, this implies that the action of T iv on H∗(XU

G , k) is dual to the action of Tm−iv (Tmv )−1 on H∗c (XU
G , k).

We must therefore show that for any maximal ideal m of TSG in the support of H∗(XU
G , k), there exists a

continuous semi-simple representation σm : GF,S → GLm(TS(H∗(XU
G , k))/m) such that for each finite place

v 6∈ S of F , σm(Frobv) has characteristic polynomial

Xm − Tm−1
v (Tmv )−1Xm−1 + · · ·+ (−1)jqj(j−1)/2

v Tm−jv (Tmv )−1Xm−j + · · ·+ (−1)mqm(m−1)/2
v (Tmv )−1.

A calculation shows that we can take σm
∼= ρ∨m ⊗ ε1−m.

Subject to this hypothesis, we will prove the following theorem:

Theorem 4.2. For every U ∈ JG,US and for every smooth O[US ]-module A, finite as O-module, the complex

RΓ
∂X

U
G

(AUG) is Eisenstein. In particular, for every non-Eisenstein maximal ideal m ⊂ TS(RΓXUGA
U
G), the

natural morphism
(RΓXUG ,cA

U
G)m → (RΓXUGA

U
G)m

in D(O) is a quasi-isomorphism.

The proof of Theorem 4.2 will be an exercise in understanding the structure of the Borel–Serre
boundary. We begin with some preliminary reductions.
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Lemma 4.3. To prove Theorem 4.2, it is enough to treat the case where A = k is the trivial k[US ]-module.

Proof. Since A is a finite O-module, we can find a normal subgroup U ′ ⊂ U such that U ′ ∈ JG,US and

U ′S acts trivially on A. We will show that SuppTS RΓXUGA
U
G ⊂ SuppTS RΓXU′G

k. There is a TSG-equivariant

spectral sequence

Ei,j2 = Hi(U/U ′, Hj(XU ′

G , AU
′

G ))⇒ Hi+j(XU
G , A

U
G),

which shows that SuppTS RΓXUGA
U
G ⊂ SuppTS RΓXU′G

AU
′

G . But AU
′

G is the constant sheaf associated to a

finite O-module, and the result follows by the theorem on universal coefficients.

Lemma 4.4. To prove Theorem 4.2, it is enough to show that for each proper standard parabolic subgroup
P ⊂ G, the complex RΓ[IndG

∞
P∞ XP ]/Uk is Eisenstein.

Proof. By Poincaré duality (i.e. by the same argument as in the proof of Lemma 4.1), the vanishing of
RΓ[IndG

∞
P∞ XP ]/Uk at non-Eisenstein maximal ideals implies that of the compactly supported cohomology

RΓ[IndG
∞

P∞ XP ]/U,ck. By Lemma 3.10 and the long exact sequence in cohomology with compact supports

associated to the inclusion of an open subspace, we deduce the corresponding result for the full boundary

∂X
U

G.

Let us therefore fix a proper partition n = n1 + · · · + ns, and let P ⊂ G the corresponding stan-
dard parabolic subgroup, M ∼= GLn1 × · · · × GLns its standard Levi subgroup. We will now show that
RΓ[IndG

∞
P∞ XP ]/Uk is Eisenstein. Since every rational proper parabolic subgroup of G is conjugate to one of

this form, this will complete the proof of Theorem 4.2.
We have an isomorphism in D(H(GS , US)):

RΓU ResG
∞

GS×US RΓIndG
∞

P∞ XP
k ∼= RΓUSH

0(P (F )\G∞/US , k)

∼= RΓUS IndG
S

PS H
0(P (F )\PS ×GS/US , k).

(4.2)

The first isomorphism in (4.2) follows from Proposition 2.20, the quasi-isomorphism

RΓXP k
∼= H0(XP , k) = H0(P (F )\P∞, k)

in D(P∞), and the fact that the representation

IndG
∞

P∞ H
0(P (F )\P∞, k) ∼= H0(P (F )\G∞, k)

is US-acyclic. The second isomorphism follows directly from the definition of induction. By Corollary 2.6,
the complex in (4.2) is quasi-isomorphic with⊕

g∈P (F )\GS/US

r∗PRΓUSP IndP
S

P (F )∩gUSg−1 k

∼=
⊕

g∈P (F )\GS/US

r∗PRΓUSP×(PS∩gUSg−1) ResP
∞

PS×(PS∩gUSg−1)RΓXP k.
(4.3)

(The index set is finite by weak approximation for P . We can apply Corollary 2.6 because our assump-
tions imply that PSUSP = GS .) By varying US , we can therefore reduce to showing that the complex

r∗PRΓUP ResP
∞

PS×UP,S RΓXP k is Eisenstein. To show this, we write π : XP → XM for the canonical projection

and observe that there is a quasi-isomorphism in Mod(H(PS , USP )):

RΓUPRΓResP
∞

PS×UP,S
XP
k ∼= RΓUSP×UM,SRΓ

Inf
PS×UM,S
MS×UM,S

XM
Rπ

UN,S
∗ k. (4.4)

The sheaf π∗k ∈ ShPS×UP,S XM is constant on connected components, with stalk at a point [(p, x)] ∈ XM
given by the formula

(π∗k)[p,x] = H0(P (F )\P (F )pN(A∞F ), k) ∼= IndN
∞

N(F ) k, γpn 7→ pnp−1. (4.5)
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By strong approximation, there is an isomorphism of Z[UN ]-modules, where Γ1,UN = N(F ) ∩ UN as usual:

IndN
∞

N(F ) k
∼= IndUNΓ1,UN

k.

Since UN,S acts freely on the set Γ1,UN \UN , IndUNΓ1,UN
k is an injective Z[UN,S ]-module, and the natural

map π
UN,S
∗ k → Rπ

UN,S
∗ in D(ShPS×UM,S XM ) is a quasi-isomorphism. We deduce the existence of a quasi-

isomorphism

RΓUPRΓResP
∞

PS×UP,S
XP
k ∼= RΓUSP×UM,SRΓ

Inf
PS×UM,S
MS×UM,S

XM
π
UN,S
∗ k. (4.6)

We now construct a morphism k → π∗k in ShPS×UP,S XM . Since the constant sheaf k is pulled back from a

point, it is equivalent to give a PS × UP,S-equivariant map

k → H0(XM , π∗k) = H0(P (F )\P∞, k),

which we take to be the inclusion of the constant functions. Taking derived UN,S-invariants, we obtain a

natural map R1
UN,S
∗ k → Rπ

UN,S
∗ k ∼= π

UN,S
∗ k, hence a map

RΓUSP×UM,SRΓ
Inf

PS×UM,S
MS×UM,S

XM
R1

UN,S
∗ k → RΓUSP×UM,SRΓ

Inf
PS×UM,S
MS×UM,S

XM
π
UN,S
∗ k ∼= RΓUPRΓResP

∞
PS×UP,S

XP
k,

(4.7)
the last isomorphism by (4.6). We claim that this is a quasi-isomorphism of complexes of H(PS , USP )-
modules. It suffices to check this after applying forgetful functors, which reduces us to showing that the
natural map

R1
USN
∗ R1

UN,S
∗ k ∼= R1UN∗ k → R1

UN,S
∗ π

UN,S
∗ k = RπUN∗ k

is a quasi-isomorphism. After taking cohomology and looking at stalks, we must show that the maps

Hi(UN , k)→ Hi(UN , IndUNΓ1,UN
k) ∼= Hi(Γ1,UN , k)

are isomorphisms. This is part of the following lemma.

Lemma 4.5. Let Γ1,UN,S = N(F ) ∩ UN,S (intersection inside NS). Then the natural maps in (discrete)
group cohomology

H∗(UN,S , k)→ H∗(Γ1,UN,S , k)→ H∗(Γ1,UN , k)

are all isomorphisms, while Hi(USN , k) = 0 for i > 0.

Proof. Let Sp ⊂ S denote the set of places dividing p. Nilpotent groups have the congruence subgroup
property, so the natural map Γ1,UN → UN,Sp identifies UN,Sp with the p-profinite completion of Γ1,UN , and
hence ([BK72, Ch. VI, 5.6]) the natural map H∗(UN,Sp ,Fp)→ H∗(Γ1,UN ,Fp) is an isomorphism. Let T be
the set of places of S which are prime to p. Then the group UN,T is uniquely p-divisible, hence is Z[1/p]-
complete in the terminology of op. cit., hence satisfiesHi(UN,T ,Z) = Hi(UN,T ,Z[1/p]) andHi(UN,T ,Fp) = 0
for i > 0, by [BK72, Ch. V, 3.3]. The Künneth theorem in group cohomology then implies that the natural
map

H∗(UN,S ,Fp)→ H∗(Γ1,UN ,Fp)

is an isomorphism. Essentially the same argument shows that the same holds when Γ1,UN is replaced by
Γ1,UN,S : the group USN is again uniquely p-divisible and nilpotent, so another application of [BK72, Ch. V,
3.3] shows that it has trivial Fp-cohomology.

