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Let f(X) = X® — 3X + 4. The polynomial f(X) has a unique root
X =4 in F;. The only primes dividing disc f are 2 and 3. Therefore
Hensel’s lemma says that f(X) also has a unique root in Z;.

The polynomial f(X) has no roots in F5, hence no roots in Zs. It has a
unique root 2 mod 3 in F3, but as 3 divides the discriminant this does
not immediately imply the existence of a root in Zs. We check that
f(X) has no roots in Z/9Z (we only need to check X = 2,5,8 mod 9),
so in fact that are no roots in Zs.

Finally we consider roots in Zy. There is a unique root X = 0 in Fy,
and f'(0) = —3 is odd, so the simple version of Hensel’s lemma shows
that f(X) has a unique root in Z,.

Let * € 1+ pZ,, and let f(X) = X™ — 2. Then f/(X) = nX"" !, so
f(1) = n is prime to p, while f(1) =1 —1 = 0 mod (p). The simple
version of Hensel’s lemma shows that there is a unique y € Z, such
that y = 1 mod (p) and y" = x.

Clearly the given condition is necessary. We show that it is sufficient.
Let a € Z), and suppose that o mod (p?) € ((Z/p*Z)*)P. Since every
element of F is a p" power, we can multiply « to assume that o =
1 mod p, in which case & = 1 mod (p?) and we can write a = 1 + p?f
for some 8 € Z,.

If v € Zy then (1 +py)P = 1+p* v+ Qp*2+ - = 1+p*y+
())p*y? mod (p*). Assuming further that p is odd, this is congruent to
1 + p*y mod (p?), and so choosing v = 3 gives an approximate root of
f(X) = X? — a to which we can apply the strong version of Hensel’s
lemma (note that f’(1+ py) has p-adic valuation 1).

Now suppose that p = 2. In this case 5 is a square modulo 4 but
not modulo 8, so it is not sufficient to be a p'™ power modulo p? in
this case. We claim however that it is sufficient to be a p'" power
modulo p3. To see this, consider the polynomial f(X) = X? —a. Then
f(X) = 2X, so we must show that given a« = 1 + 84, we can find ~
such that (1+27)* =1+ 4y +49* =1+ 88 mod (16), or equivalently
(14 7) = 28 mod (4). If f = 0mod (2), we take 7 = 0 mod (4).
If 5 =1mod (2), we take v = 1 mod (2). In either case we see that
Hensel’s lemma provides a root of f(X) in Z,.

(a) Let G = Gal(F/K). In general, if E/L/K is an intermediate field,
H = Gal(E/L), and q;, = qN Oy, then Dy, = Dqp N H and
Iy/q, = Iqp N H, as follows immediately from the definitions. In
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the present case we have I ;i = Iy, = Gal(E/E"), hence q/q’
is totally ramified. We also have D0 = Dy, = Gal(E/EP),
hence q is the unique prime of E above qP (as Gal(E/EP) acts
transitively on the set of such primes, but fixes q). Finally, we also
have I ,qp = Iy/p, showing that eg/qp = €4/q. Since e and f are
multiplicative in towers, we conclude that eq,,p = 1 and hence
q” is totally inert in E!/EP.

(b) Let H = Gal(E/L). We have Dq/q, = Dq/y,NH. If €q, jp = for/p =
L then eqrq, = eqp and fyjq, = fopp, hence Dyjq, = Dyyp and
Dy, C H, hence L C EP | by Galois theory. If €q,/p = 1 then the
same argument with D replaced by I shows that L C E!. Finally,
if g is the only prime of Og above qr,, then D/, = HND,, = H,
hence H C Dy, hence EP C L, by Galois theory.

We can assume without loss of generality that £/ K is Galois. Let q be
a prime of O above p. We will show that L;-Ls/K is unramified at the
unique prime below q; since every prime of L;- Lo arises in this way, this
will show the result. Let I = I;,,. By the previous exercise, the fact
that the extensions L, /K and L,/K are unramified shows that L; C E*
and Ly C E', hence Ly-Ly C E'. But ey/q1 = €q/p, s0 by multiplicativity
in towers we conclude that eqr/, = 1, hence eq, , /=1, as desired.

The argument is similar in the case that p splits completely in L; and

in Ly, using the fact that p splits completely in an extension L/K
if and only if for each prime ideal v of Oy lying above p, we have

ey = fepp =1

. We take the biquadratic extension E = Q(i,v/17). We observe that if

a prime p is unramified in £, then the decomposition group Dg/) C
Gal(E/Q) = (Z/2Z)* is cyclic (it is generated by the Frobenius ele-
ment), hence its index is divisible by 2. This index equals the number
of prime ideals of O above 2, which is therefore even.

By the previous exercise, a prime p is ramified in F only if it is ramified
in either Q(i) or Q(v/17); so the only ramified primes are 2 and 17. The
prime 2 splits into two factors in Q(v/17) (since 17 = 1 mod 8). The
prime 17 splits into an even number of factors in Q(i) (since 17 =
1 mod 4, so —1 is a square mod 17). So we’re done.

