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Abstract

Recently, Bhargava and others have proved very striking results about the average size of Selmer
groups of Jacobians of algebraic curves over Q, as these curves are varied through certain natural families.
Their methods center around the idea of counting integral points in coregular representations, whose
rational orbits can be shown to be related to Galois cohomology classes for the Jacobians of these
algebraic curves.

In this paper we construct for each simply laced Dynkin diagram a coregular representation (G, V )
and a family of algebraic curves over the geometric quotient V�G. We show that the arithmetic of the
Jacobians of these curves is related to the arithmetic of the rational orbits of G. In the case of type
A2, we recover the correspondence between orbits and Galois cohomology classes used by Birch and
Swinnerton-Dyer and later by Bhargava and Shankar in their works concerning the 2-Selmer groups of
elliptic curves over Q.
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1 Introduction

This paper is a contribution to arithmetic invariant theory. Let G be a reductive group over a field k, and
let V be a linear representation of G. Then the ring k[V ]G is a k-algebra of finite type, and we can define
the quotient V�G = Spec k[V ]G and a quotient map π : V → V�G. The determination of the structure of
k[V ]G and the fibers of π falls under the rubric of geometric invariant theory, and is important in algebraic
geometry.

In the case where k is not algebraically closed, a further layer of difficulty is obtained by considering
the G(k)-orbits in the fibers of π over k-points of V�G. This problem can be translated into the language
of Galois cohomology, and as such often has close ties to arithmetic.

Bhargava has singled out those representations which are coregular, in the sense that k[V ]G is
isomorphic to a polynomial ring, as promising candidates for representations which may have interesting
connections to arithmetic. For example, he has studied together with Shankar the case G = SL2 and
V = Sym4 2∨, the space of binary quartic forms. In this case there are two independent polynomial invariants
I and J , and k-rational orbits with given values of I and J are related to classes in the Galois cohomology
group H1(k,E[2]) for the elliptic curve

E : y2 = x3 + Ix+ J.

These considerations have had very striking applications; see [BS10], or [Poo12] for a beautiful summary. See
also the work of Ho [Ho09] for a variety of similar orbit parameterizations associated to other representations,
and the forthcoming work of Bhargava and Ho [BHb] for an exhaustive study of coregular representations
related to genus one curves. For each choice of pair (G,V ), one makes a construction in algebraic geometry
which relates orbits in the given representation to algebraic curves, possibly with marked points, given line
bundles, or other types of extra data.

By contrast, this paper represents a first effort to describe some of the phenomena appearing in
arithmetic invariant theory through the lens of representation theory. We take as our starting point certain
representations arising from Vinberg theory, whose role in arithmetic invariant theory has been emphasized
by Gross. If G is a reductive group over k endowed with an automorphism θ of finite order m, then the
fixed group Gθ acts on the θ = ζ eigenspace g1 ⊂ g = LieG for any choice ζ ∈ k× of primitive mth root of
unity. Vinberg theory describes the geometric invariant theory of these representations. In the case when θ
is regular and elliptic, in the sense of [GLRY], the generic element of g1 will have a finite abelian stabilizer,
and orbits in the representation are thus related to interesting Galois cohomology.

If G is a split reductive group over k, then it has a unique Gad(k)-conjugacy class of regular ellip-
tic involutions θ, characterized by the requirement that g1 contain a regular nilpotent element. It is the
representations associated to these canonical involutions for simple G of type A,D or E that we study in
this paper. We associate to each of these groups a family of algebraic curves, namely the smooth nearby
fibers of a semiuniversal deformation of the corresponding simple plane curve singularity. The arithmetic of
the Jacobians of these curves turns out to be related to the arithmetic of the rational orbits in the Vinberg
representations. In each case the families of curves are universal families with marked points of fixed type.
In types A and D we obtain families of hyperelliptic curves, while in types E6, E7 and E8 we obtain families
of non-hyperelliptic curves of genus respectively 3, 3 and 4.

Remark 1.1. In the forthcoming work [BHb], the authors construct families of related coregular represen-
tations through the operations of symmetrization and skew-symmetrization. These representations are all
related to the arithmetic of curves of genus one. For example, they consider the natural representation of
SL2 × SL2 × SL2 × SL2 on 2⊗ 2⊗ 2⊗ 2, and its quadruple symmetrization yields the representation of SL2

on the space of binary quartic forms described above.
The quadruple skew-symmetrization, however, is not directly related to curves of genus one. In fact,

the Vinberg representation we associate to E7 is the representation of SL8/µ4 on ∧48. This is the quadruple
skew-symmetrization of the above representation of SL4

2, and our work shows that its orbits are related to the
arithmetic of the universal family of non-hyperelliptic curves of genus 3 with a rational flex in the canonical
embedding.
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1.1 Results

Let us now turn to a precise statement of our main results. For any unfamiliar notation relating to algebraic
groups and their Lie algebras, we refer to §1.6 below. Let k be a field of characteristic zero, and let G be
a split adjoint group over k of type A, D or E. We choose a regular elliptic involution θ of G as described
above, and set G0 = (Gθ)◦, g1 = gθ=−1. Then G0 acts on g1 and a Chevalley-type restriction theorem holds
for the pair (G0, g1). In particular, the space B = g1�G0 is isomorphic to affine r-space: g1 is coregular.
We write ∆ ⊂ B for the discriminant divisor. Thus ∆ is the image under π : g1 → B of the set of elements
which are not regular semisimple.

Propostion 2.24 below implies that g1 contains subregular nilpotent elements. We choose a subreg-
ular normal sl2-triple (e, h, f). (See Definition 2.2 for the definition of a normal sl2-triple. To say that it
is subregular simply means that e and f are subregular nilpotent elements of g.) Define X = e + zg(f)1 =
e+ zg(f) ∩ g1. Our first theorem concerns the natural map X ↪→ g1 → B.

Theorem 1.2. The morphism X → B is a flat family of reduced connected curves, smooth away from ∆.
The equations of these curves are given in the statement of Theorem 3.7.

In fact, X is a transverse slice to the G0-orbit of e inside g1, and X → B realizes a semiuniversal
deformation of the central fiber X0, which is an affine plane curve with a unique simple singularity of type
equal to that of G. (For the definition of a simple curve singularity, we refer e.g. to [Coo98].)

The following theorem incorporates results of §2 and Theorem 4.9.

Theorem 1.3. Let x ∈ g1 be a regular semisimple element; equivalently, suppose that b = π(x) ∈ B(k) does
not lie inside ∆. Then:

• The stabilizer ZG0(x) = Zb is a finite abelian k-group and depends only on b up to canonical isomor-
phism. This group is endowed with a non-degenerate alternating pairing Zb × Zb → µ2.

• Let Yb denote the smooth projective curve containing Xb as a dense open subset. Let JYb denote its
Jacobian variety. Then there is a canonical isomorphism of finite k-groups JYb [2] ∼= Zb. Under this
isomorphism the above pairing corresponds to the Weil pairing of JYb .

Given b ∈ (B \ ∆)(k), we write g1,b = π−1(b). If K is a separable closure of k, then g1,b(K)
consists of a single G0(K)-orbit; the rational orbits in g1,b(k) are therefore classified by a suitable Galois
cohomology set, with coefficients in Zb ∼= JYb [2]. The inclusion Xb ⊂ g1,b induces a map on rational points
Xb(k) → g1,b(k)/G0(k). Our main theorem asserts that this map can in fact be interpreted in terms of
2-descent on the Jacobian JYb :

Theorem 1.4. There is a commutative diagram, functorial in k:

Xb(k) //

��

g1,b(k)/G0(k)

��
JYb(k) // H1(k, JYb [2]).

For the definitions of the arrows in this diagram, we refer to the statement of Theorem 4.14. If
G = PGL3, then the family of curves X → B is the family y2 = x3 + Ix+ J of genus one curves described
above, and we then recover the correspondence between orbits and Galois cohomology classes used by
Bhargava and Shankar in their work on the average size of the 2-Selmer group of an elliptic curve over Q.
We are hopeful that the ideas discussed in this paper will have applications to the study of the average size
of 2-Selmer groups beyond this case, cf. the discussion following Conjecture 4.4.

1.2 Methods

Our methods are inspired primarily by work of Slodowy. Rational double point singularities of surfaces
can be classified in terms of the Dynkin diagrams of simply laced simple algebraic groups. Grothendieck
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conjectured that one could give a representation-theoretic construction of this correspondence, by looking
at the generic singularity of the nilpotent cone of the corresponding group G. A proof of this conjecture was
announced in a famous ICM lecture of Brieskorn [Bri71], but the first detailed proofs were given by Esnault
and Slodowy in the respective works [Esn80] and [Slo80b]. Our work is what one obtains on combining the
respective ideas of Slodowy and Vinberg. (After this work was completed, J. Sekiguchi informed us of some
related earlier work [SS81], where our families of curves also appear.)

Let us say a few words about the limits of our methods. Essential to our work is the use of sl2-
triples, whose existence relies in turn on the Jacobson-Morozov lemma. We must therefore work over a field
of sufficiently large characteristic, relative to the Coxeter number of G. In this paper we choose for simplicity
to work over a field of characteristic zero.

More serious is the lack of information we obtain about the image of the map g1,b(k)→ H1(k, JYb [2])
constructed above. It follows from the above considerations that it contains the elements in the image under
the 2-descent map δ : JYb(k) → H1(k, JYb [2]) of Xb(k); we conjecture (cf. Conjecture 4.4) that it moreover
contains the image under δ of the whole group JYb(k) of rational points of the Jacobian. In other words,
we currently lack a way to construct sufficiently many orbits in the representations we study. We hope to
return to this question in a future work.

1.3 Outline

Let us now outline the contents of this paper. In §2, we prove some basic properties of the so-called stable
involutions θ, and define the Vinberg representations to which they correspond. An important point here
is the calculation of the stabilizers of the regular elements in g1 in terms of the root datum of the ambient
reductive group G. We also introduce the subregular nilpotent elements, and address the question of when
g1 contains subregular nilpotent elements which are defined over the base field k.

In §3, we construct the families of curves mentioned above inside a suitable transverse slice to the
subregular nilpotent orbit.

Finally, in §4, we show how to relate the 2-torsion in the Jacobians of our curves and the stabilizers
of regular elements, and prove our main theorem relating the 2-descent map to the classifying map for orbits
in non-abelian Galois cohomology.

1.4 Other groups

In this paper we restrict to simple groupsG arising from simply laced Dynkin diagrams, and the corresponding
Vinberg representations. One can try to apply our constructions to groups of non simply-laced type. The
families of curves thus obtained are versal deformations of planar curve singularities ‘with fixed symmetries’;
this is the direct analogue for our context of Slodowy’s results, cf. [Slo80b, §6.2]. The Jacobians of these
curves admit a family of isogenies φ, and it seems likely that some version of our main result continues to
hold, with the groups JYb [φ] now playing the role of the groups JYb [2].

