Part IIT ANT, Michaelmas 2019

Example Sheet 4 Solutions

1.

(a)

Let p be an odd prime. There is an isomorphism Gal(Q({,)/Q) —
(Z/pZ)*, and this group is cyclic of order p — 1. In particular,
it has a unique subgroup H of index 2, namely the subgroup of
squares in (Z/pZ)*. By the Galois correspondence, Q((,)/Q has
a unique quadratic subfield K/Q (the fixed field of H).

Since X? — 1 has distinct roots modulo ¢ for any prime q # p, we
see that any such prime ¢ is unramified in Q(¢,). Quite generally, if
L/E/Q is a tower of number fields and ¢ is unramified in L, then ¢
is unramified in £ (use that the ramification index is multiplicative
in towers). It follows that any prime ¢ # p is unramified in K.

We have seen in lectures that the quadratic extensions of @Q have
the form Q(v/d), where d is a square-free integer such that d # 0, 1.
We have moreover seen that the primes ramified in Q(v/d) are
precisely the divisors of 2d (if d = 2,3 mod 4) or the divisors of d
(if d = 1 mod 4). We see that K = Q(v/d), where d is the unique
square-free integer which has p as its unique prime divisor and
satisfies d = 1 mod 4. This is p* = (—1)®~1/2p,

We make the following general observations: if L/F is an abelian
extension of number fields and P C Op is a non-zero prime ideal
which is unramified in O, then P splits completely in L if and
only if (P, L/E) = 1. Indeed, P splits completely if and only if the
residue degrees fo,p = |Dg/p| are 1. Since Dg/p is generated by
(P, L/FE), this is equivalent to (P, L/E) being the identity element
of Gal(L/FE). Also, if L/M/FE is an intermediate extension, then
(P,M/E)= (P,L/E)|y. This follows from the definitions.

In our case, we see that an odd prime ¢ # p splits in K if and only
i (g, K/Q) = (¢,Q(G,)/Q)x = 1, if and only if (g, Q(G,)/Q) € H.
We proved in lectures that (¢, Q(¢,)/Q) corresponds in (Z/pZ)*
to the residue class of ¢ mod p. Thus ¢ splits in K if and only if
g mod p € H. Since H is the subgroup of squares, this is equiva-
lent to (1) =1 (by the definition of the Legendre symbol).

On the other hand, we proved in lectures that ¢ splits in K if and
only if the polynomial X2 — p* has a root modulo ¢, if and only if
(%) = 1. We sce that (1) = (%*), as required.

2. Let K C Q(¢n) be a subfield such that Ck/g|(AM). We must show

that K C Q((yr). By the Galois correspondence, this is equivalent to
showing that Gal(Q((x)/K) contains Gal(Q(C{n)/Q(¢ar)). Under the
isomorphism Gal(Q(¢x)/Q) = (Z/NZ)*, this subgroup corresponds to
the subgroup ker((Z/NZ)* — (Z/MZ)*).
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By the Chinese remainder theorem, it is enough to show that if p|N
is a prime, and the exact powers of p dividing N, M are p®, p°, then
Gal(Q(¢n)/K) contains Gal(Q(¢n)/Q(Cnpr—a)). If @ is a prime ideal
of Og(cy) lying above p, then Gal(Q({n)/Q((np-a)) is a subgroup of
Ig/p). Using Sheet 3, 6(c), we see that it is in fact the subgroup
of Ig/y) corresponding to the upper ramification group Gt of G =

Gal(Q(Cv)o/Qp)-

It remains to interpret the condition C'x/q|(M). This implies that the
p-part of Crq divides p°, or equivalently that (G/H)" = {1}, where
P =QN0Ok and H = Gal(Q(¢x)g/Kp). Using the compatibility of
upper ramification groups with passage to quotient, we see that this is
precisely the condition G* C H. Since H may be identified with the
subgroup Ig,p of Gal(Q(¢{x)/K), this is what we needed to show.

