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Abstract

An ADE Dynkin diagram gives rise to a family of algebraic curves. In this paper, we use arithmetic
invariant theory to study the integral points of the curves associated to the exceptional diagrams E6, E7,
E8. These curves are non-hyperelliptic of genus 3 or 4. We prove that a positive proportion of each
family consists of curves with integral points everywhere locally but no integral points globally.
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1 Introduction

Background. Consider the following families of affine plane curves over Q:

y3 = x4 + y(c2x
2 + c5x+ c8) + c6x

2 + c9x+ c12 (1.1)

y3 = x3y + c10x
2 + x(c2y

2 + c8y + c14) + c6y
2 + c12y + c18 (1.2)

y3 = x5 + y(c2x
3 + c8x

2 + c14x+ c20) + c12x
3 + c18x

2 + c24x+ c30. (1.3)

These families arise as versal deformations of the simple plane singularities of types E6, E7, and E8, respec-
tively (see [Tho13]). In each family, the singularity can be recovered by setting all coefficients ci equal to
0; yet the generic member of each family is smooth, and its smooth projective completion acquires rational
points at infinity. Thus it is natural to study the arithmetic of these families of pointed smooth projective
curves. The study of these families can be viewed as a variation on a classical theme: if we started instead
with the singularity of type A2 (given by the equation y2 = x3), then we would be studying the arithmetic
of elliptic curves in standard Weierstrass form.

We recall that if Y is a smooth projective curve over a global field k and P ∈ Y (k) is a rational point, then
one can define the 2-Selmer set Sel2 Y of the curve Y ; it is a subset of the 2-Selmer group of the Jacobian of
Y that serves as a cohomological proxy for the set Y (k) of k-rational points. In the paper [Tho15], the second
author studied the behaviour of the 2-Selmer sets of the curves in the family (1.1), proving the following
theorem ([Tho15, Theorem 4.3]):

Theorem 1.1. Let F0 ⊂ Z6 denote the set of tuples (c2, c5, c8, c6, c9, c12) ∈ Z6 such the the affine curve
given by equation (1.1) is smooth (over Q). If b ∈ F0, then call ht(b) = supi |ci(b)|72/i the height of b, and
let Yb denote the smooth projective completion of the fibre Xb as an algebraic curve over Q. If F ⊂ F0 is a
subset defined by congruence conditions, then we have

lim sup
a→∞

∑
b∈F

ht(b)<a
# Sel2(Yb)

#{b ∈ F | ht(b) < a}
<∞.

Moreover, for any ε > 0, we can find a subset F ⊂ F0 defined by congruence conditions such that

1 ≤ lim sup
a→∞

∑
b∈F

ht(b)<a
# Sel2(Yb)

#{b ∈ F | ht(b) < a}
< 1 + ε.

For the definition of a subset defined by congruence conditions, see (1.4) below. This theorem has the
following Diophantine consequence ([Tho15, Theorem 4.8]):

Theorem 1.2. Let ε > 0, and let F0 be as in the statement of Theorem 1.2. If b ∈ F0, let Xb denote the
affine curve over Z given by the equation (1.1). Then there exists a subset F ⊂ F0 defined by congruence
conditions that satisfies the following conditions:

1. For every b ∈ F and for every prime p, Xb(Zp) 6= ∅.

2. We have

lim inf
a→∞

#{b ∈ F | ht(b) < a, Xb(Z) = ∅}
#{b ∈ F | ht(b) < a}

> 1− ε.
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In other words, a positive proportion of curves in the family (1.1) have no Z-points despite having Zp-points
for every prime p. (The presence of marked points at infinity implies that for every b ∈ F0, the curve Xb
also has R-points.)

The results of this paper. The goal of this paper is to generalize these results to the other two families
(1.2) and (1.3) described above. The techniques we use are broadly similar to those of [Tho15], and are
based around the relation, introduced in [Tho13], between the arithmetic of these families of curves and
certain Vinberg representations associated to the corresponding root systems. We study this relation and
then employ the orbit-counting techniques of Bhargava to prove our main theorems. We refer the reader to
[Tho15, Introduction] for a more detailed discussion of these ideas.

In order to state the main theorems of this paper precisely, we must introduce some more notation. We will
find it convenient to state our results in parallel for the two families (1.2) and (1.3). When it is necessary to
split into cases, we will say that we are either in Case E7 or in Case E8. We specify the following notation:

Case E7: We let B denote the affine scheme A7
Z with coordinates (c2, c6, c8, c10, c12, c14, c18), and let B = BQ.

We let X ⊂ A2
B denote the affine curve over B given by the equation (1.2), and X = XQ. We let

Y → B denote the family of projective curves defined in [Tho13, Lemma 4.9] (this family is a fibre-wise
compactification of X that is smooth at infinity. It can be realized as the closure of X in P2

B). We let
F0 denote the set of b ∈ B(Z) such that Xb is smooth. If b ∈ F0, then we define ht(b) = supi |ci(b)|126/i.

Case E8: We let B denote the affine scheme A8
Z with coordinates (c2, c8, c12, c14, c18, c20, c24, c30), and let B = BQ.

We let X ⊂ A2
B denote the affine curve over B given by the equation (1.3), and X = XQ. We let Y → B

denote the family of projective curves defined in [Tho13, Lemma 4.9] (again, this family is a fibre-wise
compactification of X that is smooth at infinity. It can be realized as the closure of X in a suitable
weighted projective space over B). We let F0 denote the set of b ∈ B(Z) such that Xb is smooth. If
b ∈ F0, then we define ht(b) = supi |ci(b)|240/i.

In either case, we say that a subset F ⊂ F0 is defined by congruence conditions if there exist distinct primes
p1, . . . , ps and a non-empty open compact subset Upi ⊂ B(Zpi) for each i ∈ {1, . . . , s} such that

F = F0 ∩ (Up1
× · · · × Ups), (1.4)

where we are taking the intersection inside B(Zp1
)× · · · × B(Zps). Our first main result is then as follows.

Theorem 1.3. 1. Let F0 ⊂ F be a subset defined by congruence conditions. Then we have

lim sup
a→∞

∑
b∈F

ht(b)<a
# Sel2(Yb)

#{b ∈ F | ht(b) < a}
<∞.

2. For any ε > 0, we can find a subset F ⊂ F0 defined by congruence conditions such that

lim sup
a→∞

∑
b∈F

ht(b)<a
# Sel2(Yb)

#{b ∈ F | ht(b) < a}
<

{
2 + ε Case E7;
1 + ε Case E8.

(We note that the average in Case E7 is at least 2, because the family of curves (1.2) has two marked
points at infinity; for a generic member of this family, these rational points define distinct elements inside
the 2-Selmer set Sel2 Yb). In either case, we can apply Theorem 1.3 to deduce the following consequence.

Theorem 1.4. Let ε > 0. Then there exists a subset F ⊂ F0 defined by congruence conditions satisfying
the following conditions:

3



1. For every b ∈ F and for every prime p, Xb(Zp) 6= ∅.

2. We have

lim inf
a→∞

#{b ∈ F | ht(b) < a, Xb(Z) = ∅}
#{b ∈ F | ht(b) < a}

> 1− ε.

Informally, we have shown that a positive proportion of each of the families (1.2) and (1.3) consists of curves
with Zp-points for every prime p but no Z-points.

Methodology. We now describe some new aspects of the proofs of Theorem 1.3 and Theorem 1.4. The
main steps of our proofs are the same as those of [Tho15]: we combine the parameterization (constructed in
[Tho13]) of 2-Selmer elements by rational orbits in a certain representation (G,V ) arising from a graded Lie
algebra with a technique of counting integral orbits (i.e. of the group G(Z) in the set V (Z)). We thus gain
information about the average size of 2-Selmer sets.

Although our proofs are similar in outline to those of [Tho15], we need to introduce several new ideas here.
For example, the most challenging technical step in the argument is to eliminate the contribution of integral
points which lie ‘in the cusp’. (In the notation of Section 2.3, these points correspond to vectors v such that
vα0

= 0, where α0 is the highest root in the ambient Lie algebra h.) For this step we prove an optimized
criterion (Proposition 2.15) for when certain vectors are reducible (this implies that they cannot contribute
to the nontrivial part of the 2-Selmer set of a smooth curve in our family).This criterion is based in large
part on the Hilbert–Mumford stability criterion. Its application in this context is very natural, but seems to
be new.

We then use a computer to carry out a formidable computation to bound the contribution of the parts of
the cuspidal region that are not eliminated by this criterion (see Proposition 4.5). For comparison, we note
that in [Tho15], the cuspidal region was broken up into 68 pieces; here the analogous procedure leads to a
decomposition into 1429 (resp. 9437 pieces) in Case E7 (resp. in Case E8). It would be very interesting if
one could discover a ‘pure thought’ way to tackle this problem that does not rely on case-by-case calculations.

The current setting also differs from that of [Tho15] in that the curves of family (1.2) have more than one
marked point at infinity. (The geometric reason for this is that the projective tangent line to a flex point
P of a plane quartic curve intersects the curve in exactly one other point Q. This implies that the family
(1.2), essentially the universal family of plane quartics with a marked flex point, has two canonical sections.)
We find that the orbits that parameterize the divisor classes arising from these points match up in a very
pleasant way with a certain subgroup of the Weyl group of the ambient Lie algebra h; see in particular
Lemma 2.5.

It remains an interesting open problem to generalize the results of this paper and of [Tho15] to study the
average size of the 2-Selmer group of the Jacobians of the curves in (1.1) – (1.3) (and not just the size of
their 2-Selmer sets). The rational orbits necessary for this study were constructed in [Tho16], but we do not
yet understand how to construct integral representatives for these orbits, in other words, how to prove the
analogue of Lemma 3.5 below after replacing the set Yb(Qp) by Jb(Qp). If this can be achieved, then the
work we do in this paper to bound the contribution of the cuspidal region will suffice to obtain the expected
upper bound on the average size of the 2-Selmer group (namely 6 in Case E7 and 3 in Case E8).

Notation. Given a connected reductive group H and a maximal torus T ⊂ H, we write X∗(T ) =
Hom(T,Gm) for the character group of T , X∗(T ) for the cocharacter group of T , and W (H,T ) for the
(absolute) Weyl group of H with respect to T . Similarly, if c is a Cartan subalgebra of h = Lie(H), then we
write Φ(h, c) for the roots of c and W (H, c) for the Weyl group of c. If α ∈ Φ(h, c), then we write hα ⊂ h for
the root space corresponding to α. We write NH(T ) (resp. NH(c)) for the normalizer of T (resp. c) in H,
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and ZH(T ) (resp. ZH(c)) for the associated centralizer. Similarly, if V is any subspace of h and x ∈ h, then
we write zV (x) for the centralizer of x in V .

We write Λ = R>0 for the multiplicative group of positive reals, and d×λ = dλ/λ for its Haar measure
(where dλ is the usual Lebesgue measure on the real line). If G is a group defined over a ring R, V is an
representation of G, and A ⊂ V , then we write G(R)\A for the set of equivalence classes of A under the
relation a ∼ a′ if there exists γ ∈ G(R) such that γa = a′.

Acknowledgements. During the period in which this research was conducted, Jack Thorne served as a
Clay Research Fellow. Both of the authors were supported in part by EPSRC First Grant EP/N007204/1.
We thank Fabrizio Barroero for useful conversations.

2 A stable grading

In this section we establish the algebraic foundation for the proofs of our main theorems: in each of our
two cases, we describe the parameterization of certain 2-coverings of Jacobians of algebraic curves by orbits
in a representation arising from a Z/2Z-graded Lie algebra. Our set-up parallels that of [Tho15]; however,
we must address the complications arising from the presence of an additional point at infinity on the curves
in the family (1.2). This point makes its presence known in the disconnectedness of the group Hθ defined
below and in the fact that the central fibre of the family (1.2) is not irreducible.

2.1 Definition of the grading

Let k be a field of characteristic 0 with fixed separable closure ks, and let H be a simple adjoint group
over k of rank r that is equipped with a k-split maximal torus T . Let h = Lie(h) and t = Lie(t). We let
ΦH = Φ(H,T ) and choose a set of simple roots SH = {α1, α2, ..., αr} ⊂ ΦH . We also choose a Chevalley
basis for h with root vectors {eα | α ∈ ΦH}. Suppose that −1 is an element of the Weyl group W (H,T )
(this is true, e.g., if H has type E7 or E8, but not if H has type E6). Let ρ̌ ∈ X∗(T ) be the sum of the
fundamental coweights with respect to our choice of simple roots SH . Then, up to conjugation by H(k), the
automorphism θ := Ad(ρ̌(−1)) is the unique involution of H such that hdθ=−1 contains a regular nilpotent
element of h ([Tho13, Corollary 2.15]). The grading induced by this involution is stable in the sense of
[RLYG12, §5.3].