1.5 Acknowledgements

This paper is a revised version of the author’s Harvard Ph.D. thesis, written under the supervision of Benedict
H. Gross. I wish to thank him for many useful suggestions and conversations.

1.6 Notation

As mentioned above, we work throughout over a field k of characteristic zero. We assume basic familiarity
with the theory of reductive groups over k, as studied for example in [Hum75] or [Spr09]. We assume that
reductive groups are connected.

If G is a reductive group acting linearly on a k-vector space V , then the ring of invariants k[V ]G is
a k-algebra of finite type (see for example [Spr77, Theorem 2.4.9]). We define V�G = Spec k[V ]G and call
it the categorical quotient. It in fact satisfies a universal property, but we will not need this here. We will
write N (V ) for the closed subscheme of V cut out by the augmentation ideal of k[V ]G.
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If G, H, . . . are algebraic groups then we will use gothic letters g, h, . . . to denote their Lie algebras.
Let G be a reductive group, and T ⊂ G a split maximal torus. Then we shall write Φt ⊂ X∗(T ) for the set of
roots of T in g, and Φ∨t ⊂ X∗(T ) for the set of coroots. The assignment α ∈ Φt 7→ dα ∈ t∗ identifies Φt with
the set of roots of t in g, and we will use this identification without comment. We write W (t) = NG(T )/T
for the Weyl group of G with respect to t. We have the Cartan decomposition

g = t⊕
⊕
α∈Φt

gα,

where dim gα = 1 for each α ∈ Φt. We write Uα ⊂ G for the unique T -invariant closed subgroup with Lie
algebra gα (see [Hum75, §26.3]). The tuple

(X∗(T ),Φt, X∗(T ),Φ∨t )

is a root datum in the sense of [Spr09, §7.4]. We write AG for the center of G, and ag for its Lie algebra.
We will write LG = ZΦt for the root lattice of G and ΛG ⊂ LG ⊗Z Q for the weight lattice of LG.

(These are the groups Q and P , respectively, of [Bou68, Ch. VI, §1.9].) If the group G is clear from the
context, we will omit the subscript G. We understand these to depend only on G and not on T , so that LG
and ΛG are defined up to (non-unique) isomorphism. We write WG ⊂ Aut(LG) for the corresponding Weyl
group.

If x ∈ g, we write ZG(x) for its centralizer in G under the adjoint representation, and zg(x) for its
centralizer in g. If x is semisimple, then ZG(x) is reductive. Let T ⊂ G be a maximal torus, and suppose
that x ∈ t. Then T ⊂ ZG(x) is a maximal torus. Let

Φt(x) = {α ∈ Φt |α(x) = 0} and Φ∨t (x) = {α∨ ∈ Φ∨t |α ∈ Φt(x)}.

Let W (x) = ZW (t)(x). Then the root datum of ZG(x) is

(X∗(T ),Φt(x), X∗(T ),Φ∨t (x)),

and the Weyl group of ZG(x) with respect to T can be identified in a natural way with W (x).

2 Preliminaries

Throughout this section, G is a split reductive group over a field k of characteristic zero.

2.1 Elements of Vinberg theory

Let θ ∈ Aut(G) be an automorphism of exact order m > 1, and let ζ ∈ k be a primitive mth root of unity.
We will also write θ for the induced automorphism of g. We associate to θ the grading g = ⊕i∈Z/mZ gi,
where by definition we have

gi = {x ∈ g | θ(x) = ζix}.

We write Gθ for the fixed subgroup of θ, and G0 for its connected component. Then LieG0 = g0, so the
notation is consistent. The action of Gθ on g leaves each gi invariant.

In what follows, we shall consider the representation of G0 on the subspace g1 ⊂ g. The study
of such representations is what we call Vinberg theory. For the basic facts about Vinberg theory, and in
particular for proofs of the unproved assertions in this section, we refer to the papers [Vin76] or [Lev09].

Lemma 2.1. Let x ∈ g1. Then x can be written uniquely as x = xs + xn, where xs, xn both lie in g1 and
are respectively semisimple and nilpotent.

Definition. A Cartan subspace c ⊂ g1 is a maximal subalgebra consisting of semisimple elements. Note that
c is automatically abelian.
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Proposition 2.2. Suppose that k is algebraically closed. Then an element x ∈ g1 is semisimple if and only
if it is contained in a Cartan subspace, and all Cartan subspaces are G0(k)-conjugate.

Let c ⊂ g1 be a Cartan subspace, and define W (c, θ) = NG0(c)/ZG0(c). This is the ‘little Weyl
group’ of the pair (G, θ). We define rank θ = dim c. This is well-defined by Proposition 2.2.

The following result is contained in [Pan05, Theorem 1.1]. It is Vinberg’s main result concerning
the invariant theory of the representations considered here.

Theorem 2.3. 1. Restriction of functions induces an isomorphism

k[g1]G0 → k[c]W (c,θ).

Moreover, W (c, θ) is a (pseudo-)reflection group and k[c]W (c,θ) is a polynomial ring in rank θ indeter-
minates.

2. Let π : g1 → g1�G0 denote the quotient map. Then π is flat. If k is algebraically closed, then for all
x ∈ g1, π−1π(x) consists of only finitely many G0(k)-orbits.

We say that v ∈ g1 is stable if G0 · v is closed in g1, and ZG0(v) is finite. We say that θ is stable if
g1 contains stable elements. The property of being stable is hereditary, in the following sense.

Lemma 2.4. Suppose that θ is a stable automorphism. Let x ∈ g1 be semisimple. Let H = ZG(x) and
h = LieH. Then θ(H) = H, and θ|H is a stable automorphism.

Proof. Given x as in the lemma, choose a Cartan subspace c containing it. Then c contains a stable vector,
which is also stable when considered as an element of h; the result follows.

2.2 Stable involutions

In this paper we shall be particularly interested in the stable involutions.

Lemma 2.5. Suppose that k is algebraically closed. There is a unique G(k)-conjugacy class of stable invo-
lutions θ.

Proof. To show uniqueness, we reduce immediately to the case that G is adjoint. By [GLRY, Lemma 5.6],
any stable vector v ∈ g1 is regular semisimple, and θ acts as −1 on its centralizer c = zg(v). In particular,
we have c ⊂ g1. It follows that the trace of θ on g is equal to − dim c = − rankG, and a well-known theorem
of E. Cartan asserts that this determines θ up to G(k)-conjugacy. We can also reduce existence to the case
of G adjoint. We will prove existence (even when k is not algebraically closed) in this case below.

Lemma 2.6. Let θ be a stable involution of G. Then θ satisfies the following.

1. rank θ = rankG.

2. There exists a maximal torus C in G on which θ acts by x 7→ x−1.

3. For all x ∈ AG, we have θ(x) = x−1.

4. Let c be a Cartan subspace (and hence, a Cartan subalgebra). Then the natural map W (c, θ) → W (c)
is an isomorphism.

Proof. The first and second properties follow from the proof of Lemma 2.5. For the third property, we recall
that AG is contained in any maximal torus of G. The final property is [GLRY, Corollary 7.4].

Suppose for the rest of this section that θ is a stable involution.

Proposition 2.7. Let x = xs + xn ∈ g1 be a regular element. Then ZGθ (x) = AZG(xs)[2]. In particular,
this group is always finite and abelian.
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Proof. We have ZG(x) = ZG(xs) ∩ ZG(xn), so after replacing G by ZG(xs), we may assume that x = xn is
a regular nilpotent element.

Then ZG(x) = AG · ZU (x), a direct product, where U is the unipotent radical of the unique Borel
subgroup containing x. Quotienting by AG, we may suppose that G is adjoint and must show that ZU (x)θ

is trivial. But since x is regular, this is a finite unipotent group, so the result follows.

Corollary 2.8. Let x = xs + xn be a regular element, and let c be a Cartan subspace containing xs. Let
C ⊂ G denote the maximal torus with Lie algebra c. Then

ZGθ (x) ∼= Hom(X∗(C)/2X∗(C) + ZΦc(x),Gm).

Proof. For any reductive group G with root datum (X∗(T ),Φt, X∗(T ),Φ∨t ), there is a canonical isomorphism
X∗(AG) ∼= X∗(T )/ZΦt. Now apply Proposition 2.7.

Corollary 2.9. Suppose that G is adjoint and that k is algebraically closed. Let x ∈ g1 be a regular
semisimple element. Let L denote the root lattice of G, and Λ ⊂ L⊗Z Q the weight lattice. Then there is an
isomorphism

ZG0(x) ∼= Hom(N,Gm),

well-defined up to conjugacy by the Weyl group W of L, where N denotes the image of L in Λ/2Λ.

Proof. Let Gsc denote the simply connected cover of G. Then θ acts on Gsc. A theorem of Steinberg
([OV90, Chapter 4.4.8, Theorem 9]) states that (Gsc)θ is connected, and hence G0 is the image of the map
(Gsc)θ → G. The present corollary now follows from the previous one.

Now suppose that the simple components of G are simply laced (that is, their root systems are all
of type A, D, or E), and let L,Λ and W be as in the statement of the corollary. Then there is a W -invariant
quadratic form 〈·, ·〉 : L× L → Z uniquely determined by the requirement that 〈α, α〉 = 2 for every root α.
The pairing 〈·, ·〉 on L induces a pairing (·, ·) : L/2L × L/2L → F2. An easy calculation shows this pairing
is alternating. In fact, we have the following:

Lemma 2.10. The pairing (·, ·) descends to a non-degenerate alternating pairing on N .

Proof. Suppose x ∈ L. Then the image of x in L/2L lies in the radical of (·, ·) if and only if 〈x, L〉 ⊂ 2Z, if
and only if x ∈ 2Λ, since Λ is the Z-dual of L with respect to the pairing 〈·, ·〉.

Pairings of this type, associated to regular elliptic elements of Weyl groups, were first considered by
Reeder [Ree11].

Corollary 2.11. Suppose that G is an adjoint group, and that the simple components of G are simply
laced. Then for any regular semisimple element x ∈ g1, there is a canonical non-degenerate alternating form
(·, ·) : ZG0(x)× ZG0(x)→ µ2.

We now show how to construct a stable involution over an arbitrary field k of characteristic 0. We
let G be a simple split adjoint group, and fix a split maximal torus T and a Borel subgroup B containing
it. This determines a set Φ+ ⊂ Φ = Φt of positive roots, and a root basis R ⊂ Φ+. We fix moreover for
each α ∈ R a basis Xα of the one-dimensional vector space gα ⊂ g. The tuple (T,B, {Xα}α∈R) is called a
pinning of G.

