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1 Discrete valuation rings

Definition 1.1. Let A be a ring. We say that A is a discrete valuation ring (DVR) if A is
a principal ideal domain with a unique non-zero prime ideal mA ⊂ A.

If A is a DVR, then kA = A/mA is a field, its residue field. If π ∈ mA is a generator,
then π is an irreducible element of A, and every other irreducible element of A has the form
π′ = uπ, u ∈ A×. Such an element is called a uniformizer of A.

If A is a DVR with FracA = K, then any element x = a/b ∈ K× admits a unique
expression as x = πnu, with n ∈ Z and u ∈ A×. We call v(x) = n the valuation of the
element x. The function v : K× → Z satisfies the following conditions:

1. v : K× → Z is a surjective homomorphism.

2. If x, y ∈ K then we have v(x+ y) ≥ min(v(x), v(y)), with equality if v(x) 6= v(y). (By
convention, we set v(0) =∞ and extend v to a map v : K → Z ∪ {∞}.)

If K is any field and v : K× → Z is a function satisfying these conditions, then v is called
a valuation. We can then define A = {x ∈ K | v(x) ≥ 0}; then A is a DVR with non-zero
prime ideal mA = {x ∈ K | v(x) > 0}.

Lemma 1.2. Let K be a field. Then this process defines a bijection between the set of
subrings A ⊂ K which are discrete valuation rings and the set of valuations v : K× → Z.

Definition 1.3. A ring A is called a local ring if it has a unique maximal ideal.

Lemma 1.4 (Nakayama’s lemma). Let A be a local ring with maximal ideal m, and let M
be a finitely generated A-module.

1. If mM = M , then M = 0.

2. If N ⊂M is a submodule such that N →M/mM is surjective, then N = M .

Proof. We observe that A − m = A×. For the first part, suppose that M is generated by
elements m1, . . . ,mn, and that n ≥ 1 is minimal with respect to this property. We can write
mn = a1m1 + · · · + anmn with ai ∈ m, hence (1 − an)mn = a1m1 + . . . an−1mn−1. Since
1 − an is a unit, we conclude that A is generated by m1, . . . ,mn−1, a contradiction to the
minimality of n.

For the second part, the hypothesis implies M = N + mM . We apply the first part
to the quotient M/N to conclude M/N = 0, hence M = N .

Proposition 1.5. Let A be a Noetherian domain. Then the following are equivalent:

1. A is a DVR.

2. A is integrally closed and has exactly one non-zero prime ideal.
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Proof. We recall that if R ⊂ S are rings, then an element s ∈ S is said to be integral over
R if it satisfies a monic equation sn + r1s

n−1 + · · · + rn = 0 with ri ∈ R; equivalently, R[s]
is a finitely generated R-module. The integral closure of R in S consists of all elements of
S integral over R, and is a subring of S which contains R. The domain A is said to be
integrally closed if A equals the integral closure of A in K = Frac(A).

If A is a DVR, then A is integrally closed: if an element a = uπr satisfies a relation
an + a1a

n−1 + · · ·+ an = 0, then after multiplying through by u−n, we can assume a = πr. If
r < 0 then we get 1 = a1π

−r + · · ·+ anπ
−nr. The left-hand side lies in mA, a contradiction.

It clearly has a unique non-zero prime ideal.
Suppose conversely that A is a Noetherian domain which is integrally closed, and has

exactly one non-zero prime ideal p. Note that if a ⊂ A is a proper non-zero ideal, then we
can find n ≥ 1 such that pn ⊂ a ⊂ p. Indeed, if not then we can find a proper ideal a ⊂ A
maximal with respect to the property that it contains no pn. Then a 6= p, so we can find
a, b ∈ A such that ab ∈ a but a 6∈ a and b 6∈ a. The inclusions a ⊂ a + (a) and a ⊂ a + (b)
are then proper, so we can find m ≥ 1 such that pm ⊂ a + (a) and pm ⊂ a + (b), hence
p2m ⊂ (a + (a))(a + (b)) ⊂ a, a contradiction.

Let us therefore choose a non-zero element y ∈ p, and n ≥ 1 such that pn ⊂ (y) ⊂ p.
We can choose n ≥ 1 minimal with respect to this property. We are going to show that p
is principal. If n = 1, then we’re done. Otherwise n ≥ 2, and we have pn−1 6⊂ (y), and we
can choose x ∈ pn−1 − (y). Let z = x/y ∈ K. We have xp ⊂ pn ⊂ (y), hence zp ⊂ A is an
ideal. If zp ⊂ p, then A[z] injects into EndA(p), a finitely generated A-module (since A is
Noetherian). Thus z is integral over A, hence z ∈ A, hence x = yz ∈ (y), a contradiction.
Thus zp = A, and p = z−1A and p is principal.

Let π = z−1. We claim that every element a ∈ A admits a unique expression a = uπn

with u ∈ A×, which will show that A is a PID. The uniqueness is clear. To show existence,
it is enough to show that q = ∩n≥1(πnA) = 0 (as then A = ∪n≥0(πnA− πn+1A)). However,
we have πq = q, hence q = 0 (by Nakayama’s lemma). This completes the proof.

We are going to study rings which are ‘locally DVRs’. We first need to define local-
ization. Let A be a ring. A multiplicative subset S ⊂ A is by definition a subset containing
1, not containing 0, and which is closed under multiplication.

Definition 1.6. We define S−1A to be the set of equivalence classes of pairs (a, s) with
a ∈ A, s ∈ S, with respect to the equivalence relation (a, s) ∼ (b, t) if there exists u ∈ S such
that u(at− bs) = 0. We represent the equivalence class of (a, s) using the symbol a/s.

Lemma 1.7. 1. This is an equivalence relation, and S−1A becomes a ring with the oper-
ations a/s+ b/t = (at+ sb)/(st) and a/s · b/t = (ab)/(st).

2. The map A → S−1A, a 7→ a/1 is a ring homomorphism with kernel {a ∈ A | ∃s ∈
S, sa = 0}.

3. If A is an integral domain, then FracA = (A− {0})−1A and S−1A is identified with a
subring of FracA.
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Proof. The symmetry and reflexivity of the relation is clear. To show transitivity, suppose
given (a, s), (a′, s′) and (a′′, s′′), together with u, u′ ∈ S such that u(as′ − a′s) = 0 and
u′(a′s′′ − a′′s′) = 0. We then have uu′s′as′′ = u′s′′ua′s = usu′a′′s′, showing that a/s = a′′/s′′

in S−1A. The ring axioms are easily verified.
It is clear that the map A → S−1A is a ring homomorphism. We have a/1 = 0/1 if

and only if there exists s ∈ S such that as = 0, as in the statement of the lemma.
If A is an integral domain, then a/s = a′/s′ if and only if as′ = a′s (because A has

no zero divisors). This shows that (A− {0})−1A = FracA, by definition, and that the map
S−1A→ FracA, a/s 7→ a/s, is a well-defined injection.

A common choice of S is when S = {1, f, f 2, . . . } for some f ∈ A which is not
nilpotent; then we write S−1A = A[1/f ]. Another common choice is S = A− p, where p is
a prime ideal of A. In fact, an ideal I ⊂ A is prime if and only if A − I is a multiplicative
subset, as follows from the definitions.

Definition 1.8. Let A be a ring with multiplicative subset S, and let M be an A-module.
We define the localized module S−1M to be the set of equivalence classes of pairs (m, s) with
m ∈ M and s ∈ S. Two pairs (m, s) and (m′, s′) are said to be equivalent if there exists
u ∈ S such that u(s′m− sm′) = 0. The equivalence class of the pair (m, s) is denoted using
the symbol m/s.

Again, one shows that S−1M is an S−1A-module, with multiplication a/s · m/t =
(am)/(st). Localization is a functor: if M,N are A-modules and f : M → N is a
homomorphism of A-modules, then there is a natural map S−1f : M → N given by
S−1f(m/s) = f(m)/s. Similarly, if there is a ring homomorphism g : A→ B, then S−1B is
naturally a ring and the map S−1g : S−1A→ S−1B is a ring homomorphism. An important
feature of localization is its exactness:

Lemma 1.9. Let M ′ f //M
g //M ′′ be an exact sequence of A-modules (i.e. ker g =

im f). Then the sequence S−1M ′ S
−1f // S−1M

S−1g // S−1M ′′ is exact.

Proof. Since localization is functorial, we have S−1g ◦ S−1f = S−1(gf) = 0. This shows
that im S−1f ⊂ kerS−1g. For the other inclusion, suppose S−1g(m/s) = g(m)/s = 0. Then
there exists u ∈ S such that ug(m) = g(um) = 0, hence m′ ∈ M ′ such that f(m′) = um,
hence S−1f(m′/us) = um/us = m/s.

This shows, for example, that if a ⊂ A is an ideal, then S−1a can be naturally
identified with an ideal of S−1A (which is the ideal aS−1A generated by a).

Lemma 1.10. Let A be a ring, and let f : A → S−1A be the natural map. The maps
p 7→ p · S−1A, q 7→ f−1(p) define inclusion-preserving bijections between the set of prime
ideals of A which do not intersect S and the set of prime ideals of S−1A.

Proof. We first check that p · S−1A is indeed a prime ideal. The map A→ A/p gives a map
S−1A→ S−1(A/p), and the latter is non-zero since A/p is non-zero and no element is killed
by an element of S. An element a/s is in the kernel if and only if there exists u ∈ S such
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that ua = 0 in A/p, if and only if a ∈ p. Thus p · S−1A is the kernel of this map, and is a
prime ideal of S−1A.

We now show that these maps are mutually inverse. If p ⊂ S−1A is a prime ideal,
then ff−1(p) ⊂ p, hence f−1(p) · S−1A ⊂ p. On the other hand, if a/s ∈ p then a/1 ∈ p,
hence a ∈ f−1(p) and a/s ∈ f−1(p) ·S−1A. This shows one direction. In the other direction,
suppose that q ⊂ A is a prime ideal disjoint from S. Then q ⊂ f−1(q · S−1A). On the other
hand, if a ∈ A and a/1 ∈ q · S−1A, then a/1 = qb/s for some q ∈ q, b ∈ A, s ∈ S, and hence
there exists u ∈ S such that u(as − qb) = 0, hence uas = qbu ∈ q. Since q is prime and
disjoint from S, we conclude a ∈ q, showing that f−1(q · S−1A) ⊂ q, as required.

This shows that if p ⊂ A is a prime ideal and S = A − p, then S−1A has a unique
maximal ideal, namely S−1p, and is therefore a local ring. We will write Ap = (A − p)−1A
for this localization; its residue field is naturally identified with Frac(A/p).

Proposition 1.11. Let A be a Noetherian domain with field of fractions K. Then the
following are equivalent:

1. For all non-zero prime ideals p ⊂ A, Ap is a discrete valuation ring.

2. A is integrally closed and every non-zero prime ideal p ⊂ A is a maximal ideal.

A ring A satisfying these equivalent conditions is called a Dedekind domain.

Proof. First suppose that A satisfies the first condition. If q ⊂ p are prime ideals of A, then
let S = A− p. We have S−1q ⊂ S−1p, hence either q = 0 or q = p. This shows that if p 6= 0
then p is maximal. If x ∈ K is integral over A, then it lies in Ap for every non-zero prime
p ⊂ A, hence we can write x = ap/sp, where ap ∈ A and sp ∈ A− p depend on p. The ideal
a generated by all sp is the unit ideal, because it is contained in no non-zero prime ideal of
A; hence we can write 1 =

∑
p sptp, where only finitely many tp are non-zero. We then have

x =
∑
xsptp =

∑
aptp ∈ A, showing that A is integrally closed in K.

Now suppose instead that A satisfies the second condition. If p ⊂ A is a non-zero
prime ideal, then the ring Ap is a local ring with a unique non-zero prime ideal, and we
must show (by the previous proposition) that it is integrally closed. If a/s ∈ Ap satisfies an
equation (a/s)n + a1/s1 · (a/s)n−1 + · · ·+ an/sn = 0, then the element a(s1 . . . sn) is integral
over A (by clearing denominators), so lies in A. Then a/s = (as1 . . . sn)/(ss1 . . . sn) lies in
Ap, as required.

If A is an integral domain with field of fractions K, then a fractional ideal of A is by
definition a finitely generated A-submodule of K.

Lemma 1.12. Let A be a Noetherian integral domain with field of fractions K and let S ⊂ A
be a multiplicative subset. Let a, b ⊂ K be fractional ideals. Then:

1. (S−1a)(S−1b) = S−1(ab) and S−1a + S−1b = S−1(a + b).

2. Define (a : b) = {x ∈ K | xb ⊂ a}. Then (a : b) is a fractional ideal of A and
S−1(a : b) = (S−1a : S−1b).
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Proof. Suppose that b = (b1, . . . , bn), where the bi are non-zero. Then (a : b) = ∩ni=1b
−1
i a,

which shows that (a : b) is finitely generated (as A is Noetherian), hence a fractional ideal
of A. The other assertions follow easily from the fact that localization commutes with finite
sums and intersections of submodules.

Proposition 1.13. Let A be a Dedekind domain. Then the set I of non-zero fractional
ideals of A forms a group under multiplication.

Proof. Multiplication of fractional ideals gives an associative composition law in I, with
identity (1) = A. It remains to show the existence of inverses. We claim that for any non-
zero fractional ideal a ⊂ A, we have a · (A : a) = A. Since (A : a) is a fractional ideal, this
will be enough. If A is a DVR then we have a = πnA for some n ∈ Z, and (A : a) = π−nA;
so this is clear.

In general, we have for any non-zero prime p ⊂ A,

(a(A : a))p = ap(A : a)p = Ap,

by the lemma. It therefore suffices to show that for any fractional ideal b ⊂ K, if bp = Ap

for all non-zero prime ideals p of A, then b = A. Let us show the more general statement
that if b, c are fractional ideals such that bp ⊂ cp for all p, then b ⊂ c.

It is enough to show b ⊂ c. Let b ∈ b. For all non-zero prime ideals p ⊂ A, we can
find an expression b = cp/sp with cp ∈ c and sp ∈ A−p. The ideal (sp) is the unit ideal, since
it can be contained in no maximal ideal of A; we can therefore find non-zero prime ideals
p1, . . . , pn and ai ∈ A such that 1 =

∑n
i=1 aispi . Multiplying through, we obtain

b =
n∑
i=1

aibspi =
∑
i=1

aicpi ∈ c,

as desired.

Lemma 1.14. Let A be a Dedekind domain. Then for each non-zero ideal a ⊂ A, there are
only finitely many non-zero prime ideals p ⊂ A such that a ⊂ p.

Proof. We can assume that a = (x) is principal. The set of ideals b of A containing x
satisfies the descending chain condition. Indeed, if b1 ⊃ b2 ⊃ · · · ⊃ (x) then the chain
b−11 ⊂ b−12 ⊂ · · · ⊂ x−1A is eventually stationary, since A is Noetherian. This implies the
same for the original chain.

Suppose therefore that there are infinitely many distinct primes p1, p2, . . . containing
x. The sequence p1, p1 ∩ p2, . . . is eventually stationary; suppose that it becomes stationary
at step k. Then we have

pk+1 ⊃ p1 ∩ · · · ∩ pk+1 = p1 ∩ · · · ∩ pk ⊃ p1 . . . pk.

We can find for each i = 1, . . . , k an element xi ∈ pi − pk+1. Then the element x1 . . . xk ∈
p1 . . . pk must lie in pk+1. Since the ideal pk+1 is prime, this forces some xi to lie in pk+1, a
contradiction.

6



If A is a Dedekind domain, then for each non-zero prime p ⊂ A, we have the valuation
vp : K× → Z which is associated to the DVR Ap. If a ⊂ K is a non-zero fractional ideal, then
we have ap = aAp for some a ∈ K×, and we define vp(a) = vp(a). This defines a surjective
homomorphism vp : I → Z.

Proposition 1.15. Let A be a Dedekind domain, and let a ⊂ K be a non-zero fractional
ideal.

1. We have vp(a) = 0 for all but finitely many p.

2. We have a =
∏

p p
vp(a), where the product has only finitely many terms.

Proof. We recall that if a, b ⊂ K are fractional ideals, then a ⊂ b if and only if ap ⊂ bp for
all p. If p 6= q are non-zero prime ideals of A, then pq = Aq. It follows that if a ⊂ A is a
non-zero ideal, then a ⊂ p if and only if ap ⊂ pp, if and only if vp(a) > 0. By the previous
lemma, this can be true for only finitely many primes p. If a ⊂ K is a non-zero fractional
ideal, then we can find x ∈ A−{0} such that xa ⊂ A is an ideal. Then vp(x) = 0 for all but
finitely many p, and vp(xa) = 0 for all but finitely many p. Since vp(xa) = vp(x) + vp(a) for
all non-zero prime ideals of A, this shows that vp(a) = 0 for all but finitely many p.