3. (a) We assume E/Q, is a Galois, totally ramified extension of degree

p, where p is an odd prime. Let f(X) € Z,[X] be the minimal
polynomial of a uniformizer 7. Then f(X) is Eisenstein of degree
p. Writing f(X) = XP +a; XP~ ' +--- +a,, we have a; € pZ, and
a, € pZy, hence f'(X) = pXP~' + -+ + 44X + a,_1, hence
f'(rg) = prb ' 4+ 4 in 4 -+ a,_;. We observe that the
values under vg of the p terms in the sum defining f'(7g) are
distinct modulo p, so distinct. Therefore vg(f'(7g)) equals the
minimum of vg(pr '), ..., ve(a,_1). In particular, it is at most
2p — 1.
On the other hand, we have f(X) =[], .o(X —0o(ng)), where G =
Gal(E/Qy), hence f'(mg) = [ [, (Te—0(7g)), hence vp(f'(7r)) =
> oz1iG(0). Let r > 1 be the maximal integer such that G, # 1.
Then G, = G is cyclic of order p, and vg(f'(7g)) = (p—1)(r+1).
Using the previous paragraph, we see that we must have r = 1,
hence G = Gy, Gy = {1}. It follows that the upper ramification
groups are given by G = G, G = {1}, hence Cg g = (p?).

(b) Let Ki, K3/Q be distinct Galois extensions, abelian of degree p,
ramified only at p. Then there is an embedding Gal(K; - K»/Q) —
Gal(K,/Q) x Gal(K,/Q) = (Z/pZ)?, given by sending an auto-
morphism to its restriction to each subfield. If it is not surjective
then the degree of K;-K5/Q must divide p, contradicting K; # K.
By Sheet 2, 7, p is the only prime which ramifies in K7 - K.

We claim that K- K, /Q is totally ramified. Let @) be a prime ideal
lying above p; we must show that I/, = Gal(K; - K3/Q). The
fixed field (K- K;)'@/® is a proper subfield of K - K5 /Q which is
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everywhere unramified over Q. We are given that no such proper
extension exists, so we have (K - Ky)'@/» = Q, hence (by the
Galois correspondence) I/, = Gal(K; - K5/Q).

(c) The first part of the question shows that if now G = Gal(K; -
K5/Q), then G = G and G = {1}. Indeed, it suffices to
check these equalities after projection to any order p quotient of
G. On the other hand, we have shown in lectures that the quotient
groups at jumps in the ramification filtration inject either into F
or F, (i.e. either the units in the residue field or the additive group
of the residue field). Neither of these groups is large enough to
contain (Z/pZ)?, so we get a contradiction.

(d) We have proved that there is at most one extension, so we just
need to exhibit one. On Sheet 3 we show that Q((,2/Q) is totally
ramified at p, hence so is its degree p subfield.

4. We recall that the relation m < n means mgny and m,, C ny. In
particular, we have #(ng) C .#(mg) and K, C K, hence &, C Py,.
Since H(m) = #(mg)/ P, by definition, we see that the inclusion

J(ng) C F(mg) induces by passage to quotient a homomorphism
H(n) — H(m).

To show that this is surjective, it is enough to show that for any non-
zero ideal a C Og, prime to my, we can find an element o € K
such that aa is a fractional ideal of O prime to ny. By the Chinese
remainder theorem, we can find an element 5 € Ok N K, such that
(8) = ab, where b C O is a non-zero ideal prime to ng. On the
other hand, we know from an argument given in lectures that we can
find v € O N K, such that () is a non-zero ideal prime to ng, and
for every 7 € my, 7(8y) > 0. It follows that « = (37)~" has the
desired property (note in particular that K, is a group, so a € K, by
construction).

5. Let K = Q(v/3). We will use class field theory to determine whether
there exists a degree 3 abelian extension ramified only at the prime
ideals of K above 5. Note that the polynomial X? — 3 is irreducible
over 5, so there is a unique prime ideal p C Ok above 5, namely
50k. If L/K is a Galois degree 3 extension ramified only at p, then
my g <m, = (p", Homg(K,R)) for some r > 1. We therefore need to
decide whether or not there exists » > 1 such that H(m,) has order
divisible by 3.

The ideal class group Hg is trivial, and a fundamental unit is € =
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6.

2 + /3. Therefore the ray class group H(m,) is isomorphic to the
quotient of the group (O /p")* x {£1}* by the subgroup generated by
—1 and e. We see that ker(H(m,) — H((p,?))) has order prime to 3, so
it is enough to decide whether H((p,0)) has order divisible by 3. The
group H((p,D)) is isomorphic to the quotient of the group (Of/p)*
(which is cyclic of order 24) by the subgroup generated by —1 and e.