Let us now take stock. We have shown that there is a quasi-isomorphism

RΓUPRΓResP
∞

PS×UP,S
XP
k ∼= RΓUSP×UM,SRΓ

Inf
PS×UM,S
MS×UM,S

XM
R1

UN,S
∗ k
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of complexes of H(PS , USP )-modules, and we wish to show that these complexes become Eisenstein after
applying the exact functor r∗P . It is enough to show that for each i ≥ 0, the complex

r∗PRΓUSP×UM,SRΓ
Inf

PS×UM,S
MS×UM,S

XM
Ri1

UN,S
∗ k

is Eisenstein. The sheaf Ri1
UN,S
∗ k ∈ ShPS×UM,S XM can be calculated explicitly as follows: it is pulled back

from the sheaf on a point associated to the k[UM,S ]-module A = Hi(UN,S , k). In the remainder of this
section, we will show that there is a quasi-isomorphism

RΓUSP×UM,SRΓ
Inf

PS×UM,S
MS×UM,S

XM
Ri1

UN,S
∗ k ∼= r∗MRΓUMRΓXMAM

of complexes of H(PS , USP )-modules, and that these last complexes become Eisenstein after applying the
exact functor r∗P . This will complete the proof of Theorem 4.2.

There is a natural morphism

r∗MRΓUMRΓXMAM → RΓUP×UM,SRΓ
Inf

PS×UM,S
MS×UM,S

XM
AM ,

by Corollary 2.8. It is a quasi-isomorphism; indeed, we can check this after applying the exact forgetful
functor (·)∼, which reduces us to showing that the natural map

AM → R1
USN
∗ Inf

USP×UM,S
USM×UM,S

AM

of complexes of sheaves in D(ShMS×UM,S XM ) is a quasi-isomorphism. This can be checked on stalk coho-

mology, where it reduces to the assertion that Hi(USN , k) = 0 if i > 0, which is part of Lemma 4.5.
We now show that the complex

r∗P r
∗
MRΓUMRΓXMAM = S∗RΓUMRΓXMAM

is Eisenstein. After possibly shrinking U , we can assume that the action of UM,S on Hi(UN,S , k) induced
by conjugation is trivial, implying that the sheaf AM is in fact constant on XM . This reduces us to showing
that the complex

r∗P r
∗
MRΓUMRΓXMk

is Eisenstein. After further shrinking U , we can assume that UM = U1 × · · · × Us for neat open compact
subgroups Ui ⊂ GLni(A∞F ). In this case, we have a commutative diagram

H(GS ,
∏
v 6∈S GLn(OFv )) // H(MS ,

∏
v 6∈S

∏s
i=1 GLni(OFv )) //

��

Endk(H∗(XUM
M , k))

��
⊗si=1H(GLSni ,

∏
v 6∈S GLni(OFv )) // Endk(⊗si=1H

∗(XUi
GLni

, k)).

We now use the following lemma:

Lemma 4.6. For each place v 6∈ S of F , there is a commutative diagram

H(GLn(Fv),GLn(OFv )) //

��

R[Y ±1
1 , . . . , Y ±1

n ]Sn

��
⊗si=1H(GLni(Fv),GLni(OFv )) // ⊗si=1R[Z±1

i,1 , . . . , Z
±1
i,ni

]Sni .

The horizontal arrows are induced by the usual (normalized) Satake isomorphisms. The left vertical arrow
is the unnormalized Satake transform Sv = rM ◦ rP . The right hand arrow is defined by the bijective
correspondence for each i = 1, . . . , s:

{Yn1+···+ni−1+1, . . . , Yn1+···+ni} ↔ q(ni+1+···+ns)−(n1+···+ni−1)
v {Zi,1, . . . , Zi,ni}.
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Proof. The proof is very similar to the proof of Proposition-Definition 5.3 below, and is therefore omitted.

We can now complete the proof of Theorem 4.2. If m is a maximal ideal of TSM in the support of
H∗(XUM

M , k) with residue field k (which we can always assume after possibly enlarging the field of scalars),
then we can find for each i = 1, . . . , s a maximal ideal mi of TSGLni

with residue field k and appearing in the

support of H∗(XUi
GLni

, k) such that m is the product of m1, . . . ,ms, in the obvious sense.

By assumption, then, we can find for each i = 1, . . . , s a semi-simple Galois representation

ρmi : GF,S → GLni(TSGLni
/mi)

such that for each finite place v 6∈ S of F , ρmi(Frobv) has characteristic polynomial

Xni − T 1
vX

ni−1 + · · ·+ (−1)niqni(ni−1)/2
v Tniv ∈ (TSGLni

/mi)[X]

If S∗(m) denotes the pullback of m to TSG, we see that S∗(m) is in the support of H∗(XUM
M , k) as TSG-module,

and (using Lemma 4.6 and the fact that the normalized Satake isomorphism for GLn is characterized by
the formula T iv 7→ qi(n−i)/2ei(Y1, . . . , Yn), where ei denotes the ith symmetric polynomial) that the Galois
representation

ρS∗(m) =

s⊕
i=1

ρmi ⊗ ε
−(ni+1+···+ns)

satisfies the desired relation (4.1). We observe that this Galois representation is reducible, by construction.
Since every maximal ideal of TSG which is in the support of H∗(XUM

M , k) is of the form S∗(m) for some

m ⊂ TSM , this shows that S∗H∗(XUM
M , k) is Eisenstein, as desired.

5 The boundary cohomology of the U(n, n) locally symmetric space

In this section, we will prove the main theorems of this paper.

5.1 Groups and local systems

Let F be an imaginary CM number field with totally real subfield F+, and let c ∈ Gal(F/F+) denote
complex conjugation. Let d = [F+ : Q], and let n ≥ 2 be an integer. Let Ψn denote the n× n matrix with
1’s on the anti-diagonal and 0’s elsewhere, and

Jn =

(
0 Ψn

−Ψn 0

)
.

Then Jn defines a perfect Hermitian pairing 〈·, ·〉 : O2n
F ×O2n

F → OF , given by the formula 〈x, y〉 = txJny
c.

We write G for the group over OF+ given by the formula for any OF+ -algebra R:

G(R) = {g ∈ GL2n(OF ⊗OF+ R) | tgJngc = Jn}.

We write P ⊂ G for the closed subgroup which leaves invariant the subspace OnF ⊕ 0n ⊂ O2n
F , and M ⊂ P

for the closed subgroup which leaves invariant the direct factors OnF ⊕ 0n and 0n ⊕ OnF . We write T ⊂ G
for the standard diagonal torus and B ⊂ G for the standard upper-triangular subgroup. We write S ⊂ T
for the subtorus consisting of matrices with elements in OF+ . We will denote base change to the F -fibre of
these groups by omitting the underline.

Thus P is a parabolic subgroup of G, and M is the unique Levi subgroup of P containing T . The
torus S is a maximal F+-split torus of G, T = ZG(S), and G = U(n, n) is quasi-split. We have the equalities

dimRXG = 2dn2, dimRXP = 2dn2 − 1, dimRXM = dn2 − 1.

We set D = dn2.
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Lemma 5.1. Let notation be as above.

1. If v is a place of F+ which is unramified in F , then GO
F

+
v

is reductive, and hence GF+
v

is unramified.

2. Let N ⊂ P denote the closed subgroup which acts trivially on the factors OnF ⊕ 0n and 0n ⊕OnF . Then
P ∼= M nN . There is an isomorphism M ∼= ResOFOF+

GLn.

Proof. The first part follows easily from the definitions; indeed, one can check that if w is a place of F
lying above F+, then GOFw is isomorphic to GL2n. For the second part, we make things explicit. Let (·)∗

denote the anti-involution of ResOFOF+
GLn given by A∗ = Ψn

tAcΨ−1
n . (Explicitly, A∗ is given by reflection

in the anti-diagonal of A and conjugation of coefficients.) Then P can be identified with the subgroup of
ResOFOF+

GL2n consisting of matrices of the form

g =

(
D−∗ B

0 D

)
,

with B = B∗ and no condition on D. The subgroup N ⊂ P is given by the condition D = 1, and the subgroup
M by the condition B = 0. It is easy to see that the natural map M × N → P given by multiplication of
components is an isomorphism. We identify M with ResOFOF+

GLn via the map g 7→ D.

