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Abstract

Recently, Bhargava and others have proved very striking results about the average size of Selmer
groups of Jacobians of algebraic curves over QQ, as these curves are varied through certain natural families.
Their methods center around the idea of counting integral points in coregular representations, whose
rational orbits can be shown to be related to Galois cohomology classes for the Jacobians of these
algebraic curves.

In this paper we construct for each simply laced Dynkin diagram a coregular representation (G, V)
and a family of algebraic curves over the geometric quotient V//G. We show that the arithmetic of the
Jacobians of these curves is related to the arithmetic of the rational orbits of G. In the case of type
Az, we recover the correspondence between orbits and Galois cohomology classes used by Birch and
Swinnerton-Dyer and later by Bhargava and Shankar in their works concerning the 2-Selmer groups of
elliptic curves over Q.
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1 Introduction

This paper is a contribution to arithmetic invariant theory. Let G be a reductive group over a field k, and
let V be a linear representation of G. Then the ring k[V]“ is a k-algebra of finite type, and we can define
the quotient V//G = Speck[V]¢ and a quotient map 7 : V — V//G. The determination of the structure of
E[V]% and the fibers of 7 falls under the rubric of geometric invariant theory, and is important in algebraic
geometry.

In the case where k is not algebraically closed, a further layer of difficulty is obtained by considering
the G(k)-orbits in the fibers of m over k-points of V//G. This problem can be translated into the language
of Galois cohomology, and as such often has close ties to arithmetic.

Bhargava has singled out those representations which are coregular, in the sense that k[V]¢ is
isomorphic to a polynomial ring, as promising candidates for representations which may have interesting
connections to arithmetic. For example, he has studied together with Shankar the case G = SLy and
V = Sym* 2V, the space of binary quartic forms. In this case there are two independent polynomial invariants
I and J, and k-rational orbits with given values of I and J are related to classes in the Galois cohomology
group H'(k, E[2]) for the elliptic curve

E:y =2+1Ic+J

These considerations have had very striking applications; see [BS10], or [Poo12] for a beautiful summary. See
also the work of Ho [Ho(9] for a variety of similar orbit parameterizations associated to other representations,
and the forthcoming work of Bhargava and Ho [BHb] for an exhaustive study of coregular representations
related to genus one curves. For each choice of pair (G, V), one makes a construction in algebraic geometry
which relates orbits in the given representation to algebraic curves, possibly with marked points, given line
bundles, or other types of extra data.

By contrast, this paper represents a first effort to describe some of the phenomena appearing in
arithmetic invariant theory through the lens of representation theory. We take as our starting point certain
representations arising from Vinberg theory, whose role in arithmetic invariant theory has been emphasized
by Gross. If G is a reductive group over k endowed with an automorphism 6 of finite order m, then the
fixed group GY acts on the § = ( eigenspace g; C g = Lie G for any choice ¢ € k* of primitive m'" root of
unity. Vinberg theory describes the geometric invariant theory of these representations. In the case when 6
is regular and elliptic, in the sense of [GLRY], the generic element of g; will have a finite abelian stabilizer,
and orbits in the representation are thus related to interesting Galois cohomology.

If G is a split reductive group over k, then it has a unique G®4(k)-conjugacy class of regular ellip-
tic involutions 6, characterized by the requirement that g; contain a regular nilpotent element. It is the
representations associated to these canonical involutions for simple G of type A, D or F that we study in
this paper. We associate to each of these groups a family of algebraic curves, namely the smooth nearby
fibers of a semiuniversal deformation of the corresponding simple plane curve singularity. The arithmetic of
the Jacobians of these curves turns out to be related to the arithmetic of the rational orbits in the Vinberg
representations. In each case the families of curves are universal families with marked points of fixed type.
In types A and D we obtain families of hyperelliptic curves, while in types Eg, F7 and Fg we obtain families
of non-hyperelliptic curves of genus respectively 3, 3 and 4.

Remark 1.1. In the forthcoming work [BHU|, the authors construct families of related coreqular represen-
tations through the operations of symmetrization and skew-symmetrization. These representations are all
related to the arithmetic of curves of genus one. For example, they consider the natural representation of
SLo x SLo x SLa X SLy on 2 ® 2 ® 2 ® 2, and its quadruple symmetrization yields the representation of SLgy
on the space of binary quartic forms described above.

The quadruple skew-symmetrization, however, is not directly related to curves of genus one. In fact,
the Vinberg representation we associate to E; is the representation of SLg/us on A*8. This is the quadruple
skew-symmetrization of the above representation of SL%, and our work shows that its orbits are related to the
arithmetic of the universal family of non-hyperelliptic curves of genus 8 with a rational flex in the canonical
embedding.



1.1 Results

Let us now turn to a precise statement of our main results. For any unfamiliar notation relating to algebraic
groups and their Lie algebras, we refer to §I.6] below. Let k be a field of characteristic zero, and let G be
a split adjoint group over k of type A, D or E. We choose a regular elliptic involution 6 of G as described
above, and set Gy = (G?)°, g1 = g°=!. Then Gy acts on g; and a Chevalley-type restriction theorem holds
for the pair (Go,g1). In particular, the space B = g1 /G is isomorphic to affine r-space: g; is coregular.
We write A C B for the discriminant divisor. Thus A is the image under 7 : g; — B of the set of elements
which are not regular semisimple.

Propostion below implies that g; contains subregular nilpotent elements. We choose a subreg-
ular normal sly-triple (e, h, f). (See Definition for the definition of a normal sly-triple. To say that it
is subregular simply means that e and f are subregular nilpotent elements of g.) Define X =e + 34(f)1 =
e+ 34(f) Ng1. Our first theorem concerns the natural map X — g — B.

Theorem 1.2. The morphism X — B is a flat family of reduced connected curves, smooth away from A.
The equations of these curves are given in the statement of Theorem [3.7]

In fact, X is a transverse slice to the Gp-orbit of e inside g;, and X — B realizes a semiuniversal
deformation of the central fiber Xy, which is an affine plane curve with a unique simple singularity of type
equal to that of G. (For the definition of a simple curve singularity, we refer e.g. to [Co098].)

The following theorem incorporates results of §2 and Theorem [4.9

Theorem 1.3. Let x € g1 be a regular semisimple element; equivalently, suppose that b = w(x) € B(k) does
not lie inside A. Then:

o The stabilizer Zg,(x) = Zy is a finite abelian k-group and depends only on b up to canonical isomor-
phism. This group is endowed with a non-degenerate alternating pairing Zy X Zy — a.

o Let Y}, denote the smooth projective curve containing X, as a dense open subset. Let Jy, denote its
Jacobian variety. Then there is a canonical isomorphism of finite k-groups Jy,[2] = Zy. Under this
isomorphism the above pairing corresponds to the Weil pairing of Jy, .

Given b € (B \ A)(k), we write g1, = 7 '(b). If K is a separable closure of k, then gj ,(K)
consists of a single Go(K)-orbit; the rational orbits in g; ;(k) are therefore classified by a suitable Galois
cohomology set, with coefficients in Z, = Jy,[2]. The inclusion X}, C g1 induces a map on rational points
Xu(k) — g1,5(k)/Go(k). Our main theorem asserts that this map can in fact be interpreted in terms of
2-descent on the Jacobian Jy;:

Theorem 1.4. There is a commutative diagram, functorial in k:

Xp(k) —— g1,5(k)/Go (k)

| |

JYb (k) - Hl(k’ ‘]Yb [2])

For the definitions of the arrows in this diagram, we refer to the statement of Theorem .14 If
G = PGLs, then the family of curves X — B is the family y? = 23 4+ Iz + J of genus one curves described
above, and we then recover the correspondence between orbits and Galois cohomology classes used by
Bhargava and Shankar in their work on the average size of the 2-Selmer group of an elliptic curve over Q.
We are hopeful that the ideas discussed in this paper will have applications to the study of the average size
of 2-Selmer groups beyond this case, cf. the discussion following Conjecture [1.4]

1.2 Methods

Our methods are inspired primarily by work of Slodowy. Rational double point singularities of surfaces
can be classified in terms of the Dynkin diagrams of simply laced simple algebraic groups. Grothendieck



conjectured that one could give a representation-theoretic construction of this correspondence, by looking
at the generic singularity of the nilpotent cone of the corresponding group G. A proof of this conjecture was
announced in a famous ICM lecture of Brieskorn [Bri7l], but the first detailed proofs were given by Esnault
and Slodowy in the respective works [Esn80] and [SIo80b]. Our work is what one obtains on combining the
respective ideas of Slodowy and Vinberg. (After this work was completed, J. Sekiguchi informed us of some
related earlier work [SS81], where our families of curves also appear.)

Let us say a few words about the limits of our methods. Essential to our work is the use of sls-
triples, whose existence relies in turn on the Jacobson-Morozov lemma. We must therefore work over a field
of sufficiently large characteristic, relative to the Coxeter number of G. In this paper we choose for simplicity
to work over a field of characteristic zero.

More serious is the lack of information we obtain about the image of the map gy (k) — H(k, Jy,[2])
constructed above. It follows from the above considerations that it contains the elements in the image under
the 2-descent map ¢ : Jy, (k) — H(k, Jy,[2]) of X;(k); we conjecture (cf. Conjecture that it moreover
contains the image under § of the whole group Jy, (k) of rational points of the Jacobian. In other words,
we currently lack a way to construct sufficiently many orbits in the representations we study. We hope to
return to this question in a future work.

1.3 Outline

Let us now outline the contents of this paper. In §2, we prove some basic properties of the so-called stable
involutions 6, and define the Vinberg representations to which they correspond. An important point here
is the calculation of the stabilizers of the regular elements in g; in terms of the root datum of the ambient
reductive group G. We also introduce the subregular nilpotent elements, and address the question of when
g1 contains subregular nilpotent elements which are defined over the base field k.

In §3, we construct the families of curves mentioned above inside a suitable transverse slice to the
subregular nilpotent orbit.

Finally, in §4, we show how to relate the 2-torsion in the Jacobians of our curves and the stabilizers
of regular elements, and prove our main theorem relating the 2-descent map to the classifying map for orbits
in non-abelian Galois cohomology.

