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1 Discrete valuation rings

Definition 1.1. Let A be a ring. We say that A is a discrete valuation ring (DVR) if A is
a principal ideal domain with a unique non-zero prime ideal my C A.

If Aisa DVR, then kx = A/my is a field, its residue field. If 7 € m4 is a generator,
then 7 is an irreducible element of A, and every other irreducible element of A has the form
7 =wum, u € A*. Such an element is called a uniformizer of A.

If Ais a DVR with Frac A = K, then any element 2 = a/b € K* admits a unique
expression as © = 7"u, with n € Z and u € A*. We call v(z) = n the valuation of the
element x. The function v : K* — Z satisfies the following conditions:

1. v: K* — Z is a surjective homomorphism.

2. If 2,y € K then we have v(z +y) > min(v(z), v(y)), with equality if v(z) # v(y). (By
convention, we set v(0) = oo and extend v to a map v: K — Z U {c0}.)

If K is any field and v : K* — 7Z is a function satisfying these conditions, then v is called
a valuation. We can then define A = {z € K | v(z) > 0}; then A is a DVR with non-zero
prime ideal my = {z € K | v(z) > 0}.

Lemma 1.2. Let K be a field. Then this process defines a bijection between the set of
subrings A C K which are discrete valuation rings and the set of valuations v : K* — Z.

Definition 1.3. A ring A is called a local ring if it has a unique mazimal ideal.

Lemma 1.4 (Nakayama’s lemma). Let A be a local ring with mazimal ideal m, and let M
be a finitely generated A-module.

1. If mM = M, then M = 0.
2. If N C M is a submodule such that N — M /mM is surjective, then N = M.

Proof. We observe that A — m = A*. For the first part, suppose that M is generated by

elements my, ..., m,, and that n > 1 is minimal with respect to this property. We can write
m, = aymy + -+ + a,m, with a; € m, hence (1 — a,)m, = aymy + ...a,_1my,_1. Since
1 — a, is a unit, we conclude that A is generated by mq,...,m,_1, a contradiction to the

minimality of n.
For the second part, the hypothesis implies M = N + mM. We apply the first part
to the quotient M /N to conclude M/N = 0, hence M = N. O

Proposition 1.5. Let A be a Noetherian domain. Then the following are equivalent:
1. Ais a DVR.

2. A is integrally closed and has ezxactly one non-zero prime ideal.



Proof. We recall that if R C S are rings, then an element s € S is said to be integral over
R if it satisfies a monic equation s" + ris"~ ! + .-+ 4+ r, = 0 with r; € R; equivalently, R|[s]
is a finitely generated R-module. The integral closure of R in S consists of all elements of
S integral over R, and is a subring of S which contains R. The domain A is said to be
integrally closed if A equals the integral closure of A in K = Frac(A).

If Ais a DVR, then A is integrally closed: if an element a = un” satisfies a relation
a"+a;a” 1+ +a, =0, then after multiplying through by u™", we can assume a = 7". If
r < 0 then we get 1 = a7 "+ --- + a,7™"". The left-hand side lies in m4, a contradiction.
It clearly has a unique non-zero prime ideal.

Suppose conversely that A is a Noetherian domain which is integrally closed, and has
exactly one non-zero prime ideal p. Note that if a C A is a proper non-zero ideal, then we
can find n > 1 such that p” C a C p. Indeed, if not then we can find a proper ideal a C A
maximal with respect to the property that it contains no p™. Then a # p, so we can find
a,b € A such that ab € a but a € a and b ¢ a. The inclusions a C a + (a) and a C a + (b)
are then proper, so we can find m > 1 such that p C a + (a) and p™ C a + (b), hence
p?>™ C (a+ (a))(a+ (b)) C a, a contradiction.

Let us therefore choose a non-zero element y € p, and n > 1 such that p™ C (y) C p.
We can choose n > 1 minimal with respect to this property. We are going to show that p
is principal. If n = 1, then we’re done. Otherwise n > 2, and we have p"~! ¢ (y), and we
can choose x € p"~! — (y). Let z = z/y € K. We have zp C p" C (y), hence zp C A is an
ideal. If zp C p, then A[z] injects into End4(p), a finitely generated A-module (since A is
Noetherian). Thus z is integral over A, hence z € A, hence x = yz € (y), a contradiction.
Thus zp = A, and p = 271 A and p is principal.

Let 7 = z~'. We claim that every element a € A admits a unique expression a = ur™
with u € A*, which will show that A is a PID. The uniqueness is clear. To show existence,
it is enough to show that q = N,>1(7"A) = 0 (as then A = U,5¢(7"A — 7" A)). However,
we have mq = ¢, hence ¢ = 0 (by Nakayama’s lemma). This completes the proof. O

We are going to study rings which are ‘locally DVRs’. We first need to define local-
ization. Let A be a ring. A multiplicative subset S C A is by definition a subset containing
1, not containing 0, and which is closed under multiplication.

Definition 1.6. We define S7'A to be the set of equivalence classes of pairs (a,s) with
a € A, s €S, with respect to the equivalence relation (a,s) ~ (b,t) if there exists u € S such
that u(at — bs) = 0. We represent the equivalence class of (a,s) using the symbol a/s.

Lemma 1.7. 1. This is an equivalence relation, and S™*A becomes a ring with the oper-
ations a/s + b/t = (at + sb)/(st) and a/s - b/t = (ab)/(st).

2. The map A — S7'A, a — a/1 is a ring homomorphism with kernel {a € A | 3s €
S,sa=0}.

3. If A is an integral domain, then Frac A = (A —{0})™'A and S™'A is identified with a
subring of Frac A.



Proof. The symmetry and reflexivity of the relation is clear. To show transitivity, suppose
given (a,s), (a’,s") and (a”,s"), together with u,u’ € S such that u(as’ — da’s) = 0 and
uw'(a's" —a"s") = 0. We then have uu's'as” = u's"ua’s = usu'a”s’, showing that a/s = a” /s"
in S71A. The ring axioms are easily verified.

It is clear that the map A — S™'A is a ring homomorphism. We have a/1 = 0/1 if
and only if there exists s € S such that as = 0, as in the statement of the lemma.

If A is an integral domain, then a/s = a’/s" if and only if as’ = a’s (because A has
no zero divisors). This shows that (A — {0})™*A = Frac A, by definition, and that the map

S71A — Frac A, a/s + a/s, is a well-defined injection. O

A common choice of S is when S = {1, f, f%,...} for some f € A which is not
nilpotent; then we write S~ A = A[1/f]. Another common choice is S = A — p, where p is
a prime ideal of A. In fact, an ideal I C A is prime if and only if A — I is a multiplicative
subset, as follows from the definitions.

Definition 1.8. Let A be a ring with multiplicative subset S, and let M be an A-module.
We define the localized module S™*M to be the set of equivalence classes of pairs (m, s) with
m € M and s € S. Two pairs (m,s) and (m',s') are said to be equivalent if there exists
u € S such that u(s'm — sm') = 0. The equivalence class of the pair (m,s) is denoted using
the symbol m/s.

Again, one shows that S™'M is an S~'A-module, with multiplication a/s - m/t =
(am)/(st). Localization is a functor: if M, N are A-modules and f : M — N is a
homomorphism of A-modules, then there is a natural map S™'f : M — N given by
S~ f(m/s) = f(m)/s. Similarly, if there is a ring homomorphism g : A — B, then S™!'B is
naturally a ring and the map S~'g: S7'A4 — S~!B is a ring homomorphism. An important
feature of localization is its exactness:

Lemma 1.9. Let M' 1~ M —2~ M" be an exact sequence of A-modules (i.e. kerg =
—1 —1
im f). Then the sequence STIM EL s EL s s eact.

Proof. Since localization is functorial, we have S~'go S71f = S71(gf) = 0. This shows
that im S~ f C ker S~'g. For the other inclusion, suppose S~'g(m/s) = g(m)/s = 0. Then
there exists u € S such that ug(m) = g(um) = 0, hence m’ € M’ such that f(m’) = um,
hence S~ f(m//us) = um/us = m/s. O

This shows, for example, that if a C A is an ideal, then S~'a can be naturally
identified with an ideal of S™'A (which is the ideal aS™'A generated by a).

Lemma 1.10. Let A be a ring, and let f : A — S7'A be the natural map. The maps
p—p-STA g~ flp) define inclusion-preserving bijections between the set of prime
ideals of A which do not intersect S and the set of prime ideals of S™'A.

Proof. We first check that p- S~ A is indeed a prime ideal. The map A — A/p gives a map
S™1A — S~1(A/p), and the latter is non-zero since A/p is non-zero and no element is killed
by an element of S. An element a/s is in the kernel if and only if there exists u € S such
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that ua = 0 in A/p, if and only if @ € p. Thus p - S7'A is the kernel of this map, and is a
prime ideal of S71A.

We now show that these maps are mutually inverse. If p € S7!A is a prime ideal,
then ff~1(p) C p, hence f~1(p)- S7'A C p. On the other hand, if a/s € p then a/1 € p,
hence a € f~'(p) and a/s € f~'(p) - S~ A. This shows one direction. In the other direction,
suppose that q C A is a prime ideal disjoint from S. Then q C f~!(q-S~'A). On the other
hand, if a € A and a/1 € q- S~ A, then a/1 = gb/s for some q € q, b € A, s € S, and hence
there exists u € S such that u(as — ¢b) = 0, hence uas = gbu € q. Since q is prime and
disjoint from S, we conclude a € g, showing that f~!(q-S™*A) C q, as required. m

This shows that if p C A is a prime ideal and S = A — p, then S7'A has a unique
maximal ideal, namely S™'p, and is therefore a local ring. We will write A, = (A —p)~'A
for this localization; its residue field is naturally identified with Frac(A/p).

Proposition 1.11. Let A be a Noetherian domain with field of fractions K. Then the
following are equivalent:

1. For all non-zero prime ideals p C A, A, is a discrete valuation ring.
2. A is integrally closed and every non-zero prime ideal p C A is a mazimal ideal.
A ring A satisfying these equivalent conditions is called a Dedekind domain.

Proof. First suppose that A satisfies the first condition. If ¢ C p are prime ideals of A, then
let S =A—p. We have S~'q C S~!p, hence either ¢ = 0 or q = p. This shows that if p # 0
then p is maximal. If x € K is integral over A, then it lies in A, for every non-zero prime
p C A, hence we can write x = a,/s,, where a, € A and s, € A —p depend on p. The ideal
a generated by all s, is the unit ideal, because it is contained in no non-zero prime ideal of
A; hence we can write 1 = Zp sptp, where only finitely many ¢, are non-zero. We then have
x =) xSty = > apty, € A, showing that A is integrally closed in K.

Now suppose instead that A satisfies the second condition. If p C A is a non-zero
prime ideal, then the ring A, is a local ring with a unique non-zero prime ideal, and we
must show (by the previous proposition) that it is integrally closed. If a/s € A, satisfies an
equation (a/s)" +ay/s; - (a/s)" ' +---+a,/s, = 0, then the element a(s; ...s,) is integral
over A (by clearing denominators), so lies in A. Then a/s = (asy...s,)/(ss1...5s,) lies in
Ay, as required. m

If A is an integral domain with field of fractions K, then a fractional ideal of A is by
definition a finitely generated A-submodule of K.

Lemma 1.12. Let A be a Noetherian integral domain with field of fractions K and let S C A
be a multiplicative subset. Let a,b C K be fractional ideals. Then:

1. (S7'a)(S~1b) = S~1(ab) and S~'a+ S~'b = S~(a+b).

2. Define (a : b) = {x € K | b C a}. Then (a : b) is a fractional ideal of A and
S7(a:b)=(S7ta: S71b).



Proof. Suppose that b = (by,...,b,), where the b; are non-zero. Then (a : b) = N,b; 'a,
which shows that (a : b) is finitely generated (as A is Noetherian), hence a fractional ideal
of A. The other assertions follow easily from the fact that localization commutes with finite
sums and intersections of submodules. ]

Proposition 1.13. Let A be a Dedekind domain. Then the set I of non-zero fractional
ideals of A forms a group under multiplication.

Proof. Multiplication of fractional ideals gives an associative composition law in I, with
identity (1) = A. It remains to show the existence of inverses. We claim that for any non-
zero fractional ideal a C A, we have a- (A : a) = A. Since (A : a) is a fractional ideal, this
will be enough. If A is a DVR then we have a = 7" A for some n € Z, and (A : a) = 7 "A4;
so this is clear.