The two fractional ideals a and
∏

p p
vp(a) have the same localizations, so are the

same.

Corollary 1.16. Let A be a Dedekind domain. Then every non-zero ideal a ⊂ A admits a
unique expression a =

∏n
i=1 p

ai
i , where the pi are pairwise distinct prime ideals of A. This

expression is uniquely determined up to re-ordering of terms.

2 Extensions of Dedekind domains

Lemma 2.1. Let E/K be a finite separable extension of fields. Then the K-bilinear form
S : E × E → K given by the formula S(x, y) = trE/K(xy) is non-degenerate.

Proof. We must show that for any non-zero x ∈ E, there exists y ∈ E such that trE/K(xy) 6=
0. It is clearly enough to show that trE/K 6= 0 as a homomorphism E → K. If L/K denotes
the Galois closure of E, then there are exactly n distinct K-embeddings σ1, . . . , σn : E ↪→ L;
and we have trE/K(x) = σ1(x) + · · · + σn(x). The lemma therefore follows from the fact
that the embeddings σ1, . . . , σn are linearly independent over L (even as homomorphisms
E× → L×).

Let A be a Dedekind domain with field of fractions K, and let E/K be a finite
separable extension. Let B denote the integral closure of A in E.

Proposition 2.2. B is a finitely generated A-module, which spans E as a K-vector space.
It is a Dedekind domain.
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Proof. Let e1, . . . , en be a K-basis for E. After multiplying through by elements of A, we can
suppose that each ei ∈ B. The map S(x, y) = trE/K(xy) defines a non-degenerate K-bilinear
pairing S : E × E → K. Let us note that if z ∈ B, then trE/K z is integral over A and lies
in K, hence lies in A.

Let f1, . . . , fn ∈ E be the dual K-basis with respect to S, so that S(ei, fj) = δij.
Choose c ∈ A− {0} such that each cfj ∈ B. We claim that B ⊂ A · c−1e1 ⊕ · · · ⊕A · c−1en.
If z ∈ B, then each zcfj is integral over A, so trE/K(zcfj) ∈ A. Writing z =

∑
i riei with

ri ∈ K, we therefore have S(z, cfj) = crj ∈ A, hence rj ∈ c−1A. This shows the claim. It
follows that B is contained in a finitely generated A-module, hence is a finitely generated
A-module as A is Noetherian, hence is a finitely generated A-algebra, hence is a Noetherian
ring, by the Hilbert basis theorem.

Let q ⊂ B be a non-zero prime ideal, and let p = q ∩ A. Then p ⊂ A is prime. It is
also non-zero: if b ∈ q is a non-zero element, then we can find an equation of minimal degree
with ai ∈ A:

bn + a1b
n−1 + · · ·+ an = 0.

Then an ∈ q ∩ A = p and an 6= 0, by minimality. There is an injective homomorphism
A/p ↪→ B/q, A/p is a field, and B/q is a finite A/p-algebra and a domain, hence a field.
This shows that q is maximal, hence B is a Dedekind domain.

The ring Z of rational integers is a PID, so is a Dedekind domain. We deduce:

Corollary 2.3. Let K be a number field. Then the ring of integers OK is a Dedekind domain.
In particular, any non-zero ideal a ⊂ OK admits a factorization a =

∏m
i=1 p

ai
i , where the pi

are pairwise distinct prime ideals and ai non-negative integers, and this factorization is
unique up to re-ordering.

3 Complete discrete valuation rings

Definition 3.1. Suppose given for each i = 1, 2, . . . a group Ai and a homomorphism fi :
Ai+1 → Ai. The inverse limit is by definition

lim←−
i

Ai = {(ai) ∈
∞∏
i=1

Ai | ∀i ≥ 1, fi(ai+1) = ai}.

It is a group. If the Ai are all abelian groups (resp. ring) and the fi are homomorphisms of
abelian groups (resp. rings) then it is naturally an abelian group (resp. ring).

Definition 3.2. Let A be a discrete valuation ring. We say that A is complete if the natural
map A→ lim←−

i

A/mi
A is an isomorphism.

The terminology is justified by the following lemma.

Lemma 3.3. Let A be a discrete valuation ring with fraction field K and valuation v : K× →
Z. Then the following are equivalent:
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1. A is complete.

2. K is a complete metric space with respect to the metric d(x, y) = 2−v(x−y).

Proof. Suppose first that A is complete, and let (xi)
∞
i=0 be a Cauchy sequence in K. This

is equivalent to the following condition: for all M > 0, there exists N > 0 such that
v(xi− xj) ≥M for all i, j ≥M . In particular, we can assume after discarding finitely many
elements that v(xi−xj) ≥ 0 for all i, j ≥ 0. Replacing xi by xi−x1, we can therefore assume
that v(xi) ≥ 0 for all i, i.e. xi ∈ A for all i.

After passing to a subsequence, we can assume that v(xi − xi+1) ≥ i for all i, or in
other words xi+1 ≡ xi mod mi

A. It follows that (xi)i ∈ lim←−
i

A/mi
A, hence there exists x ∈ A

such that v(x− xi) ≥ i for all i ≥ 0. This is the desired limit.
Now suppose instead that K is complete. The map A → lim←−

i

A/mi
A is injective, so

we must show it is surjective. Let (xi)
∞
i=0 ∈ lim←−

i

A/mi
A. Then for all i, j ≥ N we have

v(xi − xj) ≥ N , hence (xi) is a Cauchy sequence, hence there exists x ∈ K such that
v(x − xi) → ∞ as i → ∞. In particular, we have v(x) ≥ 0, hence x ∈ A and x maps to
(xi)

∞
i=0. This completes the proof.

Proposition 3.4. Let A be a DVR with uniformizer π, and define Â = lim←−
i

A/mi
A. Then;

1. Â is a complete DVR with uniformizer π.

2. For each i ≥ 0, the natural map A/mi
A → Â/mi

Â
is an isomorphism.

3. Let X ⊂ A be a set of representatives for the residue field kA containing 0. Then every
element x ∈ Â admits a unique π-adic expansion

x =
∞∑
i=0

aiπ
i

with ai ∈ X for each i ≥ 0, and conversely every such expansion defines an element of
Â.

Proof. We prove the last part first. We observe that the map A/π → πiA/πi+1A given by
multiplication by πi is an isomorphism. It follows that each element of the ring A/πi+1

admits a unique expression of the form
∑i

j=0 ajπ
j with aj ∈ X. The map A/πi+1 → A/πi

corresponds to throwing away the term aiπ
i. Since an element of Â is a compatible system

of elements of the quotients A/πi+1, we see that the elements of Â are in bijection with the
expressions

∑∞
j=0 ajπ

j with aj ∈ X.

By definition, we have for each i ≥ 0 a surjection Â → A/πiA. An element x =∑
j ajπ

j lies in the kernel if and only if all of its digits a0, . . . , ai−1 are 0. In this case, we

have x = πi
∑∞

j=0 aj+iπ
j, showing that the kernel of this map is πiÂ, and hence we have an

isomorphism Â/πiÂ ∼= A/πiA.

9



The natural map A → Â is injective. Every element x =
∑

j ajπ
j with a0 6= 0 is a

unit. Indeed, we write x = a0(1− πy) for some y ∈ Â. The element a0 is a unit in A, hence

in Â, and (1− πy) has inverse given by

1 + πy + (πy)2 + (πy)3 + . . . ,

this series converging in Â. This shows that every non-zero element of Â has a unique
expression as uπn with u ∈ Â× and n ≥ 0, and hence that Â is a DVR.

To complete the proof, we show that Â is complete. However, we have

Â = lim←−
i

A/πiA ∼= lim←−
i

Â/πiÂ

by the second part of the proposition, so we’re done.

We refer to the ring Â as the completion of A; the proof of the proposition shows
that if A is complete, then A ∼= Â.

4 The p-adic numbers

We can now study our first new example of a complete discrete valuation ring.

Definition 4.1. Let p be a prime. The ring of p-adic integers Zp is by definition the com-
pletion of Z(p). The field of p-adic numbers Qp is its fraction field.

Thus Zp is a complete DVR with residue field Zp/(p) ∼= Z/pZ = Fp. Every element
of Zp admits a unique expression

a0 + a1p+ a2p
2 + . . .

with ai ∈ {0, . . . , p− 1}. Multiplication and addition is done in the same way as for formal
power series, except we now need to ‘carry’ digits.

The following lemma is one example of a family of results which are referred to by
the name ‘Hensel’s lemma’. The key idea is that in complete DVRs, one can efficiently solve
equations by successive approximation.

Lemma 4.2. Let A be a complete DVR with valuation v, and let f(X) ∈ A[X] be a monic
polynomial. Suppose there exists x ∈ A such that v(f(x)) > 2v(f ′(x)). Then there exists a
unique α ∈ A such that f(α) = 0 and v(α− x) > v(f ′(x)).

Proof. We use Newton’s approximation. Let a1 = x, and define a sequence inductively by
the formula

an+1 = an −
f(an)

f ′(an)
.

Let t = v(f(a1)/f
′(a1)

2) > 0. We will show by induction on n ≥ 1 that the following
conditions are satisfied:
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• v(an) ≥ 0.

• v(f ′(an)) = v(f ′(a1)).

• v(f(an)) ≥ 2v(f ′(an)) + 2n−1t.

These conditions hold for n = 1, by hypothesis. We now treat the induction step. We have
v(an+1) ≥ 0 if and only if f(an)/f ′(an) ∈ A. We have

v(f(an))− v(f ′(an)) ≥ v(f ′(an)) + 2n−1t = v(f ′(a1)) + 2n−1t ≥ 0.

We have f ′(an+1)− f ′(an) = (an+1 − an)y for some y ∈ A, hence

v(f ′(an+1)− f ′(an)) ≥ v(an+1 − an) = v(f(an))− v(f ′(an)) > v(f ′(an)),

hence v(f ′(an+1)) = v(f ′(an)). We can write (using the Taylor expansion of the polynomial
f(X))

f(an+1) = f(an)− f(an)

f ′(an)
f ′(an) +

(
f(an)

f ′(an)

)2

z

for some z ∈ A. We thus have

v(f(an+1)) ≥ 2(v(f(an))− v(f ′(an))) ≥ 2v(f ′(an)) + 2nt.

This completes the induction. Incidentally we have shown v(an+1 − an) ≥ v(f ′(a1)) + 2n−1t,
which shows that (an) is a Cauchy sequence which has a limit α ∈ A, and f(α) = 0.

To establish uniqueness, we suppose β ∈ A is another root with f(β) = 0 and
v(β − x) > v(f ′(x)). We write β = α + h and calculate

f(β) = 0 = f(α) + hf ′(α) + h2w

for some w ∈ A, hence hf ′(α) = −h2w, hence (assuming h 6= 0) v(f ′(α)) ≥ v(h). On the
other hand, we have

v(h) = v(β − α) ≥ min(v(α− x), v(β − x)) > v(f ′(x)) = v(f ′(α)).

This contradiction shows that the root α is unique, as desired.

Corollary 4.3. Let A be a complete DVR with valuation v, and let f(X) ∈ A[X] be a monic
polynomial. Let f(X) ∈ kA[X] be the reduction of f(X) modulo mA. Suppose there exists

x ∈ kA such that f(x) = 0 and f
′
(x) 6= 0. Then there exists a unique y ∈ A such that

f(y) = 0 and y ≡ x mod mA.

Example 4.4. We can use this to understand which elements of Qp are squares. Any non-zero
element has a unique expression pnu with u ∈ Z×p , so it is equivalent to understand which
elements of Z×p are squares. A necessary condition is that u mod p ∈ F×p is a square, so let
us suppose this condition holds.
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We apply Hensel’s lemma to the polynomial f(X) = X2 − u. Let v be an element of
Z×p such that v2 ≡ u mod p. If p is odd, then f ′(v) = 2v is a p-adic unit, so Hensel’s lemma
shows that there is a unique w ∈ Z×p such that w2 = u.

If p is even, then a necessary condition is that u mod 8 ∈ (Z/8Z)× is a square, i.e.
that u ≡ 1 mod 8. This being the case, we have f(1) ≡ 0 mod 8 and f ′(1) = 2, hence
v(f(1)) ≥ 3 and v(f ′(1)) = 1. Hensel’s lemma shows in this case that there is a unique
w ∈ Z×p such that w2 = u.

Example 4.5. The group homomorphism Z×p → F×p is surjective. We can use Hensel’s
lemma to construct a section to this map, i.e. a homomorphism τ : F×p → Z×p such that
τ(a) mod p = a. Indeed, let f(X) = Xp − X. Then f ′(X) ≡ −1 modp, so the simple
version of Hensel’s lemma shows that for each a ∈ Fp, there is a unique b = τ(a) ∈ Zp such
that bp = b and b ≡ a mod p. The uniqueness implies that τ(aa′) = τ(a)τ(a′), hence τ is a
group homomorphism. The map a 7→ τ(a) is called the Teichmüller lift, and exists for any
complete DVR with finite residue field.

5 Extensions of Dedekind domains, II

Let A be a Dedekind domain, let K = Frac(A), and let E/K be a finite separable extension,
and let B denote the integral closure of A in E. We have seen that B is a Dedekind domain
with field of fractions E.

Let q ⊂ B be a non-zero prime ideal. Then q ∩ A is a non-zero prime ideal of A: if
b ∈ q−{0}, then we can find an equation bn + a1b

n−1 + · · ·+ an = 0 of minimal degree. This
forces an 6= 0, and then an ∈ q ∩ A.

Definition 5.1. If q ⊂ B is a non-zero prime ideal and p = q ∩ A, then we say that q lies
above p.

Lemma 5.2. Let q ⊂ B, p ⊂ A be non-zero prime ideals. Then the following are equivalent:

1. q lies above p.

2. q appears in the prime factorization of pB ⊂ B (in other notation, vq(pB) > 0).

Proof. We recall that if a, b ⊂ B are non-zero ideals, then b = ac for some ideal c ⊂ B if and
only if b ⊂ a. If q lies above p, then pB ⊂ qB = q, so q divides pB. Conversely, if q divides
pB, then p ⊂ pB ⊂ q, hence p ⊂ q∩A. Since p is a maximal ideal, this forces p = q∩A.

Definition 5.3. Suppose that q ⊂ B is a non-zero prime ideal, and let p = q∩A. Then there
is a natural embedding of fields A/p ↪→ B/q. We define the ramification index eq/p = vq(pB)
and the residue degree fq/p = [B/q : A/p].

We say that the prime q is unramified over A if eq/p = 1 and the extension of residue
fields is separable. If every prime lying above p is unramified over A, then we say that p is
unramified in B.

Proposition 5.4. Let p ⊂ A be a non-zero prime ideal, and let n = [E : K]. Then we have
n =

∑
q|p eq/pfq/p, the sum running over all primes of B lying over p.
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Proof. Let S = (A− p). After replacing A by S−1A and B by S−1B, we can assume that A
is a DVR. (Note that S−1B is the integral closure of S−1A, and if q ∩ S = ∅ then replacing
q by S−1q does not change e or f .) Then B is a torsion-free finitely generated A-module, so
is free of some rank. We have (A− {0})−1B = E, so this rank is dimK E = n.

To prove the proposition, we will calculate this rank in another way. Reducing mod-
ulo p, we also have n = dimA/pB/qB. By the Chinese remainder theorem, there is an
isomorphism

B/pB ∼=
∏
q|p

B/qeq/p ,

so we get n =
∑

q/p dimA/pB/q
eq/p . There is a filtration B ⊃ q ⊃ q2 ⊃ · · · ⊃ qeq/p , and each

qi/qi+1 is a B/q-vector space of dimension 1, hence an A/p-vector space of dimension fq/p.
We obtain

dimA/pB/q
eq/p = eq/pfq/p,

which completes the proof.

Now suppose that the extension E/K is Galois. In the case the group G = Gal(E/K)
fixes A, so acts on B. In particular, if p ⊂ A is a non-zero prime, then G acts on the set of
primes q ⊂ B lying over A by the formula q 7→ σ(q).

Proposition 5.5. Suppose that the extension E/K is Galois, and let p ⊂ A be a non-zero
prime ideal. Then:

1. Let q be a prime lying over p, and let σ ∈ G. Then fσ(q)/p = fq/p and eσ(q)/p = eq/p.

2. The group G acts transitively on the set of primes of B lying above p.

3. For any prime q of B lying over p, we have [E : K] = eq/pfq/pgq/p, where gq/p is the
number of distinct primes of B lying over p.

