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Abstract

An ADE Dynkin diagram gives rise to a family of algebraic curves. In this paper, we use arithmetic
invariant theory to study the integral points of the curves associated to the exceptional diagrams Fs, E7,
Es. These curves are non-hyperelliptic of genus 3 or 4. We prove that a positive proportion of each
family consists of curves with integral points everywhere locally but no integral points globally.
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1 Introduction

Background. Consider the following families of affine plane curves over Q:

y® =2t +y(cox® 4 csx + cg) + o2’ + cox + c1o (1.1)
y? = 23y + c102® + 2(coy® + csy + c1a) + coy® + c12y + cis (1.2)
yd =25+ y(02x3 + ez + cax + co0) + c122> + 1822 + cogx + c30. (1.3)

These families arise as versal deformations of the simple plane singularities of types Fg, F7, and Eg, respec-
tively (see [Thol3]). In each family, the singularity can be recovered by setting all coefficients ¢; equal to
0; yet the generic member of each family is smooth, and its smooth projective completion acquires rational
points at infinity. Thus it is natural to study the arithmetic of these families of pointed smooth projective
curves. The study of these families can be viewed as a variation on a classical theme: if we started instead
with the singularity of type A, (given by the equation y? = 2%), then we would be studying the arithmetic
of elliptic curves in standard Weierstrass form.

We recall that if Y is a smooth projective curve over a global field k£ and P € Y (k) is a rational point, then
one can define the 2-Selmer set Sels Y of the curve Y; it is a subset of the 2-Selmer group of the Jacobian of
Y that serves as a cohomological proxy for the set Y (k) of k-rational points. In the paper [Thol5|, the second
author studied the behaviour of the 2-Selmer sets of the curves in the family 7 proving the following
theorem ([Thol5, Theorem 4.3)):

Theorem 1.1. Let Fy C Z% denote the set of tuples (ca,cs, cs, Cs, Co,C12) € ZS such the the affine curve
given by equation is smooth (over Q). If b € Fy, then call ht(b) = sup; |c;(b)|"?/? the height of b, and
let Yy denote the smooth projective completion of the fibre Xy as an algebraic curve over Q. If F C Fo is a
subset defined by congruence conditions, then we have

> ber #Sela(Ys)

lim su ht(b)<a
oanel #{b € F | ht(b) < a}

< 00.

Moreover, for any € > 0, we can find a subset F C Fy defined by congruence conditions such that

> ber #Sely(Yy)

1 < limsup ht(b)<a

1 .
M A e Flmb) <af ~ €

For the definition of a subset defined by congruence conditions, see (1.4]) below. This theorem has the
following Diophantine consequence ([Thol5, Theorem 4.8]):

Theorem 1.2. Let € > 0, and let Fy be as in the statement of Theorem . If b € Fy, let X, denote the
affine curve over Z given by the equation . Then there exists a subset F C Fo defined by congruence
conditions that satisfies the following conditions:

1. For every b € F and for every prime p, Xy(Zy) # 0.

2. We have be F | hilb Yz 0
b E F () <a, %(2)=0)

mm b e F [ h(b) < a} >1-e




In other words, a positive proportion of curves in the family (1.1) have no Z-points despite having Z,-points
for every prime p. (The presence of marked points at infinity implies that for every b € Fy, the curve X,
also has R-points.)

The results of this paper. The goal of this paper is to generalize these results to the other two families
and described above. The techniques we use are broadly similar to those of [Thol5], and are
based around the relation, introduced in [Thol3], between the arithmetic of these families of curves and
certain Vinberg representations associated to the corresponding root systems. We study this relation and
then employ the orbit-counting techniques of Bhargava to prove our main theorems. We refer the reader to
[Tho15l Introduction] for a more detailed discussion of these ideas.

In order to state the main theorems of this paper precisely, we must introduce some more notation. We will
find it convenient to state our results in parallel for the two families ((1.2]) and (L.3). When it is necessary to
split into cases, we will say that we are either in Case E7 or in Case Eg. We specify the following notation:

Case Er7: We let B denote the affine scheme A% with coordinates (c2, cg, s, €10, €12, €14, C18), and let B = Bg.
We let X C A% denote the affine curve over B given by the equation , and X = Xp. We let
Y — B denote the family of projective curves defined in [Thol3l Lemma 4.9] (this family is a fibre-wise
compactification of X that is smooth at infinity. It can be realized as the closure of X in P%). We let
Fo denote the set of b € B(Z) such that Xj, is smooth. If b € Fy, then we define ht(b) = sup; |c;(b)[*25/7.

Case Eg: We let B denote the affine scheme A% with coordinates (cq, ¢s, c12, ¢14, €18, €20, C24, C30), and let B = By.
We let X C A% denote the affine curve over B given by the equation , and X = Xp. WeletY — B
denote the family of projective curves defined in [Thol3, Lemma 4.9] (again, this family is a fibre-wise
compactification of X that is smooth at infinity. It can be realized as the closure of X in a suitable
weighted projective space over B). We let Fy denote the set of b € B(Z) such that X, is smooth. If
b € Fo, then we define ht(b) = sup; |c;(b)|?40/%.

In either case, we say that a subset F C Fy is defined by congruence conditions if there exist distinct primes
p1,-..,Ps and a non-empty open compact subset U,, C B(Z,,) for each i € {1,..., s} such that

F=FonN(Up, x---xUp,), (1.4)
where we are taking the intersection inside B(Zp,) X - -+ X B(Zj, ). Our first main result is then as follows.

Theorem 1.3. 1. Let Fo C F be a subset defined by congruence conditions. Then we have

> ber #Sela(Ys)

lim su ht(b)<a <
el LT e F ht(b) < a)

oQ.

2. For any € > 0, we can find a subset F C Fy defined by congruence conditions such that

Sely (Y3
Zh&%)ia# 2(Y) {2+€ Case Er;

1+ ¢ Case Eg.

lim sup

M ST e F ) <a}

(We note that the average in Case E7 is at least 2, because the family of curves (1.2) has two marked
points at infinity; for a generic member of this family, these rational points define distinct elements inside
the 2-Selmer set Sely V). In either case, we can apply Theorem to deduce the following consequence.

Theorem 1.4. Let ¢ > 0. Then there exists a subset F C Fo defined by congruence conditions satisfying
the following conditions:



1. For every b € F and for every prime p, Xy(Z,) # 0.

2. We have be 7 hilb YT 0
fo o D E F () < a, %(Z) = 0}

P Fhe Fmb) <a) L€

Informally, we have shown that a positive proportion of each of the families ((1.2]) and (1.3 consists of curves
with Z,-points for every prime p but no Z-points.

Methodology. We now describe some new aspects of the proofs of Theorem [I.3] and Theorem [T.4] The
main steps of our proofs are the same as those of [Thol5|: we combine the parameterization (constructed in
[Thol3]) of 2-Selmer elements by rational orbits in a certain representation (G, V) arising from a graded Lie
algebra with a technique of counting integral orbits (i.e. of the group G(Z) in the set V(Z)). We thus gain
information about the average size of 2-Selmer sets.

Although our proofs are similar in outline to those of [Thol5], we need to introduce several new ideas here.
For example, the most challenging technical step in the argument is to eliminate the contribution of integral
points which lie ‘in the cusp’. (In the notation of Section these points correspond to vectors v such that
Voo = 0, where g is the highest root in the ambient Lie algebra §.) For this step we prove an optimized
criterion (Proposition for when certain vectors are reducible (this implies that they cannot contribute
to the nontrivial part of the 2-Selmer set of a smooth curve in our family).This criterion is based in large
part on the Hilbert—Mumford stability criterion. Its application in this context is very natural, but seems to
be new.

We then use a computer to carry out a formidable computation to bound the contribution of the parts of
the cuspidal region that are not eliminated by this criterion (see Proposition . For comparison, we note
that in [Thol5], the cuspidal region was broken up into 68 pieces; here the analogous procedure leads to a
decomposition into 1429 (resp. 9437 pieces) in Case Er (resp. in Case Eg). It would be very interesting if
one could discover a ‘pure thought’ way to tackle this problem that does not rely on case-by-case calculations.

The current setting also differs from that of [Thol5] in that the curves of family have more than one
marked point at infinity. (The geometric reason for this is that the projective tangent line to a flex point
P of a plane quartic curve intersects the curve in exactly one other point (). This implies that the family
7 essentially the universal family of plane quartics with a marked flex point, has two canonical sections.)
We find that the orbits that parameterize the divisor classes arising from these points match up in a very
pleasant way with a certain subgroup of the Weyl group of the ambient Lie algebra b; see in particular
Lemma

It remains an interesting open problem to generalize the results of this paper and of [Thol5] to study the
average size of the 2-Selmer group of the Jacobians of the curves in — (1.3) (and not just the size of
their 2-Selmer sets). The rational orbits necessary for this study were constructed in [Thol6], but we do not
yet understand how to construct integral representatives for these orbits, in other words, how to prove the
analogue of Lemma below after replacing the set Y;(Qp) by J5(Qp). If this can be achieved, then the
work we do in this paper to bound the contribution of the cuspidal region will suffice to obtain the expected
upper bound on the average size of the 2-Selmer group (namely 6 in Case E7 and 3 in Case Eg).

Notation. Given a connected reductive group H and a maximal torus T C H, we write X*(T) =
Hom(T,G,,) for the character group of T, X,(T') for the cocharacter group of T, and W(H,T) for the
(absolute) Weyl group of H with respect to 7. Similarly, if ¢ is a Cartan subalgebra of i = Lie(H ), then we
write ®(h, ¢) for the roots of ¢ and W(H,¢) for the Weyl group of ¢. If a € ®(b, ¢), then we write b, C b for
the root space corresponding to a. We write Ny (T) (resp. N (c)) for the normalizer of T (resp. ¢) in H,



and Zy(T) (resp. Zg(c)) for the associated centralizer. Similarly, if V' is any subspace of h and x € b, then
we write 3y (x) for the centralizer of z in V.

We write A = Rs( for the multiplicative group of positive reals, and d*A = d\/\ for its Haar measure
(where dX is the usual Lebesgue measure on the real line). If G is a group defined over a ring R, V is an
representation of G, and A C V, then we write G(R)\ A for the set of equivalence classes of A under the
relation a ~ o’ if there exists v € G(R) such that ya = a’.
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2 A stable grading

In this section we establish the algebraic foundation for the proofs of our main theorems: in each of our
two cases, we describe the parameterization of certain 2-coverings of Jacobians of algebraic curves by orbits
in a representation arising from a Z/2Z-graded Lie algebra. Our set-up parallels that of [Thol5]; however,
we must address the complications arising from the presence of an additional point at infinity on the curves
in the family . This point makes its presence known in the disconnectedness of the group H? defined
below and in the fact that the central fibre of the family is not irreducible.