1.4 Other groups

In this paper we restrict to simple groups G arising from simply laced Dynkin diagrams, and the corresponding
Vinberg representations. One can try to apply our constructions to groups of non simply-laced type. The
families of curves thus obtained are versal deformations of planar curve singularities ‘with fixed symmetries’;
this is the direct analogue for our context of Slodowy’s results, cf. [Slo80bl §6.2]. The Jacobians of these
curves admit a family of isogenies ¢, and it seems likely that some version of our main result continues to
hold, with the groups Jy, [¢] now playing the role of the groups Jy, [2].

1.5 Acknowledgements

This paper is a revised version of the author’s Harvard Ph.D. thesis, written under the supervision of Benedict
H. Gross. I wish to thank him for many useful suggestions and conversations.

1.6 Notation

As mentioned above, we work throughout over a field k of characteristic zero. We assume basic familiarity
with the theory of reductive groups over k, as studied for example in [Hum75|] or [Spr09]. We assume that
reductive groups are connected.

If G is a reductive group acting linearly on a k-vector space V, then the ring of invariants k[V]% is
a k-algebra of finite type (see for example [Spr77, Theorem 2.4.9]). We define V//G = Spec k[V]% and call
it the categorical quotient. It in fact satisfies a universal property, but we will not need this here. We will
write N (V) for the closed subscheme of V cut out by the augmentation ideal of k[V]¢.




If G, H, ... are algebraic groups then we will use gothic letters g, b, ... to denote their Lie algebras.
Let G be a reductive group, and T' C G a split maximal torus. Then we shall write ®; C X*(T') for the set of
roots of T in g, and ®) C X.(T) for the set of coroots. The assignment o € ®¢ — da € t* identifies Py with
the set of roots of t in g, and we will use this identification without comment. We write W (t) = Ng(T)/T
for the Weyl group of G with respect to t. We have the Cartan decomposition

g=te P o,

acd,

where dim g* = 1 for each a € ®(. We write U, C G for the unique T-invariant closed subgroup with Lie
algebra g, (see [HumT75, §26.3]). The tuple

(X*(T)v (I)th*(T)7 (I)z/)

is a root datum in the sense of [Spr09} §7.4]. We write A for the center of G, and a4 for its Lie algebra.

We will write Lg = Z® for the root lattice of G and Ag C Lg ®z Q for the weight lattice of L.
(These are the groups @ and P, respectively, of [Bou68, Ch. VI, §1.9].) If the group G is clear from the
context, we will omit the subscript G. We understand these to depend only on G and not on 7', so that Lg
and Ag are defined up to (non-unique) isomorphism. We write W C Aut(Lg) for the corresponding Weyl
group.

If x € g, we write Zg(x) for its centralizer in G under the adjoint representation, and 34(x) for its
centralizer in g. If = is semisimple, then Zg(z) is reductive. Let T C G be a maximal torus, and suppose
that © € t. Then T C Zg(x) is a maximal torus. Let

O (z) = {a € & |a(r) =0} and @)/ (z) = {a¥ € B |a € By(x)}.
Let W(x) = Zy (x). Then the root datum of Zg(x) is
(X7(T), (), Xo(T), @ (2)),

and the Weyl group of Zg(x) with respect to T' can be identified in a natural way with W (z).

2 Preliminaries

Throughout this section, G is a split reductive group over a field k of characteristic zero.

2.1 Elements of Vinberg theory

Let 6 € Aut(G) be an automorphism of exact order m > 1, and let { € k be a primitive m*® root of unity.
We will also write ¢ for the induced automorphism of g. We associate to ¢ the grading g = ®icz/mz 9is
where by definition we have

gi={rcgll(x) =}

We write G? for the fixed subgroup of #, and Gy for its connected component. Then Lie Gy = go, so the
notation is consistent. The action of GY on g leaves each g, invariant.

In what follows, we shall consider the representation of Gy on the subspace g1 C g. The study
of such representations is what we call Vinberg theory. For the basic facts about Vinberg theory, and in
particular for proofs of the unproved assertions in this section, we refer to the papers [Vin76] or [Lev09].

Lemma 2.1. Let x € g1. Then x can be written uniquely as x = x5 + ©,, where xs,x, both lie in g1 and
are respectively semisimple and nilpotent.

Definition. A Cartan subspace ¢ C g1 is a mazximal subalgebra consisting of semisimple elements. Note that
¢ is automatically abelian.



Proposition 2.2. Suppose that k is algebraically closed. Then an element x € g1 is semisimple if and only
if it is contained in a Cartan subspace, and all Cartan subspaces are Go(k)-conjugate.

Let ¢ C g1 be a Cartan subspace, and define W (c,0) = Ng,(¢)/Zg,(c). This is the ‘little Weyl
group’ of the pair (G,#0). We define rank § = dim ¢. This is well-defined by Proposition

The following result is contained in [Pan05, Theorem 1.1]. It is Vinberg’s main result concerning
the invariant theory of the representations considered here.

Theorem 2.3. 1. Restriction of functions induces an isomorphism
kloa] % — k[ (0.

Moreover, W (c,0) is a (pseudo-)reflection group and k[c]V (9 is a polynomial ring in rank @ indeter-
minates.

2. Let w: g1 — g1//Go denote the quotient map. Then w is flat. If k is algebraically closed, then for all

x € g1, m n(x) consists of only finitely many Go(k)-orbits.

We say that v € gy is stable if Gy - v is closed in g1, and Zg,(v) is finite. We say that 6 is stable if
g1 contains stable elements. The property of being stable is hereditary, in the following sense.

Lemma 2.4. Suppose that 0 is a stable automorphism. Let x € g1 be semisimple. Let H = Zg(x) and
h=LieH. Then 0(H) = H, and 0|y is a stable automorphism.

Proof. Given z as in the lemma, choose a Cartan subspace ¢ containing it. Then ¢ contains a stable vector,
which is also stable when considered as an element of b; the result follows. O

2.2 Stable involutions

In this paper we shall be particularly interested in the stable involutions.

Lemma 2.5. Suppose that k is algebraically closed. There is a unique G(k)-conjugacy class of stable invo-
lutions 6.

Proof. To show uniqueness, we reduce immediately to the case that G is adjoint. By [GLRY] Lemma 5.6],
any stable vector v € g; is regular semisimple, and 6 acts as —1 on its centralizer ¢ = 34(v). In particular,
we have ¢ C g;. It follows that the trace of 6 on g is equal to —dim ¢ = —rank G, and a well-known theorem
of E. Cartan asserts that this determines 6 up to G(k)-conjugacy. We can also reduce existence to the case
of G adjoint. We will prove existence (even when k is not algebraically closed) in this case below. O

Lemma 2.6. Let 0 be a stable involution of G. Then 0 satisfies the following.
1. rank 0 = rank G.
2. There exists a mazimal torus C in G on which 6 acts by x +— x 1.

3. For all x € Ag, we have 0(z) =z~ 1.

4. Let ¢ be a Cartan subspace (and hence, a Cartan subalgebra). Then the natural map W(c,0) — W (c)
is an tsomorphism.

Proof. The first and second properties follow from the proof of Lemma [2.5] For the third property, we recall
that Ag is contained in any maximal torus of G. The final property is [GLRY], Corollary 7.4]. O

Suppose for the rest of this section that 6 is a stable involution.

Proposition 2.7. Let © = x, + x, € g1 be a reqular element. Then Zgo(x) = Azy2,[2]. In particular,
this group is always finite and abelian.



Proof. We have Zg(z) = Zg(xs) N Zg(xy), so after replacing G by Zg(xs), we may assume that x = x, is
a regular nilpotent element.

Then Zg(z) = Ag - Zuy(x), a direct product, where U is the unipotent radical of the unique Borel
subgroup containing x. Quotienting by Ag, we may suppose that G is adjoint and must show that Zy (z)?
is trivial. But since z is regular, this is a finite unipotent group, so the result follows. O

Corollary 2.8. Let x = x5 + z,, be a reqular element, and let ¢ be a Cartan subspace containing xs. Let
C C G denote the mazimal torus with Lie algebra c. Then

Zeo(x) = Hom(X*(C)/2X*(C) + Zde(z), Gp).

Proof. For any reductive group G with root datum (X*(7T'), ®¢, X..(T), ®Y), there is a canonical isomorphism
X*(Ag) =2 X*(T)/Z%,. Now apply Proposition O

Corollary 2.9. Suppose that G is adjoint and that k is algebraically closed. Let x € g1 be a regular
semisimple element. Let L denote the root lattice of G, and A C L ®z Q the weight lattice. Then there is an
isomorphism

Zao () 2 Hom(N, G,,),

well-defined up to conjugacy by the Weyl group W of L, where N denotes the image of L in A/2A.

Proof. Let G*¢ denote the simply connected cover of G. Then 6 acts on G*°. A theorem of Steinberg
(JOV90, Chapter 4.4.8, Theorem 9]) states that (G*¢)? is connected, and hence Gy is the image of the map
(G*)? — @G. The present corollary now follows from the previous one. O

Now suppose that the simple components of G are simply laced (that is, their root systems are all
of type A, D, or E), and let L, A and W be as in the statement of the corollary. Then there is a W-invariant
quadratic form (-,-) : L x L — Z uniquely determined by the requirement that (o, a) = 2 for every root a.
The pairing (-,-) on L induces a pairing (-,-) : L/2L x L/2L — F5. An easy calculation shows this pairing
is alternating. In fact, we have the following:

Lemma 2.10. The pairing (-,-) descends to a non-degenerate alternating pairing on N.

Proof. Suppose & € L. Then the image of z in L/2L lies in the radical of (-,-) if and only if (z, L) C 2Z, if
and only if x € 2A, since A is the Z-dual of L with respect to the pairing (-, -). O

Pairings of this type, associated to regular elliptic elements of Weyl groups, were first considered by
Reeder [Reeld].

Corollary 2.11. Suppose that G is an adjoint group, and that the simple components of G are simply
laced. Then for any reqular semisimple element x € g1, there is a canonical non-degenerate alternating form

('7 ) : ZGo(x) X ZGo(x) — M2

We now show how to construct a stable involution over an arbitrary field k of characteristic 0. We
let G be a simple split adjoint group, and fix a split maximal torus T and a Borel subgroup B containing
it. This determines a set ®T C ® = ®, of positive roots, and a root basis R C ®*. We fix moreover for
each a € R a basis X,, of the one-dimensional vector space g¢ C g. The tuple (T, B,{Xs}acr) is called a
pinning of G.