Proof. The first part is clear. The third part follows from combining the first and second
with the previous proposition.

For the second, we can assume again that A is a DVR. Let q, q′ be distinct primes of
B lying above p, and let π ∈ B be a generator of q. Then NE/K(π) =

∏
σ∈G σ(π) ∈ q ∩A =

p ⊂ q′. Since q′ is prime there exists σinG such that σ(π) ∈ q′, hence σ(q) ⊂ q′, hence
σ(q) = q′, as desired.

If the extension E/K is Galois and q is a non-zero prime of B lying above the prime
p of A, then we define Dq/p = StabG(q), and call it the decomposition group at the prime q.

Proposition 5.6. Suppose that the extension E/K is Galois, and let q be a prime of B
lying above the prime p of A such that the corresponding extension kq/kp of residue fields is
separable. Then it is Galois, and the induced map Dq/p → Gal(kq/kp) is surjective.
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Proof. Let x ∈ kq, and let x ∈ B be any element with x = x mod q. Let f(X) =
∏

σ∈G(X −
σ(x)) ∈ A[X]. Let f(X) = f(X) mod p ∈ kp[X]. By construction, the polynomial f(X) has
x as a root and splits into linear factors in kq[X]. Since x was arbitrary, this shows that kq
is normal, hence Galois over kp.

To show that the map Dq/p → Gal(kq/kp) is surjective, let x ∈ kq be a primitive
element; this exists since the extension kq/kp is separable. We can assume that x is not 0
(since otherwise kq = kp and the proposition is trivial). By the Chinese remainder theorem,
we can choose an element x ∈ B lifting x such that x ∈ q′ if q′ 6= q is any other prime
of B lying over the prime p. Form the polynomial f(X) as before; we now have f(X) =
Xd
∏

σ∈Dq/p
(X − σ(x)) for some d ≥ 0.

If τ ∈ Gal(kq/kp), then τ(x) is a non-zero root of f(X), hence there exists σ ∈ Dq/p

such that σ(x) = τ(x). Since x is a primitive element, this shows that the image of σ in
Gal(kq/kp) equals τ , as desired.

Definition 5.7. In the situation of the proposition, we call Iq/p = ker(Dq/p → Gal(kq/kp))
the inertia group at the prime q.

Observe that we have #Iq/p = eq/p; in particular, the inertia group is trivial if and
only if the prime q is unramified over p.

6 Extensions of complete DVRs

Theorem 6.1. Let A be a complete DVR and let K = Frac(A). Let L/K be a finite separable
extension, and let B denote the integral closure of A in L. Then B is a complete DVR.

Proof. Let π be a uniformizer of A. We know that B is a Dedekind domain, and a finite free
A-module. It follows that the natural map B → lim←−

i

B/πiB is an isomorphism (since this

holds for Ad). On the other hand, we have πB = qe11 . . . qerr , where the qi are the pairwise
distinct non-zero prime ideals of B. Being a Dedekind domain with finitely many prime
ideals, B is a PID. By the Chinese remainder theorem, we have for each j ≥ 0

B/πjB = B/qje11 . . . qjerr
∼=

r∏
i=1

B/qjeii ,

hence

B ∼= lim←−
j

B/πjB ∼=
r∏
i=1

lim←−
j

B/qji .

Since B is a subring of L, it is a domain. It follows that we must have j = 1, hence B has a
unique non-zero prime ideal. It follows that B is a DVR. If we write $ for a uniformizer of
B, then we have πB = $eB, hence lim←−

j

B/πjB ∼= lim←−
j

B/$jB. We find that B is a complete

DVR.
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In particular, it makes sense to define eL/K = eq/p and fL/K = fq/p, where p, q are the
unique non-zero prime ideals of A,B.

Corollary 6.2. Suppose that the extension L/K is Galois with valuation vL. Then for any
x ∈ L and σ ∈ Gal(L/K), we have vL(σ(x)) = vL(x).

Corollary 6.3. For any x ∈ L×, we have vL(x) = 1
fL/K

vK(NL/K(x)).

Proof. Let E/K be the Galois closure of L, and let σ1, . . . , σn : L ↪→ E be the distinct
K-embeddings. Then we have NL/K(x) =

∏n
i=1 σi(x), and

[L : K]vL(x) = vL(
n∏
i=1

σ(x)) = vL(NL/K(x)) = eL/KvK(NL/K(x)).

The result now follows from the formula [L : K] = eL/KfL/K .

Working in a complete DVR is very pleasant. We now give several examples of this.

Definition 6.4. Let A be a DVR and let v : K× → Z be the corresponding valuation.
If f(X) = Xd + a1X

d−1 + · · · + ad ∈ K[X] is a polynomial with ad 6= 0, then we define
the Newton polygon of f to be the graph of the largest continuous piecewise linear function
N : [0, d]→ R satisfying the following conditions:

• N(0) = 0 and N(d) = v(ad).

• For all j = 1, . . . , d, N(j) ≤ v(aj).

• The derivative of N is non-decreasing away from its points of discontinuity.

In other words, the Newton polygon is the lower convex hull of the set of points
(j, v(aj)).

Proposition 6.5. Suppose that f(X) factors as f(X) =
∏d

i=1(X−αi) with αi ∈ K. Suppose
that the Newton polygon of f(X) has slopes γ1 ≤ γ2 ≤ · · · ≤ γd, counted with multiplicity.
Then after re-ordering we have γi = v(αi) for each i.

Proof. Let λi = v(αi); we can assume after re-ordering that λ1 ≤ λ2 ≤ · · · ≤ λd. Define the
λ-polygon to be the graph of the continuous piecewise linear function L : [0, d] → R with
L(0) = 0 and L′(x) = λi for x ∈ (i− 1, i). Then L(d) = λ1 + · · ·+ λd = v(α1 . . . αd) = v(ad),
so the Newton polygon and the λ-polygon have the same endpoints. We must show that
they are in fact the same.

We first show that the Newton polygon lies above the λ-polygon. For this, it suffices
to show that for all j = 1, . . . , d, we have v(aj) ≥ λ1 + · · · + λj. But we can write aj =
±
∑
αi1 . . . αij , and each term in the sum has valuation λi1 + · · · + λij ≥ λ1 + · · · + λj. We

therefore have v(aj) ≥ λ1 + · · ·+ λj, by the ultrametric property.
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We now show that the two polygons are in fact equal. We will use the following
general fact: if x1, . . . , xr ∈ K and v(x1) < v(xj) for all j > 1, then v(x1 + · · ·+ xr) = v(x1).
Suppose that λ1 = · · · = λk1 < λk1+1 = · · · = λk2 < . . . . We can write

akj = α1 . . . αkj +
∑

αi1 . . . αikj .

The terms in the sum all involve αr for some r > kj, hence have valuation strictly greater
than λ1 + · · ·+ λkj . We conclude that v(akj) = v(α1 . . . αkj) = λ1 + · · ·+ λkj .

This implies that the two polygons must in fact coincide. Indeed, we have shown that
the Newton polygon lies above the λ-polygon, and that the Newton polygon shares a vertex
with each of the vertices of the λ-polygon. This completes the proof.

Corollary 6.6. Let A be a complete DVR with Frac(A) = K of characteristic 0, and let
f(X) = Xd+a1X

d−1 + · · ·+ad ∈ K[X] be a polynomial with ad 6= 0. Suppose that the slopes
of the Newton polygon of f(X) are λ1 ≤ · · · ≤ λk, each appearing with width w1, . . . , wk.
Then there is a unique factorization f(X) =

∏k
i=1 gi(X) in K[X] such that deg gi(X) = wi

and the Newton polygon of gi(X) has a single segment of slope λi.

Proof. Let L/K denote the splitting field of f(X), and let vL denote the valuation of L, so
that vL(x) = eL/KvK(x) for x ∈ K×. Let α1, . . . , αn be the roots of f(X) in L. We know
that the numbers λi are exactly the e−1L/KvL(αj), with the width wi being the number of j

with vL(αj) = eL/Kλi. We therefore define gi(X) =
∏

(X − αj), the product being over the
roots with vL(αj) = eL/Kλi.

We clearly have f(X) =
∏k

i=1 gi(X) in L[X]. We claim that each gi(X) in fact lies
in K[X]. The group Gal(L/K) permutes the αi leaving the values vL(αi) invariant, so fixes
the coefficients of each gi(X), so we have gi(X) ∈ K[X] by Galois theory. The uniqueness
of the given factorization is clear.

Example 6.7. The polynomial X3 + X2 − 2X + 8 has 3 distinct roots in Q2, because its
Newton polygon has 3 distinct slopes.

We introduce some language to go with the above theorem.

Definition 6.8. A pair (K, v) where K is a field and v : K× → Z is a valuation is called a
discrete valuation field (DVF). If v is clear from the context (for example, if K = Qp), then
we will refer to K itself as a DVF. We then write AK for its valuation ring, mK ⊂ AK for
the maximal ideal, and kK = AK/mK for the residue field.

If AK is complete, then we call (K, v) a complete discrete valuation field (CDVF). In
this case, we say that L/K is an extension of compete discrete valuation fields if L/K is a
separable field extension and L is endowed with its canonical structure of CDVF (i.e. with
AL the integral closure of AK in L).

Let L/K be an extension of complete CDVFs. It is called unramified if eL/K = 1 and
the extension kL/kK of residue fields is separable. If L/K is unramified and Galois, then so
is kL/kK and the map Gal(L/K)→ Gal(kL/kK) is an isomorphism. This can be viewed as
a special case of the following proposition:
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Proposition 6.9. Let A be a complete DVR with fraction field K and residue field kK =
A/mA. Let l/kK be a finite separable extension. Then there exists a finite separable extension
L/K with the following property:

1. There is a kK-isomorphism kL ∼= l, and L/K is unramified.

2. For any finite separable extension E/K equipped with a k-embedding l ↪→ kE, there is
a unique K-embedding L ↪→ E which induces this map on residue fields.

In particular, the field L with this property is unique up to unique isomorphism.

Proof. We first address existence. Let π be a uniformizer of A. Let x ∈ l be a primitive
element, and let f(X) ∈ kK [X] be its minimal polynomial. Thus there is an isomorphism
l ∼= kK [X]/(f(X)). Let f(X) ∈ A[X] be an arbitrary monic lift of f(X), and let B =
A[X]/(f(X)). The polynomial f(X) is irreducible, because a factorization could be reduced
modulo mA to give a factorization of f(X). It is separable for the same reason (look at
common divisors of f(X) and f ′(X)). In particular, B embeds in the field L = K[X]/(f(X)),
showing that B is a domain. For any y ∈ L we have πny ∈ B for some n, showing that
FracB = L. Finally, we have B/(π) = kK [X]/(f(X)) ∼= l.

We claim that B is integrally closed in L. Since B is clearly integral over A, this will
imply that B is the integral closure of A in L, hence that B is a complete DVR with residue
field l and that the extension L/K is unramified. To establish the claim, choose y ∈ L and
suppose that y is integral over B. We can write y = z/πn for some z ∈ B and integer n ≥ 0;
let us assume that n is minimal with respect to this property.

Take an equation yd + b1y
d−1 + · · · + bd = 0 with bi ∈ B. Substituting, we obtain

the equation zd + πnb1z
d−1 + · · · + πndbd = 0 in B. If n > 0, this shows that the element

z = z mod πB of B/πB ∼= l satisfies zd = 0. Since l is a field, this forces z = 0, implying
that z is divisible by π in B, a contradiction. Thus n = 0 and we in fact have y ∈ B, showing
that B is integrally closed.

We now establish the universal property of L/K. Let E/K be a finite separable
extension equipped with a kK-embedding l ↪→ kE, and let C denote the integral closure of A
in E. The polynomial f(X) splits into distinct linear factors in l[X], so by Hensel’s lemma
there is a unique element x ∈ C lifting the image of x ∈ kE and satisfying f(x) = 0. This
determines a homomorphism B = A[X]/(f(X)) → C by the formula X 7→ x. Passing to
fraction fields gives the desired K-embedding L ↪→ E.

The same argument establishes uniqueness: if L ↪→ E is any K-embedding, then we
get an induced map φ : B ↪→ C, hence an element x′ = φ(X mod f(X)) ∈ C such that
f(x′) = 0. The compatibility with the embedding l ↪→ kE means that x′ mod mC = x. The
uniqueness part of Hensel’s lemma then forces x′ = x, showing that there is exactly one
embedding L ↪→ E with the desired properties.

Corollary 6.10. Let A be a complete DVR with field of fractions K, and let E/K be a
finite separable extension such that the corresponding extension kE/kK of residue fields is
separable. Then there is a unique intermediate subfield E/E0/K with the following property:
E0/E is unramified, and if E ′ ⊂ E is any other intermediate field which is unramified, then
E ′ ⊂ E0.
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We call E0 the maximal unramified subextension of E.

Proof. We take L/K to be the unramified extension associated by the proposition to kE/kK ,
and E0 to be the image of L under the corresponding K-embedding L ↪→ E. The corollary
then follows from the universal property of L.

Corollary 6.11. Let A be a complete DVR with field of fractions K, and let E/K be a
finite separable extension such that the corresponding extension kE/kK of residue fields is
separable. Then the following sets are in canonical bijection:

1. The set of intermediate extensions E/L/K such that L/K is unramified.

2. The set of intermediate extensions kE/l/kK.

If L/K is an extension of CDVFs with kL/kK separable, then the extension L/L0

satisfies fL/L0 = 1 and eL/L0 = [L : L0]. Such extensions are said to be totally ramified. We
now characterize these extensions:

Proposition 6.12. Let K be a CDVF of characteristic 0.

1. Let f(X) = Xd + a1X
d1 + · · · + ad ∈ AK [X] be a polynomial which is Eisenstein, i.e.

such that v(ad) = 1 and v(ai) ≥ 1 for each i = 1, . . . , d− 1. Then f(X) is irreducible
and the extension L = K[X]/(f(X)) is totally ramified.

2. Suppose conversely that L/K is a finite extension which is totally ramified, and let
πL ∈ L be a uniformizer with minimal polynomial f(X) = Xd + a1X

d1 + · · · + ad ∈
AK [X]. Then f(X) is Eisenstein and AL = AK [πL].

Proof. The condition that f(X) is Eisenstein is equivalent to the condition that the Newton
polygon NK(f) has a single segment of slope 1/d. Let E denote the splitting field of f(X),
and let π ∈ E be a root, L = K(π). The Newton polygon of f(X) over L has slopes eL/K
times the slopes of the Newton polygon over K, hence equal to eL/K/d. On the other hand
these equal vL(π). Since eL/K ≤ d, it follows that eL/K = d and vL(π) = 1, showing that
L/K is totally ramified of degree d and that f(X) is irreducible.

Suppose instead that L/K is a totally ramified extension, and letB denote the integral
closure of A in L, πL ∈ B a uniformizer with minimal polynomial f(X) ∈ A[X]. Let πK ∈ A
be a uniformizer of A. Then the Newton polygon of f(X) has a single segment of slope 1/d,
so is Eisenstein. Any element x ∈ B admits an expression x =

∑∞
i=0 aiπ

i
L with ai ∈ A; it

follows that the map A[πL]→ B/πKB = B/πeLB is surjective. Applying Nakayama’s lemma
to the finitely generated A-module B/A[πL], we find that B = A[πL].

We state a related result:

Proposition 6.13. Let L/K be an extension of CDVFs of characteristic 0 with kL/kK
separable. Then there exists x ∈ AL such that AL = AK [x].
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Proof. Let L/L0/K be the maximal unramified subextension. We first choose y ∈ kL which
is a primitive element for kL = kL0/kK , and let y ∈ AL0 be any lift of y. Let π ∈ AL be any
uniformizer. Then the previous proposition shows that AL = AL0 [π] = AK [y, π].

Let f(X) ∈ AK [X] be the minimal polynomial of y over K. Then f(X) ∈ kK [X] is
the minimal polynomial of y over kK , and we can write

f(y + π) = f(y) + πf ′(y) + π2z = πf ′(y) + π2z,

where z ∈ AL. The element f ′(y) is a unit, because it reduces modulo π to f
′
(y) 6= 0. We

deduce that vL(f(y+ π)) = 1, and hence f(y+ π) is a uniformizer of AL. We set x = y+ π.
To show that AL = AK [x], it is enough to (by Nakayama’s lemma) to show that the

map AK [x]→ AL/mKAL is surjective. We observe that the map AK [x]→ kL is surjective, so
every element of kL can be represented by an element of AK [x]. Since f(x) is a uniformizer

of AL, every element of AL/mKAL admits a representative of the form
∑eL/K−1

i=0 aif(x)i with
ai ∈ AK [x]. But the polynomial f(X) has coefficients in K, so any such element lies in
AK [x]. This completes the proof.