For each place v of F+ which is unramified in F , the group Uv = G(OF+
v

) ⊂ G(F+
v ) is a hyperspecial

maximal compact subgroup. Moreover, the subgroups M and P = M nN satisfy the conditions of Lemma
2.4 and Lemma 2.7 with respect to Uv, and UM,v = M(OF+

v
) = GLn(OF ⊗OF+ OF+

v
). We thus have the

map
Sv = rMv ◦ rPv : H(G(F+

v ), Uv)→ H(M(F+
v ), UM,v).

In our situation, it can be given explicitly as in the following two propositions.

Proposition-Definition 5.2. Let v be a place of F+ which is unramified in F , and let w be a place of F
dividing v.

1. Suppose that v splits in F . Then G(F+
v ) ∼= GL2n(Fw), and the Satake isomorphism gives a canonical

isomorphism
H(G(F+

v ), Uv)⊗Z R ∼= R[Y ±1
1 , . . . , Y ±1

2n ]S2n .

For each i = 1, . . . , 2n, we write TG,w,i for the element of H(G(F+
v ), Uv)⊗Z Z[q−1

v ] which corresponds

under the Satake transform to the element q
i(2n−i)/2
w ei(Y1, . . . , Y2n).

2. Suppose that v is inert in F . The Satake isomorphism gives a canonical isomorphism

H(G(F+
v ), Uv)⊗Z R ∼= R[X±1

1 , . . . , X±1
n ]Snn(Z/2Z)n .

The unramified endoscopic transfer from G(F+
v ) to GL2n(Fw) is dual to the map

R[Y ±1
1 , . . . , Y ±1

2n ]S2n → R[X±1
1 , . . . , X±1

n ]Snn(Z/2Z)n

which puts the set {Y1, . . . , Y2n} in bijection with {X±1
1 , . . . , X±1

n }. For each i = 1, . . . , 2n, we write
TG,w,i for the element of H(G(F+

v ), Uv)⊗ZZ[q−1
v ] which corresponds under the Satake transform to the

image of q
i(2n−i)/2
w ei(Y1, . . . , Y2n).

Proof. For concreteness, we recall the definition of the normalized Satake isomorphism. We temporarily let
notation be as at the beginning of §2.2.6. Thus F is a finite extension of Qp, G is a reductive group over OF ,
S is a maximal OF -split torus of G, T is the maximal torus which centralizes S, and B is a Borel subgroup
containing T . Let N ⊂ B denote the unipotent radical. The Satake isomorphism is then the isomorphism
([Car79, p. 147]):

N : H(G(F ), G(OF ))⊗Z R→ H(T (F ), T (OF ))W (G,T ) ⊗Z R
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given by the formula f 7→ (t 7→ δB(t)1/2
∫
n∈N(F )

f(tn)dn). (We use the notation N to emphasize that

this is the ‘normalized’ Satake isomorphism, in contrast to the ‘unnormalized’ Satake transform S that we

hvae used elsewhere in this paper, in which the factor δ
1/2
B does not appear.) Here δB(t) is the character

δB : T (F ) → R>0 given by the formula δB(t) = |detF AdLieN (t)|F , where | · |F is the usual normalized
absolute value on F (satisfying the formula |$|F = (#kF )−1 = q−1 for $ ∈ OF a uniformizer).

It follows from the proof given in loc. cit. that N in fact defines an isomorphism

N : H(G(F ), G(OF ))⊗Z Z[q±
1
2 ] ∼= H(T (F ), T (OF ))W (G,T ) ⊗Z Z[q±

1
2 ].

If the character δB takes values in q2Z, then it even defines an isomorphism over Z[q−1]. More generally, if

ρG ∈ X∗(G) is a character such that t 7→ δB(t)1/2|ρG(t)|1/2F takes values in qZ, then we get an isomorphism

N ′ : H(G(F ), G(OF ))⊗Z Z[q−1]→ H(T (F ), T (OF ))W (G,T ) ⊗Z Z[q−1]

given by the formula N ′(f) = (t 7→ |ρG(t)|1/2F N (f)(t)).
We now return to the notation of the proposition. To complete the first part, we must check that

the element TG,w,i, which a priori lies in H(G(F+
v ), Uv) ⊗Z Z[q

± 1
2

v ], in fact lies in H(G(F+
v ), Uv) ⊗Z Z[q−1

v ].
We could use the stronger fact, used already in §4, that TG,w,i is actually equal to one of the canonical basis
elements of H(G(F+

v ), Uv). Alternatively, we can apply the above formalism with ρG = det2n−1. Then we
find that

N ′(TG,w,i) = |$i(2n−1)
w |Fwqi(2n−i)/2w ei(Y1, . . . , Y2n)

= q−i(i−1)/2
w ei(Y1, . . . , Y2n) ∈ H(T (F ), T (OF ))W (G,T ) ⊗Z Z[q−1

w ],

hence TG,w,i ∈ H(G(F+
v ), Uv)⊗Z Z[q−1

v ].
We now prove the second part of the proposition. By definition, the unramified endoscopic transfer

is the map on unramified Hecke algebras dual to the standard unramified base change map defined, for
example, in [Mı́n11, §4.1]. This is easily seen to correspond under the respective Satake isomorphisms to
the map appearing in the statement of the proposition above. To finish the proof, we must again show that

TG,w,i ∈ H(G(F+
v ), Uv)⊗Z Z[q−1

v ]. We observe that since qw = q2
v , the image of q

i(2n−i)/2
w ei(Y1, . . . , Y2n) lies

in H(T (F ), T (OF ))W (G,T )⊗ZZ[q−1
v ]. It is easy to check that for the unramified unitary group, the character

δB takes values in q2Z
v , and hence the normalized Satake isomorphism is itself defined over Z[q−1

v ]. These
facts together imply the result.

Proposition-Definition 5.3. Let v be a place of F+ which is unramified in F , and let w be a place of F
dividing v.

1. Suppose that v splits in F . The unnormalized Satake transform Sv corresponds under the Satake
isomorphism to the map

R[Y ±1
1 , . . . , Y ±1

2n ]S2n → R[W±1
1 , . . . ,W±1

n , Z±1
1 , . . . , Z±1

n ]Sn×Sn

which puts the set {Y1, . . . , Y2n} in bijection with {qn/2v Z−1
n , . . . , q

n/2
v Z−1

1 , q
−n/2
v W1, . . . , q

−n/2
v Wn}. For

each i = 1, . . . , n, let TM,w,i ∈ H(M(F+
v ), UM,v)⊗Z Z[q−1

v ] correspond to q
i(n−i)/2
w ei(W1, . . . ,Wn), and

let TM,wc,i ∈ H(M(F+
v ), UM,v) correspond to q

i(n−i)/2
w ei(Z1, . . . , Zn).

2. Suppose instead that v is inert in F . Then the unnormalized Satake transform Sv corresponds under
the Satake isomorphism to the map

R[X±1
1 , . . . , X±1

n ]Snn(Z/2Z)n → R[W±1
1 , . . . ,W±1

n ]Sn

which puts the set {X1, . . . , Xn} in bijection with the set {q−n/2w W1, . . . , q
−n/2
w Wn}. For each i =

1, . . . , n, we let TM,w,i ∈ H(M(F+
v ), UM,v)⊗Z Z[q−1

v ] correspond under the Satake isomorphism to the

element q
i(n−i)/2
w ei(W1, . . . ,Wn).
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Proof. In either case, we have a diagram

H(G(F+
v ), Uv)⊗Z R Sv //

NG **

H(M(F+
v ), UM,v)⊗Z R

NM
��

H(T (F+
v ), UT,v)⊗Z R,

where the maps NG, NM are the Satake isomorphisms defined in proof of Proposition-Definition 5.2. This
diagram commutes up to multiplication by the ratio of the modulus characters for G and M , by the transi-
tivity of the formation of constant terms. More precisely, let BM = B∩M . Then for any f ∈ H(G(F+

v ), Uv),
t ∈ T (F+

v ), we have the formula

(NMSvf)(t) = δBM (t)1/2δB(t)−1/2(NGf)(t).

A calculation now gives the claimed formulae for the Satake transform. To finish the proof of the proposition,
we must show the rationality of the element TM,w,i in each case. This step is essentially the same as in
Proposition-Definition 5.2, so we omit the details.

With the above definitions, if w is a finite place of F unramified over the place v of F+ then we
define a polynomial in H(G(F+

v ), Uv)[q
−1
v ][X]

PG,w(X) = X2n − TG,w,1X2n−1 + · · ·+ (−1)jqj(j−1)/2
w TG,w,jX

2n−j + · · ·+ qn(2n−1)
w TG,w,2n

and polynomials in H(M(F+
v ), Uv)[q

−1
v ][X]

PM,w(X) = Xn − TM,w,1X
n−1 + · · ·+ (−1)jqj(j−1)/2

w TM,w,jX
n−j + · · ·+ qn(n−1)/2

w TM,w,n

and
P∨M,w(X) = (−1)n(qn(n−1)/2

w TM,w,n)−1XnPw(X−1).