This choice of data determines a splitting Aut(G) = G x X, where ¥ is the group of pinned automor-
phisms induced by automorphisms of the Dynkin diagram of G. On the other hand, writing L = X*(T') = Z®
for the root lattice of g, the choice of root basis determines a splitting Aut(L) = W x ¥ in a simi-
lar manner; see [Bou05, Ch. VIII, §5.2]. We write 0 € ¥ for the image of —1 € Aut(L), and define
6 = p¥(—1) x o € Aut(G)(k), where p¥ € X, (T) is the sum of the fundamental coweights.

Lemma 2.12. The automorphism 0 is a stable involution.

Proof. This follows immediately from Corollary 5.7 of [GLRY]. O



This stable involution has good rationality properties. This is based on the following fact.

Lemma 2.13. Let 6 be as above. Then g1 contains a reqular nilpotent element. Any two regular nilpotent
elements of g1 are conjugate by a unique element of G (k).

Proof. The element Zae r X is regular nilpotent and, by construction, lies in g;. Fix a separable closure
K of k. If E,E' € g; are two regular nilpotent elements then they are conjugate by an element of G(K).
(This follows from [Lev(07, Theorem 5.16].)

For any such F, the group Zge(E) is a finite unipotent group, and therefore trivial. It follows that
E, E' are conjugate by a unique element of G?(K), which must therefore lie in G (k). O

Corollary 2.14. There is a unique G(k)-conjugacy class of stable involutions 61 of G such that there exists
a regular nilpotent element Eq € g with 01(E1) = —E7.

Proof. We have already proved the existence of such an element. For the uniqueness, fix again a separable
closure K of k. We have seen that G(K) acts transitively on pairs (61, E1). On the other hand, the stabilizer
of such a pair in G(K) is trivial. It follows that any two such pairs are conjugate by a unique element of
G(k). O

Definition. We call a tuple (E, H, F') of elements of g a normal sla-triple if it is an sla-triple, and moreover
we have E € g1, H € gg, and F € g;.

Note that if (E, H, F') is a normal sly-triple, then the restriction of 6 to the subalgebra spanned by
these elements is a stable involution.

Lemma 2.15. 1. Any nilpotent element E € g1 is contained in a normal sly-triple.
2. Any two normal sla-triples (E, H, F) and (E,H', F") are Zg,(E)(k)-conjugate.

Proof. Fix a separable closure K of k. For the first part, choose an arbitrary sla-triple (E, h, f) containing
E, and decompose h = hg + hy into #-eigenvectors. The argument of [KR71l Proposition 4] implies that
there is a unique F' € g1 ® K such that (F, hg, F) is an sls-triple. But an slo-triple is determined uniquely
by any 2 of its 3 elements, so descent implies that F' € g1, and (E, ho, F') is the desired triple.

For the second part, we argue as in the proof of [KRT1l, Proposition 4] and apply [Bou05, Ch. VIII,
§11.1, Lemma 4] to obtain the desired rationality property. O

Corollary 2.16. The group G(k) acts simply transitively on the set of pairs
((91)’ (E7H7 F)) )

where 61 is a stable involution of G and (E, H, F) is a normal sla-triple with respect to 01 in which E is a
regular nilpotent element.

Example. We illustrate some of the concepts introduced so far in the case where G is a split adjoint group
of type As.. Let V be a vector space of dimension 2r + 1, with basis {e1,ea,... e, v, fry..., fa, f1}. We
define an inner product {-,-) on V by the formulae

(eise5) =0=(fi, fj) = (ei,v) = (fi,v)

for all i,5 and
(v,v) =1,{es, fj) = ds-
If T € End(V), write T* for the adjoint of T with respect to this inner product. Then we take G = PGLig; 11 =
PGL(V), and 0 : slo,. 11 — slo.11 to be the involution X — —X*. It is easy to check that —0 is just reflection
in the anti-diagonal. In particular, fizing the standard pinning (T, B,{Xa}acr) of Sloy11, this 6 is exactly
the stable involution constructed of Lemma[2.13
Then we see that G = Gy = SO(V) is connected, and we have

g=00Dg1,00 ={X €End(V)|tr X =0,X = —-X"} =s0(V).



In particular, g1 = {X € End(V) | tr X = 0, X = X*} consists of the space of trace zero operators self-adjoint
with respect to (-,-).
The regular nilpotent element determined by the pinning is

0 1 0 ... 0
0 0 1 0
E: . . . .
0 ... 0 0 1
0 ... 0.0 0

These representations of odd orthogonal groups are exactly the ones used by Bhargava and Gross in
their work on the Selmer groups of hyperelliptic Jacobians [BG].

2.3 Subregular elements
We recall that o € g is called subregular if dim 34(z) = rank G + 2.

Proposition 2.17. The Lie algebra g contains subregular nilpotent elements. Suppose that G is simple and
that k is algebraically closed. Then there is a unique G(k)-orbit of subregular nilpotent elements in g, and
these are dense in the complement of the reqular nilpotent orbit in the nilpotent variety of g.

Proof. This follows from [Ste74l §3.10, Theorem 1]. O

Thus if g is simple, then its nilpotent variety has a unique open orbit, consisting of regular nilpotent
elements; its complement again has a unique open orbit, consisting of the subregular nilpotents. If g =
g1 X -+- X gs is a product of simple Lie algebras, then any nilpotent element n can be written uniquely as
asumn = ny + --- + ng, where n; € g;. It is then easy to see that n is regular if and only if each n;
is regular in g; and n is subregular if and only if some n; is subregular in g;, and all other n; are regular
nilpotent elements. In particular, when k is algebraically closed there are exactly s G(k)-orbits of subregular
nilpotent elements, and there is a canonical bijection between these and the set of connected components of
the Dynkin diagram of g.

Now suppose that 0 is a stable involution of G. Before we continue, it is helpful to note the following.

Lemma 2.18. Let x € g1. Then dim j4,(z) = (dim j4(x) —rank G)/2, and dim Gy - v = (dim G - z) /2.
Proof. This follows from [KR71l, Proposition 5]. O

Our next goal is to show that g; contains subregular nilpotent elements. We use a trick based on
the Kostant-Sekiguchi correspondence, which we now recall:

Theorem 2.19. Suppose that k = R and that G is semisimple. Let 7 be a Cartan involution of G. Then
each of the following three sets is in canonical bijection with the others:

1. The set of nilpotent G(R)°-orbits in g.
2. The set of nilpotent G™(C)°-orbits in g7~ @ C.
3. The set of nilpotent Go(C)-orbits in g1 ®r C.

(Here we write G(R)° and G™(C)° for the connected components of these groups in the analytic topology.)
The map G(R)° - X — G™(C)° - X’ satisfies G(C) - X = G(C) - X'.

Proof. The bijection between the first two sets is constructed in [CM93], §9.5]. The existence of the bijection
between the latter two follows since 7 is a stable involution, and all such are conjugate over C. O

Corollary 2.20. Suppose that k is algebraically closed. Then g1 contains subregular nilpotent elements.



Proof. This is implied by Theorem [2.19 since, if & = R and g is split, all conjugacy classes of nilpotent
elements have an element defined over k. O

To obtain more information, we must argue on a case by case basis. For the rest of this section, we
assume that G is adjoint, and that g; contains a regular nilpotent element. We first recall the following (see
[SIo80b), §7.5, Lemma 4]).

Proposition 2.21. Suppose that G is simple and simply laced, and let © € g be a subregular nilpotent
element. Then Zg(x) is the semi-direct product of a unipotent group with either G, (if G is type A,) or the
trivial group (if G is of type D, or E.). In particular, this centralizer is connected.

Corollary 2.22. Suppose that k is algebraically closed, and that G is of type D, or E,.. Then (G%/Go)(k)
acts simply transitively on the set of Go(k)-orbits of subregular nilpotent elements of g;.

Proof. Let x be a subregular nilpotent element. Then Zge(2) = Zg, (), by Proposition It therefore
suffices to show that #(GY/Gy)(k) is equal to the number of real subregular nilpotent orbits. This can be
accomplished, for example, by inspection of the tables in [CM93]. O

Proposition 2.23. Suppose that k is algebraically closed, and that G is of type A,. Then there is a unique
Go(k)-conjugacy class of subregular nilpotent elements in g;.

Proof. We note that there when k = R, there is a unique real orbit of subregular nilpotents in g. O
We now treat the case where k is not necessarily algebraically closed.

Proposition 2.24. The space g1 contains a subregular nilpotent element. In particular, we can find normal
slo-triples (e, h, f) in g with e a subregular nilpotent element.

Proof. Let K denote a separable closure of k. It suffices to find a normal slo-triple (e, h, f) in g ® K such
that e is subregular nilpotent and h € g. For then the set of subregular elements is Zariski dense in g34"=2
(see [dG11l Proposition 7]) and our chosen field % is infinite.

Since g; contains a regular nilpotent element, we may assume that G is equipped with a pinning
(T, B,{Xo}acr) and that 6 is the involution of Lemma constructed in terms of this pinning. In
particular, tg = t’ C go is a split Cartan subalgebra of Gj.

Let (e, h, f) be a subregular normal sly-triple in g ® K. After conjugating by an element of Go(K),
we can assume that h lies in tog ®, K C t®; K. Now we have a(h) € Z for every root a, since h embeds in
an sly-triple, and hence h lies in tg. The result follows. O

Definition. We refer to a normal sly-triple (e, h, f) with e subregular as a subregular normal sly-triple.

Proposition 2.25. 1. Suppose that G is of type D, or E,.. Then all subregular nilpotent elements in g1
are G?(k)-conjugate.

2. Suppose that G is of type Ag,.. Then there is a bijection between k> /(k*)? and the set of Go(k)-orbits
of subregular nilpotent elements in g1, given by sending d - (k*)? to the orbit of the element (in the
notation of Example above):

(fir for f3r o= fuodeg,ep—ep_1— ... e, v 0).