In general, we have for any non-zero prime p C A,

(a(A:a))y =ay(A:a), = A,

by the lemma. It therefore suffices to show that for any fractional ideal b C K, if b, = A,
for all non-zero prime ideals p of A, then b = A. Let us show the more general statement
that if b, ¢ are fractional ideals such that b, C ¢, for all p, then b C «¢.

It is enough to show b C ¢. Let b € b. For all non-zero prime ideals p C A, we can
find an expression b = ¢, /s, with ¢, € ¢ and s, € A—p. The ideal (s,) is the unit ideal, since
it can be contained in no maximal ideal of A; we can therefore find non-zero prime ideals
P1,...,pn and a; € A such that 1 =37 | a;s,,. Multiplying through, we obtain

n
b= g a;bs,, = E a;cp; € ¢,
i=1 i=1

as desired. O

Lemma 1.14. Let A be a Dedekind domain. Then for each non-zero ideal a C A, there are
only finitely many non-zero prime ideals p C A such that a C p.

Proof. We can assume that a = (z) is principal. The set of ideals b of A containing x
satisfies the descending chain condition. Indeed, if by D by D --- D (z) then the chain
by € by C --- C 27! A is eventually stationary, since A is Noetherian. This implies the
same for the original chain.

Suppose therefore that there are infinitely many distinct primes pi, po, ... containing
x. The sequence pq,p; NPo, ... is eventually stationary; suppose that it becomes stationary
at step k. Then we have

Prr1 O N NP1 =p1MN--- NP DP1... Pk

We can find for each 7 = 1,...,k an element x; € p; — px11. Then the element ;... 25 €
P1...Ppxr must lie in pgi 1. Since the ideal pyy; is prime, this forces some z; to lie in pyyq, a
contradiction. O



If A is a Dedekind domain, then for each non-zero prime p C A, we have the valuation
vy 1 K* — Z which is associated to the DVR A,. If a C K is a non-zero fractional ideal, then
we have a, = aA, for some a € K*, and we define vy(a) = v,(a). This defines a surjective
homomorphism v, : I — Z.

Proposition 1.15. Let A be a Dedekind domain, and let a C K be a non-zero fractional
1deal.

1. We have vy(a) = 0 for all but finitely many p.
2. We have a = Hp pU @ where the product has only finitely many terms.

Proof. We recall that if a,b C K are fractional ideals, then a C b if and only if a, C b, for
all p. If p # q are non-zero prime ideals of A, then p; = A,. It follows that if a C A is a
non-zero ideal, then a C p if and only if a, C p,, if and only if v,(a) > 0. By the previous
lemma, this can be true for only finitely many primes p. If a C K is a non-zero fractional
ideal, then we can find © € A — {0} such that xa C A is an ideal. Then v,(z) = 0 for all but
finitely many p, and v,(za) = 0 for all but finitely many p. Since vy(za) = vy(x) 4 vy(a) for
all non-zero prime ideals of A, this shows that v,(a) = 0 for all but finitely many p.

The two fractional ideals a and Hp p”(@) have the same localizations, so are the
same. O]

Corollary 1.16. Let A be a Dedekind domain. Then every non-zero ideal a C A admits a
unique expression a = [['_, pi*, where the p; are pairwise distinct prime ideals of A. This
expression is uniquely determined up to re-ordering of terms.

2 Extensions of Dedekind domains

Lemma 2.1. Let E/K be a finite separable extension of fields. Then the K-bilinear form
S Ex E— K given by the formula S(x,y) = trg/k(zy) is non-degenerate.

Proof. We must show that for any non-zero = € E, there exists y € E such that trg/x (zy) #
0. It is clearly enough to show that trg/x # 0 as a homomorphism £ — K. If L/K denotes

the Galois closure of E, then there are exactly n distinct K-embeddings oy,...,0, : E — L;
and we have trg/x(x) = o1(x) + --- 4+ o,(x). The lemma therefore follows from the fact
that the embeddings oy,...,0, are linearly independent over L (even as homomorphisms
Ex* — L*). O

Let A be a Dedekind domain with field of fractions K, and let E/K be a finite
separable extension. Let B denote the integral closure of A in E.

Proposition 2.2. B is a finitely generated A-module, which spans E as a K-vector space.
It is a Dedekind domain.



Proof. Let eq,...,e, bea K-basis for E. After multiplying through by elements of A, we can
suppose that each e; € B. The map S(z,y) = trg/k (vy) defines a non-degenerate K-bilinear
pairing S : ' x E — K. Let us note that if 2 € B, then trg/k 2 is integral over A and lies
in K, hence lies in A.

Let fi,..., fn € E be the dual K-basis with respect to S, so that S(e;, f;) = d;;.
Choose ¢ € A — {0} such that each ¢f; € B. We claim that BC A-cle; @ ---® A-cle,.
If z € B, then each zcf; is integral over A, so trg/k(zcf;) € A. Writing z = >, 7e; with
r; € K, we therefore have S(z,cf;) = c¢r; € A, hence r; € ¢ ' A. This shows the claim. Tt
follows that B is contained in a finitely generated A-module, hence is a finitely generated
A-module as A is Noetherian, hence is a finitely generated A-algebra, hence is a Noetherian
ring, by the Hilbert basis theorem.

Let g C B be a non-zero prime ideal, and let p = ¢ A. Then p C A is prime. It is
also non-zero: if b € q is a non-zero element, then we can find an equation of minimal degree
with a; € A:

V' +ab" 4 4 a, = 0.

Then a, € qN A = p and a, # 0, by minimality. There is an injective homomorphism
A/p — B/q, A/p is a field, and B/q is a finite A/p-algebra and a domain, hence a field.
This shows that ¢ is maximal, hence B is a Dedekind domain. O

The ring Z of rational integers is a PID, so is a Dedekind domain. We deduce:

Corollary 2.3. Let K be a number field. Then the ring of integers Ok is a Dedekind domain.
In particular, any non-zero ideal a C Ok admits a factorization a = [[I-, pi*, where the p;
are pairwise distinct prime ideals and a; non-negative integers, and this factorization is
unique up to re-ordering.

3 Complete discrete valuation rings

Definition 3.1. Suppose given for each i = 1,2,... a group A; and a homomorphism f; :
A1 — A;. The inverse limit is by definition

I&HAZ = {((IZ) S ﬁAz ‘ Vi > 1,f7;(ai+1) = CLi}.

It is a group. If the A; are all abelian groups (resp. ring) and the f; are homomorphisms of
abelian groups (resp. rings) then it is naturally an abelian group (resp. ring).

Definition 3.2. Let A be a discrete valuation ring. We say that A is complete if the natural
map A — @A/m% s an isomorphism.
The terminology is justified by the following lemma.

Lemma 3.3. Let A be a discrete valuation ring with fraction field K and valuation v : K* —
Z.. Then the following are equivalent:



1. A is complete.
2. K is a complete metric space with respect to the metric d(z,y) = 27°@Y),

Proof. Suppose first that A is complete, and let (x;):2, be a Cauchy sequence in K. This
is equivalent to the following condition: for all M > 0, there exists N > 0 such that
v(z; —x;) > M for all 4,5 > M. In particular, we can assume after discarding finitely many
elements that v(z; —x;) > 0 for all 4,5 > 0. Replacing z; by z; —x1, we can therefore assume
that v(x;) > 0 for all ¢, i.e. x; € A for all i.

After passing to a subsequence, we can assume that v(z; — x;11) > ¢ for all 4, or in
other words x;y; = x; mod m’y. It follows that (z;); € l'glA/miA, hence there exists z € A

7
such that v(z — x;) > ¢ for all i > 0. This is the desired limit.
Now suppose instead that K is complete. The map A — l'&lA/m’A is injective, so
i

we must show it is surjective. Let (x;)32, € T&nA/mg. Then for all 4,7 > N we have

v(x; —x;) > N, hence (z;) is a Cauchy sequence, hence there exists x € K such that
v(x — x;) — 00 as i — oo. In particular, we have v(z) > 0, hence z € A and = maps to
(2:)72,. This completes the proof. O

Proposition 3.4. Let A be a DVR with uniformizer 7, and define A= I'&nA/mfA. Then;

1. Aisa complete DVR with uniformizer .
2. For each i > 0, the natural map A/miy — 121\/1‘11’;3 is an isomorphism.

3. Let X C A be a set of representatives for the residue field ka containing 0. Then every
element x € A admits a unique m-adic expansion

with a; € X for each v > 0, and conversely every such expansion defines an element of

A.

Proof. We prove the last part first. We observe that the map A/7m — 7'A/7"* A given by
multiplication by 7’ is an isomorphism. It follows that each element of the ring A/zx"*!
admits a unique expression of the form >7'_ a;77 with a; € X. The map A/7"*" — A/n’
corresponds to throwing away the term a;7*. Since an element of Ais a compatible system
of elements of the quotients A/7*™! we see that the elements of A are in bijection with the
expressions » > a;7/ with a; € X.

By definition, we have for each ¢ > 0 a surjection A A/mtA. An element z =
> i a;m lies in the kernel if and only if all of its digits ao,...,a;—; are 0. In this case, we
have z = 7' 33°° a1/, showing that the kernel of this map is 7 A, and hence we have an

isomorphism fAl/WZA\ ~ A/mA.



The natural map A — Ais injective. Every element x = Zj a;m with ag # 0 is a

unit. Indeed, we write # = ag(1 — 7y) for some y € A. The element aq is a unit in A, hence
in A, and (1 — 7y) has inverse given by

147y + (my)* + (7y)° + ...,

this series converging in g./\ This shows that every non-zero element of A has a unique
expression as ur™ with u € A* and n > 0, and hence that A is a DVR.
To complete the proof, we show that A is complete. However, we have

A= @A/W’A & @A\/Wzg

by the second part of the proposition, so we’re done. O

We refer to the ring A as the completion of A; the proof of the proposition shows
that if A is complete, then A = A.

4 The p-adic numbers

We can now study our first new example of a complete discrete valuation ring.

Definition 4.1. Let p be a prime. The ring of p-adic integers Z, is by definition the com-
pletion of Zy,). The field of p-adic numbers Q, is its fraction field.

Thus Z, is a complete DVR with residue field Z,/(p) = Z/pZ = F,. Every element
of Z, admits a unique expression

a0+a1p+a2p2—|—...

with a; € {0,...,p— 1}. Multiplication and addition is done in the same way as for formal
power series, except we now need to ‘carry’ digits.

The following lemma is one example of a family of results which are referred to by
the name ‘Hensel’s lemma’. The key idea is that in complete DVRs, one can efficiently solve
equations by successive approximation.

Lemma 4.2. Let A be a complete DVR with valuation v, and let f(X) € A[X] be a monic
polynomial. Suppose there exists x € A such that v(f(z)) > 2v(f'(xz)). Then there exists a
unique o € A such that f(a) =0 and v(a — ) > v(f'(z)).

Proof. We use Newton’s approximation. Let a; = x, and define a sequence inductively by
the formula
flan)

n

Let t = v(f(a1)/f'(a1)?) > 0. We will show by induction on n > 1 that the following
conditions are satisfied:

10



e v(a,) > 0.
o v(f'(an)) = v(f'(a1)).
o u(F(an) > 20(f'(an)) + 2.

These conditions hold for n = 1, by hypothesis. We now treat the induction step. We have
v(ap41) > 0if and only if f(a,)/f'(a,) € A. We have

v(f(an)) = v(f'(an)) = v(f'(an)) + 2"t = v(f'(a1)) + 2"t > 0.

We have f'(any1) — f'(an) = (any1 — an)y for some y € A, hence

V([ (ang1) = fan)) 2 v(anis — an) = v(f(an)) — v(f(an)) > v(f'(an)),

hence v(f'(an+1)) = v(f'(a,)). We can write (using the Taylor expansion of the polynomial

F(X))

- a _Lan) /a M 22’
f(an+1) = f( n) f’(an)f ( n> + (f’(an>>

for some z € A. We thus have

v(f(ans1)) = 2(v(f(an)) — v(f'(an))) 2 20(f'(an)) + 2"

This completes the induction. Incidentally we have shown v(a,s1 — a,) > v(f'(a1)) + 2" 1¢,
which shows that (a,) is a Cauchy sequence which has a limit @ € A, and f(«) = 0.