We calculate €2 modp = 4 +3 +4v3 = 2+ 43 and € mod p =
(2 +4V3)(2 +V3) = 4+ 12+ 10v/3 = 1, hence ¢ mod p has order
3. We find that H((p,?)) = (Ok/p)*/{—1,€) is cyclic of order 4, and
hence that there is no cyclic degree 3 extension of K ramified only at

p.
(a)

The condition that w is a non-square says exactly that f(X) =
X? —u is irreducible in K[X]. The polynomial f(X) has discrim-
inant 4u. If 2 & p and v ¢ p then f(X) has distinct roots modulo
p, and so p is unramified in L = K(y/u).

Now suppose instead that 2 € p and u = b*—4c for some b, ¢ € Ok
Then L can also be realized as the splitting field of the polynomial
g(X) = X? + bX + c. This polynomial has distinct roots modulo
p, and so p is again unramified in L.

Let K = Q(v/—14), L = K(\/2v2 —1). To show that L/K is
the Hilbert class field of K, we need to check that L/K is an
abelian, everywhere unramified extension, and that [L : K| =
#Hy. We first calculate the structure of the group Hg using the
theory of binary quadratic forms. The ring Ok has discriminant
—14 x 4 = —56, and we check by hand that there are exactly 4
reduced forms of this discriminant: they are x? + 1412, 222 + T2,
and 3z% + 2zy + 5y It follows that we have Hyx = Z/4Z or
Z)27 x Z/2Z. Recalling the characterization of reduced forms
representing classes of order 2, we see that we must have Hyx =
Z,/AZ (there are 2, not 3, classes of order exactly 2).

Let f = 2v/2 — 1, and let v be a square root of 3. Let f =
—2v/2 — 1, so that 38" = —7. Then # is a root of the polynomial
X*42X? -7 which is irreducible. Indeed, this is so if and only if 3
is not a square in Q(v/2); but the prime 7 is unramified in Q(v/2)
and factors as 7T0q 5 = pp’; after relabeling we must therefore
have p = (B), p’ = (#’). In particular, 8 cannot be a square in
this field (by unique factorization of ideals).

Let £ = Q(v) sothat L = E-K. Then E/Q is not Galois, because
e.g. it admits both real and complex embeddings. However, L/K
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is Galois: if M /K denotes the Galois closure, and 7 € Gal(M/K),
then 7(K(v2)) = K(v/2), and 7(7) is a square root of 7(3). If
7(8) = B then 7(y) = £, so 7(L) = L. If 7(8) = ', then 7(v) is
a square root of 3/, and then (v/=7/7(7))? = —7/8" = /3, showing
that 7(L) = L in this case also (note that /=7 € K (v/2)). Since 7
was arbitrary, this shows that L/K is normal, hence indeed Galois
as claimed.

We thus see that L/K is an abelian extension of degree 4. It
remains to show that L/K is everywhere unramified. Using the
first part of the exercise, we see that K(y/2)/K is everywhere
unramified, because it can also we written as K(v/—7)/K. We
can write (3) = q* and (8') = (q')%, where q,q’ are prime ideals
of K(v/=7) lying above p and p’, respectively. The extension
L/K(+/2) is unramified at the primes above 2, because we can
write f = (1 + v/2)? — 4. It is unramified at the primes above
7, namely q and ¢’, because it is unramified at ¢ and L/K is
Galois, q and ¢’ being interchanged by the non-trivial element of
Gal(K (v/2)/K). This completes the proof.

By assumption d < 0 is a square-free integer such that d = 3 mod .
Then the associated discriminant D = disc Ok is 4d. The group
Hg[2] is an Fo-vector space of cardinality equal to the number of
reduced forms of discriminant D which have order 2 in the class
group H(Og); we need to show that this equals 2#, where pu is
the number of prime divisors of d. Recall that a reduced form
ax® + bry + cy® has order 2 in Hy if and only if we have either
b=0,a=0>b, or a=c. There are three (distinct) kinds:

f(x,y) = ax? + cy?, with ¢ > a > 0 and disc f = —4ac.

ii. f(yc7 ) = ax® + axy + cy?, with ¢ > a > 0 and disc f =

a(a — 4c).

iii. f(z,y) = ax® + bry + ay?, with a > b > 0 and disc f =
(b —2a)(b+ 2a).