We define G = (Hθ)◦ and V = hdθ=−1. Then G is a split semisimple group, and V is an irreducible
representation of G, of the type studied by Kostant–Rallis in the case k = C [KR71]. The invariant theory
of V is closely related to that of the adjoint representation of H. We now summarize some aspects of the
invariant theory of the pair (G,V ), most of which may be found in [KR71], [Vin76], or [Pan05]. We refer
the reader to [Tho13, §2] for detailed references.

Definition 2.1. Let c ⊂ h be a Cartan subalgebra. If c ⊂ V , then c is called a Cartan subspace of V .

Theorem 2.2. 1. Any two Cartan subspaces c, c′ ⊂ V are conjugate by an element of G(ks).

2. Let c ⊂ V be a Cartan subspace, and define W (G, c) = NG(c)/ZG(c). Then the natural maps

W (G, c)→W (H, c)

and
k[h]H → k[V ]G → k[c]W (G,c)

are isomorphisms. In particular, k[V ]G is isomorphic to a polynomial algebra on r = rankH generators.
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Let us call a vector v ∈ V semisimple (resp. nilpotent, resp. regular) if it has this property when viewed as
an element of h. We have the following proposition:

Proposition 2.3. Let v ∈ V .

1. The components of the Jordan decomposition v = vs + vn in h in fact lie in V .

2. The vector v has a closed G-orbit in V if and only if it is semisimple.

3. The stabilizer of v in G is finite (and hence the G-orbit of v has maximal dimension) if and only if v
is regular.

We see in particular that a vector v ∈ V has both a closed orbit and a finite stabilizer (i.e. v is stable
in the sense of [Mum77]) if and only if it is regular semisimple. Let ∆̃ ∈ k[h]H be the image under the
isomorphism k[t]W (H,T ) → k[h]H of the product of all roots α ∈ ΦH . Then ∆̃(v) 6= 0 if and only if v ∈ h
is regular semisimple. We call ∆ := ∆̃|V the discriminant polynomial. Then ∆ is homogeneous of degree
#ΦH . If v ∈ V is a vector such that ∆(v) 6= 0, then zh(v) ⊂ V , and zh(v) is the unique Cartan subspace of
V containing v.

Before stating the next result, we review some basic definitions from geometric invariant theory. Recall that
given a one-parameter subgroup λ : Gm → Gks , we may decompose V (ks) as ⊕i∈ZVi, where Vi = {v ∈
V (ks) | λ(t) · v = tiv}. If we decompose a vector v ∈ V as v =

∑
vi where vi ∈ Vi for all i, then {i | vi 6= 0}

is called the set of weights for v with respect to λ.

Corollary 2.4. Let v ∈ V . Then the following are equivalent:

1. v is regular semisimple.

2. ∆(v) 6= 0.

3. For any nontrivial one-parameter subgroup λ : Gm → Gks , the vector v has a positive weight with
respect to λ.

Proof. What remains to be shown is that the third condition is equivalent to the vector v having a closed
orbit and a finite stabilizer in G. This is the Hilbert–Mumford stability criterion (see e.g. [Mum77]).

We now describe G and V more explicitly. By our definition of θ, it is clear that T ⊂ G. Let ΦG = Φ(G,T );
then ΦG ⊂ ΦH , and the complement ΦV := ΦH − ΦG is the set of weights for the action of T on V . The
Weyl group WG := W (G,T ) is the subgroup of WH := W (H,T ) generated by reflections corresponding to
the roots of ΦG.

Lemma 2.5. Let s = ρ̌(−1) ∈ T (k).

1. The stabilizer of s under the action of WH on T is given by StabWH
(s) = {w ∈WH | w(ΦG) = ΦG}.

2. There is a split short exact sequence of groups

1 //WG
//StabWH

(s) //Hθ/G //1.

More precisely, let SG ⊂ ΦG be a choice of root basis and define

Ω = {w ∈WH | w(SG) = SG} ⊂ StabWH
(s).

Then StabWH
(s) 'WG o Ω, and the inclusion NHθ (T ) ↪→ Hθ induces an isomorphism Ω ' Hθ/G.
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We remark that if H is of type E7, then the group Hθ/G has order 2; if H is of type E8, then Hθ/G is
trivial.

Proof. For the first item, note that since H is adjoint, w · s is completely determined by its action on the
root spaces hα. We have that w · s acts trivially on hα if and only if α ∈ w−1(ΦG), and otherwise w · s
acts on hα as multiplication by −1. For the second item, note that by item 1, the group StabWH

(s) is a
subgroup of Aut(ΦG) ' WG oD, where D = {σ ∈ Aut(ΦG) | σ(SG) = SG}. Clearly WG ⊂ StabWH

(s) and
StabWH

(s) ∩D = Ω, so StabWH
(s) ' WG o Ω. The isomorphism with Hθ/G follows from [Hum95, Section

2.2].

2.2 Transverse slices over V �G

We continue to use the notation of §2.1, and now begin our study of the categorical quotient map

π : V → B,

where B = V �G = Spec k[V ]G. If b ∈ B(k), we write Vb = π−1(b) for the corresponding fibre. We can write
down sections of the map π using the theory of sl2-triples. We recall that an sl2-triple in h is a tuple (e, h, f)
of elements of h− {0} satisfying the relations

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h.

We call an sl2-triple normal if e, f ∈ V and h ∈ hθ. A graded version of the Jacobson–Morozov theorem
([Tho13, Lemma 2.17]) states that if e ∈ V is a non-zero nilpotent element, then there exists a normal
sl2-triple containing it. If (e, h, f) is a normal sl2-triple, then we define S(e,h,f) = e+ zh(f) ∩ V ⊂ V . Then
S(e,h,f) is an affine linear subspace containing e, and one can show ([Tho13, Proposition 3.4]) that the map
π|S(e,h,f)

: S(e,h,f) → B is faithfully flat, with smooth generic fibre. If we let λ : Gm → H be the cocharacter

such that dλ(1) = h, then we may define a contracting action of Gm on S(e,h,f) by t · v = t2λ(t−1)v. With
this action on S(e,h,f), if Gm acts on B by the square of its usual action, then π|S(e,h,f)

is Gm-equivariant

(see [Tho13, §3]). If e is regular nilpotent, then we call S(e,h,f) a Kostant section.1

We consider these affine subspaces for the sl2-triples corresponding to two conjugacy classes of nilpotent
elements, namely the regular and subregular classes.

Proposition 2.6. Let E ∈ V be a regular nilpotent element. Then:

1. There exists a unique normal sl2-triple containing E. Let κ be the Kostant section associated to this
sl2-triple. Then π|κ is an isomorphism.

2. Let b ∈ B(k), and let κb = (π|κ)−1(b). If ∆(b) 6= 0, then Vb forms a single G(ks)-orbit. Consequently,
there is a canonical bijection

G(k)\Vb(k) ∼= ker[H1(k, ZG(κb))→ H1(k,G)],

where the G(k)-orbit of κb ∈ Vb(k) corresponds to the neutral element of H1(k, ZG(κb)).

Proof. The first part follows from work of Kostant and Rallis as applied in [Tho13]: see especially lemmas
2.17 and 3.5. The second part follows from [BG14, Proposition 1] as applied in [Tho13, Proposition 4.13].

1We note that the definition of a Kostant section is often more general than the one stated here, but in this paper we restrict
our attention to sections of this form.
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For b ∈ B(k), we continue to write κb for the fibre over b. We observe that if H has type E7, then there
are two G-conjugacy classes of regular nilpotent elements in V . If H has type E8, then there is a single
G-conjugacy class of regular nilpotent elements (see [Tho13, Corollary 2.25]). In either case, two regular
nilpotent elements E,E′ ∈ V (k) are G(k)-conjugate if and only if they are G(ks)-conjugate (see e.g. [Tho13,
Lemma 2.14]). Combined with the first part of Proposition 2.6, this implies a strong uniqueness property
for the sections κ→ B:

Corollary 2.7. Let κ, κ′ ⊂ V be Kostant sections.

1. We have κ = κ′ if and only if κ0 = κ′0.

2. The sections κ and κ′ are G(k)-conjugate if and only if κ0 and κ′0 lie in the same G(ks)-orbit in V .

Next recall that V contains a subregular nilpotent element e (by definition, this means that e is nilpotent
and dim StabG(e) = 1; the existence of subregular nilpotents in V is proved in [Tho13, Proposition 2.27]).
We now discuss the sections corresponding to such an element.

Theorem 2.8. Let (e, h, f) be a normal sl2-triple, and suppose that e is subregular nilpotent element of h.
Let X = S(e,h,f).

1. The fibres of X → B are reduced connected affine curves. If b ∈ B(k), then Xb is smooth if and only
if ∆(b) 6= 0.

2. Let b ∈ B(k), and suppose that ∆(b) 6= 0. Let Yb denote the smooth projective completion of Xb, and
let Jb = Pic0 Yb be the Jacobian of Yb. There is a canonical isomorphism Jb[2] ∼= ZG(κb) of finite étale
k-groups, where κ is any choice of Kostant section.

Proof. For the first part, see [Tho13, Theorem 3.8] and [Tho13, Corollary 3.16]. For the second part, see
[Tho13, Corollary 4.12].

The next two theorems identify the fibres of the morphism X → B in Theorem 2.8 when H has type E7 or
E8. We find it convenient to split into cases.

Theorem 2.9 (Case E7). Suppose that H is of type E7. Fix a choice of regular nilpotent E, and define
κ as in Proposition 2.6. Also fix a normal sl2-triple (e, h, f) such that e is subregular nilpotent, and define
X = S(e,h,f) as above.

1. We may choose homogeneous generators c2, c6, c8, c10, c12, c14, c18 of k[V ]G and functions x, y ∈ k[X]
so that k[X] is isomorphic to a polynomial ring in the elements c2, . . . , c14, x, y, and the morphism
X → B is determined by the relation (1.2):

y3 = x3y + c10x
2 + x(c2y

2 + c8y + c14) + c6y
2 + c12y + c18.

Moreover, the elements c2, c6, c8, c10, c12, c14, c18, x, y ∈ k[X] are eigenvectors for the action of Gm on
X mentioned above, with weights as in the following table:

c2 c6 c8 c10 c12 c14 c18 x y
4 12 16 20 24 28 36 8 12

2. Let Y → B denote the natural compactification of X → B as a family of plane quartic curves, given
in homogeneous coordinates as

y3
0z0 = x3

0y0 + c10x
2
0z

2
0 + x0(c2y

2
0z0 + c8y0z

2
0 + c14z

3
0) + c6y

2
0z

2
0 + c12y0z

3
0 + c18z

4
0 .
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This compactification has two sections P1 and P2 at infinity, given by the equations [x0 : y0 : z0] = [0 :
1 : 0] and [x0 : y0 : z0] = [1 : 0 : 0] respectively (note that P1 is a flex point). Assume that under the
bijection of [Tho13, Lemma 4.14] the section corresponding to E is P1. Then for each b ∈ B(k) such
that ∆(b) 6= 0, the following diagram commutes:

Xb(k)
ιb //

ηb

��

G(k)\Vb(k)

γb

��
Jb(k)

δb // H1(k, Jb[2]),

where the maps in the diagram are specified as follows. The top arrow ιb is induced by the inclusion
X ↪→ V . The left arrow ηb is the restriction of the Abel–Jacobi map P 7→ [(P )−(P1)]. To define γb, we
use Proposition 2.6 to obtain an injective homomorphism to G(k)\Vb(k) → H1(k, ZG(κb)), and then
compose with the identification ZG(κb) ∼= Jb[2] of Theorem 2.8. The bottom arrow δb is the connecting
homomorphism associated to the Kummer exact sequence

0 //Jb[2] //Jb
×2 //Jb //0.

Proof. In this theorem and the next, the first part (i.e. the explicit determination of the family X) is carried
out in [Tho13, Theorem 3.8], the weights for the Gm action are given in [Tho13, Proposition 3.6], and the
second part is the content of [Tho13, Theorem 4.15].