Then the relation SvPG,w(X) = PM,w(X)q
n(2n−1)
w P∨M,wc(q

1−2n
w X) holds inside H(M(F+

v ), Uv)[q
−1
v ][X].

Now let p be a prime, and let S be a finite set of finite places of F+, containing the p-adic places and
the places which are ramified in F . We assume that the primes of F+ above p are unramfied in F ; this implies
that the group GO

F
+
v

is reductive for each place v|p of F+, so we can use the construction in §2.2.7 to describe

families of local systems on the spaces XU
G . Let E be a finite extension of Qp which contains the image of

every embedding F ↪→ Qp, let O denote its ring of integers, π a choice of uniformizer, and k its residue

field. We now describe a parameterization of certain p-adic local systems on the spaces XU
G and XUM

M . For
convenience, we let Ip denote the set of embeddings τ : F+ ↪→ E, and choose for each τ ∈ Ip an embedding

τ̃ : F ↪→ E extending it. We let Ĩp denote the set of such embeddings. Let Tn ⊂ ResOFOF+
GLn = M denote

the standard diagonal maximal torus. The fixed Levi embedding M ↪→ G induces an isomorphism Tn
∼= T ,

and we will use this isomorphism to relate the parameterization of local systems on XU
G and XUM

M .
Fix a place v ∈ Sp, and let τ ∈ Ip be an embedding inducing v. Then the choice of τ̃ determines

canonical isomorphisms M ⊗F+,τ E ∼= GLn×GLn and Tn ⊗F+,τ E ∼= GLn1 ×GLn1 , hence X∗(Tn,E,τ ) ∼=
Zn × Zn. An element (λτ̃ , λτ̃c) ∈ Zn × Zn lies in the dominant subset X∗(Tn,E,τ )+ if and only if it satisfies
the conditions

λτ̃ ,1 ≥ λτ̃ ,2 ≥ · · · ≥ λτ̃ ,n
λτ̃c,1 ≥ λτ̃c,2 ≥ · · · ≥ λτ̃c,n,

i.e. if and only if it lies in the subset Zn+ × Zn+, where we define

Zn+ = {(x1, . . . , xn) ∈ Zn | x1 ≥ x2 ≥ · · · ≥ xn}.

In this case, we have associated to the pair (λτ̃ , λτ̃c) an O[M(OF+
v

)]-module A(M ;λτ̃ , λτ̃c), finite free as
O-module. Given a tuple

λ = (λτ̃ ) ∈ (Zn+)Hom(F,E) = (Zn+ × Zn+)Hom(F+,E),
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we define A(M,λ) = ⊗τ∈IpA(M ;λτ̃ , λτ̃c), the tensor product being taken over O. Then A(M ;λ) is an
O[M(OF+ ⊗Z Zp)]-module, finite free as O-module.

Now choose again a place v ∈ Sp, and let τ ∈ Ip be an embedding inducing v. Then the choice of
τ̃ induces canonical isomorphisms G ⊗F+,τ E ∼= GL2n and T ⊗F+,τ E ∼= GL2n

1 , hence X∗(TE,τ ) ∼= Z2n. An
element aτ ∈ X∗(TE,τ ) lies in the dominant subset X∗(TE,τ )+ if and only if it satisfies the conditions

aτ,1 ≥ aτ,2 ≥ · · · ≥ aτ,2n.

Under the isomorphism X∗(TE,τ ) ∼= X∗(Tn,E,τ ), we have

(λτ̃ ,1, . . . , λτ̃ ,n, λτ̃c,1, . . . , λτ̃c,n)↔ aτ = (−λτ̃c,n, . . . ,−λτ̃c,1, λτ̃ ,1, . . . , λτ̃ ,n). (5.1)

In particular, the subset X∗(TE,τ )+ ⊂ X∗(Tn,E,τ )+ is described by the single extra condition −λτ̃c,1 ≥ λτ̃ ,1.
We have associated to each aτ ∈ X∗(TE)+ an O[G(OF+

v
)]-module A(G; aτ ), finite free as O-module. Given

a tuple

a = (aτ ) ∈ (Z2n
+ )Hom(F+,E),

we define A(G; a) = ⊗τ∈IpA(G; aτ ), the tensor product being taken over O. Then A(G; a) is an O[G(OF+⊗Z
Zp)]-module, finite free as O-module, and we have the following lemma (cf. Corollary 2.11):

Lemma 5.4. Fix an element a ∈ (Z2n
+ )Hom(F+,E) corresponding to λ ∈ (Zn+)Hom(F,E) under (5.1). Let

U ∈ JG be such that Up = UM,p n UN,p is decomposed. Then there is a direct sum decomposition

Res
Up
UM,p

A(G; a) = A(M ;λ)⊕K

of O[UM,p]-modules, with A(M ;λ) ⊂ A(G; a)UN,p .

Let λ ∈ (Zn+)Hom(F,E). Although the weight λ may not be dominant for G, it becomes so after

twisting. More precisely, let 1 ∈ (Zn+)Hom(F,E) be the element with all entries equal to 1; it is the highest

weight of the determinant of the standard representation of ResFQ GLn,F . For any w ∈ Z, the weight λ+w ·1
is associated to the tensor product of A(M ;λ) with this determinant character, raised to the power w. For w

sufficiently negative (more precisely, for w ≤ − supτ∈Ip(λτ̃c,1 +λτ̃ ,1)/2), we have λ+w ·1 ∈ (Z2n
+ )Hom(F+,E).

In this connection, we have the following useful lemma.

Lemma 5.5. For any w ∈ Z and U ∈ JM , there is a canonical isomorphism in D(O):

RΓ(XU
M , A(M,λ + w · 1)

U

M
) ∼= RΓ(XU

M , A(M,λ)
U

M
).

This isomorphism intertwines the action of T iv on the left hand side and qwiv T iv on the right hand side.
Consequently, there is a canonical isomorphism

TSM (RΓ(XU
M , A(M ;λ + w · 1)

U

M
)) ∼= TSM (RΓ(XU

M , A(M ;λ)
U

M
))

which sends T iv to qwiv T iv.

Proof. There is an isomorphism

A(M ;λ)⊗O A(M ;w · 1) ∼= A(M ;λ + w · 1).

The wth power of the cyclotomic character defines a class in H0(XU
M , A(M ;w · 1)

U

M
). The isomorphism

in the lemma is defined by cup product with this class. The rest of the lemma follows easily from the
definitions.
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5.2 Application to Galois representations, I

We now prove our first main theorem about the existence of Galois representations. It will be convenient
to introduce some notation. Let S be a finite set of finite places of F , containing the p-adic places, and let
US ⊂

∏
v∈S G(OF+

v
) be an open compact subgroup. If N ≥ 1, a ∈ (Z2n

+ )Hom(F+,E) and U ∈ JG,US , then we
define ideals

JU,a,N = ker
(
TSG → EndD(O)(RΓXUGA(G; a)

U

G
⊗O O/(πN ))

)
and

JU,a,c,N = ker
(
TSG → EndD(O)(RΓXUG ,cA(G; a)

U

G
⊗O O/(πN ))

)
.

Thus we have, for example,

TSG/JU,a,N = TSG(RΓXUGA(G; a)
U

G
⊗O O/(πN )).

Our starting point will be the following result:

Theorem 5.6. Fix N ≥ 1. For each U ∈ JG,US , there exists an ideal JU,N ⊂ TSG satisfying the following
conditions:

1. There exists a continuous group determinant of dimension 2n

DG,U : GF,S → TSG/JU,N

such that for every finite place w 6∈ S of F , DG,U (Frobw) has characteristic polynomial PG,w(X).

2. For any a ∈ (Z2n
+ )Hom(F+,E), we have JU,N ⊂ JU,a,N and JU,N ⊂ JU,a,c,N .

Proof. We can find an open normal subgroup Vp ⊂ Up such that the action of Vp on A(G; a)/(πN ) is trivial

for all a ∈ (Z2n
+ )Hom(F+,E). Let V = UpVp. We define

JU,N = ker(TSG → EndD(U/V,O/(πN ))(RΓXVG ,cO/(π
N )).

The existence of DG,U thus follows from Theorem 5.14, to be proved in §5.4 below, and [Sch, Corollary
V.1.11]. There is a canonical isomorphism in D(O/(πN )):

RΓXUG ,c

(
A(G;λ)UG ⊗O O/(πN )

)
= RΓU/V

(
RΓXVG ,cO/(π

N )⊗L
O/(πN )[U/V ] A(G;λ)/(πN )

)
.

This implies the inclusion JU,N ⊂ JU,a,c,N . The inclusion JU,N ⊂ JU,a,N follows by Verdier duality, in the
guise of Proposition 3.7.