2.1 Definition of the grading

Let k be a field of characteristic 0 with fixed separable closure k®, and let H be a simple adjoint group
over k of rank r that is equipped with a k-split maximal torus 7. Let h = Lie(h) and t = Lie(t). We let
&y = ®(H,T) and choose a set of simple roots Sy = {aq, a9, ...,a,} C ®y. We also choose a Chevalley
basis for h with root vectors {e, | « € ®g}. Suppose that —1 is an element of the Weyl group W(H,T)
(this is true, e.g., if H has type E; or Eg, but not if H has type Eg). Let p € X, (T) be the sum of the
fundamental coweights with respect to our choice of simple roots Sg. Then, up to conjugation by H(k), the
automorphism 6 := Ad(p(—1)) is the unique involution of H such that h%=—! contains a regular nilpotent
element of h ([Thol3dl Corollary 2.15]). The grading induced by this involution is stable in the sense of
[RLYG12, §5.3].

We define G = (H?)° and V = h?®="1. Then G is a split semisimple group, and V is an irreducible
representation of G, of the type studied by Kostant—Rallis in the case k = C [KR71]. The invariant theory
of V is closely related to that of the adjoint representation of H. We now summarize some aspects of the
invariant theory of the pair (G, V'), most of which may be found in [KR71], [Vin76], or [Pan05]. We refer
the reader to [Thol3l §2] for detailed references.

Definition 2.1. Let ¢ C b be a Cartan subalgebra. If ¢ C 'V, then ¢ is called a Cartan subspace of V.
Theorem 2.2. 1. Any two Cartan subspaces ¢,¢’ C'V are conjugate by an element of G(k?®).
2. Let ¢ CV be a Cartan subspace, and define W(G,¢) = Ng(¢)/Za(c). Then the natural maps
W(G,c) - W(H,c)

and
k[pH — E[V]E — k[V(E9)

are isomorphisms. In particular, k[V]% is isomorphic to a polynomial algebra onr = rank H generators.



Let us call a vector v € V semisimple (resp. nilpotent, resp. regular) if it has this property when viewed as
an element of fh. We have the following proposition:

Proposition 2.3. Letv e V.

1. The components of the Jordan decomposition v = vs + v, in b in fact lie in V.
2. The vector v has a closed G-orbit in V if and only if it is semisimple.

3. The stabilizer of v in G is finite (and hence the G-orbit of v has mazimal dimension) if and only if v
is regular.

We see in particular that a vector v € V has both a closed orbit and a finite stabilizer (i.e. v is stable
in the sense of [Mum?77]) if and only if it is regular semisimple. Let A € k[h]” be the image under the
isomorphism k[{]VT) — k[h]H of the product of all roots a € ®g. Then A(v) # 0 if and only if v € b
is regular semisimple. We call A := A|V the discriminant polynomial. Then A is homogeneous of degree
#®py. If v € V is a vector such that A(v) # 0, then 34(v) C V, and 35(v) is the unique Cartan subspace of
V' containing v.

Before stating the next result, we review some basic definitions from geometric invariant theory. Recall that
given a one-parameter subgroup A : G,, — Ggs, we may decompose V(k®) as ®;czV;, where V; = {v €
V(k®) | A(t) - v = t'v}. If we decompose a vector v € V as v = > v; where v; € V; for all 4, then {i | v; # 0}
is called the set of weights for v with respect to A.

Corollary 2.4. Let v € V. Then the following are equivalent:

1. v is reqular semisimple.
2. A(v) #0.
3. For any nontrivial one-parameter subgroup X\ : G,, — Ggs, the vector v has a positive weight with

respect to \.

Proof. What remains to be shown is that the third condition is equivalent to the vector v having a closed
orbit and a finite stabilizer in G. This is the Hilbert—-Mumford stability criterion (see e.g. [Mum77]). O

We now describe G and V' more explicitly. By our definition of 6, it is clear that ' C G. Let ®¢ = ®(G,T);
then & C Py, and the complement &y := &y — P is the set of weights for the action of T on V. The
Weyl group Wg := W(G,T) is the subgroup of Wy := W(H,T) generated by reflections corresponding to
the roots of ®.

Lemma 2.5. Let s = p(—1) € T'(k).

1. The stabilizer of s under the action of Wy on T is given by Stabw,, (s) = {w € Wy | w(®¢q) = @¢}.
2. There is a split short exact sequence of groups
1——=Wg——=Staby,, (s) —=H?/G——1.
More precisely, let S C ®g be a choice of root basis and define
Q={we Wy |w(Sg) = Sa} C Staby,, (s).

Then Stabyy,, (s) ~ Wg x Q, and the inclusion Nyo(T) — H induces an isomorphism Q ~ H?/G.



We remark that if H is of type Fr, then the group H?/G has order 2; if H is of type Fg, then H/G is
trivial.

Proof. For the first item, note that since H is adjoint, w - s is completely determined by its action on the
root spaces h,. We have that w - s acts trivially on b, if and only if @ € w™!(®¢g), and otherwise w - s
acts on b, as multiplication by —1. For the second item, note that by item 1, the group Stabw,(s) is a
subgroup of Aut(®g) ~ W x D, where D = {0 € Aut(®g) | 0(Sg) = S¢}. Clearly W C Stabw,, (s) and
Stabyy,, (s) N D = €, so Staby, (5) ~ Wg x Q. The isomorphism with HY /G follows from [Hum95, Section
2.2]. O

2.2 Transverse slices over V /G

We continue to use the notation of and now begin our study of the categorical quotient map
m:V — B,

where B = V /G = Speck[V]“. If b € B(k), we write V;, = 7 ~1(b) for the corresponding fibre. We can write
down sections of the map 7 using the theory of sly-triples. We recall that an sly-triple in b is a tuple (e, h, f)
of elements of h — {0} satisfying the relations

[h,e] = 2e, [h, f] = —=2F, [e, f] = h.

We call an sly-triple normal if e, f € V and h € h?. A graded version of the Jacobson-Morozov theorem
([Thol3l Lemma 2.17]) states that if e € V is a non-zero nilpotent element, then there exists a normal
sly-triple containing it. If (e, h, f) is a normal sly-triple, then we define S(. 5 5y = e +34(f) NV C V. Then
S(e,n,f) is an affine linear subspace containing e, and one can show ([Thol3l Proposition 3.4]) that the map
7T|S(eyhyf) : S(e,n,r) — B is faithfully flat, with smooth generic fibre. If we let A : G,;, — H be the cocharacter
such that d\(1) = h, then we may define a contracting action of G, on S 4 5) by t-v = 2\(t~1)v. With
this action on S p g, if Gn acts on B by the square of its usual action, then 7|s , , is Gp-equivariant
(see [Thol3, §3]). If e is regular nilpotent, then we call S, ) a Kostant section

We consider these affine subspaces for the slo-triples corresponding to two conjugacy classes of nilpotent
elements, namely the regular and subregular classes.

Proposition 2.6. Let E € V be a regular nilpotent element. Then:

1. There exists a unique normal slo-triple containing E. Let k be the Kostant section associated to this
slo-triple. Then 7|, is an isomorphism.

2. Let b € B(k), and let ky, = (m|.)~1(b). If A(b) # 0, then Vi, forms a single G(k*)-orbit. Consequently,

there is a canonical bijection
G(k)\Vs(k) = ker[H' (k, Za(kp)) — H'(k, Q)]

where the G(k)-orbit of Ky, € Vy(k) corresponds to the neutral element of H(k, Zg(kyp)).

Proof. The first part follows from work of Kostant and Rallis as applied in [Thol3]: see especially lemmas
2.17 and 3.5. The second part follows from [BG14, Proposition 1] as applied in [Thol3l Proposition 4.13]. O

1We note that the definition of a Kostant section is often more general than the one stated here, but in this paper we restrict
our attention to sections of this form.



For b € B(k), we continue to write «j, for the fibre over b. We observe that if H has type E7, then there
are two G-conjugacy classes of regular nilpotent elements in V. If H has type FEg, then there is a single
G-conjugacy class of regular nilpotent elements (see [Thol3l Corollary 2.25]). In either case, two regular
nilpotent elements F, E’ € V (k) are G(k)-conjugate if and only if they are G(k*)-conjugate (see e.g. [Thol3l
Lemma 2.14]). Combined with the first part of Proposition this implies a strong uniqueness property
for the sections kK — B:

Corollary 2.7. Let k,x" CV be Kostant sections.

1. We have k = £ if and only if ko = K.

2. The sections  and k' are G(k)-conjugate if and only if ko and &{, lie in the same G(k*)-orbit in V.

Next recall that V' contains a subregular nilpotent element e (by definition, this means that e is nilpotent
and dim Stabg(e) = 1; the existence of subregular nilpotents in V' is proved in [Thol3, Proposition 2.27]).
We now discuss the sections corresponding to such an element.

Theorem 2.8. Let (e, h, f) be a normal sly-triple, and suppose that e is subregular nilpotent element of b.
Let X = S(e,h,f)-

1. The fibres of X — B are reduced connected affine curves. If b € B(k), then Xy is smooth if and only
if A(b) # 0.

2. Let b € B(k), and suppose that A(b) # 0. Let Y, denote the smooth projective completion of Xy, and
let J, = Pic’ Yy be the Jacobian of Yy,. There is a canonical isomorphism J; [2] & Za (k) of finite étale
k-groups, where k is any choice of Kostant section.

Proof. For the first part, see [Thol3l Theorem 3.8] and [Thol3, Corollary 3.16]. For the second part, see
[Tho13l, Corollary 4.12]. O

The next two theorems identify the fibres of the morphism X — B in Theorem [2.8 when H has type E7 or
Es. We find it convenient to split into cases.

Theorem 2.9 (Case E7). Suppose that H is of type E;. Fizx a choice of reqular nilpotent E, and define
K as in Proposition . Also fiz a normal sla-triple (e, h, f) such that e is subregular nilpotent, and define
X = Se,n,p) as above.

1. We may choose homogeneous generators cs, cg, Cs, C10, C12, C14, C18 of k[V]E and functions x,y € k[X]
so that k[X] is isomorphic to a polynomial ring in the elements ca,...,c14,2,y, and the morphism
X — B s determined by the relation :

y> = 23y + croz? + a:(c2y2 +csy +c1a) + cey? + c12y + C1s.