We note that, having fixed a choice of regular nilpotent E, we can always assume, after possibly replacing e
by a Hθ(k)-conjugate, that E corresponds to P1 under the bijection of [Tho13, Lemma 4.14] referred to in
the second part of Theorem 2.9.

Theorem 2.10 (Case E8). Suppose that H is of type E8. Fix a choice of regular nilpotent E, and define
κ as in Proposition 2.6. Also fix a normal sl2-triple (e, h, f) such that e is subregular nilpotent, and define
X = S(e,h,f) as above.

1. We may choose homogeneous generators c2, c8, c12, c14, c18, c20, c24, c30 of k[V ]G and functions x, y ∈
k[X] so that k[X] is isomorphic to a polynomial ring in the elements c2, . . . , c24, x, y, and the morphism
X → B is determined by the relation (1.3):

y3 = x5 + y(c2x
3 + c8x

2 + c14x+ c20) + c12x
3 + c18x

2 + c24x+ c30.

Moreover, the elements c2, c8, c12, c14, c18, c20, c24, c30, x, y ∈ k[X] are eigenvectors for the action of Gm
on X mentioned above, with weights as in the following table:

c2 c8 c12 c14 c18 c20 c24 c30 x y
4 16 24 28 36 40 48 60 12 20

2. Let Y → B denote the compactification of X → B described in [Tho13, Lemma 4.9]. Let P : B → Y
denote the unique section at infinity (so that Y = X ∪P ). Then for each b ∈ B(k) such that ∆(b) 6= 0,
the following diagram commutes:

Xb(k)
ιb //

ηb

��

G(k)\Vb(k)

γb

��
Jb(k)

δb // H1(k, Jb[2]),

where the maps in the diagram are specified as follows. The top arrow ιb is induced by the inclusion
X ↪→ V . The left arrow ηb is the restriction of the Abel–Jacobi map Q 7→ [(Q)− (P )]. To define γb, we
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use Proposition 2.6 to obtain an injective homomorphism to G(k)\Vb(k) → H1(k, ZG(κb)), and then
compose with the identification ZG(κb) ∼= Jb[2] of Theorem 2.8. The bottom arrow δb is the connecting
homomorphism associated to the Kummer exact sequence

0 //Jb[2] //Jb
×2 //Jb //0.

Lemma 2.11. In Case E7, suppose b ∈ B(k) is such that ∆(b) 6= 0. Then δb([(P2)− (P1)]) is in the image
of G(k)\Vb(k) under γb, and δb([(P2)− (P1)]) is nontrivial if and only if H0(k, ZG(κb)) = H0(k, ZH(κb)[2]).

Proof. Let ω ∈ Ω be the nontrivial element, and let E′ =
∑
α∈SH eω(α). Then E′ is a regular nilpotent

element of V . Since Hθ(k) acts simply transitively on the set of such elements, there is a unique element
w ∈ Hθ(k) lifting ω such that w(E) = E′. Let κ′ denote the Kostant section corresponding to E′. Then
wκ = κ′ and so κ′b = wκb. We claim that γb(κ

′
b) = δb([(P2) − (P1)]). The proof is essentially the same as

the proof of [Tho, Theorem 5.3], but for the convenience of the reader, we give the details here. Let Xb be
the base change of Xb to the fixed separable closure ks/k, and define Y b similarly. There is a short exact
sequence of étale homology groups:

0 //µ2
//H1(Xb,F2) //H1(Y b,F2) //0. (2.1)

There is a natural symplectic duality on H1(Xb,F2) which has radical µ2, and which descends to the usual
Poincaré duality (or Weil) pairing on H1(Y b,F2) = Jb[2]. Through an explicit calculation, one can see that
δb([(P2)− (P1)]) is the image of the nontrivial element of µ2 under the connecting homomorphism associated
to the dual short exact sequence

0 //Jb[2] //H1(Xb,F2) //µ2
//0,

where we have used the Weil pairing to identify Jb[2] with its dual.

Let Hsc denote the simply connected cover of H with centre AHsc . Note that θ lifts naturally to an
automorphism of Hsc, which will again denote by θ, and that because Hsc is simply connected, the fixed-point
subgroup G′ := (Hsc)θ is connected [Ste68, Theorem 8.1]. Let C = ZH(κb) and let Csc = ZHsc(κb). Then
C ⊂ H and Csc ⊂ Hsc are maximal tori, and we have ZG′(κb) = Csc[2] and ZG(κb) = im(Csc[2]→ C[2]). It
follows from the proof of [Tho13, Theorem 4.10] that the short exact sequence (2.1) is isomorphic to

0 //AHsc //Csc[2] //ZG(κb) //0,

and its dual is isomorphic to

0 //ZG(κb) //C[2] //π0(Hθ) //0, (2.2)

where we have used the WH -invariant duality on X∗(C) and the isomorphism C[2]/ZG(κb) ∼= π0(Hθ); see
also [Tho13, Corollary 2.12], which states that this Weyl-invariant duality descends to a non-degenerate
symplectic alternating duality on ZG(κb).

Therefore to prove the claim we must show that γb(κ
′
b) is equal to the image in H1(k, ZG(κb)) of the nontrivial

element of π0(Hθ) under the connecting homomorphism associated with the short exact sequence (2.2). This
follows from a computation with cocycles. Indeed, the second part of Proposition 2.6 asserts that there exists
g ∈ G(ks) such that κ′b = gκb. Then the cohomology class γb(κ

′
b) is represented by the cocycle σ 7→ g−1(σg).

But c := g−1w ∈ ZHθ (κb) = C[2] is a lift of the nontrivial element of π0(Hθ), so the claim follows from the
fact that σcc−1 = (σcc−1)−1 = g−1(σg) for all σ ∈ Gal(ks/k).

We have established the claim, and the first part of the lemma. To finish the the proof, we note that
δb([(P2) − (P1)]) is nontrivial if and only if the connecting homomorphism π0(Hθ) → H1(k, ZG(κb)) is
injective. By exactness, this is equivalent to the surjectivity of the map H0(k, ZG(κb))→ H0(k,C[2]), which
is exactly the criterion given in the statement of the lemma.
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Corollary 2.12. In Case E7, let b ∈ B(k) be such that ∆(b) 6= 0, and let C = ZH(κb). Suppose that the map
Gal(ks/k) → W (Hks , Cks) induced by the action of Gal(ks/k) on Cks is surjective. Then δb([(P2) − (P1)])
is nontrivial in H1(k, Jb[2]).

Proof. By the lemma, it is equivalent to show that the map H0(k, ZG(κb))→ H0(k,C[2]) is surjective. We
have H0(k,C[2]) = CW (H,C)[2](k) = ZH [2](k). Since the group H is adjoint, the centre ZH is trivial, so the
map H0(k, ZG(κb))→ H0(k,C[2]) is clearly surjective.

2.3 Reducibility conditions

We now define the notion of k-reducibility and study the properties of k-reducible elements of V (k).

Definition 2.13. Let v ∈ V . We say that v is k-reducible if ∆(v) = 0 or if v is G(k)-conjugate to an
element of a Kostant section. Otherwise, we say that v is k-irreducible.

The factors of the Cartan decomposition h = t ⊕
⊕

α∈ΦH
hα are invariant under the action of θ; this leads

to a corresponding decomposition

V =
⊕
α∈ΦV

hα. (2.3)

If v ∈ V , then we write v =
∑
α∈ΦV

vα for the corresponding decomposition of v as a sum of T -eigenvectors.
Now choose a set of simple roots SG = {β1, ..., βr} of ΦG. Since the βi form a basis for X∗(T ) ⊗ Q, each
element γ ∈ X∗(T ) may be written uniquely as γ =

∑r
i=1 ni(γ)βi for some ni(γ) ∈ Q. Our choice of simple

roots SH ⊂ ΦH determines a set of positive roots Φ+
H . We write Φ+

V for Φ+
H ∩ ΦV .

Lemma 2.14. Let v ∈ V and decompose v as
∑
α∈ΦV

vα as in (2.3). Suppose one of the following holds:

1. There exist rational numbers a1, . . . , ar not all equal to zero such that if α ∈ ΦV and vα 6= 0, then∑
aini(α) ≤ 0.

2. There exists w ∈ Ω such that vα = 0 if α ∈ w(Φ+
V − SH).

Then v is k-reducible.

(We recall that the subgroup Ω ⊂WH was defined in Lemma 2.5.)

Proof. For the first part of the lemma, we will apply the criterion of Corollary 2.4. This corollary implies that
if v ∈ V and there exists a nontrivial cocharacter λ ∈ X∗(T ) such that v has no (strictly) positive weights
with respect to λ, then ∆(v) = 0. Let {ω̌1, ..., ω̌r} ⊂ X∗(T )⊗Q be the basis dual to the basis {β1, . . . , βr}
of X∗(T ) ⊗ Q, and let λ =

∑r
i=1 aiω̌i. Then there exists a positive integer m such that mλ ∈ X∗(T ). The

weights of v with respect to mλ are exactly the values 〈α,mλ〉 = m
∑r
i=1 aini(α) for those α ∈ ΦV such

that ni(α) 6= 0, so v has no positive weights with respect to mλ.

For the second item, let E =
∑
α∈SH eα, where each eα is a root vector of our fixed Chevalley basis (see

Section 2.1). Then E is a regular nilpotent element of V , and is therefore contained in a unique normal
sl2-triple, which in turn determines a Kostant section κ ⊂ V (see Proposition 2.6). Suppose that the vector
v ∈ V satisfies the condition vα = 0 if α ∈ Φ+

V −SH . We may assume that if α ∈ SH , then vα 6= 0; otherwise
v also satisfies the condition in the first part of the lemma. In this case, exactly the same argument as in
the proof of [Tho15, Lemma 2.6] shows that v is G(k)-conjugate to an element of κ, hence is k-reducible.
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Now suppose that there is a nontrivial element w ∈ Ω such that the vector v ∈ V satisfies the condition
vα = 0 if α ∈ w(Φ+

V − SH). We can again assume that vα 6= 0 if α ∈ w(SH). Let E′ =
∑
α∈w(SH) eα,

and let κ′ be the Kostant section corresponding to E′. Since the group Hθ(k) acts simply transitively on
the set of regular nilpotents of V ([Tho13, Lemma 2.14]), there is a unique element x ∈ Hθ(k) such that
x ·E′ = E. Then x normalizes the torus T , since t = Lie(T ) is the unique Cartan subalgebra of h containing
the semisimple parts of the normal sl2-triples containing E and E′ respectively. Thus x corresponds to an
element of the Weyl group WH ; since WH acts simply transitively on the set of root bases of H, we see that
x is a representative in Hθ(k) of w. As in the previous paragraph, the proof of [Tho15, Lemma 2.6] shows
that x−1v is G(k)-conjugate to an element of κ, hence that v is G(k)-conjugate to an element of κ′.

Given a subset M ⊂ ΦV , we define the linear subspace

V (M) = {v ∈ V | vα = 0 for all α ∈M} ⊂ V.

Proposition 2.15. Let M be a subset of ΦV , and suppose that one of the following three conditions is
satisfied:

1. There exists w ∈ Ω such that w(Φ+
V − SH) ⊂M .

2. There exist integers a1, . . . , ar not all equal to zero such that if α ∈ ΦV and
∑r
i=1 aini(α) > 0, then

α ∈M .

3. There exist β ∈ SG, α ∈ ΦV −M , and integers a1, . . . , ar not all equal to zero such that the following
conditions hold:

(a) We have {γ ± β | γ ∈M} ∩ ΦV ⊂M .

(b) α− β ∈ ΦV −M .

(c) If γ ∈ ΦV and
∑r
i=1 aini(γ) > 0, then γ ∈M ∪ {α}.

Then every element of V (M)(k) is k-reducible.

Proof. If either of the first two conditions is satisfied, then the desired reducibility follows from Lemma
2.14. We now show that if the third condition is satisfied, then every element of V (M)(k) is k-reducible.
Let v ∈ V (M)(k). If vα = 0, then v ∈ V (M ∪ {α})(k), and so v is k-reducible by the second part of the
proposition. We can therefore assume that vα 6= 0.