3. Suppose that G is of type As,11. Then all subregular nilpotent elements in g1 are Go(k)-conjugate.

Proof. Let © € g1 be a subregular nilpotent element. The first part follows since Zgo(z) is a unipotent
group, hence has vanishing first Galois cohomology. To prove the second and third parts, we make an
explicit calculation using the results of Kawanaka [Kaw87]. Briefly, if (e, h, f) is a normal sly-triple, let Gy
denote the connected subgroup of G with Lie algebra go N g?4"=. Then Kawanaka shows that Zg,(e) has
the form €' x R, where R is connected unipotent and €' = Z5, (e) has reductive connected component. We
summarize the results of this calculation here.
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If g is of type As,, a choice of subregular nilpotent x is the transformation given by the formula (in
the notation of Example [2.2)):

i for fam o faen e e v 0.
If d € k*, we define another element z4 by the formula
fim faro fsm oo fadenen o eny = Lo e v = 0.

One calculates that Zg,(e) is a semi-direct product of us by a connected unipotent group, with Galois
cohomology isomorphic (via the Kummer isomorphism) to k% /(k*)2. With appropriate identifications the
element d € k* /(k*)? corresponds to the Go(k)-orbit of the element z,.

If g is of type Ag,41, then one calculates that Zg,(e) is connected unipotent, so has vanishing first
Galois cohomology. O

Proposition 2.26. Suppose that k is algebraically closed. If G is of type Ay, Da,11 or E, then the closure
of every regular nilpotent Go(k)-orbit in g1 contains every subregular nilpotent orbit.

If G is of type Da,., then the closure of each regular nilpotent Go(k)-orbit contains exactly 3 subregular
nilpotent orbits, and each subreqular nilpotent orbit is contained in the closure of exactly 3 regular nilpotent
orbits.

Proof. The only cases needing proof are As.y1, D,, and E7. The case of Ag,;1 follows immediately, since
(GY/Gy)(k) permutes the regular nilpotent orbits. The cases of D,. and Ey follow from the descriptions given
in the works [DPLO03] and [Dok01], respectively. O

3 Subregular curves

For the rest of this paper, we fix the following notation. We suppose that G is a split simple group over k, of
type A, D,, or E,.. We fix also a stable involution 6 of G and a regular nilpotent element F € g;. We recall
that the pair (0, F) is determined uniquely up to G?3(k)-conjugacy. In this section we construct a family of
curves over the categorical quotient g1 /Go. The construction is based on the notion of transverse slice to
the action of an algebraic group, which we now briefly review.

3.1 Transverse slices

For the moment, let H be an algebraic group acting on a variety X, both defined over k. Let € X (k). By
a transverse slice in X to the orbit of z (or more simply, a transverse slice at x), we mean a locally closed
subvariety S C X satisfying the following;:

1. z € S(k).
2. The orbit map H x S — X, (h,s) — h - s, is smooth.
3. S has minimal dimension with respect to the above properties.

It is easy to show that if X is smooth, then transverse slices of the above kind always exist and have
dimension equal to the codimension of the orbit H -z in X. (Here we use that k is of characteristic zero;
in general, one should assume also that the orbit maps are separable.) An important property of transverse
slices is the following slight extension of [SIo80b, §5.2, Lemma 3]:

Proposition 3.1. Let H be an algebraic group acting on a smooth variety X. Let Sy, So be transverse slices
at points x1,x9 € X (k), respectively, where x1, o lie in the same H(k)-orbit of X. Let f : X — Y be an
H -equivariant morphism, where H acts trivially on Y. Then:

e 51,59 are étale locally isomorphic over Y in the sense that there exists a variety S over Y with a
geometric point 5 and étale Y -morphisms ¢1 : S — S1, ¢ 1 S — So with ¢1(3) = x1, P2(3) = x2.
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e Suppose further that k = C. Then S1(C), S2(C) are locally isomorphic over Y (C) in the analytic
topology. Furthermore, there exist arbitrarily small neighborhoods Uy C S1(C),Us C S2(C) of = and
analytic isomorphisms 1 : Uy — Uy over Y (C) such that the induced maps Uy — X (C), Uy 2 Uy —
X (C) are homotopic over Y (C).

An important special case where we can construct transverse slices explicitly is the case of a reductive
group H acting via the adjoint representation on its Lie algebra h. Let (e, h, f) be an sla-triple in §.

Proposition 3.2. S =e+3,(f) is a transverse slice to the action of H at every point of S. In other words,
the multiplication map p: H X S — b is everywhere smooth.

The proof is based on the following construction of Slodowy. First, we may decompose h = @;V; into
a direct sum of irreducible submodules under the adjoint action of the sly spanned by e, h, and f. We let
A : G,, — H be the cocharacter with dA\(1) = h. Let py,...,p, be algebraically independent homogeneous
polynomials generating the ring of invariants k[h]*. (We remind the reader that the adjoint representation
of H on b is coregular, so such elements certainly exist.) We suppose that they have degrees dy,...,d,.. We
suppose that V; has dimension m;, and choose for each i a basis vector v; of the lowest weight space of V;.
A general element v € S can be written in the form v = e + ), z;v;, and we have

At)(v) = t?e + Z Mg, to = te + Z txiv;

7 (3

and
pi(A(t)(v)) = pi(v), pi(tv) = t%p;(v).

Defining an action p of G,, on h by p(t)(v) = t2A(t~1)(v), we see that S is p-invariant, and the p-action
contracts S to e. If we let G, act on b/ H by the square of its usual action, then the composite S — h — b/ H
becomes G,,-equivariant. In other words, writing wy,...,w, for the weights of the p-action on S, the
morphism S — b/ H is quasi-homogeneous of type (di,...,d.;w1,...,wy,). The weights w; are given by the
formula w; = m; + 1.

Proof of Proposition [3.2] Define an action of G,,, x H on H x S by (¢,9) - (k,s) = (gkA(t), p(t)(s)), and let
G x H act on h by (¢,9) - X = t2g(X). Then the map u: H x S — b is equivariant for these actions, and
smooth in a neighborhood of H x {e} C H x S; since the G,,-actions are contracting, it follows that y is
smooth everywhere. O

Corollary 3.3. The composite S — b — b/ H is faithfully flat.

Proof. The composite H x S — S — b/H is equal to the composite H x S — § — b/ H, which is a
composition of flat morphisms, hence flat (H x S — b is flat since we have just proved it to be smooth).
Since the second projection H x S — S is flat, S — h//H must also be flat.

The image is a G,,-stable open subset of h/H containing the origin, hence the whole of h/H. The
faithful flatness follows. O

Let us now return to our group G with stable involution 6, and let (e, h, f) now denote a normal
sly-triple. From the above, we see that there is a direct sum decomposition g = [e, g]®34(f). Both summands
are f-stable so we deduce that g1 = [e, go] ® 34(f)1, where by definition 34(f)1 = 34(f) N g1. It follows that
X =e+34(f)1 is a transverse slice at e € g1, and the contracting G,,-action on e+ 34(f) leaves X invariant.
Identical arguments to those above now prove the following.

Proposition 3.4. The map p: Go x X — g1 is smooth and the composite X — g1 — ¢1//Go is faithfully
flat.

We now examine two special cases of this construction in more detail.
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The regular sl; and the Kostant section

Let d1, ..., d, denote the degrees of algebraically independent homogeneous generators of the polynomial ring
k[g1]9°. We let (E, H, F') be the unique normal sly-triple containing the element F, and set k = E +34(F);.
We call k the Kostant section. It has the following remarkable properties.

Lemma 3.5. The composite k — g1 — g1//Go is an isomorphism. FEvery element of k is regular. In
particular, the map g1(k) — (81/Go)(k) is surjective, and if k is algebraically closed then rk meets every
Go(k)-conjugacy class of reqular semisimple elements.

Proof. Tt is well-known that in this case the map k — g /Gy is quasi-homogeneous of type (2dy, . .
cf. [Pan05l proof of Theorem 3.3]. Lemma below now implies that it must be an isomorphism. The
remaining claims are immediate. O

A subregular sl,

Now fix a normal subregular sly-triple (e, h, f), and set X = e+ 34(f)1. (Note that if G is of type A;, then
there is no non-zero subregular nilpotent element, and therefore no subregular sly-triple, since by definition
an sla-triple consists of 3 linearly independent elements. In this case, we just take X = g1.) Recall that we
have defined an action of G,,, on X.

Proposition 3.6. We have dim X =r + 1. We write w1, ...,w,41 for the weights of the G,,-action. After
re-ordering, we have w; = 2d; forv=1,...,r —1. The 2d;,1 =1,...,r — 1 and w, and w,41 are given in
the following table:

2d1 2d2 2d3 2d7-_2 2d7~_1 er Wy Wr41
A, 4 6 8 2r — 2 2r 2r+2 | 2 r+1
D, 4 8 12 ... 4r — 8 2r dr—4 | 4 2r—4
FEs 4 10 12 16 18 24 6 8
Er 4 12 16 20 24 28 36 8 12
Eyg 4 16 24 28 36 40 48 60 12 20

Proof. The proof is by explicit calculation, along similar lines to the proof of [Slo80bl §7.4, Proposition
2]. We describe the method. If V' C g is a 6-stable simple sly-submodule, then its highest weight space is
f-invariant. Moreover, the eigenvalue of # on this highest weight space determines the action of # on every
weight space. We can calculate a decomposition of g into a direct sum of f-stable simple slo-modules by
calculating the dimension of each weight space of h, and the trace of # on each weight space. This can be
accomplished by using the explicit 6 constructed in Lemma and a list of the roots of g. We can then
fill in the table by reading off the lowest weight spaces which have #-eigenvalue equal to -1. O

Example. We illustrate the method of proof in the case that G is of type As. Then a choice of h is

1 0 O
h=| 0 0 O ,
0 0 -1
in the notation of Example[2.4 We can write the weights of h on g with multiplicity as follows:

-2 0 2
-1 1
-1 1
0

Thus g decomposes as a direct sum V(3) @V (2) @V (2) @ V(1), where V(i) denotes the unique isomorphism
class of sla-modules of dimension i. In this case —1 is an eigenvalue of 0 of multiplicity 1 on each weight
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space. (Recall that —0 is reflection in the anti-diagonal.) We can now decorate each weight space with a +
or —, according to its 0-eigenvalue:

-2 0t 2~
-1t 1~
—1- 1t
0-

It follows that dim34(f)1 = 3, as expected, and the eigenvalues of h on 34(f)1 are —2,—1 and 0, hence the
weights on e+ 34(f)1 are 2,3, and 4.