Moreover, the elements ca, cg, s, C10, C12, C14, C18, T, Y € k[X] are eigenvectors for the action of G, on
X mentioned above, with weights as in the following table:

o G s C1o C12 ci4 Ci5| @
4 12 16 20 24 28 36 |8

Y
12

2. Let Y — B denote the natural compactification of X — B as a family of plane quartic curves, given
in homogeneous coordinates as

3 3 2.2 2 2 3 2.2 3 4
YoZo = TpYo + c10T525 + To(cayszo + CsYozg + €142) + CeYp 2y + C12Y0%; + C1820-



This compactification has two sections Py and Py at infinity, given by the equations [xo : yo : z0] = [0 :
1:0] and [z : yo : 20] = [1: 0 : 0] respectively (note that Py is a flex point). Assume that under the
bijection of [Thol3, Lemma 4.14] the section corresponding to E is Py. Then for each b € B(k) such
that A(b) # 0, the following diagram commutes:

X(k) —"—> G(k)\V3 (k)

Ty(k) —2 H(k, J,[2]),

where the maps in the diagram are specified as follows. The top arrow uy, is induced by the inclusion
X — V. The left arrow ny is the restriction of the Abel-Jacobi map P — [(P)—(P1)]. To define vy, we
use Proposition to obtain an injective homomorphism to G(k)\Vy(k) — H'(k, Zg(kp)), and then
compose with the identification Za(ky) = Jy[2] of Theorem[2.8 The bottom arrow &, is the connecting
homomorphism associated to the Kummer exact sequence

X2

0 J[2] Ty Ty 0.

Proof. In this theorem and the next, the first part (i.e. the explicit determination of the family X) is carried
out in [Thol3, Theorem 3.8], the weights for the G,,, action are given in [Thol3l Proposition 3.6], and the
second part is the content of [Thol3l Theorem 4.15]. O

We note that, having fixed a choice of regular nilpotent FE, we can always assume, after possibly replacing e
by a HY(k)-conjugate, that E corresponds to P; under the bijection of [Thol3, Lemma 4.14] referred to in
the second part of Theorem [2.9]

Theorem 2.10 (Case Eg). Suppose that H is of type Es. Fiz a choice of regular nilpotent E, and define
K as in Proposition . Also fiz a normal slao-triple (e, h, f) such that e is subregular nilpotent, and define
X = S(e,n,p) as above.

1. We may choose homogeneous generators cs,Cs, C12,C14, C18, C20, C24, C30 Of k[V]G and functions x,y €
k[X] so that k[X] is isomorphic to a polynomial ring in the elements ca, . .., o4, x,y, and the morphism
X — B is determined by the relation :

y® = 2% + y(cox® 4 cgx? + crax + c20) + c102® + c182% + coax + c30.

Moreover, the elements ca, cs, €12, C14, C18, C20, C24, C30, X, Yy € k[X] are eigenvectors for the action of G,
on X mentioned above, with weights as in the following table:

C2 Cg Ci2 Ci4 C18 C20 C24 C30 ‘ €z Y
4 16 24 28 36 40 48 60 |12 20

2. Let Y — B denote the compactification of X — B described in [Thol3, Lemma 4.9]. Let P: B =Y
denote the unique section at infinity (so thatY = X UP). Then for each b € B(k) such that A(b) # 0,
the following diagram commutes:

Xy (k) —== G(k)\Vy(k)
Ty(k) =2 H(, J4[2]),

where the maps in the diagram are specified as follows. The top arrow ty, is induced by the inclusion
X — V. The left arrow ny is the restriction of the Abel-Jacobi map Q — [(Q) — (P)]. To define p, we



use Proposition to obtain an injective homomorphism to G(k)\Vy(k) — H(k, Za(kp)), and then
compose with the identification Z¢(ky) = Ju[2] of Theorem[2.8 The bottom arrow &, is the connecting
homomorphism associated to the Kummer exact sequence
0 J[2] Jp—2 Jy—>0.
Lemma 2.11. In Case Er, suppose b € B(k) is such that A(b) #0. Then & ([(P2) — (Py)]) is in the image
of G(k)\Vy(k) under vy, and &,([(P2) — (P1)]) is nontrivial if and only if HO(k, Zg(ky)) = HO(k, Zp (kp)[2]).

Proof. Let w € € be the nontrivial element, and let £’ = ZaESH €w(a)- Then E’ is a regular nilpotent
element of V. Since H 9(1{:) acts simply transitively on the set of such elements, there is a unique element
w € HP(k) lifting w such that w(E) = E’. Let ' denote the Kostant section corresponding to E’. Then
wk = £’ and so Kk}, = wky. We claim that v,(k}) = 8([(P2) — (P1)]). The proof is essentially the same as
the proof of [Thd, Theorem 5.3], but for the convenience of the reader, we give the details here. Let X be
the base change of X; to the fixed separable closure k°/k, and define Y, similarly. There is a short exact
sequence of étale homology groups:

OHILQHHl(Y})’]FQ)HHl(?[H]FQ)HO. (21)

There is a natural symplectic duality on H; (X, Fo) which has radical u2, and which descends to the usual
Poincaré duality (or Weil) pairing on H; (Y, F2) = J,[2]. Through an explicit calculation, one can see that
0p([(P2) — (P1)]) is the image of the nontrivial element of ps under the connecting homomorphism associated
to the dual short exact sequence

0——=Jp[2] —=H (X}, Fy) ——pig—0,
where we have used the Weil pairing to identify J,[2] with its dual.

Let H®¢ denote the simply connected cover of H with centre Apsc. Note that 6 lifts naturally to an
automorphism of H%°, which will again denote by 6, and that because H*®¢ is simply connected, the fixed-point
subgroup G’ := (H*)? is connected [Ste68, Theorem 8.1]. Let C' = Zg (k) and let C° = Zpsc(kp). Then
C C H and C®¢ C H*® are maximal tori, and we have Zg/ (kp) = C°°[2] and Zg(kp) = im(C*°[2] — C[2]). It
follows from the proof of [Thol3l Theorem 4.10] that the short exact sequence is isomorphic to

0——=Apse HCSC[Z]HZG(I%)HO,
and its dual is isomorphic to
0——Zg(kp)—C[2]——m(H?)—0, (2.2)

where we have used the Wy-invariant duality on X, (C) and the isomorphism C[2]/Z¢ (k) = 7o(H?); see
also [Thol3l Corollary 2.12], which states that this Weyl-invariant duality descends to a non-degenerate
symplectic alternating duality on Zg(kp).

Therefore to prove the claim we must show that ;,(k}) is equal to the image in H' (k, Z¢(ks)) of the nontrivial
element of mo(H?) under the connecting homomorphism associated with the short exact sequence (2.2)). This
follows from a computation with cocycles. Indeed, the second part of Proposition [2.6] asserts that there exists
g € G(k®) such that j, = grp. Then the cohomology class v, (k}) is represented by the cocycle o — g=1(%g).
But ¢:= g tw € Zyo(ky) = C[2] is a lift of the nontrivial element of my(H?), so the claim follows from the
fact that “cc™ = (Pcc™!)7L = g71(7¢g) for all o € Gal(k*/k).

We have established the claim, and the first part of the lemma. To finish the the proof, we note that
So([(P2) — (Py)]) is nontrivial if and only if the connecting homomorphism 7o(H%) — H'(k, Zg(kp)) is
injective. By exactness, this is equivalent to the surjectivity of the map HY(k, Zg(kp)) — H°(k, C[2]), which
is exactly the criterion given in the statement of the lemma. O
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Corollary 2.12. In Case Er, let b € B(k) be such that A(b) # 0, and let C = Zg(ky). Suppose that the map
Gal(k®/k) — W (Hgs, Cks) induced by the action of Gal(k®/k) on Cys is surjective. Then op([(P2) — (P1)])
is nontrivial in H'(k, Jy[2]).

Proof. By the lemma, it is equivalent to show that the map HO(k, Zg(ky)) — H°(k,C[2]) is surjective. We
have HO(k, C[2]) = CWHC)2](k) = Zy[2](k). Since the group H is adjoint, the centre Zp is trivial, so the
map HO(k, Zg(rky)) — HO(k,C[2]) is clearly surjective. O

2.3 Reducibility conditions

We now define the notion of k-reducibility and study the properties of k-reducible elements of V (k).

Definition 2.13. Let v € V. We say that v is k-reducible if A(v) = 0 or if v is G(k)-conjugate to an
element of a Kostant section. Otherwise, we say that v is k-irreducible.

The factors of the Cartan decomposition h = t & Gaaedm ho are invariant under the action of 8; this leads
to a corresponding decomposition
V=@ ba (2.3)

If v € V, then we write v = Za€<1>v v for the corresponding decomposition of v as a sum of T-eigenvectors.
Now choose a set of simple roots Sg = {f1, ..., 8-} of 5. Since the 8; form a basis for X*(T) ® Q, each
element v € X*(T') may be written uniquely as v = >\, n;(v)8; for some n;(y) € Q. Our choice of simple
roots Sy C @y determines a set of positive roots @E. We write Q>‘+/ for @E Ndy.

Lemma 2.14. Let v € V and decompose v as Zagbv Vo QS N . Suppose one of the following holds:

1. There exist rational numbers aq,...,a, not all equal to zero such that if a € Oy and v, # 0, then
>raini(a) <O0.

2. There exists w € £ such that v, =0 if @ € w(fb“ﬁ — SH).
Then v is k-reducible.
(We recall that the subgroup 2 C Wy was defined in Lemma )

Proof. For the first part of the lemma, we will apply the criterion of Corollary[2.4] This corollary implies that
if v € V and there exists a nontrivial cocharacter A € X, (T') such that v has no (strictly) positive weights
with respect to A, then A(v) = 0. Let {&1,...,0r} C Xu(T) ® Q be the basis dual to the basis {f1,...,5:}
of X*(T) ® Q, and let A = Y_!_, a;;. Then there exists a positive integer m such that mA € X.(T'). The
weights of v with respect to mA are exactly the values (a,mA\) = m>_._, a;n;(a) for those o € ®y such
that n;(«) # 0, so v has no positive weights with respect to mA.

For the second item, let £ = 5y €a» Where each e, s a root vector of our fixed Chevalley basis (see
Section . Then F is a regular nilpotent element of V', and is therefore contained in a unique normal
slo-triple, which in turn determines a Kostant section k C V' (see Proposition [2.6)). Suppose that the vector
v € V satisfies the condition v, = 0if @ € <I>‘+, — Sy. We may assume that if a € Sy, then v, # 0; otherwise
v also satisfies the condition in the first part of the lemma. In this case, exactly the same argument as in
the proof of [Thol5l Lemma 2.6] shows that v is G(k)-conjugate to an element of , hence is k-reducible.
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Now suppose that there is a nontrivial element w € € such that the vector v € V satisfies the condition
v = 0 if o € w(q)‘t — Sg). We can again assume that v, # 0 if @ € w(Sy). Let E' = Zaew(SH)ea,
and let k' be the Kostant section corresponding to E’. Since the group H?(k) acts simply transitively on
the set of regular nilpotents of V' ([Thol3, Lemma 2.14]), there is a unique element x € H?(k) such that
2-E" = E. Then x normalizes the torus T, since t = Lie(7T') is the unique Cartan subalgebra of b containing
the semisimple parts of the normal slo-triples containing E and E’ respectively. Thus x corresponds to an
element of the Weyl group Wy ; since Wy acts simply transitively on the set of root bases of H, we see that
r is a representative in H?(k) of w. As in the previous paragraph, the proof of [Thol5, Lemma 2.6] shows
that 2~ !v is G(k)-conjugate to an element of k, hence that v is G(k)-conjugate to an element of /. O

Given a subset M C ®y,, we define the linear subspace

VIM)={veV]|vy=0foralla e M} CV.
Proposition 2.15. Let M be a subset of @y, and suppose that one of the following three conditions is
satisfied:

1. There ezists w € Q such that w(®{, — Sy) C M.

2. There exist integers ay,...,a, not all equal to zero such that if a € ®y and 2121 a;n;(a) > 0, then
ae M.
3. There exist 8 € Sg, a € ®y — M, and integers ai, ..., a, not all equal to zero such that the following

conditions hold:

(a) We have {y B |vye M} Ndy C M.
(b) a—pedy— M.
(¢c) If y € @y and Y_;_, a;ni(y) > 0, then v € M U{a}.