To establish uniqueness, we suppose 5 € A is another root with f(5) =
v(B—x)>v(f(x)). We write 5 = a + h and calculate

f(B)=0= f(a)+ hf'(a) + h*w

for some w € A, hence hf'(a) = —h%w, hence (assuming h # 0) v(f'(a)) > v(h). On the
other hand, we have

v(h) =v(f —a) 2 min(v(a — ), v(8 — x)) > v(f'(z)) = v(f(@)).

This contradiction shows that the root « is unique, as desired. O

0 and

Corollary 4.3. Let A be a complete DVR with valuation v, and let f(X) € A[X]| be a monic
polynomial. Let f(X) € ka[X] be the reduction of f(X) modulo my. Suppose there erists
x € ka such that f(z) = 0 and f (x) # 0. Then there exists a unique y € A such that
f(y) =0 and y =z mod m4.

FEzample 4.4. We can use this to understand which elements of Q, are squares. Any non-zero
element has a unique expression p"u with u € Z;, so it is equivalent to understand which
elements of Z; are squares. A necessary condition is that v mod p € F,' is a square, so let
us suppose this condition holds.
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We apply Hensel’s lemma to the polynomial f(X) = X? —u. Let v be an element of
Zy such that v*> = u mod p. If p is odd, then f'(v) = 2v is a p-adic unit, so Hensel’s lemma
shows that there is a unique w € Z; such that w? = u.

If p is even, then a necessary condition is that w mod 8 € (Z/8Z)* is a square, i.e.
that w = 1 mod 8. This being the case, we have f(1) = 0 mod 8 and f’(1) = 2, hence
v(f(1)) > 3 and v(f'(1)) = 1. Hensel’s lemma shows in this case that there is a unique
w € 7 such that w* = u.

Ezample 4.5. The group homomorphism Z; — [F is surjective. We can use Hensel’s
lemma to construct a section to this map, i.e. a homomorphism 7 : F — Z; such that
7(a) mod p = a. Indeed, let f(X) = X? — X. Then f'(X) = —1 modp, so the simple
version of Hensel’s lemma shows that for each a € F,, there is a unique b = 7(a) € Z, such
that o = b and b = @ mod p. The uniqueness implies that 7(aa’) = 7(a)7(a’), hence 7 is a
group homomorphism. The map a — 7(a) is called the Teichmiiller lift, and exists for any
complete DVR with finite residue field.

5 Extensions of Dedekind domains, 11

Let A be a Dedekind domain, let K = Frac(A), and let E/K be a finite separable extension,
and let B denote the integral closure of A in E. We have seen that B is a Dedekind domain
with field of fractions E.

Let ¢ C B be a non-zero prime ideal. Then qN A is a non-zero prime ideal of A: if
b € q— {0}, then we can find an equation " 4+ a;b" ' +-- -+ a, = 0 of minimal degree. This
forces a, # 0, and then a, € qN A.

Definition 5.1. If ¢ C B is a non-zero prime ideal and p = qN A, then we say that q lies
above .

Lemma 5.2. Let ¢ C B, p C A be non-zero prime ideals. Then the following are equivalent:
1. q lies above p.
2. q appears in the prime factorization of pB C B (in other notation, vq(pB) > 0).

Proof. We recall that if a,b C B are non-zero ideals, then b = ac for some ideal ¢ C B if and
only if b C a. If q lies above p, then pB C qB = q, so q divides pB. Conversely, if q divides
pB, then p C pB C q, hence p C qN A. Since p is a maximal ideal, this forcesp =qnA. O

Definition 5.3. Suppose that @ C B is a non-zero prime ideal, and let p = qNA. Then there
is a natural embedding of fields A/p — B/q. We define the ramification index eqs, = vq(pB)
and the residue degree fq, = [B/q: A/p].

We say that the prime q is unramified over A if eq;, = 1 and the extension of residue
fields is separable. If every prime lying above p is unramified over A, then we say that p is
unramified in B.

Proposition 5.4. Let p C A be a non-zero prime ideal, and let n = [E : K|. Then we have
n= Zq‘p €q/pfasp, the sum running over all primes of B lying over p.
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Proof. Let S = (A —p). After replacing A by S™'A and B by S™!'B, we can assume that A
is a DVR. (Note that S~ B is the integral closure of S™'A, and if ¢ NS = ) then replacing
q by S7'q does not change ¢ or f.) Then B is a torsion-free finitely generated A-module, so
is free of some rank. We have (A — {0})™'B = E, so this rank is dimg F = n.

To prove the proposition, we will calculate this rank in another way. Reducing mod-
ulo p, we also have n = dimy,, B/qB. By the Chinese remainder theorem, there is an
isomorphism

BB = ] B/an,

qlp

so we get n =3, dima, B/q%/>. There is a filtration B 5 q D g% D -+ D g%/, and each

q°/q"*! is a B/g-vector space of dimension 1, hence an A/p-vector space of dimension fqs.
We obtain

dimayp B/q%» = eq/pfosp,
which completes the proof. O]

Now suppose that the extension E/K is Galois. In the case the group G = Gal(E/K)
fixes A, so acts on B. In particular, if p C A is a non-zero prime, then G acts on the set of
primes q C B lying over A by the formula q — o(q).

Proposition 5.5. Suppose that the extension E/K is Galois, and let p C A be a non-zero
prime ideal. Then:

1. Let q be a prime lying over p, and let 0 € G. Then foq)p = fop and eo@q)p = €q/p-
2. The group G acts transitively on the set of primes of B lying above p.

3. For any prime q of B lying over p, we have [E : K| = eq/p fq/pGq/p, Where gqp is the
number of distinct primes of B lying over p.

Proof. The first part is clear. The third part follows from combining the first and second
with the previous proposition.

For the second, we can assume again that A is a DVR. Let q,q" be distinct primes of
B lying above p, and let 7 € B be a generator of q. Then Ng/k(7) = [[,cqo(m) € qNA =
p C ¢q'. Since ¢’ is prime there exists oinG such that o(7) € ¢, hence o(q) C ¢', hence
o(q) = q', as desired. O

If the extension F/K is Galois and q is a non-zero prime of B lying above the prime
p of A, then we define Dy, = Stabg(q), and call it the decomposition group at the prime q.

Proposition 5.6. Suppose that the extension E/K is Galois, and let q be a prime of B
lying above the prime p of A such that the corresponding extension kq/k, of residue fields is
separable. Then it is Galois, and the induced map Dqsy — Gal(kq/ky) is surjective.
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Proof. Let T € ky, and let z € B be any element with Z = 2 mod q. Let f(X) = [[,co(X —
o(z)) € A[X]. Let f(X) = f(X) mod p € k,[X]. By construction, the polynomial f(X) has
7 as a root and splits into linear factors in k4[X]. Since Z was arbitrary, this shows that &,
is normal, hence Galois over k.

To show that the map Dy, — Gal(kq/ky) is surjective, let T € kg be a primitive
element; this exists since the extension k,/k, is separable. We can assume that 7 is not 0
(since otherwise k; = k, and the proposition is trivial). By the Chinese remainder theorem,
we can choose an element x € B lifting T such that x € ¢ if ¢ # q is any other prime
of B lying over the prime p. Form the polynomial f(X) as before; we now have f(X) =
X4 [lsep,,, (X — o ()) for some d > 0.

If 7 € Gal(ky/ky), then 7(T) is a non-zero root of f(X), hence there exists o € Dy,

such that ¢(ZT) = 7(Z). Since T is a primitive element, this shows that the image of ¢ in
Gal(kq/ky) equals 7, as desired. O

Definition 5.7. In the situation of the proposition, we call I/, = ker(Dy/, — Gal(kq/ky))
the inertia group at the prime q.

Observe that we have #1,,, = eq/p; in particular, the inertia group is trivial if and
only if the prime q is unramified over p.

6 Extensions of complete DVRs

Theorem 6.1. Let A be a complete DVR and let K = Frac(A). Let L/K be a finite separable
extension, and let B denote the integral closure of A in L. Then B is a complete DVR.

Proof. Let 7 be a uniformizer of A. We know that B is a Dedekind domain, and a finite free
A-module. It follows that the natural map B — lim B /7B is an isomorphism (since this

holds for A?). On the other hand, we have 7B = qi'...q%, where the g; are the pairwise
distinct non-zero prime ideals of B. Being a Dedekind domain with finitely many prime
ideals, B is a PID. By the Chinese remainder theorem, we have for each j > 0

B/n'B = B/qi*...ql =[] B/al",
=1

hence ,
B=limB/m'B = ][ lim B/q].
J i=1 J
Since B is a subring of L, it is a domain. It follows that we must have j = 1, hence B has a

unique non-zero prime ideal. It follows that B is a DVR. If we write @ for a uniformizer of
B, then we have 7B = w®B, hence l’ng/WjB = 1'&13/ij. We find that B is a complete
J J

DVR. [l
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In particular, it makes sense to define ey x = eq/p and fr,x = fq/,, where p, q are the
unique non-zero prime ideals of A, B.

Corollary 6.2. Suppose that the extension L/K is Galois with valuation vy,. Then for any
x € L and o € Gal(L/K), we have vi(o(x)) = vy (x).

Corollary 6.3. For any x € L*, we have v (x) L vk (Np/k(z)).

- /K

Proof. Let E/K be the Galois closure of L, and let oy,...,0, : L < E be the distinct
K-embeddings. Then we have Nk (z) = [[;_; os(z), and

n

[L . K]UL(ZL‘) = ’UL(H O‘(JT)) = UL(NL/K(ZE)) = GL/KUK(NL/K(J’)).

i=1
The result now follows from the formula [L : K| = ek fr/k. O
Working in a complete DVR is very pleasant. We now give several examples of this.

Definition 6.4. Let A be a DVR and let v : K* — 7Z be the corresponding valuation.
If f(X) = X4+ a; X4 + -+ ag € K[X] is a polynomial with ag # 0, then we define
the Newton polygon of f to be the graph of the largest continuous piecewise linear function
N :]0,d] — R satisfying the following conditions:

e N(0) =0 and N(d) = v(aq).
o Forallj=1,....d, N(j) <wv(a,).
e The derivative of N is non-decreasing away from its points of discontinuity.

In other words, the Newton polygon is the lower convex hull of the set of points

(7, v(ay))-

Proposition 6.5. Suppose that f(X) factors as f(X) = H?ZI(X—OQ) with a; € K. Suppose
that the Newton polygon of f(X) has slopes 1 < vo < -+ < 7y, counted with multiplicity.
Then after re-ordering we have ~; = v(«;) for each 1.

Proof. Let \; = v(a;); we can assume after re-ordering that A\; < Ay < --+ < \;. Define the
A-polygon to be the graph of the continuous piecewise linear function L : [0,d] — R with
L(0)=0and L'(x) = \; for z € (i —1,4). Then L(d) = A1+ + Xy =v(e ... aq) = v(ag),
so the Newton polygon and the A-polygon have the same endpoints. We must show that
they are in fact the same.

We first show that the Newton polygon lies above the A-polygon. For this, it suffices
to show that for all j = 1,...,d, we have v(a;) > A\ + --- + A;. But we can write a; =
+> ... @;;, and each term in the sum has valuation A;, +---+ A;; > Ay +--- + A;. We
therefore have v(a;) > Ay + -+ - + A;, by the ultrametric property.
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We now show that the two polygons are in fact equal. We will use the following
general fact: if xq,..., 2, € K and v(x1) < v(x;) for all j > 1, then v(zy +-- -+ z,) = v(zy).
Suppose that A\ = -+ =X\, < Agyp1 == A\, < .... We can write

(ij :al...akj—i— E ail“‘aikj'

The terms in the sum all involve «, for some r > k;, hence have valuation strictly greater
than Ay + -+ + Ag;. We conclude that v(ax;) = v(ai...ax;) = A+ + Ay,

This implies that the two polygons must in fact coincide. Indeed, we have shown that
the Newton polygon lies above the A-polygon, and that the Newton polygon shares a vertex
with each of the vertices of the A-polygon. This completes the proof. n

Corollary 6.6. Let A be a complete DVR with Frac(A) = K of characteristic 0, and let
f(X)= X"+ X+ +ay € K[X] be a polynomial with aqg # 0. Suppose that the slopes
of the Newton polygon of f(X) are \y < --- < A, each appearing with width wy, ..., wg.
Then there is a unique factorization f(X) = [, :(X) in K[X] such that deg gi(X) = w;
and the Newton polygon of ¢;(X) has a single segment of slope \;.

