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1. Let v : Q× → Z be a valuation. We first observe that v(n) ≥ 0 for all
integers n ̸= 0. Indeed, we have v(1) = 0 since v is a homomorphism,
and also v(−1) = 0 since 2v(−1) = v((−1)2) = v(1) = 0. If n ∈ N then
v(n) = v(1 + · · ·+ 1) ≥ 0 (by the second axiom defining a valuation).

There exists a ∈ N such that v(a) > 0. Otherwise we would have
v(a) = 0 for all a ∈ Z − {0}, hence for all a ∈ Q×. Let us write
a =

∏k
i=1 p

ni
i where p1, . . . , pk are distinct primes and n1, . . . , nk ∈ N.

Then v(a) =
∑k

i=1 niv(pi), so we can assume, after relabelling, that
v(p1) > 0. We will show that v = vp1 . It is enough to show that
v(q) = 0 for any prime q ̸= p1 (as then v(p1) = 1 is forced by the
surjectivity of v).

Let q ̸= p1 be any prime. We can write (by Bezout’s theorem) rp1+sq =
1 for some r, s ∈ Z, hence 0 = v(1) = v(rp1 + sq) ≥ min(v(p1), v(q)) ≥
0. This forces v(q) = 0.

2. The ring Z[X] is Noetherian (Hilbert basis theorem) and integrally
closed (it is a UFD). However, not every non-zero prime is maximal:
for example, the ideal (X) is not (its quotient is a domain, but not a
field).

The ring R = ∪n≥1C[X1/n] is integrally closed, and every non-zero
prime ideal is maximal. Indeed, if P ⊂ R is a non-zero prime ideal
then there exists N ≥ 1 such that PN = P ∩ C[X1/N ] is non-zero, and
then C[X1/N ]/PN = C. For any n divisible by N , C[X1/n]/Pn is a
domain which is a finite C-module, which must therefore equal C. We
see that R/P = C and in particular is a field, hence P is a maximal
ideal. However, R is not Noetherian: the sequence (X) ⊂ (X1/2) ⊂
(X1/4) ⊂ . . . of ideals is not eventually stationary.

The ring A = C[t2, t3] is Noetherian (it is isomorphic to C[x, y]/(y2 −
x3), so this follows from the Hilbert basis theorem), and every non-zero
prime ideal is maximal: if P is a non-zero prime ideal, then either P
contains t2 (in which case P = (t2, t3) and is maximal) or P does not
contain t2, in which case AP is a localization of C[t2, t3][t−1] = C[t, t−1].
This latter ring is a PID, hence a Dedekind domain, showing that AP

is also a Dedekind domain and particular PAP is a maximal ideal of
AP and hence P is a maximal ideal of A. However, A is not integrally
closed as t ∈ FracA is integral over A (it satisfies the equation X2− t).

3. Omitted - see Atiyah–Macdonald, Proposition 1.10.

4. (a) By unique factorization, it suffices to show that each non-zero
prime ideal P ⊂ R is principal. Let P = P1, . . . , Pr be all the
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distinct non-zero prime ideals of R. By the Chinese remainder
theorem, we can find a ∈ R such that a ∈ P − P 2 but a ̸∈ Pi for
each i = 2, . . . , r. Then the ideal (a) satisfies (a) ⊂ P , (a) ̸⊂ P 2,
and a ̸⊂ Pi for each i = 2, . . . , r. In other words, vP (a) = 1 and
vPi

(a) = 0 (i = 2, . . . , r). This implies that (a) = P and P is
principal.

(b) Let I ⊂ R be a non-zero ideal, and let a ∈ I−{0}. Then (a) ⊂ I,
and hence (a) = IJ for some non-zero ideal J ⊂ R. By the
Chinese remainder theorem, we can find an element b ∈ R such
that vP (b) = vP (I) if P is a non-zero prime of R such that vP (a) >
0. We claim that vP ((a, b)) = vP (I) for all non-zero prime ideals
P ⊂ R, which will imply that (a, b) = I.

To see this, note that vP ((a, b)) = min(vP (a), vP (b)) (equality, not
just inequality!). By construction, for all P we have vP (a) ≥ vP (I)
and vP (b) = vP (I) if vP (a) > 0. This is enough.

5. We must show that the coefficients of g1(X), g2(X) lie in A. Gauss’
lemma shows that the coefficients lie in AP for all non-zero prime ideals
P . We have seen in lectures that ∩PAP = A, so the result follows.

6. If M = pa11 . . . pakk where p1, . . . , pk are distinct primes and a1, . . . , ak ∈
N, then each quotient Z/M iZ ∼=

∏k
j=1 Z/p

iaj
j Z, by the Chinese remain-

der theorem. Inverse limits respect products, so we get an isomorphism

lim←−
i

Z/M iZ ∼=
k∏

j=1

lim←−
i

Z/piajj Z.

We need to explain why there is an isomorphism

lim←−
i

Z/piajj Z ∼= lim←−Z/pijZ = Zpj .