Then every element of V(M)(k) is k-reducible.

Proof. If either of the first two conditions is satisfied, then the desired reducibility follows from Lemma
We now show that if the third condition is satisfied, then every element of V(M)(k) is k-reducible.
Let v € V(M)(k). If vqa = 0, then v € V(M U {a})(k), and so v is k-reducible by the second part of the
proposition. We can therefore assume that v, # 0.

Let Vi = {v € V | vy, = 0 for all ¥ € &y — M}. Then there is a T-invariant direct sum decomposition
V =V (M) & Vy. Fix a homomorphism SLy — Gg where Gg is the subgroup of G generated by the root
groups corresponding to 8 and —3. Condition (a) implies that the decomposition V = V(M) & Vs is Gg-
invariant. Since the ambient group H is simply laced, the S-root string through « has length two, and thus
ho @ ha—p is an irreducible G g-submodule of V. The existence of an irreducible representation of degree two
implies that Gg ~ SLs.

Since SLo (k) acts transitively on the non-zero vectors in the unique two-dimensional irreducible representa-
tion of SLy, we can find g € Gg(k) C G(k) such that (gv), = 0. This shows that gv € V(M U {a}), hence
that v is k-reducible, as required. O

2.4 Roots and weights

We conclude Section 2 by fixing coordinates in H and G. From now on we assume H has type E; or type
Eg. As above we let <I)}} be the set of positive roots corresponding to our choice of root basis Sg. Similarly,
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we define ®; C @5 to be the subset of negative roots. We note that there exists a unique choice of root
basis Sg of ®¢ such that the positive roots <I>JC5 determined by S¢g are given by <I>JC§ =dgN <I>JI§. Indeed, this
follows from a consideration of Weyl chambers: the Weyl chambers for H (resp. G) are in bijection with
the root bases of ®y (resp. @), and each Weyl chamber for H is contained in a unique Weyl chamber for
G. If Cy is the fundamental Weyl chamber of H corresponding to Sy, and Cg is the unique Weyl chamber
for G containing Cp, then defining S¢ to be the root basis corresponding to Cg yields the desired property.
We note that the set of negative roots ® determined by Sg is given by @, = ®¢ N ®;.

We will later need to carry out explicit calculations, so we now define Sg in terms of the simple roots of Sy
in each case E7 and Eg. We number the simple roots of H and G as in Bourbaki [Bou68, Planches].

2.4.1 Case Er

We have Sy = {a1,...,ar}, where the Dynkin diagram of H is as follows:
@
The root basis Sg¢ = {f1, ..., 87} described above consists of the roots
B = aztoy
B2 = as+ag
B3 = aztay
Bs = o1+az
Bs = astas
Bs = astar
Br = axtazt+ag+oas

where the Dynkin diagram is as follows:

/é

o
o
o
o
(O3

1=

We note that the existence of a diagram automorphism for G implies that there are two possible choices of
numbering of the roots in S¢ consistent with the conventions of Bourbaki; we keep the above choice for the
rest of this paper.

2.4.2 Case Eg

We have Sy = {aq,...,as}, where the Dynkin diagram of H is as follows:

a Qs Qy Qs Qg ay asg
H O O O O O O
az
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The root basis S¢ = {f1, ..., Ss} described above consists of the roots

B1 = axtaztag+as
B2 = astar
B3 = astas
Bs = artas
Bs = astay
Bs = as+ag
Br = artas
fs = aztoay

where the Dynkin diagram is as follows:

B1 B2 B3 B4 Bs Be B7
O O O) O O) O

Once again the existence of a diagram automorphism for G means that there are two possible choices of
numbering of the roots in Sg consistent with Bourbaki; we keep the above choice for the rest of this paper.

3 Integral structures, measures, and orbits

In Section [2, we introduced the following data:

the group H over k, together with split maximal torus 7' C H, root basis Sy C X*(T), involution
6 = Ad p(—1), and Lie algebra h = Lie H;

the group G = (H?)° and its representation on V = h%=-1  together with a root basis S¢ € X*(T)
and Lie algebra g = Lie G;

the categorical quotient B = V /G and quotient map 7 : V — B;

the discriminant polynomial A € k[B].

From now on, we also fix the regular nilpotent element E = ) eq € V. We now assume that k = Q

and study integral structures on these objects.

aESy

3.1 Integral structures and measures

Our choice of Chevalley basis of h with root vectors {e, | &« € g} determines a Chevalley basis of g, with
root vectors {e, | & € ®g}. It hence determines Z-forms hz C h and gz C g (in the sense of [Bor70]).
Moreover, V = V N bz is an admissible Z-lattice that contains FE.

We extend G to a group scheme over Z given by the Zariski closure of the group G in GL(V). By abuse of
notation, we also refer to this Z-group scheme as G. Then the group G(Z) acts on the lattice V(Z) C V(Q).
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The Cartan decomposition V = @qeca, ho is defined over Z, so extends to a decomposition V = ®nea, Va-
Since there exists a subregular nilpotent element in V' = V(Q), we may choose a subregular nilpotent element
e € V(Z). In Case Er, we impose the additional condition that E corresponds to P; in the sense described
in Theorem [2.9

Fix a maximal compact subgroup K C G(R). Let P = TN C G be the Borel subgroup corresponding
to the root basis Sg, and let P = TN C G be the opposite Borel subgroup. Given ¢ € R, we define
T.={teT(R)°|B(t) <cforall g€ Sg}.

Proposition 3.1. We can find a compact subset w C N(R) and a constant ¢ > 0 such that G(A) =
GQ) - (G(Z) x &), where & = WT K.

Proof. It suffices to show that G(A*>) = G(Q) - G(Z) and that we can choose & so that G(Z) - & = G(R).
This is true: see [Bor66l §6], [PR94, Theorem 4.15], and [PR94, Theorem 8.11, Corollary 2]. O

Henceforth we fix a choice of & = wT.K as in Proposition [3.1

After rescaling the polynomials ¢; € Q[V]Y and 2,y € Q[X] appearing in Theorem (resp. Theorem
, we can assume that each polynomial ¢; lies in Z[V]“. We define B = Spec Z|cz, cs, . . . , c1g] in Case Er
(resp. SpecZ[ca,cs, ..., c30] in Case Eg), and write w : V — B for the natural morphism, which recovers our
existing map 7 : V — B after extension of scalars to Q. If b € B(R) = B(R), then we define the height of b
to be

ht(b) = sup |¢;(b)|48 /7. (3.1)

If v € V(R), then we define ht(v) = ht(w(v)). Since dege; = 4, the height function is homogeneous: for all
A € R*, we have ht(A\v) = |98 2 ht(v).

We define X = SpecZz,y,ca, ¢, ..., c18] in Case Ey (resp. SpecZ[z,y,ca,cs,...,c30] in Case Eg). Thus
X is isomorphic to affine space A%ﬁ, and the morphism X — B naturally extends to a morphism X — B,
still given in coordinates by the equation in Case Er (resp. (1.3) in Case Eg). For any ring R and any
subset A C V(R), we write A8 for {a € A | A(a) # 0}. Similarly if A" C B(R) then we write (A’)re&-ss:
for the set {a € A’ | A(a) # 0}.

Fix a left-invariant top form wg on Gj it is determined uniquely up to multiplication by Z* = {£+1}. For
any place v of Q, we define a Haar integral on G(Q,) using the volume element dg = |wg/,.

If Q, = R, then we can use the Iwasawa decomposition on G(R) = T(R)°N(R)K = NR)T(R)°K to
decompose dg = dt dn dk on G(R) as follows (cf. [Thol5l Section 2.7]). We give T'(R)° the measure pulled
back from the isomorphism [[,c g, o : T(R)® ~ RY,. We give K its normalized (probability) Haar measure.
We then choose the unique Haar measure dn on N(R) such that dg = dt dn dk. For t € T(R), we define
da(t) =11 acd a(t). Then for any continuous compactly supported function f : G(R) — C, we have the
equalities

/ flg)dg = / / flnk)dk dndt = / / F(ntk)oq(t) ™t dk dn dt.
g€G(R) teT(R)° JneN(R) JkeK teT(R)° JneN(R) JkeK

We also define measures on V' and B as in [Thol5l Section 2.8] by fixing an invariant differential top form
wy on V and by defining wp = dea Adeg A ... Adeyg in Case Er (resp. wp = dea Adeg A ... Adegp in Case
Esg). If v is a place of Q, then the formulae db = |wp|, and dv = |wy |, define measures on B(Q,) and V(Q,)
respectively. Fixing these choices, we have the following useful result.

Lemma 3.2. There exists a rational number Wy € Q* with the following property: let k'/Q be any field
extension, and let ¢ C V(k') be a Cartan subspace. Let p. : Gy x ¢ = Vi be the natural action map. Then
wiwy = Wowe A liwp.
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Proof. The proof is identical to that of [Thol5, Proposition 2.13]. O

Proposition 3.3. Let p be a prime.

1. Let ¢ : V(Zp)™9% — R be a function of compact support that is locally constant (resp. continuous)
and invariant under the action of G(Zy,). Then the function Fy : B(Q,)"™* — R defined by the

formula
P(v)
Fy(b) = > v
vEG(Zyp)\Vy(Zyp) # StabG(Z:D) (’U)

is of compact support and locally constant (resp. continuous), and we have the formula

/ 6(v) dv = [Wol, vol(G(Z,)) / Fy () db.
veV(Zy)

beB(Z,)
2. Define a function my, : V(Z,)™9°* — R by the formula

Z # Stabg(Qp) (v)
# Stabg(zp) (U') '

myp(v) =
V' €G(Zyp)\(G(Qp)-vNV(Zy))

Then my, is locally constant.

3. Let v : V(Z,)™*% — R be a continuous function of compact support that is G(Qp)-invariant, in the
sense that if v,v" € V(Zy), g € G(Qp), and gv =v', then ¥(v) = ¥(v'). Then we have the formula

my (V)Y (v
[ wlo)do= Wal,vol(G(z,) [ S iy,
veEV(Zyp) beB(Zp) veG(Qp)\Vb(Zp) abe(@,)\Y

Proof. The first part follows from Lemma and the p-adic formula for integration in fibres; see [[gu00]
§7.6]. To prove the second part, we note that the function v — # Stabg(@p)(v) is locally constant, because
the universal stabilizer Z — V&35 ig finite étale. It therefore suffices to show that the function

1
np(v) = > #Staba(z,) (v')

v €G(Zp)\(G(Qp)-vNV(Zp))

is locally constant. Suppose v € V(Q),)"&%. Let ¢ C V(Q,) be the unique Cartan subspace containing v.
Since 7|, is étale above B(Q,)"#", we can find an open compact neighbourhood B, of m(v) in B(Q,)"&*"*
such that w‘l(Bv) Ne¢ = UJ_,U; is a disjoint union of open subsets of ¢ and each n|y, : U; — B, is a
homeomorphism. Let U = U; be the open subset containing v. Let p: G(Q,) x U = V(Q,) N7 *(B,)
be the restriction of the natural action map. Then y is proper, and so u~'(V(Z,) N 7~1(B,)) is compact.
It follows that the characteristic function y of the set u(u='(V(Z,) N 7= 1(B,))) C V(Z,)™& = is locally
constant and of compact support. For v/ € U, we have n,(v') = Fy(w(v")), where F is as defined in the
statement of the first part of the proposition. Thus by the first part of the proposition n, is locally constant.
The third part of the proposition follows from the first two. O

3.2 Selmer elements and integral orbits

We now discuss the construction of elements of V(Z,) and V(Z) from rational points of algebraic curves. We
first show that certain geometric orbits have integral representatives.