Proof. Let L/K denote the splitting field of f(X), and let v, denote the valuation of L, so
that vr(v) = er/xvK(z) for v € K*. Let ay,..., o, be the roots of f(X) in L. We know
that the numbers \; are exactly the ez/lKvL(aj), with the width w; being the number of j
with vr (o) = ep/xAi. We therefore define g;(X) = [[(X — «;), the product being over the
roots with vr (o) = ep A

We clearly have f(X) =[], g:(X) in L[X]. We claim that each g;(X) in fact lies
in K[X]. The group Gal(L/K) permutes the a; leaving the values vy (c;) invariant, so fixes
the coefficients of each g;(X), so we have g;(X) € K[X] by Galois theory. The uniqueness
of the given factorization is clear. ]

Ezxample 6.7. The polynomial X3 4+ X? — 2X + 8 has 3 distinct roots in Q,, because its
Newton polygon has 3 distinct slopes.

We introduce some language to go with the above theorem.

Definition 6.8. A pair (K,v) where K is a field and v : K* — Z is a valuation is called a
discrete valuation field (DVF). If v is clear from the context (for example, if K = Q,), then
we will refer to K itself as a DVF. We then write Ai for its valuation ring, myg C Ak for
the mazimal ideal, and kx = Ax/mg for the residue field.

If A is complete, then we call (K,v) a complete discrete valuation field (CDVF). In
this case, we say that L/K is an extension of compete discrete valuation fields if L/K is a
separable field extension and L is endowed with its canonical structure of CDVF (i.e. with
Ay, the integral closure of Ak in L).

Let L/K be an extension of complete CDVFs. It is called unramified if e;/x = 1 and
the extension kp/kk of residue fields is separable. If L/K is unramified and Galois, then so
is kr/kx and the map Gal(L/K) — Gal(kp/kk) is an isomorphism. This can be viewed as
a special case of the following proposition:
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Proposition 6.9. Let A be a complete DVR with fraction field K and residue field kx =
A/my. Letl/kk be a finite separable extension. Then there exists a finite separable extension
L/K with the following property:

1. There is a kx-isomorphism ki = 1, and L/K is unramified.

2. For any finite separable extension F /K equipped with a k-embedding | — kg, there is
a unique K-embedding L — E which induces this map on residue fields.

In particular, the field L with this property is unique up to unique isomorphism.

Proof. We first address existence. Let m be a uniformizer of A. Let T € [ be a primitive
element, and let f(X) € kg[X] be its minimal polynomial. Thus there is an isomorphism
I = kx[X]/(f(X)). Let f(X) € A[X] be an arbitrary monic lift of f(X), and let B =
A[X]/(f(X)). The polynomial f(X) is irreducible, because a factorization could be reduced
modulo my to give a factorization of f(X). It is separable for the same reason (look at
common divisors of f(X) and f’(X)). In particular, B embeds in the field L = K[X]/(f(X)),
showing that B is a domain. For any y € L we have 7"y € B for some n, showing that
Frac B = L. Finally, we have B/(7) = kg [X]/(f(X)) & 1.

We claim that B is integrally closed in L. Since B is clearly integral over A, this will
imply that B is the integral closure of A in L, hence that B is a complete DVR with residue
field [ and that the extension L/K is unramified. To establish the claim, choose y € L and
suppose that y is integral over B. We can write y = z/7" for some z € B and integer n > 0;
let us assume that n is minimal with respect to this property.

Take an equation y¢ 4+ bjy?~! + --- +b; = 0 with b; € B. Substituting, we obtain
the equation z¢ + 7"b12% 1 + .-+ + 71y = 0 in B. If n > 0, this shows that the element
Z = zmod 7B of B/rB = [ satisfies z¢ = 0. Since [ is a field, this forces Z = 0, implying
that z is divisible by 7 in B, a contradiction. Thus n = 0 and we in fact have y € B, showing
that B is integrally closed.

We now establish the universal property of L/K. Let E/K be a finite separable
extension equipped with a kx-embedding [ < kg, and let C' denote the integral closure of A
in £. The polynomial f(X) splits into distinct linear factors in /[X], so by Hensel’s lemma
there is a unique element x € C' lifting the image of T € kg and satisfying f(z) = 0. This
determines a homomorphism B = A[X]/(f(X)) — C by the formula X +— z. Passing to
fraction fields gives the desired K-embedding L — F.

The same argument establishes uniqueness: if L < F is any K-embedding, then we
get an induced map ¢ : B < C, hence an element 2’ = ¢(X mod f(X)) € C such that
f(z") = 0. The compatibility with the embedding [ < kg means that 2’ mod mg = Z. The
uniqueness part of Hensel’s lemma then forces ' = x, showing that there is exactly one
embedding L — E with the desired properties. O

Corollary 6.10. Let A be a complete DVR with field of fractions K, and let E/K be a
finite separable extension such that the corresponding extension kg/ky of residue fields is
separable. Then there is a unique intermediate subfield E/FEy/K with the following property:
Ey/E is unramified, and if E' C E is any other intermediate field which is unramified, then
E' C E,.
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We call Ey the maximal unramified subextension of E.

Proof. We take L/K to be the unramified extension associated by the proposition to kg /kp,
and FEj to be the image of L under the corresponding K-embedding L < E. The corollary
then follows from the universal property of L. O

Corollary 6.11. Let A be a complete DVR with field of fractions K, and let E/K be a
finite separable extension such that the corresponding extension kg/ky of residue fields is
separable. Then the following sets are in canonical bijection:

1. The set of intermediate extensions E/L/K such that L/ K is unramified.
2. The set of intermediate extensions kg/l/kk.

If L/K is an extension of CDVFs with ki /kx separable, then the extension L/L,
satisfies fr/r, = 1 and err, = [L : Lo]. Such extensions are said to be totally ramified. We
now characterize these extensions:

Proposition 6.12. Let K be a CDVF of characteristic 0.

1. Let f(X) =X+ a; X% + -+ ag € Ag[X] be a polynomial which is Eisenstein, i.e.
such that v(ag) =1 and v(a;) > 1 for eachi =1,...,d — 1. Then f(X) is irreducible
and the extension L = K[X]/(f(X)) is totally ramified.

2. Suppose conversely that L/K is a finite extension which is totally ramified, and let
7, € L be a uniformizer with minimal polynomial f(X) = X4+ a; X4 + .-+ a4 €
Ak[X]. Then f(X) is Eisenstein and Ap = Ag|my].

Proof. The condition that f(X) is Eisenstein is equivalent to the condition that the Newton
polygon Nk (f) has a single segment of slope 1/d. Let E denote the splitting field of f(X),
and let 7 € E be a root, L = K(m). The Newton polygon of f(X) over L has slopes ek
times the slopes of the Newton polygon over K, hence equal to ey x/d. On the other hand
these equal vy (7). Since er x < d, it follows that ek = d and vi(m) = 1, showing that
L/K is totally ramified of degree d and that f(X) is irreducible.

Suppose instead that L/K is a totally ramified extension, and let B denote the integral
closure of A in L, 77, € B a uniformizer with minimal polynomial f(X) € A[X]. Let 7 € A
be a uniformizer of A. Then the Newton polygon of f(X) has a single segment of slope 1/d,
so is Eisenstein. Any element z € B admits an expression x = Y .~ a;7; with a; € A; it
follows that the map Alr;] — B/mx B = B/w¢ B is surjective. Applying Nakayama’s lemma
to the finitely generated A-module B/A[r], we find that B = A[r]. O

We state a related result:

Proposition 6.13. Let L/K be an extension of CDVFs of characteristic 0 with kr/kxk
separable. Then there exists x € Ay, such that A = Ak[z].
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Proof. Let L/Ly/K be the maximal unramified subextension. We first choose § € k;, which
is a primitive element for k = k1, /kk, and let y € Ar, be any lift of §. Let m € Ay be any
uniformizer. Then the previous proposition shows that A, = Ay [n] = Ak|y, 7].

Let f(X) € Ag[X] be the minimal polynomial of y over K. Then f(X) € kx[X] is
the minimal polynomial of 7 over kg, and we can write

fy+m) = fly)+nf(y)+7°z =nf(y) + 72

where z € Ap. The element f’(y) is a unit, because it reduces modulo 7 to ?l@) # 0. We
deduce that v (f(y+ 7)) = 1, and hence f(y+ 7) is a uniformizer of A;. We set x =y + 7.

To show that Ay, = Aklx], it is enough to (by Nakayama’s lemma) to show that the
map Ag|x] — Ap/mg Ay is surjective. We observe that the map Ax[z] — ky, is surjective, so
every element of k;, can be represented by an element of Ax[z]. Since f(x) is a uniformizer
of Ar, every element of Ay /my Ay, admits a representative of the form 37/ 4, f(2) with
a; € Agl[z]. But the polynomial f(X) has coefficients in K, so any such element lies in
Aklz]. This completes the proof. O

Finally, we discuss passage to completion.

Proposition 6.14. Let A be a Dedekind domain with field of fractions K, let L/K be a
finite separable extension, let B be the integral closure of A in L, and let q be a non-zero
prime ideal of B lying above the prime p of A. Then:

1. There 1s a canonical embedding of DVRs ﬁp — éq extending the embedding A — B.

2. Let Ly, K, denote the fields of fractions of Bq and fAlp, respectively. Then Ly/K, is a
finite separable extension, By is the integral closure of K, in Ly, and we have er,/r, =
Cafps fLo/iy = Jasp:

3. Suppose further that the extension L/K is Galois. Then Ly/K, is Galois and the
natural map Dgj, — Gal(Lq/K,) given by passage to completion is an isomorphism.

Proof. We first note that we have A\p = @A /p?, and similarly for Eq. Indeed, it suffices to

note that the natural map A/p" — A, /pfJ is an isomorphism for any ¢ > 1. It is surjective
by the existence of m-adic expansions. It is injective because p;’; NA=pifa/se pfj NA,
then we have a = sb for some b € A, a € p*, and b € A — p. We then get v,(b) = vy(a) > 4,
showing that b € p’.

We have natural maps A/p? — B/q for each i > 1, and passage to the inverse limit
gives a map A\p — Eq. It is injective because the map A — B is injective. If we write
q=4dqi,-..,q, for the distinct primes of B above p, then there is an isomorphism

lim B/p'B = [ Bs.
i i=1
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Since B is a finite free A-module, l’ng /p'B is a finite free jzl\p—module. We conclude that

the quotient §q is a finite free A\p—module. In particular, §q is integral over A\p, hence is the
integral closure of Ep in L.

We also see (using m-adic expansions and Nakayama’s lemma) that éq = A\p - B (i.e.
Eq is generated as a ring by these two subrings). This implies that Ly = K, - L (compositum
of subfields of L), hence that L,/K, is separable. The isomorphisms Eq / qB\q =~ B/q and
Bq/qu = B/qg/pB show that qu/Kp = fq/p and €L,/Ky, = €q/p-

Suppose finally that L/K is Galois. Any element of Dy, acts on Eq, by passage to
completion, so we obtain a map Dg,, < Aut(L,/K,). Since the source has order eq/, fq/p

and the target has dimension at most [Lg : K] = €L, /K, 1q/K,, We find that this map
is an isomorphism, that Aut(Ly/K,) = [Ly : K,], and hence that the extension Lq/K, is
Galois. ]

7 Number fields

Definition 7.1. A number field is a finite extension K/Q. We write Ok for the integral
closure of Z in K, and call it the ring of integers of K.

We observe that O is a Dedekind domain.

Lemma 7.2. Let K be a number field and let p C Ok be a non-zero prime ideal. Then
Ok /p is a finite field.

Proof. Let pNZ = (p), for a prime number p. Then Ok /p is a finite extension of F,, so is a
finite field. O

If L/K is a Galois extension of number fields, and q C Oy, is a non-zero prime ideal
lying above the prime p of Ok, then the map Dy, — Gal(k,/k,) is surjective. The group
Gal(k,/k,) has a canonical generator, the Frobenius automorphism z — z#%. If ¢/, = 1,
then the map D/, — Gal(k,/k,) is an isomorphism and this automorphism therefore lifts to
a canonical element, the Frobenius element Frob,,, € Gal(L/K), which depends only on the
prime q. If o € Gal(L/K) then Frob,)/, = o Frob,, o0~*, which shows that the Frobenius
conjugacy class Frob, depends only on the underlying prime p (recall that Gal(L/K) acts
transitively on the set of primes of Oy, above p).

