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1. Let f(X) = X3 − 3X + 4. The polynomial f(X) has a unique root
X = 4 in F7. The only primes dividing disc f are 2 and 3. Therefore
Hensel’s lemma says that f(X) also has a unique root in Z7.

The polynomial f(X) has no roots in F5, hence no roots in Z5. It has a
unique root 2 mod 3 in F3, but as 3 divides the discriminant this does
not immediately imply the existence of a root in Z3. We check that
f(X) has no roots in Z/9Z (we only need to check X = 2, 5, 8 mod 9),
so in fact that are no roots in Z3.

Finally we consider roots in Z2. There is a unique root X = 0 in F2,
and f ′(0) = −3 is odd, so the simple version of Hensel’s lemma shows
that f(X) has a unique root in Z2.

2. Let x ∈ 1 + pZp, and let f(X) = Xn − x. Then f ′(X) = nXn−1, so
f ′(1) = n is prime to p, while f(1) ≡ 1 − 1 = 0 mod (p). The simple
version of Hensel’s lemma shows that there is a unique y ∈ Zp such
that y ≡ 1 mod (p) and yn = x.

3. Clearly the given condition is necessary. We show that it is sufficient.
Let α ∈ Z×

p , and suppose that α mod (p2) ∈ ((Z/p2Z)×)p. Since every
element of F×

p is a pth power, we can multiply α to assume that α ≡
1 mod p, in which case α ≡ 1 mod (p2) and we can write α = 1 + p2β
for some β ∈ Zp.

If γ ∈ Zp then (1 + pγ)p = 1 + p2γ +
(
p
2

)
p2γ2 + · · · ≡ 1 + p2γ +(

p
2

)
p2γ2 mod (p3). Assuming further that p is odd, this is congruent to

1 + p2γ mod (p3), and so choosing γ = β gives an approximate root of
f(X) = Xp − α to which we can apply the strong version of Hensel’s
lemma (note that f ′(1 + pγ) has p-adic valuation 1).

Now suppose that p = 2. In this case 5 is a square modulo 4 but
not modulo 8, so it is not sufficient to be a pth power modulo p2 in
this case. We claim however that it is sufficient to be a pth power
modulo p3. To see this, consider the polynomial f(X) = X2−α. Then
f ′(X) = 2X, so we must show that given α = 1 + 8β, we can find γ
such that (1 + 2γ)2 = 1+ 4γ + 4γ2 ≡ 1 + 8β mod (16), or equivalently
γ(1 + γ) ≡ 2β mod (4). If β ≡ 0 mod (2), we take γ ≡ 0 mod (4).
If β ≡ 1 mod (2), we take γ ≡ 1 mod (2). In either case we see that
Hensel’s lemma provides a root of f(X) in Z2.

4. (a) Let G = Gal(E/K). In general, if E/L/K is an intermediate field,
H = Gal(E/L), and qL = q ∩ OL, then Dq/qL = Dq/p ∩ H and
Iq/qL = Iq/p ∩ H, as follows immediately from the definitions. In
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the present case we have Iq/qI = Iq/p = Gal(E/EI), hence q/qI

is totally ramified. We also have Dq/qD = Dq/p = Gal(E/ED),
hence q is the unique prime of E above qD (as Gal(E/ED) acts
transitively on the set of such primes, but fixes q). Finally, we also
have Iq/qD = Iq/p, showing that eq/qD = eq/qI . Since e and f are
multiplicative in towers, we conclude that eqI/qD = 1 and hence
qD is totally inert in EI/ED.

(b) Let H = Gal(E/L). We have Dq/qL = Dq/p∩H. If eqL/p = fqL/p =
1 then eq/qL = eq/p and fq/qL = fq/p, hence Dq/qL = Dq/p and
Dq/p ⊂ H, hence L ⊂ ED, by Galois theory. If eqL/p = 1 then the
same argument with D replaced by I shows that L ⊂ EI . Finally,
if q is the only prime of OE above qL, then Dq/qL = H∩Dq/p = H,
hence H ⊂ Dq/p, hence ED ⊂ L, by Galois theory.

5. We can assume without loss of generality that E/K is Galois. Let q be
a prime of OE above p. We will show that L1 ·L2/K is unramified at the
unique prime below q; since every prime of L1 ·L2 arises in this way, this
will show the result. Let I = Iq/p. By the previous exercise, the fact
that the extensions L1/K and L2/K are unramified shows that L1 ⊂ EI

and L2 ⊂ EI , hence L1·L2 ⊂ EI . But eq/qI = eq/p, so by multiplicativity
in towers we conclude that eqI/p = 1, hence eqL1·L2

/p = 1, as desired.

The argument is similar in the case that p splits completely in L1 and
in L2, using the fact that p splits completely in an extension L/K
if and only if for each prime ideal r of OL lying above p, we have
er/p = fr/p = 1.

6. We take the biquadratic extension E = Q(i,
√
17). We observe that if

a prime p is unramified in E, then the decomposition group Dq/(p) ⊂
Gal(E/Q) ∼= (Z/2Z)2 is cyclic (it is generated by the Frobenius ele-
ment), hence its index is divisible by 2. This index equals the number
of prime ideals of OE above 2, which is therefore even.