Lemma 3.4. There exists an integer No > 1 with the following properties:
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1. For any prime p and any b € B(Z,), we have Ny - ky € V(Z,).

2. In Case Er, let w € Q be the non-trivial element and let k' denote the Kostant section corresponding
to the reqular nilpotent element E' = ZaeSH ewa- Then for any prime p and for any b € B(Z,), we
have Ny - k}, € V(Zy,).

3. For any prime p and any x € X(Z,), we have No -z € V(Zy).
4. Ifbe Ng - B(Z), then b € n(V(Z)).

In the first three items Ny is acting via the Gy, -action discussed in Section [2.2 In the third item Ny is
acting via the natural G, -action on B.

Proof. This follows from the existence of the contracting G,,-actions on x, &', and X, cf. [Thol5, Lemma
2.8]. O

Lemma 3.5. There exists an integer N1 > 1 with the following property: for any prime p and any b €
Ni - B(Zy) such that A(b) # 0, the canonical image of Yy(Qp) in H*(Qy, Jy[2]) is contained in the image of
the composite map:

Vo(Zp) = G(Qp)\Vo(Qp) — HY(Qp, Jo[2))

(where 7y, is as in Theorems and for the case when k = Q,).

Proof. We just treat the case when H is of type E7; the Eg case is more straightforward, since there is only
one point at infinity. We will show that we can take Ny = 2*N2, where Ny is as in Lemma We recall
that the curve Y is given by the equation

3 3 2.2 2 2 3 2_2 3 4
YoZ0 = ZoYo + c102p2y + To(cayyzo + csYozy + C1a2y) + CoVp 2y + C12¥0%h + C18%,

and has two sections Py = [0 : 1: 0] and P, = [1 : 0 : 0] at infinity; the map Y,(Q,) — Jo(Q,)/2J(Qy)
sends a point P to the class of the divisor (P) — (P;). We define ) to be the closed subscheme of P% defined
by the same equation; then the complement in Y of its sections at infinity is naturally identified with X by
Theorem For b € B(Qj), Yy is smooth in an open neighbourhood of these sections at infinity. If t € Q)
then the isomorphism X, — X2, induced by the action of G,, on X extends to an isomorphism Y; — Y;2,
that maps [zo : yo : 20] to [t3z0 : 12y : 20].

We first claim that if b € 2*B(Z,), then every divisor class in the image of the map Y;(Q,) — J»(Q,)/2J5(Q,)
is represented by either the zero divisor, the divisor P, — P;, or a divisor of the form P — P; for some
P e X,(Zy,).

If P € Y3(Q,), then we write P for the image of P in Y,(F,). The special fibre Y, , is reduced, and has at
most two irreducible components, which are geometrically irreducible. Moreover, if there are two irreducible
components, then P; and P, lie on distinct irreducible components. Indeed, due to the presence of the
contracting G,,-action, any property of the morphism )) — B which is open on the base can be checked
in the central fibre. Thus [Stal7, Tag 0COE] implies that all of the fibres of )} are geometrically reduced;
and then [Stal7, Tag 055R] implies that the two sections P;, P5 together meet all irreducible components in
every geometric fibre. In particular, every irreducible component of Y, r, is geometrically irreducible.

Let Jp = Picg,b /Z, be the open subscheme of Picy, /7 corresponding to those invertible sheaves that are
fibrewise of degree 0 on each irreducible component (see [BLR90, §8.4]). Then J, is a smooth and sep-
arated scheme over Z, (see [BLR90, §9.4, Theorem 2]). We note that if @ € J,(Z,) has trivial image in
To(Zy/23pZ,), then Q is divisible by 2 in J,(Z,,) (this follows from [Sil09, Theorem 6.1] and its generalization
[CX08|, Proposition 3.1)).
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Let P = (z,y) € Y3,(Q,). To prove the claim, it suffices to show that if P & X}(Z,), then one of the divisor
classes [(P) — (P1)] or [(P) — (P2)] is divisible by 2 in J,(Q,). We can assume that zy # 0. We note that if
P & X,(Zy), then (at least) one of z,y must be non-integral. If x is integral then the defining equation of Y
shows that y is integral too. We can therefore write z = p™u, y = p™v, with u,v € Z; and m < 0. We note
that if n < 0, then we must have 2n = 3m, hence we can write n = 3k, m = 2k for some k < 0.

We first treat the case where p is odd. If n < 0, then we have
= [p*u:p*v: 1) =[pu:v:p~*] = P, mod p,

and we see that [(P) — (Py)] is divisible by 2 in J;(Qp). If n > 0, then P = P, mod p, and [(P) — (P»)] is
divisible by 2 in J,(Q,). This establishes the claim in the case when p is odd.

Now suppose that p = 2. Our assumption b € 2*B(Zy) means that c;(b) is divisible by 2% for each i €
{2,...,18}. We write ¢+ : Y}, — Y%b for the map [z : yo : z0] > [27820 : 27290 : 20] = [2%70 : yo : 2'2%2). If
n < 0, then we get

W(P) = [24"Fu ;v : 2273 = P mod 2.

This shows that [(¢«(P)) — (P1)] is divisible by 2 in J1,(Q2), hence [(P) — (P1)] is divisible by 2 in J,(Q2). If
n >0, then we have P =[1:2""™v/u: 27" /u] = [1 : w: 2|, say, and we have an equation
w(l —w?z) = 0(282)
in Zs. It follows that n —m > 8. Then we get
L(P)=[2*:2" "™y u: 227 fu) = [1: 2" Y /u: 287 /u] = P, mod 2°,
hence [(P) — (P,)] is divisible by 2 in J;(Q2). This completes the proof of the claim.

We now show how the claim implies the lemma. We drop our assumption on the parity of p, and take b = N¢c,
where ¢ € 2*B(Z,). Given a class ¢ in H'(Q,, J.[2]), if ¢ is in the image of Y.(Q,), then ¢ is represented
by either Pi, P», or an element of X.(Z,). Let ¢’ denote the corresponding class in H'(Q,, J;[2]). If P
is a representative, then r;, € V;,(Q,) represents the corresponding rational orbit. By Lemma we have
kp = No- k. € V(Z,), so Ky is even an integral representative for this rational orbit. If P; is a representative,
then x;, € V(Z,) is an integral representative, by the same argument.

Suppose instead that ¢ is represented by a divisor (P) — (P1), where P € X.(Z,). Then ¢’ is represented by
the divisor (No - P) — (Py), where now Ny - P € No - X(Zp). By Lemma [3.4] we have No - X(Z,) C V(Zy),
showing that Ny - P € V4(Z,) is an integral representative for the rational orbit corresponding to the class
¢. This completes the proof. O

Proposition 3.6. Let Ny € Z>1 be an as in Lemma[3.5 Then for any b € Ny - B(Z) such that A(b) # 0,
the 2-Selmer set Sela(Yy) C HY(Qp, Jo[2]) is contained in the image of the composite map

Vi(Z) = GQ\Vo(Q) = H'(Q, J[2)).
Consequently, for any b € B(Z) such that A(b) # 0, we have # Sely(Yy) < #G(Q)\Vn,v(Z).

Proof. Suppose ¢ € Sely(Y;). We first show that ¢ € v,(G(Q)\V(Q)); by Proposition this is the case
exactly when the image ¢’ of ¢ under the map

HYQ, J,[2]) = H'(Q,G)

is trivial. By commutativity of the diagram in Theorem 2.9)in Case E7 (resp. Theorem in Case Eg) and
the definition of the 2-Selmer set, we see that ¢’ is locally trivial, in the sense that its image in H*(Q,,G)
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is trivial for every place v of Q. We claim that this implies that ¢’ is itself trivial. Indeed, write G*¢ for
the simply connected cover of G. The centre of G has order 2 in both cases (see, e.g., [Thol6l Proof of
Proposition A.1]). Thus we see that there is a short exact sequence of groups over Q:

1 M G G 1,

where p = p4 (in Case E7) or ps (in Case Eg). This leads to the following commutative diagram of pointed
Galois cohomology sets, in which the rows are exact:

HY(Q, 1) HY(Q,G%) HY(Q,G) H*(Q, 1)

\Llocl ilocz iloc_o, llom

Hv Hl(@v»,u) I HU Hl(QvaGSC) I Hv Hl(@vaG) I Hv HQ(QM,U)-

Since G*¢ is simply connected, the map locs is bijective, and H'(Q,,G*) is trivial for every prime p. By
class field theory, the map locy is injective. Using these facts, a diagram chase shows that the triviality of
locs(c") forces ¢ itself to be trivial.

We can therefore choose a vector v € V;,(Q) representing our class ¢. By Lemma for each prime p there
exists an element g, € G(Q,) such that g, - v € V(Z,). By Proposition there is an element g € G(Q)
such that g, € G(Z,)g for every prime p. It follows that g - v € V,(Z), as required. O

3.3 Subsets of V(R) and V(Q,)

We conclude this section by constructing some useful subsets of V(R) and V(Q,). We first consider V(R).
Let ¢q, ..., ¢, denote representatives of the distinct G(R)-conjugacy classes of Cartan subspaces of V(R). For
each i € {1,...,n}, let ¢} denote the closed subset of ¢;**** given by ¢} = {v € ¢;*** | ht(v) = 1}. Arguing as
in [Thol5l §2.9], we can find a cover of ¢ by finitely many connected semialgebraic open subsets U;; such that
each map 7|y, : Us; — {b € B(R)™&*% | ht(b) = 1} is a homeomorphism onto its image. We write L1, ..., Ly
for the sets m(Uy;) for all 4, j in any order, and for Ly = 7(Us ;) we set s := (7|y, ;) ™" : Ly = V(R)™&=s,
We can extend s to a map si : A - L, — V(R)™&55 by the formula s5(Ab) = Asi(b) for any A € A, b € L.

Lemma 3.7. With notation as above, each map si : A- Ly — V(R)™9-%% 4s a semialgebraic map, and sy (Ly)
has compact closure in V(R). The quantity ry, := # Stabg ) (s (b)) is independent of the choice of b € Ly.
We have U" |G(R) - A - si(Li) = V(R)™%%. For any continuous function f : V(R)™* — R of compact

support, we have
[Woloo
f)dv="—— f(g - sk(b)) dg db.
vEG(R)-A-Ly, Tk beA-Ly, J geG(R)

Consequently for any x > 1 we have:

vol(& - [1, 2/ 98 8] . gy (Ly)) < [Woloo vOL(S) vol([1, 21/ 48 2] . Ly).