This choice of data determines a splitting Aut(G) = GoΣ, where Σ is the group of pinned automor-
phisms induced by automorphisms of the Dynkin diagram of G. On the other hand, writing L = X∗(T ) = ZΦ
for the root lattice of g, the choice of root basis determines a splitting Aut(L) = W o Σ in a simi-
lar manner; see [Bou05, Ch. VIII, §5.2]. We write σ ∈ Σ for the image of −1 ∈ Aut(L), and define
θ = ρ∨(−1) o σ ∈ Aut(G)(k), where ρ∨ ∈ X∗(T ) is the sum of the fundamental coweights.

Lemma 2.12. The automorphism θ is a stable involution.

Proof. This follows immediately from Corollary 5.7 of [GLRY].
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This stable involution has good rationality properties. This is based on the following fact.

Lemma 2.13. Let θ be as above. Then g1 contains a regular nilpotent element. Any two regular nilpotent
elements of g1 are conjugate by a unique element of Gθ(k).

Proof. The element
∑
α∈RXα is regular nilpotent and, by construction, lies in g1. Fix a separable closure

K of k. If E,E′ ∈ g1 are two regular nilpotent elements then they are conjugate by an element of Gθ(K).
(This follows from [Lev07, Theorem 5.16].)

For any such E, the group ZGθ (E) is a finite unipotent group, and therefore trivial. It follows that
E,E′ are conjugate by a unique element of Gθ(K), which must therefore lie in Gθ(k).

Corollary 2.14. There is a unique G(k)-conjugacy class of stable involutions θ1 of G such that there exists
a regular nilpotent element E1 ∈ g with θ1(E1) = −E1.

Proof. We have already proved the existence of such an element. For the uniqueness, fix again a separable
closure K of k. We have seen that G(K) acts transitively on pairs (θ1, E1). On the other hand, the stabilizer
of such a pair in G(K) is trivial. It follows that any two such pairs are conjugate by a unique element of
G(k).

Definition. We call a tuple (E,H,F ) of elements of g a normal sl2-triple if it is an sl2-triple, and moreover
we have E ∈ g1, H ∈ g0, and F ∈ g1.

Note that if (E,H,F ) is a normal sl2-triple, then the restriction of θ to the subalgebra spanned by
these elements is a stable involution.

Lemma 2.15. 1. Any nilpotent element E ∈ g1 is contained in a normal sl2-triple.

2. Any two normal sl2-triples (E,H,F ) and (E,H ′, F ′) are ZG0(E)(k)-conjugate.

Proof. Fix a separable closure K of k. For the first part, choose an arbitrary sl2-triple (E, h, f) containing
E, and decompose h = h0 + h1 into θ-eigenvectors. The argument of [KR71, Proposition 4] implies that
there is a unique F ∈ g1 ⊗k K such that (E, h0, F ) is an sl2-triple. But an sl2-triple is determined uniquely
by any 2 of its 3 elements, so descent implies that F ∈ g1, and (E, h0, F ) is the desired triple.

For the second part, we argue as in the proof of [KR71, Proposition 4] and apply [Bou05, Ch. VIII,
§11.1, Lemma 4] to obtain the desired rationality property.

Corollary 2.16. The group G(k) acts simply transitively on the set of pairs

((θ1), (E,H,F )) ,

where θ1 is a stable involution of G and (E,H,F ) is a normal sl2-triple with respect to θ1 in which E is a
regular nilpotent element.

Example. We illustrate some of the concepts introduced so far in the case where G is a split adjoint group
of type A2r. Let V be a vector space of dimension 2r + 1, with basis {e1, e2, . . . , er, v, fr, . . . , f2, f1}. We
define an inner product 〈·, ·〉 on V by the formulae

〈ei, ej〉 = 0 = 〈fi, fj〉 = 〈ei, v〉 = 〈fi, v〉

for all i, j and
〈v, v〉 = 1, 〈ei, fj〉 = δij .

If T ∈ End(V ), write T ∗ for the adjoint of T with respect to this inner product. Then we take G = PGL2r+1 =
PGL(V), and θ : sl2r+1 → sl2r+1 to be the involution X 7→ −X∗. It is easy to check that −θ is just reflection
in the anti-diagonal. In particular, fixing the standard pinning (T,B, {Xα}α∈R) of sl2r+1, this θ is exactly
the stable involution constructed of Lemma 2.12.

Then we see that Gθ = G0 = SO(V) is connected, and we have

g = g0 ⊕ g1, g0 = {X ∈ End(V ) | trX = 0, X = −X∗} = so(V ).
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In particular, g1 = {X ∈ End(V ) | trX = 0, X = X∗} consists of the space of trace zero operators self-adjoint
with respect to 〈·, ·〉.

The regular nilpotent element determined by the pinning is

E =



0 1 0 . . . 0

0 0 1 0
...

...
...

...
. . .

...
0 . . . 0 0 1
0 . . . 0 0 0

 .

These representations of odd orthogonal groups are exactly the ones used by Bhargava and Gross in
their work on the Selmer groups of hyperelliptic Jacobians [BG].

2.3 Subregular elements

We recall that x ∈ g is called subregular if dim zg(x) = rankG+ 2.

Proposition 2.17. The Lie algebra g contains subregular nilpotent elements. Suppose that G is simple and
that k is algebraically closed. Then there is a unique G(k)-orbit of subregular nilpotent elements in g, and
these are dense in the complement of the regular nilpotent orbit in the nilpotent variety of g.

Proof. This follows from [Ste74, §3.10, Theorem 1].

Thus if g is simple, then its nilpotent variety has a unique open orbit, consisting of regular nilpotent
elements; its complement again has a unique open orbit, consisting of the subregular nilpotents. If g =
g1 × · · · × gs is a product of simple Lie algebras, then any nilpotent element n can be written uniquely as
a sum n = n1 + · · · + ns, where ni ∈ gi. It is then easy to see that n is regular if and only if each ni
is regular in g; and n is subregular if and only if some ni is subregular in gi, and all other nj are regular
nilpotent elements. In particular, when k is algebraically closed there are exactly s G(k)-orbits of subregular
nilpotent elements, and there is a canonical bijection between these and the set of connected components of
the Dynkin diagram of g.

Now suppose that θ is a stable involution of G. Before we continue, it is helpful to note the following.

Lemma 2.18. Let x ∈ g1. Then dim zg0(x) = (dim zg(x)− rankG)/2, and dimG0 · x = (dimG · x)/2.

Proof. This follows from [KR71, Proposition 5].

Our next goal is to show that g1 contains subregular nilpotent elements. We use a trick based on
the Kostant-Sekiguchi correspondence, which we now recall:

Theorem 2.19. Suppose that k = R and that G is semisimple. Let τ be a Cartan involution of G. Then
each of the following three sets is in canonical bijection with the others:

1. The set of nilpotent G(R)◦-orbits in g.

2. The set of nilpotent Gτ (C)◦-orbits in gτ=−1 ⊗R C.

3. The set of nilpotent G0(C)-orbits in g1 ⊗R C.

(Here we write G(R)◦ and Gτ (C)◦ for the connected components of these groups in the analytic topology.)
The map G(R)◦ ·X 7→ Gτ (C)◦ ·X ′ satisfies G(C) ·X = G(C) ·X ′.

Proof. The bijection between the first two sets is constructed in [CM93, §9.5]. The existence of the bijection
between the latter two follows since τ is a stable involution, and all such are conjugate over C.

Corollary 2.20. Suppose that k is algebraically closed. Then g1 contains subregular nilpotent elements.
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Proof. This is implied by Theorem 2.19 since, if k = R and g is split, all conjugacy classes of nilpotent
elements have an element defined over k.

To obtain more information, we must argue on a case by case basis. For the rest of this section, we
assume that G is adjoint, and that g1 contains a regular nilpotent element. We first recall the following (see
[Slo80b, §7.5, Lemma 4]).

Proposition 2.21. Suppose that G is simple and simply laced, and let x ∈ g be a subregular nilpotent
element. Then ZG(x) is the semi-direct product of a unipotent group with either Gm (if G is type Ar) or the
trivial group (if G is of type Dr or Er). In particular, this centralizer is connected.

Corollary 2.22. Suppose that k is algebraically closed, and that G is of type Dr or Er. Then (Gθ/G0)(k)
acts simply transitively on the set of G0(k)-orbits of subregular nilpotent elements of g1.

Proof. Let x be a subregular nilpotent element. Then ZGθ (x) = ZG0(x), by Proposition 2.21. It therefore
suffices to show that #(Gθ/G0)(k) is equal to the number of real subregular nilpotent orbits. This can be
accomplished, for example, by inspection of the tables in [CM93].

Proposition 2.23. Suppose that k is algebraically closed, and that G is of type Ar. Then there is a unique
G0(k)-conjugacy class of subregular nilpotent elements in g1.

Proof. We note that there when k = R, there is a unique real orbit of subregular nilpotents in g.

We now treat the case where k is not necessarily algebraically closed.

Proposition 2.24. The space g1 contains a subregular nilpotent element. In particular, we can find normal
sl2-triples (e, h, f) in g with e a subregular nilpotent element.

Proof. Let K denote a separable closure of k. It suffices to find a normal sl2-triple (e, h, f) in g⊗k K such
that e is subregular nilpotent and h ∈ g. For then the set of subregular elements is Zariski dense in gadh=2

1

(see [dG11, Proposition 7]) and our chosen field k is infinite.
Since g1 contains a regular nilpotent element, we may assume that G is equipped with a pinning

(T,B, {Xα}α∈R) and that θ is the involution of Lemma 2.12, constructed in terms of this pinning. In
particular, t0 = tθ ⊂ g0 is a split Cartan subalgebra of G0.

Let (e, h, f) be a subregular normal sl2-triple in g⊗kK. After conjugating by an element of G0(K),
we can assume that h lies in t0 ⊗k K ⊂ t⊗k K. Now we have α(h) ∈ Z for every root α, since h embeds in
an sl2-triple, and hence h lies in t0. The result follows.

Definition. We refer to a normal sl2-triple (e, h, f) with e subregular as a subregular normal sl2-triple.

Proposition 2.25. 1. Suppose that G is of type Dr or Er. Then all subregular nilpotent elements in g1

are Gθ(k)-conjugate.

2. Suppose that G is of type A2r. Then there is a bijection between k×/(k×)2 and the set of G0(k)-orbits
of subregular nilpotent elements in g1, given by sending d · (k×)2 to the orbit of the element (in the
notation of Example 2.2 above):

(f1 7→ f2 7→ f3 7→ . . . 7→ fn 7→ den, en 7→ en−1 7→ . . . 7→ e1, v 7→ 0).