Henceforth we write g1 /Go = B, and ¢ : X — B for the restriction of the quotient map 7 : g1 —
g1//Go to X. The main result of this section is the following.

Theorem 3.7. The fibers of ¢ are reduced curves. The central fiber Xo = ¢~ 1(0) has a unique singular point
which is a simple singularity of type A,, D,., E,., corresponding to that of G. We can choose homogeneous
co-ordinates (pd,-..,pd,) on B and (pay,...,pd,_,,x,y) on X such that the family X — B of curves is as
given by the following table:
G | X

A [P = T T+ F pros
Dy | y(zy +pr) =a" '+ paa’ 2+ 4 porn
Eg yi = 2* + y(p2x® + psx + ps) + Pex* + Po + P12

3

Er | y* =23y + prox? + 2(p2y® + psy® + p1a) + pey® + p12y + pis
Eg | y3 = 2° + y(p2x® + psx? + p1ax + p2o) + p122° + p137% + p2ax + p3o.

(This means, for example, that when G is of type A,, the relation p,,1 = y? — (2" + poz™! +
-+« + pyz) holds on X.) The proof of Theorem follows closely the work of Slodowy [Slo80b|, with some
simplifications due to the fact that we work with curves, rather than surfaces. We begin with some general
considerations, and reduce to a case by case calculation using the invariant degrees of G.

The possibility of choosing co-ordinates as above is a consequence of the following lemma, which is
[SIo80b), §8.1, Lemma 2]:

Lemma 3.8. Let V,U be k-vector spaces of dimensions m,n respectively, on which G,, acts linearly. Let
¢ :V — U be a morphism equivariant for these actions. Suppose that d¢g has rank s and that G,, acts with
strictly positive weights on U and V.

Then there exist G, -invariant decompositions V.= Vo @ W, U = Uy ®@ W, dimW = s, and a
reqular automorphism « of V' such that ¢ o a has the form (vg,w) — (¢Y(vy,w),w) for some morphism
P VodW — Up.

To apply this to the map ¢ : X — B, we need the following result.

Proposition 3.9. Let x € X. Then dy, has mazimal rank r = rank G if and only if x is a reqular element.
The map dpg : T.X — Ty B has rank r — 1.

Proof. Let p : g — g//G denote the adjoint quotient map. For any y € gy, we have dp,(go) = 0. This is
true if y is regular, since then go = [y, g1] C [y, g] is contained in the tangent space to the orbit G - y. It
then follows for any y € g1, since the regular elements are dense. In particular, for any y € X, we have
rank dp, = rank dm, = rank dy,. The first part of the proposition now follows, since y € g is regular if and
only if dp, has maximal rank.

For the second part, we remark that rank dp. = r — 1 if e is subregular nilpotent, by [SIo80b, §8.3,
Proposition 1]. O

We thus obtain a decomposition of affine spaces X =V, & W, B=Uy & W, where dimW =r — 1,
dim Vy = 2, and dim Uy = 1. With respect to these decompositions we write ¢ : Vo @ W — Uy & W in the

form (v, w) = (1(vo, w), w).
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Recall that ¢ is G,-equivariant of type (2dy,...,2d;wi,...,w,.41). By inspection of the tables
above, we have 2d,. > w;, each i = 1,...,7 + 1, and hence the weights occurring in W are 2ds,...,2d,_1.
Moreover, the unique weight of Uy is given by 2d, and the weights of V, are w,, w,41. Let x, y be homogeneous
co-ordinates on Vjy of weight w, and w,1, respectively. It follows that Xy C Vj is cut out by a quasi-
homogeneous polynomial f(x,y) of type (2d,; w;, wy41).

Proposition 3.10. After possibly making a linear change of variables, the polynomial f(x,y) is as given by
the following table.

f(z,y)
Apr>1 ] 2 =21
Dy,r >4 | ay? -zt

Es y3 — gt
Er y? —ady
FEg y3 — P

Proof. We suppose first that k is algebraically closed. Then the induced map Gy x Xo — 7~ *(0) is smooth,
since X is a transverse slice and this property is preserved under passage to fibers (see [Slo80bl §5, Lemma
2]). Since m=1(0) is smooth along the regular locus, Xy is generically smooth, hence reduced. We now
proceed by direct computation. Let us treat for example the case of A,. Then f(z,y) is quasi-homogeneous
of type (2r + 2;2,r + 1), where we suppose that the weights of = and y are 2 and r + 1, respectively.

Since f defines a reduced curve, it must have the form ay? — bz™+!, with a,b non-zero constants.
After rescaling we may assume that f has the form given in the statement of the proposition. The same
argument works for the other cases as well.

Now suppose that k is not algebraically closed. The same argument suffices, except in the cases
Agyy1 and Ds,.. For example, in case Ag.,1 one must rule out the possibility f(z,y) = y* — ax? 2, where
a € k* is a non-square. But the natural action map Gy x Xy — 7 1(0) induces an injection on geometric
irreducible components, see Lemma below. The irreducible components of 7=1(0) are geometrically
irreducible, so it follows that the same must be true for Xy, hence ¢ must be a square. The same argument
works for the case of type Ds,.. O

At this point we have identified the central fiber of ¢ with the desired curve. We will obtain the
identification over the whole of B via a deformation argument. Before doing this, we must determine the
singularities appearing in the other fibers of ¢.

Proposition 3.11. Let t € g1 be a semisimple element, and let b denote its image in B. Let D denote the
Dynkin diagram of Zq(t), and write it as a disjoint union D = Dy U ---U Dy, of its connected components.

Let y € = 1(b)(k) = Xu(k) be a singular point. Then y is a simple singularity of type D; for some
1=1,...,s.

Proof. We have an isomorphism
Go x 700 (t + N (34(t))) = 7 (b),

induced by the map (g,t+n) — g- (t +n). Let y have Jordan decomposition y = ys + y,. Without loss of
generality, we may suppose that k is algebraically closed and that ys = t. Then y, € 34(t) is a subregular
nilpotent element. If we decompose [34(t),34(t)] = I X - -+ x [¥ into a product of simple, f-stable subalgebras
then y,, has a decomposition 1, = y; + - - - + yx, where y; € [ is a nilpotent element. After re-numbering, we
can assume that y; € [! is a subregular nilpotent element, and all of the other y; € [* are regular nilpotent.
Moreover, the restriction of 8 to each I* is a stable involution.

Now fix a transverse slice S7 to the Zg, (t)-orbit of y; in [}. It then follows that S; + dj>2Yjisa
transverse slice to the Zg, (t)-orbit of v, in A’(1}) and hence X; =t + 51 + > j>2Yj Is a transverse slice at y
to the G action in m=1(b), as the above isomorphism makes 7~1(b) into a fiber bundle over Go/Zg, (t) with

fiber N(34(t)1)-
On the other hand, we know that X is also a transverse slice at y to the Gy action in w=1(b). The
result now follows from Proposition [3.1] and Proposition [3.10} O
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3.2 Semiuniversal deformations and the proof of Theorem

We can now complete the proof of Theorem There exists a semiuniversal deformation Z — D of the
central fiber X as a G,,-scheme, where Z — D is a morphism of formal schemes with underlying reduced
schemes given by Xy — Speck, cf. [Slo80b, §2.7].

The proof of the theorem is based on the fact that, since X is given as the zero set of an explicit
polynomial f(z,y), Z — D admits a canonical algebraization Z — D which we can calculate explicitly and
then compare with X — B.

Proposition 3.12. Let f(x,y) be a polynomial in two variables, quasi-homogeneous of type (d;w1,ws).
Let Xg C A? denote the closed subscheme defined by f, and suppose that Xo has an isolated singu-
larity at the origin. Then a semiuniversal G,,-deformation of Xy can be construction as follows: let
J = (0f/0x,0f/0y) C klz,y] denote the Jacobian ideal of f. Then k[z,y]/J is a finite-dimensional k-vector
space, and receives an action of G,. Choose Gy, -invariant polynomials g1(x,y), ..., gn(x,y) projecting to a
k-basis of G,,-eigenvectors of klx,y]/J. Now define

Z:{f+tlgl+"'+tngn:0}CA2XAny

and let ® : Z — D denote the natural projection to the A™ factor.

Suppose that g; has weight r;, and let Gy, act on t; by the character t — td=ri. Then ® is a
G, -equivariant morphism, and the formal completion ® : Z — D of this morphism is a semiuniversal
G -deformation of Xq.

Proof. See [Slo80bl, §2.4]. O

Applying this to our fixed polynomial f, we obtain a family of curves Z — D, where D is an affine
space of dimension n, and a Cartesian diagram of formal schemes:

X —

y<—— N\

B—=D
An elementary calculation shows that in each case A,, D,, or E,, we have n = r and Z — D is the family
of curves appearing in the statement of Theorem The morphism B — D is given by power series and
respects the G,,-actions on either side, which both have strictly positive weights; it follows that these power
series are in fact polynomials, so this morphism has a canonical algebraization. We obtain a second Cartesian
diagram:

X—7

|

B——D
Now the bottom horizontal arrow is a G,,-equivariant polynomial map between affine spaces of the same

dimension and the weights on the domain and codomain are the same. We now apply the following lemma,
which is [Slo80b} §8.1, Lemma 3]:

Lemma 3.13. Let G, act on affine spaces V,U of dimension n, and let ¢ : V. — U be an equivariant
morphism. Suppose that:

e G, acts on'V and U with the same strictly positive weights.

e The central fiber ¢=1(0) is zero dimensional.
Then ¢ is an isomorphism.

We must verify that the second condition holds. If b € B is mapped to 0 € D, then X; = X,.
Proposition [3.11] implies that all singularities in the non-central fibers of ¢ are simple singularities belonging

to simply laced root systems of rank strictly less than r, and so we must have b = 0. This completes the
proof of Theorem [3.7]
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3.3 A lemma

The results of this section will be used later. Let S = e+ 34(f), and let 7 denote the involution of S induced
by —6. Thus S is an affine space of dimension r + 2, and we have S = X.