Let VM = {v ∈ V | vγ = 0 for all γ ∈ ΦV −M}. Then there is a T -invariant direct sum decomposition
V = V (M) ⊕ VM . Fix a homomorphism SL2 → Gβ where Gβ is the subgroup of G generated by the root
groups corresponding to β and −β. Condition (a) implies that the decomposition V = V (M) ⊕ VM is Gβ-
invariant. Since the ambient group H is simply laced, the β-root string through α has length two, and thus
hα⊕hα−β is an irreducible Gβ-submodule of V . The existence of an irreducible representation of degree two
implies that Gβ ' SL2.

Since SL2(k) acts transitively on the non-zero vectors in the unique two-dimensional irreducible representa-
tion of SL2, we can find g ∈ Gβ(k) ⊂ G(k) such that (gv)α = 0. This shows that gv ∈ V (M ∪ {α}), hence
that v is k-reducible, as required.

2.4 Roots and weights

We conclude Section 2 by fixing coordinates in H and G. From now on we assume H has type E7 or type
E8. As above we let Φ+

H be the set of positive roots corresponding to our choice of root basis SH . Similarly,
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we define Φ−H ⊂ ΦH to be the subset of negative roots. We note that there exists a unique choice of root
basis SG of ΦG such that the positive roots Φ+

G determined by SG are given by Φ+
G = ΦG ∩Φ+

H . Indeed, this
follows from a consideration of Weyl chambers: the Weyl chambers for H (resp. G) are in bijection with
the root bases of ΦH (resp. ΦG), and each Weyl chamber for H is contained in a unique Weyl chamber for
G. If CH is the fundamental Weyl chamber of H corresponding to SH , and CG is the unique Weyl chamber
for G containing CH , then defining SG to be the root basis corresponding to CG yields the desired property.
We note that the set of negative roots Φ−G determined by SG is given by Φ−G = ΦG ∩ Φ−H .

We will later need to carry out explicit calculations, so we now define SG in terms of the simple roots of SH
in each case E7 and E8. We number the simple roots of H and G as in Bourbaki [Bou68, Planches].

2.4.1 Case E7

We have SH = {α1, . . . , α7}, where the Dynkin diagram of H is as follows:

H :
α1 α3 α4 α5 α6 α7

α2

The root basis SG = {β1, . . . , β7} described above consists of the roots

β1 = α3 + α4

β2 = α5 + α6

β3 = α2 + α4

β4 = α1 + α3

β5 = α4 + α5

β6 = α6 + α7

β7 = α2 + α3 + α4 + α5

where the Dynkin diagram is as follows:

G :
β1 β2 β3 β4 β5 β6 β7

We note that the existence of a diagram automorphism for G implies that there are two possible choices of
numbering of the roots in SG consistent with the conventions of Bourbaki; we keep the above choice for the
rest of this paper.

2.4.2 Case E8

We have SH = {α1, . . . , α8}, where the Dynkin diagram of H is as follows:

H :
α1 α3 α4 α5 α6 α7 α8

α2
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The root basis SG = {β1, . . . , β8} described above consists of the roots

β1 = α2 + α3 + α4 + α5

β2 = α6 + α7

β3 = α4 + α5

β4 = α1 + α3

β5 = α2 + α4

β6 = α5 + α6

β7 = α7 + α8

β8 = α3 + α4

where the Dynkin diagram is as follows:

G :
β1 β2 β3 β4 β5 β6 β7

β8

Once again the existence of a diagram automorphism for G means that there are two possible choices of
numbering of the roots in SG consistent with Bourbaki; we keep the above choice for the rest of this paper.

3 Integral structures, measures, and orbits

In Section 2, we introduced the following data:

• the group H over k, together with split maximal torus T ⊂ H, root basis SH ⊂ X∗(T ), involution
θ = Ad ρ̌(−1), and Lie algebra h = LieH;

• the group G = (Hθ)◦ and its representation on V = hdθ=−1, together with a root basis SG ⊂ X∗(T )
and Lie algebra g = LieG;

• the categorical quotient B = V �G and quotient map π : V → B;

• the discriminant polynomial ∆ ∈ k[B].

From now on, we also fix the regular nilpotent element E =
∑
α∈SH eα ∈ V . We now assume that k = Q

and study integral structures on these objects.

3.1 Integral structures and measures

Our choice of Chevalley basis of h with root vectors {eα | α ∈ ΦH} determines a Chevalley basis of g, with
root vectors {eα | α ∈ ΦG}. It hence determines Z-forms hZ ⊂ h and gZ ⊂ g (in the sense of [Bor70]).
Moreover, V = V ∩ hZ is an admissible Z-lattice that contains E.

We extend G to a group scheme over Z given by the Zariski closure of the group G in GL(V). By abuse of
notation, we also refer to this Z-group scheme as G. Then the group G(Z) acts on the lattice V(Z) ⊂ V (Q).
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The Cartan decomposition V = ⊕α∈ΦV hα is defined over Z, so extends to a decomposition V = ⊕α∈ΦV Vα.
Since there exists a subregular nilpotent element in V = V(Q), we may choose a subregular nilpotent element
e ∈ V(Z). In Case E7, we impose the additional condition that E corresponds to P1 in the sense described
in Theorem 2.9.

Fix a maximal compact subgroup K ⊂ G(R). Let P = TN ⊂ G be the Borel subgroup corresponding
to the root basis SG, and let P = TN ⊂ G be the opposite Borel subgroup. Given c ∈ R, we define
Tc = {t ∈ T (R)◦ | β(t) ≤ c for all β ∈ SG}.

Proposition 3.1. We can find a compact subset ω ⊂ N(R) and a constant c > 0 such that G(A) =

G(Q) · (G(Ẑ)×S), where S = ωTcK.

Proof. It suffices to show that G(A∞) = G(Q) · G(Ẑ) and that we can choose S so that G(Z) ·S = G(R).
This is true: see [Bor66, §6], [PR94, Theorem 4.15], and [PR94, Theorem 8.11, Corollary 2].

Henceforth we fix a choice of S = ωTcK as in Proposition 3.1.

After rescaling the polynomials ci ∈ Q[V ]G and x, y ∈ Q[X] appearing in Theorem 2.9 (resp. Theorem
2.10), we can assume that each polynomial ci lies in Z[V]G. We define B = SpecZ[c2, c6, . . . , c18] in Case E7

(resp. SpecZ[c2, c8, . . . , c30] in Case E8), and write π : V → B for the natural morphism, which recovers our
existing map π : V → B after extension of scalars to Q. If b ∈ B(R) = B(R), then we define the height of b
to be

ht(b) = sup
i
|ci(b)|deg ∆/i. (3.1)

If v ∈ V (R), then we define ht(v) = ht(π(v)). Since deg ci = i, the height function is homogeneous: for all
λ ∈ R×, we have ht(λv) = |λ|deg ∆ ht(v).

We define X = SpecZ[x, y, c2, c6, . . . , c18] in Case E7 (resp. SpecZ[x, y, c2, c8, . . . , c30] in Case E8). Thus
X is isomorphic to affine space Ar+2

Z , and the morphism X → B naturally extends to a morphism X → B,
still given in coordinates by the equation (1.2) in Case E7 (resp. (1.3) in Case E8). For any ring R and any
subset A ⊂ V(R), we write Areg.ss. for {a ∈ A | ∆(a) 6= 0}. Similarly if A′ ⊂ B(R) then we write (A′)reg.ss.

for the set {a ∈ A′ | ∆(a) 6= 0}.

Fix a left-invariant top form ωG on G; it is determined uniquely up to multiplication by Z× = {±1}. For
any place v of Q, we define a Haar integral on G(Qv) using the volume element dg = |ωG|v.

If Qv = R, then we can use the Iwasawa decomposition on G(R) = T (R)◦N(R)K = N(R)T (R)◦K to
decompose dg = dt dn dk on G(R) as follows (cf. [Tho15, Section 2.7]). We give T (R)◦ the measure pulled
back from the isomorphism

∏
α∈SG α : T (R)◦ ' Rr>0. We give K its normalized (probability) Haar measure.

We then choose the unique Haar measure dn on N(R) such that dg = dt dn dk. For t ∈ T (R), we define
δG(t) =

∏
α∈Φ−G

α(t). Then for any continuous compactly supported function f : G(R) → C, we have the

equalities∫
g∈G(R)

f(g) dg =

∫
t∈T (R)◦

∫
n∈N(R)

∫
k∈K

f(tnk) dk dn dt =

∫
t∈T (R)◦

∫
n∈N(R)

∫
k∈K

f(ntk)δG(t)−1 dk dn dt.

We also define measures on V and B as in [Tho15, Section 2.8] by fixing an invariant differential top form
ωV on V and by defining ωB = dc2 ∧ dc6 ∧ ... ∧ dc18 in Case E7 (resp. ωB = dc2 ∧ dc8 ∧ ... ∧ dc30 in Case
E8). If v is a place of Q, then the formulae db = |ωB |v and dv = |ωV |v define measures on B(Qv) and V (Qv)
respectively. Fixing these choices, we have the following useful result.

Lemma 3.2. There exists a rational number W0 ∈ Q× with the following property: let k′/Q be any field
extension, and let c ⊂ V (k′) be a Cartan subspace. Let µc : Gk′ × c→ Vk′ be the natural action map. Then
µ∗cωV = W0ωG ∧ π|∗cωB.
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Proof. The proof is identical to that of [Tho15, Proposition 2.13].

Proposition 3.3. Let p be a prime.

1. Let φ : V(Zp)reg.ss. → R be a function of compact support that is locally constant (resp. continuous)
and invariant under the action of G(Zp). Then the function Fφ : B(Qp)reg.ss. → R defined by the
formula

Fφ(b) =
∑

v∈G(Zp)\Vb(Zp)

φ(v)

# StabG(Zp)(v)

is of compact support and locally constant (resp. continuous), and we have the formula∫
v∈V(Zp)

φ(v) dv = |W0|p vol(G(Zp))
∫
b∈B(Zp)

Fφ(b) db.

2. Define a function mp : V(Zp)reg.ss. → R by the formula

mp(v) =
∑

v′∈G(Zp)\(G(Qp)·v∩V(Zp))

# StabG(Qp)(v)

# StabG(Zp)(v′)
.

Then mp is locally constant.

3. Let ψ : V(Zp)reg.ss. → R be a continuous function of compact support that is G(Qp)-invariant, in the
sense that if v, v′ ∈ V(Zp), g ∈ G(Qp), and gv = v′, then ψ(v) = ψ(v′). Then we have the formula∫

v∈V(Zp)

ψ(v) dv = |W0|p vol(G(Zp))
∫
b∈B(Zp)

∑
v∈G(Qp)\Vb(Zp)

mp(v)ψ(v)

# StabG(Qp)(v)
db.

Proof. The first part follows from Lemma 3.2 and the p-adic formula for integration in fibres; see [Igu00,
§7.6]. To prove the second part, we note that the function v 7→ # StabG(Qp)(v) is locally constant, because
the universal stabilizer Z → V reg.ss. is finite étale. It therefore suffices to show that the function

np(v) :=
∑

v′∈G(Zp)\(G(Qp)·v∩V(Zp))

1

# StabG(Zp)(v′)

is locally constant. Suppose v ∈ V (Qp)reg.ss.. Let c ⊂ V (Qp) be the unique Cartan subspace containing v.
Since π|c is étale above B(Qp)reg.ss., we can find an open compact neighbourhood Bv of π(v) in B(Qp)reg.ss.

such that π−1(Bv) ∩ c = tsi=1Ui is a disjoint union of open subsets of c and each π|Ui : Ui → Bv is a
homeomorphism. Let U = Uj be the open subset containing v. Let µ : G(Qp) × U → V (Qp) ∩ π−1(Bv)
be the restriction of the natural action map. Then µ is proper, and so µ−1(V(Zp) ∩ π−1(Bv)) is compact.
It follows that the characteristic function χ of the set µ(µ−1(V(Zp) ∩ π−1(Bv))) ⊂ V(Zp)reg. ss. is locally
constant and of compact support. For v′ ∈ U , we have np(v

′) = Fχ(π(v′)), where Fχ is as defined in the
statement of the first part of the proposition. Thus by the first part of the proposition np is locally constant.
The third part of the proposition follows from the first two.

3.2 Selmer elements and integral orbits

We now discuss the construction of elements of V(Zp) and V(Z) from rational points of algebraic curves. We
first show that certain geometric orbits have integral representatives.