3. Suppose that G is of type A2r+1. Then all subregular nilpotent elements in g1 are G0(k)-conjugate.

Proof. Let x ∈ g1 be a subregular nilpotent element. The first part follows since ZGθ (x) is a unipotent
group, hence has vanishing first Galois cohomology. To prove the second and third parts, we make an
explicit calculation using the results of Kawanaka [Kaw87]. Briefly, if (e, h, f) is a normal sl2-triple, let G0

denote the connected subgroup of G with Lie algebra g0 ∩ gadh=0. Then Kawanaka shows that ZG0(e) has
the form C nR , where R is connected unipotent and C = ZG0

(e) has reductive connected component. We
summarize the results of this calculation here.
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If g is of type A2r, a choice of subregular nilpotent x is the transformation given by the formula (in
the notation of Example 2.2):

f1 7→ f2 7→ f3 7→ . . . 7→ fn 7→ en 7→ en−1 7→ . . . 7→ e1, v 7→ 0.

If d ∈ k×, we define another element xd by the formula

f1 7→ f2 7→ f3 7→ . . . 7→ fn 7→ den, en 7→ en−1 7→ . . . 7→ e1, v 7→ 0.

One calculates that ZG0(e) is a semi-direct product of µ2 by a connected unipotent group, with Galois
cohomology isomorphic (via the Kummer isomorphism) to k×/(k×)2. With appropriate identifications the
element d ∈ k×/(k×)2 corresponds to the G0(k)-orbit of the element xd.

If g is of type A2r+1, then one calculates that ZG0(e) is connected unipotent, so has vanishing first
Galois cohomology.

Proposition 2.26. Suppose that k is algebraically closed. If G is of type Ar, D2r+1 or Er then the closure
of every regular nilpotent G0(k)-orbit in g1 contains every subregular nilpotent orbit.

If G is of type D2r, then the closure of each regular nilpotent G0(k)-orbit contains exactly 3 subregular
nilpotent orbits, and each subregular nilpotent orbit is contained in the closure of exactly 3 regular nilpotent
orbits.

Proof. The only cases needing proof are A2r+1, Dr, and E7. The case of A2r+1 follows immediately, since
(Gθ/G0)(k) permutes the regular nilpotent orbits. The cases of Dr and E7 follow from the descriptions given
in the works [̄DL03] and [̄Dok01], respectively.

3 Subregular curves

For the rest of this paper, we fix the following notation. We suppose that G is a split simple group over k, of
type Ar, Dr, or Er. We fix also a stable involution θ of G and a regular nilpotent element E ∈ g1. We recall
that the pair (θ,E) is determined uniquely up to Gad(k)-conjugacy. In this section we construct a family of
curves over the categorical quotient g1�G0. The construction is based on the notion of transverse slice to
the action of an algebraic group, which we now briefly review.

3.1 Transverse slices

For the moment, let H be an algebraic group acting on a variety X, both defined over k. Let x ∈ X(k). By
a transverse slice in X to the orbit of x (or more simply, a transverse slice at x), we mean a locally closed
subvariety S ⊂ X satisfying the following:

1. x ∈ S(k).

2. The orbit map H × S → X, (h, s) 7→ h · s, is smooth.

3. S has minimal dimension with respect to the above properties.

It is easy to show that if X is smooth, then transverse slices of the above kind always exist and have
dimension equal to the codimension of the orbit H · x in X. (Here we use that k is of characteristic zero;
in general, one should assume also that the orbit maps are separable.) An important property of transverse
slices is the following slight extension of [Slo80b, §5.2, Lemma 3]:

Proposition 3.1. Let H be an algebraic group acting on a smooth variety X. Let S1, S2 be transverse slices
at points x1, x2 ∈ X(k), respectively, where x1, x2 lie in the same H(k)-orbit of X. Let f : X → Y be an
H-equivariant morphism, where H acts trivially on Y . Then:

• S1, S2 are étale locally isomorphic over Y in the sense that there exists a variety S over Y with a
geometric point s and étale Y -morphisms φ1 : S → S1, φ2 : S → S2 with φ1(s) = x1, φ2(s) = x2.
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• Suppose further that k = C. Then S1(C), S2(C) are locally isomorphic over Y (C) in the analytic
topology. Furthermore, there exist arbitrarily small neighborhoods U1 ⊂ S1(C), U2 ⊂ S2(C) of x and
analytic isomorphisms ψ : U1 → U2 over Y (C) such that the induced maps U1 ↪→ X(C), U1

∼= U2 ↪→
X(C) are homotopic over Y (C).

An important special case where we can construct transverse slices explicitly is the case of a reductive
group H acting via the adjoint representation on its Lie algebra h. Let (e, h, f) be an sl2-triple in h.

Proposition 3.2. S = e+ zh(f) is a transverse slice to the action of H at every point of S. In other words,
the multiplication map µ : H × S → h is everywhere smooth.

The proof is based on the following construction of Slodowy. First, we may decompose h = ⊕iVi into
a direct sum of irreducible submodules under the adjoint action of the sl2 spanned by e, h, and f . We let
λ : Gm → H be the cocharacter with dλ(1) = h. Let p1, . . . , pr be algebraically independent homogeneous
polynomials generating the ring of invariants k[h]H . (We remind the reader that the adjoint representation
of H on h is coregular, so such elements certainly exist.) We suppose that they have degrees d1, . . . , dr. We
suppose that Vi has dimension mi, and choose for each i a basis vector vi of the lowest weight space of Vi.

A general element v ∈ S can be written in the form v = e+
∑
i xivi, and we have

λ(t)(v) = t2e+
∑
i

t1−mixivi, tv = te+
∑
i

txivi

and
pi(λ(t)(v)) = pi(v), pi(tv) = tdipi(v).

Defining an action ρ of Gm on h by ρ(t)(v) = t2λ(t−1)(v), we see that S is ρ-invariant, and the ρ-action
contracts S to e. If we let Gm act on h�H by the square of its usual action, then the composite S ↪→ h→ h�H
becomes Gm-equivariant. In other words, writing w1, . . . , wn for the weights of the ρ-action on S, the
morphism S → h�H is quasi-homogeneous of type (d1, . . . , dr;w1, . . . , wn). The weights wi are given by the
formula wi = mi + 1.

Proof of Proposition 3.2. Define an action of Gm ×H on H × S by (t, g) · (k, s) = (gkλ(t), ρ(t)(s)), and let
Gm ×H act on h by (t, g) ·X = t2g(X). Then the map µ : H × S → h is equivariant for these actions, and
smooth in a neighborhood of H × {e} ⊂ H × S; since the Gm-actions are contracting, it follows that µ is
smooth everywhere.

Corollary 3.3. The composite S ↪→ h→ h�H is faithfully flat.

Proof. The composite H × S → S → h�H is equal to the composite H × S → h → h�H, which is a
composition of flat morphisms, hence flat (H × S → h is flat since we have just proved it to be smooth).
Since the second projection H × S → S is flat, S → h�H must also be flat.

The image is a Gm-stable open subset of h�H containing the origin, hence the whole of h�H. The
faithful flatness follows.

Let us now return to our group G with stable involution θ, and let (e, h, f) now denote a normal
sl2-triple. From the above, we see that there is a direct sum decomposition g = [e, g]⊕zg(f). Both summands
are θ-stable so we deduce that g1 = [e, g0]⊕ zg(f)1, where by definition zg(f)1 = zg(f) ∩ g1. It follows that
X = e+ zg(f)1 is a transverse slice at e ∈ g1, and the contracting Gm-action on e+ zg(f) leaves X invariant.
Identical arguments to those above now prove the following.

Proposition 3.4. The map µ : G0 ×X → g1 is smooth and the composite X ↪→ g1 → g1�G0 is faithfully
flat.

We now examine two special cases of this construction in more detail.
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The regular sl2 and the Kostant section

Let d1, . . . , dr denote the degrees of algebraically independent homogeneous generators of the polynomial ring
k[g1]G0 . We let (E,H,F ) be the unique normal sl2-triple containing the element E, and set κ = E+ zg(F )1.
We call κ the Kostant section. It has the following remarkable properties.

Lemma 3.5. The composite κ ↪→ g1 → g1�G0 is an isomorphism. Every element of κ is regular. In
particular, the map g1(k) → (g1�G0)(k) is surjective, and if k is algebraically closed then κ meets every
G0(k)-conjugacy class of regular semisimple elements.

Proof. It is well-known that in this case the map κ→ g1�G0 is quasi-homogeneous of type (2d1, . . . , 2dr; 2d1, . . . , 2dr),
cf. [Pan05, proof of Theorem 3.3]. Lemma 3.13 below now implies that it must be an isomorphism. The
remaining claims are immediate.

A subregular sl2

Now fix a normal subregular sl2-triple (e, h, f), and set X = e+ zg(f)1. (Note that if G is of type A1, then
there is no non-zero subregular nilpotent element, and therefore no subregular sl2-triple, since by definition
an sl2-triple consists of 3 linearly independent elements. In this case, we just take X = g1.) Recall that we
have defined an action of Gm on X.

Proposition 3.6. We have dimX = r+ 1. We write w1, . . . , wr+1 for the weights of the Gm-action. After
re-ordering, we have wi = 2di for i = 1, . . . , r − 1. The 2di, i = 1, . . . , r − 1 and wr and wr+1 are given in
the following table:

2d1 2d2 2d3 . . . . . . 2dr−2 2dr−1 2dr wr wr+1

Ar 4 6 8 . . . . . . 2r − 2 2r 2r + 2 2 r + 1
Dr 4 8 12 . . . . . . 4r − 8 2r 4r − 4 4 2r − 4
E6 4 10 12 16 18 24 6 8
E7 4 12 16 20 24 28 36 8 12
E8 4 16 24 28 36 40 48 60 12 20

Proof. The proof is by explicit calculation, along similar lines to the proof of [Slo80b, §7.4, Proposition
2]. We describe the method. If V ⊂ g is a θ-stable simple sl2-submodule, then its highest weight space is
θ-invariant. Moreover, the eigenvalue of θ on this highest weight space determines the action of θ on every
weight space. We can calculate a decomposition of g into a direct sum of θ-stable simple sl2-modules by
calculating the dimension of each weight space of h, and the trace of θ on each weight space. This can be
accomplished by using the explicit θ constructed in Lemma 2.12 and a list of the roots of g. We can then
fill in the table by reading off the lowest weight spaces which have θ-eigenvalue equal to -1.

Example. We illustrate the method of proof in the case that G is of type A2. Then a choice of h is

h =

 1 0 0
0 0 0
0 0 −1

 ,

in the notation of Example 2.2. We can write the weights of h on g with multiplicity as follows:

−2 0 2
−1 1
−1 1

0

Thus g decomposes as a direct sum V (3)⊕ V (2)⊕ V (2)⊕ V (1), where V (i) denotes the unique isomorphism
class of sl2-modules of dimension i. In this case −1 is an eigenvalue of θ of multiplicity 1 on each weight
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space. (Recall that −θ is reflection in the anti-diagonal.) We can now decorate each weight space with a +
or −, according to its θ-eigenvalue:

−2− 0+ 2−

−1+ 1−

−1− 1+

0−

It follows that dim zg(f)1 = 3, as expected, and the eigenvalues of h on zg(f)1 are −2,−1 and 0, hence the
weights on e+ zg(f)1 are 2, 3, and 4.