Lemma 3.14. We can choose global co-ordinates z1,...,zr4+2 on S, u1,...,u, on B such that z1,..., 241
are fized by T, T(zp42) = —2p42, and such that the following holds: the morphism X — B is given by the
formula

(215 oy 2rg1) — (21, oy 2r—1, f(215 - o5 Zrg1))

for some polynomial function f, and the morphism S — B is given by the formula

(Z17 .. -az’r+2) = (Zl7 cees Br—1; f(zl> s az'r‘+1) + Z?+2)~

Proof. We recall that there is a contracting action of G,,, on S, and that this action sends X to itself. Applying
Lemma we see that we can find G,, and 7-invariant decompositions S = Vo @ Vi @ U, B = Uy b U
such that the map S — B is given by (vg,v1,u) — (¥ (vg,v1,u),u) for some G,,-equivariant morphism
1. Moreover, 7 acts trivially on Vy & U and as —1 on V3. We have dimVy = 2, dimV; = dim Uy = 1,
dim U = r — 1. Moreover, 9 is quasi-homogeneous of some degree.

We choose co-ordinates as follows: let z1,...,2,_1 be arbitrary linear co-ordinates on U, z., 2,11
co-ordinates which are eigenfunctions for the G,,-action, and z,.;2 an arbitrary linear co-ordinate on Vj.
Then [Slo80bl §7.4, Proposition 2] implies that z,;o has degree equal to half the degree of ¢. It follows that
we must have 1(vo, v1,u) = ¥(vo, 0,u) + 22, ,, after possibly rescaling co-ordinates. (The coefficient of 22,
must be non-zero since Sy has a unique isolated singularity.) O

Corollary 3.15. Let b € B(k), and let t € 7= 1(b)(k) be a semisimple element. Then there is a bijection
between the connected components of the Dynkin diagram of Zg(t) and the singularities of the fiber Xy, which
takes each (connected, simply laced) Dynkin diagram to a singularity of corresponding type.

Proof. Lemma [3.14] implies that the singular locus of Sy is equal to the singular locus of X;. We have seen
that the singular points of X, are precisely the subregular elements of X;,. It therefore suffices to show
that X; meets each G-orbit of subregular elements in p~!(b) exactly once, or equivalently that S, meets
each G-orbit of subregular elements in p~!(b) exactly once. This follows immediately from [SIo80b, §6.6,
Proposition 2] and the remark following.

O

4 Jacobians and stabilizers of regular elements

We continue with the notation of the previous section. Thus G is a split simple group of type A,., D, or
E,, 0 is a stable involution of G, and E € g; is a regular nilpotent element. The pair (6, E) is uniquely
determined up to G?(k)-conjugacy. This data determines a regular normal sly-triple (E, H, F'). We choose
further a subregular normal sly-triple (e, h, f). Our chosen sly-triples give two special transverse slices: first,
the Kostant section k = E + 34(F)1, which is a section of the categorical quotient 7 : g — B by regular
elements. Second, a transverse slice to the Go-orbit of e, X = e + 34(f)1. The fibers of the induced map
¢ : X — B are reduced connected curves.

In this section we shall write gj® for the open subvariety of regular semisimple elements, and B for
its image in B. For any variety Z — B we will write 2™ = Z x g B™. Thus the morphism X™ — B™ is a
family of smooth curves.

Homology

Fix a separable closure K of k. In the following if X is a k-scheme of finite type, we will write Hq(X,F5)
for H} (X ®), K,F2)*, the dual of the first étale cohomology of X ®j K. This is a finite group, and receives
an action of the Galois group Gal(K/k).
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Suppose that A is a finite group scheme over k, killed by 2, and that ¥ — X is an A-torsor. This
defines a class in HL (X @, K, A ®; K) = Hom(H;(X,F3), A(K)). Viewing Hi(X,F5) as a finite group
scheme over k, this class defines a homomorphism H;(X,Fy) — A.

Now suppose given an embedding K < C. Then there is a canonical isomorphism Hy(X,Fg)
H,(X(C),F5) with the topological homology. If X(C) is connected and x € X(C), then the homomorphism
m(X(C),z) — A(C) induced by the torsor ¥ — X factors through the Hurewicz map m1(X(C),z) —
H,(X(C),F5) and the induced map H;(X(C),Fy) — A(C) agrees with the previous one, up to applying the
comparison isomorphism. In particular, this map does not depend on the choice of basepoint.

If X is a geometrically connected smooth projective curve over k, then there is a canonical isomor-
phism H;(X,F3) = Jx[2], where Jx denotes the Jacobian of the curve X.

4.1 Stabilizers of regular elements

Let g1 C g1 denote the open subset of regular elements. We write Z — g]°® for the stabilizer scheme,
defined as the equalizer of the following diagram:

reg (9,2)—gz reg

—_—

Goxgym————Zg
(9,2)—z

Proposition 4.1. 1. Z is a commutative group scheme, quasi-finite over gi~.

2. Z admits a canonical descent to B. In particular, for any two x,y € g1 with the same image in B,

there is a canonical isomorphism Zg,(x) = Zg,(y).

Proof. The first part can be checked on geometric fibers.

For the second part, we show that x*Z is the sought-after descent. The map (Gad)e XK — gy
is faithfully flat. In fact, it is étale, and [KR71, Theorem 7] shows it to be surjective. It is now easy to
construct an isomorphism between 7*x*Z and Z over this faithfully flat cover. This defines a morphism of
descent data since Z is commutative. O

We henceforth write Z for the descent to a commutative group scheme over B. Consider the orbit
map p*® 1 Gy x k™ — gi°. This map is finite and étale, and we can form the pullback square:

I —— Gy x k™
e
X® — 7
Concretely, for b € B™(k), I'y, — X}, is the Z,-torsor given by
Iy ={g € Golg-r(b) € Xp}.
We thus obtain a Galois-equivariant map H; (X, Fa) — Zp.
Theorem 4.2. Suppose that G is simply connected. Then this map is an isomorphism.

Example. Let us first illustrate the theorem in the case G = SLy. We can take 6 to be conjugation by the
matric < L0 ) Then we have

(3 ) {2 2)

The regular nilpotents in g1 are those with x ory zero but not both, and the only subreqular nilpotent element
in g1 is zero. The quotient map g1 — g1/ Go = Al sends the above matriz to xy € A'. In particular X = g,
in this case, with the smooth fibers of the map ¢ : X — g1 /Gy isomorphic to the punctured affine line.
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The group Gy is isomorphic to G,,, and t € G,, acts by

‘. 0 =\ _ 0 tx
y 0 ) \t29 0 )

The stabilizer of any regular semisimple element is po C G,,, and it is clear that for any b € At — {0}, the
induced map Hy(Xp,Fo) — pa is an isomorphism.

We now consider the proof of the theorem in the general case. It suffices to prove the theorem when
k = C, which we now assume. In what follows, we simplify notation by identifying all varieties with their
complex points. Fix a choice ¢ of Cartan subspace, and let C' C G denote the corresponding maximal torus.

Now choose = € ¢, and let b = 7(z) € B. Let L = Zg(z) and [ = Lie L. We write L! for the derived
group of Zg(x), which is simply connected, since G is. In the following, given y € ¢, we shall write g , for
the fiber of the map g1 X/ ¢ — ¢ above y, and [; , for the fiber of the map [ X/ (,) ¢ — ¢ above y.

Lemma 4.3. Let y € ¢". Then there is a commutative diagram

Hi(ly,y,Fa) — Z11(y)

l |

Hy (gl,y7 ]FQ) I ZGU (y)
Proof. This follows from the existence of a commutative diagram

LtlJ > [17y

|

Go e gl7y7

where the top row is a Zpi(y)-torsor and the bottom row is a Zg,(y)-torsor. The vertical arrows are
compatible with the homomorphism Z71(y) — Zg,(y). O

Suppose that X, has a singular point © = us + u,. Choose g € Gy such that g-us = x € ¢, and set
v = g -u. The Jordan decomposition of v is v = v4 + v, = © + v,. Then v, € [; is a subregular nilpotent,
corresponding to a connected component D(v,,) of the Dynkin diagram of L. We choose a normal subregular
slo-triple (v,,t,w) in [ containing v,,, and define X' =wv, + 3i(w). X1 is a transverse slice to the Lg-orbit
of v in [;, by Proposition
Proposition 4.4. The dimension of X' isrank G+ 1. X' C g, is a transverse slice to the Gg-orbit of v in
g1-
Proof. X' has the correct dimension to be a transverse slice to the orbit of a subregular element, so it suffices
to check the infinitesimal condition [v, go] N 3((w)1 = 0. In fact, we show that [v, g] N 3((w) = 0. Define

V= @ g°.
acd,
a(z)#0

Then V is the orthogonal complement of [ with respect to the Killing form of g, and so is [-invariant. It
follows that [v, g] = [v, V] ® [vn,l] CV @& [vp, []. We thus have [v, g] N 31(w) = [vn, ] N 3i(w) = 0. O

Proposition 4.5. For all sufficiently small open neighborhoods U of u in X, there exists an open neighbor-
hood Uy of b € ¢/W such that for all y € 7=*(Ug) N¢ there is a commutative diagram

Hl(X';aFZ) - Hl([l,yaFQ)

| |

Hy(Uy,F2) —— Hi(g1,y,F2).
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Proof. 1f U is a sufficiently small open set around u in X, then by Proposition[3.I] we can find an isomorphism
b between U and an open neighborhood V of v in X! over ¢/W, such that ¢ (u) = v and the two induced
maps V < [} < gy and V = U < g; are homotopic over ¢/W. After possibly shrinking U, we can assume
that the image of V' in ¢/W (z) maps injectively to ¢/W.

In particular, for ¢ sufficiently close to b we have a commutative diagram

Hy(V,,Fy) —— Hi(l; .,Fy)

| |

Hi(Ug,Fo) — Hi(g1,c, F2).

