
Part III ANT, Michaelmas 2019 Revision Sheet Solutions

1. (a) We first show by induction that for each n ≥ 1, there are unique
elements a0, . . . , an−1 ∈ X such that x −

∑n−1
i=0 aiπ

i ∈ (πn). The
case n = 1 is just the definition of X. For the induction step, we
can write (by induction) x −

∑n−1
i=0 aiπ

i = πny for some y ∈ A;
and we can write y = an + πz for some element an ∈ X, giving
an expression x =

∑n
i=0 aiπ

i + πn+1z. If we have another such
expression x =

∑n
i=0 biπ

i + πn+1z′, then the induction hypothesis
shows that ai = bi for each i = 0, . . . , n − 1. We can then divide
by πn to conclude that an− bn ∈ (π), hence an = bn (by definition
of X).

To say that A is complete means that the natural map f : A →
lim←−n≥1A/(π

n) is an isomorphism. We can define an element of

the inverse limit by (
∑n−1

i=0 aiπ
i mod (πn))n≥1. This is equal to

f(x), showing that x has an expression of the given form. The
expression is unique because f is injective.

(b) Suppose that x =
∑∞

i=0 aip
i has an eventually periodic p-adic

expansion. We must show that x is rational. After subtracting
an integer from x and dividing by a power of p, we can assume
that the p-adic expansion is periodic: there exists an integer k ≥ 1
such that ai = ai+k for all i ≥ 0. Thus we can write

x = (a0 + a1p+ . . . ak−1p
k−1)(1 + pk + p2k + . . . ).

We therefore just need to show that
∑∞

i=0 p
ik is rational. It equals

1/(1− pk), so this is true.

(c) Suppose that x =
∑∞

i=0 aiπ
i has an eventually periodic π-adic

expansion, where π =
√
p. We want to show that x ∈ Q(

√
p). We

can again assume that there exists k ≥ 1 such that ai = ai+k for
all i ≥ 0. We can moreover assume that k = 2r is even (otherwise
replace k by 2k). Then we can write

x = (a0 + a1π + . . . ak−1π
k−1)(1 + πk + π2k + . . . )

= (a0 + a1π + . . . ak−1π
k−1)(1 + pr + p2r + . . . ),

showing that indeed x ∈ Q(
√
p).

2. (a) Let f(X) = Xn+a1X
n−1+· · ·+an ∈ K[X] be a monic polynomial

such that f(0) 6= 0, and let vK : K× → Z be the valuation. The
Newton polygon NK(f) is defined to be the lower convex hull of
the points (i, vK(ai)) for those i = 0, . . . , n such that ai 6= 0.
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Let λ1 < λ2 < · · · < λk be the slopes of NK(f), and let mi be
the multiplicity of λi. Then there exists a unique factorisation
f(X) =

∏k
i=1 gi(X) in K[X] such that gi(X) ∈ K[X] is a monic

polynomial of degree mi and NK(gi)) has a single segment of slope
λi.

(b) Let f(X) ∈ Q[X] be a monic irreducible polynomial, and let
K = Q(α), where α is a root of f(X). Let p be a prime and
factorise f(X) =

∏r
i=1 fi(X) in Qp[X], where each fi(X) ∈ Qp[X]

is monic and irreducible. Then there is a bijection between the set
of prime ideals P ⊂ OK lying above (p) and the set of irreducible
factors fi(X) of f(X) in Qp with the following property: if P and
fi(X) correspond under this bijection, then fi(X) is the minimal
polynomial of α ∈ KP over Qp.

(c) Now let f(X) = X4+6X2−48. We have 6 = 2×3 and 48 = 24×3
so NQ3(f) has a single segment of slope 1/4, while NQ2(f) has
two segments of slope 1/2 and 3/2, each slope occurring with
multiplicity 2. By Eisenstein’s criterion at the prime 3, f(X) is
irreducible.