Finally, we discuss passage to completion.

Proposition 6.14. Let A be a Dedekind domain with field of fractions K, let L/K be a
finite separable extension, let B be the integral closure of A in L, and let q be a non-zero
prime ideal of B lying above the prime p of A. Then:

1. There is a canonical embedding of DVRs Âp → B̂q extending the embedding A→ B.

2. Let Lq, Kp denote the fields of fractions of B̂q and Âp, respectively. Then Lq/Kp is a

finite separable extension, B̂q is the integral closure of Kp in Lq, and we have eLq/Kp =
eq/p, fLq/Kp = fq/p.

3. Suppose further that the extension L/K is Galois. Then Lq/Kp is Galois and the
natural map Dq/p → Gal(Lq/Kp) given by passage to completion is an isomorphism.

Proof. We first note that we have Âp
∼= lim←−

i

A/pi, and similarly for B̂q. Indeed, it suffices to

note that the natural map A/pi → Ap/p
i
p is an isomorphism for any i ≥ 1. It is surjective

by the existence of π-adic expansions. It is injective because pip ∩ A = pi: if a/s ∈ pip ∩ A,
then we have a = sb for some b ∈ A, a ∈ pi, and b ∈ A− p. We then get vp(b) = vp(a) ≥ i,
showing that b ∈ pi.

We have natural maps A/pi → B/qi for each i ≥ 1, and passage to the inverse limit

gives a map Âp → B̂q. It is injective because the map A → B is injective. If we write
q = q1, . . . , qr for the distinct primes of B above p, then there is an isomorphism

lim←−
i

B/piB ∼=
r∏
i=1

B̂qi .
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Since B is a finite free A-module, lim←−
i

B/piB is a finite free Âp-module. We conclude that

the quotient B̂q is a finite free Âp-module. In particular, B̂q is integral over Âp, hence is the

integral closure of Âp in Lq.

We also see (using π-adic expansions and Nakayama’s lemma) that B̂q = Âp · B (i.e.

B̂q is generated as a ring by these two subrings). This implies that Lq = Kp ·L (compositum

of subfields of Lq), hence that Lq/Kp is separable. The isomorphisms B̂q/qB̂q
∼= B/q and

B̂q/pB̂q
∼= B/qeq/pB show that fLq/Kp = fq/p and eLq/Kp = eq/p.

Suppose finally that L/K is Galois. Any element of Dq/p acts on B̂q, by passage to
completion, so we obtain a map Dq/p ↪→ Aut(Lq/Kp). Since the source has order eq/pfq/p
and the target has dimension at most [Lq : Kp] = eLq/KpfLq/Kp , we find that this map
is an isomorphism, that Aut(Lq/Kp) = [Lq : Kp], and hence that the extension Lq/Kp is
Galois.

7 Number fields

Definition 7.1. A number field is a finite extension K/Q. We write OK for the integral
closure of Z in K, and call it the ring of integers of K.

We observe that OK is a Dedekind domain.

Lemma 7.2. Let K be a number field and let p ⊂ OK be a non-zero prime ideal. Then
OK/p is a finite field.

Proof. Let p∩Z = (p), for a prime number p. Then OK/p is a finite extension of Fp, so is a
finite field.

If L/K is a Galois extension of number fields, and q ⊂ OL is a non-zero prime ideal
lying above the prime p of OK , then the map Dq/p → Gal(kq/kp) is surjective. The group
Gal(kq/kp) has a canonical generator, the Frobenius automorphism x 7→ x#kp . If eq/p = 1,
then the map Dq/p → Gal(kq/kp) is an isomorphism and this automorphism therefore lifts to
a canonical element, the Frobenius element Frobq/p ∈ Gal(L/K), which depends only on the
prime q. If σ ∈ Gal(L/K) then Frobσ(q)/p = σ Frobq/p σ

−1, which shows that the Frobenius
conjugacy class Frobp depends only on the underlying prime p (recall that Gal(L/K) acts
transitively on the set of primes of OL above p).

In general, we can study the decomposition group by passage to completion: we write
OKp for the localization and completion of OK at the prime p, and Kp = FracOKp . Then
there is an isomorphism Dq/p

∼= Gal(Lq/Kp), given by “passage to completion”.

Proposition 7.3. Let K be a number field, and let L = K(α) be a finite extension, f(X) ∈
K[X] the minimal polynomial of α. Let p be a non-zero prime ideal of OK. Then the
following two sets are in canonical bijection:

1. The irreducible factors of f(X) in Kp[X].
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2. The primes of OL lying above the prime p of OK.

Proof. Let E/K be the splitting field of f(X), and let G = Gal(E/K), H = Gal(E/L). Let
q be a fixed prime of OE above p, and let D = Dq/p = Gal(Eq/Kp). We first note that there
is an isomorphism of G-sets (i.e. sets with left G-action) between G/H and the set of roots of
f(X) in E, hence an isomorphism of Dq/p-sets between G/H and the set of roots of f(X) in
Eq. It follows that the irreducible factors of f(X) are in Kp[X] are in bijection with the set
of orbits of Dq/p on G/H. This set of orbits is identified with the double quotient D\G/H.

On the other hand, there is an isomorphism of G-sets between G/D and the set of
prime ideals of OE lying above p, because G acts transitively with stabilizer D. The set of
primes ideals of OL lying above p is in bijection with the set of H-orbits, because H acts
transitively on the set of prime ideals of OE above a given prime of OL. We conclude that
the set of primes of OL is in bijection with the double quotient H\G/D.

These two double quotients are in bijection via the map DσH 7→ Hσ−1D. This is the
bijection of the proposition. It can be interpreted directly as follows: if g(X) is an irreducible
factor of f(X) in Kp[X], we choose σ ∈ G such that g(σ(α)) = 0 in Eq. Then we take the
prime ideal σ−1(q) ∩ OL of OL.

To show that this bijection is canonical, we must show that it is independent of
the choice of q. Let τ ∈ G, and let q′ = τ(q). Let g(X) be an irreducible factor of
f(X) in Kq[X]. Then τ induces an isomorphism Eq → Eq′ that respects Kp, so we get
τ(g(σ(α)) = g(τ(σ(α)) = 0. In the bijection defined using q′, we then take the prime ideal
(τσ)−1(q′) ∩ OL = σ−1τ−1τ(q) ∩ OL = σ−1(q) ∩ OL. This shows the independence of the
choice of q.

These kinds of methods are very useful for studying the Galois theory of number
fields. Here is a simple example: let K = Q(

√
d), where d 6= 0, 1 is a square-free integer.

Then K is a quadratic field, and we can use the proposition to factor the ideal pOK for any
prime number p by factoring the polynomial f(X) = X2−d in Qp[X]. We split into 3 cases:

• If p is odd and p - d, then the polynomial f(X) = f(X) mod p ∈ Fp[X] has distinct
roots modulo p. If d is a quadratic residue modulo p then Hensel’s lemma shows
that f(X) splits into linear factors in Qp[X]. Otherwise f(X), and hence f(X), is
irreducible and pOK is prime.

• If p|d, then f(X) is Eisenstein, hence irreducible, and p is ramified in K.

• If p = 2 and p - d, then the behaviour depends on the image of d in Q×2 /(Q×2 )2. If
d ≡ 1 mod 8, then f(X) splits into linear factors in Qp[X]. If d ≡ 5 mod 8, then
f(X) is irreducible and p is unramified in f(X) (because Qp(

√
5)/Qp is unramified).

If d ≡ 3, 7 mod 8, then f(X) is irreducible and p is ramified in K.

The behaviour of Frobenius elements at unramified primes can be analyzed in general as
follows. Let f(X) ∈ Z[X] be a monic irreducible polynomial, let L/Q be its splitting field,
and let α1, . . . , αd ∈ OL be its roots; then Gal(L/Q) is identified with a transitive subgroup
of Sd, the symmetric group on d letters.
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Let p be a prime not dividing disc f (which means all but finitely many primes p),
and let f(X) = f(X) mod p. We claim that p is unramified in OL, and that the cycle type of
the Frobenius element Frobp as an element of Sd depends only on the factorization of f(X)
into irreducibles in Fp[X]. Note that the assumption that p does not divide disc f means
exactly that f(X) has no repeated roots.

To see this, let q be a prime of OL lying above p. Then Lq = Q(α1, . . . , αd). Indeed,
we know that Lq = Qp(α), where α ∈ L is a primitive element. But α is a polynomial in the
α1, . . . , αd with Q-coefficients, and conversely each αi can be expressed as a polynomial in
α with Q-coefficients. Let K ⊂ Lq denote the maximal unramified subextension. We know
that f(X) factors into linear factors over kq, so Hensel’s lemma shows that f(X) factors
into linear factors in OK [X]. This shows that α1, . . . , αd ∈ OK , and hence K = Lq and p is
indeed unramified.

We now show how to calculate Frobq/p. Let αi = αi mod q; then the map {α1, . . . , αd} →
{α1, . . . , αd} is a bijection. The Frobenius automorphism of kq acts on the elements α1, . . . , αd
by cyclic permutations, with cycle types (d1)(d2) . . . (dk), say. The irreducible factors of f(X)
are the products

∏
(X−α), the product running over the roots of α in a given orbit of Frobe-

nius. We see therefore that f(X) factors as a product of k distinct irreducible polynomials,
with degrees d1, . . . , dk.

Now let’s consider a different example. Let l be a prime, and consider a polynomial
f(X) = X l − aX − b ∈ Z[X], where the integers (l − 1)a and lb are coprime. Suppose that
f(X) is irreducible, and let K/Q be the splitting field of f(X). We claim that if p is a prime
of Z ramified in OK , and p is a prime of OK above p, then ep/p = 2 and the inertia group
Ip/p ⊂ Gal(K/Q) ⊂ Sl is generated by a transposition.

To see this, we first note that f(X) = f(X) mod p has a repeated root; otherwise, our
previous argument shows that p is in fact unramified in OK . The equation Xf ′(X)−lf(X) =

alX+ lb−aX = (l−1)aX+ lb shows that the GCD of f(X) and f
′
(X) divides (l−1)aX+ lb.

Our assumption that (l − 1)a and lb are coprime shows that this polynomial is non-zero
modulo p. Since it is linear, we see that if f(X) has a repeated root, then we must have
f(X) = g(X)2h(X), where g(X) ∈ Fp[X] is linear, h(X) ∈ Fp[X] has distinct roots, and g,
h have no roots in common.

Let K0 be the maximal unramified subextension of Kp/Qp. Hensel’s lemma shows
that we can factorize f(X) = r(X)h(X) in OK0 [X], where h(X) ∈ OK0 [X] lifts h(X) and
splits into linear factors in OK0 [X], and r(X) lifts g(X)2. Since Kp is generated over Qp by
the roots of f(X), we conclude that Kp is generated over K0 by adjoining the roots of r(X),
hence is an extension of degree at most 2. Since ep/p = [Kp : K0], and we have assumed
ep/p > 1, we get ep/p = [Kp : K0] = 2. We also see that the inertia group at such a prime
permutes the roots of r(X) and fixes the roots of h(X), so is generated by a transposition.

This completes the proof of the claim, and shows that Gal(K/Q) = Sl: the group Sl
acts transitively on l letters, and l is a prime, so the Galois group contains an l-cycle. Every
number field is ramified above some prime p of Z, so we find that the Galois group contains
a transposition as well, hence equals the whole of Sl. Writing L = KAl for the quadratic
extension of Q fixed by Al, we see that the extension K/L is an everywhere unramified
extension of number fields with Galois group Al.
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As a concrete example, consider the polynomial f(X) = X5 −X + 1. Then f(X) is
irreducible, and its discriminant equals 2869 = 19 · 151. These primes are both ramified in
K, the splitting field of f(X), and we find that the extension K/Q(

√
2869) is an everywhere

unramified extension with Galois group A5.

8 Lower ramification groups

Let L/K be a Galois extension of CDVFs such that kL/kK is separable.

Definition 8.1. Let G = Gal(L/K). For each i ≥ 0 we define the ith ramification group
Gi = ker(Gal(L/K)→ Aut(AL/m

i+1
L )).

Thus G0 = IL/K = ker(Gal(L/K)→ Gal(kL/kK)) is the usual inertia group.

Lemma 8.2. 1. Each Gi is a normal subgroup of G. We have G ⊃ G0 ⊃ G1 ⊃ . . . and
∩i≥0Gi = {1}.

2. Suppose that AL = AK [x] for some x ∈ AL, and for s ∈ G define iG(s) = vL(s(x)−x).
Then iG is independent of the choice of x and we have Gi = {s ∈ G | iG(s) ≥ i + 1}.
(By convention we set iG(1) =∞.)

Proof. The first part is clear from the definition. For the second, we have s ∈ Gi if and
only if s(x) − x ∈ mi+1

L , if and only if vL(s(x) − x) = iG(s) ≥ i + 1. This shows that iG is
independent of the choice of x.

Example 8.3. Let K = Q2(
√

2, i), a compositum of two ramified quadratic extensions. The
quadratic extensions are distinct, and we have G = Gal(K/Q2) ∼= (Z/2Z)× (Z/2Z). Indeed,
ζ = (1 + i)/

√
2 is an 8th root of unity, and ζ − 1 satisfies the polynomial (X + 1)4 + 1 =

X4+4X3+6X2+4X+2, which is Eisenstein over Q2. We find that K/Q2 is totally ramified,
so G = G0.

Let B denote the integral closure of Z2 in K. We have B = Z2[ζ − 1] = Z2[ζ], and
we calculate s(ζ)− ζ for the various elements of G:

s1 :
1− i√

2
− 1 + i√

2
= −
√

2i, iG(s1) = 2,

s2 : −1 + i√
2
− 1 + i√

2
= −
√

2(1 + i), iG(s2) = 4,

s3 : −1− i√
2
− 1 + i√

2
= −
√

2, iG(s3) = 2.

We find G0 = G1 = {1, s1, s2, s3}, G2 = G3 = {1, s2}, and G4 = {1}.

Lemma 8.4. Let π ∈ AL be a uniformizer, and let s ∈ G0, i ≥ 0. Then s ∈ Gi if and only
if s(π)/π ≡ 1 mod (πi).
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Proof. We can assume, after replacing K by the maximal unramified subextension of L/K,
that L/K is totally ramified and AL = AK [π]. If s ∈ G0, then we have iG(s) = vL(s(π)−π) =
vL(s(π)/π − 1) + 1, hence iG(s) ≥ i+ 1 if and only if s(π)/π ≡ 1 mod πiB.

If s ∈ G0, then the element s(π)/π lies in A×L (since it has valuation 0). We define a
filtration of the group UL = A×L by the formula U i

L = ker(A×L → (AL/π
i)×). We thus have

UL/U
1
L
∼= (AL/mL)× = k×L . On the other hand for i ≥ 1 we have U i

L = 1 + πiAL, and we
have an isomorphism πiAL/π

i+1AL ∼= U i
L/U

i+1
L given by x 7→ 1 + x. It is a homomorphism

because (1 + x)(1 + y) = 1 + x+ y + xy, and xy ∈ πi+1AL.

Proposition 8.5. Let π ∈ AL be a uniformizer.

1. There is an injection G0/G1 → k×L given by the formula s 7→ s(π)/π mod mL.

2. For each i ≥ 1, there is an injection Gi/Gi+1 → πiAL/π
i+1AL given by the formula

s 7→ s(π)/π − 1.

3. The quotient G0/G1 is cyclic. If kL has characteristic 0, then the group G1 is trivial.
If kL has characteristic p > 0, then the group G1 is the unique p-Sylow subgroup of G0.

Proof. We have already proved the first two parts. We prove the third. The group G0 is
finite, and G0/G1 is a finite subgroup of the multiplicative group of a field, which is therefore
cyclic. If kL has characteristic 0, then each of the quotients Gi/Gi+1, i > 0, is a finite group
which injects into a Q-vector space, which is therefore trivial. Since ∩iGi = {1}, we see that
the group G1 must be trivial.

If kL has characteristic p, then the same argument shows that G1 has order a power
of p: each Gi/Gi+1 is a subgroup of the additive group of a 1-dimensional kL-vector space.
On the other hand, the quotient G0/G1 injects into the torsion subgroup of k×L , which has
order prime to p. The result follows.

Corollary 8.6. The group IL/K = G0 is soluble. If the residue field kK is finite, then the
group Gal(L/K) is soluble. There is no Galois extension E/Qp with Galois group A5.

