Part IIT ANT, Michaelmas 2019

Revision Sheet Solutions

1.

(a)

We first show by induction that for each n > 1, there are unique
elements ay, ..., a, 1 € X such that  — 3" a;n* € (7). The
case n = 1 is just the definition of X. For the induction step, we
can write (by induction) 2 — 3" a;' = 7"y for some y € A;
and we can write y = a,, + mz for some element a, € X, giving
an expression x = y_ o a;m + 7"z, If we have another such
expression z = Y . by’ + 712/, then the induction hypothesis
shows that a; = b; for each 1 = 0,...,n — 1. We can then divide
by 7" to conclude that a, — b, € (7), hence a,, = b, (by definition
of X).

To say that A is complete means that the natural map f : A —
hm A/(m™) is an isomorphism. We can define an element of

the inverse limit by (31, a;* mod (7™)),>1. This is equal to
f(z), showing that = has an expression of the given form. The
expression is unique because f is injective.

Suppose that z = > .2, a;p’ has an eventually periodic p-adic
expansion. We must show that x is rational. After subtracting
an integer from x and dividing by a power of p, we can assume
that the p-adic expansion is periodic: there exists an integer k > 1
such that a; = a;4 for all ¢« > 0. Thus we can write

= (ag+ap+.. . ap " DA+ +p*F 4.0,

We therefore just need to show that >, p* is rational. It equals
1/(1 — p*), so this is true.

Suppose that @ = > ° a;7" has an eventually periodic m-adic

expansion, where 7 = ,/p. We want to show that x € Q(,/p). We
can again assume that there exists k£ > 1 such that a; = a;, for
all # > 0. We can moreover assume that k = 2r is even (otherwise
replace k by 2k). Then we can write

= (ap+arym+...aqp_ 7" DA+ a4 )
= (ao—i-alﬂ'—i-...ak,lﬂ'kil)(l —|—pr+p2r+...),

showing that indeed x € Q(y/p).

Let f(X) = X"+a X" '+---+a, € K[X] be amonic polynomial
such that f(0) # 0, and let vg : K* — Z be the valuation. The
Newton polygon Ng(f) is defined to be the lower convex hull of
the points (4, vk (a;)) for those i = 0,...,n such that a; # 0.
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Let A\ < Ay < -+ < A be the slopes of Ng(f), and let m; be
the multiplicity of A\;. Then there exists a unique factorisation
F(X) =TI, 9:(X) in K[X] such that g;(X) € K[X] is a monic
polynomial of degree m; and Nk (g;)) has a single segment of slope
>\i-

Let f(X) € Q[X] be a monic irreducible polynomial, and let
K = Q(«), where « is a root of f(X). Let p be a prime and
factorise f(X) = [[;_; fi(X) in Q,[X], where each f;(X) € Q,[X]
is monic and irreducible. Then there is a bijection between the set
of prime ideals P C O lying above (p) and the set of irreducible
factors f;(X) of f(X) in Q, with the following property: if P and
fi(X) correspond under this bijection, then f;(X) is the minimal
polynomial of o € Kp over Q,,.

Now let f(X) = X*+6X2—48. We have 6 = 2x 3 and 48 = 2* x 3
so Ng,(f) has a single segment of slope 1/4, while Ng,(f) has
two segments of slope 1/2 and 3/2, each slope occurring with
multiplicity 2. By Eisenstein’s criterion at the prime 3, f(X) is
irreducible.

Let L/Q be the splitting field of f(X). Let a,8 € L be the
roots of X2+ 6X — 48, F = Q(«, ). Thus E/Q is a quadratic
subfield of L/Q and L = E(y/a,v/B). If we let G = Gal(L/Q)
and H = Gal(L/E), then there is a surjective homomorphism
G — Gal(F/Q) with kernel H. Viewing G as a subgroup of Sy via
its action by permutation of {\/a, —/a, /B, —v/B}, we see that
H is contained in the subgroup generated by the transpositions
(12) and (34); in particular, it has cardinality at most 4.

We claim that H has cardinality 4, so G has order 8. There are
several different ways to do this. Here is one using the prime 3. Let
P C Op, be a prime ideal lying above 3, and let R = PN K, where
K = Q(y/a). Then Lp/Qs is a Galois extension containing Kp.
Since f(X) is Eisenstein at 3, the degree 4 extension Kr/Qjs is
totally ramified of degree 4. This shows that the extension Lp/Qj
is tamely ramified, of ramification index divisible by 4. We proved
in lectures that if M;/M; is a Galois tamely ramified extension of
degree n then the residue field kjz, contains the n'" roots of unity.
Therefore we see that the maximal unramified subextension Lp of
Lp must have degree 2, so that the cardinality of kzp,o is divisible
by 4.