Let L/Q be the splitting field of f(X). Let α, β ∈ L be the
roots of X2 + 6X − 48, E = Q(α, β). Thus E/Q is a quadratic
subfield of L/Q and L = E(

√
α,
√
β). If we let G = Gal(L/Q)

and H = Gal(L/E), then there is a surjective homomorphism
G→ Gal(E/Q) with kernel H. Viewing G as a subgroup of S4 via
its action by permutation of {

√
α,−
√
α,
√
β,−
√
β}, we see that

H is contained in the subgroup generated by the transpositions
(12) and (34); in particular, it has cardinality at most 4.

We claim that H has cardinality 4, so G has order 8. There are
several different ways to do this. Here is one using the prime 3. Let
P ⊂ OL be a prime ideal lying above 3, and let R = P ∩K, where
K = Q(

√
α). Then LP/Q3 is a Galois extension containing KP .

Since f(X) is Eisenstein at 3, the degree 4 extension KR/Q3 is
totally ramified of degree 4. This shows that the extension LP/Q3

is tamely ramified, of ramification index divisible by 4. We proved
in lectures that if M1/M2 is a Galois tamely ramified extension of
degree n then the residue field kM2 contains the nth roots of unity.
Therefore we see that the maximal unramified subextension LP,0 of
LP must have degree 2, so that the cardinality of k×LP,0

is divisible
by 4.

We deduce that LP/Q3 is Galois of degree 8, that Gal(LP/Q3) =
Gal(L/Q), and that P is the unique prime ideal of OL lying above
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3. In particular, G has cardinality 8.

3. (a) Let f(X, Y ) = aX2 + bXY + cY 2 ∈ Z[X, Y ] be positive definite
binary quadratic form. We say that f(X, Y ) is reduced if c ≥ a ≥
|b|, and b ≥ 0 if either of these inequalities are equalities.

Now let K be an imaginary quadratic field, viewed a subfield of
C; we take the convention that squareroots of negative numbers
have positive imaginary part. We will prove that there is a bijec-
tion between the ideal class group of OK and the set of reduced
positive definite binary quadratic forms of discriminant discOK .
We prove this in two stages. We first show that there is a bijection
between the ideal class group and the set of SL2(Z)-orbits of bi-
nary quadratic forms of this discriminant. We then show that each
SL2(Z)-orbit contains a unique representative which is reduced.

Let D = discOK . We know that K = Q(
√
D). To construct the

bijection, we associate to any positive definite binary quadratic
form of discriminant D the fractional ideal I = Z ⊕ Zβ, where
β = (−b +

√
D)/2a is the unique root of f(X, 1). We need to

check that I is invariant under multiplication by I. We then need
to check that if we replace f(X, Y ) by an equivalent form (under
the action of SL2(Z), then we replace I by another fractional ideal
which nevertheless lies in the same ideal class.

[For the rest of the proof, see Theorem 5.13 and Corollary 5.16 in
the online notes.]

(b) Now let K = Q(
√
−6), so that discOK = D = −24. To calculate

the cardinality of the ideal class group of K, we enumerate the
reduced positive definite binary quadratic forms f(X, Y ) = aX2+
bXY + cY 2 of discriminant D. They all satisfy |b| ≤

√
24/3,

hence |b| ≤ 2. We see that the only possibilities are X2 + 6Y 2 and
2X2 + 3Y 2.

Thus the Hilbert class field H of K = Q(
√
−6) is an everywhere

unramified quadratic extension. To show H = K(
√

2), we just
need to show K(

√
2)/K is everywhere unramified. The polyno-

mialX2−2 has discriminant prime to 2, soK(
√

2)/K is unramified
at the prime ideals of OK not lying above 2. We can also represent
K(
√
−3) = K(ζ3). The minimal polynomial X2−X + 1 of ζ3 has

discriminant prime to 3, so K(
√

2)/K is unramified at the prime
ideals of OK not lying above 3. Taking these statements together
now shows that indeed K(

√
2) is the Hilbert class field of K.