To obtain the statement in the proposition, we note that for ¢ sufficiently close to b and y € 7~*(c) N ¢, we
can find an open subset V! C V. such that the inclusion V! C X?} induces an isomorphism on H;. (Use the
contracting G,,-action.) This completes the proof. O

Corollary 4.6. With hypotheses as in Proposition suppose in addition that y € ¢"*. Let C(z) C L' be
the mazimal torus with Lie algebra ¢ N [*. Then there is a commutative diagram:

Hi(X,,Fy) — X, (C(2))/2X.(C(x))

| |

Hy(X,,Fy) X.(0)/2X.(C).

Proof. Note that there is an isomorphism
ZGO (y) = X*(O)/QX*(O)a

and similarly for Z L (y). The corollary now follows from Proposition on noting that the map U, — g1 4
factors through the inclusion X, C g1 4. O

To go further, it is helpful to compare this with another description of the homology of the curves
Xy.

Theorem 4.7. 1. The map X™ — ¢"™/W is a locally trivial fibration (in the analytic topology), and so
the homology groups Hy(X.,F3) for ¢ € B™ fit into a local system H1(X) over ¢"/W. The pullback
of this local system to ¢" is constant.

2. Suppose x € ¢ has been chosen so that a(x) = 0 for some a € @, and the only roots vanishing on x are
ta. Then for each y € <™ there is a vanishing cycle vo € H1(X,y,F2), associated to the specialization
Xy, — Xg. This element defines a global section of the pullback of H1(X) to ¢™.

3. Let R, C ®. denote a choice of root basis. Then for each y € ¢ the set {7, |a € R.} is a basis of
Hi(X,,Fs).

It seems likely that this description of the local system H;(X) is well-known to experts, but we have
not been able to find an adequate reference in the literature. The proof of this theorem is given in §4.5)
below. See in particular Lemma for the definition of the vanishing cycle ~,.

Now suppose z € ¢ has been chosen so that a(z) = 0 for some o € ®., and the only roots vanishing
on z are +a. Then the derived group of L is isomorphic to SLy. By Corollary [3:15] the fiber X, has a
unique singularity of type A;. For y € ¢ sufficiently close to x, we have by Corollary a diagram

Hy (X}, Fz) —> X.(C())/2X.(C(2))

| |

Hy(X,,F>) X.(0)/2X.(C).
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It follows from the calculations in Example for G = SLy that the top arrow is an isomorphism, while
the right vertical arrow has image equal to the image of the set {0,a"} in X.(C)/2X,.(C). Moreover, it
is clear from the proof of Proposition and the definition of the vanishing cycle (cf. Lemma below)
that the image of the non-trivial element of H;(X,,F2) in H;(X,,F2) is exactly the vanishing cycle 7q.
Applying the commutativity of the above diagram, we deduce that the image of v, in X, (C)/2X.(C) is just
a¥ mod 2X,(C). Since v, comes from a global section of the local system H;(X), we deduce the result for
any y € ¢'®, not just y sufficiently close to x.
It follows that for any y € ¢, the map

Hy (X, F2) — Za,(y) = X.(C)/2X.(O)

takes a basis of Hi(X,,F2), namely the set of 7, as « ranges over a set of simple roots, to a basis of
X.(C)/2X,.(C), namely the corresponding set of simple coroots. This completes the proof of the theorem.

4.2 The case of G adjoint

We now introduce a compactification of the family X — B of affine curves.

Lemma 4.8. ¢ : X — B admits a compactification to a family Y — B of projective curves. Endow Y \ X
with its reduced closed subscheme structure. Then Y \ X is a disjoint union of smooth non-intersecting open
subschemes Py, ..., Ps, each of which maps isomorphically onto B. Moreover, Y — B is smooth in a Zariski
neighborhood of each P;. For each b € B™(k), Y}, is the unique smooth projective curve containing Xp as a
dense open subset. Fach irreducible component of Yo meets exactly one of the sections P;.

Proof. We take the projective closure of the equations given in Theorem [3.7] and blow up any singularities
at infinity. An easy calculation shows in each case that the induced family Y — B satisfies the required
properties. O

Let us now suppose that G is adjoint, and let G*° — G denote its simply connected cover. We write
Z5¢ for the stabilizer scheme of G*¢ over B. The natural map Z°¢ — Z is fiberwise surjective. Fix b € B™(k).
In §4.1] we saw that the inclusion X — g1 induces an isomorphism H;(X,,F2) — Z3° of finite k-groups.

On the other hand, we have a surjection Hy (X, Fo) — Hy(Y3,Fa).

Theorem 4.9. The composite
Hy(Xy,F2) — Z;° — Z

factors through this surjection, and induces an isomorphism Hy(Yy,Fa) = Z;.

By Corollary there is a canonical alternating pairing on Z;¢, with radical equal to the kernel
of the map Z;° — Z;,. On the other hand, there is a pairing (-,-) on Hq(X},F2), namely the intersection
product, whose radical is exactly the kernel of the map H;(Xy,F3) — H;(Yp,Fa). The theorem is therefore
a consequence of the following result.

Theorem 4.10. The isomorphism H1(Xp,Fo) = Z7° preserves these alternating pairings.

Corollary 4.11. There is an isomorphism Jy, [2] = Zy, of finite k-groups, that takes the Weil pairing to the
pairing on Zy, defined in Corollary[2.11].

Proof of Theorem [£.10] We can again reduce to the case k = C. Fix a choice of Cartan subspace ¢, and
let C C G* be the corresponding maximal torus. Choose y € ¢™. Let 7o € Hi(X,,F2) be the element
defined in Theorem [£.7] The theorem will follow from the following statement: fix a root basis R of ®,
and let o, 8 € R, be distinct roots. Then (y4,73) = 1 if @, § are adjacent in the Dynkin diagram of g, and
(Ya,v8) = 0 otherwise. We split the rest of the proof into two cases, according to these possibilities.
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Case 1

If «, B are distinct adjacent roots, then we can choose = € ¢ such that the elements of ®, vanishing on x are
exactly the linear combinations of a and 3. Let L = Zgsc(x) and L' = L4°*. Then L' = SL3, and the root
system @ (z) C P, is spanned by « and 8. Moreover, we have by Corollary for all y € ¢ sufficiently
close to x a commutative diagram

Hy (X, Fy) —— X,(C())/2X.(C(x))

| i

H\(X,,Fy) ——> X.(0)/2X.(C),

where C(x) C L' is the maximal torus with Lie algebra ¢ N I'. We know that the horizontal arrows are
isomorphisms, and the vertical arrows are injective. The vertical arrows preserve the corresponding pairings.

Now, both of the objects in the top row of the above diagram are 2-dimensional Fso-vector spaces, and
their corresponding pairings are non-degenerate. (This is easy to see: the curve X; is a smooth affine curve
of the form y? = 23 + ax + b.) There is a unique non-degenerate alternating pairing on any 2-dimensional
Fy-vector space, so we deduce that (yq,73) = 1.

Case 2

If a, B are distinct roots which are not adjacent in the Dynkin diagram of g, then we can choose x € ¢ such
that the roots vanishing on x are exactly the linear combinations of o and 3. Let L = Zg(x) and L' = L4,
Then L' 2 SLy x SLg, and X, has exactly two singularities, each of type A;. We can choose disjoint open
neighborhoods Uy, Us of these singularities in X such that for each y € ¢ suffciently close to x, the map
Hy(U1,y UUsy,Fo) — Hi(X,,F2) is injective and has image equal to the span of 7, and v3. We see that
these homology classes can be represented by cycles contained inside disjoint open sets of X,. Therefore
their intersection pairing is zero, and the theorem follows. O

4.3 A parameterization of orbits

We suppose again that k is a general field of characteristic 0. Before stating our last main theorem, we
summarize our hypotheses. We fix the following data:

e A split simple adjoint group G over k, of type A,., D,, or F,.

e A stable involution 6 of G and a regular nilpotent element E € g;.

A choice of subregular normal sly-triple (e, h, f).

In terms of these data, we have defined:

The categorical quotient B = g1 /Go.

The Kostant section x C g;.

A family of reduced connected curves X — B.

A family of projective curves Y — B containing X as a fiberwise dense open subset.

A stabilizer scheme Z — B whose fiber over b € B(k) is isomorphic to the stabilizer of any regular
element in gy 5.

For each b € B™(k), a natural isomorphism Jy,[2] & Z;, that takes the Weil pairing to the non-
degenerate alternating pairing on Z, defined in Corollary
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Proposition 4.12. For each b € B™(k), there is a bijection
g1.(k)/Go(k) = ker (H' (k, Jy,[2]) — H'(k,Go)) ,
which takes the orbit of ky to the distinguished element of H'(k, Jy,[2]).

Proof. Let K be a separable closure of k. We recall that if H is an algebraic group over k which acts on a
variety X, and H(K) acts transitively on X (K), then given x € X (k) there is a bijection

X(k)/H(k) = ker (H'(k, Zn(z)) — H'(k,H)),

under which the H (k)-orbit of x is mapped to the distinguished element, cf. [GBl Proposition 1]. We apply
this with H = Go, X = g1, and base point z = kp € g1,5(k) induced by the Kostant section. The result
follows on using the identification Zy(x) 2 Jy, [2] of Theorem O

To go further we want to interpret the relative position of the nilpotent elements F and e geomet-
rically.

Lemma 4.13. There are bijections between the following sets:
1. The set of irreducible components of Xg.
2. The set of Gg-orbits of regular nilpotent elements in g1 containing the Gy-orbit of e in their closure.
3. The set of connected components of Y \ X.

Proof. The map pg : Go X Xo — N(g1) is flat, and so has open image. This image therefore contains all
regular nilpotent Gy-orbits whose closure meets e. On the other hand, one checks using Proposition [2.26
that in each case that the number of regular nilpotent Gy-orbits containing e in their closure is equal to the
number of irreducible components of Xy. We can therefore define a bijection between the first two sets by
taking an irreducible component of X to the Gg-orbit of any point on its smooth locus.