Definition 8.7. If L/K is a Galois extension of complete discrete non-archimedean valued
fields, we say that L/K is tamely ramified if the group G1 is trivial. We say that it is wildly
ramified if G1 is non-trivial.

Corollary 8.8. Suppose that the extension L/K is Galois and totally tamely ramified of
degree n. Then K contains the nth roots of unity, and there exists a uniformizer πK ∈ AK
such that L = K( n

√
πK).

Proof. There is an embedding G0 ↪→ k×K . Any finite subgroup of k×K is cyclic, so we find that
G0 is cyclic of degree n. By the existence of Teichmüller representatives, we find that K itself
contains the nth roots of unity. Moreover, if πL ∈ AL is a uniformizer and σ ∈ Gal(L/K) is a
generator, then there is a primitive nth root of unity ζ ∈ A×K such that σ(πL) = ζπL mod π2

L.
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Let α = πL + ζ−1σ(πL) + ζ−2σ2(πL) + · · · + ζ−(n−1)σn−1(πL). Then σ(α) = σ(πL) +
· · · + ζπL = ζα, hence αn ∈ AK . We claim that α is a uniformizer of AL. We calculate
modulo π2

L: here, we have

α mod π2
L ≡ πL + ζ−1ζπL + ζ−2ζ2πL + · · · = nπL mod π2

L.

Since L/K is tamely ramified, n ∈ A×K and hence v(α) = v(πL) = 1. It follows that
AL = AK [α] and αn = πK is a uniformizer of AK .

9 Upper ramification groups

Suppose again that L/K is a Galois extension of CDVFs with kL/kK separable. Consider an
intermediate extension L/E/K with E/K Galois, and let H = Gal(L/E), a normal subgroup
of G. It is immediate from the definition that iH = iG|H , and hence that the ramification
filtrations are compatible: Hi = Gi ∩H. However, this is not true for passage to quotient,
as the following example shows:

Example 9.1. Let L = Q2(
√

2, i). We have seen that G = Gal(L/Q2) ∼= (Z/2Z)×(Z/2Z). We
have G = G0 = G1, and G2 = G3 = Gal(L/Q2(i)), G4 = {1}. We calculate the ramification
groups for some quadratic subextensions of L.

If K = Q2(i), H = Gal(L/K), G/H = {1, s}, then iG/H(s) = vK(−2i) = 2, so
(G/H)0 = (G/H)1, (G/H)2 = {1}. In this case (G/H)i equals the image of Gi in G/H for
each i ≥ 0.

If E = Q2(
√

2), N = Gal(L/E), G/N = {1, t}, then iG/N(t) = vE(−
√

2 −
√

2) = 3,
so (G/N)0 = (G/N)1 = (G/N)2, (G/N)3 = {1}. In particular, (G/N)3 is not equal to the
image of G3 in G/N .

We therefore now show how to modify the numbering of ramification subgroups so
that they become compatible with passage to quotient. This work will later play an essential
role in our formulation of global class field theory.

Definition 9.2. If u ≥ 0 is a real number, then we define Gu = Gdue = {s ∈ G | iG(s) ≥
u+ 1}. The ramification function is ϕ(u) = ϕL/K(u) =

∫ u
t=0

[G0 : Gu]
−1dt.

Lemma 9.3. 1. The function ϕ is a continous piecewise linear, increasing homeomor-
phism of [0,∞) to itself.

2. We have the formula ϕ(u) + 1 = 1
#G0

∑
s∈G min(iG(s), u+ 1).

Proof. We can write an explicit formula: let gi = #Gi, and suppose that m ≤ u ≤ m + 1,
where m is an integer. Then we have

ϕ(u) =
m∑
i=1

gi/g0 + (u−m)(gm+1/g0).

This shows that ϕ is increasing and piecewise linear, with discontinuities in the derivative
only possible at integer values of u.
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To show the second part of the lemma we first observe that the right-hand side is a
continuous, increasing, piecewise linear function, with discontinuities in the derivative only
possible at integer values of u. It takes the value 1 at u = 0. It therefore suffices to show
that for non-integer values of u, both the left-hand side and the right-hand side have the
same derivative.

At a point m < u < m+ 1, the right-hand side has derivative equal to g−10 times the
number of s ∈ G such that iG(s) < u+ 1. This is g−10 #Gu = [G0 : Gu]

−1, by definition, and
this equals the derivative of the left-hand side.

Definition 9.4. For v ∈ [0,∞), we define ψ(v) = ψL/K(v) = ϕ−1(v). Thus ψ is a piecewise
linear, increasing homeomorphism of [0,∞) to itself. The ramification groups Gv are then
defined for all real numbers v ∈ [0,∞) by the formula Gv = Gψ(v).

It is clear from the definition that ∩v>0G
v = {1} and that G0 = G0 = IL/K . The

filtration is left-continuous, in the sense that Gv = ∩ε>0G
v−ε for all v ≥ 0. We say that a real

number v is a jump in the upper-numbering filtration if the inclusion Gv+ε ⊂ Gv is strict for
all ε > 0. In contrast to the lower numbering, jumps can occur at rational numbers which
are not integers!

Lemma 9.5. Let σ ∈ G/H. Then we have the formula

iG/H(σ) =
1

eL/E

∑
s∈σ

iG(s).

Proof. Choose elements x ∈ AE, y ∈ AL such that AE = AK [x] and AL = AK [y]. Let
σ ∈ G/H be non-trivial, and choose s ∈ σ. Then we have

iG/H(σ) = vE(σ(x)− x) = e−1L/EvL(σ(x)− x).

Let f(X) ∈ AE[X] denote the minimal polynomial of y over E. Then we have f(X) =∏
t∈H(X−t(y)), hence s(f)(X) =

∏
t∈H(X−st(y)), and the right-hand side in the statement

of the lemma equals 1
eL/E

vL(s(f)(y)). Writing a = σ(x)− x, b = s(f)(y), we must therefore

show that a, b generate the same ideal of AL.
We show the divisibility in each direction. The polynomial s(f)(X)− f(X) ∈ AE[X]

has all coefficients divisible by s(x) − x = σ(x) − x, which shows that s(f)(y) − f(y) =
s(f)(y) = b is divisible by s(x)− x = a. On the other hand, we can write x = g(y) for some
polynomial g(X) ∈ AK [X] (because x ∈ AL = AK [y]). Then g(X) − x ∈ AE[X] has y as a
root, and we can therefore write g(X)−x = f(X)h(X) for some polynomial h(X) ∈ AE[X].
Then g(X)− s(x) = s(f)(X)s(h)(X), and hence (evaluating at X = y)

g(y)− s(x) = x− s(x) = a = s(f)(y)s(h)(y) = bs(h)(y),

showing that b divides a. This concludes the proof.

Lemma 9.6. 1. Let σ ∈ G/H, and let j(σ) = sups∈σ iG(s). Then iG/H(σ) − 1 =
ϕL/E(j(σ)− 1).
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2. Suppose that v = ϕL/E(u). Then (G/H)v = im(Gu → G/H).

Proof. Choose s ∈ G such that iG(s) = j(σ) = m, say. If t ∈ H then iG(st) ≤ m. If t lies
in Hm−1 then iG(t) ≥ m, hence iG(st) ≥ m, hence iG(st) = m. If t 6∈ Hm−1 then iG(t) < m,
and so iG(st) = iG(t). In either case we have iG(st) = min(iG(t),m). We then have the
formula

iG/H(σ) =
1

eL/E

∑
s∈σ

iG(s) =
1

h0

∑
t∈H

min(iG(t),m) = 1 + ϕL/E(m− 1),

which shows the first part. For the second, we have im(Gu → G/H) = GuH/H, and then
for σ ∈ G/H,

σ ∈ (G/H)v ⇔ ϕL/E(j(σ)− 1) ≥ ϕL/E(u)⇔ j(σ) ≥ u+ 1⇔ σ ∈ GuH/H,

as desired.

Lemma 9.7. We have the formula ϕL/K = ϕE/K ◦ ϕL/E.

Proof. Again both sides are continuous, piecewise linear, increasing homeomorphisms of
[0,∞) into itself. It suffices therefore to show that the derivatives are equal, wherever they
are defined. The derivative of the left-hand side at u equals [G0 : Gu]

−1, while the derivative
of the right-hand side equals ϕ′E/K(ϕL/E(u))ϕ′L/E(u) = [G/H : (G/H)ϕL/E(u)]

−1[H0 : Hu]
−1.

By the previous lemma, this is equal to [G/H : GuH/H]−1[H0 : Hu]
−1 = [G0 : Gu]

−1, as
required.

Theorem 9.8. For all v ≥ 0, we have (G/H)v = GvH/H.

Proof. We have (G/H)v = (G/H)ψE/K(v) = GuH/H, where u = ψL/E(ψE/K(v)), or equiva-
lently v = ϕE/K(ϕL/E(u)) = ϕL/K(u), by the lemma. This in turn implies that Gu = Gv, as
desired.

Example 9.9. Let L = Q2(
√

2, i), K = Q2(i), and E = Q2(
√

2). Let G = Gal(L/Q2),
H = Gal(L/K), N = Gal(L/E). We calculate G1 = G, G2 = H (and the jumps are at
v = 1, 2).

We have (G/H)1 = G/H, and the jump is at v = 1. We have (G/N)2 = G/N , and
the jump is at v = 2. This is in accordance with the theorem.

The existence of the upper numbering allows us to generalize the notion of maximal
unramified subextension. For simplicity, we will restrict here to the case of Galois extensions
only.

Theorem 9.10. Let L/K be as above, and let a ≥ 0 be a real number.

1. If a = 0, then La is the maximal unramified subextension of L/K.

2. Let L/E/K be an intermediate extension, Galois over K. Then Ea = La ∩ E.
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3. Let E1, E2 be intermediate extensions, Galois over K. Then Ea
1 · Ea

2 ⊂ (E1 · E2)
a. In

particular, if Ea
1 = E1 and Ea

2 = E2 then (E1 · E2)
a = E1 · E2.

Proof. We have Ga = G0 = G0 = IL/K , so the first part is clear. For the second, the
subgroup of G fixing Ea is the pre-image of (G/H)a in G; by Herbrand’s theorem, this is
exactly GaH, which is the subgroup of G fixing La ∩ E.

For the third part, let H1 = Gal(L/E1), H2 = Gal(L/E2). Then E1 · E2 is the fixed
field of H1 ∩ H2, and we must show that the pre-image of (G/H1 ∩ H2)

a in G, namely
Ga(H1 ∩H2), is contained inside (GaH1) ∩ (GaH2). This is clear.

This notion becomes particularly useful in the case of an abelian extension, thanks
to the Hasse–Arf theorem:

Theorem 9.11. Let L/K be an abelian extension of complete fields with kL/kK separa-
ble, and let v ≥ 0 be a jump in the ramification filtration (i.e. a real number such that
Gal(L/K)v 6= Gal(L/K)v+ε for all ε > 0). Then v ∈ Z.

Definition 9.12. Let L/K be a Galois extension of CDVFs with kL/kK separable. If
Gal(L/K) is abelian, then we define the conductor of L/K to be the ideal fL/K = ma

K,
where a ≥ 0 is the smallest non-negative integer such that Gal(L/K)a = {1} (or equivalently
La = L).

Proposition 9.13. Let E/K be a Galois extension of CDVFs with kE/kK separable, and
let L1, L2/K be intermediate extensions, abelian over K. Then L1L̇2 is abelian over K, and
fL1·L2/K = lcm(fL1/K , fL2/K).

Proof. If a ∈ [0,∞), then we have (L1 ·L2)
a = (L1 ·L2)∩Ea, hence Gal(L1 ·L2/K)a = {1} if

and only if L1 ·L2 ⊂ Ea, if and only if L1 ⊂ Ea and L2 ⊂ Ea, if and only if Gal(L1/K)a = {1}
and Gal(L2/K)a = {1}. The result follows.

10 The different

Let A be a Dedekind domain with field of fractions K, and let V be a finite-dimensional
K-vector space.

Definition 10.1. An A-lattice in K is a finitely generated A-submodule M ⊂ V which spans
V .

For example, if e1, . . . , en is a K-basis of V , then ⊕ni=1Aei is an A-lattice. If A is a
PID (so that every finitely generated torsion-free module is free), then every A-lattice of V
has this form.

Now suppose that V is endowed with a symmetric bilinear form S : V × V → K. In
this case, if M is an A-lattice of V we define M∨ = {v ∈ V | S(v,M) ⊂ A}.

Lemma 10.2. Let M,N be an A-lattice of V .

1. M∨ is an A-lattice of V .
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2. If M ⊂ N , then N∨ ⊂M∨.

3. If S ⊂ A is a multiplicative subset, then S−1M is an S−1A-lattice of V , and (S−1M)∨ =
S−1(M∨).

4. We have M = (M∨)∨.

Proof. We first note that if M ⊂ N , then N∨ ⊂ M∨, from the definition. If M = ⊕ni=1Aei,
where e1, . . . , en is a K-basis of V , then M∨ = ⊕nj=1Afj, where f1, . . . , fj is the dual K-basis
(with respect to S). In particular, M∨ is a lattice. In general, we can find a sandwich
M1 ⊂ M ⊂ M2, where M1,M2 are free A-modules; then we get M∨

2 ⊂ M ⊂ M∨
1 , which

shows that M spans V (it contains a lattice) and is finitely generated (it is contained inside
a lattice), hence M is itself a lattice.

If M is a lattice and S is a multiplicative subset of A, then S−1M is finitely generated
and spans V , so is an S−1A-lattice. We have M∨ ⊂ (S−1M)∨, hence S−1(M∨) ⊂ (S−1M)∨.
On the other hand if b1, . . . , bm are A-module generators for M and v ∈ (S−1M)∨, then we
can write S(v, bi) = ai/si for ai ∈ A, si ∈ S, hence S(siv, bi) ∈ A, hence s1 . . . smv ∈ M∨,
hence v ∈ S−1(M∨).

Finally we show M = (M∨)∨. If m ∈ M , then S(m,M∨) = S(M∨,m) ⊂ A (because
S is symmetric and by the definition of M∨). This shows M ⊂ (M∨)∨. If M is A-free,
then (M∨)∨ = M (because the dual basis of the dual basis is the original basis). Using that
passage to the dual lattice commutes with localization, we see that the inclusion M ⊂ (M∨)∨

becomes an isomorphism after localization at any non-zero prime ideal P ⊂ A.
We therefore need to show that if M ⊂ N are A-lattices of V such that MP = NP

for all such primes P , then M = N . Let n ∈ N ; then for any non-zero prime ideal P , we
can write n = mP/sP with mP ∈ M , sp ∈ A− P . The ideal generated by all sP equals the
unit ideal, so we can find primes P1, . . . , Pr and t1, . . . , tr ∈ A such that

∑r
i=1 tisPi

= 1. We
get n =

∑r
i=1 tisPi

n =
∑r

i=1 timPi
∈M , showing that M = N , as desired.

We apply this formalism in the following situation. Let E/K be a finite separable
extension, and let B denote the integral closure of A in E. We have a non-degenerate
symmetric K-bilinear form S : E × E → K given by the formula S(x, y) = trE/K(xy).

Definition 10.3. The codifferent is cB/A = B∨ = {x ∈ E | trE/K xB ⊂ A}. Note that it
is stable under multiplication by B, so is even a non-zero fractional ideal of B (not just a
lattice). We define the different as the inverse ideal dB/A = c−1B/A.

Note that B ⊂ B∨, since trE/K(B) ⊂ A, so dB/A ⊂ B is in fact an ideal (not just a
fractional ideal).

Lemma 10.4. Let S ⊂ A be a multiplicative subset. Then dS−1B/S−1A = S−1dB/A.

Proof. This follows from the two facts that localization commutes with taking the dual
lattice, and with taking the inverse of a non-zero fractional ideal.

Lemma 10.5. Let q ⊂ B be a non-zero prime lying above the prime p of A. Then dB̂q/Âp
=

dB/AB̂q.
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Proof. By the previous lemma, we can assume after replacing A by Ap that A is a DVR. Let
q = q1, . . . , qg be the primes of B above p = (π). Then we have an isomorphism

B̂ = lim←−
i

B/piB ∼=
g∏
i=1

B̂qi ,

and we define Ê = B̂[1/π] =
∏g

i=1Eqi . We observe that Ê is a K̂-vector space of dimension

[E : K]; and if x1, . . . , xn is a K-basis of E, then it is also a K̂-basis of Ê. We define a map

trÊ/K̂ : Ê → K̂ in the usual way; this restricts to trE/K on the subring E ⊂ Ê.