4. The first polynomial divides X7 − X, which we know to have 7 roots
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in Z7 (which are all distinct modulo 7; the simple version of Hensel’s
lemma applies). For the second polynomial f(X) = X2 + 2X + 4,
we find f(2X) = 4(X2 + X + 1). The polynomial in brackets has no
roots in F2, hence a fortiori in Z2 (and Hensel’s lemma is not really
required). The polynomial g(X) = 3X3 + X + 3 satisfies 9g(X/3) =
X3 + 3X + 27 = h(X), say. We will apply Hensel’s lemma to h(X).
We have h(0) = 27, h′(0) = 3; the strong version of Hensel’s lemma
applies to tell us that there is a unique root α ∈ Z3 of h(X) satisfying
v3(α) > v3(h

′(0)) = 1.

We wish to know if h(X) has any other roots in Z3. Looking mod 3,
we see that any other root β of h(X) in Z3 must lie in 3Z3. We know
that (by uniqueness of α) it must lie in 3Z3−9Z3. However any such β
satisfies v3(h(β)) = v3(3β) = 2, by the ultrametric triangle inequality,
so cannot be a root.

5. (a) We recall the definition of our homomorphisms. Let AL ⊂ L de-
note the valuation ring. If t ∈ G = G0, then t(πL) = atπL for
some at ∈ A×L . The map G0/G1 → k×L sends t to at mod (π), or
equivalently to t(πL)/πL mod (π). If π′L is another choice of uni-
formizer, then we can write π′L = uπL for some u ∈ A×L , and then
t(π′L)/π′L = t(u)/u · t(πL)/πL. Since the extension L/K is totally
ramified, G acts trivially on kL, and hence t(u) ≡ u mod (π). This
shows that θ0(t) = t(πL)/πL mod (πL) ∈ k×L is independent of the
choice of uniformizer.

(b) If i ≥ 1 and t ∈ Gi, then t(πL) = πL+atπ
i+1
L for some at ∈ AL, and

the map Gi → kL sends t to at mod (πL). Since at = (t(πL)/πL−
1)/πiL, this gives the claimed formula.

Another way to express this is to set U i
L = ker(A×L → (AL/(π

i
L))×) =

1 + πiAL, for any i ≥ 1. There is a group isomorphism fi :
U i
L/U

i+1
L → (πiL)/(πi+1

L ) given by x 7→ x − 1. If t ∈ Gi then
t(πL)/πL ∈ U i

L, and θi(t) = fi(t(πL)/πL). To see that θi is in-
dependent of choices, it is enough to show that t(uπL)/uπL ≡
t(πL)/πL mod (πi+1

L ). Equivalently, that t(u)/u ≡ 1 mod (πi+1
L ).

This is true because t ∈ Gi.

This also shows why our original homomorphism does depend on
our choice of uniformizer. Any such choice gives an isomorphism
gπL : (πiL)/(πi+1

L ) → kL, y 7→ y/πiL mod (πL), and our original
homomorphism is gπL ◦θi. We see that guπL(y) = u−igπL , so if ui 6≡
1 mod (πL) and Gi/Gi+1 is non-trivial then the homomorphisms
Gi → kL corresponding to the choices πL and uπL of uniformizer
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are not equal.

(c) We want to show that if s ∈ G0 and t ∈ Gi, then θi(sts
−1) =

θ0(s)
iθi(t). We calculate

θi(sts
−1) = s(ts−1(πL)/s−1(πL)− 1) mod (πi+1

L ).

