
Part III ANT, Michaelmas 2019 Example Sheet 4 Solutions

1. (a) Let p be an odd prime. There is an isomorphism Gal(Q(ζp)/Q)→
(Z/pZ)×, and this group is cyclic of order p − 1. In particular,
it has a unique subgroup H of index 2, namely the subgroup of
squares in (Z/pZ)×. By the Galois correspondence, Q(ζp)/Q has
a unique quadratic subfield K/Q (the fixed field of H).

Since Xp − 1 has distinct roots modulo q for any prime q 6= p, we
see that any such prime q is unramified in Q(ζp). Quite generally, if
L/E/Q is a tower of number fields and q is unramified in L, then q
is unramified in E (use that the ramification index is multiplicative
in towers). It follows that any prime q 6= p is unramified in K.

We have seen in lectures that the quadratic extensions of Q have
the form Q(

√
d), where d is a square-free integer such that d 6= 0, 1.

We have moreover seen that the primes ramified in Q(
√
d) are

precisely the divisors of 2d (if d ≡ 2, 3 mod 4) or the divisors of d
(if d ≡ 1 mod 4). We see that K = Q(

√
d), where d is the unique

square-free integer which has p as its unique prime divisor and
satisfies d ≡ 1 mod 4. This is p∗ = (−1)(p−1)/2p.

(b) We make the following general observations: if L/E is an abelian
extension of number fields and P ⊂ OE is a non-zero prime ideal
which is unramified in OL, then P splits completely in L if and
only if (P,L/E) = 1. Indeed, P splits completely if and only if the
residue degrees fQ/P = |DQ/P | are 1. Since DQ/P is generated by
(P,L/E), this is equivalent to (P,L/E) being the identity element
of Gal(L/E). Also, if L/M/E is an intermediate extension, then
(P,M/E) = (P,L/E)|M . This follows from the definitions.

In our case, we see that an odd prime q 6= p splits in K if and only
if (q,K/Q) = (q,Q(ζp)/Q)|K = 1, if and only if (q,Q(ζp)/Q) ∈ H.
We proved in lectures that (q,Q(ζp)/Q) corresponds in (Z/pZ)×

to the residue class of q mod p. Thus q splits in K if and only if
q mod p ∈ H. Since H is the subgroup of squares, this is equiva-
lent to ( q

p
) = 1 (by the definition of the Legendre symbol).

On the other hand, we proved in lectures that q splits in K if and
only if the polynomial X2− p∗ has a root modulo q, if and only if
(p

∗

q
) = 1. We see that ( q

p
) = (p

∗

q
), as required.

2. Let K ⊂ Q(ζN) be a subfield such that CK/Q|(M). We must show
that K ⊂ Q(ζM). By the Galois correspondence, this is equivalent to
showing that Gal(Q(ζN)/K) contains Gal(Q(ζN)/Q(ζM)). Under the
isomorphism Gal(Q(ζN)/Q) ∼= (Z/NZ)×, this subgroup corresponds to
the subgroup ker((Z/NZ)× → (Z/MZ)×).
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By the Chinese remainder theorem, it is enough to show that if p|N
is a prime, and the exact powers of p dividing N , M are pa, pb, then
Gal(Q(ζN)/K) contains Gal(Q(ζN)/Q(ζNpb−a)). If Q is a prime ideal
of OQ(ζN ) lying above p, then Gal(Q(ζN)/Q(ζNpb−a)) is a subgroup of
IQ/(p). Using Sheet 3, 6(c), we see that it is in fact the subgroup
of IQ/(p) corresponding to the upper ramification group Gb of G =
Gal(Q(ζN)Q/Qp).

It remains to interpret the condition CK/Q|(M). This implies that the
p-part of CK/Q divides pb, or equivalently that (G/H)b = {1}, where
P = Q ∩ OK and H = Gal(Q(ζN)Q/KP ). Using the compatibility of
upper ramification groups with passage to quotient, we see that this is
precisely the condition Gb ⊂ H. Since H may be identified with the
subgroup IQ/P of Gal(Q(ζN)/K), this is what we needed to show.

3. (a) We assume E/Qp is a Galois, totally ramified extension of degree
p, where p is an odd prime. Let f(X) ∈ Zp[X] be the minimal
polynomial of a uniformizer πE. Then f(X) is Eisenstein of degree
p. Writing f(X) = Xp + a1X

p−1 + · · ·+ ap, we have ai ∈ pZp and
ap ∈ pZ×p , hence f ′(X) = pXp−1 + · · · + iX i−1 + ap−1, hence

f ′(πE) = pπp−1E + · · · + iπi−1E + · · · + ap−1. We observe that the
values under vE of the p terms in the sum defining f ′(πE) are
distinct modulo p, so distinct. Therefore vE(f ′(πE)) equals the
minimum of vE(pπp−1E ), . . . , vE(ap−1). In particular, it is at most
2p− 1.