We write Y\ X = P, U---U Ps as a disjoint union of open subschemes, each of which maps
isomorphically onto B. By Lemma each irreducible component of Yy meets a unique section P;. We
define a bijection between the first and third sets above by taking an irreducible component of Xy to the
unique section P; meeting its closure in Yj. O

We come now to our main theorem. We choose a section P 2 B inside Y \ X, and we suppose that
E corresponds under the bijection of Lemma [£.13] to the unique component of X whose closure in Y, meets
P. For each b € B™(k), P, € Y;(k) defines an Abel-Jacobi map ff* : Y, < Jy,. (For the definition of this
map, see [Mil86l §2].)

Theorem 4.14. For every b € B™(k), there is a commutative diagram, functorial in k, and depending only
on e up to Go(k)-conjugacy:
Xy (k) ——= g1,5(k)/Go(k)

Pk
Ty, (k) —2> H(k, Jy, [2]).
The arrows in this diagram are defined as follows:
o ¢ is induced by the inclusion Xy — g1 4.
e g is the restriction of the Abel-Jacobi map fT to X, C Y.

e § is the usual 2-descent map in Galois cohomology associated to the exact sequence

(2]
04>be [2} be be 0.
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e v is the classifying map of Proposition [£.12]

Proof. We think of the group H'(k, Jy, [2]) as classifying Jy, [2]-torsors over k. With b as in the theorem, let
Ey = 2717 (Y3) C Jy,. We write jj : E, — Y, for the natural map. This is a Jy, [2]-torsor over Y;, and
the composite § o g sends a point @ € X,(k) to the class of the torsor jb_l(Q) C Ey.

On the other hand, we have constructed in a Jy, [2]-torsor ', — X3, which extends uniquely to
a torsor hy : Dy — Y, by Theorem The composite v o ¢ sends a point @ € X, (k) to the class of hb_l(Q)
It follows from [Mil86, Proposition 9.1] that the two covers D, — Y, and Ej — Y} become isomorphic as
Jy, [2]-torsors after extending scalars to a separable closure of k. To prove the theorem, it therefore suffices
to prove that Dy and Ej are isomorphic as Jy, [2]-torsors over Y;, before extending scalars. It even suffices
to prove that h, '(P,) is always the split torsor, or in other words that h, '(P,)(k) is not the empty set.

Let p : Go X k — g1 denote the orbit map, and let X’ denote the intersection of X with the image of
1. Because of the compatibility between E and P, the subset X’ U P of the underlying topological space of
Y is open; let Y’ denote the corresponding open subscheme. Then Y’ contains a Zariski open neighborhood
of PinY.

Let I" = p~1(X’); this is a Z-torsor over X’. We show that I extends to a Z-torsor over Y’. In
fact, there is a commutative diagram with exact rows:

0 Hélt(Y/vZ) 4>Hé1t(Xlaz) Hgt(Yllej*Z)

| l |

00— Hg (Y, Z) — Hy (X}, Z) —— HY (Yie, RUjk + Z),

where j : X’ — Y is the obvious open immersion, and (-) g denotes base change to the separable closure K/k.
Let i : P — Y’ denote the complementary closed immersion. There is an isomorphism R'jg .(Z) ¥ ik .Z,
and hence HY (Y}, R'jk «(2)) = HY(Bk,Z). The group HY (B, Z) is trivial. Indeed, the morphism
Z — B is étale, while the stalk of Z above the origin is trivial. The rightmost vertical arrow in the above
diagram is injective, and so the class of I in H (X', Z) lifts to H}(Y',Z). We write D’ — Y’ for the
corresponding torsor.

Let F' — B denote the pullback of D’ to B = P «— Y’. We must show that for b as in the theorem,
F/ is the trivial Z-torsor over k. We claim that in fact, F” is trivial. For we can choose a Zariski open
neighborhood Uy of 0 € B and a Galois finite étale cover U — Uy such that I’ x g U has a trivialization as
a Z-torsor. If U is sufficiently small, then Z(U) — Z; = 0 is trivial, so there is a unique such trivialization.
By descent, there exists a unique trivialization of F’ over Uy. The existence of the contracting G,,-action
on X — B now implies that F’ must be globally trivial, as required. This completes the proof of the
theorem. O

4.4 A conjecture

We hope that the representations studied in this paper will have applications to the study of the average size
of the 2-Selmer groups of the Jacobian varieties Jy,. The first step towards such applications is the following
conjecture.

Conjecture. With assumptions as in Theorem there exists a function n : Jy, (k) — g14(k)/Go(k),
functorial in k, making the diagram

Xy(k) ——= g1,(k)/Go(k)

P

Ty, (k) —2= H'(k, Jy, [2])

commute.
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The conjecture is true in each case (namely G of type Aq, As, or D4) where the curves Y}, have genus
one. The representations we construct in this case are a subset of the ones studied by Bhargava and Ho in
their paper on coregular representations associated to genus one curves [BHD], and in a forthcoming work
they apply their representations to the study of the average sizes of Selmer groups [BHa]. In the cases listed
above one could also apply the methods of this paper, together with Bhargava’s techniques for counting
integral points in truncated fundamental domains, to calculate the average size of the 2-Selmer groups of
the curves in the corresponding families. Details will appear elsewhere.

Bhargava and Gross [BG| have shown something very close to this conjecture when G is of type
Agy. They construct rational orbits using the geometry of the intersection of two quadric hypersurfaces, and
apply this to calculate the average size of the 2-Selmer groups of a certain family of hyperelliptic Jacobians.
On the other hand, for some other Vinberg representations the work of Gruson, Sam and Weyman [SWG]
gives a relation between the geometric invariant theory and the geometry of the Jacobians of our algebraic
curves, and it seems likely that this should extend to an arithmetic relation also.

We hope to return to our conjecture in a future work, using the methods of this paper.

4.5 The proof of Theorem

In this section we prove Theorem [£.7] Thus G is a simple simply connected group over k = C, 6 a stable
involution, and ¢ C g; a Cartan subspace. We fix a normal subregular sly-triple (e, h, f) in g, and define
S=e+34(f), X =e+34(f)1 =S5Ngi. Let 7 denote the automorphism of S induced by —6; we then have
S7™ = X. In what follows we identify all varieties with their complex points.

Lemma 4.15. Both S™ and X" are locally trivial fibrations (in the analytic topology) over ¢™*/W.

Proof. We combine the Ehresmann fibration theorem and the existence of a good compactification for X
to see that it is a locally trivial fibration over ¢**/WW. The corresponding result for S follows from the simple
relationship between S and X, see Lemma [3.14] O

Corollary 4.16. The homology groups Ho(Sp,F2) and Hy(Xp,Fa) for b € ¢™ /W form local systems Ha(S)
and H1(X). Moreover, these local systems are canonically isomorphic.

Proof. Only the second part needs proof. It follows either from a sheaf-theoretic argument, or from the
assertion that suspension does not change the monodromy representation of a singularity, at least when one
is working modulo 2; see [AVGLSS, Theorem 2.14]. O

Given y € ¢ we write X, and S, for the respective fibers over y of the maps X x./w ¢ — ¢ and
S Xewe—c

Lemma 4.17. The local systems H1(X) and Hz(S) become trivial after pullback to ¢™.

Proof. In light of Corollary it suffices to prove this assertion for H2(S). The existence of the Springer
resolution implies the existence of a proper morphism S — S X,y ¢ such that for every y € ¢, the induced
map S — Sy is a minimal resolution of singularities. Moreover, S—cisa locally trivial fiber bundle and
Sxc ™ — 8 X¢/w ¢ is an isomorphism. See [Slo80a] for more details. These facts imply the lemma. [

It follows that for any y, z € ¢"%, the groups Hi(X,,Fs) and Hq(X,,Fs) are canonically isomorphic.

It is a consequence of Lemma that given b € ¢/W, a fiber X}, has a unique non-degenerate
critical point if and only if S, does. Let v : [0,1] — ¢ be a path such that (¢) is regular semisimple for
0 <t < 1, but such that a unique pair of roots £« vanishes on v(1) = . Then X, (or S,) has a unique
non-degenerate critical point, by Corollary Let y = v(0). We define a homology class (that we call a
vanishing cycle) [v]; € Hi(X,,F2) as follows.

We can find local holomorphic co-ordinates zi,..., 2,41 on X centered at the critical point of X3
and local holomorphic co-ordinates w1, ..., u, on ¢/W centered at b such that the map X — ¢/W is locally
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of the form (z1,...,2741) — (21,...,2r-1,22 + 22,). For t close to 1, we can then define a sphere (for a
suitable continuous choice of branch of \/u,(t) near ¢t = 1):

Si(t) = {(ul(t), ety (8, VU (8) 20 (D) 2rg1) | 224 224, = 1,92 = o} .

We define a homology class in H; (X, F2) by transporting the class of S'(t) for ¢ close to 1 along the image
of the path 7 in ¢/WW. An entirely analogous procedure defines [y]s € Ha(S;, F2).

Lemma 4.18. The homology class of the cycle [y]1 € H1(Xy,F2) (respectively, [7y]a € Ha(Sy,F2)) is well-

~

defined and depends only on «. Moreover, these classes correspond under the isomorphism Hy(X,,Fs) =

Hy(Sy,Fs) of Corollary .

Proof. Tt is well-known that the [y]; are well-defined and depend only on the path v up to homotopy. It
follows from Lemma that the [y]; depend only on the endpoint z = (1) and not on the choice of path.
To prove the lemma it suffices to show that [y]s depends only on «.. In fact [7]s is, by construction, the unique
non-trivial element in the kernel of the map Ha(S,, F2) = Ha(S,,F2) & Ha(S,, Fy) — Ha(S,,Fs). The proof

of [SBO1, Theorem 3.4] implies that there is an isomorphism of local systems Ha(S) =2 X, (C)/2X.(C) over

¢, and that the kernel of the map HQ(gg;,Fg) — H5(S,,Fs) corresponds under this isomorphism to the span
in X,(C)/2X,(C) of aV. O

We can therefore define for each o € ®. a global section v, of the pull-back of the local system
H1(X) to ¢, namely the class [y]; constructed above. Theorem now follows from the above facts and
the following result.

Lemma 4.19. Let R, C &, be a choice of root basis, and let x € ¢™. Then the set {7, |a € R.} is a basis
of Hi(X,,F2) as Fo-vector space.

Proof. This follows immediately from the corresponding fact for the simple coroots {a" | o € R.}. O
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