By the previous exercise, a prime p is ramified in E only if it is ramified
in either Q(i) or Q(

√
17); so the only ramified primes are 2 and 17. The

prime 2 splits into two factors in Q(
√
17) (since 17 ≡ 1 mod 8). The

prime 17 splits into an even number of factors in Q(i) (since 17 ≡
1 mod 4, so −1 is a square mod 17). So we’re done.

7. (a) The uniqueness is clear. If α ∈ Qp, then we define v(α) =

e−1
Qp(α)/Qp

vQp(α)(α). IfK/Qp is a finite extension inside Qp, then the

formulae eK/Qp = eK/Qp(α)eQp(α)/Qp and vK |Qp(α) = eK/Qp(α)vQp(α)

show that v|K = e−1
K/Qp

vK .
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(b) If x, y ∈ Qp then the formulae for v(xy) and v(x+ y) follow from
the corresponding formulae for v|K , where K = Qp(x, y). If α is
a root of Xb − pa with a, b ∈ Z≥1, then bv(α) = av(p) = a and
hence v(α) = a/b. This shows that v is surjective.

(c) Qp is not complete. Here is (one of many) ways to show this.

Suppose for contradiction that Qp is complete. If k ≥ 1, define
xk =

∑∞
i=k p

i+1/i, where p1/i is a solution of X i = p. The partial
sums are Cauchy, so if Qp is complete then this sum really exists

in Qp. Note that x1 = xk + p2 + p2+1/2 + · · · + pk−1+1/(k−1). We
have v(xk) = k + 1/k.

If x1 ∈ Qp, then K = Qp(x1) is a finite extension of Qp, say
of degree N . We have v(K×) ⊂ 1

N
Z. For any r ≥ 1, let Kr =

K(p1/2, p1/3, . . . , p1/r). Then v(K×
r ) ⊂ 1

Nr!
Z, and xr+1 ∈ Kr, hence

1/(r+1) ∈ 1
Nr!

Z. Choosing r so that r+1 is a prime not dividing
N yields a contradiction.

8. Since vE is Galois invariant, if σ ∈ Gal(E/K(x)) then vE(x− σ(y)) =
vE(x−y). The assumption vE(x−yi) < vE(x−y) if i ≥ 2 shows that we
must have σ(y) = y for all σ ∈ Gal(E/K(x)), hence Gal(E/K(x)) ⊂
Gal(E/K(y)), hence K(y) ⊂ K(x).

9. (a) Let π ∈ AK be a uniformizer. We consider polynomials of the
form g(X) = f(X) + πNh(X), for some integer N ≥ 1, where
h(X) ∈ AK [X] has degree at most n − 1. If α ∈ AE is a root of
f(X) with k = vE(f

′(α)), and N > k, then we get vE(g(α)) ≥ N
and vE(g

′(α)) = k. Therefore if N ≥ 2k + 1 then Hensel’s lemma
shows that there is a unique β ∈ AE such that g(β) = 0 and
vE(α − β) > k; the uniqueness shows (using Krasner’s lemma)
that K(β) ⊂ K(α).

We also get vE(f
′(β)) = k and vE(f(β)) ≥ N ≥ 2k+1, so Hensel’s

lemma shows that α is the unique root of f(X) such that vE(β −
α) > k; applying Krasner’s lemma again shows that K(α) ⊂
K(β). We deduce thatK(α) = K(β) and that g(X) is irreducible.

(b) Every extension K/Qp can be written K/K0/Qp, where K0 is the
unique unramified extension of Qp of degree fK/Qp . It therefore
suffices to show that for each n ≥ 1, there exist only finitely many
isomorphism classes of extension K/K0 which are totally ramified
of degree n. Each such extension is cut out by an Eisenstein
polynomial of degree n; the space of Eisenstein polynomials degree
n is homeomorphic to pAn−1

K0
×pA×

K0
, a compact topological space.
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The previous part of the exercise gives an open ball around each
Eisenstein polynomial in which the isomorphism class of the cor-
responding extension does not change. We can refine this to a
finite cover, giving the finitely many isomorphism classes.

10. We just record the slopes. The 2-adic polygon has slopes 0, 3/4.
The 3-adic polygon has slopes 0, 1/3. The 5-adic polygon has
slope 1/5.

The polynomial f(X) is Eisenstein at 5, so is irreducible. To
calculate the Galois group, we use the following observation: if
K is a finite extension of Qp, g(X) ∈ AK [X] is monic with non-
zero constant term, and a/b is a slope of NK(g) with a, b coprime
integers, then b divides eL/K where L/K is the splitting field of
g(X). Indeed, NL(g) = eL/KNK(g) has integer slopes.

If E denotes the splitting field of f(X), and q is a prime of OE

above the prime p, then Eq is the splitting field of f(X) over Qp.
More precisely, Eq is generated over Qp by the roots of f(X) in
Eq. In particular, if a/b is a slope of NQp(f), a, b coprime integers,
then b divides eEq/Qp , hence [E : Q].

We conclude that [E : Q] is divisible by 4 × 3 × 5 = 60. So the
Galois group is A5 or S5. To finish the proof we calculate the
discriminant. If it is a non-square in Q×, then the Galois group
will be S5. But we have f(X) = X5 + f ′(X); if α ∈ E is a root of
f(X), and K = Q(α), then we have

disc f = ±NK/Qf
′(α) = ±NK/Qα

5 = ±(5!)5.

Since the 5-adic valuation of (5!)5 is odd, the discriminant can not
be a square.
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