More generally, suppose given an inverse system (of groups say)

A1 ← A2 ← A3 ← . . .

and an increasing sequence j1 < j2 < j3 < . . . of natural numbers.
Define Bi = Aji . Then there is an inverse system

B1 ← B2 ← B3 ← . . .

and a canonical isomorphism

lim←−
i

Ai → lim←−
i

Bi,
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which sends a sequence (ai)i≥1 ∈ lim←−
i

Ai to the sequence (bi)i≥1 ∈ lim←−
i

Bi

defined by bi = aji .

7. We first show that if x ∈ Qp has an eventually periodic p-adic expan-
sion, then x is rational. We are free to multiply by powers of p, so we
can assume that x =

∑∞
i=0 aip

i and a0 ̸= 0. We are also free to add

and subtract numbers of the form
∑k

i=0 aip
i (i.e. positive integers), so

we assume that the p-adic expansion of x is periodic on the nose, say
ai+k = ai for all i ≥ 0 and a fixed period k > 0.

In this case we can write x = (a0+a1p+· · ·+ak−1p
k−1)(1+pk+p2k+. . . ).

Noting that 1/(1− pk) =
∑∞

i=0 p
ik, we see that x ∈ Q.

Now suppose conversely that x ∈ Q; we will show that the p-adic
expansion of x is eventually periodic. We first note that x has an
eventually periodic expansion if and only if −x does. Indeed, if x =∑∞

i=0 ajp
j, and a0 ̸= 0, then −x = (p − a0) +

∑∞
i=1(p − 1 − aj)p

j. It
follows that any integer has an eventually periodic p-adic expansion.
We also note that multiplying by powers of p only shifts digits, so we
can assume that vp(x) ≥ 0.

Suppose that x ∈ (−1, 0) and vp(x) ≥ 0. After multiplying by a
negative power of p, we can assume further that vp(x) = 0. Let us
write x = −a/b, where a, b are positive coprime integers. Choose
k ≥ 1 such that pk ≡ 1 mod b; then we can write pk − 1 = bc, hence
x = −ac/bc = ac/(1 − pk) =

∑∞
i=0 acp

ik. Since −x < 1 we have

ac < pk− 1, hence we can write ac =
∑k−1

j=0 ajp
j for aj ∈ {0, . . . , p− 1},

and x =
∑

i,j≥0 ajp
j+ik has a periodic expansion.

Now suppose that x < −1, vp(x) ≥ 0, and x ̸∈ Z. Thus we can find
N ∈ N such that −(N + 1) < x < −N , hence x + N ∈ (−1, 0) and
we can apply the previous paragraph to write x + N =

∑∞
j=0 ajp

j.
Infinitely many of the aj are non-zero (as otherwise x + N would be
an integer), so we can find n such that a0 + a1p + · · · + anp

n > N ,
hence x = (a0 + a1p + · · · + anp

n − N) +
∑∞

j=n+1 ajp
j. We can write

a0+a1p+ · · ·+anp
n−N = b0+b1p+ · · ·+bnp

n, so the p-adic expansion
of x is eventually periodic.

8. Define a map Zp → [0, 1] by sending
∑∞

i=0 aip
i to

∑∞
i=0 aip

−(i+1) (where
the first sum is convergent in the p-adic topology, and the second sum
in the real topology). This is continuous.

There is no continuous surjection [0, 1] → Zp. If there was, then Zp

would be connected, but it is not: Zp = Z×
p ⊔ (p) is a decomposition
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into disjoint open subsets.

9. Let v : Q×
p → Z be the p-adic valuation. We first note that if (ai)i≥1 is

a sequence of elements in Q×
p , then the sum

∑∞
i=1 ai converges in Qp if

and only if v(ai)→∞ as i→∞.

Therefore the sum 1 +
∑∞

n=1 x
n/n! converges if and only if v(xn/n!) =

nv(x)− v(n!) tends to infinity as n→∞. We have

v(n!) =

⌊
n

p

⌋
+

⌊
n

p2

⌋
+

⌊
n

p3

⌋
+ . . . .

This gives an upper bound of

v(n!) ≤ n/p(1 + 1/p+ 1/p2 + . . . ) = n/p · p/(p− 1) = n/(p− 1),

hence v(xn/n!) ≥ nv(x)− n/(p− 1) = n(v(x)− 1/(p− 1)). This shows
that the series converges if v(x) > 1/(p − 1), hence for all x ∈ pZp

(if p is odd) and for all x ∈ 4Z2 (otherwise). Let us show that these
conditions are in fact necessary.

If x ∈ Z×
p , then it is clear that v(xn/n!) = −v(n!) does not tend to

infinity. It remains to show that if p = 2 and v(x) = 1, then v(xn/n!) =
n − v(n!) does not tend to infinity. But we have v((2k)!) = 2k − 1, so
v(x2k/(2k)!) = 2k − (2k − 1) = 1.
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