Henceforth we write g1�G0 = B, and ϕ : X → B for the restriction of the quotient map π : g1 →
g1�G0 to X. The main result of this section is the following.

Theorem 3.7. The fibers of ϕ are reduced curves. The central fiber X0 = ϕ−1(0) has a unique singular point
which is a simple singularity of type Ar, Dr, Er, corresponding to that of G. We can choose homogeneous
co-ordinates (pd1 , . . . , pdr ) on B and (pd1 , . . . , pdr−1 , x, y) on X such that the family X → B of curves is as
given by the following table:

G X
Ar y2 = xr+1 + p2x

r−1 + · · ·+ pr+1

Dr y(xy + pr) = xr−1 + p2x
r−2 + · · ·+ p2r−2

E6 y3 = x4 + y(p2x
2 + p5x+ p8) + p6x

2 + p9x+ p12

E7 y3 = x3y + p10x
2 + x(p2y

2 + p8y
2 + p14) + p6y

2 + p12y + p18

E8 y3 = x5 + y(p2x
3 + p8x

2 + p14x+ p20) + p12x
3 + p18x

2 + p24x+ p30.

(This means, for example, that when G is of type Ar, the relation pr+1 = y2 − (xr+1 + p2x
r−1 +

· · · + prx) holds on X.) The proof of Theorem 3.7 follows closely the work of Slodowy [Slo80b], with some
simplifications due to the fact that we work with curves, rather than surfaces. We begin with some general
considerations, and reduce to a case by case calculation using the invariant degrees of G.

The possibility of choosing co-ordinates as above is a consequence of the following lemma, which is
[Slo80b, §8.1, Lemma 2]:

Lemma 3.8. Let V,U be k-vector spaces of dimensions m,n respectively, on which Gm acts linearly. Let
φ : V → U be a morphism equivariant for these actions. Suppose that dφ0 has rank s and that Gm acts with
strictly positive weights on U and V .

Then there exist Gm-invariant decompositions V = V0 ⊕ W , U = U0 ⊕ W , dimW = s, and a
regular automorphism α of V such that φ ◦ α has the form (v0, w) 7→ (ψ(v0, w), w) for some morphism
ψ : V0 ⊕W → U0.

To apply this to the map ϕ : X → B, we need the following result.

Proposition 3.9. Let x ∈ X. Then dϕx has maximal rank r = rankG if and only if x is a regular element.
The map dϕ0 : TeX → T0B has rank r − 1.

Proof. Let p : g → g�G denote the adjoint quotient map. For any y ∈ g1, we have dpy(g0) = 0. This is
true if y is regular, since then g0 = [y, g1] ⊂ [y, g] is contained in the tangent space to the orbit G · y. It
then follows for any y ∈ g1, since the regular elements are dense. In particular, for any y ∈ X, we have
rank dpy = rank dπy = rank dϕy. The first part of the proposition now follows, since y ∈ g1 is regular if and
only if dpy has maximal rank.

For the second part, we remark that rank dpe = r − 1 if e is subregular nilpotent, by [Slo80b, §8.3,
Proposition 1].

We thus obtain a decomposition of affine spaces X = V0 ⊕W , B = U0 ⊕W , where dimW = r − 1,
dimV0 = 2, and dimU0 = 1. With respect to these decompositions we write ϕ : V0 ⊕W → U0 ⊕W in the
form ϕ(v0, w) = (ψ(v0, w), w).
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Recall that ϕ is Gm-equivariant of type (2d1, . . . , 2dr;w1, . . . , wr+1). By inspection of the tables
above, we have 2dr > wi, each i = 1, . . . , r + 1, and hence the weights occurring in W are 2d1, . . . , 2dr−1.
Moreover, the unique weight of U0 is given by 2dr and the weights of V0 are wr, wr+1. Let x, y be homogeneous
co-ordinates on V0 of weight wr and wr+1, respectively. It follows that X0 ⊂ V0 is cut out by a quasi-
homogeneous polynomial f(x, y) of type (2dr;wr, wr+1).

Proposition 3.10. After possibly making a linear change of variables, the polynomial f(x, y) is as given by
the following table.

G f(x, y)
Ar, r ≥ 1 y2 − xr+1

Dr, r ≥ 4 xy2 − xr−1

E6 y3 − x4

E7 y3 − x3y
E8 y3 − x5

Proof. We suppose first that k is algebraically closed. Then the induced map G0 ×X0 → π−1(0) is smooth,
since X is a transverse slice and this property is preserved under passage to fibers (see [Slo80b, §5, Lemma
2]). Since π−1(0) is smooth along the regular locus, X0 is generically smooth, hence reduced. We now
proceed by direct computation. Let us treat for example the case of Ar. Then f(x, y) is quasi-homogeneous
of type (2r + 2; 2, r + 1), where we suppose that the weights of x and y are 2 and r + 1, respectively.

Since f defines a reduced curve, it must have the form ay2 − bxr+1, with a, b non-zero constants.
After rescaling we may assume that f has the form given in the statement of the proposition. The same
argument works for the other cases as well.

Now suppose that k is not algebraically closed. The same argument suffices, except in the cases
A2r+1 and D2r. For example, in case A2r+1 one must rule out the possibility f(x, y) = y2 − ax2r+2, where
a ∈ k× is a non-square. But the natural action map G0 ×X0 → π−1(0) induces an injection on geometric
irreducible components, see Lemma 4.13 below. The irreducible components of π−1(0) are geometrically
irreducible, so it follows that the same must be true for X0, hence a must be a square. The same argument
works for the case of type D2r.

At this point we have identified the central fiber of ϕ with the desired curve. We will obtain the
identification over the whole of B via a deformation argument. Before doing this, we must determine the
singularities appearing in the other fibers of ϕ.

Proposition 3.11. Let t ∈ g1 be a semisimple element, and let b denote its image in B. Let D denote the
Dynkin diagram of ZG(t), and write it as a disjoint union D = D1 ∪ · · · ∪Dk of its connected components.

Let y ∈ ϕ−1(b)(k) = Xb(k) be a singular point. Then y is a simple singularity of type Di for some
i = 1, . . . , s.

Proof. We have an isomorphism

G0 ×ZG0 (t) (t+N (zg(t)1)) ∼= π−1(b),

induced by the map (g, t+ n) 7→ g · (t+ n). Let y have Jordan decomposition y = ys + yn. Without loss of
generality, we may suppose that k is algebraically closed and that ys = t. Then yn ∈ zg(t) is a subregular
nilpotent element. If we decompose [zg(t), zg(t)] = l1×· · ·× lk into a product of simple, θ-stable subalgebras
then yn has a decomposition yn = y1 + · · ·+ yk, where yi ∈ li is a nilpotent element. After re-numbering, we
can assume that y1 ∈ l1 is a subregular nilpotent element, and all of the other yi ∈ li are regular nilpotent.
Moreover, the restriction of θ to each li is a stable involution.

Now fix a transverse slice S1 to the ZG0(t)-orbit of y1 in l11. It then follows that S1 +
∑
j≥2 yj is a

transverse slice to the ZG0(t)-orbit of yn in N (l11) and hence X1 = t+S1 +
∑
j≥2 yj is a transverse slice at y

to the G0 action in π−1(b), as the above isomorphism makes π−1(b) into a fiber bundle over G0/ZG0(t) with
fiber N (zg(t)1).

On the other hand, we know that Xb is also a transverse slice at y to the G0 action in π−1(b). The
result now follows from Proposition 3.1 and Proposition 3.10.

15



3.2 Semiuniversal deformations and the proof of Theorem 3.7

We can now complete the proof of Theorem 3.7. There exists a semiuniversal deformation Ẑ → D̂ of the
central fiber X0 as a Gm-scheme, where Ẑ → D̂ is a morphism of formal schemes with underlying reduced
schemes given by X0 → Spec k, cf. [Slo80b, §2.7].

The proof of the theorem is based on the fact that, since X0 is given as the zero set of an explicit
polynomial f(x, y), Ẑ → D̂ admits a canonical algebraization Z → D which we can calculate explicitly and
then compare with X → B.

Proposition 3.12. Let f(x, y) be a polynomial in two variables, quasi-homogeneous of type (d;w1, w2).
Let X0 ⊂ A2 denote the closed subscheme defined by f , and suppose that X0 has an isolated singu-
larity at the origin. Then a semiuniversal Gm-deformation of X0 can be construction as follows: let
J = (∂f/∂x, ∂f/∂y) ⊂ k[x, y] denote the Jacobian ideal of f . Then k[x, y]/J is a finite-dimensional k-vector
space, and receives an action of Gm. Choose Gm-invariant polynomials g1(x, y), . . . , gn(x, y) projecting to a
k-basis of Gm-eigenvectors of k[x, y]/J . Now define

Z = {f + t1g1 + · · ·+ tngn = 0} ⊂ A2 × An,

and let Φ : Z → D denote the natural projection to the An factor.
Suppose that gi has weight ri, and let Gm act on ti by the character t 7→ td−ri . Then Φ is a

Gm-equivariant morphism, and the formal completion Φ̂ : Ẑ → D̂ of this morphism is a semiuniversal
Gm-deformation of X0.

Proof. See [Slo80b, §2.4].

Applying this to our fixed polynomial f , we obtain a family of curves Z → D, where D is an affine
space of dimension n, and a Cartesian diagram of formal schemes:

X̂

��

// Ẑ

��
B̂ // D̂

An elementary calculation shows that in each case Ar, Dr, or Er, we have n = r and Z → D is the family
of curves appearing in the statement of Theorem 3.7. The morphism B̂ → D̂ is given by power series and
respects the Gm-actions on either side, which both have strictly positive weights; it follows that these power
series are in fact polynomials, so this morphism has a canonical algebraization. We obtain a second Cartesian
diagram:

X

��

// Z

��
B // D

Now the bottom horizontal arrow is a Gm-equivariant polynomial map between affine spaces of the same
dimension and the weights on the domain and codomain are the same. We now apply the following lemma,
which is [Slo80b, §8.1, Lemma 3]:

Lemma 3.13. Let Gm act on affine spaces V,U of dimension n, and let φ : V → U be an equivariant
morphism. Suppose that:

• Gm acts on V and U with the same strictly positive weights.

• The central fiber φ−1(0) is zero dimensional.

Then φ is an isomorphism.

We must verify that the second condition holds. If b ∈ B is mapped to 0 ∈ D, then Xb
∼= X0.

Proposition 3.11 implies that all singularities in the non-central fibers of ϕ are simple singularities belonging
to simply laced root systems of rank strictly less than r, and so we must have b = 0. This completes the
proof of Theorem 3.7.
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3.3 A lemma

The results of this section will be used later. Let S = e+ zg(f), and let τ denote the involution of S induced
by −θ. Thus S is an affine space of dimension r + 2, and we have Sτ = X.