In general, we can study the decomposition group by passage to completion: we write
Ok, for the localization and completion of Ok at the prime p, and K, = Frac Of,. Then
there is an isomorphism Dy, = Gal(L4/K,), given by “passage to completion”.

Proposition 7.3. Let K be a number field, and let L = K(«) be a finite extension, f(X) €
K[X] the minimal polynomial of «. Let p be a non-zero prime ideal of O. Then the
following two sets are in canonical bijection:

1. The irreducible factors of f(X) in K,[X].
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2. The primes of O lying above the prime p of Ok.

Proof. Let E/K be the splitting field of f(X), and let G = Gal(E/K), H = Gal(E/L). Let
q be a fixed prime of Op above p, and let D = Dy, = Gal(£,/K,). We first note that there
is an isomorphism of G-sets (i.e. sets with left G-action) between GG/ H and the set of roots of
f(X) in E, hence an isomorphism of Dy /,-sets between G//H and the set of roots of f(X) in
E,. It follows that the irreducible factors of f(X) are in K,[X] are in bijection with the set
of orbits of Dy, on G/H. This set of orbits is identified with the double quotient D\G/H.

On the other hand, there is an isomorphism of G-sets between GG/D and the set of
prime ideals of O lying above p, because G acts transitively with stabilizer D. The set of
primes ideals of Op, lying above p is in bijection with the set of H-orbits, because H acts
transitively on the set of prime ideals of Og above a given prime of Q. We conclude that
the set of primes of Oy is in bijection with the double quotient H\G/D.

These two double quotients are in bijection via the map Do H + Ho~'D. This is the
bijection of the proposition. It can be interpreted directly as follows: if g(X) is an irreducible
factor of f(X) in K,[X], we choose 0 € G such that g(o(a)) = 0 in E;. Then we take the
prime ideal o~1(q) N Oy, of Oy.

To show that this bijection is canonical, we must show that it is independent of
the choice of q. Let 7 € G, and let ¢ = 7(q). Let g(X) be an irreducible factor of
f(X) in Ky[X]. Then 7 induces an isomorphism E; — Ey that respects K,, so we get
7(g9(o(a)) = g(7(0(a)) = 0. In the bijection defined using ¢', we then take the prime ideal
(o) Hq)NOp = o7 7717(q) N O = 07(q) N Or. This shows the independence of the
choice of q. m

These kinds of methods are very useful for studying the Galois theory of number
fields. Here is a simple example: let K = Q(v/d), where d # 0,1 is a square-free integer.
Then K is a quadratic field, and we can use the proposition to factor the ideal pOg for any
prime number p by factoring the polynomial f(X) = X?—d in Q,[X]. We split into 3 cases:

e If pis odd and p t d, then the polynomial f(X) = f(X) mod p € F,[X] has distinct
roots modulo p. If d is a quadratic residue modulo p then Hensel’s lemma shows
that f(X) splits into linear factors in Q,[X]. Otherwise f(X), and hence f(X), is
irreducible and pOy is prime.

e If p|d, then f(X) is Eisenstein, hence irreducible, and p is ramified in K.

e If p = 2 and p { d, then the behaviour depends on the image of d in Q5 /(Q)?. If
d = 1 mod 8, then f(X) splits into linear factors in Q,[X]. If d = 5 mod 8, then
f(X) is irreducible and p is unramified in f(X) (because Q,(v/5)/Q, is unramified).
If d = 3,7 mod 8, then f(X) is irreducible and p is ramified in K.

The behaviour of Frobenius elements at unramified primes can be analyzed in general as
follows. Let f(X) € Z[X] be a monic irreducible polynomial, let L/Q be its splitting field,
and let aq,...,aq € Of be its roots; then Gal(L/Q) is identified with a transitive subgroup
of Sy, the symmetric group on d letters.
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Let p be a prime not dividing disc f (which means all but finitely many primes p),
and let f(X) = f(X) mod p. We claim that p is unramified in Oy, and that the cycle type of
the Frobenius element Frob, as an element of S; depends only on the factorization of f(X)
into irreducibles in F,[X]. Note that the assumption that p does not divide disc f means
exactly that f(X) has no repeated roots.

To see this, let q be a prime of Oy, lying above p. Then Ly = Q(ay, ..., oq). Indeed,
we know that Ly = Q,(a), where a € L is a primitive element. But « is a polynomial in the
ai, ..., aq with Q-coefficients, and conversely each «; can be expressed as a polynomial in
a with Q-coefficients. Let K C L, denote the maximal unramified subextension. We know
that f(X) factors into linear factors over k,, so Hensel’s lemma shows that f(X) factors

into linear factors in Ox[X]. This shows that a4, ..., a4 € Ok, and hence K = L, and p is
indeed unramified.

We now show how to calculate Frobg,. Let @; = o; mod q; then the map {ag,...,aq} —
{eu, ..., @} is a bijection. The Frobenius automorphism of k; acts on the elements @y, ..., ay

by cyclic permutations, with cycle types (dy)(dy) . . . (dy), say. The irreducible factors of f(X)
are the products [ [(X —@), the product running over the roots of @ in a given orbit of Frobe-
nius. We see therefore that f(X) factors as a product of k distinct irreducible polynomials,
with degrees dy, ..., dy.

Now let’s consider a different example. Let [ be a prime, and consider a polynomial
f(X) = X"—aX — b e Z[X], where the integers (I — 1)a and Ib are coprime. Suppose that
f(X) is irreducible, and let K /Q be the splitting field of f(X). We claim that if p is a prime
of Z ramified in Ok, and p is a prime of Ok above p, then e;/,, = 2 and the inertia group
I, C Gal(K/Q) C S is generated by a transposition.

To see this, we first note that f(X) = f(X) mod p has a repeated root; otherwise, our
previous argument shows that p is in fact unramified in Og. The equation X f'(X)—1f(X) =
alX +1b—aX = (I—1)aX +1b shows that the GCD of f(X) and f (X) divides (I—1)aX +1b.
Our assumption that (I — 1)a and [b are coprime shows that this polynomial is non-zero
modulo p. Since it is linear, we see that if f(X) has a repeated root, then we must have
F(X) = g(X)?h(X), where g(X) € F,[X] is linear, h(X) € F,[X] has distinct roots, and g,
h have no roots in common.

Let K, be the maximal unramified subextension of K,/Q,. Hensel’s lemma shows
that we can factorize f(X) = r(X)h(X) in O, [X], where h(X) € Ok, [X] lifts A(X) and
splits into linear factors in O, [X], and 7(X) lifts g(X)?. Since K, is generated over Q, by
the roots of f(X), we conclude that K, is generated over K, by adjoining the roots of r(.X),
hence is an extension of degree at most 2. Since e,), = [K, : K], and we have assumed
epp > 1, we get ey, = [K, : Ko] = 2. We also see that the inertia group at such a prime
permutes the roots of r(X) and fixes the roots of h(X), so is generated by a transposition.

This completes the proof of the claim, and shows that Gal(K/Q) = S;: the group S;
acts transitively on [ letters, and [ is a prime, so the Galois group contains an [-cycle. Every
number field is ramified above some prime p of Z, so we find that the Galois group contains
a transposition as well, hence equals the whole of S;. Writing L = K“ for the quadratic
extension of Q fixed by A;, we see that the extension K /L is an everywhere unramified
extension of number fields with Galois group A;.
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As a concrete example, consider the polynomial f(X) = X° — X + 1. Then f(X) is
irreducible, and its discriminant equals 2869 = 19 - 151. These primes are both ramified in
K, the splitting field of f(X), and we find that the extension K/Q(1/2869) is an everywhere
unramified extension with Galois group As.

8 Lower ramification groups

Let L/K be a Galois extension of CDVFs such that ky/kk is separable.

Definition 8.1. Let G = Gal(L/K). For each i > 0 we define the i ramification group
G; = ker(Gal(L/K) — Aut(Ap/m)).

Thus Gy = Ik = ker(Gal(L/K) — Gal(kr/kk)) is the usual inertia group.

Lemma 8.2. 1. Fach G; is a normal subgroup of G. We have G D Gog D G; D ... and
mizoGi = {1}

2. Suppose that A = Ak|x] for some x € AL, and for s € G define i(s) = vr(s(x) — z).
Then ig is independent of the choice of x and we have G; = {s € G | ig(s) > i+ 1}.
(By convention we set ig(1l) = 00.)

Proof. The first part is clear from the definition. For the second, we have s € G; if and
only if s(z) — 2 € m4™', if and only if vy (s(x) — z) = ig(s) > i + 1. This shows that ig is
independent of the choice of x. O

Ezample 8.3. Let K = Qy(+/2,1), a compositum of two ramified quadratic extensions. The
quadratic extensions are distinct, and we have G = Gal(K/Qy) = (Z/27Z) x (Z/2Z). Indeed,
¢ = (1414)/v/2 is an 8™ root of unity, and ¢ — 1 satisfies the polynomial (X + 1)* +1 =
X1 +4X3+6X%+4X +2, which is Eisenstein over Q,. We find that K/Q, is totally ramified,
so G = (.

Let B denote the integral closure of Zs in K. We have B = Zy[¢ — 1] = Zs[(], and
we calculate s(¢) — ¢ for the various elements of G:

Sy N —V2i, ig(sy) =2,

V2 V2

s IR B, ia(s) = 4,

) ic(s3) = 2.

We find GO = G1 = {1, S1, 89, 83}, G2 = Gg = {]_, 82}, and G4 = {1}

Lemma 8.4. Let m € AL be a uniformizer, and let s € Gy, © > 0. Then s € G; if and only
if s(m)/m =1 mod (7).
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Proof. We can assume, after replacing K by the maximal unramified subextension of L/K,
that L/ K is totally ramified and A;, = Ag|[n]. If s € Go, then we have i¢(s) = vp(s(m)—7) =
vr(s(m)/m — 1) + 1, hence ig(s) > i+ 1 if and only if s(7)/7 =1 mod 7'B. O

If s € Gy, then the element s(m)/7 lies in A} (since it has valuation 0). We define a
filtration of the group U, = A} by the formula U} = ker(A} — (A/7")*). We thus have
UL/Up = (Ap/mg)”* = k}. On the other hand for i > 1 we have U, = 1+ 7'Ap, and we
have an isomorphism 7°Ay /7t A, =2 Ul /U given by z + 1+ 2. It is a homomorphism
because (1+z)(1+y)=1+z+y+ay, and zy € T Aj.

Proposition 8.5. Let m € Ap be a uniformizer.
1. There is an injection Go/G1 — ki given by the formula s — s(m)/m mod my,.

2. For each i > 1, there is an injection G;/Giy1 — 7 AL /7 AL given by the formula
s+ s(m)/m— 1.

3. The quotient Go/Gy is cyclic. If ki has characteristic 0, then the group G is trivial.
If k1, has characteristic p > 0, then the group Gy is the unique p-Sylow subgroup of Gy.

Proof. We have already proved the first two parts. We prove the third. The group Gy is
finite, and Gy /G is a finite subgroup of the multiplicative group of a field, which is therefore
cyclic. If k7, has characteristic 0, then each of the quotients G;/G;11, i > 0, is a finite group
which injects into a Q-vector space, which is therefore trivial. Since N;G; = {1}, we see that
the group G; must be trivial.

If k7, has characteristic p, then the same argument shows that GG, has order a power
of p: each G;/G;1 is a subgroup of the additive group of a 1-dimensional kj-vector space.
On the other hand, the quotient G¢/G1 injects into the torsion subgroup of &k}, which has
order prime to p. The result follows. O

Corollary 8.6. The group Ik = Gq is soluble. If the residue field kg s finite, then the
group Gal(L/K) is soluble. There is no Galois extension E/Q, with Galois group As.

Definition 8.7. If L/K is a Galois extension of complete discrete non-archimedean valued
fields, we say that L/ K is tamely ramified if the group G is trivial. We say that it is wildly
ramified if Gy 1s non-trivial.

Corollary 8.8. Suppose that the extension L/K is Galois and totally tamely ramified of
degree n. Then K contains the n'™ roots of unity, and there ewists a uniformizer T € Ag

such that L = K (/7).