We use this to prove the following result.

Proposition 5.7. Let λ ∈ (Zn+)Hom(F,E), and let m ⊂ TSM (RΓ
X
UM
M

A(M ;λ)
UM

M
) be a non-Eisenstein maximal

ideal. Let N ≥ 1 be an integer. For every continuous character χ : GF,S → O× of finite odd order, prime to
p, there exists an ideal

IU,χ ⊂ TSM (RΓ
X
UM
M

A(M ;λ)
UM

M
⊗O O/(πN ))m

of square 0 and a continuous group determinant

DM,U,χ : GF,S → TSM (RΓ
X
UM
M

A(M ;λ)
UM

M
⊗O O/(πN ))m/IU,χ

of dimension 2n such that for every finite place w 6∈ S of F , DM,U,χ(Frobw) has characteristic polynomial

given by χ(Frobw)nPM,w(χ(Frobw)−1X)χ(Frobwc)
−nq

n(2n−1)
w P∨M,wc(q

1−2n
w χ(Frobwc)X).

44



Proof. By Lemma 5.5, we can and do replace λ by λ + w · 1, where

w = − sup
τ∈Ip
b(λτ,1 + λτc,1)/2c.

Then the weight a ∈ (Z2n
+ )Hom(F+,E) corresponding to λ is dominant, so the coefficient module A(G; a) is

defined. We first treat the case χ = 1. There is an exact triangle in D(O):

RΓXUG ,cA(G; a)
U

G
⊗O O/(πN ) //RΓXUGA(G; a)

U

G
⊗O O/(πN ) //RΓ

∂X
U
G
A(G; a)

U

G
⊗O O/(πN ).

Define
JU,a,∂,N = ker

(
TSG → EndD(O)(RΓ

∂X
U
G
A(G; a)

U

G
⊗O O/(πN ))

)
.

It follows from Lemma 3.13 that

J2
U,N ⊂ JU,a,N · JU,a,c,N ⊂ JU,a,∂,N .

By Theorem 5.6, we find that there exists a continuous group determinantDG,U,∂ : GF,S → TSG/(JU,a,∂,N , JU,N )
such for each finite place w 6∈ S of F , DG,U,∂(Frobw) has characteristic polynomial PG,w(X).

By Corollary 3.9 and Theorem 4.2, there is a commutative diagram

TSG //

��

EndD(O/(πN ))((RΓ
∂X

U
G
A(G; a)

U

G
⊗O O/(πN ))S∗(m))

��
TSM // EndD(O/(πN ))((RΓ

X
UM
M

A(M ;λ)
UM

M
⊗O O/(πN ))m),

and hence a canonical map

TSG(RΓ
∂X

U
G
A(G; a)

U

G
⊗O O/(πN ))S∗(m) → TSM (RΓ

X
UM
M

A(M ;λ)
UM

M
⊗O O/(πN ))m, (5.2)

which is induced by the unnormalized Satake transform. The proof of the proposition is completed in this
case on taking DM,U,1 to be the image of DG,∂,U under the map (5.2) and Iχ,U to be the image of the ideal
JU,N .

We now treat the case of an arbitrary character χ. We can find a normal subgroup VM ∈ JM,UM,S

of UM such that the index [UM : VM ] is prime to p and the character χ ◦ ArtF : A∞F → O× is trivial on
detVM . We can find V ∈ JG,US such that V ∩M∞ = VM (so the notation is consistent). In this case we can

find a class cχ ∈ H0(XVM
M ,O) on which GLn(A∞F ) acts by the character χ ◦ Art−1

F ◦ det and such that the

character cχ is not divisible by π in H0(XVM
M ,O). Pullback and cup product with the class cχ then defines

a map
Fχ : RΓ

X
UM
M

A(M ;λ)
UM

M
⊗O O/(πN )→ RΓ

X
VM
M

A(M ;λ)
VM

M
⊗O O/(πN )

which is an isomorphism onto a direct summand A• in D(O/(πN )) which is invariant under the action of
TSM . We obtain a commutative diagram

TSM

T iv 7→χ(Frobv)iT iv
∼=
��

// EndD(O/(πN ))(RΓ
X
UM
M

A(M ;λ)
UM

M
⊗O O/(πN ))

∼= Fχ(·)F−1
χ

��
TSM // EndD(O/(πN ))(A

•)

TSM

=

OO

// EndD(O/(πN ))(RΓ
X
VM
M

A(M ;λ)
VM

M
⊗O O/(πN )).

OO
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This diagram gives a morphism of Hecke algebras

fχ : TSM (RΓ
X
VM
M

A(M ;λ)
VM

M
⊗O O/(πN ))→ TSM (A•)→ TSM (RΓ

X
UM
M

A(M ;λ)
UM

M
⊗O O/(πN ))

which sends the operator T iv to χ(Frobv)
iT iv. The proof is completed in this case on taking the ideal IU,χ to

be the image under fχ of the ideal S(JV,N ) in TSM (RΓ
X
UM
M

A(M ;λ)
UM

M
⊗O O/(πN )), and DM,U,χ to be the

image under fχ of DM,V,1.

Using Proposition 5.7, we can prove our first main theorem.

Theorem 5.8. Let λ ∈ (Zn+)Hom(F,E), and let U ∈ JG,US . Let m ⊂ TSM (RΓ
X
UM
M

A(M ;λ)
UM

M
) be a non-

Eisenstein maximal ideal. Then there exists an ideal I ⊂ TSM (RΓ
X
UM
M

A(M ;λ)
UM

M
)m satisfying I4 = 0 and a

continuous representation

ρm : GF,S → GLn(TSM (RΓ
X
UM
M

A(M ;λ)
UM

M
)m/I)

such that for each place w 6∈ S of F , we have the equality

det(X · 1n − ρm(Frobw)) = PM,w(X)

inside (TSM (RΓ
X
UM
M

A(M ;λ)
UM

M
)m/I)[X].

Proof. Given Proposition 5.7, exactly the same ‘separation of parts’ argument as in [Sch, V.3] implies that
for each N ≥ 1, there is an ideal

IN ⊂ TSM (RΓ
X
UM
M

A(M ;λ)
UM

M
⊗O O/(πN ))m = TN ,

say, satisfying I4
N = 0, and a continuous group determinant DM,U,N : GF,S → TN/IN of dimension n and

with the expected characteristic polynomial. Let T∞ = TSM (RΓ
X
UM
M

A(M ;λ)
UM

M
)m. By Lemma 3.12, the

natural map T∞ → lim←−
N

TN is an isomorphism. Let I∞ = ∩NIN ; then we have I4
∞ = 0, and the group

determinants glue into a group determinant DM,∞ : GF,S → T∞/I∞.
In order to obtain a true representation ρm at the end, instead of just the group determinant DM,∞,

we recall that the deforming the determinant Dm = det(X · 1n − ρm) is equivalent to deforming ρm, because
of the assumption that the residual representation ρm is absolutely irreducible (see [Che, Theorem 2.22]).

To deduce Theorem 1.3 of the introduction from Theorem 5.8, we need only observe that for any
V ∈ JGLn,

∏
v 6∈S GLn(OFv ), we can find U ∈ JG,∏v 6∈S G(O

F
+
v

) such that UM = V .

5.3 Application to Galois representations, II

We now prove our second main theorem. We will make use of the following result of Lan–Suh ([LS13,
Theorem 10.1]). Let Up = G(OF+ ⊗Z Zp).

Theorem 5.9. Suppose that p is unramified in F , and choose a ∈ (Z2n
++)Hom(F+,E), U ∈ JG,Up . Suppose

that a satisfies the following further condition:

dn(n+ 1) +
∑
τ

∑
i

(aτ,i − 2baτ,2n/2c) < p. (5.3)

Then
Hi(XU

G , A(G;λ)
U

G
) = Hi(XU

G , A(G;λ)
U

G
⊗O k) = 0

for each 0 ≤ i ≤ D − 1.
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Proof. We show how to deduce this from [LS13]. The necessary conditions on a ∈ (Z2n
++)Hom(F+,E) appearing

in [LS13, Theorem 10.1] are |a|re,+ < p, |a|′comp ≤ p − 2, and for all τ ∈ Ip, aτ,1 − aτ,2n < p. According to
[LS13, Definition 9.7], we have

|a|′comp = 1 +D + |a|L = 1 + dn2 + |a|L,

where ([LS12, Definition 3.2])

|a|L =
∑
τ∈Ip

2n∑
i=1

(aτ,i − 2baτ,2n/2c) .

According to [LS12, (7.22)] and [LS12, Definition 3.9], we have

|a|re,+ = |a|re + dn = D + |a|L + dn = dn(n+ 1) + |a|L.

After rearranging, the condition |a|re,+ < p becomes (5.3) above, and it is easy to see that this implies the
other two conditions.