Define cB̂/Â = {b ∈ Ê | trÊ/K̂ bB̂ ⊂ Â}. Then cB̂/Â = cB/A · B̂. Indeed, if x1, . . . , xn

is an A-basis of B, then it is also a Â-basis of B̂. If y1, . . . , yn is the dual K-basis of E with
respect to the trace pairing, then we get

cB̂/Â = ⊕ni=1Â · yi = B̂cB/A.

On the other hand, we can decompose trÊ/K̂ =
∏g

i=1 trEqi/Kp , which shows that

cB̂/Â =

g∏
i=1

cB̂qi/Â
.

We finally obtain
cB̂qi/Âp

= cB̂/ÂB̂qi = cB/AB̂qi ,

as desired.

Lemma 10.6. Suppose that L/E is a finite separable extension, and let C denote the integral
closure of B in L. Then we have the equality dC/A = dB/A · dC/B as ideals of C.

Proof. We use the formula trL/K = trE/K ◦ trL/E. Note that if a is a non-zero fractional ideal
of A, and b is a fractional ideal of B, then we have trE/K b ⊂ a if and only if b ⊂ acB/A.
Indeed, we calculate

tr b ⊂ a⇔ a−1 tr b = tr a−1b ⊂ A⇔ a−1b ⊂ cB/A ⇔ b ⊂ acB/A.

We can then calculate for an arbitrary fractional ideal c ⊂ E:

c ⊂ cC/A ⇔ trL/K c = trE/K trL/E c ⊂ A⇔ trL/E c ⊂ cB/A ⇔ c ⊂ cB/AcC/B.

This shows that cC/A = cB/AcC/B. Multiplying by dC/AdB/AdC/B on either side now gives the
result.

Lemma 10.7. Let α ∈ B be a primitive element for the extension E/K, and let f(X) ∈
K[X] be its minimal polynomial. Then A[α] ⊂ E is a lattice and A[α]∨ = f ′(α)−1A[α].
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Proof. We claim that if i ≥ 0, then trE/K α
i/f ′(α) equals 0 if 0 ≤ i ≤ n − 2; equals 1 if

i = n − 1; and lies in A if i ≥ n. If i ≥ n, then αi is an A-linear combination of the
elements 1, α, . . . , αn−1, so it suffices to establish the claim in the cases i = 0, . . . , n − 1.
Before establishing the claim, we show why it implies the lemma. Let M = f ′(α)−1A[α].
The claim shows that trE/KMA[α] ⊂ A, so M ⊂ A[α]∨. Let f1, . . . , fn denote the dual
basis to 1, α, . . . , αn−1. We just need to show f1, . . . , fn ∈ M . But the claim implies that
fn = f ′(α)−1 and also for each i = 1, . . . , n− 1, fn−i−αi/f ′(α) ∈ ⊕i−1j=0Afn−j. By induction,
we see that each fn, . . . , f1 lies in M , as required.

We now establish the claim. Let L/K be the Galois closure of E, and let α1, . . . , αn
be the Galois conjugates of α. For each j = 0, . . . , n− 1 we have an identity

n∑
k=1

f(X)

X − αk
αjk

f ′(αk)
= Xj.

Indeed, both sides are polynomials of degree at most n − 1 which agree at the n points
X = α1, . . . , αn. The coefficient of Xn−1 in the left-hand side equals

∑n
k=1 α

j
k/f

′(αk) =
trE/K α

j/f ′(α). The coefficient of Xn−1 in the right-hand side equals 0 if j < n− 1, and 1 if
j = n− 1. This concludes the proof.

Proposition 10.8. Let α ∈ B be a primitive element for the extension E/K, and let f(X) ∈
K[X] be its minimal polynomial. Then (f ′(α)) ⊂ dB/A, with equality if and only if B = A[α].

Proof. Let C = A[α], and let a = {b ∈ B | bB ⊂ C}, a non-zero ideal of B. We have for any
non-zero b ∈ B:

b ∈ a⇔ bB ⊂ C ⇔ C∨ ⊂ (bB)∨ ⇔ f ′(α)−1C ⊂ b−1cB/A ⇔ b ∈ f ′(α)cB/A.

This shows that a = f ′(α)cB/A, hence f ′(α) = adB/A. We see that (f ′(α)) ⊂ dB/A, with
equality if and only if a = B, i.e. B = C.

Proposition 10.9. Let q ⊂ B be a non-zero prime ideal lying above the prime p of A, and
let vq : E× → Z be the corresponding valuation. Suppose that the corresponding extension
kq/kp of residue fields is separable. Then vqdB/A ≥ eq/p − 1, with equality if and only if eq/p
is coprime to the residue characteristic of q, i.e. the ramification is tame. In particular,
vqdB/A = 0 if and only if eq/p = 1, i.e. q is unramified over p.

Proof. After localization and completion, we can assume that both A and B are complete
DVRs. By the transitivity of the different, and the existence of the maximal unramified
subextension of E/K, we can assume either that e = 1 or that e > 1 and f = 1. In the
first case, we choose a primitive element α for kE/kK , and let f(X) ∈ A[X] be a monic
polynomial lifting the minimal polynomial of α, and α ∈ B the unique root of f(X) in B

lifting α. We have seen that B = A[α] and f
′
(α) 6= 0, showing that dB/A = B is the unit

ideal.
In the second case, we let π ∈ B be a uniformizer and let f(X) ∈ A[X] be its

minimal polynomial. In this case f(X) is an Eisenstein polynomial and B = A[π], so we get
dB/A = f ′(π)B. Using that f(X) is Eisenstein we have

f ′(π) = eπe−1 mod πeB.
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Thus vq(dB/A) ≥ e− 1, with equality if and only if e ∈ B×. This completes the proof.

Corollary 10.10. Only finitely many primes of A can ramify in B.

Example 10.11. We calculate the ring of integers of K = Q(α), where α is a root of f(X) =
X3 − 2. Let C = Z[α] ⊂ OK . We claim that in fact C = OK . This will be the case if and
only if dOK/Z = f ′(α)OK = 3α2OK . The polynomial X3 − 2 is Eisenstein, so the prime 2 is
totally and tamely ramified in OK . It follows that there is a unique prime q2 = (α) of OK
above 2, and vq2(dOK/Z) = 2. We have (X − 1)3− 2 = X3− 3X2 + 3X − 3. This polynomial
is Eisenstein, showing that 3 is also totally wildly ramified in K, with 3 = q33 = (α + 1)3.
This shows that vq3(dOK/Z) ≥ 3. We find that 3α2OK = q22q

3
3 divides dOK/Z, which divides

f ′(α)OK = 3α2OK . Thus equality holds and C = OK .

11 Cyclotomic fields

If m ≥ 1 is an integer, then we typically use the notation ζm for a primitive mth root of
unity, and let Q(ζm) denote the splitting field of Xm − 1. A field of this form is called a
cyclotomic field.

We will study the case where m = pr is a prime power. We first study the local case.
Let Φ(X) = (Xpr − 1)/(Xpr−1 − 1); then the roots of Φ are exactly the primitive (pr)th roots
of unity. We claim that Φ(X) is irreducible over Qp. Evaluating at X = 1, we have∏

a∈(Z/prZ)×
(ζa − 1) = Φ(1) = p.

Let ζ = ζpr and K = Qp(ζ). Then Zp[ζ] ⊂ OK . We observe that for any a ∈ (Z/prZ)× with
ab ≡ 1 mod pr, ζ−1 divides ζa−1 in OK , as we can write (ζa−1)/(ζ−1) = 1+ζ+· · ·+ζa−1.
Similarly, ζa−1 divides ζab−1 = ζ−1, as we can write (ζab−1)/(ζa−1) = 1+ζb+· · ·+ζ(a−1)b.
It follows that as ideals (1− ζ) = (1− ζa) for any a ∈ (Z/prZ)×, and hence (using the above
identity) we obtain the equality of ideals

(1− ζ)(p−1)p
r−1

= pOK .

This shows that the ramification index eK/Qp is at least (p−1)pr−1. Since eK/Qp ≤ [K : Qp] ≤
deg Φ(X) = (p−1)pr−1, it follows that equality holds, eK/Qp = [K : Qp] = (p−1)pr−1, and 1−
ζ is a uniformizer of OK . Moreover, the injective homomorphism Gal(K/Qp) → (Z/prZ)×,
which sends σ ∈ Gal(K/Qp) to the unique a such that σ(ζ) = ζa, is an isomorphism.

Now let E = Q(ζ). Since the polynomial Φ(X) is irreducible over Qp, it is irreducible
over Q, so we see that [E : Q] = [K : Qp], and there is a unique prime ideal p of OE above
p which satisfies Ep = K. We claim that we even have OE = Z[ζ]. We know that this is
true if and only if dE/Q = (Φ′(ζ)) = pr(1 − ζp)−1OE. This equality holds after localization
at p, since dE/Q respects localization and completion and we have OK = Zp[ζ]. On the
other hand, we always have (Φ′(ζ)) ⊂ dE/Q, and the left-hand side divides prOE, hence has
zero valuation at all primes of OE not lying above p. We conclude that equality holds and
OE = Z[ζ]. Moreover, no prime other than p ramifies in the field E.

32



Let l be a prime of E = Q(ζpr) lying above a rational prime l 6= p; then l is unramified
in E. Recall that the decomposition group Dl/l

∼= Gal(Fl/Fl) is cyclic, generated by the
Frobenius element Frobl/l : x 7→ xl. In fact, Frobl/l ∈ Gal(E/Q) ∼= (Z/prZ)× is identified
with the residue class of l modulo pr: we have an injection

O×E [pr] ↪→ F×l .

By definition, this is compatible with the action of Frobl/l on the left-hand side and the
map x 7→ xl on the right hand side. It follows that Frobl/l agrees with multiplication by
l on O×E [pr], which is equivalent to saying that Frobl/l = l in Gal(E/Q). We observe that
Frobl/l = Frobl depends only on the prime l, and not on the choice of prime l of OE above
it; this is a general feature of abelian extensions (because of the formula σ Frobl/l σ

−1 =
Frobσ(l)/l).

We can use this to give a quick proof of the quadratic reciprocity law. Let p be
an odd prime. Since the group (Z/pZ)× is cyclic of order p − 1, it has a unique index
2 subgroup; by Galois theory, since means that Q(ζp) contains a unique subfield which is
quadratic over Q. Such a subfield can be ramified only at the prime p, which implies (by

an earlier calculation) that it must be Q(
√
p∗), where p∗ =

(
−1
p

)
p. We can characterize

Gal(Q(ζp)/Q(
√
p∗)) ⊂ (Z/pZ)× as the set of quadratic residues modulo p.

We show that
(
p∗

q

)
=
(
q
p

)
by looking at how q splits in Q(

√
p∗). We have Frobq =

q mod p in Gal(Q(ζp)/Q). The prime q splits in Q(
√
p∗) if and onlyDq/q ⊂ Gal(Q(ζp)/Q(

√
p∗)),

if and only if q is a square mod p. On the other hand the prime q splits in Q(
√
p∗) if and

only if the equation X2 − p∗ has a solution in Fq, if and only if p∗ is a square mod q.

12 Class field theory

We are now going to discuss global class field theory. Let K be a number field. Recall that
an extension E/K is said to be abelian if it is Galois with abelian Galois group. The main
goal of class field theory is to describe all abelian extensions of K in terms of the ‘internal
arithmetic’ of K. Let I denote the group of fractional ideals of OK , and P ⊂ I the subgroup
of principal fractional ideals αOK , α ∈ K×. The ideal class group of OK is the quotient
H(OK) = I/P . Class field theory gives a description of the abelian extensions of K in terms
of so-called ray class groups, which are generalizations of the ideal class group. We begin by
describing these.

Definition 12.1. A divisor of K is a formal product c = c0 ·c∞, where c0 ⊂ OK is a non-zero
ideal and c∞ is a (possibly empty) set of embeddings τ : K ↪→ R.

If c, d are divisors we write c ≤ d if c0|d0 and c∞ ⊂ d∞. Thus the set of divisors of
K is partially ordered, with minimal element OK (the unit ideal of OK with empty set of
infinite places).

(The terminology of divisors is supposed to remind you of algebraic curves, where
divisors are formal sums of points.) If c is a divisor, then we write I(c) ⊂ I for the group
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of non-zero fractional ideals which are prime to c0, i.e. satisfying vp(a) = 0 for all p|c0. We
write Kc ⊂ K× for the subgroup of α ∈ K× satisfying the following conditions:

• If p is a prime of OK dividing c0, then vp(α) ≥ 0 and vp(α− 1) ≥ vp(c0).

• If τ : K ↪→ R is a real embedding which lies in c∞, then τ(α) > 0.

We write Pc ⊂ P for the subgroup of principal fractional ideals of the form (α) for some
α ∈ Kc. It is clear from the definition that Pc ⊂ I(c), and we accordingly call the quotient
H(c) = I(c)/Pc the ray class group of level c.

We now discuss the relation of the groups H(c) with the usual ideal class group. Let
P (c) = P ∩ I(c) denote the subgroup of principal fractional ideals which are prime to c0.
Then there is are obvious maps I/Pc → I(c)/P (c) ↪→ I/P , hence H(c)→ H(OK).

Proposition 12.2. 1. The natural map I(c)/P (c)→ I/P = H(OK) is an isomorphism.

2. Let U = O×K and Uc = U ∩Kc. Then there are natural short exact sequences of abelian
groups

0 //P (c)/Pc
//H(c) //H(OK) //0

0 //U/Uc
//(OK/c0)× ×

∏
τ∈c∞{±1} //P (c)/Pc

//0.

In particular, H(c) is a finite group, of order hc = hKφ(c)
[U :Uc]

, where hK = #H(OK) and

φ(c) = 2#c0(OK/c0)×.

Proof. We begin by recalling the basic finiteness results proved in Part II Number Fields.
First, the group H(OK) is finite. Second, let τ1, . . . , τn : K ↪→ C denote the n = [K : Q]
distinct complex embeddings of K. We define r1 to be the number of embeddings that
actually take values in R, and r2 = (n − r1)/2. The Dirichlet unit theorem says that there
is an isomorphism O×K ∼= ∆× Zr1+r2−1, where ∆ is the finite group of roots of unity in K.

To show that the map I(c)/P (c)→ I/P is an isomorphism, it remains to show that
it is surjective; in other words, we must show that for any non-zero fractional ideal a ⊂ K,
we can find α ∈ K× such that αa ∈ I(c). We can assume without loss of generality that
a ⊂ OK is a non-zero ideal. By the Chinese remainder theorem, we can find α ∈ K× such
that vp(α) = vp(a) if p|c0. Then α−1a is prime to c0, as desired.

We now come to the second part of the proposition. The existence of the first exact
sequence follows immediately from the first part of the lemma. To get the second exact
sequence, let K(c) ⊂ K× denote the set of elements α such that (α) ∈ P (c). Then Kc ⊂ K(c),
and we have a commutative diagram with exact rows:

0 //U //K(c) //P (c) //0

0 //Uc

OO

//Kc
//

OO

Pc
//

OO

0.

By the snake lemma, there is an exact sequence

0 //U/Uc
//K(c)/Kc

//P (c)/Pc
//0.
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To complete the proof, we need to show that the natural map

K(c)/Kc → (OK/c0)× ×
∏
τ∈c∞

{±1}

is an isomorphism. (On each factor τ ∈ c∞, the map is α 7→ sign τ(α).) This map is injective,
by definition. To show it is surjective, we observe that the Chinese remainder theorem shows
that for any x ∈ (OK/c0)×, we can find α ∈ OK such that α ≡ x mod c0 and τ(x) > 0 for
all τ ∈ c∞. Indeed, we can find an element x satisfying the first condition. Let N ≥ 1 be an
integer in c0 (e.g. the integer [OK : c0]). Then for a ≥ 1 sufficiently large, τ(x+ aN) > 0 for
all τ ∈ c∞.

We therefore just need to show that for any subset S ⊂ c∞, we can find α ∈ K(c)
such that τ(α) > 0 if τ ∈ S and τ(α) < 0 if τ 6∈ S. To accomplish this, choose β ∈ OK
such that K = Q(β), let τ1, . . . , τr be the elements of c∞, and let βj = τj(β). Identify
S with a subset of {1, . . . , r}. Then there is (e.g. by the Chinese remainder theorem) an
isomorphism R[X]/(

∏r
j=1(X − βj)) ∼= Rr, which sends X to (β1, . . . , βr). We can therefore

find a polynomial f(X) ∈ R[X] such that f(βj) > 0 if j ∈ S and f(βj) < 0 if j 6∈ S. Since
Q is dense in R, we can even assume f(X) ∈ Q[X]. Clearing denominators (which does not
affect signs), we can even assume f(X) ∈ Z[X]. Then we can take α = f(β); for we have
τjα = τjf(β) = f(βj), which has the required sign. If α is not prime to c0, we replace it by
1 +Nα, where N ∈ c0 is a sufficiently large integer.