Lemma 3.4. There exists an integer N0 ≥ 1 with the following properties:
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1. For any prime p and any b ∈ B(Zp), we have N0 · κb ∈ V(Zp).

2. In Case E7, let w ∈ Ω be the non-trivial element and let κ′ denote the Kostant section corresponding
to the regular nilpotent element E′ =

∑
α∈SH ewα. Then for any prime p and for any b ∈ B(Zp), we

have N0 · κ′b ∈ V(Zp).

3. For any prime p and any x ∈ X (Zp), we have N0 · x ∈ V(Zp).

4. If b ∈ N2
0 · B(Z), then b ∈ π(V(Z)).

In the first three items N0 is acting via the Gm-action discussed in Section 2.2. In the third item N0 is
acting via the natural Gm-action on B.

Proof. This follows from the existence of the contracting Gm-actions on κ, κ′, and X , cf. [Tho15, Lemma
2.8].

Lemma 3.5. There exists an integer N1 ≥ 1 with the following property: for any prime p and any b ∈
N1 · B(Zp) such that ∆(b) 6= 0, the canonical image of Yb(Qp) in H1(Qp, Jb[2]) is contained in the image of
the composite map:

Vb(Zp)→ G(Qp)\Vb(Qp)
γb−→ H1(Qp, Jb[2])

(where γb is as in Theorems 2.9 and 2.10 for the case when k = Qp).

Proof. We just treat the case when H is of type E7; the E8 case is more straightforward, since there is only
one point at infinity. We will show that we can take N1 = 24N2

0 , where N0 is as in Lemma 3.4. We recall
that the curve Yb is given by the equation

y3
0z0 = x3

0y0 + c10x
2
0z

2
0 + x0(c2y

2
0z0 + c8y0z

2
0 + c14z

3
0) + c6y

2
0z

2
0 + c12y0z

3
0 + c18z

4
0 ,

and has two sections P1 = [0 : 1 : 0] and P2 = [1 : 0 : 0] at infinity; the map Yb(Qp) → Jb(Qp)/2Jb(Qp)
sends a point P to the class of the divisor (P )− (P1). We define Y to be the closed subscheme of P2

B defined
by the same equation; then the complement in Y of its sections at infinity is naturally identified with X by
Theorem 2.9. For b ∈ B(Qp), Yb is smooth in an open neighbourhood of these sections at infinity. If t ∈ Q×p ,
then the isomorphism Xb → Xt2b induced by the action of Gm on X extends to an isomorphism Yb → Yt2b
that maps [x0 : y0 : z0] to [t8x0 : t12y0 : z0].

We first claim that if b ∈ 24B(Zp), then every divisor class in the image of the map Yb(Qp)→ Jb(Qp)/2Jb(Qp)
is represented by either the zero divisor, the divisor P2 − P1, or a divisor of the form P − P1 for some
P ∈ Xb(Zp).

If P ∈ Yb(Qp), then we write P for the image of P in Yb(Fp). The special fibre Yb,Fp is reduced, and has at
most two irreducible components, which are geometrically irreducible. Moreover, if there are two irreducible
components, then P 1 and P 2 lie on distinct irreducible components. Indeed, due to the presence of the
contracting Gm-action, any property of the morphism Y → B which is open on the base can be checked
in the central fibre. Thus [Sta17, Tag 0C0E] implies that all of the fibres of Y are geometrically reduced;
and then [Sta17, Tag 055R] implies that the two sections P1, P2 together meet all irreducible components in
every geometric fibre. In particular, every irreducible component of Yb,Fp is geometrically irreducible.

Let Jb = Pic0
Yb/Zp be the open subscheme of PicYb/Zp corresponding to those invertible sheaves that are

fibrewise of degree 0 on each irreducible component (see [BLR90, §8.4]). Then Jb is a smooth and sep-
arated scheme over Zp (see [BLR90, §9.4, Theorem 2]). We note that if Q ∈ Jb(Zp) has trivial image in
Jb(Zp/23pZp), then Q is divisible by 2 in Jb(Zp) (this follows from [Sil09, Theorem 6.1] and its generalization
[CX08, Proposition 3.1]).
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Let P = (x, y) ∈ Yb(Qp). To prove the claim, it suffices to show that if P 6∈ Xb(Zp), then one of the divisor
classes [(P )− (P1)] or [(P )− (P2)] is divisible by 2 in Jb(Qp). We can assume that xy 6= 0. We note that if
P 6∈ Xb(Zp), then (at least) one of x, y must be non-integral. If x is integral then the defining equation of Yb
shows that y is integral too. We can therefore write x = pmu, y = pnv, with u, v ∈ Z×p and m < 0. We note
that if n < 0, then we must have 2n = 3m, hence we can write n = 3k, m = 2k for some k < 0.

We first treat the case where p is odd. If n < 0, then we have

P = [p2ku : p3kv : 1] = [p−ku : v : p−3k] ≡ P1 mod p,

and we see that [(P ) − (P1)] is divisible by 2 in Jb(Qp). If n ≥ 0, then P ≡ P2 mod p, and [(P ) − (P2)] is
divisible by 2 in Jb(Qp). This establishes the claim in the case when p is odd.

Now suppose that p = 2. Our assumption b ∈ 24B(Z2) means that ci(b) is divisible by 24i for each i ∈
{2, . . . , 18}. We write ι : Yb → Y 1

4 b
for the map [x0 : y0 : z0] 7→ [2−8x0 : 2−12y0 : z0] = [24x0 : y0 : 212z0]. If

n < 0, then we get
ι(P ) = [24−ku : v : 212−3k] ≡ P1 mod 24.

This shows that [(ι(P ))− (P1)] is divisible by 2 in J 1
4 b

(Q2), hence [(P )− (P1)] is divisible by 2 in Jb(Q2). If

n ≥ 0, then we have P = [1 : 2n−mv/u : 2−m/u] = [1 : w : z], say, and we have an equation

w(1− w2z) = O(28z)

in Z2. It follows that n−m > 8. Then we get

ι(P ) = [24 : 2n−mv/u : 212−m/u] = [1 : 2n−m−4v/u : 28−m/u] ≡ P2 mod 24,

hence [(P )− (P2)] is divisible by 2 in Jb(Q2). This completes the proof of the claim.

We now show how the claim implies the lemma. We drop our assumption on the parity of p, and take b = N2
0 c,

where c ∈ 24B(Zp). Given a class φ in H1(Qp, Jc[2]), if φ is in the image of Yc(Qp), then φ is represented
by either P1, P2, or an element of Xc(Zp). Let φ′ denote the corresponding class in H1(Qp, Jb[2]). If P1

is a representative, then κb ∈ Vb(Qp) represents the corresponding rational orbit. By Lemma 3.4, we have
κb = N0 ·κc ∈ V(Zp), so κb is even an integral representative for this rational orbit. If P2 is a representative,
then κ′b ∈ V(Zp) is an integral representative, by the same argument.

Suppose instead that φ is represented by a divisor (P )− (P1), where P ∈ Xc(Zp). Then φ′ is represented by
the divisor (N0 · P ) − (P1), where now N0 · P ∈ N0 · X (Zp). By Lemma 3.4, we have N0 · X (Zp) ⊂ V(Zp),
showing that N0 · P ∈ Vb(Zp) is an integral representative for the rational orbit corresponding to the class
φ. This completes the proof.

Proposition 3.6. Let N1 ∈ Z≥1 be an as in Lemma 3.5. Then for any b ∈ N1 · B(Z) such that ∆(b) 6= 0,
the 2-Selmer set Sel2(Yb) ⊂ H1(Qp, Jb[2]) is contained in the image of the composite map

Vb(Z)→ G(Q)\Vb(Q)
γb−→ H1(Q, Jb[2]).

Consequently, for any b ∈ B(Z) such that ∆(b) 6= 0, we have # Sel2(Yb) ≤ #G(Q)\VN1·b(Z).

Proof. Suppose c ∈ Sel2(Yb). We first show that c ∈ γb(G(Q)\V (Q)); by Proposition 2.6 this is the case
exactly when the image c′ of c under the map

H1(Q, Jb[2])→ H1(Q, G)

is trivial. By commutativity of the diagram in Theorem 2.9 in Case E7 (resp. Theorem 2.10 in Case E8) and
the definition of the 2-Selmer set, we see that c′ is locally trivial, in the sense that its image in H1(Qv, G)
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is trivial for every place v of Q. We claim that this implies that c′ is itself trivial. Indeed, write Gsc for
the simply connected cover of G. The centre of G has order 2 in both cases (see, e.g., [Tho16, Proof of
Proposition A.1]). Thus we see that there is a short exact sequence of groups over Q:

1 //µ //Gsc //G //1,

where µ = µ4 (in Case E7) or µ2 (in Case E8). This leads to the following commutative diagram of pointed
Galois cohomology sets, in which the rows are exact:

H1(Q, µ)

loc1

��

// H1(Q, Gsc) //

loc2

��

H1(Q, G) //

loc3

��

H2(Q, µ)

loc4

��∏
vH

1(Qv, µ) // ∏
vH

1(Qv, Gsc) // ∏
vH

1(Qv, G) // ∏
vH

2(Qv, µ).

Since Gsc is simply connected, the map loc2 is bijective, and H1(Qp, Gsc) is trivial for every prime p. By
class field theory, the map loc4 is injective. Using these facts, a diagram chase shows that the triviality of
loc3(c′) forces c′ itself to be trivial.

We can therefore choose a vector v ∈ Vb(Q) representing our class c. By Lemma 3.5, for each prime p there
exists an element gp ∈ G(Qp) such that gp · v ∈ Vb(Zp). By Proposition 3.1, there is an element g ∈ G(Q)
such that gp ∈ G(Zp)g for every prime p. It follows that g · v ∈ Vb(Z), as required.

3.3 Subsets of V (R) and V (Qp)

We conclude this section by constructing some useful subsets of V (R) and V (Qp). We first consider V (R).
Let c1, . . . , cn denote representatives of the distinct G(R)-conjugacy classes of Cartan subspaces of V (R). For
each i ∈ {1, . . . , n}, let c′i denote the closed subset of creg.ss.

i given by c′i = {v ∈ creg.ss.
i | ht(v) = 1}. Arguing as

in [Tho15, §2.9], we can find a cover of c′i by finitely many connected semialgebraic open subsets Uij such that
each map π|Uij : Uij → {b ∈ B(R)reg.ss. | ht(b) = 1} is a homeomorphism onto its image. We write L1, . . . , Lm
for the sets π(Uij) for all i, j in any order, and for Lk = π(Ui,j) we set sk := (π|Ui,j )−1 : Lk → V (R)reg.ss..
We can extend sk to a map sk : Λ · Lk → V (R)reg.ss. by the formula sk(λb) = λsk(b) for any λ ∈ Λ, b ∈ Lk.

Lemma 3.7. With notation as above, each map sk : Λ ·Lk → V (R)reg.ss. is a semialgebraic map, and sk(Lk)
has compact closure in V (R). The quantity rk := # StabG(R)(sk(b)) is independent of the choice of b ∈ Lk.
We have ∪mk=1G(R) · Λ · sk(Lk) = V (R)reg.ss.. For any continuous function f : V (R)reg.ss → R of compact
support, we have ∫

v∈G(R)·Λ·Lk
f(v) dv =

|W0|∞
rk

∫
b∈Λ·Lk

∫
g∈G(R)

f(g · sk(b)) dg db.

Consequently for any x ≥ 1 we have:

vol(S · [1, x1/ deg ∆] · sk(Lk)) ≤ |W0|∞ vol(S) vol([1, x1/ deg ∆] · Lk).

Proof. Let µk : G(R)×(Λ ·Lk)→ V (R)reg.ss. be given by (g, b) 7→ g ·sk(b). Then µk is a local diffeomorphism
onto its image, with fibres of cardinality rk. By Lemma 3.2 we have µ∗kωV = W0ωG ∧ ωB . The displayed
formulae follow from this identity.

We now consider V (Qp).

Lemma 3.8. There exists a constant ε ∈ (0, 1) with the following property: let p be a prime congruent to 1
mod 6. Then there exists a non-empty open compact subset Up ⊂ B(Zp) such that for all b ∈ Up, we have
∆(b) 6= 0, Xb(Zp) 6= ∅, and

#(im(Yb(Qp)→ Jb(Qp)/2Jb(Qp)))
#Jb(Qp)/2Jb(Qp)

≤ ε.
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Proof. Let p be a prime with p ≡ 1 mod 6. It suffices to show that we can find a single b ∈ B(Zp) with
∆(b) 6= 0, Xb(Zp) 6= ∅, and

#(im(Yb(Qp)→ Jb(Qp)/2Jb(Qp)))
#Jb(Qp)/2Jb(Qp)

< 1.