Corollary 5.10. Let N ≥ 1. With assumptions as in Theorem 5.9, the map RΓ
∂X

U
G
A(G; a)

U

G
⊗OO/(πN )→

RΓXUG ,cA(G; a)
U

G
⊗O O/(πN )[1] induces an isomorphism

τ≤D−2RΓ
∂X

U
G
A(G; a)

U

G
⊗O O/(πN ) ∼= τ≤D−1(RΓXUG ,cA(G; a)

U

G
⊗O O/(πN ))[1]

in D(O/(πN )).

In the situation of Corollary 5.10, we can prove the following refinement of Proposition 5.7.

Proposition 5.11. Let λ ∈ (Zn++)Hom(F,E), let U ∈ JG,Up , and let m ⊂ TSM (RΓ
X
UM
M

A(M ;λ)
UM

M
) be a

non-Eisenstein maximal ideal. Suppose that p is unramified in F and that λ satisfies the following condition:

dn(n+ 6 + sup
τ

(λτ̃ ,1 + λτ̃c,1)) +
∑
τ∈Ip

n∑
i=1

(λτ̃ ,i − λτ̃c,i − 2λτ̃ ,n) < p. (5.4)

Let N ≥ 1. For every continuous character χ : GF,S → O× of finite odd order, prime to p, there exists a
continuous group determinant

DM,U,χ : GF,S → TSM (RΓ
X
UM
M

A(M ;λ)
UM

M
⊗O O/(πN ))m

of dimension 2n such that for every finite place w 6∈ S of F , DM,U,χ(Frobw) has characteristic polynomial

given by χ(Frobw)nPM,w(χ(Frobw)−1X)χ(Frobwc)
−nq

n(2n−1)
w P∨M,wc(q

1−2n
w χ(Frobwc)X).

Proof. By Lemma 5.5, we can and do replace λ by λ + w · 1, where

w = − sup
τ∈Ip
b(λτ̃ ,1 + λτ̃c,1)/2c − 1.

Then the inequality (5.4) implies that the weight a ∈ (Z2n
++)Hom(F+,E) associated to λ satisfies the conditions

of Corollary 5.10. In the remainder of the proof we just treat the case χ = 1, since the modifications in the
case χ 6= 1 are exactly the same as in the proof of Proposition 5.7.

By Corollary 3.9, Theorem 4.2, and Corollary 5.10, there is a commutative diagram

EndD(O/(πN ))((RΓXUG ,cA(G;λ)
U

G
⊗O O/(πN ))S∗(m))

��
TSG //

33

��

EndD(O/(πN ))((τ≤D−1RΓXUG ,cA(G;λ)
U

G
⊗O O/(πN ))S∗(m))

��
TSM // EndD(O/(πN ))(τ≤D−2(RΓ

X
UM
M

A(M ;λ)
UM

M
⊗O O/(πN ))m).
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We have dimRXM = D − 1, and the top degree cohomology of XUM
M is 0 (as XUM

M is non-compact). It
follows that the natural map

τ≤D−2RΓ
X
UM
M

A(M ;λ)
UM

M
⊗O O/(πN )→ RΓ

X
UM
M

A(M ;λ)
UM

M
⊗O O/(πN )

is a quasi-isomorphism. We find that the unnormalized Satake transform induces a map

TSG(RΓXUG ,cA(G;λ)
U

G
⊗O O/(πN ))S∗(m) → TSM (RΓ

X
UM
M

A(M ;λ)
UM

M
⊗O O/(πN ))m.

The proposition now follows from the existence of this map and Theorem 5.6.

We finally obtain our second main theorem.

Theorem 5.12. Suppose that p is unramified in F and let Up = G(OF+ ⊗Z Zp). Let λ ∈ (Z++)Hom(F,E),

and let U ∈ JG,Up . Let m ⊂ TSM (RΓ
X
UM
M

A(M ;λ)
UM

M
) be a non-Eisenstein maximal ideal. Suppose that there

exists a set Ĩp = {τ̃ | τ ∈ Hom(F+, E) such that λ satisfies the following condition:

[F+ : Q]n(n+ 6 + sup
τ∈Hom(F+,E)

(λτ̃ ,1 + λτ̃c,1)) +
∑

τ∈Hom(F+,E)

n∑
i=1

(λτ̃ ,i − λτ̃c,i − 2λτ̃ ,n) < p. (5.5)

Then there exists a continuous representation

ρm : GF,S → GLn(TSM (RΓ
X
UM
M

A(M ;λ)
UM

M
)m)

such that for each place v 6∈ S of F , we have the equality

det(X · 1n − ρm(Frobv)) = PM,w(X)

inside TSM (RΓ
X
UM
M

A(M ;λ)
UM

M
)m[X].

Proof. The deduction of Theorem 5.12 from Proposition 5.11 is essentially the same as the deduction of
Theorem 5.8 from Proposition 5.7, although slightly easier (since there is no longer any nilpotent ideal to
worry about). We therefore omit the details.

5.4 The proof of Theorem 5.6, by p-adic interpolation

In this section we state Theorem 5.14, which was used in the proof of Theorem 5.6. Let Up =
∏
v∈Sp Uv

where the Uv are compact open subgroups of G(F+
v ). Let Vp be a normal compact open subgroup of Up.

Fix U = UpU
p ∈ JG,Up and set V = VpU

p. Note that V ∈ JG,Vp . Fix N ≥ 1, and set Λ = O/(πN ).

Definition 5.13. Denote by ΛU/V the U/V -equivariant sheaf on XV
G given by pulling back the constant

sheaf Λ on XU
G .

There is a canonical homomorphism

TS = TSG → EndD(Λ[U/V ])(RΓXVG ,cΛU/V ).

We write TS(RΓXVG ,cΛU/V ) for the image of this map. Note that this image is a finite (commutative)

ring. We are going to show that TS(RΓXVG ,cΛU/V ) is a quotient of a Hecke algebra acting faithfully on spaces

of classical cuspidal automorphic forms for G of (varying) regular weight. First we define this ’classical’ Hecke

algebra, as in the statement of [Sch, Theorem IV.3.1]. We denote by XU,alg
G /Q the algebraic model over Q

for XU
G provided by [Fal84, Theorem 1], and denote by XU,∗

G /Q its minimal compactification. We write

XU,∗,ad
G /C (and the same thing without ∗) for the adic space obtained by base changing the appropriate

scheme to C (a fixed complete and algebraically closed extension of Qp, with a fixed embedding Q ⊂ C) and
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then taking the associated adic space over Spa(C,OC). We write I for the subsheaf of OXU,∗,adG
corresponding

to the boundary XU,∗,ad
G \XU,ad

G .
Fix an embedding (G,D)→ (Sp2g, DSp2g

) of (connected) Shimura data, and following Scholze [Sch,

before Theorem IV.1.1] write XU,∗
G for the scheme theoretic image of XU,∗

G in the minimal compactification

of a Siegel modular variety of suitable level. We write ωU for the ample line bundle on XU,∗
G obtained by

pullback from the natural ample line bundle on the locally symmetric space for (Sp2g, DSp2g
), and we also

write ωU for the (ample) pullback to XU,∗
G and the line bundle on the associated adic space. Since XU,∗

G is
normal and the boundary has codimension ≥ 2 (we can handle the case of modular curves separately, or just

ignore this case), ωU coincides with the usual automorphic line bundle on XU,∗
G extending ωU |XU,algG

.

The following theorem will be proved in the remainder of the paper:

Theorem 5.14. Fix some integer m ≥ 1. Let TScl be the maximal quotient of TS over which all maps

TS → EndC(H0(XU,∗,ad
G , ω⊗mkU ⊗ I))

factor, for varying k ≥ 1 and varying U ∈ JG,Up . Then the surjective map TS → TS(RΓXVG ,cΛU/V ) factors

over TScl.

5.5 Comparison theorems

Let V = OC/(πN ) = Λ ⊗O OC and A for the OaC-algebra Va. We are going to compare various complexes
in the derived categories D+

sm(Up,Λ) and D+
sm(Up, A) (as defined in Sections 2.4.1 and 2.7).

We first put ourselves in the situation of Section 2.5. We set X0 = X
U

G and let the tower Xn be

given by Xn = X
Up,nU

p

G , where Up,n runs over a cofinal system of compact open normal subgroups of Up.
Set Un = Up,nU

p. We set X = lim←−nXn. We have a functor (Definition 2.28)

RΓX : D+(Sh(X0,Λ))→ D+
sm(Up,Λ).

Denote by jn the open embedding jn : XUn
G ↪→ X

Un
G .

Definition 5.15. Let Ktop = RΓX(j0,!Λ) ∈ D+
sm(Up,Λ).