Example 12.3. Suppose that K = Q and c = (N) · ∞, for some integer N ≥ 1. Then
U = {±1} and Uc is trivial; I/P = H(Z) is trivial. We see that H(c) ∼= (Z/NZ)× in this
case. If a ⊂ Z is an ideal which is prime to N , then this isomorphism sends the class [a] of
a in H(c) to the integer m, where m ≥ 1 is the unique positive generator of a.

Now suppose instead that K is a real quadratic field and c = c∞ is the the set of real
places. Suppose further that hK = 1, i.e. the ideal class group of OK is trivial. By the unit
theorem, there is a ‘fundamental unit’ ε ∈ O×K such that every element of O×K has the form
±εn for a unique n ∈ Z. Then H(c) = ({±1} × {±1})/{±εZ}. The group H(c) is trivial if
and only if ε has opposite signs at the infinite place, if and only if NK/Qε = −1. Otherwise,
H(c) has 2 elements.

Either case can occur: examples are given by Q(
√

2) (which has class number 1 and
fundamental unit 1 +

√
2) and Q(

√
3) (which has class number 1 and fundamental unit

2 +
√

3).

With these preliminaries out of the way, we can discuss class field theory. Let L/K
be an abelian extension of number fields. If p is a non-zero prime of OK which is unramified
in OL, then we define the Artin symbol (p, L/K) = Frobq/p, where q is any prime of OL
lying above p.

If c is a divisor such that c0 is divisible by all primes which ramify in OL, then we
can extend the Artin symbol to a homomorphism ψL/K : I(c)→ Gal(L/K) by specifying its
values on prime ideals: we set ψL/K(p) = (p, L/K).

We introduce a divisor fL/K , which we call the support of L, as follows. We define
fL/K,∞ to be the set of embeddings τ : K ↪→ R which do not extend to an embedding L ↪→ R
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(of course, it will extend to an embedding L ↪→ C). We define fL/K =
∏

p p
aL/K , where aL/K

is the least integer a ≥ 0 such that Da
q/p = 1, and q is any choice of prime of OL above p.

Note that aL/K > 0 if and only if p is ramified in L; thus this product has only finitely many
terms that are not 1.

Let c be a divisor of K such that c ≥ fL/K . It follows from the definition that c0
is divisible by all prime ideals of OK which are ramified in OL, so the map ψL/K : I(c) →
Gal(L/K) is defined. The first main theorem of class field theory is then as follows:

Theorem 12.4. Let L/K be an abelian extension of number fields, and let c ≥ fL/K be a
divisor of K. Then the map ψL/K is surjective and its kernel contains Pc. It particular, it
factors through I(c) → I(c)/Pc = H(c), giving a surjective homomorphism ψL/K : H(c) →
Gal(L/K).

The second main theorem of class field theory is as follows:

Theorem 12.5. Let c be a divisor of K. Then there is a canonical bijection between the
following two sets:

1. The set of abelian extensions L/K such that fL/K ≤ c.

2. The set of subgroups of the finite group H(c).

The bijection is given by the map L/K 7→ kerψL/K. In particular, the maximal abelian
extension Lc/K of support at most c, which we call the ray class field of level c, satisfies
Gal(Lc/K) ∼= H(c).

An important point is that if L1, L2/K are abelian extensions of K (say inside a
fixed algebraic closure K/K), and fL1/K ≤ c, fL2/K ≤ c, then fL1·L2/K ≤ c. Indeed, they are
subfields of the maximal extension Lc/K of support c. This explains why we need to use the
upper ramification subgroups in defining these objects.

We now discuss examples. The basic example is when c = OK is the trivial divisor,
and H(c) = H(OK) is the usual ideal class group. Then class field theory says that there is
an abelian extension L/K which is everywhere unramified (and in which the real embeddings
remain real) for which the Artin map gives an isomorphism H(OK) ∼= Gal(L/K). The field
L is called the Hilbert class field of K, and is contained inside every ray class field of K.

As an example, consider the polynomial f(X) = X3 −X + 1. As X3 + aX + b has
discriminant −4a3 − 27b2, the polynomial f(X) has discriminant −23, and is irreducible
(even over F3). Thus the splitting field L of f(X) has Galois group S3 over Q, and contains
the quadratic extension K = Q(

√
−23). We claim that L is the Hilbert class field of L/K.

For this we need to know two things:

• The extension L/K is everywhere unramified. (Since K has no real places, these do
not play a role.) This will show that L is contained inside the Hilbert class field of K.

• The class number of K is 3. This will show that L actually equals the Hilbert class
field of K.
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The class number can be calculated using either the Minkowski bound (as in Part II Num-
ber Fields) or using the theory of binary quadratic forms (see the next section). To show
that L/K is everywhere unramified, we can refer to an earlier calculation (we showed that
for a polynomial like f(X), all of the inertia groups in its splitting field are generated by
transpositions).

The isomorphism H(OK) ∼= Gal(L/K) sends a prime p to (p, L/K). In particular,
p splits in L/K if and only if Frobp = (p, L/K) is trivial, if and only if p is principal. For
example, f(X) is irreducible over F3, and 3OK = p3p3 splits in K = Q(

√
−23). We see that

p3 is not a principal ideal.
For an example where the infinite primes play a role, let us consider the field K =

Q(
√

3), with hK = 1 and fundamental unit 2 +
√

3 of norm 1. Let c = c∞ denote the divisor
consisting of all infinite places. We observed that H(c) is cyclic of order 2. Class field theory
therefore tells us that Q(

√
3) has no everywhere unramified extensions which embed in R,

but does have an everywhere unramified quadratic extension if we allow embeddings in C.
It is given by L = K(i) = K(

√
−3).

The class field theory of Q is particularly explicit. Consider the divisor c = (N) · ∞,
for an integer N ≥ 1; every divisor is dominated by one of this form. We have already
computed that the ray class group H(c) is isomorphic to (Z/NZ)×. On the other hand, we
have computed (see example sheet 3) that the support of the cyclotomic field Q(ζpr)/Q is

exactly (pr) · ∞ (except if pr = 2, in which case it is trivial). If N =
∏k

i=1 p
ri
i , then Q(ζN)

is the composite of the fields Q(ζripi ), hence has support ≤ c. By the first main theorem,
we find that the Artin map gives a surjective homomorphism (Z/NZ)× → Gal(Q(ζN)/Q),
which sends a prime ideal (p) (p a prime number not dividing N) to Frobp. We know from
Part II Galois theory (or can prove directly) that the group Gal(Q(ζN)/Q) has cardinality
#(Z/NZ)×, so this surjective map must in fact be an isomorphism, showing that Q(ζN) is
in fact the ray class field of level (N) · ∞. Applying the second main theorem, we deduce
the Kronecker–Weber theorem:

Theorem 12.6. Let K/Q be an abelian extension. Then there exists an integer N ≥ 1 such
that K ⊂ Q(ζN).

13 Binary quadratic forms

In the remainder of the course, we will analyze the following problem: when is a given prime
p represented by a given positive definite binary quadratic form f(x, y)? We have for an odd
prime p, p = x2 + y2 if and only if p ≡ 1 mod 4 (Fermat). We also have p = x2 + 2y2 if and
only if p ≡ 1, 3 mod 8 (Euler), and p = x2 + 5y2 if and only if p ≡ 1, 9 mod 20 (Gauss).

On the other hand, one can show that p = x2 + 14y2 if and only if the equations
x2 = −14 and (y2 + 1)2 = 8 have a solution in Fp. This shows that the problem cannot
always be described in terms of congruence conditions on p. We’ll see that the solution to
this problem is intimately tied up with the class field theory of imaginary quadratic fields.

Definition 13.1. A binary quadratic form is a function f(x, y) = ax2 + bxy + cy2 where
a, b, c are integers. We say that the form f represents a given integer m if there exist values
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x0, y0 ∈ Z such that f(x0, y0) = m.

Two forms f(x, y), g(u, v) are said to be properly equivalent (or just equivalent) if

there exists a matrix

(
A B
C D

)
∈ SL2(Z) such that g(u, v) = f(Au + Bv,Cu + Dv). The

discriminant of a binary quadratic form is the integer ∆(f) = b2 − 4ac. The form f(x, y) is
primitive if its coefficients a, b, c are coprime.

Lemma 13.2. If the forms f(x, y) and g(x, y) are equivalent, then ∆(f) = ∆(g) and f, g
represent the same integers. The form f(x, y) is positive definite (i.e. represents only positive
integers) if and only if ∆(f) < 0 and a > 0.

Proof. It is clear that equivalent forms represent the same integers. A calculation shows that
the discriminant is invariant. If f(x, y) is positive definite, then a 6= 0, and we can write
f(x, y) = 1

a
((ax+ b

2
y)2 +(ac− b2

4
)y2). Since f(x, y) is definite, we must have ∆(f) < 0. Since

f(x, y) is positive definite, we must have a > 0. Conversely, if a > 0 then we can write f in
this form, and if ∆(f) < 0 then this expression shows that f is positive definite.

If D ≤ 1 is an integer which equals ∆(f) for some binary quartic form f , then
D ≡ 0, 1 mod 4. Conversely, every such integer D appears as the discriminant of a primitive
positive definite binary quartic form: we can take x2 − D

4
y2 or x2 + xy + 1−D

4
y2. We call

these forms the principal forms of discriminant D. In this case, we write C(D) for the set of
equivalence classes of primitive positive definite binary quadratic forms of discriminant D.

We will see that the arithmetic of the binary quadratic forms of discriminant D is
intimately tied up with the arithmetic of the quadratic field K = Q(

√
D). To this end, we

recall that a Z-submodule M ⊂ K is called a Z-lattice if it spans K as a Q-vector space and
is finitely generated as a Z-module.

If M is a Z-lattice of K, then we define discM = det

(
α β

α β

)2

, where {α, β} is a

Z-basis of M . This is clearly independent of the choice of basis.

Definition 13.3. An order in K is a Z-lattice O ⊂ K that is also a subring.

Proposition 13.4. 1. Let O ⊂ K. Then O = Z+cOK for a uniquely determined integer
c ≥ 1. In particular, O ⊂ OK and discO = c2 discOK.

2. Let M ⊂ K be a Z-lattice, and let OM = {x ∈ K | xM ⊂M}. Then OM is an order.

Proof. For the first part, let α ∈ OK be such that OK = Z ⊕ Zα. Then Oc = Z + cOK =
Z⊕ Zcα is a subring, hence an order, and [OK : Oc] = c. Conversely, suppose that O ⊂ K
is an order. Then O is a finitely generated Z-module, so is integral over Z, so contained in
OK . Let c = [OK : O]. We have Z ⊂ O (since 1 ∈ O), which means that c = [OK/Z : O/Z].
The quotient OK/Z is a cyclic group of infinite order, generated by the element α; so O/Z
is the subgroup generated by cα, hence O = Z⊕ Zcα = Oc.

For the second part, we note that OM is a ring and clearly spans K (since for any
x ∈ K, we have Nx ∈ OM for some integer N ≥ 1). It will be an order if it is finitely
generated over Z. But we get, by definition, an injection OM ↪→ EndZ(M) into a finitely
generated Z-module, so OM is itself finitely generated.
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Corollary 13.5. For each integer D ≤ −1 such that D ≡ 0, 1 mod 4, there is a unique
imaginary quadratic field K and order OD ⊂ K such that discOD = D.

Proof. If O ⊂ K is an order of discriminant D, then K = Q(
√
D), O ⊂ OK , and hence O is

the unique order Q(
√
D) such that discO = [OK : O]2 discOK . This shows uniqueness.

To show existence, we set O = Z[
√
D] or O = Z[(1+

√
D)/2], depending on the value

of D modulo 4. A calculation shows that this order has the correct discriminant.

From now on, we will write OD for the unique order of discriminant D. We will
always view the field Q(

√
D) as being a subfield of C, with

√
D the square root of D which

has positive imaginary part.
This gives us a way to classify lattices M ⊂ K: we have a discrete invariant, namely

the order OM ⊂ K. We say that two lattices M,M ′ are equivalent if there exists λ ∈ K×
such that M ′ = λM ; then clearly we have OM = OM ′ . If M ⊂ K is a lattice, we define
its norm NM to be the index [OM : M ], if M ⊂ OM ; otherwise, we choose a ≥ 1 such
that aM ⊂ OM , and define the norm NM = a−2[OM : aM ]. This is clearly independent
of the choice of a. In all cases we have discM = (NM)2 discOM , and if λ ∈ K× then
N(λM) = NK/Q(λ)NM .

We can compute OM as follows. Choose a Z-basis α, β of M . After multiplying
through by α−1, we can assume that α = 1. We then apply the following lemma:

Lemma 13.6. Let M = Z⊕Zβ, where β ∈ K −Q lies in an imaginary quadratic field. Let
f(X) = aX2 + bX+ c ∈ Z[X] be the unique polynomial such that f(β) = 0, a > 0, and a, b, c
are coprime. Then OM = Z⊕ Zaβ, discOM = b2 − 4ac, and NM = a−1.

Proof. The proof is by direct calculation. Let γ = A + Bβ with A,B ∈ Q, and suppose
that γ ∈ OM ; equivalently, A + Bβ ∈ M and (A + Bβ)β ∈ M . This happens if and only if
the rational numbers A,B, (A−Bb/a) and Bc/a are all in fact integers; equivalently, if and
only if A,B,Bb/a and Bc/a are all integers. Since (a, b, c) = 1, this is equivalent to asking
that A ∈ Z and B ∈ aZ, i.e. γ ∈ Z⊕ aβZ. We then have discOM = (aβ − aβ)2 = b2 − 4ac,
NM = a−1, as claimed.

The connection with binary quadratic forms is made as follows. Fix an identification
K = Q(

√
D) ⊂ C, where

√
D is the square-root with positive imaginary part. Choose a

Z-basis α, β of M such that β/α has positive imaginary part. We define a binary quadratic
form f = fM by the formula

f(x, y) = NK/Q(αx+ βy)/NM =
(αx+ βy)(αx+ βy)

NM
.

This form has discriminant discM/NM2 = discOM . It depends on the choice of basis, but
any other basis differs from the chosen one by the action of SL2(Z). (This is because a change
of basis preserves the sign of the imaginary part if and only if it lies in SL2(Z) ⊂ GL2(Z).)
It follows that the equivalence class of fM depends only on M and not on the choice of basis.

Theorem 13.7. Let D ≤ −1 be an integer congruent to 0, 1 mod 4, and let K = Q(
√
D).

The map M 7→ fM induces a bijection between the following two sets:
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1. The set of equivalence classes of lattices M ⊂ K such that OM = OD.

2. The set of equivalence classes of primitive positive definite binary quadratic forms of
discriminant D.

Proof. A change of basis changes by a linear substitution in SL2(Z), so the map is well-
defined. We first show that this map is injective. If M1,M2 are lattices such that fM1 and
fM2 are equivalent, then we can find bases α, β of M1 and α′, β′ of M2 such that fM1 = fM2

(i.e. the forms are actually equal). Since scaling M and its basis does not change fM , we can
further assume that α = α′ = 1, hence we have NK/Q(x+ βy)/NM1 = NK/Q(x+ β′y)/NM2

for all x, y ∈ Z. Comparing coefficients of x2, xy, y2, we see that NM1 = NM2, and β, β′ have
the same characteristic minimal polynomial over Q. Since β, β′ are non-real with positive
imaginary part, this implies β = β′, hence M1 = M2.

We now show that the map is surjective. Let f(x, y) = ax2 + bxy+ cy2 be a primitive
form of discriminant D, and let β ∈ K be the unique root of f(x, 1) = ax2 + bx + c in K
with positive imaginary part. Let M = Z ⊕ Zβ. The lemma shows that OM = Z ⊕ Zaβ,
discOM = D, NM = a−1; and then the form fM is NK/Q(x+βy)/NM = a(x+βy)(x+βy) =
a(x2 + bxy/a+ cy2a) = f(x, y), as desired.

The set C(D) of equivalence classes of lattices with OM = OD in fact forms a group
under multiplication. If D = discOK then this is just the usual ideal class group:

Theorem 13.8. Let D ≡ 0, 1 mod 4 be a negative integer. Then the set C(D) becomes a
group under the law [M ] · [M ′] = [MM ′]. If m ≥ 1 is an integer, then a primitive form
f(x, y) = fM(x, y) of discriminant D represents the integer m if and only if the inverse class
[M ]−1 contains an proper ideal a ⊂ OD such that Na = m.