We have shown that θi is independent of the choice of uniformizer,
so we can compute using the uniformizer s−1(πL); we get θi(sts

−1) =
s(θi(t)), where s is acting now on the group (πiL)/(πi+1

L ). To
get the desired formula, we must show that the action of s on
(πiL)/(πi+1

L ) (a 1-dimensional kL-vector space equals multiplica-
tion by θ0(s)

i. In other words, that if a ∈ AL then s(aπiL) ≡
θ0(s)

iaπiL mod (πi+1
L ). Dividing through by aπiL, this is equiva-

lent to the identity s(aπiL)/aπiL mod (πL) = θ0(s)
i, which follows

immediately from the definition of θ0.

6. We assume n ≥ 3, so L 6= Q and L/K is a quadratic extension. We
recall that the Hilbert class field H/K is the maximal abelian unrami-
fied extension of K in which every real embedding of K remains real;
moreover, [H : K] = hK (by class field theory). The extension HL/L
is abelian and everywhere unramified; moreover, L has no real embed-
dings. It follows that HL is contained inside the Hilbert class field of
L, which has degree hL.

By the tower law, we have [HL : L][L : K] = [HL : H][H : K]. We
have [L : K] = 2. We have [HL : H] ≤ 2, with equality if and only
if HL 6= H. However, HL does not embed in R while H does, so we
have [HL : H] = 2 and hence [HL : L] = [H : K] = hK . Since HL is
contained in the Hilbert class field of L, we deduce that hK divides hL.

7. We set K = Q(i), L = K(α) where α4 = 2. Thus L is the splitting field
over Q of the polynomial X4 − 2. We observe that L/Q is unramified
outside 2, so L/K is unramified away from the unique prime ideal
P = (1 + i) of OK lying above 2.

The extension L/K is abelian of degree dividing 4. We will show that
it has degree 4. Let Q denote a prime ideal of OL lying above P . We
will show that in fact LQ/KP is totally ramified of degree 4.

Let
√

2 = α2. We first recall that the extension E = KP (
√

2) is a totally
ramified quadratic extension of KP of degree 2, with uniformizer 1+ 1+i√

2

(we have studied this extension in lectures). We consider the element
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π = 1 + 1+i+
√
2

α3 . We compute

π2 = 1 +
1 + i√

2
+ (1 + α)(1 + i) + α3.

Since 1 + 1+i√
2

has strictly smaller valuation than (1 + i) and α3, we see

that π2 has the same valuation as a uniformizer of E. This is possible
only if LQ/E is a ramified quadratic extension and π is a uniformizer
of LQ.

To compute the conductor of the extension L/K, we will compute the
ramification groups of the extension LQ/KP . Let G = Gal(LQ/KP ). It
is cyclic of degree 4, generated by the element τ with τ(α) = iα. We
thus compute

τ(π)− π = −α(1 +
1 + i√

2
),

hence vLQ
(τ(π)− π) = 4, and τ 2(π)− π = 2(1− π), hence vLQ

(τ 2(π)−
π) = 8. We conclude that the lower ramification groups satisfy G0 =
G1 = G2 = G3, G4 = · · · = G7 = {1, τ 2}, G8 = {1}. It follows
that the upper ramification groups are given by G0 = G1 = G2 = G3,
G4 = G5 = {1, τ}, G6 = {1}. In particular, the conductor of the
abelian extension L/K is the ideal P 6.

By class field theory, there is a surjection φL/K → H(P 6)→ Gal(L/K).
We now describe the group H(P 6) and its subgroup kerφL/K . The
ideal class group of K is trivial, so we know that H(P 6) is isomorphic
to the quotient of the group (OK/P 6)× by the subgroup generated by
{±1,±i}. We see that H(P 6) has cardinality 25/22 = 8, and therefore
that kerφL/K has order 2.

We therefore just need to identify a non-trivial element of kerφL/K . To
do this, we calculate Frobenius elements. The prime 3 is inert in K,
so 3OK is prime. Let R be a prime ideal of OL lying above 3. Then
Frob3OK

acts on OL/R by α 7→ α9 = 4α ≡ α mod R. It follows that
Frob3OK

= 1 and 3 mod P 6 generates kerφL/K .
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