Next, we work in a number of different settings where we can apply the formalism of Section 2.6.

We set Yn = XUn
G and Y alg

n = XUn,alg
G . As above, we write Xalg

n = XUn,alg,∗
G /Q for the scheme theoretic

image of the minimal compactification of XUn
G in the minimal compactification of a Siegel modular variety

of suitable level. Denote by j′n the open immersion j′n : Y alg
n ↪→ Xalg

n . We also have associated adic spaces

Y ad
n = (Y alg

n,C)ad and Xad
n = (Xalg

n,C)ad.

We let X∗n be the topological space given by the complex points of Xalg
n,C. We write j′n for the maps

Yn ↪→ X∗n and Y ad
n ↪→ Xad

n induced by the algebraic j′n. We also write πn for all of the projection maps
X∗n → X∗0 , Yn → Y0, etc.

The formalism of Section 2.6 applies to the tower of spaces (X?
n), where ? is ∗, alg, ad or nothing,

and we obtain categories S?. We denote the associated functors from S? to Modsm(Up,Λ) (denoted Γ̃ in

Definition 2.46) by Γ̃?, with right derived functors RΓ̃?.

Lemma 5.16. There is a natural isomorphism Ktop ∼= RΓ̃∗(j′!Λ).

Proof. This follows from the discussion in Section 2.6.1: both complexes are naturally quasi-isomorphic to
a complex RΓ̃c(Λ) defined using the tower (Yn)n≥0.

Definition 5.17. Denote by Kalg the complex RΓ̃alg(j′!Λ) and denote by Kad the complex RΓ̃ad(j′!Λ).

Lemma 5.18. There are natural isomorphisms in D+
sm(Up,Λ): Kalg ∼= Ktop and Kad ∼= Kalg.
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Proof. This follows from the discussion in Section 2.6.1.

We also consider the functor Γ̃ad
V : Sad

V → Modsm(Up,V) together with its right derived functor

RΓ̃ad
V . Here Sad

V is defined in the same way as Sad, but with coefficients in V. For F ∈ Shet(X
ad
n ,V) there

are natural isomorphisms
Γ(Xad

n ,F)⊗Λ V ∼= Γ(Xad
n ,F ⊗Λ V).

Since direct limits commute with tensor products we also obtain a natural isomorphism

Γ̃ad(F)⊗Λ V ∼= Γ̃ad
V (F ⊗Λ V).

Lemma 5.19. For F ∈ Sad the natural isomorphism Γ̃ad(F)⊗ΛV ∼= Γ̃ad
V (F⊗ΛV) extends to an isomorphism

RΓ̃ad(F)⊗Λ V ∼= RΓ̃ad
V (F ⊗Λ V).

Proof. It suffices to show that for an injective object I ∈ Sad the higher derived functors

RiΓ̃ad(I ⊗Λ V)

vanish for i > 0. We have

RiΓ̃ad(I ⊗Λ V) = lim−→
n

Hi(Xad
n , In ⊗Λ V) = lim−→

n

Hi(Xad
n , In)⊗Λ V = 0

since In is injective. We are using the fact that we can compute cohomology of a sheaf of V-modules after
applying the forgetful functor to sheaves of Λ-modules and [Del77, Rapport, 4.9.1].

Lemma 5.20. The natural maps V→ O+
Y adn

/(πN ) in Shet(Y
ad
n ,Λ) induce a map

Kad ⊗Λ V = RΓ̃ad
V (j′!V)→ RΓ̃ad

V ((j′n,!O+
Y adn

/(πN ))n≥0)

in Dsm(Up,V) which becomes an isomorphism in Dsm(Up, A).

Proof. This follows from Scholze’s comparison theorem: the induced maps on cohomology are the natural
maps

lim−→
n

Hi
et,c(Y

ad
n ,Λ)⊗Λ A→ lim−→

n

Hi
et,c(Y

ad
n ,O+

Y adn
/(πN ))a

which are isomorphisms by [Sch13, Theorem 3.13] (and induction on N).

5.5.1 Hecke operators

We now define a Hecke action on the complex RΓX(j!Λ). We set XS
n = X

Up,nU
p
S

G and XS = lim←−nX
S
n . Now

XS is a Up × GS-space, where Up has the profinite topology and GS has the discrete topology. We have

X = (XS)U
S

. Therefore, by Proposition 2.30, we have a natural map

θ : H(GS , US)→ EndD(Up,Λ)(RΓX(j!Λ)) = EndD(Up,Λ)(K
top).

For g ∈ GS , we can describe explicitly the image θ(g) of [USgUS ] in EndDsm(Up,Λ)(RΓX(j!Λ)). Set X ′ =

(XS)U
S∩gUSg−1

, and consider the two maps p1, p2 : X ′ → X, where p1 is the natural projection and p2 is
given by the (right) action of g followed by the natural projection. The maps pi are finite étale and we have

a natural isomorphism p∗1j!Λ
∼= p∗2j!Λ. We also set X ′n = (XS

n )U
S∩gUSg−1

and denote the two projection
maps X ′n → Xn by p1, p2.

Lemma 5.21. The endomorphism θ(g) is given by the composition of natural maps:

RΓX(j!Λ)
p∗2→ RΓX′(p

∗
2j!Λ) ∼= RΓX′(p

∗
1j!Λ) ∼= RΓX(p1,∗p

∗
1j!Λ)→ RΓX(j!Λ)

where the final map is the trace, defined by the adjunction (p1,∗ = p1,!, p
∗
1 = p!

1).
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Proof. This is Lemma 2.31.

The description of the above lemma can be translated into a description of the Hecke operators as
a limit of Hecke operators at finite level. We apply the formalism of Section 2.6 to the towers of spaces Xn

and X ′n, with associated categories S and S′. Let j!Λ → I• be an injective resolution in S. Since we have
an isomorphism p∗2j!Λ

∼= p∗1j!Λ, we have a map of complexes (unique up to homotopy) p∗2I• → p∗1I•, and an
induced map of complexes p∗2I•n → p∗1I•n. Now for each n we have maps (compatible as n varies)

Γ(Xn, I•n)
p∗2→ Γ(X ′n, p

∗
2I•n)→ Γ(X ′n, p

∗
1I•n) ∼= Γ(Xn, p1,∗p

∗
1I•n)→ Γ(Xn, I•n).

Taking the limit over n gives the map θ(g), under the equivalence of Lemma 2.48.

Remark. The following observation will be useful: to define the trace map p1,∗p
∗
1I•n → I•n we only need to

use the fact that p1 is étale over Yn. Indeed, we have a map of sheaves on Yn: p1,∗p
∗
1Λ → Λ, and applying

j! gives a map of sheaves on Xn: p1,∗p
∗
1j!Λ → j!Λ. These maps lift (uniquely up to homotopy) to a map of

complexes
p1,∗p

∗
1I• → I•

and this induces the desired compatible system of trace maps

p1,∗p
∗
1I•n → I•n.

Given the above remark, the description of θ(g) we have given applies immediately to define endo-
morphisms θ(g) of Kalg and Kad. Under the comparison isomorphisms of Lemma 5.16 and Lemma 5.18, we
obtain the action of H(GS , US) on Kad ∼= RΓX(j!Λ).

Similarly, this description gives endomorphisms θ(g) of RΓ̃ad((j!O+
Y adn

/(πN ))n≥0), and hence of

RΓ̃ad((j!O+
Y adn

/(πN ))n≥0)a such that the isomorphism

(
Kad ⊗Λ V

)a ∼= (RΓ̃ad((j!O+
Y adn

/(πN ))n≥0)
)a

in Dsm(Up, A) is θ(g)-equivariant.

5.5.2 Comparison with Cech cohomology

Finally, we are going to compute RΓ̃ad((j!O+
Y adn

/(πN ))n≥0) (and its Hecke action) using a Cech complex.

Recall that by [Sch, Theorem IV.1.1] there is a perfectoid space Xad
∞ over Spa(C,OC) with

Xad
∞ ∼ lim←−

n

Xad
n .

Definition 5.22. A Up-admissible cover of the perfectoid space Xad
∞ is an open cover V = (Vi)i∈I of Xad

∞
by finitely many affinoid perfectoids (with affinoid perfectoid multiple intersections), such that

• There exists n0 such that each Vi is the inverse image of an affinoid open Vi,n0
in Xad

n0

• For γ ∈ Up and i ∈ I, (Vi)γ ∈ V.

For n ≥ n0 we denote by Vn the affinoid cover of Xad
n given by the inverse images of the Vi,n0 .

We now recall some more of the results contained in [Sch, Theorem IV.1.1]. Denote by Fl the flag
variety over C which is the flag variety of totally isotropic subspaces of C2g (i.e., the flag variety associated
with (Sp2g, DSp2g

)). There is a G(Qp)-equivariant Hodge–Tate period map

πHT : Xad
∞ → Fl.