We deduce that Lp/Qj3 is Galois of degree 8, that Gal(Lp/Q3) =
Gal(L/Q), and that P is the unique prime ideal of Oy, lying above
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3. In particular, G has cardinality 8.

Let f(X,Y) = aX?+bXY + cY? € Z[X,Y] be positive definite
binary quadratic form. We say that f(X,Y) is reduced if ¢ > a >
b], and b > 0 if either of these inequalities are equalities.

Now let K be an imaginary quadratic field, viewed a subfield of
C; we take the convention that squareroots of negative numbers
have positive imaginary part. We will prove that there is a bijec-
tion between the ideal class group of Ok and the set of reduced
positive definite binary quadratic forms of discriminant disc Og.
We prove this in two stages. We first show that there is a bijection
between the ideal class group and the set of SLy(Z)-orbits of bi-
nary quadratic forms of this discriminant. We then show that each
SLy(Z)-orbit contains a unique representative which is reduced.

Let D = disc Ox. We know that K = Q(v/D). To construct the
bijection, we associate to any positive definite binary quadratic
form of discriminant D the fractional ideal I = Z & Zf, where
B = (=b+ +v/D)/2a is the unique root of f(X,1). We need to
check that [ is invariant under multiplication by I. We then need
to check that if we replace f(X,Y) by an equivalent form (under
the action of SLy(Z), then we replace I by another fractional ideal
which nevertheless lies in the same ideal class.

[For the rest of the proof, see Theorem 5.13 and Corollary 5.16 in
the online notes.]

Now let K = Q(v/—6), so that disc Ox = D = —24. To calculate
the cardinality of the ideal class group of K, we enumerate the
reduced positive definite binary quadratic forms f(X,Y) = aX?+
bXY + cY? of discriminant D. They all satisfy |[b] < /24/3,
hence |b| < 2. We see that the only possibilities are X? +6Y? and
2X% +3Y72.

Thus the Hilbert class field H of K = Q(1/—6) is an everywhere
unramified quadratic extension. To show H = K(1/2), we just
need to show K(v/2)/K is everywhere unramified. The polyno-
mial X2—2 has discriminant prime to 2, so K (v/2)/K is unramified
at the prime ideals of Ok not lying above 2. We can also represent
K(/=3) = K(¢3). The minimal polynomial X2 — X + 1 of (3 has
discriminant prime to 3, so K (v/2)/K is unramified at the prime
ideals of Ok not lying above 3. Taking these statements together
now shows that indeed K (v/2) is the Hilbert class field of K.

4. The first polynomial divides X7 — X, which we know to have 7 roots
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in Z7; (which are all distinct modulo 7; the simple version of Hensel’s
lemma applies). For the second polynomial f(X) = X? + 2X + 4,
we find f(2X) = 4(X? + X + 1). The polynomial in brackets has no
roots in [Fy, hence a fortiori in Zy (and Hensel’s lemma is not really
required). The polynomial g(X) = 3X% + X + 3 satisfies 99(X/3) =
X3 +3X + 27 = h(X), say. We will apply Hensel’s lemma to h(X).
We have h(0) = 27, h/(0) = 3; the strong version of Hensel’s lemma
applies to tell us that there is a unique root « € Zj of h(X) satisfying
vg(a) > v3(R'(0)) = 1.

We wish to know if h(X) has any other roots in Zz. Looking mod 3,
we see that any other root 8 of A(X) in Zz must lie in 3Z3. We know
that (by uniqueness of «) it must lie in 3Z3 — 9Zs. However any such g
satisfies v3(h(B)) = v3(38) = 2, by the ultrametric triangle inequality,
so cannot be a root.

5. (a) We recall the definition of our homomorphisms. Let Ay C L de-
note the valuation ring. If t € G = Gy, then t(7;) = a7y, for
some a; € Af. The map Go/G1 — kj sends ¢ to a; mod (), or
equivalently to ¢(my) /7, mod (m). If 7} is another choice of uni-
formizer, then we can write 7}, = umy, for some u € A7, and then
t(mh) /7 = t(u)/u - t(wy) /7. Since the extension L/K is totally
ramified, G acts trivially on k7, and hence t(u) = v mod (7). This
shows that 0y(t) = t(nr) /7, mod (7,) € k; is independent of the
choice of uniformizer.

(b) Ifi > 1and t € Gy, then t(rr;) = 7wy +a.my ! for some a; € Ap, and
the map G; — kg, sends ¢ to a; mod (7). Since a; = (t(mwp) /7y —
1)/7% , this gives the claimed formula.

Another way to express this is to set U; = ker(A7 — (Ap/(7%))*) =
1+ mAg, for any ¢ > 1. There is a group isomorphism f; :
Ui JUSY — (7%) /(7o) given by o — 2 — 1. If t € G; then
t(rp) /7, € Uk, and 6;(t) = fi(t(wp)/7r). To see that 6; is in-
dependent of choices, it is enough to show that t(ump)/um, =
t(rp) /7 mod (7it). Equivalently, that t(u)/u = 1 mod (7%).
This is true because t € G;.