Proof. There is an embedding Gy < kj:. Any finite subgroup of k is cyclic, so we find that
G is cyclic of degree n. By the existence of Teichmiiller representatives, we find that K itself
contains the n' roots of unity. Moreover, if 7, € Ay, is a uniformizer and o € Gal(L/K) is a
generator, then there is a primitive n' root of unity ¢ € A% such that o(7;) = (77 mod 7.
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Let o = 7y + (" lo(np) + (202 (mp) + - -+ + Vg Y(x,). Then o(a) = o(rp) +
<o+ 4+ (rp = Ca, hence a" € Ag. We claim that « is a uniformizer of A;,. We calculate
modulo 7%: here, we have

amod 72 = 7w + (M rp + 2L + - = nrp mod 2.

Since L/K is tamely ramified, n € Ay and hence v(a) = v(my) = 1. It follows that
Ap = Agla] and o™ = 7k is a uniformizer of Ag. O

9 Upper ramification groups

Suppose again that L/K is a Galois extension of CDVFs with k; /kj separable. Consider an
intermediate extension L/E/K with E/K Galois, and let H = Gal(L/F), a normal subgroup
of G. It is immediate from the definition that iy = i¢|g, and hence that the ramification
filtrations are compatible: H; = G; N H. However, this is not true for passage to quotient,
as the following example shows:

Ezample 9.1. Let L = Qy(1/2,7). We have seen that G = Gal(L/Q,) = (Z/27) x (Z./27). We
have G = Gy = G4, and Gy = G3 = Gal(L/Qx(i)), G4 = {1}. We calculate the ramification
groups for some quadratic subextensions of L.

If K = Qy(i), H= Gal(L/K), G/H = {1,s}, then ig/u(s) = vk(—=2i) = 2, so
(G/H)y = (G/H)1, (G/H)y = {1}. In this case (G/H); equals the image of G; in G/H for
each 7 > 0.

If E=Qy(2), N =Gal(L/E), G/N = {1,t}, then ig/n(t) = vp(—V2 — V2) = 3,
so (G/N)y = (G/N); = (G/N)y, (G/N)s = {1}. In particular, (G/N)s is not equal to the
image of G5 in G/N.

We therefore now show how to modify the numbering of ramification subgroups so
that they become compatible with passage to quotient. This work will later play an essential
role in our formulation of global class field theory.

Definition 9.2. If u > 0 is a real number, then we define G, = G, = {s € G | ig(s) >
u+ 1}. The ramification function is p(u) = ¢k (u) = [ [Go : Gy 'dt.

Lemma 9.3. 1. The function ¢ is a continous piecewise linear, increasing homeomor-
phism of [0, 00) to itself.

2. We have the formula ¢(u) + 1 = ﬁ Y ecemin(ig(s),u+1).

Proof. We can write an explicit formula: let g; = #G;, and suppose that m < u < m + 1,
where m is an integer. Then we have

p(u) = Zgi/go + (u = m)(gm+1/90)-

This shows that ¢ is increasing and piecewise linear, with discontinuities in the derivative
only possible at integer values of w.
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To show the second part of the lemma we first observe that the right-hand side is a
continuous, increasing, piecewise linear function, with discontinuities in the derivative only
possible at integer values of u. It takes the value 1 at u = 0. It therefore suffices to show
that for non-integer values of u, both the left-hand side and the right-hand side have the
same derivative.

At a point m < u < m + 1, the right-hand side has derivative equal to g, ! times the
number of s € G such that ig(s) < u+ 1. This is gy '#G, = [Go : G,]7", by definition, and
this equals the derivative of the left-hand side. m

Definition 9.4. For v € [0,00), we define )(v) = ¥k (v) = ¢ (v). Thus v is a piecewise
linear, increasing homeomorphism of [0,00) to itself. The ramification groups G' are then
defined for all real numbers v € [0,00) by the formula G = Gy(y)-

It is clear from the definition that N,»oG" = {1} and that G° = Gy = I k. The
filtration is left-continuous, in the sense that G¥ = N~oG"~€ for all v > 0. We say that a real
number v is a jump in the upper-numbering filtration if the inclusion G¥*¢ C G" is strict for
all € > 0. In contrast to the lower numbering, jumps can occur at rational numbers which
are not integers!

Lemma 9.5. Let 0 € G/H. Then we have the formula

Proof. Choose elements © € Ag, y € Ap such that Ap = Ag|z] and A, = Akly]. Let
o € G/H be non-trivial, and choose s € o. Then we have

i/u(0) = vp(o(x) — x) = e pur(o(x) — x).

Let f(X) € Ag[X] denote the minimal polynomial of y over E. Then we have f(X) =
[Lcn(X—t(y)), hence S( )(X) = [L,eq(X —st(y)), and the right-hand side in the statement
(s(f)(y)). Writing a = o(z) — z, b = s(f)(y), we must therefore
show that a, b generate the same ideal of Aj.

We show the divisibility in each direction. The polynomial s(f)(X) — f(X) € Ag[X]
has all coefficients divisible by s(z) — z = o(x) — x, which shows that s(f)(y) — f(y) =
s(f)(y) = b is divisible by s(z) — x = a. On the other hand, we can write x = g(y) for some
polynomial g(X) € Ax[X] (because v € Ay, = Akly]). Then g(X) —z € Ag[X] has y as a
root, and we can therefore write g(X) —z = f(X)h(X) for some polynomial h(X) € Ag[X].
Then g(X) — s(z) = s(f)(X)s(h)(X), and hence (evaluating at X = y)

9(y) — s(x) = x — s(x) = a = s(f)(y)s(h)(y) = bs(h)(y),

showing that b divides a. This concludes the proof. O]

Lemma 9.6. 1. Let 0 € G/H, and let j(0) = sup,c,ig(s). Then ig/u(c) —1 =
er/e(jlo) —1).
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2. Suppose that v = pr/p(u). Then (G/H), = im(G, — G/H).

Proof. Choose s € G such that i¢(s) = j(o) = m, say. If t € H then ig(st) < m. If t lies
in H,,_, then ig(t) > m, hence ig(st) > m, hence ig(st) = m. If t ¢ H,,—; then ig(t) <m,
and so ig(st) = ig(t). In either case we have ig(st) = min(ig(¢),m). We then have the
formula

ig(o) = —— Y ig(s) = hiozmm(z’g(t),m) =14 ¢r/p(m—1),

s€o teH

which shows the first part. For the second, we have im(G, - G/H) = G,H/H, and then
for o € G/H,

cec(G/H)y = ¢rp(jlo) =1) > or/p(u) & jlo) >u+1lso0c G,H/H,
as desired. O

Lemma 9.7. We have the formula ¢r/x = ¢p/k © Pr/E-

Proof. Again both sides are continuous, piecewise linear, increasing homeomorphisms of
[0, 00) into itself. It suffices therefore to show that the derivatives are equal, wherever they
are defined. The derivative of the left-hand side at u equals |Gy : G,,]™!, while the derivative
of the right-hand side equals ¢} (o1/5(u))¢) x(u) = [G/H : (G/H)y,,pw) ™ [Ho : Hy ™.
By the previous lemma, this is equal to [G/H : G, H/H|"'[Hy : H,|™" =[Gy : G,]7', as
required. O

Theorem 9.8. For allv >0, we have (G/H)" = G'H/H.

Proof. We have (G/H)" = (G/H )y vy = GuH/H, where u = ¢r,5(¢p/x(v)), or equiva-
lently v = g/k(vr/p(w)) = ¢r/k (1), by the lemma. This in turn implies that G, = GV, as
desired. O

Ezample 9.9. Let L = Qy(v/2,1), K = Qu(i), and F = Qu(v/2). Let G = Gal(L/Qy),
H = Gal(L/K), N = Gal(L/E). We calculate G' = G, G* = H (and the jumps are at
v=1,2).

We have (G/H)! = G/H, and the jump is at v = 1. We have (G/N)? = G/N, and

the jump is at v = 2. This is in accordance with the theorem.

The existence of the upper numbering allows us to generalize the notion of maximal
unramified subextension. For simplicity, we will restrict here to the case of Galois extensions
only.

Theorem 9.10. Let L/K be as above, and let a > 0 be a real number.
1. If a =0, then L* is the mazimal unramified subextension of L/K.

2. Let L/E/K be an intermediate extension, Galois over K. Then E* = L*N E.
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3. Let Ey, By be intermediate extensions, Galois over K. Then E{ - ES C (Ey - E)®. In
particular, if EY = Fy and ES = Ey then (Fy - Ey)®* = E - Es.

Proof. We have G* = G° = G = I1 Kk, so the first part is clear. For the second, the
subgroup of G fixing E“ is the pre-image of (G/H)* in G; by Herbrand’s theorem, this is
exactly G*H, which is the subgroup of G fixing L* N E.

For the third part, let H; = Gal(L/E;), Hy = Gal(L/Es). Then E - E5 is the fixed
field of Hy N Hy, and we must show that the pre-image of (G/H; N Hs)* in G, namely
G“(H, N H,), is contained inside (G*Hy) N (G*Hy). This is clear. O

This notion becomes particularly useful in the case of an abelian extension, thanks
to the Hasse-Arf theorem:

Theorem 9.11. Let L/K be an abelian extension of complete fields with ki /ky separa-
ble, and let v > 0 be a jump in the ramification filtration (i.e. a real number such that
Gal(L/K)" # Gal(L/K)"*¢ for all e > 0). Then v € Z.

Definition 9.12. Let L/K be a Galois extension of CDVFs with ki /kk separable. If
Gal(L/K) is abelian, then we define the conductor of L/K to be the ideal fr/x = m,

where a > 0 is the smallest non-negative integer such that Gal(L/K)* = {1} (or equivalently
L*=1)

Proposition 9.13. Let E/K be a Galois extension of CDVF's with kg/kk separable, and
let Ly, Lo/ K be intermediate extensions, abelian over K. Then LyLy is abelian over K, and

fri-Lo/x = lem(fr, /i, froyi)-

Proof. If a € [0, 00), then we have (L - Ly)* = (Ly - L) N E*, hence Gal(L; - Lo/ K)* = {1} if
and only if Ly-Ly C E®, if and only if L; C E* and Ly, C E?, if and only if Gal(L,/K)* = {1}
and Gal(Ly/K)* = {1}. The result follows. O

10 The different

Let A be a Dedekind domain with field of fractions K, and let V' be a finite-dimensional
K-vector space.

Definition 10.1. An A-lattice in K is a finitely generated A-submodule M C V which spans
V.

For example, if eq,...,e, is a K-basis of V', then & ,Ae; is an A-lattice. If A is a
PID (so that every finitely generated torsion-free module is free), then every A-lattice of V'
has this form.

Now suppose that V' is endowed with a symmetric bilinear form S : V xV — K. In
this case, if M is an A-lattice of V' we define MY = {v € V | S(v, M) C A}.

Lemma 10.2. Let M, N be an A-lattice of V.
1. MV is an A-lattice of V.
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2. If M C N, then NY Cc M.

3. If S C Ais a multiplicative subset, then S~ M is an S~ A-lattice of V', and (S™'M)V =
S=H(MVY).

4. We have M = (MV)".

Proof. We first note that if M C N, then NV C M"Y, from the definition. If M = @&, Ae;,
where e, ..., e, is a K-basis of V, then MV = 7_1Af;, where fi,..., f; is the dual K-basis
(with respect to S). In particular, M" is a lattice. In general, we can find a sandwich
M, C M C M,, where My, My are free A-modules; then we get My C M C My, which
shows that M spans V' (it contains a lattice) and is finitely generated (it is contained inside
a lattice), hence M is itself a lattice.

If M is a lattice and S is a multiplicative subset of A, then S™!M is finitely generated
and spans V, so is an S™!A-lattice. We have MV C (S™'M)Y, hence S™'(MV) C (S~'M)V.
On the other hand if by, ..., b, are A-module generators for M and v € (S™'M)V, then we
can write S(v,b;) = a;/s; for a; € A,s; € S, hence S(s;v,b;) € A, hence s1...8,v € MY,
hence v € S~H(MY).

Finally we show M = (MY)". If m € M, then S(m, M) = S(M",m) C A (because
S is symmetric and by the definition of M"). This shows M C (MY)". If M is A-free,
then (MY)Y = M (because the dual basis of the dual basis is the original basis). Using that
passage to the dual lattice commutes with localization, we see that the inclusion M C (M"Y)"
becomes an isomorphism after localization at any non-zero prime ideal P C A.