For a subset J ⊂ {1, . . . , 2g} of cardinality g we denote by sJ the corresponding Plücker coordinate on Fl
and denote by FlJ the open affinoid subspace of Fl defined by |sJ′ | ≤ |sJ | for all J ′. Now for J ⊂ {1, . . . , 2g}
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of cardinality g we denote by Xad
∞,J the preimage π−1

HT (FlJ) in Xad
∞ . By [Sch, Theorem IV.1.1] the subsets

Xad
∞,J provide an affinoid perfectoid cover of Xad

∞ . Moreover, they satisfy the first condition in Definition

5.22. This means that there are only finitely many Up translates of each Xad
∞,J (they are each stabilised

by a compact open subgroup of Up), and so by adjoining these translates we obtain a Up-admissible cover
(X∞,J · γ)γ,J of Xad

∞ . This is the only Up-admissible cover we will use in practice.

Lemma 5.23. For γ ∈ Up and J ⊂ {1, . . . , 2g} of cardinality g, the open affinoid subspace FlJ · γ of Fl is
defined by the inequalities |(γ′)−1sJ′ | ≤ |γ−1sJ | for all γ′ ∈ Up and J ′ ⊂ {1, . . . , 2g} of cardinality g.

As a consequence, the cover (X∞,J ·γ)γ,J of Xad
∞ , together with the ‘homogeneous coordinates’ γ−1sJ

descends to covers of Xad
n (for n ≥ n0) which satisfy the conditions of [Sch, Lemma II.1.1].

Proof. We have x ∈ FlJ ·γ if and only if |γ−1sJ(x)| = |sJ(xγ−1)| ≥ |sJ′(xγ−1)| for all J ′. For the statement
of the lemma, it suffices to show that if x ∈ FlJ then |sJ(x)| ≥ |sJ′(xγ−1)| for all J ′ and γ (i.e. we set γ = 1
and γ′ = γ).

The action of Up on the coordinates sJ is given by the action of elements of GL2g(Zp) (in fact they are
elements of Sp2g(Zp)) on basis elements of

∧g
Std, where Std is the standard 2g-dimensional representation

of GL2g /Zp. In particular, we have γ−1sJ′ =
∑
J′′ aJ′′sJ′′ with aJ′′ ∈ Zp. So if x ∈ FlJ we have

|sJ′(xγ−1)| = |
∑
J′′

aJ′′sJ′′(x)| ≤ max
J′′

(|sJ′′(x)|) = |sJ(x)|

Remark. To illustrate the process of adjoining Up translates to an affinoid cover we discuss the case of P1
Qp

with its right action of GL2(Zp). We begin with the affinoid cover given by {|z| ≤ 1} and {|z| ≥ 1}. These
are the complements of the (open) residue discs red−1(0) and red−1(∞) where red is the reduction map to
P1
Fp . These affinoids are stable under the action of 1 + pM2(Zp), and the translates by GL2(Fp) are the p+ 1

affinoids given by the complements of the residue discs red−1(x) for x ∈ P1
Fp . Since the action of GL2(Zp)

on P1
Qp extends to an action on P1

Zp , the formal model of P1
Qp obtained from this cover by p+ 1 affinoids is

again the formal completion of P1
Zp along the special fibre.

Remark. If we first apply the [Sch, Lemma II.1.1] to the cover Xad
n,J = Spa(Rn,J , R

+
n,J) of Xad

n (for n ≥ n0) we

obtain a formal model Xn for Xad
n overOC with an affine cover by Spf(R+

n,J). For γ ∈ Up and J ′ ⊂ {1, . . . , 2g}
of cardinality g, the intersection Xad

n,J ∩Xad
n,J′ · γ ⊂ Xad

n,J is defined by∣∣∣∣γ−1sJ′

sJ

∣∣∣∣ = 1.

This in turn defines an affine open formal subscheme

Spf

(
R+
n,J

〈
sJ

γ−1sJ′

〉)
⊂ Spf(R+

n,J),

and so we see that the cover (Xad
n,J · γ)J,γ of Xad

n is the generic fibre of a cover of Xn by formal affine opens.

Therefore the formal model for Xad
n given by applying [Sch, Lemma II.1.1] to the cover (Xad

n,J · γ)J,γ of Xad
n

is the same as the formal model coming from the cover (Xad
n,J)J .

Definition 5.24. Let F ∈ Sad
V and let V be a Up-admissible cover of Xad

∞ . We define a Cech complex

C̃•(V,F) with entries in Modsm(Up,V) by

C̃p(V,F) = lim−→
n≥n0

Cp(Vn,Fn)

where C•(Vn,Fn) is the usual Cech complex for the sheaf Fn on Xad
n with respect to the cover Vn, endowed

with its natural Up/Up,n-action (for example, g ∈ Up maps a section in Fn(Vn,i) to a section in Fn(Vn,ig
−1)).
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Lemma 5.25. Let F ∈ Sad
V and let V be a Up-admissible cover of Xad

∞ . Then there is a natural map in
Dsm(Up,V):

C̃•(V,F)→ RΓ̃ad
V (F).

If F = (j!O+
Y ad
n
/(πN ))n≥0 then this map becomes an isomorphism in Dsm(Up, A).

Proof. The first part is [The15, Tag 03AX]: let F → I• be an injective resolution. Define a double complex

Ap,q = C̃p(V, Iq),

and denote by sA• the total complex. The natural maps Γ̃ad(Iq) → A0,q induce a quasi-isomorphism

α : Γ̃ad(I•)→ sA•. The maps C̃p(V,F)→ Ap,0 induce a map of complexes

C̃•(V,F)→ sA•.

Composing this map with the inverse of α gives the desired map in the derived category.
The second statement is proved as in [Sch, Theorem IV.2.1]: we just need to check that the natural

map described above induces an isomorphism on cohomology groups.

5.6 The end of the proof of Theorem 5.14

Lemma 5.26. The action of TS on RΓ̃ad((j!O+
Y adn

/(πN ))n≥0)a factors through TScl.

Proof. This is implied by Lemma 5.25, following the proof of [Sch, Theorem IV.3.1]. Indeed, TS acts on

each term of the Cech complex C̃•(V, (j!O+
Y adn

/(πN ))n≥0), so it suffices to show that it acts via TScl on each

term H0(∩i∈JVi, j!O+/(πN ))a. We set V to be the Up-admissible cover (X∞,J · γ)J,γ , and proceed exactly
as in loc. cit., using the sections γ−1sJ of the line bundle ω.

Corollary 5.27. The action of TS on RΓXVG ,cΛU/V ⊗Λ A factors through TScl.

Proof. By Lemma 5.20 we have an isomorphism RΓ(Vp, RΓ̃ad((j!O+
Y adn

/(πN ))n≥0)a) ∼= RΓ(Vp, (K
ad⊗Λ V)a).

By Lemma 5.18 this is isomorphic to RΓ(Vp, (K
top ⊗Λ V)a), and by Lemma 2.58 this is isomorphic to

RΓ(Vp,K
top ⊗Λ V)a. Finally, by Lemma 2.39 this is isomorphic to RΓ(Vp,K

top) ⊗Λ A, and the Corollary
follows from the preceding lemma and Lemma 2.40.

Lemma 5.28. RΓXVG ,cΛU/V is isomorphic to a bounded complex of finitely generated Λ[U/V ]-modules.

Proof. We know that the RiΓXVG ,cΛU/V are all finitely generated and non-zero for only finitely many i. So

our statement follows from [Mum08, §5, Lemma 1].

We can now finish the proof of Theorem 5.14. We restate the result:

Theorem. The action of TS on RΓXVG ,cΛU/V factors through TScl.

Proof. Write I for the kernel of the quotient map TS → TScl. We need to show that the map of Λ-modules
I/(πN )I → EndD(Λ[U/V ])(RΓXVG ,cΛU/V ) is zero. It suffices to show that the map of A-modules

I/(πN )I ⊗Λ A→ EndD(Λ[U/V ])(RΓXVG ,cΛU/V )⊗Λ A

is zero (see [Sch, p. 71]). Now the target of this map is naturally isomorphic to

EndD(Λ[U/V ])(RΓXVG ,cΛU/V ⊗Λ V)a ∼= EndD(A[U/V ])(RΓXVG ,cΛU/V ⊗Λ A)a,

by Lemma 2.2 (which applies because of Lemma 5.28) and Lemma 2.56. Finally, since the map

I/(πN )I → EndD(A[U/V ])(RΓXVG ,cΛU/V ⊗Λ A)

is zero by Lemma 5.27, the map

I/(πN )I ⊗Λ A→ EndD(A[U/V ])(RΓXVG ,cΛU/V ⊗Λ A)a

is zero, as desired.
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