Proof. Let uy, : G(R) x (A- L) — V(R)™&5 be given by (g,b) — g-si(b). Then puy is a local diffeomorphism
onto its image, with fibres of cardinality 7. By Lemma we have ujwy = Wowg A wp. The displayed
formulae follow from this identity. O

We now consider V(Q,).

Lemma 3.8. There exists a constant € € (0, 1) with the following property: let p be a prime congruent to 1
mod 6. Then there exists a non-empty open compact subset U, C B(Z,) such that for all b € U,, we have
A(b) 7é 07 Xb(Zp) 7& ®7 and

#(m (Y5 (Qp) = (Qp)/275(Qp))) _
#Jb(Qp)/ZJb(Qp) N
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Proof. Let p be a prime with p = 1 mod 6. It suffices to show that we can find a single b € B(Z,) with
A(b) #0, X(Zp) # 0, and

#(Im (Y5 (Qp) = J5(Qp)/25(Qp))) <

#Jb(Qp)/QJb(Qp)

By continuity considerations of the type in [PS14] §8], we can then take U, to be any sufficiently small open
compact neighbourhood of b in B(Z,). We will in fact exhibit b € U, such that A(b) # 0, X,(Z,) # 0, the
component group ® of the Néron model of .J, is isomorphic to (Z/2Z)?, and the image of Y;(Q,) in ® is the
identity. This will imply that the lemma holds with € = i.

We first return to the Eg family of curves (1.1)):
y® = 2t + y(cox® + c5x + cg) + cox? + cox + c12

described in the introduction to this paper. In this case the existence of such a point b is asserted in [Thol5l
Proposition 2.15]. The proof given there is incorrect; more precisely, the description of the special fibre of a
regular model of the curve y® = 2% — p? is incorrect. We will first remedy this error. The calculation in this
case will also play a role in the proof of the lemma in Cases E7 and Eg.

We consider instead the curve given by the equation y® = (¢ — 1)(23 — p?). (This curve can be put into
the canonical form lb by a linear change of variable in z.) Let ) be the curve inside IP’%F given by the
projective closure of this equation, and let Z C A%p denote the complement of the unique point at infinity. It

is clear that Z(Z,) # (. Moreover, Y has a unique point that is not regular, namely the point corresponding
to (x,y) = (0,0) in the special fibre Zp,.

This singularity can be resolved by blowing up. Let )’ — ) denote the blow-up at the unique non-regular
point of ). Then )’ has exactly 3 non-regular points. The special fibre of )’ has two irreducible components,
namely the strict transform of pr and a smooth exceptional divisor. Let Y — )’ denote the blow-up of the
3 non-regular points. Then )" is regular, and the special fibre y{F’p has 5 irreducible components: the strict
transform Cy of Vg, , the strict transform C5 of the exceptional divisor in y{FP, and the smooth exceptional
divisors Cs, C3, Cy of the blow-up V" — ).

We note that blow-up commutes with flat base change, so to verify our claims about the component group
® it suffices to perform these blow-ups in the completed local ring of ) at the maximal ideal (p, x,y), which
is in turn isomorphic to Zp[z, w]/(w® — 2® + p?). Here we find that all the irreducible components in the
special fibre of y{;p are smooth and geometrically irreducible, and their intersection graph is given as follows:

All intersections are transverse, and the multiplicities of C1, Cs, C3, Cy and C5 are respectively 1,2,2,2, and
3. The intersection matrix of the special fibre of )" is therefore

-6 1 1 1 0
1 -2 0 0 1
M = 1 0 -2 0 1
1 0 0o -2 1
0 1 1 1 -2
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Let v = (1,2,2,2,3). Then Mv = 0 and there is an isomorphism & = vJ-/im M, where we consider v
as an element of Z° and M as a Z-module homomorphism (see [BLRI0, §9.6]). A calculation shows that
¢ = (Z/2Z)?, as claimed. Each point of Y(Z,) = V" (Z,) reduces modulo p to a smooth point of the special
fibre ylg'p. Since there is exactly one component of y{F’p of multiplicity one, we see that all points of Y(Z,)
reduce to this component; consequently, their image in the Néron component group @ is trivial (to see this,
use the recipe in [Lor00, §5]).

We now turn to Case E;. Consider a perturbation
y’ = (z = 1)z - p*) + Ay,

where A € Z, — {0}. Using the procedure of Proposition we can make a change of variable to put this
curve in the form : the perturbation causes the point [0 : 1 : 0] at infinity to be a flex point, but no
longer a hyperflex point. One may check that the curve obtained in this way has nontrivial integral points.
For A close enough to 0, this curve will also satisfy the condition

#Am(Yy(Qp) = J5(Qp)/275(Qp)))
#Jb(Qp)/2Jb(Qp)

1
< -.
!

Finally, we turn to Case Eg. We now let Z be the curve given by the equation y3 = (22 — 1)(2® — p?),
and let ) denote the projective curve over Z, containing Z and given by the multihomogeneous equation
Y3 = z(2?—22)(23 —p?23). Then ) is smooth along the unique section at infinity. We see that ) has a unique
non-regular point, namely the point inside Z corresponding to the maximal ideal (p,x,y). The completed
local ring of Z at this point is isomorphic to Z,[z,w]/(w® — 23 + p?). It follows that the singularities of
Y can be resolved by two blow-ups, exactly as in the Fg case described above. Moreover, the intersection
matrix is equal to M as defined above, and the isomorphism class of the component group of the Néron
model of the Jacobian of Vg, is also (Z/27Z)?. This concludes the proof. O

Lemma 3.9. There exists an open subset Uy C B(Zs3) such that for allb € Us, we have A(b) # 0, X,(Zs) # 0,
and the image of the map Xp(Z2) — Jp(Q2)/2J,(Q2) does not intersect the subgroup generated by the divisor
class [(P1) — (P2)] in Case Er (resp. does not contain the identity in Case Eg).

Proof. If ¢ € B(F3) is such that X, is smooth, let us write ). for the smooth projective completion of X,
and 7, for Picg,n. In order to prove the lemma, it suffices to exhibit a single point ¢ € B(FF3) such that X, is
smooth, and such that the image of the map X.(Fq) — J.(F2)/2J.(F2) is nontrivial and does not intersect
the given subgroup. Indeed, suppose c is such a point, and define U; to be the preimage of ¢ under the
natural map B(Zsy) — B(Fs). If b € Us, then there is a commutative diagram

Xy (Zg) —— Jp(Q2)/2J5(Q2)

| |

Xc(]FQ) —_— jc(F2)/2jc<F2)

By Hensel’s Lemma, the existence of a point in X, (F3) implies that X}(Zs) is non-empty. Since the diagram is
commutative, the image of X},(Z2) does not intersect the subgroup generated by the divisor class [(Py) — (P2)]
in Case Ey (resp. does not contain the identity in Case Eg).

It remains to exhibit such a point ¢ € B(Fz) in each case. In Case E, we consider the curve
X, P =2y +y+ 1.

We have that X, is smooth over Fo, and X.(Fs) consists of exactly one point (z,y) = (1,1). There
is an isomorphism J.(IF3) = Z/18Z, hence an isomorphism J.(F2)/2J.(F2) = Z/2Z. The subgroup of
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Je(F2)/2J.(F2) generated by the divisor class [(P;) — (P,)] is the trivial subgroup, while the point (1, 1) has
nontrivial image in J.(F2)/2J.(F2) (in fact, its image in J.(F2) is a generator).

In Case Eg, we consider the curve
Xy =2 dy(a® +2%) + 23+ 1

We have that X, is smooth over Fy, and X,(F3) consists of the two points (x,y) = (0,1) and (z,y) = (1, 1).
There is an isomorphism J.(F2) = Z/30Z, hence an isomorphism J.(F3)/27.(F3) = Z/2Z. Both of the
rational points of X.(F2) have nontrivial image in J.(F2)/27.(F2).

We verified all these properties of the given curves X, using the ClassGroup functionality in magma [BCP97].
O

Lemma 3.10. 1. For every prime p, there exists an open compact subset U, C B(Z,) such that for every
be U, A(b) #0 and Xy(Zy) # 0.

2. There exists an integer N3 > 1 such that for every prime p > N3 and for every b € B(Z,) such that
A(b) # 0, we have Xy(Z,) # 0.

Proof. For each prime p, it is not difficult to find a point ¢ € B(F,) such that X, is smooth and X.(F},) is non-
empty. Taking U, to be the preimage of c in B(Z,,) establishes the first part of the lemma. The second part
follows from Hensel’s Lemma and the Weil bounds; here we are implicitly using the fact, already established
in the proof of Lemma that for any ¢ € B(F),), the irreducible components of X, are geometrically
irreducible. [

4 Counting points

In Section [3| we have defined an algebraic group over Z and a representation V), as well as various associated
structures. In Section [d] we continue with the same notation and now show how to estimate the number of
points in G(Z)\V(Z) of bounded height.

We first prove a simplified result, Theorem [4.1l The more refined version (Theorem 7 which is needed
for applications, will be given at the end of this section. Let L C B(R) be one of the subsets Ly, described in
Lemmal[3.7, and let s : L — V(R) be the corresponding section. Then L is a connected semialgebraic subset of
B(R); s is a semialgebraic map; and s(L) has compact closure in V(R). The map A x L — B(R), (A, ) — A-¢
given by the G,,-action on B is an open immersion, and ht(\ - £) = A48 4,

For any subset A C V(Z), we write A" for the subset of points a € A that are Q-irreducible, in the sense of
We recall that r is the rank of H. Our first result is as follows.

Theorem 4.1. There exist constants C,§ > 0, not dependent on choice of L, such that
#G(Z)\{v € [G(R) - A - s(L)] N V(Z)™ | ht(v) < a} < C - vol([1,a"/ 9°82] . L) + O(a2 7/ dea2=0),

Our proof is very similar to that of [Thold, Theorem 3.1}, except that a significant amount of case-by-case
computation is required in order to control the contribution of elements that are ‘in the cusp’ (i.e. elements
that lie in the codimension-one subspace of V' where the coordinate corresponding to the highest root of H
vanishes; see Proposition below). To avoid repetition, we omit the details of proofs that are essentially
the same as proofs appearing in [Thol5l §3].

First we introduce some notation. Recall that we have fixed a choice of & = wT.K C G(R) as in Proposition
where w C N(R) is a compact subset and T, C T(R)° is open. As in [Thold, Section 3.1], we fix a
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compact semialgebraic set Go C G(R) x A of non-empty interior with the property that K - Go = Go. We

assume that the projection of Gy to A is contained in [1,Cy] for some constant Cy and that vol(Gy) = 1.

Given a subset A C V(Z) we let
N(A,a)

#(Gh-A-s(L)yNn{v e A™ | ht(v) < a}) dh
heGop

N*(A,a) #(&h-A-s(L)N{v e A|ht(v) < a}) dh.

heGop

The following two lemmas are the analogues in our situation of [Thol5, Lemma 3.3] and [Thol5l Lemma
3.4]; the proofs are the same.