We count the number of forms of each type. The squarefree integer
—d has 2* divisors, hence 2#~! factorizations —d = —ac with
¢ > a >0, hence there are 2~ forms of type (7).

Forms of type (ii) correspond to factorizations 4d = a(a — 4c) =
2d,(—2dy), say (note that a and a — 4c¢ are necessarily both con-
gruent to 2 mod 4 as d is odd), hence to factorizations —d = d;ds.
We then have a = 2d;, 4c—a = 2ds, hence a = 2d;, ¢ = (d;+ds) /2.
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(d)

The corresponding form is reduced exactly when ¢ > a, or equiv-
alently dy > 3d;.

Forms of type (iii) correspond to factorizations 4d = (b — 2a)(b+
2a) = (—2d;)(2ds), hence to factorizations —d = dyds. We then
have 2a — b = 2dy, 2a + b = 2ds, hence a = (d; + d2)/2 and
b = dy — dy. The corresponding form is reduced exactly when
a > b > 0, or equivalently when 3d; > dy and dy > d;.

Noting that the possibility 3d; = ds does not occur since d is
square-free and d # —3, we see that the forms of type (i) and
(1ii) together correspond to factorizations —d = d;dy with dy > d;.
There are 27! of these, giving a total count of 2* reduced forms
of discriminant D.

The snake lemma shows that we have
#H[2] = #Hk/2Hk,

hence Hg /2H ¢ = (Z/2Z)". By Galois theory and class field the-
ory, this means that the maximal abelian everywhere unramified
extension of K of exponent 2 has degree 2#. At this point it is use-
ful to recall that the abelian extensions of QQ of exponent 2 are in
bijection with the finite subgroups A C Q*/(Q*)?2, the bijection
being given by A — Q(vVA).

If p is an odd prime, let p* = (—1)®~Y/2p, so that the extension
Q(v/p*)/Q is a quadratic extension ramified only at the prime p.
Writing p1, ..., p, for the primes dividing d, we define

H=KW/p,....\/p5) = QVd, \/pi.....\/p).

Then H/K is an abelian extension of degree 2. It is everywhere

unramified, because each extension Q,, (V/d, VD;)/ Qy; (V/d) is un-
ramified. It follows that H/K is the desired extension.

Under the given hypotheses, 2 — dy? is the principal form of
discriminant D = 4d, and a prime p 1 4d is represented by this
form if and only if it splits in H. By construction, the field H
is in fact abelian over Q, and is a subfield of Q((_44). Let X =
Gal(Q(C-4a/H). If p 1 4d is a prime then p splits in H/Q if and
only if p mod — 4d lies in X (same argument as in the solution
to the first exercise on this sheet).

We first list the reduced forms of discriminant —420 = —4 x 105 =
—4 x 3 x5 x 7. They are:
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e Forms of type (7): 22+105y2, 3z2+35y?%, bar?+21y?, Tx*+15y>.

e Forms of type (i1): 222+ 2xy + 53y?, 62% + 62y + 1992, 1022 +
10zy + 13y

e Forms of type (ii): 112% + 8zy + 11y>.

In particular, all of these forms correspond to classes of order 2,
so Hig = Hg|[2] and we are in the situation of part (c). By the
discussion in lectures, a prime p > 7 is represented by some one of
these forms if and only if p splits in K = Q(v/—105). A prime p >
7 is represented by a fixed form f(x,y) if and only if (p, H/Q) =
¢k ([If]), where ¢/ + Hx — Gal(H/K) is the isomorphism
of class field theory and [If] is the ideal class corresponding to
f(z,y).

To interpret this concretely, let G C (Z/4207Z)* be the subgroup
fixing H C Q(C420), and let f(z,y) = 112® + 8xy + 11y This
form represents the prime 11, so (11, H/Q) = ¢u/x([I7]). Con-
sequently another prime p > 7 is represented by f(z,y) if and
only if p mod 420 and 11 mod 420 lie in the same coset of GG in
(Z/420Z)*. For example, 11+ 420 = 431 is prime, and it is repre-
sented as 431 = f(—6,5). The other reduced forms can be treated
using the same technique.
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