Lemma 3.14. We can choose global co-ordinates z1, . . . , zr+2 on S, u1, . . . , ur on B such that z1, . . . , zr+1

are fixed by τ , τ(zr+2) = −zr+2, and such that the following holds: the morphism X → B is given by the
formula

(z1, . . . , zr+1) 7→ (z1, . . . , zr−1, f(z1, . . . , zr+1))

for some polynomial function f , and the morphism S → B is given by the formula

(z1, . . . , zr+2) 7→ (z1, . . . , zr−1, f(z1, . . . , zr+1) + z2
r+2).

Proof. We recall that there is a contracting action of Gm on S, and that this action sendsX to itself. Applying
Lemma 3.8, we see that we can find Gm and τ -invariant decompositions S = V0 ⊕ V1 ⊕ U , B = U0 ⊕ U
such that the map S → B is given by (v0, v1, u) 7→ (ψ(v0, v1, u), u) for some Gm-equivariant morphism
ψ. Moreover, τ acts trivially on V0 ⊕ U and as −1 on V1. We have dimV0 = 2, dimV1 = dimU0 = 1,
dimU = r − 1. Moreover, ψ is quasi-homogeneous of some degree.

We choose co-ordinates as follows: let z1, . . . , zr−1 be arbitrary linear co-ordinates on U , zr, zr+1

co-ordinates which are eigenfunctions for the Gm-action, and zr+2 an arbitrary linear co-ordinate on V1.
Then [Slo80b, §7.4, Proposition 2] implies that zr+2 has degree equal to half the degree of ψ. It follows that
we must have ψ(v0, v1, u) = ψ(v0, 0, u) + z2

r+2, after possibly rescaling co-ordinates. (The coefficient of z2
r+2

must be non-zero since S0 has a unique isolated singularity.)

Corollary 3.15. Let b ∈ B(k), and let t ∈ π−1(b)(k) be a semisimple element. Then there is a bijection
between the connected components of the Dynkin diagram of ZG(t) and the singularities of the fiber Xb, which
takes each (connected, simply laced) Dynkin diagram to a singularity of corresponding type.

Proof. Lemma 3.14 implies that the singular locus of Sb is equal to the singular locus of Xb. We have seen
that the singular points of Xb are precisely the subregular elements of Xb. It therefore suffices to show
that Xb meets each G-orbit of subregular elements in p−1(b) exactly once, or equivalently that Sb meets
each G-orbit of subregular elements in p−1(b) exactly once. This follows immediately from [Slo80b, §6.6,
Proposition 2] and the remark following.

4 Jacobians and stabilizers of regular elements

We continue with the notation of the previous section. Thus G is a split simple group of type Ar, Dr, or
Er, θ is a stable involution of G, and E ∈ g1 is a regular nilpotent element. The pair (θ,E) is uniquely
determined up to Gad(k)-conjugacy. This data determines a regular normal sl2-triple (E,H,F ). We choose
further a subregular normal sl2-triple (e, h, f). Our chosen sl2-triples give two special transverse slices: first,
the Kostant section κ = E + zg(F )1, which is a section of the categorical quotient π : g1 → B by regular
elements. Second, a transverse slice to the G0-orbit of e, X = e + zg(f)1. The fibers of the induced map
ϕ : X → B are reduced connected curves.

In this section we shall write grs
1 for the open subvariety of regular semisimple elements, and Brs for

its image in B. For any variety Z → B we will write Zrs = Z ×B Brs. Thus the morphism Xrs → Brs is a
family of smooth curves.

Homology

Fix a separable closure K of k. In the following if X is a k-scheme of finite type, we will write H1(X,F2)
for H1

ét(X ⊗k K,F2)∗, the dual of the first étale cohomology of X ⊗k K. This is a finite group, and receives
an action of the Galois group Gal(K/k).
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Suppose that A is a finite group scheme over k, killed by 2, and that Y → X is an A-torsor. This
defines a class in H1

ét(X ⊗k K,A ⊗k K) ∼= Hom(H1(X,F2), A(K)). Viewing H1(X,F2) as a finite group
scheme over k, this class defines a homomorphism H1(X,F2)→ A.

Now suppose given an embedding K ↪→ C. Then there is a canonical isomorphism H1(X,F2) ∼=
H1(X(C),F2) with the topological homology. If X(C) is connected and x ∈ X(C), then the homomorphism
π1(X(C), x) → A(C) induced by the torsor Y → X factors through the Hurewicz map π1(X(C), x) →
H1(X(C),F2) and the induced map H1(X(C),F2)→ A(C) agrees with the previous one, up to applying the
comparison isomorphism. In particular, this map does not depend on the choice of basepoint.

If X is a geometrically connected smooth projective curve over k, then there is a canonical isomor-
phism H1(X,F2) ∼= JX [2], where JX denotes the Jacobian of the curve X.

4.1 Stabilizers of regular elements

Let greg
1 ⊂ g1 denote the open subset of regular elements. We write Z → greg

1 for the stabilizer scheme,
defined as the equalizer of the following diagram:

G0 × greg
1

(g,x)7→g·x //

(g,x) 7→x
// greg

1

Proposition 4.1. 1. Z is a commutative group scheme, quasi-finite over greg
1 .

2. Z admits a canonical descent to B. In particular, for any two x, y ∈ greg
1 with the same image in B,

there is a canonical isomorphism ZG0(x) ∼= ZG0(y).

Proof. The first part can be checked on geometric fibers.
For the second part, we show that κ∗Z is the sought-after descent. The map (Gad)θ × κ → greg

1

is faithfully flat. In fact, it is étale, and [KR71, Theorem 7] shows it to be surjective. It is now easy to
construct an isomorphism between π∗κ∗Z and Z over this faithfully flat cover. This defines a morphism of
descent data since Z is commutative.

We henceforth write Z for the descent to a commutative group scheme over B. Consider the orbit
map µrs : G0 × κrs → grs

1 . This map is finite and étale, and we can form the pullback square:

Γ //

��

G0 × κrs

��
Xrs // grs

1 .

Concretely, for b ∈ Brs(k), Γb → Xb is the Zb-torsor given by

Γb = {g ∈ G0 | g · κ(b) ∈ Xb}.

We thus obtain a Galois-equivariant map H1(Xb,F2)→ Zb.

Theorem 4.2. Suppose that G is simply connected. Then this map is an isomorphism.

Example. Let us first illustrate the theorem in the case G = SL2. We can take θ to be conjugation by the

matrix
(

1 0
0 −1

)
. Then we have

g0 =
{(

a 0
0 −a

)}
and g1 =

{(
0 x
y 0

)}
.

The regular nilpotents in g1 are those with x or y zero but not both, and the only subregular nilpotent element
in g1 is zero. The quotient map g1 → g1�G0

∼= A1 sends the above matrix to xy ∈ A1. In particular X = g1

in this case, with the smooth fibers of the map ϕ : X → g1�G0 isomorphic to the punctured affine line.
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The group G0 is isomorphic to Gm, and t ∈ Gm acts by

t ·
(

0 x
y 0

)
=
(

0 t2x
t−2y 0

)
.

The stabilizer of any regular semisimple element is µ2 ⊂ Gm, and it is clear that for any b ∈ A1 − {0}, the
induced map H1(Xb,F2)→ µ2 is an isomorphism.

We now consider the proof of the theorem in the general case. It suffices to prove the theorem when
k = C, which we now assume. In what follows, we simplify notation by identifying all varieties with their
complex points. Fix a choice c of Cartan subspace, and let C ⊂ G denote the corresponding maximal torus.

Now choose x ∈ c, and let b = π(x) ∈ B. Let L = ZG(x) and l = LieL. We write L1 for the derived
group of ZG(x), which is simply connected, since G is. In the following, given y ∈ c, we shall write g1,y for
the fiber of the map g1 ×c/W c→ c above y, and l1,y for the fiber of the map l1 ×c/W (x) c→ c above y.

Lemma 4.3. Let y ∈ crs. Then there is a commutative diagram

H1(l1,y,F2) //

��

ZL1
0
(y)

��
H1(g1,y,F2) // ZG0(y)

Proof. This follows from the existence of a commutative diagram

L1
0

//

��

l1,y

��
G0

// g1,y,

where the top row is a ZL1
0
(y)-torsor and the bottom row is a ZG0(y)-torsor. The vertical arrows are

compatible with the homomorphism ZL1
0
(y)→ ZG0(y).

Suppose that Xb has a singular point u = us + un. Choose g ∈ G0 such that g · us = x ∈ c, and set
v = g · u. The Jordan decomposition of v is v = vs + vn = x + vn. Then vn ∈ l1 is a subregular nilpotent,
corresponding to a connected component D(vn) of the Dynkin diagram of L. We choose a normal subregular
sl2-triple (vn, t, w) in l containing vn, and define X1 = vn + zl(w)1. X1 is a transverse slice to the L0-orbit
of v in l1, by Proposition 3.4.

Proposition 4.4. The dimension of X1 is rankG+ 1. X1 ⊂ g1 is a transverse slice to the G0-orbit of v in
g1.

Proof. X1 has the correct dimension to be a transverse slice to the orbit of a subregular element, so it suffices
to check the infinitesimal condition [v, g0] ∩ zl(w)1 = 0. In fact, we show that [v, g] ∩ zl(w) = 0. Define

V =
⊕
α∈Φc
α(x)6=0

gα.

Then V is the orthogonal complement of l with respect to the Killing form of g, and so is l-invariant. It
follows that [v, g] = [v, V ]⊕ [vn, l] ⊂ V ⊕ [vn, l]. We thus have [v, g] ∩ zl(w) = [vn, l] ∩ zl(w) = 0.

Proposition 4.5. For all sufficiently small open neighborhoods U of u in X, there exists an open neighbor-
hood U0 of b ∈ c/W such that for all y ∈ π−1(U0) ∩ c there is a commutative diagram

H1(X1
y ,F2) //

��

H1(l1,y,F2)

��
H1(Uy,F2) // H1(g1,y,F2).
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Proof. If U is a sufficiently small open set around u in X, then by Proposition 3.1 we can find an isomorphism
ψ between U and an open neighborhood V of v in X1 over c/W , such that ψ(u) = v and the two induced
maps V ↪→ l1 ↪→ g1 and V ∼= U ↪→ g1 are homotopic over c/W . After possibly shrinking U , we can assume
that the image of V in c/W (x) maps injectively to c/W .

In particular, for c sufficiently close to b we have a commutative diagram

H1(Vc,F2) //

��

H1(l1,c,F2)

��
H1(Uc,F2) // H1(g1,c,F2).

To obtain the statement in the proposition, we note that for c sufficiently close to b and y ∈ π−1(c) ∩ c, we
can find an open subset V ′c ⊂ Vc such that the inclusion V ′c ⊂ X1

y induces an isomorphism on H1. (Use the
contracting Gm-action.) This completes the proof.

