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1.

3.
4.

Let v : Q¢ — Z be a valuation. We first observe that v(n) > 0 for all
integers n # 0. Indeed, we have v(1) = 0 since v is a homomorphism,
and also v(—1) = 0 since 2v(—1) = v((—1)?) = v(1) = 0. If n € N then
v(n) =v(l+---+1) >0 (by the second axiom defining a valuation).
There exists a € N such that v(a) > 0. Otherwise we would have
v(a) = 0 for all a € Z — {0}, hence for all a € Q*. Let us write
a = Hlep;” where pq,...,pi are distinct primes and nq,...,n; € N.
Then v(a) = Y2 nw(p:), so we can assume, after relabelling, that
v(p1) > 0. We will show that v = wv,,. It is enough to show that
v(q) = 0 for any prime ¢ # p; (as then v(p;) = 1 is forced by the
surjectivity of v).

Let ¢ # p; be any prime. We can write (by Bezout’s theorem) rp; +sq
1 for some r, s € Z, hence 0 = v(1) = v(rp; + sq) > min(v(p1), v(q))
0. This forces v(q) = 0.

. The ring Z[X] is Noetherian (Hilbert basis theorem) and integrally

closed (it is a UFD). However, not every non-zero prime is maximal:
for example, the ideal (X)) is not (its quotient is a domain, but not a
field).

The ring R = U,>;C[X'/"] is integrally closed, and every non-zero
prime ideal is maximal. Indeed, if P C R is a non-zero prime ideal
then there exists N > 1 such that Py = P N C[X'/"] is non-zero, and
then C[X'/N]/Py = C. For any n divisible by N, C[X'"]/P, is a
domain which is a finite C-module, which must therefore equal C. We
see that R/P = C and in particular is a field, hence P is a maximal
ideal. However, R is not Noetherian: the sequence (X) C (X/?) C
(X1/4) ... of ideals is not eventually stationary.

The ring A = C[t?,#%] is Noetherian (it is isomorphic to Clz,y]/(y* —
x3), so this follows from the Hilbert basis theorem), and every non-zero
prime ideal is maximal: if P is a non-zero prime ideal, then either P
contains t? (in which case P = (t?,t3) and is maximal) or P does not
contain ¢?, in which case Ap is a localization of C[t?, £3][t '] = C[¢,t™!].
This latter ring is a PID, hence a Dedekind domain, showing that Ap
is also a Dedekind domain and particular PAp is a maximal ideal of
Ap and hence P is a maximal ideal of A. However, A is not integrally
closed as t € Frac A is integral over A (it satisfies the equation X2 —t).

Omitted - see Atiyah—Macdonald, Proposition 1.10.

(a) By unique factorization, it suffices to show that each non-zero
prime ideal P C R is principal. Let P = Py,..., P, be all the
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distinct non-zero prime ideals of R. By the Chinese remainder
theorem, we can find a € R such that a € P — P? but a € P, for
each i = 2,...,7. Then the ideal (a) satisfies (a) C P, (a) ¢ P?,

and a ¢ P; for each ¢ = 2,...,r. In other words, vp(a) = 1 and
vp(a) = 0 (i = 2,...,r). This implies that (a) = P and P is
principal.

(b) Let I C R be a non-zero ideal, and let @ € I —{0}. Then (a) C I,
and hence (a) = IJ for some non-zero ideal J C R. By the
Chinese remainder theorem, we can find an element b € R such
that vp(b) = vp(l) if P is a non-zero prime of R such that vp(a) >
0. We claim that vp((a,b)) = vp(I) for all non-zero prime ideals
P C R, which will imply that (a,b) = 1.

To see this, note that vp((a,b)) = min(vp(a),vp(b)) (equality, not
just inequality!). By construction, for all P we have vp(a) > vp(I)
and vp(b) = vp(I) if vp(a) > 0. This is enough.

5. We must show that the coefficients of g;(X),g2(X) lie in A. Gauss’
lemma shows that the coefficients lie in Ap for all non-zero prime ideals
P. We have seen in lectures that NpAp = A, so the result follows.

6. If M =pi*...py* where py,...,py are distinct primes and ay,...,a; €
N, then each quotient Z/M'Z = H?:l Z/ p;ajZ, by the Chinese remain-
der theorem. Inverse limits respect products, so we get an isomorphism

k
limZ/M'Z = | [ limZ/p;" Z.
% j=1 1

We need to explain why there is an isomorphism
lim Z/p; " Z = im Z/pZ = Z,,.

