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1. Show that the equation x3 − 3x + 4 = 0 has a unique solution in Z7,
but no solutions in Z5 or in Z3. How many are there in Z2?

2. Use Hensel’s lemma to show that if p is a prime and (n, p) = 1, then
the homomorphism 1 + pZp → 1 + pZp, x 7→ xn, is bijective.

3. Use Hensel’s lemma to show that if p is an odd prime, then an element
α ∈ Z×

p lies in (Z×
p )

p if and only if α mod p2Zp ∈ ((Z/p2Z)×)p. What
happens when p = 2?

4. Let K be a number field, and let E/K be a Galois extension. Let q be
a non-zero prime ideal of OE lying above the prime ideal p of OK . Let
ED ⊂ E denote the fixed field of Dq/p and EI the fixed field of Iq/p in E.
Let qD = q∩ED and qI = q∩EI . Thus we have a tower of extensions
E/EI/ED/K corresponding to the tower of primes q/qI/qD/p.

(a) Show that qI is totally ramified in E/EI (i.e. eq/qI = [E : EI ]);
that qD is totally inert in EI/ED (i.e. fqI/qD = [EI : ED]); and
that q is the unique prime ideal of E lying above qD.

(b) For any intermediate extension E/L/K, let qL = q∩L. Show that
if eqL/p = fqL/p = 1 then L ⊂ ED; that if eqL/p = 1 then L ⊂ EI ;
and that if q is the only prime ideal of OE lying above qL, then
ED ⊂ L.

5. LetK be a number field, let E/K be a finite extension, and let E/L1/K
and E/L2/K be intermediate fields.

(a) Let p be a non-zero prime ideal of OK which is unramified in L1

and L2. Show that p is unramified in the compositum L1 · L2.

(b) Let p be a non-zero prime ideal of OK which splits completely
in L1 and L2. Show that p splits completely in the compositum
L1 · L2.

6. Find an example of a number field K/Q with the following property:
for each prime number p, pOK is divisible by an even number of prime
ideals p ⊂ OK . (Hint: Try a compositum of quadratic fields.)

7. Let Qp be an algebraic closure of Qp. Recall that if K/Qp is a finite

extension contained inside Qp, then there is a canonical valuation vK :
K× → Z satisfying vK |Qp = eK/QpvQp .

(a) Show that there is a unique map v : Q×
p → Q satisfying v|K =

e−1
K/Qp

vK for each finite extension K/Qp contained inside Qp.
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(b) Show that v : Q×
p → Q is surjective and satisfies v(xy) = v(x) +

v(y) and v(x+ y) ≥ min(v(x), v(y)) for all x, y ∈ Qp with xy(x+
y) ̸= 0.

(c) Define a metric on Qp by the formula d(x, y) = 2−v(x−y) when

x ̸= y. Decide whether Qp is complete.

8. (Krasner’s lemma) Let K be a finite extension of Qp, let E/K be a
finite Galois extension with valuation vE : E× → Z, and let x, y ∈ E.
Let y1, . . . , yn be the Galois conjugates of y over K. Show that if
vE(x− y) > vE(x− yi) for each i = 2, . . . , n, then K(x) ⊃ K(y).

9. (a) Let K be a finite extension of Qp, and let A denote the integral
closure of Zp in K. Let f(X) = Xn+a1X

n−1+ · · ·+an ∈ A[X] be
a monic, irreducible polynomial, and let E/K denote the splitting
field of f(X). Let α ∈ E be a root of f(X). Show that there exists
N ≥ 1 such that if g(X) = Xn+b1X

n−1+ · · ·+bn ∈ A[X] satisfies
vK(ai−bi) ≥ N for each i = 1, . . . , n, then g(X) is irreducible and
there exists a root β ∈ E of g(X) such that K(α) = K(β).

(b) Deduce that for each n ≥ 1, there exist only finitely many isomor-
phism classes of extension K/Qp with [K : Qp] = n. (Hint: A is
compact.)

10. Let f(X) = 5!(1 +X +X2/2! + · · ·+X5/5!) ∈ Z[X].

(a) Draw the Newton polygon of f(X) over Qp for each p = 2, 3, 5.

(b) Conclude that f(X) is irreducible over Q and the Galois group of
its splitting field is S5.
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