By continuity considerations of the type in [PS14, §8], we can then take Up to be any sufficiently small open
compact neighbourhood of b in B(Zp). We will in fact exhibit b ∈ Up such that ∆(b) 6= 0, Xb(Zp) 6= ∅, the
component group Φ of the Néron model of Jb is isomorphic to (Z/2Z)2, and the image of Yb(Qp) in Φ is the
identity. This will imply that the lemma holds with ε = 1

4 .

We first return to the E6 family of curves (1.1):

y3 = x4 + y(c2x
2 + c5x+ c8) + c6x

2 + c9x+ c12

described in the introduction to this paper. In this case the existence of such a point b is asserted in [Tho15,
Proposition 2.15]. The proof given there is incorrect; more precisely, the description of the special fibre of a
regular model of the curve y3 = x4 − p2 is incorrect. We will first remedy this error. The calculation in this
case will also play a role in the proof of the lemma in Cases E7 and E8.

We consider instead the curve given by the equation y3 = (x − 1)(x3 − p2). (This curve can be put into
the canonical form (1.1) by a linear change of variable in x.) Let Y be the curve inside P2

Zp given by the

projective closure of this equation, and let Z ⊂ A2
Zp denote the complement of the unique point at infinity. It

is clear that Z(Zp) 6= ∅. Moreover, Y has a unique point that is not regular, namely the point corresponding
to (x, y) = (0, 0) in the special fibre ZFp .

This singularity can be resolved by blowing up. Let Y ′ → Y denote the blow-up at the unique non-regular
point of Y. Then Y ′ has exactly 3 non-regular points. The special fibre of Y ′ has two irreducible components,
namely the strict transform of YFp and a smooth exceptional divisor. Let Y ′′ → Y ′ denote the blow-up of the
3 non-regular points. Then Y ′′ is regular, and the special fibre Y ′′Fp has 5 irreducible components: the strict

transform C1 of YFp , the strict transform C5 of the exceptional divisor in Y ′Fp , and the smooth exceptional

divisors C2, C3, C4 of the blow-up Y ′′ → Y.

We note that blow-up commutes with flat base change, so to verify our claims about the component group
Φ it suffices to perform these blow-ups in the completed local ring of Y at the maximal ideal (p, x, y), which
is in turn isomorphic to ZpJx,wK/(w3 − x3 + p2). Here we find that all the irreducible components in the
special fibre of Y ′′Fp are smooth and geometrically irreducible, and their intersection graph is given as follows:

1

2

2

2

3

All intersections are transverse, and the multiplicities of C1, C2, C3, C4 and C5 are respectively 1, 2, 2, 2, and
3. The intersection matrix of the special fibre of Y ′′ is therefore

M =


−6 1 1 1 0
1 −2 0 0 1
1 0 −2 0 1
1 0 0 −2 1
0 1 1 1 −2

 .
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Let v = (1, 2, 2, 2, 3). Then Mv = 0 and there is an isomorphism Φ ∼= v⊥/ imM , where we consider v
as an element of Z5 and M as a Z-module homomorphism (see [BLR90, §9.6]). A calculation shows that
Φ ∼= (Z/2Z)2, as claimed. Each point of Y(Zp) = Y ′′(Zp) reduces modulo p to a smooth point of the special
fibre Y ′′Fp . Since there is exactly one component of Y ′′Fp of multiplicity one, we see that all points of Y(Zp)
reduce to this component; consequently, their image in the Néron component group Φ is trivial (to see this,
use the recipe in [Lor00, §5]).

We now turn to Case E7. Consider a perturbation

y3 = (x− 1)(x3 − p2) + λx3y,

where λ ∈ Zp − {0}. Using the procedure of Proposition 5.1, we can make a change of variable to put this
curve in the form (1.2): the perturbation causes the point [0 : 1 : 0] at infinity to be a flex point, but no
longer a hyperflex point. One may check that the curve obtained in this way has nontrivial integral points.
For λ close enough to 0, this curve will also satisfy the condition

#(im(Yb(Qp)→ Jb(Qp)/2Jb(Qp)))
#Jb(Qp)/2Jb(Qp)

≤ 1

4
.

Finally, we turn to Case E8. We now let Z be the curve given by the equation y3 = (x2 − 1)(x3 − p2),
and let Y denote the projective curve over Zp containing Z and given by the multihomogeneous equation
y3 = z(x2−z2)(x3−p2z3). Then Y is smooth along the unique section at infinity. We see that Y has a unique
non-regular point, namely the point inside Z corresponding to the maximal ideal (p, x, y). The completed
local ring of Z at this point is isomorphic to ZpJx,wK/(w3 − x3 + p2). It follows that the singularities of
Y can be resolved by two blow-ups, exactly as in the E6 case described above. Moreover, the intersection
matrix is equal to M as defined above, and the isomorphism class of the component group of the Néron
model of the Jacobian of YQp is also (Z/2Z)2. This concludes the proof.

Lemma 3.9. There exists an open subset U2 ⊂ B(Z2) such that for all b ∈ U2, we have ∆(b) 6= 0, Xb(Z2) 6= ∅,
and the image of the map Xb(Z2)→ Jb(Q2)/2Jb(Q2) does not intersect the subgroup generated by the divisor
class [(P1)− (P2)] in Case E7 (resp. does not contain the identity in Case E8).

Proof. If c ∈ B(F2) is such that Xc is smooth, let us write Yc for the smooth projective completion of Xc
and Jc for Pic0

Yc . In order to prove the lemma, it suffices to exhibit a single point c ∈ B(F2) such that Xc is
smooth, and such that the image of the map Xc(F2)→ Jc(F2)/2Jc(F2) is nontrivial and does not intersect
the given subgroup. Indeed, suppose c is such a point, and define U2 to be the preimage of c under the
natural map B(Z2)→ B(F2). If b ∈ U2, then there is a commutative diagram

Xb(Z2)

��

// Jb(Q2)/2Jb(Q2)

��
Xc(F2) // Jc(F2)/2Jc(F2).

By Hensel’s Lemma, the existence of a point in Xc(F2) implies that Xb(Z2) is non-empty. Since the diagram is
commutative, the image of Xb(Z2) does not intersect the subgroup generated by the divisor class [(P1)−(P2)]
in Case E7 (resp. does not contain the identity in Case E8).

It remains to exhibit such a point c ∈ B(F2) in each case. In Case E7, we consider the curve

Xc : y3 = x3y + y + 1.

We have that Xc is smooth over F2, and Xc(F2) consists of exactly one point (x, y) = (1, 1). There
is an isomorphism Jc(F2) ∼= Z/18Z, hence an isomorphism Jc(F2)/2Jc(F2) ∼= Z/2Z. The subgroup of

21



Jc(F2)/2Jc(F2) generated by the divisor class [(P1)− (P2)] is the trivial subgroup, while the point (1, 1) has
nontrivial image in Jc(F2)/2Jc(F2) (in fact, its image in Jc(F2) is a generator).

In Case E8, we consider the curve

Xc : y3 = x5 + y(x3 + x2) + x3 + 1.

We have that Xc is smooth over F2, and Xc(F2) consists of the two points (x, y) = (0, 1) and (x, y) = (1, 1).
There is an isomorphism Jc(F2) ∼= Z/30Z, hence an isomorphism Jc(F2)/2Jc(F2) ∼= Z/2Z. Both of the
rational points of Xc(F2) have nontrivial image in Jc(F2)/2Jc(F2).

We verified all these properties of the given curves Xc using the ClassGroup functionality in magma [BCP97].

Lemma 3.10. 1. For every prime p, there exists an open compact subset Up ⊂ B(Zp) such that for every
b ∈ Up, ∆(b) 6= 0 and Xb(Zp) 6= ∅.

2. There exists an integer N3 ≥ 1 such that for every prime p > N3 and for every b ∈ B(Zp) such that
∆(b) 6= 0, we have Xb(Zp) 6= ∅.

Proof. For each prime p, it is not difficult to find a point c ∈ B(Fp) such that Xc is smooth and Xc(Fp) is non-
empty. Taking Up to be the preimage of c in B(Zp) establishes the first part of the lemma. The second part
follows from Hensel’s Lemma and the Weil bounds; here we are implicitly using the fact, already established
in the proof of Lemma 3.5, that for any c ∈ B(Fp), the irreducible components of Xc are geometrically
irreducible.

4 Counting points

In Section 3 we have defined an algebraic group over Z and a representation V, as well as various associated
structures. In Section 4, we continue with the same notation and now show how to estimate the number of
points in G(Z)\V(Z) of bounded height.

We first prove a simplified result, Theorem 4.1. The more refined version (Theorem 4.7), which is needed
for applications, will be given at the end of this section. Let L ⊂ B(R) be one of the subsets Lk described in
Lemma 3.7, and let s : L→ V (R) be the corresponding section. Then L is a connected semialgebraic subset of
B(R); s is a semialgebraic map; and s(L) has compact closure in V (R). The map Λ×L→ B(R), (λ, `) 7→ λ ·`
given by the Gm-action on B is an open immersion, and ht(λ · `) = λdeg ∆.

For any subset A ⊂ V(Z), we write Airr for the subset of points a ∈ A that are Q-irreducible, in the sense of
§2.3. We recall that r is the rank of H. Our first result is as follows.

Theorem 4.1. There exist constants C, δ > 0, not dependent on choice of L, such that

#G(Z)\{v ∈ [G(R) · Λ · s(L)] ∩ V(Z)irr | ht(v) < a} ≤ C · vol([1, a1/ deg ∆] · L) +O(a
1
2 +r/ deg ∆−δ).

Our proof is very similar to that of [Tho15, Theorem 3.1], except that a significant amount of case-by-case
computation is required in order to control the contribution of elements that are ‘in the cusp’ (i.e. elements
that lie in the codimension-one subspace of V where the coordinate corresponding to the highest root of H
vanishes; see Proposition 4.5 below). To avoid repetition, we omit the details of proofs that are essentially
the same as proofs appearing in [Tho15, §3].

First we introduce some notation. Recall that we have fixed a choice of S = ωTcK ⊂ G(R) as in Proposition
3.1, where ω ⊂ N(R) is a compact subset and Tc ⊂ T (R)◦ is open. As in [Tho15, Section 3.1], we fix a
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compact semialgebraic set G0 ⊂ G(R) × Λ of non-empty interior with the property that K · G0 = G0. We
assume that the projection of G0 to Λ is contained in [1, C0] for some constant C0 and that vol(G0) = 1.
Given a subset A ⊂ V(Z) we let

N(A, a) =

∫
h∈G0

#(Sh · Λ · s(L) ∩ {v ∈ Airr | ht(v) < a}) dh

N∗(A, a) =

∫
h∈G0

#(Sh · Λ · s(L) ∩ {v ∈ A | ht(v) < a}) dh.

The following two lemmas are the analogues in our situation of [Tho15, Lemma 3.3] and [Tho15, Lemma
3.4]; the proofs are the same.

Lemma 4.2. Let A ⊂ V (Z) be a G-invariant subset. Then

#G(Z) \ {v ∈ [G(R) · Λ · s(L)] ∩Airr | ht(v) < a} ≤ N(A, a)

and
#G(Z) \ {v ∈ [G(R) · Λ · s(L)] ∩A | ht(v) < a} ≤ N∗(A, a).

Lemma 4.3. Given a ≥ 1, n ∈ N(R), t ∈ T (R), and λ ∈ Λ, define E(n, t, λ, a) = ntλG0s(L) ∩ {v ∈ V (R) |
ht(v) < a}. For any subset A ⊂ V (Z), we have

N(A, a) ≤ 2r
∫
λ∈Λ

∫
t∈Tc

∫
n∈ω

#[E(n, t, λ, a) ∩Airr]δG(t)−1dn dt d×λ

and

N∗(A, a) ≤ 2r
∫
λ∈Λ

∫
t∈Tc

∫
n∈ω

#[E(n, t, λ, a) ∩A]δG(t)−1dn dt d×λ,

where δG is as defined in Section 3.1.