Corollary 4.6. With hypotheses as in Proposition 4.5, suppose in addition that y ∈ crs. Let C(x) ⊂ L1 be
the maximal torus with Lie algebra c ∩ l1. Then there is a commutative diagram:

H1(X1
y ,F2)

��

// X∗(C(x))/2X∗(C(x))

��
H1(Xy,F2) // X∗(C)/2X∗(C).

Proof. Note that there is an isomorphism

ZG0(y) ∼= X∗(C)/2X∗(C),

and similarly for ZL1
0
(y). The corollary now follows from Proposition 4.5, on noting that the map Uy → g1,y

factors through the inclusion Xy ⊂ g1,y.

To go further, it is helpful to compare this with another description of the homology of the curves
Xy.

Theorem 4.7. 1. The map Xrs → crs/W is a locally trivial fibration (in the analytic topology), and so
the homology groups H1(Xc,F2) for c ∈ Brs fit into a local system H1(X) over crs/W . The pullback
of this local system to crs is constant.

2. Suppose x ∈ c has been chosen so that α(x) = 0 for some α ∈ Φc, and the only roots vanishing on x are
±α. Then for each y ∈ crs there is a vanishing cycle γα ∈ H1(Xy,F2), associated to the specialization
Xy → Xx. This element defines a global section of the pullback of H1(X) to crs.

3. Let Rc ⊂ Φc denote a choice of root basis. Then for each y ∈ crs the set {γα |α ∈ Rc} is a basis of
H1(Xy,F2).

It seems likely that this description of the local system H1(X) is well-known to experts, but we have
not been able to find an adequate reference in the literature. The proof of this theorem is given in §4.5
below. See in particular Lemma 4.18 for the definition of the vanishing cycle γα.

Now suppose x ∈ c has been chosen so that α(x) = 0 for some α ∈ Φc, and the only roots vanishing
on x are ±α. Then the derived group of L is isomorphic to SL2. By Corollary 3.15, the fiber Xx has a
unique singularity of type A1. For y ∈ crs sufficiently close to x, we have by Corollary 4.6 a diagram

H1(X1
y ,F2) //

��

X∗(C(x))/2X∗(C(x))

��
H1(Xy,F2) // X∗(C)/2X∗(C).
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It follows from the calculations in Example 4.1 for G = SL2 that the top arrow is an isomorphism, while
the right vertical arrow has image equal to the image of the set {0, α∨} in X∗(C)/2X∗(C). Moreover, it
is clear from the proof of Proposition 4.5 and the definition of the vanishing cycle (cf. Lemma 4.18 below)
that the image of the non-trivial element of H1(X1

y ,F2) in H1(Xy,F2) is exactly the vanishing cycle γα.
Applying the commutativity of the above diagram, we deduce that the image of γα in X∗(C)/2X∗(C) is just
α∨ mod 2X∗(C). Since γα comes from a global section of the local system H1(X), we deduce the result for
any y ∈ crs, not just y sufficiently close to x.

It follows that for any y ∈ crs, the map

H1(Xy,F2)→ ZG0(y) ∼= X∗(C)/2X∗(C)

takes a basis of H1(Xy,F2), namely the set of γα as α ranges over a set of simple roots, to a basis of
X∗(C)/2X∗(C), namely the corresponding set of simple coroots. This completes the proof of the theorem.

4.2 The case of G adjoint

We now introduce a compactification of the family X → B of affine curves.

Lemma 4.8. ϕ : X → B admits a compactification to a family Y → B of projective curves. Endow Y \X
with its reduced closed subscheme structure. Then Y \X is a disjoint union of smooth non-intersecting open
subschemes P1, . . . , Ps, each of which maps isomorphically onto B. Moreover, Y → B is smooth in a Zariski
neighborhood of each Pi. For each b ∈ Brs(k), Yb is the unique smooth projective curve containing Xb as a
dense open subset. Each irreducible component of Y0 meets exactly one of the sections Pi.

Proof. We take the projective closure of the equations given in Theorem 3.7, and blow up any singularities
at infinity. An easy calculation shows in each case that the induced family Y → B satisfies the required
properties.

Let us now suppose that G is adjoint, and let Gsc → G denote its simply connected cover. We write
Zsc for the stabilizer scheme of Gsc over B. The natural map Zsc → Z is fiberwise surjective. Fix b ∈ Brs(k).
In §4.1, we saw that the inclusion Xb ↪→ g1,b induces an isomorphism H1(Xb,F2) → Zsc

b of finite k-groups.
On the other hand, we have a surjection H1(Xb,F2)→ H1(Yb,F2).

Theorem 4.9. The composite
H1(Xb,F2)→ Zsc

b → Zb

factors through this surjection, and induces an isomorphism H1(Yb,F2) ∼= Zb.

By Corollary 2.11, there is a canonical alternating pairing on Zsc
b , with radical equal to the kernel

of the map Zsc
b → Zb. On the other hand, there is a pairing (·, ·) on H1(Xb,F2), namely the intersection

product, whose radical is exactly the kernel of the map H1(Xb,F2)→ H1(Yb,F2). The theorem is therefore
a consequence of the following result.

Theorem 4.10. The isomorphism H1(Xb,F2) ∼= Zsc
b preserves these alternating pairings.

Corollary 4.11. There is an isomorphism JYb [2] ∼= Zb of finite k-groups, that takes the Weil pairing to the
pairing on Zb defined in Corollary 2.11.

Proof of Theorem 4.10. We can again reduce to the case k = C. Fix a choice of Cartan subspace c, and
let C ⊂ Gsc be the corresponding maximal torus. Choose y ∈ crs. Let γα ∈ H1(Xy,F2) be the element
defined in Theorem 4.7. The theorem will follow from the following statement: fix a root basis Rc of Φc,
and let α, β ∈ Rc be distinct roots. Then (γα, γβ) = 1 if α, β are adjacent in the Dynkin diagram of g, and
(γα, γβ) = 0 otherwise. We split the rest of the proof into two cases, according to these possibilities.
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Case 1

If α, β are distinct adjacent roots, then we can choose x ∈ c such that the elements of Φc vanishing on x are
exactly the linear combinations of α and β. Let L = ZGsc(x) and L1 = Lder. Then L1 ∼= SL3, and the root
system Φc(x) ⊂ Φc is spanned by α and β. Moreover, we have by Corollary 4.6 for all y ∈ crs sufficiently
close to x a commutative diagram

H1(X1
y ,F2)

��

// X∗(C(x))/2X∗(C(x))

��
H1(Xy,F2) // X∗(C)/2X∗(C),

where C(x) ⊂ L1 is the maximal torus with Lie algebra c ∩ l1. We know that the horizontal arrows are
isomorphisms, and the vertical arrows are injective. The vertical arrows preserve the corresponding pairings.

Now, both of the objects in the top row of the above diagram are 2-dimensional F2-vector spaces, and
their corresponding pairings are non-degenerate. (This is easy to see: the curve X1

y is a smooth affine curve
of the form y2 = x3 + ax + b.) There is a unique non-degenerate alternating pairing on any 2-dimensional
F2-vector space, so we deduce that (γα, γβ) = 1.

Case 2

If α, β are distinct roots which are not adjacent in the Dynkin diagram of g, then we can choose x ∈ c such
that the roots vanishing on x are exactly the linear combinations of α and β. Let L = ZG(x) and L1 = Lder.
Then L1 ∼= SL2 × SL2, and Xy has exactly two singularities, each of type A1. We can choose disjoint open
neighborhoods U1, U2 of these singularities in X such that for each y ∈ crs suffciently close to x, the map
H1(U1,y ∪ U2,y,F2) → H1(Xy,F2) is injective and has image equal to the span of γα and γβ . We see that
these homology classes can be represented by cycles contained inside disjoint open sets of Xy. Therefore
their intersection pairing is zero, and the theorem follows.

4.3 A parameterization of orbits

We suppose again that k is a general field of characteristic 0. Before stating our last main theorem, we
summarize our hypotheses. We fix the following data:

• A split simple adjoint group G over k, of type Ar, Dr, or Er.

• A stable involution θ of G and a regular nilpotent element E ∈ g1.

• A choice of subregular normal sl2-triple (e, h, f).

In terms of these data, we have defined:

• The categorical quotient B = g1�G0.

• The Kostant section κ ⊂ g1.

• A family of reduced connected curves X → B.

• A family of projective curves Y → B containing X as a fiberwise dense open subset.

• A stabilizer scheme Z → B whose fiber over b ∈ B(k) is isomorphic to the stabilizer of any regular
element in g1,b.

• For each b ∈ Brs(k), a natural isomorphism JYb [2] ∼= Zb, that takes the Weil pairing to the non-
degenerate alternating pairing on Zb defined in Corollary 2.11.
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Proposition 4.12. For each b ∈ Brs(k), there is a bijection

g1,b(k)/G0(k) ∼= ker
(
H1(k, JYb [2])→ H1(k,G0)

)
,

which takes the orbit of κb to the distinguished element of H1(k, JYb [2]).

Proof. Let K be a separable closure of k. We recall that if H is an algebraic group over k which acts on a
variety X, and H(K) acts transitively on X(K), then given x ∈ X(k) there is a bijection

X(k)/H(k) ∼= ker
(
H1(k, ZH(x))→ H1(k,H)

)
,

under which the H(k)-orbit of x is mapped to the distinguished element, cf. [GB, Proposition 1]. We apply
this with H = G0, X = g1,b, and base point x = κb ∈ g1,b(k) induced by the Kostant section. The result
follows on using the identification ZH(x) ∼= JYb [2] of Theorem 4.9.

To go further we want to interpret the relative position of the nilpotent elements E and e geomet-
rically.

Lemma 4.13. There are bijections between the following sets:

1. The set of irreducible components of X0.

2. The set of G0-orbits of regular nilpotent elements in g1 containing the G0-orbit of e in their closure.

3. The set of connected components of Y \X.

Proof. The map µ0 : G0 × X0 → N (g1) is flat, and so has open image. This image therefore contains all
regular nilpotent G0-orbits whose closure meets e. On the other hand, one checks using Proposition 2.26
that in each case that the number of regular nilpotent G0-orbits containing e in their closure is equal to the
number of irreducible components of X0. We can therefore define a bijection between the first two sets by
taking an irreducible component of X0 to the G0-orbit of any point on its smooth locus.

We write Y \ X = P1 ∪ · · · ∪ Ps as a disjoint union of open subschemes, each of which maps
isomorphically onto B. By Lemma 4.8, each irreducible component of Y0 meets a unique section Pi. We
define a bijection between the first and third sets above by taking an irreducible component of X0 to the
unique section Pi meeting its closure in Y0.