On the other hand, we have f(X) =
∏

σ∈G(X−σ(πE)), where G =
Gal(E/Qp), hence f ′(πE) =

∏
σ 6=1(πE−σ(πE)), hence vE(f ′(πE)) =∑

σ 6=1 iG(σ). Let r ≥ 1 be the maximal integer such that Gr 6= 1.
Then Gr = G is cyclic of order p, and vE(f ′(πE)) = (p−1)(r+ 1).
Using the previous paragraph, we see that we must have r = 1,
hence G = G1, G2 = {1}. It follows that the upper ramification
groups are given by G[0,1] = G, G(1,∞) = {1}, hence CE/Q = (p2).

(b) Let K1, K2/Q be distinct Galois extensions, abelian of degree p,
ramified only at p. Then there is an embedding Gal(K1 ·K2/Q)→
Gal(K1/Q) × Gal(K2/Q) ∼= (Z/pZ)2, given by sending an auto-
morphism to its restriction to each subfield. If it is not surjective
then the degree ofK1·K2/Q must divide p, contradictingK1 6= K2.
By Sheet 2, 7, p is the only prime which ramifies in K1 ·K2.

We claim that K1·K2/Q is totally ramified. Let Q be a prime ideal
lying above p; we must show that IQ/(p) = Gal(K1 ·K2/Q). The
fixed field (K1 ·K2)

IQ/(p) is a proper subfield of K1 ·K2/Q which is
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everywhere unramified over Q. We are given that no such proper
extension exists, so we have (K1 · K2)

IQ/(p) = Q, hence (by the
Galois correspondence) IQ/(p) = Gal(K1 ·K2/Q).

(c) The first part of the question shows that if now G = Gal(K1 ·
K2/Q), then G[0,1] = G and G(1,∞) = {1}. Indeed, it suffices to
check these equalities after projection to any order p quotient of
G. On the other hand, we have shown in lectures that the quotient
groups at jumps in the ramification filtration inject either into F×p
or Fp (i.e. either the units in the residue field or the additive group
of the residue field). Neither of these groups is large enough to
contain (Z/pZ)2, so we get a contradiction.

(d) We have proved that there is at most one extension, so we just
need to exhibit one. On Sheet 3 we show that Q(ζp2/Q) is totally
ramified at p, hence so is its degree p subfield.

4. We recall that the relation m ≤ n means m0|n0 and m∞ ⊂ n∞. In
particular, we have I (n0) ⊂ I (m0) and Kn ⊂ Km, hence Pn ⊂ Pm.
Since H(m) = I (m0)/Pm, by definition, we see that the inclusion
I (n0) ⊂ I (m0) induces by passage to quotient a homomorphism
H(n)→ H(m).

To show that this is surjective, it is enough to show that for any non-
zero ideal a ⊂ OK , prime to m0, we can find an element α ∈ Km

such that αa is a fractional ideal of OK prime to n0. By the Chinese
remainder theorem, we can find an element β ∈ OK ∩ Km such that
(β) = ab, where b ⊂ OK is a non-zero ideal prime to n0. On the
other hand, we know from an argument given in lectures that we can
find γ ∈ OK ∩ Km such that (γ) is a non-zero ideal prime to n0, and
for every τ ∈ m∞, τ(βγ) > 0. It follows that α = (βγ)−1 has the
desired property (note in particular that Km is a group, so α ∈ Km by
construction).

5. Let K = Q(
√

3). We will use class field theory to determine whether
there exists a degree 3 abelian extension ramified only at the prime
ideals of K above 5. Note that the polynomial X2 − 3 is irreducible
over F5, so there is a unique prime ideal p ⊂ OK above 5, namely
5OK . If L/K is a Galois degree 3 extension ramified only at p, then
mL/K ≤ mr = (pr,HomQ(K,R)) for some r ≥ 1. We therefore need to
decide whether or not there exists r ≥ 1 such that H(mr) has order
divisible by 3.

The ideal class group HK is trivial, and a fundamental unit is ε =
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2 +
√

3. Therefore the ray class group H(mr) is isomorphic to the
quotient of the group (OK/pr)××{±1}2 by the subgroup generated by
−1 and ε. We see that ker(H(mr)→ H((p, ∅))) has order prime to 3, so
it is enough to decide whether H((p, ∅)) has order divisible by 3. The
group H((p, ∅)) is isomorphic to the quotient of the group (OK/p)×

(which is cyclic of order 24) by the subgroup generated by −1 and ε.