Lemma 4.2. Let A C V(Z) be a G-invariant subset. Then
#G(Z)\ {v € [G(R) - A-s(L)] N A™ | ht(v) < a} < N(A,a)

and
H#G(Z)\{v e [GR)-A-s(L))NA | ht(v) < a} < N*(4,a).

Lemma 4.3. Given a > 1,n € N(R),t € T(R), and X € A, define E(n,t,\,a) = ntAGos(L) N {v € V(R) |
ht(v) < a}. For any subset A C V(Z), we have
N(4,a) < QT/ / #[E(n,t,\,a) N A™]5q () tdn dt d*\
AeA JteT,. Jnew

and

N*(A,a)§2’”/ / / H[E(n,t, A a) N Al ()~ dn dt &),
AeA JteT,. Jnew

where dg is as defined in Section[3.1].

In order to actually count points, we will use the following result, which follows from [BW14, Theorem 1.3].
This replaces the use of [Tholbl, Proposition 3.5], itself based on a result of Davenport [Dav51]. We prefer
to cite [BW14] since the possibility of applying [Dav51] to a general semialgebraic set rests implicitly on the
Tarski-Seidenberg principle (see [Dav64]).

Theorem 4.4. Let m,n > 1 be integers, and let Z C R™'™ be a semialgebraic subset. For T € R™, let
Zr = {x € R" | (T,z) € Z}, and suppose that all such subsets Zp are bounded. Then for any unipotent
upper-triangular matriz u € GL,,(R), we have

#(Zp NuZ™) = vol(Zr) + O(sup{1,vol(Zr ;)}),
where Zp j runs over all orthogonal projections of Zr to any j-dimensional coordinate hyperplane (1 < j <

n —1). Moreover, the implied constant depends only on Z.

To state the next proposition, we recall that for any subset M C @y, V(M) C V is the linear subspace
consisting of vectors v = Zae% v With v, = 0 for all @« € M. Given disjoint subsets My, M; C Py, we
define an open subscheme V (Mg, M) C V(Mp) by

V(Mo,M1> = {’U S V(Mo) | Va 7& 0 for all o € Ml}

We also define S(My) = V(My)(Q) N V(Z) and S(My, M) = V (Mo, M1)(Q) NV(Z). For ease of notation, if
M = {a} is a single root, we write S(M) as S(c).

Proposition 4.5. Let ag € Py denote the highest root of H with respect to the root basis Sg. Then there
exists 0 > 0 such that N(S(a),a) = O(az+"/ des -0,
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Proof. We call a pair (Mg, M) of disjoint subsets of ®y a cusp datum. To prove the proposition, it suffices
to find a set C of cusp data such that

1. S(O[O)irr C U(Mo,Ml)EC S(MO,Ml)

2. If (Mo, My) € C, then N*(S(Mo, My),a) = O(aztr/des A=6),

Consider the partial order on ®y given by 8 > « if and only if n;(8 — «) > 0 for all ¢, where n; is as defined
in Section Let M be the collection of subsets M C ®y such that if « € M and 8 > « then § € M.
Given a subset M € M, we let A(M) = {a € &y | M U{a} € M}. We let C be the collection of cusp data
defined inductively as follows: in step 1, we form the cusp datum ({ag}, A({ao})). In each successive step
we create the set of cusp data {(MoU{a}, \(MyU{a})) | a € M;} for each cusp datum (My, M;) formed in
the previous step, and then remove any cusp data such that M satisfies any of the conditions of Proposition
m By construction the collection C satisfies condition 1 above. For each cusp datum (Mo, M7) € C, we
check that N*(S(Mo, My),a) = O(azt"/d82=0) To do so, by the same logic as in [Thol5l §5], it suffices
to find a function f : M; — R satisfying the following two conditions:

* Xoem, fla) <#Mo

e For each 1 <14 < r, we have Zo@g ni(a) =3 pens, i) + 2 qenr, fl@)ni(a) > 0.

One can program a computer to generate the list of cusp data in C, after inputting the root datum of
h and the description of its 2-grading, and then to verify that there exists such a function f for each
(Mo, M) € C. We have carried out this verification process. Our code is available in the Mathematica
notebooks E7CuspData.nb and E80uspData.nbE| (In the name of efficiency, we actually follow a slightly
different procedure, since it is time-consuming to check the condition in part 3 of Proposition Namely,
we generate a list of cusp data by eliminating only those pairs (My, M;) such that My satisfies the condition
in part 2 of Proposition|2.15} For the cusp data on this list, we check that either a function f as above exists,
or that one of the remaining conditions, i.e. part 1 or part 3 of Proposition holds. When verifying the
condition in part 3, we restrict our search to o € M;. The end result is a collection of cusp data satisfying
items 1 and 2 above, which suffices to prove the proposition.) O

Proposition 4.6. Let N > 1 be an integer, and let v € V(Z). Let A, y = v+ N -V(Z). Then there exists
6 > 0 such that

N*(Ay.x — S(ao),a) < 2"[Woloo vol(S)

=7 NdmV vol([1,a" /48 8] . L) 4 O(a2 ™t/ deg A=0),

Proof. Let || - || : V(R) — R denote the supremum norm with respect to the decomposition V = Saecay, Va
as a direct sum of free Z-modules of rank 1. Let J > 0 be a constant such that ||[v|| < J for all v € w-Gg-s(L).
Let F(n,t,\,a) = {v € E(n,t,\,a) | |va,| > 1}. If F(n,t, A, a) # 0, then Aag(t) > 1/J. By Theorem {.4

we have
#((V(Z) — S(ap)) NE(n,t,\,a)) = #(V(Z) N F(n,t,\ a)) = vol(F(n,t,\,a)) + OAIT™V " 1ag(t)71).
Similarly we have

#((Ayny — S(a0)) N E(n,t, N a)) = N~V yol(F(n, t, A, a)) + O™V Lo (1) 71). (4.1)

2These Mathematica notebooks may be found at https://www.dpmms.cam.ac.uk/~jat58/E7CuspData.nb and https://www.
dpmms . cam.ac.uk/~jat58/E8CuspData.nb respectively.
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By Lemma N*(Ay N ,a) is bounded above by

S(ao)
2" / / N~V yol(F(n, t, A, a))dq(t) "t dn dt d*
AEAN JEeT,

new

JRVZTIN (4.2)
/ / O™V =10 ()" Nog(t) "  dndt d* .
A= C_ teT, JnEw

The second term in (4.2) is O(a2+("=1/des ) Lemma [3.7 shows that the first term is bounded above by

2T/ / / N=ImVol(B(n, t, A, a))da(t) " dndt d* A
ANeAN JteT, Jnew

vEghAs(L),ht(v adhd’udngA
Ndlmv/AeA/gGG/veV(R)/heGo SohAs(L) be(v)<

2" |[[0|oo/ 1/ deg A
<= vol(&) vol([1, a'/ 48 2] . L) dh.
NEwY o (&) vol(] ]-L)

= 2}\{'(17 ”;j';i" vol(&) vol([1,a'/ 98 4] . L).

This completes the proof. O

We can now finish the proof of Theorem By Lemma |4.2] we have
G(Z)\{v € [G(R) - A - s(L)] N V(Z)™ | ht(v) < a} < N(V(Z),a) < N(V(Z) — S(ap),a) + N*(S(ap), a).
The result now follows on combining Proposition [I.5] and Proposition [£.6]

We now state the more refined version of Theorem mentioned at the beginning of this section.

Theorem 4.7. Let p1,...,ps be distinct primes, and for eachi € {1,...,s}, let V,, C V(Z,,) NV (Q,, ) 95
be an open compact subset that is G(Q,,)-invariant, in the sense that if v € V,,, g € G(Qp%) and gv €
V(Z,,), then gv € V,,,. Let A =V(Z) N (Vp, X --- x V,,) (where we are identifying V(Z) with its image in
V(Zp,) x - X V(Zp,) under the diagonal embedding). Then there exist constants C,d > 0 not depending on
s or the sets V..., V,, such that

#GQ\{v € A™ | ht(v) <a} < C (H /b - Sgﬁa\gﬁ;;f;i?“”) db) adtr/ et Oaitr/dent=s),

Proof. We recall that for each prime p we have defined in the statement of Proposition [3.3|a locally constant
function m,, : V(Q,)"#*> — R by the formula

# Stabg((@p) (’U)

mp(v) - # Stabg(zp) (v’) ’

v €G(Zp)\(G(Qp)-vNV(Zp))
The same argument as in the proof of [Thol5, Corollary 3.9] leads to an estimate
. 1
G@Q\{ve A" [ht(v) <a} <27 >

vEG(Z)\A mp, (v)
ht(v)<a

Combining Lemma [1.2] Proposition [£.6] and Proposition [.5] and summing over all choices of L as in Lemma
yields absolute constants C,d > 0 such that

1 s 1 ) )
Z <C (H/ @ dv> q3tr/ degA + O(a§+7'/degA—5).
i=1""

my. (U My \U
vEG(Z)\A pz( ) )EVPi Pi
ht(v)<a

25



By the third part of Proposition this expression is equal to

(HlWolp vol(G ) (H /( } Sgt)a\éff@mﬁi?”"”) db) aitr/deed 4 Ofaxtr/deEts),

The products [}_, [Wolp, vol(G(Z,,)) can be bounded independently of s and the primes p1,...,ps. They
can therefore be absorbed into the constant, giving the estimate in the statement of the theorem. O

5 Applications to 2-Selmer sets

In this final section, we prove our main theorems, including the results stated in the introduction, by
combining all the theory developed so far. In order to avoid confusion, we treat each of the two families of
curves (corresponding to Case E7 and Case Eg) in turn.

5.1 Applications in Case E;

As above, we write B = Spec Z[ca, cg, ¢s, C10, C12, C14, C18) for affine space over Z in 7 variables, and write
X — B for the family of affine plane curves given by equation (|1.2):

y* = 2%y + c108” + w(cay® + csy + c1a) + cey® + cr2y + cis.
This family has the following interpretation:

Proposition 5.1. Let k/Q be a field. Then:

1. The locus inside By above which the morphism Xy — By, is smooth is the complement of an irreducible
closed subset of By, of codimension 1.

2. The set of points b € B(k) for which Xy is smooth is in bijection with the set of equivalence classes of
triples (C, Py,t), where:

(a) C is a smooth, non-hyperelliptic curve of genus 3 over k.

(b) P, € C(k) is a flex point in the canonical embedding, i.e. the projective tangent line to C at Py
intersects C' with multiplicity 8 at the point Py .

(c) t € Tp,C is a non-zero Zariski tangent vector at the point P;.

If b corresponds to (C, Py,t), then X, is isomorphic to C — {Py, Py}, where Py € C(k) is the unique
point such that 3P) + Py is a canonical divisor. For \ € k™, the coefficients ¢; satisfy the equality

ci(C’, Pl, /\t) = )\i/2CZ‘(C, Pl,t).