We come now to our main theorem. We choose a section P ∼= B inside Y \X, and we suppose that
E corresponds under the bijection of Lemma 4.13 to the unique component of X0 whose closure in Y0 meets
P . For each b ∈ Brs(k), Pb ∈ Yb(k) defines an Abel-Jacobi map fPb : Yb ↪→ JYb . (For the definition of this
map, see [Mil86, §2].)

Theorem 4.14. For every b ∈ Brs(k), there is a commutative diagram, functorial in k, and depending only
on e up to G0(k)-conjugacy:

Xb(k) ι //

g

��

g1,b(k)/G0(k)

γ

��
JYb(k) δ // H1(k, JYb [2]).

The arrows in this diagram are defined as follows:

• ι is induced by the inclusion Xb ↪→ g1,b.

• g is the restriction of the Abel-Jacobi map fPb to Xb ⊂ Yb.

• δ is the usual 2-descent map in Galois cohomology associated to the exact sequence

0 //JYb [2] //JYb
[2] //JYb //0.
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• γ is the classifying map of Proposition 4.12.

Proof. We think of the group H1(k, JYb [2]) as classifying JYb [2]-torsors over k. With b as in the theorem, let
Eb = [2]−1fPb(Yb) ⊂ JYb . We write jb : Eb → Yb for the natural map. This is a JYb [2]-torsor over Yb, and
the composite δ ◦ g sends a point Q ∈ Xb(k) to the class of the torsor j−1

b (Q) ⊂ Eb.
On the other hand, we have constructed in §4.1 a JYb [2]-torsor Γb → Xb, which extends uniquely to

a torsor hb : Db → Yb, by Theorem 4.9. The composite γ ◦ ι sends a point Q ∈ Xb(k) to the class of h−1
b (Q).

It follows from [Mil86, Proposition 9.1] that the two covers Db → Yb and Eb → Yb become isomorphic as
JYb [2]-torsors after extending scalars to a separable closure of k. To prove the theorem, it therefore suffices
to prove that Db and Eb are isomorphic as JYb [2]-torsors over Yb, before extending scalars. It even suffices
to prove that h−1

b (Pb) is always the split torsor, or in other words that h−1
b (Pb)(k) is not the empty set.

Let µ : G0×κ→ g1 denote the orbit map, and let X ′ denote the intersection of X with the image of
µ. Because of the compatibility between E and P , the subset X ′ ∪ P of the underlying topological space of
Y is open; let Y ′ denote the corresponding open subscheme. Then Y ′ contains a Zariski open neighborhood
of P in Y .

Let Γ′ = µ−1(X ′); this is a Z-torsor over X ′. We show that Γ′ extends to a Z-torsor over Y ′. In
fact, there is a commutative diagram with exact rows:

0 // H1
ét(Y

′, Z) //

��

H1
ét(X

′, Z) //

��

H0
ét(Y

′, R1j∗Z)

��
0 // H1

ét(Y
′
K , Z) // H1

ét(X
′
K , Z) // H0

ét(Y
′
K , R

1jK,∗Z),

where j : X ′ → Y ′ is the obvious open immersion, and (·)K denotes base change to the separable closure K/k.
Let i : P ↪→ Y ′ denote the complementary closed immersion. There is an isomorphism R1jK,∗(Z) ∼= iK,∗Z,
and hence H0

ét(Y
′
K , R

1jK,∗(Z)) = H0
ét(BK , Z). The group H0

ét(BK , Z) is trivial. Indeed, the morphism
Z → B is étale, while the stalk of Z above the origin is trivial. The rightmost vertical arrow in the above
diagram is injective, and so the class of Γ′ in H1

ét(X
′, Z) lifts to H1

ét(Y
′, Z). We write D′ → Y ′ for the

corresponding torsor.
Let F ′ → B denote the pullback of D′ to B ∼= P ↪→ Y ′. We must show that for b as in the theorem,

F ′b is the trivial Z-torsor over k. We claim that in fact, F ′ is trivial. For we can choose a Zariski open
neighborhood U0 of 0 ∈ B and a Galois finite étale cover U → U0 such that F ′ ×B U has a trivialization as
a Z-torsor. If U is sufficiently small, then Z(U) ↪→ Z0 = 0 is trivial, so there is a unique such trivialization.
By descent, there exists a unique trivialization of F ′ over U0. The existence of the contracting Gm-action
on X → B now implies that F ′ must be globally trivial, as required. This completes the proof of the
theorem.

4.4 A conjecture

We hope that the representations studied in this paper will have applications to the study of the average size
of the 2-Selmer groups of the Jacobian varieties JYb . The first step towards such applications is the following
conjecture.

Conjecture. With assumptions as in Theorem 4.14, there exists a function η : JYb(k) → g1,b(k)/G0(k),
functorial in k, making the diagram

Xb(k) ι //

g

��

g1,b(k)/G0(k)

γ

��
JYb(k) δ //

η
88qqqqqqqqqqq

H1(k, JYb [2])

commute.
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The conjecture is true in each case (namely G of type A2, A3, or D4) where the curves Yb have genus
one. The representations we construct in this case are a subset of the ones studied by Bhargava and Ho in
their paper on coregular representations associated to genus one curves [BHb], and in a forthcoming work
they apply their representations to the study of the average sizes of Selmer groups [BHa]. In the cases listed
above one could also apply the methods of this paper, together with Bhargava’s techniques for counting
integral points in truncated fundamental domains, to calculate the average size of the 2-Selmer groups of
the curves in the corresponding families. Details will appear elsewhere.

Bhargava and Gross [BG] have shown something very close to this conjecture when G is of type
A2r. They construct rational orbits using the geometry of the intersection of two quadric hypersurfaces, and
apply this to calculate the average size of the 2-Selmer groups of a certain family of hyperelliptic Jacobians.
On the other hand, for some other Vinberg representations the work of Gruson, Sam and Weyman [SWG]
gives a relation between the geometric invariant theory and the geometry of the Jacobians of our algebraic
curves, and it seems likely that this should extend to an arithmetic relation also.

We hope to return to our conjecture in a future work, using the methods of this paper.

4.5 The proof of Theorem 4.7

In this section we prove Theorem 4.7. Thus G is a simple simply connected group over k = C, θ a stable
involution, and c ⊂ g1 a Cartan subspace. We fix a normal subregular sl2-triple (e, h, f) in g, and define
S = e+ zg(f), X = e+ zg(f)1 = S ∩ g1. Let τ denote the automorphism of S induced by −θ; we then have
Sτ = X. In what follows we identify all varieties with their complex points.

Lemma 4.15. Both Srs and Xrs are locally trivial fibrations (in the analytic topology) over crs/W .

Proof. We combine the Ehresmann fibration theorem and the existence of a good compactification for Xrs

to see that it is a locally trivial fibration over crs/W . The corresponding result for S follows from the simple
relationship between S and X, see Lemma 3.14.

Corollary 4.16. The homology groups H2(Sb,F2) and H1(Xb,F2) for b ∈ crs/W form local systems H2(S)
and H1(X). Moreover, these local systems are canonically isomorphic.

Proof. Only the second part needs proof. It follows either from a sheaf-theoretic argument, or from the
assertion that suspension does not change the monodromy representation of a singularity, at least when one
is working modulo 2; see [AVGL88, Theorem 2.14].

Given y ∈ c we write Xy and Sy for the respective fibers over y of the maps X ×c/W c → c and
S ×c/W c→ c.

Lemma 4.17. The local systems H1(X) and H2(S) become trivial after pullback to crs.

Proof. In light of Corollary 4.16, it suffices to prove this assertion for H2(S). The existence of the Springer
resolution implies the existence of a proper morphism S̃ → S ×c/W c such that for every y ∈ c, the induced
map S̃ → Sy is a minimal resolution of singularities. Moreover, S̃ → c is a locally trivial fiber bundle and
S̃ ×c crs → S ×c/W crs is an isomorphism. See [Slo80a] for more details. These facts imply the lemma.

It follows that for any y, z ∈ crs, the groups H1(Xy,F2) and H1(Xz,F2) are canonically isomorphic.
It is a consequence of Lemma 3.14 that given b ∈ c/W , a fiber Xb has a unique non-degenerate

critical point if and only if Sb does. Let γ : [0, 1] → c be a path such that γ(t) is regular semisimple for
0 ≤ t < 1, but such that a unique pair of roots ±α vanishes on γ(1) = x. Then Xx (or Sx) has a unique
non-degenerate critical point, by Corollary 3.15. Let y = γ(0). We define a homology class (that we call a
vanishing cycle) [γ]1 ∈ H1(Xy,F2) as follows.

We can find local holomorphic co-ordinates z1, . . . , zr+1 on X centered at the critical point of Xb

and local holomorphic co-ordinates u1, . . . , ur on c/W centered at b such that the map X → c/W is locally
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of the form (z1, . . . , zr+1) 7→ (z1, . . . , zr−1, z
2
r + z2

r+1). For t close to 1, we can then define a sphere (for a
suitable continuous choice of branch of

√
ur(t) near t = 1):

S1(t) =
{

(u1(t), . . . , ur−1(t),
√
ur(t)zr,

√
ur(t)zr+1) | z2

r + z2
r+1 = 1,=zi = 0

}
.

We define a homology class in H1(Xy,F2) by transporting the class of S1(t) for t close to 1 along the image
of the path γ in c/W . An entirely analogous procedure defines [γ]2 ∈ H2(Sx,F2).

Lemma 4.18. The homology class of the cycle [γ]1 ∈ H1(Xy,F2) (respectively, [γ]2 ∈ H2(Sy,F2)) is well-
defined and depends only on α. Moreover, these classes correspond under the isomorphism H1(Xy,F2) ∼=
H2(Sy,F2) of Corollary 4.16.

Proof. It is well-known that the [γ]i are well-defined and depend only on the path γ up to homotopy. It
follows from Lemma 4.17 that the [γ]i depend only on the endpoint x = γ(1) and not on the choice of path.
To prove the lemma it suffices to show that [γ]2 depends only on α. In fact [γ]2 is, by construction, the unique
non-trivial element in the kernel of the map H2(Sy,F2) = H2(S̃y,F2) ∼= H2(S̃x,F2)→ H2(Sx,F2). The proof
of [SB01, Theorem 3.4] implies that there is an isomorphism of local systems H2(S̃) ∼= X∗(C)/2X∗(C) over
c, and that the kernel of the map H2(S̃x,F2)→ H2(Sx,F2) corresponds under this isomorphism to the span
in X∗(C)/2X∗(C) of α∨.

We can therefore define for each α ∈ Φc a global section γα of the pull-back of the local system
H1(X) to crs, namely the class [γ]1 constructed above. Theorem 4.7 now follows from the above facts and
the following result.

Lemma 4.19. Let Rc ⊂ Φc be a choice of root basis, and let x ∈ crs. Then the set {γα |α ∈ Rc} is a basis
of H1(Xx,F2) as F2-vector space.

Proof. This follows immediately from the corresponding fact for the simple coroots {α∨ |α ∈ Rc}.
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