Proof. If M is any Z-lattice of K, we write M for its complex conjugate. We first check
that for any choice of M , we have MM = NMOM . We can assume after rescaling that
M = Z ⊕ Zβ, where β satisfies the polynomial aX2 + bX + c, a, b, c ∈ Z coprime integers.
Then MM = 〈1, β, β, ββ〉 = 〈1, β, b/a, c/a〉. Since a, b, c are coprime, this equals 〈1/a, β〉 =
1/aOM = NMOM .

If O,O′ ⊂ K are orders and zO = O′ for some rational number z, then O = O′
and z = ±1. Therefore if M,M ′ are lattices such that OM = O′M = O, then we have

(MM ′)(MM ′) = (MM)(M ′M
′
) = NMNM ′OD = N(MM ′)OMM ′ . We conclude that

OMM ′ = OD, showing that the set C(D) is preserved by multiplication of lattices. We
also see that N(MM ′) = NMNM ′. The lattice OD is clearly a multiplicative identity, so
to show that H(D) is a group we just need to show the existence of inverses. But we have
OM = OM = OD, so this follows from the identity MM = NMOD.

It remains to show that fM represents m if and only if there exists M ′ ∈ [M ]−1 such
that NM ′ = m and M ′ ⊂ OD. The form fM represents the integer m if and only if there
exists γ ∈ M such that NK/Q(γ) = mNM . If there exists such a γ, let M ′ = γM−1, where
MM−1 = OD. Then NM ′ = NK/Q(γ)NM−1 = m, and if a ∈ M−1 then aγ ∈ OD, hence
M ′ ⊂ OD. Conversely, if there exists M ′ ∈ [M ]−1 such that NM ′ = m and M ′ ⊂ OD,
we write M ′ = γM−1 for γ ∈ K. Then NM ′ = NK/Q(γ)N(M)−1 = m, hence NK/Q(γ) =
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mNM . Moreover, we have MM ′ = γOD ⊂ MOD = M , hence γ ∈ M . This completes the
proof.

We thus have a group C(D) that tells us a lot about representation of integers by
primitive binary quadratic forms of discriminant D. In order to relate this to class field
theory, we need to relate C(D) to generalized ideal class groups. If D = discOK , then
C(D) = H(OK) is the usual ideal class group and the relation is immediate. We thus obtain
the following corollary:

Corollary 13.9. Suppose that D = discOK, and let p be a prime number not dividing D.
Then the binary quadratic form f(x, y) = x2−Dy2/4 (resp. x2+xy+(1−D)y2/4) represents
p if and only if p splits in the Hilbert class field of K.

Proof. We first observe that if D ≤ −1 is any negative integer congruent to 0 mod 4, then
the identity element of C(D) corresponds to the form x2 − Dy2/4. Indeed, we have OD =
Z ⊕ Z

√
D/2, so the corresponding form is NK/Q(x +

√
Dy/2) = x2 − Dy2/4. Similarly, if

D ≡ 1 mod 4 then the identity element corresponds to the form x2 + xy + (1−D)y2/4.
We see that when D = discOK , so that C(D) = H(OK), the prime p is represented

by this form if and only if there exists an ideal a ⊂ OK such that Na = p and a is principal.
The first condition forces a to be prime (as norm is multiplicative) and p either to be ramified
or split in OK . Since p does not divide D, it splits in K as pp, and the condition that p is
principal is then equivalent, by class field theory, to the condition that p splits in the Hilbert
class field of K.

We can use this to understand our first examples. If D = −4 = discZ[i], then the
principal form is x2 + y2. The field Q(i) has class number 1, hence trivial Hilbert class field,
so we see that an odd prime p is represented by the form x2 + y2 if and only if it splits Q(i),
if and only if x2 = −1 has a solution modulo p, if and only if p ≡ 1 mod 4.

Similarly the field Q(
√
−2) (discOK = −8) has class number 1, and p is represented

by x2 + 2y2 if and only if the equation x2 = −2 has a solution modulo p, if and only if
p ≡ 1, 3 mod 8.

The field Q(
√
−5) (discOK = −20) has class number 2, and its Hilbert class field is

Q(
√
−5,
√

5) = Q(
√
−5, i). The prime p is represented by x2 + 5y2 if and only if p splits in

Q(
√
−5), if and only if the equations x2 = −1 and y2 = 5 have solutions in Fp, if and only

if p ≡ 1, 9 mod 20.
Finally, the field Q(

√
−14) (discOK = −4×14) has class number 4. You’ll show on the

example sheet that its Hilbert class field is Q(
√
−14,

√
2
√

2− 1). The minimal polynomial

of the element
√

2
√

2− 1 is (X2 + 1)2 − 8. It follows that for a prime not dividing the
discriminant of this polynomial, p is represented by x2 + 14y2 if and only if p splits in the
Hilbert class field, if and only if the equations x2 = −14 and (y2 + 1)2 = 8 have solutions in
Fp.

This is the story for D of the form discOK . To understand what happens for general
discriminants D, we need to work a bit harder. We start with a lemma.

Lemma 13.10. Let O be an order in an imaginary quadratic field, and let c ≥ 1 be an
integer. Then the following two sets are in canonical bijection:
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1. The set of non-zero ideals a ⊂ O such that a + cO = O (i.e. a is coprime to cO).

2. The set of non-zero ideals b of O[1/c].

The bijection is given by a 7→ a[1/c] and b 7→ b∩O. In particular, it preserves multiplication
of ideals. Moreover, we have O/a ∼= O[1/c]/b.

Proof. We first note that for a non-zero ideal a ⊂ O, a+cO = O if and only if a = a[1/c]∩O,
if and only if O/a has order prime to c. Indeed, the first condition says that multiplication
by c on O/a is surjective. The second condition says that multiplication by c is injective.
Since O/a is a finite group, these conditions are equivalent.

If a ⊂ O is a non-zero ideal prime to c, then a ⊂ a[1/c] ∩ O. The condition that a is
prime to c implies that equality holds.

If b ⊂ O[1/c] is a non-zero ideal, then a = b ∩ O is prime to c, because if x ∈ O and
cx ∈ a, then x = c−1cx ∈ a. We have a[1/c] ⊂ b. To show equality, note that if x ∈ b then
cnx ∈ O for some n ≥ 1, hence cnx ∈ a, hence x ∈ a[1/c].

It is clear that the map a 7→ a[1/c] preserves multiplication of ideals. Since it is
bijective, its inverse also preserves multiplication of ideals. Since localization is an exact
functor, and c is invertible in the quotient O/a, we have O/a ∼= O/a[1/c] ∼= O[1/c]/b.

Corollary 13.11. Let D ≤ −1, D ≡ 0, 1 mod 4 be a discriminant, and let K = Q(
√
D).

Let c = [OK : OD]. Then there is a multiplication-preserving bijection between the following
two sets of ideals:

1. The set of non-zero ideals of OK, prime to c.

2. The set of non-zero ideals of OD, prime to c.

The map is given by a 7→ a ∩ OD, with inverse a 7→ a[1/c] ∩ OK.

Proof. We just need to observe that OD[1/c] = OK [1/c].

This will allow us to relate the group C(D) to a ray class group of K, using the
following lemma:

Lemma 13.12. Let D ≤ −1, D ≡ 0, 1 mod 4 be a discriminant, and let K = Q(
√
D). Let

c = [OK : OD]. Then:

1. If a ⊂ OD is an ideal prime to c, then a is a lattice and Oa = OD, and Na = [OD : a]
is prime to c.

2. Every lattice M such that OM = OD is equivalent to an ideal a ⊂ OD prime to c.

Proof. For the first part, we note that if a+ cOD = OD, and β ∈ K satisfies βa ⊂ a, then β
is integral over Z, so satisfies β ∈ OK . We get βOD = βa + cβOD ⊂ a + cOK ⊂ OD. Since
OD is its own order, this shows that β ∈ OD.

For the second part, we recall that such an ideal a exists if and only if the binary
quadratic form fM−1(x, y) represents an integer prime to c. It therefore suffices to show that
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any primitive binary quadratic form represents integer prime to c. By the Chinese remainder
theorem, it suffices to show that for any prime p, a primitive binary quadratic form f(x, y)
represents integers not divisible by p. But one of f(1, 0), f(1, 1) and f(0, 1) will be prime to
p, because f(x, y) is primitive.

Corollary 13.13. There is a surjective homomorphism H(cOK)→ C(D).

Proof. The map will be induced by the map which sends an ideal a ⊂ OK which is prime to c
to the ideal a[1/c]∩OD = a∩OD. This is a bijection on ideals prime to c. We know that this
map preserves multiplication of ideals, so we get a homomorphism I(cOK)→ C(D), which
is surjective by the previous lemma. To show that this descends to the quotient, we must
show that every ideal a ⊂ OK of the form αOK , where α ∈ OK satisfies α ≡ 1 mod cOK , is
send to the trivial class in C(D).

However, we have αOK ∩ OD = αOD, which is indeed in the trivial class. This
completes the proof.

By extending the arguments in the proof of the corollary, it is possible to calculate
explicitly the kernel of the map H(cOK)→ C(D) and to give a formula for the order of the
finite group C(D), as we have already done for the group H(cOK).

Theorem 13.14. Let D ≤ −1, D ≡ 0, 1 mod 4 be a discriminant, and let K = Q(
√
D).

Let c = [OK : OD]. Then there exists an abelian extension KD/K, called the ring class field
of K of discriminant D, which satisfies the following properties:

1. KD is contained inside the ray class field of level cOK, and there is an isomorphism
φKD/K : C(D) ∼= Gal(KD/K), uniquely characterized as follows: for every prime ideal
p ⊂ OK not dividing cOK, the isomorphism sends the class of the lattice p ∩ OD to
(p, KD/K).

2. Let p be a prime not dividing D. Then p splits in KD if and only if p is represented
by the principal form of discriminant D.

Proof. This is now a matter of assembling the ingredients. By the second main theorem
of class field theory, the quotient H(cOK) → C(D) corresponds to an abelian extension
KD/K, contained inside the ray class field of level cOK , for which the Artin map gives a
surjection φKD/K : H(cOK) → Gal(KD/K) which factors through an isomorphism C(D) ∼=
Gal(KD/K). The group H(cOK) is generated by the classes of non-zero prime ideals p ⊂ OK
prime to c, so the group C(D) is generated by the classes p∩OD, and φL/K(p) = (p, KD/K).

On the other hand, we know that we can identify the group C(D) with the set of
primitive, positive definite binary quadratic forms of discriminant D; and that a given such
form f(x, y) represents a prime p if and only if the class [f ]−1 contains a lattice a ⊂ OD
such that Na = p, if and only if the class [f ] contains a lattice a ⊂ OD such that Na = p
(because complex conjugation preserves norms and acts by inversion on the group C(D)).

If furthermore p is prime to D, then the ideal a must be prime to the conductor,
and this is equivalent to asking for an ideal a ⊂ OK such that Na = p. Norm of ideals
is multiplicative (by the Chinese remainder theorem), so this happens if and only if a is
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prime, and in this case p must be split in K. We find that the form f(x, y) represents the
prime p if and only if there exists a non-zero prime ideal p ⊂ OK such that p divides p and
[p ∩ OD] = [f ] in OD.

Now suppose that f(x, y) is the principal form, corresponding to the trivial element
[OD] in C(D). Then we see that for a prime p not dividing D, p is represented by f(x, y) if
and only if p splits inOK and there is a prime p ⊂ OK lying above p such that [p∩OD] = [OD],
if and only if φKD/K([p∩OD]) = (p, KD/K) = 1, if and only if p splits in KD/K, if and only
if p splits in K/Q.

Example 13.15. Let D = −4 × 27, OD = Z[
√
−27]. Then K = Q(

√
D) = Q(

√
−3), and

one can show that KD = K( 3
√

2). We find that for a prime p > 3, p is represented by the
principal form f(x, y) = x2 + 27y2 of discriminant D if and only if p splits in KD, if and only
if p ≡ 1 mod 3 and the equation x3 = 2 has a solution in Fp.

We can now analyze concrete examples by doing explicit calculations. To this end, it
is helpful to recall the following result in reduction theory from Part II Number Theory:

Theorem 13.16. Each primitive form of discriminant D is properly equivalent to a unique
primitive form ax2 + bxy+ cy2 which is reduced, i.e. satisfies |b| ≤ a ≤ c, and b ≥ 0 if either
|b| = a or a = c.

Since a reduced form has −D = 4ac−b2 ≥ 4a2−a2 = 3a2, hence a ≤
√
−D/3, we can

always calculate C(D), at least as a set, by enumerating all reduced forms of discriminant
D. It is also possible to describe the group law on C(D) explicitly at the level of binary
quadratic forms, without passage to ideal classes. This was done by Gauss, and gives rise to
the famous composition law of binary quadratic forms.

A useful observation is that if f(x, y) = ax2 + bxy + cy2 is a primitive, positive
definite binary quadratic form of discriminant D, then the inverse class of [f ] is represented
by ax2 − bxy + cy2. Using this one can show that, if f(x, y) is reduced, then it corresponds
to a class of order dividing 2 in C(D) if and only if either b = 0, a = b, or a = c.

Let’s use this to calculate the ideal class group of the field K = Q(
√
−5); this was

used in an earlier calculation. We have discOK = −20, so any reduced form has |a| ≤ 2.
Enumerating all possibilities, we get x2 +5y2 and 2x2 +2xy+3y2. The class group has order
2, and the Hilbert class field is K(

√
5). We find that for a prime p not dividing 20, the prime

p is represented by 2x2 + 2xy + 3y2 if and only if p splits in K but does not split in Q(
√

5),
if and only if p ≡ 3, 7 mod 20.

To end the course, we prove a result about the number of primes which are represented
by a given positive definite, primitive binary quadratic form.

Definition 13.17. Let K be a number field, and let S be a set of prime ideals of OK,
δ ∈ [0, 1]. We say that the set S has density δ if the limit

lim
X→∞

{p ∈ S | Np ≤ X}
{p ⊂ OK prime | Np ≤ X}

exists and equals δ. We write Np for the index [OK : p] of additive groups; it is easy to see
that the numerator and denominator are finite for any X <∞.
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Theorem 13.18. Let L/K be a Galois extension of number fields, let G = Gal(L/K), and
let C ⊂ G be a conjugacy class. Let S denote the set of prime ideals of OK unramified in
OL such that Frobq/p ∈ C for some (equivalently, every) prime ideal q ⊂ OL lying above p.

Then the set S has density equal to #C/#G.

This is the Chebotarev density theorem. Its proof uses class field theory and L-
functions. Note that as a particular consequence, we see that if L/K is a Galois extension
of number fields, then the set of prime ideals p ⊂ OK which split in L has density equal to
1/[L : K].

Theorem 13.19. Let f(x, y) be a primitive, positive definite binary quadratic form of dis-
criminant D, and let S denote the set of primes not dividing D which are represented by
f(x, y). Then the set S has density equal to either 1/2#C(D) or 1/#C(D), depending on
whether the class of f(x, y) in the group C(D) divides 2 or not.

Proof. Let KD/K be the ring class field of discriminant D. Then KD/Q is Galois, and its
Galois group Gal(KD/K) ∼= C(D) o Gal(K/Q) is a semi-direct product, with Gal(K/Q)
acting on C(D) by inversion (which in this case, agrees with complex conjugation).

Let σf = φKD/K([f ]) ∈ Gal(KD/K). We know that for a given prime p, not di-
viding D, the form f(x, y) represents p if and only if p = pp splits in K and σf ∈
{(p, KD/K), (p, KD/K)}. We can calculate the density of the set of such primes using
the Chebotarev density theorem.

First suppose that σf has order dividing 2. Then the conjugacy class of σf is just
{σf}, so we see that the set has density 1/# Gal(KD/Q) = 1/2#C(D).

Now suppose that σf has order not dividing 2, so that σf 6= σ−1f . Then the conjugacy

class of σf is {σf , σ−1f }, and p is represented by f(x, y) if and only if Frobq/p ∈ {σf , σ−1f } for
some (equivalently every) prime p ⊂ OKD

lying above p. Calculating again using the Cheb-
otarev density theorem, we find that the set of such primes has density 2/# Gal(KD/Q) =
1/#C(D).

Corollary 13.20. Let n ≥ 1 be an integer. Then there are infinitely many primes of the
form p = x2 + ny2.

Proof. Apply the theorem to the principal form of discriminant D = discZ[
√
−n].
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