In order to actually count points, we will use the following result, which follows from [BW14, Theorem 1.3].
This replaces the use of [Tho15, Proposition 3.5], itself based on a result of Davenport [Dav51]. We prefer
to cite [BW14] since the possibility of applying [Dav51] to a general semialgebraic set rests implicitly on the
Tarski–Seidenberg principle (see [Dav64]).

Theorem 4.4. Let m,n ≥ 1 be integers, and let Z ⊂ Rm+n be a semialgebraic subset. For T ∈ Rm, let
ZT = {x ∈ Rn | (T, x) ∈ Z}, and suppose that all such subsets ZT are bounded. Then for any unipotent
upper-triangular matrix u ∈ GLn(R), we have

#(ZT ∩ uZn) = vol(ZT ) +O(sup{1, vol(ZT,j)}),

where ZT,j runs over all orthogonal projections of ZT to any j-dimensional coordinate hyperplane (1 ≤ j ≤
n− 1). Moreover, the implied constant depends only on Z.

To state the next proposition, we recall that for any subset M ⊂ ΦV , V (M) ⊂ V is the linear subspace
consisting of vectors v =

∑
α∈ΦV

vα with vα = 0 for all α ∈ M . Given disjoint subsets M0,M1 ⊂ ΦV , we
define an open subscheme V (M0,M1) ⊂ V (M0) by

V (M0,M1) = {v ∈ V (M0) | vα 6= 0 for all α ∈M1}.

We also define S(M0) = V (M0)(Q)∩V(Z) and S(M0,M1) = V (M0,M1)(Q)∩V(Z). For ease of notation, if
M = {α} is a single root, we write S(M) as S(α).

Proposition 4.5. Let α0 ∈ ΦV denote the highest root of H with respect to the root basis SH . Then there
exists δ > 0 such that N(S(α0), a) = O(a

1
2 +r/ deg ∆−δ).
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Proof. We call a pair (M0,M1) of disjoint subsets of ΦV a cusp datum. To prove the proposition, it suffices
to find a set C of cusp data such that

1. S(α0)irr ⊂
⋃

(M0,M1)∈C S(M0,M1)

2. If (M0,M1) ∈ C, then N∗(S(M0,M1), a) = O(a
1
2 +r/ deg ∆−δ).

Consider the partial order on ΦV given by β ≥ α if and only if ni(β−α) ≥ 0 for all i, where ni is as defined
in Section 2.3. Let M be the collection of subsets M ⊂ ΦV such that if α ∈ M and β ≥ α then β ∈ M .
Given a subset M ∈ M, we let λ(M) = {α ∈ ΦV | M ∪ {α} ∈ M}. We let C be the collection of cusp data
defined inductively as follows: in step 1, we form the cusp datum ({α0}, λ({α0})). In each successive step
we create the set of cusp data {(M0 ∪{α}, λ(M0 ∪{α})) | α ∈M1} for each cusp datum (M0,M1) formed in
the previous step, and then remove any cusp data such that M0 satisfies any of the conditions of Proposition
2.15. By construction the collection C satisfies condition 1 above. For each cusp datum (M0,M1) ∈ C, we

check that N∗(S(M0,M1), a) = O(a
1
2 +r/ deg ∆−δ). To do so, by the same logic as in [Tho15, §5], it suffices

to find a function f : M1 → R≥0 satisfying the following two conditions:

•
∑
α∈M1

f(a) < #M0

• For each 1 ≤ i ≤ r, we have
∑
α∈Φ+

G
ni(α)−

∑
α∈M0

ni(α) +
∑
α∈M1

f(α)ni(α) > 0.

One can program a computer to generate the list of cusp data in C, after inputting the root datum of
h and the description of its 2-grading, and then to verify that there exists such a function f for each
(M0,M1) ∈ C. We have carried out this verification process. Our code is available in the Mathematica
notebooks E7CuspData.nb and E8CuspData.nb.2 (In the name of efficiency, we actually follow a slightly
different procedure, since it is time-consuming to check the condition in part 3 of Proposition 2.15. Namely,
we generate a list of cusp data by eliminating only those pairs (M0,M1) such that M0 satisfies the condition
in part 2 of Proposition 2.15. For the cusp data on this list, we check that either a function f as above exists,
or that one of the remaining conditions, i.e. part 1 or part 3 of Proposition 2.15, holds. When verifying the
condition in part 3, we restrict our search to α ∈ M1. The end result is a collection of cusp data satisfying
items 1 and 2 above, which suffices to prove the proposition.)

Proposition 4.6. Let N ≥ 1 be an integer, and let v ∈ V(Z). Let Av,N = v +N · V(Z). Then there exists
δ > 0 such that

N∗(Av,N − S(α0), a) ≤ 2r|W0|∞ vol(S)

NdimV
vol([1, a1/deg ∆] · L) +O(a

1
2 +r/ deg ∆−δ).

Proof. Let ‖ · ‖ : V (R)→ R≥0 denote the supremum norm with respect to the decomposition V = ⊕α∈ΦV Vα
as a direct sum of free Z-modules of rank 1. Let J > 0 be a constant such that ‖v‖ ≤ J for all v ∈ ω ·G0 ·s(L).
Let F (n, t, λ, a) = {v ∈ E(n, t, λ, a) | |vα0

| ≥ 1}. If F (n, t, λ, a) 6= ∅, then λα0(t) ≥ 1/J . By Theorem 4.4,
we have

#((V(Z)− S(α0)) ∩ E(n, t, λ, a)) = #(V(Z) ∩ F (n, t, λ, a)) = vol(F (n, t, λ, a)) +O(λdimV−1α0(t)−1).

Similarly we have

#((Av,N − S(α0)) ∩ E(n, t, λ, a)) = N− dimV vol(F (n, t, λ, a)) +O(λdimV−1α0(t)−1). (4.1)

2These Mathematica notebooks may be found at https://www.dpmms.cam.ac.uk/~jat58/E7CuspData.nb and https://www.

dpmms.cam.ac.uk/~jat58/E8CuspData.nb respectively.
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By Lemma 4.3, N∗(Av,N − S(α0), a) is bounded above by

2r
∫
λ∈Λ

∫
t∈Tc

∫
n∈ω

N− dimV vol(F (n, t, λ, a))δG(t)−1 dn dt d×λ

+2r
∫ a1/ deg ∆

λ=C−1
0

∫
t∈Tc

∫
n∈ω

O(λdimV−1α0(t)−1)δG(t)−1 dn dt d×λ.

(4.2)

The second term in (4.2) is O(a
1
2 +(r−1)/ deg ∆). Lemma 3.7 shows that the first term is bounded above by

2r
∫
λ∈Λ

∫
t∈Tc

∫
n∈ω

N− dimV vol(E(n, t, λ, a))δG(t)−1 dn dt d×λ

=
2r

NdimV

∫
λ∈Λ

∫
g∈S

∫
v∈V (R)

∫
h∈G0

1v∈ghλs(L),ht(v)<a dh dv dg d
×λ

≤ 2r|W0|∞
NdimV

∫
h∈G0

vol(S) vol([1, a1/ deg ∆] · L) dh.

=
2r|W0|∞
NdimV

vol(S) vol([1, a1/ deg ∆] · L).

This completes the proof.

We can now finish the proof of Theorem 4.1. By Lemma 4.2, we have

G(Z)\{v ∈ [G(R) · Λ · s(L)] ∩ V(Z)irr | ht(v) < a} ≤ N(V(Z), a) ≤ N(V(Z)− S(α0), a) +N∗(S(α0), a).

The result now follows on combining Proposition 4.5 and Proposition 4.6.

We now state the more refined version of Theorem 4.1 mentioned at the beginning of this section.

Theorem 4.7. Let p1, . . . , ps be distinct primes, and for each i ∈ {1, . . . , s}, let Vpi ⊂ V(Zpi)∩V (Qpi)reg.ss.
be an open compact subset that is G(Qpi)-invariant, in the sense that if v ∈ Vpi , g ∈ G(Qpi) and gv ∈
V(Zpi), then gv ∈ Vpi . Let A = V(Z) ∩ (Vp1

× · · · × Vps) (where we are identifying V(Z) with its image in
V(Zp1)× · · · × V(Zps) under the diagonal embedding). Then there exist constants C, δ > 0 not depending on
s or the sets Vp1 , . . . , Vps such that

#G(Q)\{v ∈ Airr | ht(v) < a} ≤ C

(
s∏
i=1

∫
b∈B(Zpi )

#(G(Qpi)\(Vpi ∩ Vb(Qpi)))
# StabG(Qpi )(κb)

db

)
a

1
2 +r/ deg ∆+O(a

1
2 +r/ deg ∆−δ).

Proof. We recall that for each prime p we have defined in the statement of Proposition 3.3 a locally constant
function mp : V (Qp)reg.ss. → R by the formula

mp(v) =
∑

v′∈G(Zp)\(G(Qp)·v∩V(Zp))

# StabG(Qp)(v)

# StabG(Zp)(v′)
.

The same argument as in the proof of [Tho15, Corollary 3.9] leads to an estimate

#G(Q)\{v ∈ Airr | ht(v) < a} ≤ 2r
∑

v∈G(Z)\A
ht(v)<a

1

mpi(v)
.

Combining Lemma 4.2, Proposition 4.6, and Proposition 4.5, and summing over all choices of L as in Lemma
3.7, yields absolute constants C, δ > 0 such that∑

v∈G(Z)\A
ht(v)<a

1

mpi(v)
≤ C

(
s∏
i=1

∫
v∈Vpi

1

mpi(v)
dv

)
a

1
2 +r/ deg ∆ +O(a

1
2 +r/ deg ∆−δ).
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By the third part of Proposition 3.3, this expression is equal to

C

(
s∏
i=1

|W0|pi vol(G(Zpi))

)(
s∏
i=1

∫
b∈B(Zpi )

#(G(Qpi)\(Vpi ∩ Vb(Qpi)))
# StabG(Qpi )(κb)

db

)
a

1
2 +r/ deg ∆ +O(a

1
2 +r/ deg ∆−δ).

The products
∏s
i=1 |W0|pi vol(G(Zpi)) can be bounded independently of s and the primes p1, . . . , ps. They

can therefore be absorbed into the constant, giving the estimate in the statement of the theorem.

5 Applications to 2-Selmer sets

In this final section, we prove our main theorems, including the results stated in the introduction, by
combining all the theory developed so far. In order to avoid confusion, we treat each of the two families of
curves (corresponding to Case E7 and Case E8) in turn.

5.1 Applications in Case E7

As above, we write B = SpecZ[c2, c6, c8, c10, c12, c14, c18] for affine space over Z in 7 variables, and write
X → B for the family of affine plane curves given by equation (1.2):

y3 = x3y + c10x
2 + x(c2y

2 + c8y + c14) + c6y
2 + c12y + c18.

This family has the following interpretation:

Proposition 5.1. Let k/Q be a field. Then:

1. The locus inside Bk above which the morphism Xk → Bk is smooth is the complement of an irreducible
closed subset of Bk of codimension 1.

2. The set of points b ∈ B(k) for which Xb is smooth is in bijection with the set of equivalence classes of
triples (C,P1, t), where:

(a) C is a smooth, non-hyperelliptic curve of genus 3 over k.

(b) P1 ∈ C(k) is a flex point in the canonical embedding, i.e. the projective tangent line to C at P1

intersects C with multiplicity 3 at the point P1.

(c) t ∈ TP1
C is a non-zero Zariski tangent vector at the point P1.

If b corresponds to (C,P1, t), then Xb is isomorphic to C − {P1, P2}, where P2 ∈ C(k) is the unique
point such that 3P1 + P2 is a canonical divisor. For λ ∈ k×, the coefficients ci satisfy the equality

ci(C,P1, λt) = λi/2ci(C,P1, t).