We calculate ε2 mod p = 4 + 3 + 4
√

3 = 2 + 4
√

3 and ε3 mod p =
(2 + 4

√
3)(2 +

√
3) = 4 + 12 + 10

√
3 = 1, hence ε mod p has order

3. We find that H((p, ∅)) ∼= (OK/p)×/〈−1, ε〉 is cyclic of order 4, and
hence that there is no cyclic degree 3 extension of K ramified only at
p.

6. (a) The condition that u is a non-square says exactly that f(X) =
X2− u is irreducible in K[X]. The polynomial f(X) has discrim-
inant 4u. If 2 6∈ p and u 6∈ p then f(X) has distinct roots modulo
p, and so p is unramified in L = K(

√
u).

Now suppose instead that 2 ∈ p and u = b2−4c for some b, c ∈ OK .
Then L can also be realized as the splitting field of the polynomial
g(X) = X2 + bX + c. This polynomial has distinct roots modulo
p, and so p is again unramified in L.

(b) Let K = Q(
√
−14), L = K(

√
2
√

2− 1). To show that L/K is
the Hilbert class field of K, we need to check that L/K is an
abelian, everywhere unramified extension, and that [L : K] =
#HK . We first calculate the structure of the group HK using the
theory of binary quadratic forms. The ring OK has discriminant
−14 × 4 = −56, and we check by hand that there are exactly 4
reduced forms of this discriminant: they are x2 + 14y2, 2x2 + 7y2,
and 3x2 ± 2xy + 5y2. It follows that we have HK

∼= Z/4Z or
Z/2Z × Z/2Z. Recalling the characterization of reduced forms
representing classes of order 2, we see that we must have HK

∼=
Z/4Z (there are 2, not 3, classes of order exactly 2).

Let β = 2
√

2 − 1, and let γ be a square root of β. Let β′ =
−2
√

2− 1, so that ββ′ = −7. Then γ is a root of the polynomial
X4+2X2−7, which is irreducible. Indeed, this is so if and only if β
is not a square in Q(

√
2); but the prime 7 is unramified in Q(

√
2)

and factors as 7OQ(
√
2) = pp′; after relabeling we must therefore

have p = (β), p′ = (β′). In particular, β cannot be a square in
this field (by unique factorization of ideals).

Let E = Q(γ) so that L = E ·K. Then E/Q is not Galois, because
e.g. it admits both real and complex embeddings. However, L/K
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is Galois: if M/K denotes the Galois closure, and τ ∈ Gal(M/K),
then τ(K(

√
2)) = K(

√
2), and τ(γ) is a square root of τ(β). If

τ(β) = β then τ(γ) = ±γ, so τ(L) = L. If τ(β) = β′, then τ(γ) is
a square root of β′, and then (

√
−7/τ(γ))2 = −7/β′ = β, showing

that τ(L) = L in this case also (note that
√
−7 ∈ K(

√
2)). Since τ

was arbitrary, this shows that L/K is normal, hence indeed Galois
as claimed.

We thus see that L/K is an abelian extension of degree 4. It
remains to show that L/K is everywhere unramified. Using the
first part of the exercise, we see that K(

√
2)/K is everywhere

unramified, because it can also we written as K(
√
−7)/K. We

can write (β) = q2 and (β′) = (q′)2, where q, q′ are prime ideals
of K(

√
−7) lying above p and p′, respectively. The extension

L/K(
√

2) is unramified at the primes above 2, because we can
write β = (1 +

√
2)2 − 4. It is unramified at the primes above

7, namely q and q′, because it is unramified at q′ and L/K is
Galois, q and q′ being interchanged by the non-trivial element of
Gal(K(

√
2)/K). This completes the proof.

7. (a) By assumption d < 0 is a square-free integer such that d ≡ 3 mod .
Then the associated discriminant D = discOK is 4d. The group
HK [2] is an F2-vector space of cardinality equal to the number of
reduced forms of discriminant D which have order 2 in the class
group H(OK); we need to show that this equals 2µ, where µ is
the number of prime divisors of d. Recall that a reduced form
ax2 + bxy + cy2 has order 2 in HK if and only if we have either
b = 0, a = b, or a = c. There are three (distinct) kinds:

i. f(x, y) = ax2 + cy2, with c ≥ a ≥ 0 and disc f = −4ac.

ii. f(x, y) = ax2 + axy + cy2, with c ≥ a ≥ 0 and disc f =
a(a− 4c).

iii. f(x, y) = ax2 + bxy + ay2, with a ≥ b ≥ 0 and disc f =
(b− 2a)(b+ 2a).