More generally, suppose given an inverse system (of groups say)
Ay Ay Az ...

and an increasing sequence j; < jo < j3 < ... of natural numbers.
Define B; = Aj,. Then there is an inverse system

Bl<—BQ<—Bg(—...
and a canonical isomorphism
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which sends a sequence (a;);>1 € 1&1 A; to the sequence (b;);>1 € 1&1 B;

7

defined by b; = a;,.

7. We first show that if x € Q, has an eventually periodic p-adic expan-
sion, then z is rational. We are free to multiply by powers of p, so we
can assume that z = Y ° a;p’ and ap # 0. We are also free to add
and subtract numbers of the form Zf:o a;p’ (i.e. positive integers), so
we assume that the p-adic expansion of x is periodic on the nose, say
a;+, = a; for all 1 > 0 and a fixed period k > 0.

In this case we can write z = (ag+a;p+- - -+ar_1p* 1) (1+p*+p*+...).
Noting that 1/(1 — p*) = Y02, p™*, we see that z € Q.

Now suppose conversely that z € Q; we will show that the p-adic
expansion of x is eventually periodic. We first note that = has an
eventually periodic expansion if and only if —z does. Indeed, if x =
Yooaip’, and ag # 0, then —z = (p—ag) + Yooy (p— 1 —a;)p’. It
follows that any integer has an eventually periodic p-adic expansion.
We also note that multiplying by powers of p only shifts digits, so we
can assume that v,(z) > 0.

Suppose that © € (—1,0) and v,(z) > 0. After multiplying by a
negative power of p, we can assume further that v,(z) = 0. Let us
write © = —a/b, where a,b are positive coprime integers. Choose
k > 1 such that p¥ = 1 mod b; then we can write p* — 1 = bc, hence
x = —ac/bc = ac/(1 —p*) = D2 acp™. Since —z < 1 we have
ac < p* —1, hence we can write ac = Z?;& a;p’ for a; € {0,...,p—1},
and x = Zm’zo a;p’** has a periodic expansion.

Now suppose that z < —1, v,(x) > 0, and ¢ Z. Thus we can find
N € N such that —(N +1) < 2 < —N, hence z + N € (—1,0) and
we can apply the previous paragraph to write z + N = >°7, a;p’.
Infinitely many of the a; are non-zero (as otherwise z + N would be
an integer), so we can find n such that ag + a1p + -+ + a,p™ > N,
hence x = (ag + aip + -+ +a,p" — N) + 322 a;p’. We can write
ag+ayp+---+a,p"—N =by+bip+---+b,p", so the p-adic expansion
of x is eventually periodic.

8. Define a map Z, — [0, 1] by sending Y5, a;p’ to > o2, a;p~ Y (where

the first sum is convergent in the p-adic topology, and the second sum
in the real topology). This is continuous.

There is no continuous surjection [0,1] — Z,. If there was, then Z,
would be connected, but it is not: Z, = Z U (p) is a decomposition
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into disjoint open subsets.

9. Let v: Q) — Z be the p-adic valuation. We first note that if (a;)i>1 is
a sequence of elements in Q, then the sum > oo, a; converges in Q, if
and only if v(a;) — oo as i — o0.

Therefore the sum 14 >"7 | z"/n! converges if and only if v(z"/n!) =
nv(z) — v(n!) tends to infinity as n — oo. We have

v(anl) = EJ+L§J +L%J+

This gives an upper bound of

v(nl) <n/p(L+1/p+1/p*+...) =n/p-p/(p—1) =n/(p - 1),

hence v(z™/n!) > nv(x) —n/(p—1) = n(v(x) —1/(p—1)). This shows
that the series converges if v(z) > 1/(p — 1), hence for all = € pZ,
(if p is odd) and for all x € 4Z, (otherwise). Let us show that these
conditions are in fact necessary.

If € Z, then it is clear that v(z"/n!) = —v(n!) does not tend to
infinity. It remains to show that if p = 2 and v(z) = 1, then v(2"/n!) =
n — v(n!) does not tend to infinity. But we have v((2¥)!) = 2¥ — 1, so
v(z? ) (2M)) =28 — (2F —1) = 1.
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