(a) The uniqueness is clear. If @ € Q,, then we define v(a) =
e&(a) /0, VQ(@) (a). If K/Q, is a finite extension inside @, then the

formulae ex/q, = €x/Q,(0)€0,(a)/Q, AN Vk|g,() = €K/Q,(0)V0, ()
show that v|x = e;(}vaK.
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(b)

If z,y € Q, then the formulae for v(zy) and v(z + y) follow from
the corresponding formulae for v|g, where K = Q,(x,y). If a is
a root of X’ — p® with a,b € Zs;, then bv(a) = av(p) = a and
hence v(a) = a/b. This shows that v is surjective.

@p is not complete. Here is (one of many) ways to show this.

Suppose for contradiction that @p is complete. If & > 1, define
zp = Y o0, T where p'/' is a solution of X* = p. The partial
sums are Cauchy, so if @p is complete then this sum really exists
in @p. Note that 2, = xp 4+ p? + p?t1/2 4 . 4 pF1HV/E=D \We
have v(zy) =k + 1/k.

If z; € @p, then K = Q,(x;) is a finite extension of Q,, say
of degree N. We have v(K*) C +Z. For any r > 1, let K, =
K(p'/2,p'/3, ..., p"/"). Then v(K)) C +5Z, and 2,41 € K,, hence
1/(r+1) € 55Z. Choosing r so that r +1 is a prime not dividing
N yields a contradiction.

8. Since vg is Galois invariant, if ¢ € Gal(E/K(x)) then vg(zx — o(y)) =
vg(z—y). The assumption vgp(x—y;) < vg(r—y) if i > 2 shows that we
must have o(y) =y for all ¢ € Gal(E/K(x)), hence Gal(E/K(x)) C
Gal(E/K(y)), hence K(y) C K(z).

9.

(a)

Let m € Ak be a uniformizer. We consider polynomials of the
form g(X) = f(X) + 7Vh(X), for some integer N > 1, where
h(X) € Ak[X] has degree at most n — 1. If & € Ag is a root of
f(X) with & = vg(f'(a)), and N > k, then we get vg(g(a)) > N
and vg(¢'(a)) = k. Therefore if N > 2k + 1 then Hensel’s lemma
shows that there is a unique 8 € Ap such that g(5) = 0 and
vg(a — ) > k; the uniqueness shows (using Krasner’s lemma)

that K () C K(a).

We also get vg(f'(5)) = k and vg(f(B)) > N > 2k+1, so Hensel’s
lemma shows that a is the unique root of f(X) such that vg(8 —
a) > k; applying Krasner’s lemma again shows that K(a) C
K (). We deduce that K(a) = K(f) and that g(X) is irreducible.

Every extension K/Q, can be written K/K,/Q,, where K is the
unique unramified extension of Q, of degree fr/qg,. It therefore
suffices to show that for each n > 1, there exist only finitely many
isomorphism classes of extension K/K, which are totally ramified
of degree n. Each such extension is cut out by an Eisenstein
polynomial of degree n; the space of Eisenstein polynomials degree
n is homeomorphic to pA’}(gl x pAg,, a compact topological space.
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The previous part of the exercise gives an open ball around each
Eisenstein polynomial in which the isomorphism class of the cor-
responding extension does not change. We can refine this to a
finite cover, giving the finitely many isomorphism classes.

We just record the slopes. The 2-adic polygon has slopes 0,3/4.
The 3-adic polygon has slopes 0,1/3. The 5-adic polygon has
slope 1/5.

The polynomial f(X) is Eisenstein at 5, so is irreducible. To
calculate the Galois group, we use the following observation: if
K is a finite extension of Q,, ¢(X) € Ax[X] is monic with non-
zero constant term, and a/b is a slope of Nk(g) with a,b coprime
integers, then b divides ey x where L/K is the splitting field of
g(X). Indeed, N(9) = ek Nk(g) has integer slopes.

If E denotes the splitting field of f(X), and q is a prime of O
above the prime p, then E; is the splitting field of f(X) over Q,.
More precisely, Ey is generated over Q, by the roots of f(X) in
E,. In particular, if a/b is a slope of Ng,(f), a, b coprime integers,
then b divides eg, /g,, hence [E : Q).

We conclude that [E : Q] is divisible by 4 x 3 x 5 = 60. So the
Galois group is As or S5. To finish the proof we calculate the
discriminant. If it is a non-square in Q*, then the Galois group
will be S5. But we have f(X) = X°+ f/(X); if « € F is a root of
f(X), and K = Q(«), then we have

diSCf = :ENK/Q]N(OJ) = :ENK/@OéS = :l:(5')5

Since the 5-adic valuation of (5!)° is odd, the discriminant can not
be a square.
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