This also shows why our original homomorphism does depend on
our choice of uniformizer. Any such choice gives an isomorphism
Gry () /(75 = Kz, y = y/7% mod (), and our original
homomorphism is g,, 0f;. We see that gur, (y) = © gy, , so if u’ Z
1 mod (7) and G;/G,44 is non-trivial then the homomorphisms
G; — ki, corresponding to the choices 7wy and umy of uniformizer
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are not equal.

(c) We want to show that if s € Gy and ¢ € G;, then 6;(sts™) =
0o(5)'0;(t). We calculate

0;(sts™') = s(ts*(mp) /s (mp) — 1) mod (7).

We have shown that 6; is independent of the choice of uniformizer,
so we can compute using the uniformizer s~ (71 ); we get 0;(sts™!) =
s(0;(t)), where s is acting now on the group (7%)/(7it). To
get the desired formula, we must show that the action of s on
(7%)/(7) (a 1-dimensional kp-vector space equals multiplica-
tion by 6y(s)’. In other words, that if @ € Ay then s(art) =
fo(s)'amt mod (7). Dividing through by an®, this is equiva-
lent to the identity s(ar?)/ami mod (71) = 6y(s)?, which follows
immediately from the definition of 6.

6. We assume n > 3, so L # Q and L/K is a quadratic extension. We
recall that the Hilbert class field H/K is the maximal abelian unrami-
fied extension of K in which every real embedding of K remains real;
moreover, [H : K| = hy (by class field theory). The extension HL/L
is abelian and everywhere unramified; moreover, L has no real embed-
dings. It follows that HL is contained inside the Hilbert class field of
L, which has degree hy.

By the tower law, we have [HL : L|[L : K] = [HL : H|[H : K]. We
have [L : K] = 2. We have [HL : H| < 2, with equality if and only
if HL # H. However, HL does not embed in R while H does, so we
have [HL : H] = 2 and hence [HL : L| = [H : K] = hg. Since HL is
contained in the Hilbert class field of L, we deduce that hx divides hy.

7. Weset K = Q(i), L = K(a) where a* = 2. Thus L is the splitting field
over Q of the polynomial X% — 2. We observe that L/Q is unramified
outside 2, so L/K is unramified away from the unique prime ideal
P = (1+14) of Ok lying above 2.

The extension L/K is abelian of degree dividing 4. We will show that
it has degree 4. Let () denote a prime ideal of O, lying above P. We
will show that in fact Lo/Kp is totally ramified of degree 4.

Let v/2 = 2. We first recall that the extension F = Kp(\/§) is a totally

ramified quadratic extension of Kp of degree 2, with uniformizer 1+ 1_\;;

(we have studied this extension in lectures). We consider the element
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T=1+ %ﬁ We compute

L
7r2:1+j+(1+oz)(1+i)+oz3.

V2

Since 1+ 1—\%’ has strictly smaller valuation than (1 +4) and a3, we see

that 72 has the same valuation as a uniformizer of £. This is possible

only if Lg/E is a ramified quadratic extension and 7 is a uniformizer
of LQ.

To compute the conductor of the extension L/K, we will compute the
ramification groups of the extension Ly /Kp. Let G = Gal(Lg/Kp). It
is cyclic of degree 4, generated by the element 7 with 7(a) = ia. We

thus compute
141

7 );

hence vy, (7(m) —7) =4, and 7%(7) — 7 = 2(1 — ), hence vp, (7%(7) —
) = 8. We conclude that the lower ramification groups satisfy G =
Gl == GQ == Gg, G4 == = G7 == {1,7’2}, Gg == {1} It follows
that the upper ramification groups are given by G = G* = G? = G3,
G* = G° = {1,7}, G° = {1}. In particular, the conductor of the
abelian extension L/K is the ideal P°.

By class field theory, there is a surjection ¢k — H(P°) — Gal(L/K).
We now describe the group H(P°) and its subgroup ker ¢ . The
ideal class group of K is trivial, so we know that H(PS) is isomorphic
to the quotient of the group (O /P%)* by the subgroup generated by
{+1, +i}. We see that H(P%) has cardinality 2°/2% = 8, and therefore
that ker ¢,k has order 2.

T(m) —m=—a(l+

We therefore just need to identify a non-trivial element of ker ¢, /. To
do this, we calculate Frobenius elements. The prime 3 is inert in K,
so 30k is prime. Let R be a prime ideal of Op, lying above 3. Then
Frobsp,. acts on O/R by a — o = 4a = a mod R. Tt follows that
Frobzp,, = 1 and 3 mod P°® generates ker OL/K-
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