We count the number of forms of each type. The squarefree integer
−d has 2µ divisors, hence 2µ−1 factorizations −d = −ac with
c ≥ a ≥ 0, hence there are 2µ−1 forms of type (i).

Forms of type (ii) correspond to factorizations 4d = a(a − 4c) =
2d1(−2d2), say (note that a and a − 4c are necessarily both con-
gruent to 2 mod 4 as d is odd), hence to factorizations −d = d1d2.
We then have a = 2d1, 4c−a = 2d2, hence a = 2d1, c = (d1+d2)/2.
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The corresponding form is reduced exactly when c ≥ a, or equiv-
alently d2 ≥ 3d1.

Forms of type (iii) correspond to factorizations 4d = (b− 2a)(b+
2a) = (−2d1)(2d2), hence to factorizations −d = d1d2. We then
have 2a − b = 2d1, 2a + b = 2d2, hence a = (d1 + d2)/2 and
b = d2 − d1. The corresponding form is reduced exactly when
a ≥ b ≥ 0, or equivalently when 3d1 ≥ d2 and d2 ≥ d1.

Noting that the possibility 3d1 = d2 does not occur since d is
square-free and d 6= −3, we see that the forms of type (ii) and
(iii) together correspond to factorizations−d = d1d2 with d2 ≥ d1.
There are 2µ−1 of these, giving a total count of 2µ reduced forms
of discriminant D.

(b) The snake lemma shows that we have

#HK [2] = #HK/2HK ,

hence HK/2HK
∼= (Z/2Z)µ. By Galois theory and class field the-

ory, this means that the maximal abelian everywhere unramified
extension of K of exponent 2 has degree 2µ. At this point it is use-
ful to recall that the abelian extensions of Q of exponent 2 are in
bijection with the finite subgroups ∆ ⊂ Q×/(Q×)2, the bijection
being given by ∆ 7→ Q(

√
∆).

If p is an odd prime, let p∗ = (−1)(p−1)/2p, so that the extension
Q(
√
p∗)/Q is a quadratic extension ramified only at the prime p.

Writing p1, . . . , pµ for the primes dividing d, we define

H = K(
√
p∗1, . . . ,

√
p∗µ) = Q(

√
d,
√
p∗1, . . . ,

√
p∗µ).

Then H/K is an abelian extension of degree 2µ. It is everywhere
unramified, because each extension Qpi(

√
d,
√
p∗i )/Qpi(

√
d) is un-

ramified. It follows that H/K is the desired extension.

(c) Under the given hypotheses, x2 − dy2 is the principal form of
discriminant D = 4d, and a prime p - 4d is represented by this
form if and only if it splits in H. By construction, the field H
is in fact abelian over Q, and is a subfield of Q(ζ−4d). Let X =
Gal(Q(ζ−4d/H). If p - 4d is a prime then p splits in H/Q if and
only if p mod − 4d lies in X (same argument as in the solution
to the first exercise on this sheet).

(d) We first list the reduced forms of discriminant −420 = −4×105 =
−4× 3× 5× 7. They are:
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• Forms of type (i): x2+105y2, 3x2+35y2, 5x2+21y2, 7x2+15y2.

• Forms of type (ii): 2x2 +2xy+53y2, 6x2 +6xy+19y2, 10x2 +
10xy + 13y2.

• Forms of type (iii): 11x2 + 8xy + 11y2.

In particular, all of these forms correspond to classes of order 2,
so HK = HK [2] and we are in the situation of part (c). By the
discussion in lectures, a prime p > 7 is represented by some one of
these forms if and only if p splits in K = Q(

√
−105). A prime p >

7 is represented by a fixed form f(x, y) if and only if (p,H/Q) =
φH/K([If ]), where φH/K : HK → Gal(H/K) is the isomorphism
of class field theory and [If ] is the ideal class corresponding to
f(x, y).

To interpret this concretely, let G ⊂ (Z/420Z)× be the subgroup
fixing H ⊂ Q(ζ420), and let f(x, y) = 11x2 + 8xy + 11y2. This
form represents the prime 11, so (11, H/Q) = φH/K([If ]). Con-
sequently another prime p > 7 is represented by f(x, y) if and
only if p mod 420 and 11 mod 420 lie in the same coset of G in
(Z/420Z)×. For example, 11 + 420 = 431 is prime, and it is repre-
sented as 431 = f(−6, 5). The other reduced forms can be treated
using the same technique.
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