Proof. Part 1 follows from the fact that X}, is smooth if and only if A(b) # 0. The proof of the second part
is very similar to the proof of [Thol5, Lemma 4.1], although here we cannot appeal to Pinkham’s Theorem.
Let (C, Py,t) be a tuple of the type described in the proposition, and let P, € C(k) be the point such
that 3P, + P is a canonical divisor. The Riemann-Roch Theorem shows that h°(C,O¢(3P;)) = 2 and
hO(C,Oc (2P + P»)) = 2. We can therefore find functions y, z € k(C)*, uniquely determined up to addition
of constants, such that the polar divisor of y is 3P; and the polar divisor of = is 2P} + P,, and such that
y=2z"3+...,2=2"2+... locally at the point P, where z is a local parameter at P, such that dz(t) = 1.
We can also assume that y vanishes at the point Ps.
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The 10 monomials
Lz, 2® y,yz,ya”, yz®,y?, e,y

all lie in the 9-dimensional space H°(C,Oc(9P; + 2P,)) and are linearly independent, as can be seen by
considering their polar divisors. It follows that they satisfy a unique linear relation of the form

y? = 2%y + 22 (cay + c10) + z(c2y® + csy + c14) + c6Y> + c12y + Cis. (5.1)

The function y is uniquely determined by the above data. We also see that there is a unique translate z + a
(a € k) such that, after replacing « by = + a, we have ¢4 = 0 in equation (5.1). The homogenization of the
equation (5.1]) then describes the canonical embedding of the curve C. O

If k/Q is a field extension and b € B(k) is such that A} is smooth, then we write Y; for the unique smooth
projective completion of A}.

As in the introduction, we define Fo = {b € B(Z) | Ay g is smooth}. We say that a subset F C Fy is defined
by congruence conditions if there exist distinct primes pi,...,ps and a non-empty open compact subset
Up, C B(Z,,) for each i € {1,..., s} such that

F=Fon(Up, x---xUp,),

where we are taking the intersection inside B(Z,,) X - - - X B(Zy,).

We recall that for b € B(R) we have defined ht(b) = sup; |c;(b)[*26/%. This function is homogeneous of degree
126, in the sense that for A € R*, we have ht(\ - b) = |\|*26 ht(b). (We note that 126 is the number of roots
in the root system of type E7, and so also the degree of the discrimimant polynomial A considered in )

Lemma 5.2. There exists a constant § > 0 such that if F C Fgy is a subset defined by congruence conditions
as above, then

#{be F|ht(b) < a} = <H vol(Upi)> a?t 1 4 O(q2 15 0)
i=1

as a — oo.
Proof. This is an easy consequence of Theorem O

Our main theorems are now as follows.

Theorem 5.3. Let F C Fy be a subset defined by congruence conditions. Then
> ver #Sela(Ys)

lim su ht(b)<a <
el T e F ht(b) < a)

Q.

In order to state the next theorem, we observe that if b € B(Q) is such that A} is smooth, then the 2-Selmer
set Sely(Y,) always contains the ‘trivial’ classes arising from divisors supported on the points Py, P, at
infinity (as in the statement of Proposition . We write Sely(Y;)"1V for the subset of Sely(Y}) consisting
of these classes, and note that # Sely (Y)Y < 2, with equality if and only if the divisor class [(P2) — (P1)]
is not divisible by 2 in J,(Q).

Theorem 5.4. For any € > 0, there exists a subset F C Fy defined by congruence conditions such that

> ber #Sela(Y)

lim sup ht(b)<a

2 .
MW S The Flm() <a) €
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Consequently, for any such choice of F we have

.. . #{be F|ht(b) <aand Sely(Y;) = Sela(V3)"V} B
lim inf #{be F () < a) >1-e

The proof of Theorem is essentially a refined version of the proof of Theorem so we just give the
proof of Theorem

Proof of Theorem[5.]} Let p1,...,ps be primes congruent to 1 modulo 6. Let ¢ € (0,1) be as in Lemma
and for each i € {1,...,s}, let U, C B(Zy,) be the set described in the statement of Lemma[3.8 These sets
have the following property: define

Voo =771 (Up,) NV(Zp,) N ([G(Qy,) - X(Qp)] U [G(Qy,) - 5(Qp)] U IG(Qp,) - £/ (@)

where x' is any Kostant section that is not G-conjugate to x. Then V), is an open compact subset of
V(Z,,)r°&>, and for any b € U,, we have A(b) # 0 and

7 StabG(Qpi)(lib)

<e. (5.2)

We let F = Fo N (Up, x -+ x Up.). For any b € F, let Sela(Y3)"™ C Sela(Y;) denote the subset of ‘nontrivial’
elements, i.e. the complement of Selz(Y3)™ in Sely(Y;). Let A = V(Z)N(Vp, X+ - +xV},,). Then by Proposition
for any a > 0 we have

> #Sela(¥y)™ < GQ)\{v € A™ | hi(v) < N{**%a}.

beEF
ht(b)<a

By combining Theorem Lemma and the inequality (5.2]), we see that there exist constants C,d > 0,

not depending on s or the choice of primes pq,...,ps, such that
Sely(Y3)'r
E 52, #5000 s o

#{be Flht(b) <a} = 14+ 0(a™9)

Since # Sela(Y;) < 2 + # Sela(Y3)™, the first sentence in the statement of the theorem now follows on
choosing s sufficiently large and letting a — co. The second sentence follows from the first on combining it
with the following lemma. O

Lemma 5.5. Let F C Fy be a family defined by congruence conditions. Then the limit

o D€ F 1 160) < a4 Sela ()" = 2}
aros #{be F | ht(b) < a)

exists and equals 1.

Proof. Let b € F, and let Cy, = Zp(kp), a maximal torus of H. The Galois action on Cj induces an associated
homomorphism Gal(Q®/Q) — W (H, Cy). Corollary shows that if this homomorphism is surjective, then
# Sely(Y3)'Y = 2. Tt therefore suffices to show that the limit

. #{b € F | ht(b) < a,Gal(Q°/Q) — W(H, Cp) surjective}
amtoo #{b e F | ht(b) < a}

exists and equals 1. This is a variant of the Hilbert Irreducibility Theorem and can be proved along similar
lines to the arguments in [Ser97, §13.2]. O
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Theorem 5.6. For any € > 0, there exists a subset F C Fy defined by congruence conditions such that the
following conditions are satisfied:

1. For every b € F and every prime p, we have Xy(Z,) # 0.

2. We have
lim inf

e F ) <ay L€

For the sets F constructed in Theorem [5.6] we may say that a positive proportion of the curves &} (b € F)
have integral points everywhere locally, but no integral points globally.

Proof. By Lemma and Lemma we can choose for every prime p an open compact subset U, C B(Zp,)
such that the following conditions are satisfied:

1. For each b € Us, A(b) # 0 and the image of the map X;(Z2) — Jp(Q2)/2J,(Q2) does not intersect the
subgroup generated by [(P1) — (P2)].

2. For every prime p and for every b € U, such that A(b) # 0, the set X(Z,) is non-empty.

3. For every sufficiently large prime p, U, = B(Z,).

Let F C Fy be the corresponding subset defined by congruence conditions. Fix € > 0. By modifying U, at
sufficiently many primes congruent to 1 modulo 6, as in the proof of Theorem Wwe can assume moreover
that the following condition is satisfied:

4. We have |
T inf #{b e F | ht(b) < a and Sels(Y;) = Sely(Yy)"V}

ot #{be F | ht(b) < a} >l-e

To complete the proof of the theorem, we just need to show that if b € F is such that Sely(Y3) = Sela (Y)Y,
then X'(Z3)) = 0. To this end, we consider the commutative diagram

Xb(Z(g)) EE—— Xb(ZQ)
Selz(Yy) —— J5(Q2)/2J,(Q2),

where the maps are the natural ones. By construction of Us, the image of the right-hand vertical map is
contained in the complement of the subgroup generated by the divisor class [(P;) — (FP2)]. By assumption, the
image of the bottom horizontal map is contained in the subgroup generated by the divisor class [(P) — (P2)].
This forces A,(Z2)) to be empty, as desired. O

5.2 Applications in Case Eg

We now forget the notation of and write B = Spec Z[ca, cs, €12, €14, C18, C20, C24, C30] for affine space over
Z in 8 variables, and write X — B for the family of affine plane curves given by equation (|1.3)):

yd =25+ y(CQxB + ez + caz + co0) + c122> + 1822 + cogx + c30.

This family has the following interpretation:
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Proposition 5.7. Let k/Q be a field. Then:

1. The locus inside By above which the morphism X — By is smooth is the complement of an irreducible
closed subset of By, of codimension 1.

2. The set of points b € B(k) for which X, is smooth is in bijection with the set of equivalence classes of
triples (C, P, t), where:
(a) C is a smooth, non-hyperelliptic curve of genus 4 over k.
(b) P € C(k) is a point such that 6P is a canonical divisor and h°(C,Oc(3P)) = 2.
(c) t € TpC is a non-zero Zariski tangent vector at the point P.
If b corresponds to (C, Py,t), then Xy is isomorphic to C — {P}. For A € k*, the coefficients ¢; satisfy

the equality _
ci(C, P, )\t) = )\lci(C, 1D7 t).

The proof is very similar to the proof of [Thol5, Lemma 4.1] and to the proof of Proposition [5.1} so we omit
it.

If k/Q is a field extension and b € B(k) is such that A} is smooth, then we write Y; for the unique smooth
projective completion of Aj. As in Case Ez, we define Fo = {b € B(Z) | A g is smooth}, and we say that a
subset F C Fy is defined by congruence conditions if there exist distinct primes p1,...,ps and a non-empty
open compact subset U,, C B(Z,,) for each i € {1,...,s} such that

]::-Fom(Uplx"'XUps)'

If b € B(R), then we have ht(b) = sup; |c;(b)|>*%/*. This function is homogeneous of degree 240, in the sense
that for A € R*, we have ht(\b) = |A\|*** ht(b). As in Case Er, an application of Theorem shows that
there exists a constant § > 0 such that if 7 C Fy is a subset defined by congruence conditions as above, then

#{be F|ht(b) < a} = (H Vol(Upi)> a2tm + O(az 3 9)
i=1

as a — Q.

Our main theorems in Case Eg are as follows. We omit the proofs since they are similar, and simpler, than
those in Case E7 in the previous section.

Theorem 5.8. Let F C Fy be a subset defined by congruence conditions. Then
> ver #Sela(Ys)

lim su ht(b)<a < 00
el Fb e Fht(d) <a} - o

Theorem 5.9. For any € > 0, there exists a subset F C Fy defined by congruence conditions such that

> ber #Sela(Y)

lim su ht(b)<a
P b e F [ ht(b) < a}

<l+e.

Consequently, we have

lim inf #{b € F | ht(b) < a and # Sely(Y;) = 1}

P #{be Fht() <a) >1-e
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Theorem 5.10. For any € > 0, there exists a subset F C Fo defined by congruence conditions such that the
following conditions are satisfied:

1. For every b € F and every prime p, we have Xy(Zy) # 0.

2. We have be Fl Az 0
lim inf #b e F | (L) =0} >1-—e
a—oo  #{be F|ht(b) < a}
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