Proof. Part 1 follows from the fact that Xb is smooth if and only if ∆(b) 6= 0. The proof of the second part
is very similar to the proof of [Tho15, Lemma 4.1], although here we cannot appeal to Pinkham’s Theorem.
Let (C,P1, t) be a tuple of the type described in the proposition, and let P2 ∈ C(k) be the point such
that 3P1 + P2 is a canonical divisor. The Riemann–Roch Theorem shows that h0(C,OC(3P1)) = 2 and
h0(C,OC(2P1 +P2)) = 2. We can therefore find functions y, x ∈ k(C)×, uniquely determined up to addition
of constants, such that the polar divisor of y is 3P1 and the polar divisor of x is 2P1 + P2, and such that
y = z−3 + . . . , x = z−2 + . . . locally at the point P1, where z is a local parameter at P1 such that dz(t) = 1.
We can also assume that y vanishes at the point P2.
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The 10 monomials
1, x, x2, y, yx, yx2, yx3, y2, y2x, y3

all lie in the 9-dimensional space H0(C,OC(9P1 + 2P2)) and are linearly independent, as can be seen by
considering their polar divisors. It follows that they satisfy a unique linear relation of the form

y3 = x3y + x2(c4y + c10) + x(c2y
2 + c8y + c14) + c6y

2 + c12y + c18. (5.1)

The function y is uniquely determined by the above data. We also see that there is a unique translate x+ a
(a ∈ k) such that, after replacing x by x+ a, we have c4 = 0 in equation (5.1). The homogenization of the
equation (5.1) then describes the canonical embedding of the curve C.

If k/Q is a field extension and b ∈ B(k) is such that Xb is smooth, then we write Yb for the unique smooth
projective completion of Xb.

As in the introduction, we define F0 = {b ∈ B(Z) | Xb,Q is smooth}. We say that a subset F ⊂ F0 is defined
by congruence conditions if there exist distinct primes p1, . . . , ps and a non-empty open compact subset
Upi ⊂ B(Zpi) for each i ∈ {1, . . . , s} such that

F = F0 ∩ (Up1 × · · · × Ups),

where we are taking the intersection inside B(Zp1
)× · · · × B(Zps).

We recall that for b ∈ B(R) we have defined ht(b) = supi |ci(b)|126/i. This function is homogeneous of degree
126, in the sense that for λ ∈ R×, we have ht(λ · b) = |λ|126 ht(b). (We note that 126 is the number of roots
in the root system of type E7, and so also the degree of the discrimimant polynomial ∆ considered in §2.1.)

Lemma 5.2. There exists a constant δ > 0 such that if F ⊂ F0 is a subset defined by congruence conditions
as above, then

#{b ∈ F | ht(b) < a} =

(
r∏
i=1

vol(Upi)

)
a

1
2 + 7

126 +O(a
1
2 + 7

126−δ)

as a→∞.

Proof. This is an easy consequence of Theorem 4.4.

Our main theorems are now as follows.

Theorem 5.3. Let F ⊂ F0 be a subset defined by congruence conditions. Then

lim sup
a→∞

∑
b∈F

ht(b)<a
# Sel2(Yb)

#{b ∈ F | ht(b) < a}
<∞.

In order to state the next theorem, we observe that if b ∈ B(Q) is such that Xb is smooth, then the 2-Selmer
set Sel2(Yb) always contains the ‘trivial’ classes arising from divisors supported on the points P1, P2 at
infinity (as in the statement of Proposition 5.1). We write Sel2(Yb)

triv for the subset of Sel2(Yb) consisting
of these classes, and note that # Sel2(Yb)

triv ≤ 2, with equality if and only if the divisor class [(P2)− (P1)]
is not divisible by 2 in Jb(Q).

Theorem 5.4. For any ε > 0, there exists a subset F ⊂ F0 defined by congruence conditions such that

lim sup
a→∞

∑
b∈F

ht(b)<a
# Sel2(Yb)

#{b ∈ F | ht(b) < a}
< 2 + ε.
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Consequently, for any such choice of F we have

lim inf
a→∞

#{b ∈ F | ht(b) < a and Sel2(Yb) = Sel2(Yb)
triv}

#{b ∈ F | ht(b) < a}
> 1− ε.

The proof of Theorem 5.4 is essentially a refined version of the proof of Theorem 5.3, so we just give the
proof of Theorem 5.4.

Proof of Theorem 5.4. Let p1, . . . , ps be primes congruent to 1 modulo 6. Let ε ∈ (0, 1) be as in Lemma 3.8,
and for each i ∈ {1, . . . , s}, let Upi ⊂ B(Zpi) be the set described in the statement of Lemma 3.8. These sets
have the following property: define

Vpi = π−1(Upi) ∩ V(Zpi) ∩ ([G(Qpi) ·X(Qpi)] ∪ [G(Qpi) · κ(Qp)] ∪ [G(Qpi) · κ′(Qp)]),

where κ′ is any Kostant section that is not G-conjugate to κ. Then Vpi is an open compact subset of
V(Zpi)reg.ss., and for any b ∈ Upi we have ∆(b) 6= 0 and

#(G(Qpi)\(Vpi ∩ Vb(Qpi))
# StabG(Qpi )(κb)

≤ ε. (5.2)

We let F = F0 ∩ (Up1
× · · · ×Ups). For any b ∈ F , let Sel2(Yb)

irr ⊂ Sel2(Yb) denote the subset of ‘nontrivial’
elements, i.e. the complement of Sel2(Yb)

triv in Sel2(Yb). Let A = V(Z)∩(Vp1
×· · ·×Vps). Then by Proposition

3.6, for any a > 0 we have∑
b∈F

ht(b)<a

# Sel2(Yb)
irr ≤ G(Q)\{v ∈ Airr | ht(v) < Ndeg ∆

1 a}.

By combining Theorem 4.7, Lemma 5.2, and the inequality (5.2), we see that there exist constants C, δ > 0,
not depending on s or the choice of primes p1, . . . , ps, such that∑

b∈F
ht(b)<a

# Sel2(Yb)
irr

#{b ∈ F | ht(b) < a}
≤ εsC +O(a−δ)

1 +O(a−δ)
.

Since # Sel2(Yb) ≤ 2 + # Sel2(Yb)
irr, the first sentence in the statement of the theorem now follows on

choosing s sufficiently large and letting a→∞. The second sentence follows from the first on combining it
with the following lemma.

Lemma 5.5. Let F ⊂ F0 be a family defined by congruence conditions. Then the limit

lim
a→∞

#{b ∈ F | ht(b) < a,# Sel2(Yb)
triv = 2}

#{b ∈ F | ht(b) < a}

exists and equals 1.

Proof. Let b ∈ F , and let Cb = ZH(κb), a maximal torus of H. The Galois action on Cb induces an associated
homomorphism Gal(Qs/Q)→W (H,Cb). Corollary 2.12 shows that if this homomorphism is surjective, then
# Sel2(Yb)

triv = 2. It therefore suffices to show that the limit

lim
a→∞

#{b ∈ F | ht(b) < a,Gal(Qs/Q)→W (H,Cb) surjective}
#{b ∈ F | ht(b) < a}

exists and equals 1. This is a variant of the Hilbert Irreducibility Theorem and can be proved along similar
lines to the arguments in [Ser97, §13.2].
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Theorem 5.6. For any ε > 0, there exists a subset F ⊂ F0 defined by congruence conditions such that the
following conditions are satisfied:

1. For every b ∈ F and every prime p, we have Xb(Zp) 6= ∅.

2. We have

lim inf
a→∞

#{b ∈ F | Xb(Z(2)) = ∅}
#{b ∈ F | ht(b) < a}

> 1− ε.

For the sets F constructed in Theorem 5.6, we may say that a positive proportion of the curves Xb (b ∈ F)
have integral points everywhere locally, but no integral points globally.

Proof. By Lemma 3.9 and Lemma 3.10, we can choose for every prime p an open compact subset Up ⊂ B(Zp)
such that the following conditions are satisfied:

1. For each b ∈ U2, ∆(b) 6= 0 and the image of the map Xb(Z2)→ Jb(Q2)/2Jb(Q2) does not intersect the
subgroup generated by [(P1)− (P2)].

2. For every prime p and for every b ∈ Up such that ∆(b) 6= 0, the set Xb(Zp) is non-empty.

3. For every sufficiently large prime p, Up = B(Zp).

Let F ⊂ F0 be the corresponding subset defined by congruence conditions. Fix ε > 0. By modifying Up at
sufficiently many primes congruent to 1 modulo 6, as in the proof of Theorem 5.4, we can assume moreover
that the following condition is satisfied:

4. We have

lim inf
X→∞

#{b ∈ F | ht(b) < a and Sel2(Yb) = Sel2(Yb)
triv}

#{b ∈ F | ht(b) < a}
> 1− ε.

To complete the proof of the theorem, we just need to show that if b ∈ F is such that Sel2(Yb) = Sel2(Yb)
triv,

then X (Z(2)) = ∅. To this end, we consider the commutative diagram

Xb(Z(2)) //

��

Xb(Z2)

��
Sel2(Yb) // Jb(Q2)/2Jb(Q2),

where the maps are the natural ones. By construction of U2, the image of the right-hand vertical map is
contained in the complement of the subgroup generated by the divisor class [(P1)−(P2)]. By assumption, the
image of the bottom horizontal map is contained in the subgroup generated by the divisor class [(P1)− (P2)].
This forces Xb(Z(2)) to be empty, as desired.

5.2 Applications in Case E8

We now forget the notation of §5.1, and write B = SpecZ[c2, c8, c12, c14, c18, c20, c24, c30] for affine space over
Z in 8 variables, and write X → B for the family of affine plane curves given by equation (1.3):

y3 = x5 + y(c2x
3 + c8x

2 + c14x+ c20) + c12x
3 + c18x

2 + c24x+ c30.

This family has the following interpretation:
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Proposition 5.7. Let k/Q be a field. Then:

1. The locus inside Bk above which the morphism Xk → Bk is smooth is the complement of an irreducible
closed subset of Bk of codimension 1.

2. The set of points b ∈ B(k) for which Xb is smooth is in bijection with the set of equivalence classes of
triples (C,P, t), where:

(a) C is a smooth, non-hyperelliptic curve of genus 4 over k.

(b) P ∈ C(k) is a point such that 6P is a canonical divisor and h0(C,OC(3P )) = 2.

(c) t ∈ TPC is a non-zero Zariski tangent vector at the point P .

If b corresponds to (C,P1, t), then Xb is isomorphic to C −{P}. For λ ∈ k×, the coefficients ci satisfy
the equality

ci(C,P, λt) = λici(C,P, t).

The proof is very similar to the proof of [Tho15, Lemma 4.1] and to the proof of Proposition 5.1, so we omit
it.

If k/Q is a field extension and b ∈ B(k) is such that Xb is smooth, then we write Yb for the unique smooth
projective completion of Xb. As in Case E7, we define F0 = {b ∈ B(Z) | Xb,Q is smooth}, and we say that a
subset F ⊂ F0 is defined by congruence conditions if there exist distinct primes p1, . . . , ps and a non-empty
open compact subset Upi ⊂ B(Zpi) for each i ∈ {1, . . . , s} such that

F = F0 ∩ (Up1
× · · · × Ups).

If b ∈ B(R), then we have ht(b) = supi |ci(b)|240/i. This function is homogeneous of degree 240, in the sense
that for λ ∈ R×, we have ht(λb) = |λ|240 ht(b). As in Case E7, an application of Theorem 4.4 shows that
there exists a constant δ > 0 such that if F ⊂ F0 is a subset defined by congruence conditions as above, then

#{b ∈ F | ht(b) < a} =

(
s∏
i=1

vol(Upi)

)
a

1
2 + 1

30 +O(a
1
2 + 1

30−δ)

as a→∞.

Our main theorems in Case E8 are as follows. We omit the proofs since they are similar, and simpler, than
those in Case E7 in the previous section.

Theorem 5.8. Let F ⊂ F0 be a subset defined by congruence conditions. Then

lim sup
a→∞

∑
b∈F

ht(b)<a
# Sel2(Yb)

#{b ∈ F | ht(b) < a}
<∞.

Theorem 5.9. For any ε > 0, there exists a subset F ⊂ F0 defined by congruence conditions such that

lim sup
a→∞

∑
b∈F

ht(b)<a
# Sel2(Yb)

#{b ∈ F | ht(b) < a}
< 1 + ε.

Consequently, we have

lim inf
a→∞

#{b ∈ F | ht(b) < a and # Sel2(Yb) = 1}
#{b ∈ F | ht(b) < a}

> 1− ε.
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Theorem 5.10. For any ε > 0, there exists a subset F ⊂ F0 defined by congruence conditions such that the
following conditions are satisfied:

1. For every b ∈ F and every prime p, we have Xb(Zp) 6= ∅.

2. We have

lim inf
a→∞

#{b ∈ F | Xb(Z(2)) = ∅}
#{b ∈ F | ht(b) < a}

> 1− ε.
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