We therefore need to show that if M C N are A-lattices of V such that Mp = Np
for all such primes P, then M = N. Let n € N; then for any non-zero prime ideal P, we
can write n = mp/sp with mp € M, s, € A — P. The ideal generated by all sp equals the
unit ideal, so we can find primes Py,..., P, and t,...,t, € A such that ", t;sp, = 1. We
getn=>_  tispn=>y . t;mp € M, showing that M = N, as desired. O

We apply this formalism in the following situation. Let E/K be a finite separable
extension, and let B denote the integral closure of A in E. We have a non-degenerate
symmetric K-bilinear form S : £ x £ — K given by the formula S(z,y) = trg/k (zy).

Definition 10.3. The codifferent is cgja = BY = {x € E | trgyx tB C A}. Note that it
is stable under multiplication by B, so is even a non-zero fractional ideal of B (not just a
lattice). We define the different as the inverse ideal 0p/4 = CE}A.

Note that B C BY, since trg/x(B) C A, so 34 C B is in fact an ideal (not just a
fractional ideal).

Lemma 10.4. Let S C A be a multiplicative subset. Then 0g-1p/5-14 = 5’*103/14.

Proof. This follows from the two facts that localization commutes with taking the dual
lattice, and with taking the inverse of a non-zero fractional ideal. O]

Lemma 10.5. Let ¢ C B be a non-zero prime lying above the prime p of A. Then 03,/4, =
UB/ABq.
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Proof. By the previous lemma, we can assume after replacing A by A, that A is a DVR. Let
q=4i,...,q, be the primes of B above p = (7). Then we have an isomorphism

g
{ i=1

and we define £ = B[1/x] = 7, Ey,- We observe that E is a K-vector space of dimension
[E : KJ; and if 1, ...z, is a K-basis of E, then it is also a K-basis of E. We define a map
trE/f( : E — K in the usual way; this restricts to trg,x on the subring £ C E.

Define C5/i = {b e E | try) bB C 121\} Then /4 = CB/A - B. Indeed, if x4, ..., z,

is an A-basis of B, then it is also a A-basis of B. If Y1, -, Yn is the dual K-basis of E with
respect to the trace pairing, then we get

¢g/i = BiL1A -y = Bepya.
On the other hand, we can decompose trz IR = 1T, trg, /K,, which shows that
g
‘A = H By, /A"
i=1

We finally obtain

~

B, /4, = ¢B/aDa = ¢B/a DBy,
as desired. ]

Lemma 10.6. Suppose that L/ E is a finite separable extension, and let C' denote the integral
closure of B in L. Then we have the equality 9c/4a = 0p/a - 0cy/p as ideals of C.

Proof. We use the formula try,/x = trg/x otry/g. Note that if a is a non-zero fractional ideal
of A, and b is a fractional ideal of B, then we have trg/x b C a if and only if b C acp/a.
Indeed, we calculate

trbCasa'trb=tra™'bCAe a'bCepu e b Cacpa
We can then calculate for an arbitrary fractional ideal ¢ C E:
cCCo/a = tI‘L/K ¢ = tI‘E/KtI"L/E cCAs tI“L/E ¢ C ¢tp/a <= ¢ C ¢p/ACC/B-

This shows that ¢c/a = ¢p/acc/p. Multiplying by 0¢,40p,40¢/p on either side now gives the
result. O

Lemma 10.7. Let « € B be a primitive element for the extension E/K, and let f(X) €
K[X] be its minimal polynomial. Then Ala] C E is a lattice and Ala]” = f'(a) "t Ala].
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Proof. We claim that if ¢ > 0, then trp/x o/ f'(«) equals 0 if 0 < i < n — 2; equals 1 if
it =n—1; and lies in A if i > n. If i > n, then o' is an A-linear combination of the
elements 1,a,...,a" !, so it suffices to establish the claim in the cases i = 0,...,n — 1.
Before establishing the claim, we show why it implies the lemma. Let M = f'(a)'A[al].
The claim shows that trg x MA[a] C A, so M C Ala]”. Let fi,..., f, denote the dual
basis to 1,a,...,a" . We just need to show fi,...,f, € M. But the claim implies that
fn=f'(a)"Vand also for each i = 1,...,n—1, f,_; —a'/f'(a) € @;;BAfn_j. By induction,

we see that each f,,,..., fi lies in M, as required.
We now establish the claim. Let L/K be the Galois closure of F, and let oy, ..., a,
be the Galois conjugates of a. For each j =0,...,n — 1 we have an identity

- f(X) O‘i _ vy
;X—Oékf’(ak)_X'

Indeed, both sides are polynomials of degree at most n — 1 which agree at the n points
X = ay,...,a,. The coefficient of X! in the left-hand side equals 7, al./f'(ax) =
trp/k &/ f'(«). The coefficient of X"~ ! in the right-hand side equals 0 if j < n—1, and 1 if
7 =mn — 1. This concludes the proof. O

Proposition 10.8. Let o € B be a primitive element for the extension E /K, and let f(X) €
K[X] be its minimal polynomial. Then (f'(«)) C 0p/a, with equality if and only if B = Ala/].

Proof. Let C' = Ala], and let a = {b € B | bB C C'}, a non-zero ideal of B. We have for any
non-zero b € B:

beasbBCCeCYC(BB)Y & flla)'CCblegaebe f'(a)pa.

This shows that a = f'(a)cp/a, hence f'(a) = adp/a. We see that (f'(a)) C dp/a, with
equality if and only if a = B, i.e. B=C. [l

Proposition 10.9. Let q C B be a non-zero prime ideal lying above the prime p of A, and
let vg : E* — Z be the corresponding valuation. Suppose that the corresponding extension
kq/ky of residue fields is separable. Then vdp/a > eq)p — 1, with equality if and only if eq,
is coprime to the residue characteristic of q, i.e. the ramification is tame. In particular,
vq0B/4 = 0 if and only if eq)y = 1, i.e. q is unramified over p.

Proof. After localization and completion, we can assume that both A and B are complete
DVRs. By the transitivity of the different, and the existence of the maximal unramified
subextension of F/K, we can assume either that e = 1 or that e > 1 and f = 1. In the
first case, we choose a primitive element @ for kg/kg, and let f(X) € A[X] be a monic
polynomial lifting the minimal polynomial of @, and o € B the unique root of f(X) in B
lifting @. We have seen that B = Ala] and 7(&) # 0, showing that 95/4 = B is the unit
ideal.

In the second case, we let 7 € B be a uniformizer and let f(X) € A[X] be its
minimal polynomial. In this case f(X) is an Eisenstein polynomial and B = Alr]|, so we get
0p/a = f'(m)B. Using that f(X) is Eisenstein we have

f'(7) = er* ' mod 7°B.
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Thus v4(0p/4) > e — 1, with equality if and only if e € B*. This completes the proof. O]
Corollary 10.10. Only finitely many primes of A can ramify in B.

Ezxample 10.11. We calculate the ring of integers of K = Q(«), where « is a root of f(X) =
X3 —2. Let C = Z[a] C Ok. We claim that in fact C = O. This will be the case if and
only if 90,z = f'(a)Ok = 3a*’Ok. The polynomial X* — 2 is Eisenstein, so the prime 2 is
totally and tamely ramified in Ok. It follows that there is a unique prime q2 = (a) of Ok
above 2, and vy, (00, /z) = 2. We have (X —1)? —2 = X? —3X? +3X — 3. This polynomial
is Eisenstein, showing that 3 is also totally wildly ramified in K, with 3 = g3 = (a + 1)3.
This shows that v4,(d0,,z) > 3. We find that 30O = q3q3 divides 9o, /z, which divides
()0 = 3a?Ok. Thus equality holds and C' = Ok.

11 Cyclotomic fields

If m > 1 is an integer, then we typically use the notation (,, for a primitive m'" root of

unity, and let Q((,,) denote the splitting field of X™ — 1. A field of this form is called a
cyclotomic field.

We will study the case where m = p” is a prime power. We first study the local case.
Let ®(X) = (X*" —1)/(X?"" —1); then the roots of ® are exactly the primitive (p")™ roots
of unity. We claim that ®(X) is irreducible over Q,. Evaluating at X = 1, we have

I[I «w-n=20)=p

a€(Z/p"L)*

Let ¢ = (,r and K = Q,(¢). Then Z,[(] C Ok. We observe that for any a € (Z/p"Z)* with
ab=1 mod p", (—1 divides (*—1 in Ok, as we can write ((*—1)/((—1) = 1+{+---+¢* L
Similarly, (*—1 divides (**—1 = ¢ —1, as we can write ((**—1)/(¢*—1) = 14+ - -+l@1P,
It follows that as ideals (1 — () = (1 — (%) for any a € (Z/p"Z)*, and hence (using the above
identity) we obtain the equality of ideals

(1= Q" =0y

This shows that the ramification index e /g, is at least (p—1)p"~'. Since ex/g, < [K : Q,] <
deg ®(X) = (p—1)p ', it follows that equality holds, ex/q, = [K : Q,] = (p—1)p" ', and 1—
( is a uniformizer of Ok. Moreover, the injective homomorphism Gal(K/Q,) — (Z/p"Z)*,
which sends o € Gal(K/Q,) to the unique a such that o(¢) = (¢, is an isomorphism.

Now let £ = Q(¢). Since the polynomial ®(X) is irreducible over Q,, it is irreducible
over Q, so we see that [E: Q] = [K : Q,], and there is a unique prime ideal p of O above
p which satisfies £, = K. We claim that we even have Op = Z[(]. We know that this is
true if and only if 9g/9 = (P'(¢)) = p"(1 — () *Og. This equality holds after localization
at p, since 0p/g respects localization and completion and we have Og = Z,[(]. On the
other hand, we always have (®'(¢)) C 9g/qg, and the left-hand side divides p"Op, hence has
zero valuation at all primes of Og not lying above p. We conclude that equality holds and
Op = Z[(]. Moreover, no prime other than p ramifies in the field £.
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Let [ be a prime of £ = Q((,~) lying above a rational prime [ # p; then [ is unramified
in E. Recall that the decomposition group D, = Gal(IF|/IF;) is cyclic, generated by the
Frobenius element Froby, : x — 2'. In fact, Froby, € Gal(E/Q) = (Z/p"Z)* is identified
with the residue class of [ modulo p": we have an injection

Oplp] — F[.

By definition, this is compatible with the action of Frob;,; on the left-hand side and the
map z — ' on the right hand side. It follows that Froby, agrees with multiplication by
[ on Og[p"], which is equivalent to saying that Froby;, = [ in Gal(£/Q). We observe that
Frob,; = Frob; depends only on the prime /, and not on the choice of prime [ of O above
it; this is a general feature of abelian extensions (because of the formula o Froby, ol =
FI‘ObU([)/l).

We can use this to give a quick proof of the quadratic reciprocity law. Let p be
an odd prime. Since the group (Z/pZ)* is cyclic of order p — 1, it has a unique index
2 subgroup; by Galois theory, since means that Q((,) contains a unique subfield which is
quadratic over Q. Such a subfield can be ramified only at the prime p, which implies (by

an earlier calculation) that it must be Q(/p*), where p* = (%1) p. We can characterize
Gal(Q(¢,)/Q(v/p¥)) C (Z/pZ)* as the set of quadratic residues modulo p.
We show that <%*> = (%) by looking at how ¢ splits in Q(y/p*). We have Frob, =

g mod pin Gal(Q((,)/Q). The prime ¢ splits in Q(y/p*) if and only D/, C Gal(Q((,)/Q(v/p¥)),
if and only if ¢ is a square mod p. On the other hand the prime ¢ splits in Q(/p*) if and

only if the equation X? — p* has a solution in F, if and only if p* is a square mod q.

12 Class field theory

We are now going to discuss global class field theory. Let K be a number field. Recall that
an extension F/K is said to be abelian if it is Galois with abelian Galois group. The main
goal of class field theory is to describe all abelian extensions of K in terms of the ‘internal
arithmetic’ of K. Let I denote the group of fractional ideals of O, and P C I the subgroup
of principal fractional ideals aQk, o € K*. The ideal class group of Ok is the quotient
H(Ok) = 1/P. Class field theory gives a description of the abelian extensions of K in terms
of so-called ray class groups, which are generalizations of the ideal class group. We begin by
describing these.

Definition 12.1. A divisor of K is a formal product ¢ = ¢q- ¢, where ¢g C Ok is a non-zero
ideal and ¢y is a (possibly empty) set of embeddings T : K — R.

If ¢,0 are divisors we write ¢ < 0 if ¢o|dy and cs C Vso. Thus the set of divisors of
K is partially ordered, with minimal element Ok (the unit ideal of O with empty set of
infinite places).

(The terminology of divisors is supposed to remind you of algebraic curves, where
divisors are formal sums of points.) If ¢ is a divisor, then we write I(¢) C [ for the group
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of non-zero fractional ideals which are prime to ¢y, i.e. satisfying v,(a) = 0 for all p|c,. We
write K, C K* for the subgroup of o € K* satistying the following conditions:

e If p is a prime of Ok dividing ¢o, then vy(a) > 0 and vy(a — 1) > vy(co).
e If 7: K — R is a real embedding which lies in ¢y, then 7(a) > 0.

We write P, C P for the subgroup of principal fractional ideals of the form (a) for some
a € K,. Tt is clear from the definition that P, C I(c), and we accordingly call the quotient
H(c) = I(c)/ P, the ray class group of level c.

We now discuss the relation of the groups H(¢) with the usual ideal class group. Let
P(c) = PN I(c) denote the subgroup of principal fractional ideals which are prime to ¢.
Then there is are obvious maps I/P, — I(¢)/P(c) < I/P, hence H(c) — H(Ok).

Proposition 12.2. 1. The natural map I1(c)/P(¢) — I/P = H(Ok) is an isomorphism.

2. Let U = OF and U, = UNK,. Then there are natural short exact sequences of abelian
groups

0——P(¢)/ P H(¢)——H (O )—0
0——U/U—(Ox [c0)* % [L e {1} —=P(c)/P.—0.

In particular, H(c) is a finite group, of order h. = ’Eg:dl’](:]), where hxy = #H(Ok) and

() = 27Ok [c0) ™.

Proof. We begin by recalling the basic finiteness results proved in Part II Number Fields.
First, the group H(Ok) is finite. Second, let 7,...,7, : K < C denote the n = [K : Q]
distinct complex embeddings of K. We define r; to be the number of embeddings that
actually take values in R, and ro = (n — r1)/2. The Dirichlet unit theorem says that there
is an isomorphism O = A x Z"*"21 where A is the finite group of roots of unity in K.

To show that the map I(¢)/P(¢) — I/P is an isomorphism, it remains to show that
it is surjective; in other words, we must show that for any non-zero fractional ideal a C K,
we can find a € K* such that aa € I(c). We can assume without loss of generality that
a C Ok is a non-zero ideal. By the Chinese remainder theorem, we can find o € K* such
that v,(a) = vy(a) if p|co. Then o 'a is prime to ¢, as desired.

We now come to the second part of the proposition. The existence of the first exact
sequence follows immediately from the first part of the lemma. To get the second exact
sequence, let K (¢) C K* denote the set of elements « such that () € P(c). Then K, C K(c),
and we have a commutative diagram with exact rows:

0 U K(¢) P(c)—=0

0 Ut KC Pc 0

By the snake lemma, there is an exact sequence

0 U /UK (¢) ) Ke—P(c) | P—0.
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To complete the proof, we need to show that the natural map

K(¢)/ K. = (O /e)* x [] {£1}

TECo

is an isomorphism. (On each factor 7 € ¢, the map is a — sign 7(«).) This map is injective,
by definition. To show it is surjective, we observe that the Chinese remainder theorem shows
that for any x € (Og/co)*, we can find a@ € Ok such that o = z mod ¢y and 7(z) > 0 for
all 7 € ¢. Indeed, we can find an element z satisfying the first condition. Let N > 1 be an
integer in ¢ (e.g. the integer [Ok : ¢]). Then for a > 1 sufficiently large, 7(z 4+ aN) > 0 for
all 7 € ¢o.

We therefore just need to show that for any subset S C ¢4, we can find o € K ()
such that 7(o) > 0if 7 € S and 7(o) < 0if 7 € S. To accomplish this, choose f € Ok
such that K = Q(f), let 7,..., 7, be the elements of ¢, and let ; = 7;(f). Identify
S with a subset of {1,...,7}. Then there is (e.g. by the Chinese remainder theorem) an
isomorphism R[X]/([];_,(X — 8;)) = R", which sends X to (3,..., ;). We can therefore
find a polynomial f(X) € R[X] such that f(5;) > 0if j € S and f(3;) <0if j ¢ S. Since
Q is dense in R, we can even assume f(X) € Q[X]. Clearing denominators (which does not
affect signs), we can even assume f(X) € Z[X]. Then we can take a = f(f); for we have
1o = 7; f(B) = f(B;), which has the required sign. If « is not prime to ¢q, we replace it by
1 4+ Na, where N € ¢ is a sufficiently large integer. O]

Ezample 12.3. Suppose that K = Q and ¢ = (V) - oo, for some integer N > 1. Then
U = {£1} and U, is trivial; /P = H(Z) is trivial. We see that H(c¢) = (Z/NZ)* in this
case. If a C Z is an ideal which is prime to NV, then this isomorphism sends the class [a] of
a in H(c) to the integer m, where m > 1 is the unique positive generator of a.

Now suppose instead that K is a real quadratic field and ¢ = ¢, is the the set of real
places. Suppose further that hx = 1, i.e. the ideal class group of Ok is trivial. By the unit
theorem, there is a ‘fundamental unit’ € € Oj; such that every element of Oj; has the form
+¢e" for a unique n € Z. Then H(c) = ({1} x {£1})/{%e%}. The group H(c) is trivial if
and only if € has opposite signs at the infinite place, if and only if Ng/ge = —1. Otherwise,
H(c) has 2 elements.

Either case can occur: examples are given by Q(v/2) (which has class number 1 and
fundamental unit 1 4 v/2) and Q(v/3) (which has class number 1 and fundamental unit

24+ V/3).

With these preliminaries out of the way, we can discuss class field theory. Let L/K
be an abelian extension of number fields. If p is a non-zero prime of O which is unramified
in Op, then we define the Artin symbol (p, L/K) = Frob,,, where q is any prime of Oy,
lying above p.

If ¢ is a divisor such that ¢; is divisible by all primes which ramify in Op, then we
can extend the Artin symbol to a homomorphism 1,k : I(c) = Gal(L/K) by specifying its
values on prime ideals: we set 1,k (p) = (p, L/ K).

We introduce a divisor fz,x, which we call the support of L, as follows. We define
fr/K 00 to be the set of embeddings 7 : K < R which do not extend to an embedding L — R
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(of course, it will extend to an embedding L — C). We define f;/x = Hp pr/K where ar) i
is the least integer a > 0 such that Dg =1, and q is any choice of prime of O above p.
Note that ar/x > 0 if and only if p is ramified in L; thus this product has only finitely many
terms that are not 1.

Let ¢ be a divisor of K such that ¢ > §;,x. It follows from the definition that g
is divisible by all prime ideals of Ok which are ramified in Oy, so the map v ,x : I(c) —
Gal(L/K) is defined. The first main theorem of class field theory is then as follows:

Theorem 12.4. Let L/K be an abelian extension of number fields, and let ¢ > fr/x be a
divisor of K. Then the map v,k 1s surjective and its kernel contains P.. It particular, it
factors through I(¢) — I(c)/P. = H(c), giving a surjective homomorphism vk : H(c) —
Gal(L/K).

The second main theorem of class field theory is as follows:

Theorem 12.5. Let ¢ be a divisor of K. Then there is a canonical bijection between the
following two sets:

1. The set of abelian extensions L/K such that fr e <c.
2. The set of subgroups of the finite group H(c).

The bijection is given by the map L/K — kervyr k. In particular, the maximal abelian
extension L./ K of support at most ¢, which we call the ray class field of level ¢, satisfies
Gal(L./K) = H(c).

An important point is that if Ly, Ly/K are abelian extensions of K (say inside a
fixed algebraic closure K/K), and foo/k < ¢ froyx < ¢, then fr,.1,/x < ¢. Indeed, they are
subfields of the maximal extension L./K of support ¢. This explains why we need to use the
upper ramification subgroups in defining these objects.

We now discuss examples. The basic example is when ¢ = Ok is the trivial divisor,
and H(c) = H(Ok) is the usual ideal class group. Then class field theory says that there is
an abelian extension L /K which is everywhere unramified (and in which the real embeddings
remain real) for which the Artin map gives an isomorphism H(Ok) = Gal(L/K). The field
L is called the Hilbert class field of K, and is contained inside every ray class field of K.

As an example, consider the polynomial f(X) = X3 — X +1. As X3 +aX + b has
discriminant —4a® — 27b%, the polynomial f(X) has discriminant —23, and is irreducible
(even over F3). Thus the splitting field L of f(X) has Galois group S3 over Q, and contains
the quadratic extension K = Q(1/—23). We claim that L is the Hilbert class field of L/K.
For this we need to know two things:

e The extension L/K is everywhere unramified. (Since K has no real places, these do
not play a role.) This will show that L is contained inside the Hilbert class field of K.

e The class number of K is 3. This will show that L actually equals the Hilbert class
field of K.
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The class number can be calculated using either the Minkowski bound (as in Part IT Num-
ber Fields) or using the theory of binary quadratic forms (see the next section). To show
that L/K is everywhere unramified, we can refer to an earlier calculation (we showed that
for a polynomial like f(X), all of the inertia groups in its splitting field are generated by
transpositions).

The isomorphism H(Ok) = Gal(L/K) sends a prime p to (p, L/K). In particular,
p splits in L/K if and only if Frob, = (p, L/K) is trivial, if and only if p is principal. For
example, f(X) is irreducible over Fs, and 30k = p3p; splits in K = Q(1/—23). We see that
p3 is not a principal ideal.

For an example where the infinite primes play a role, let us consider the field K =
@(\/g), with hgx = 1 and fundamental unit 2 + /3 of norm 1. Let ¢ = ¢ denote the divisor
consisting of all infinite places. We observed that H(c) is cyclic of order 2. Class field theory
therefore tells us that Q(\/g) has no everywhere unramified extensions which embed in R,
but does have an everywhere unramified quadratic extension if we allow embeddings in C.
It is given by L = K (i) = K(v/-3).

The class field theory of Q is particularly explicit. Consider the divisor ¢ = (N) - 0o,
for an integer N > 1; every divisor is dominated by one of this form. We have already
computed that the ray class group H(c) is isomorphic to (Z/NZ)*. On the other hand, we
have computed (see example sheet 3) that the support of the cyclotomic field Q((,)/Q is
exactly (p") - oo (except if p” = 2, in which case it is trivial). If N = [\, pi*, then Q((x)
is the composite of the fields Q(C;:), hence has support < ¢. By the first main theorem,
we find that the Artin map gives a surjective homomorphism (Z/NZ)* — Gal(Q((n)/Q),
which sends a prime ideal (p) (p a prime number not dividing N) to Frob,. We know from
Part II Galois theory (or can prove directly) that the group Gal(Q({y)/Q) has cardinality
#(Z/NZ)*, so this surjective map must in fact be an isomorphism, showing that Q({y) is
in fact the ray class field of level (N) - co. Applying the second main theorem, we deduce
the Kronecker—Weber theorem:

Theorem 12.6. Let K/Q be an abelian extension. Then there exists an integer N > 1 such
that K C @(CN)

13 Binary quadratic forms

In the remainder of the course, we will analyze the following problem: when is a given prime
p represented by a given positive definite binary quadratic form f(z,y)? We have for an odd
prime p, p = 2% + 42 if and only if p = 1 mod 4 (Fermat). We also have p = z? + 2y? if and
only if p = 1,3 mod 8 (Euler), and p = 2% + 5¢? if and only if p = 1,9 mod 20 (Gauss).

On the other hand, one can show that p = x? + 14¢? if and only if the equations
r? = —14 and (y* 4+ 1)* = 8 have a solution in F,. This shows that the problem cannot
always be described in terms of congruence conditions on p. We’ll see that the solution to
this problem is intimately tied up with the class field theory of imaginary quadratic fields.

Definition 13.1. A binary quadratic form is a function f(x,y) = az® + bxy + cy® where
a, b, c are integers. We say that the form [ represents a given integer m if there exist values

37



xo, Yo € Z such that f(xq,yo)

=m.

Two forms f(z,y), g(u,v) are said to be properly equivalent (or just equivalent) if
there exists a matrix ( é, IB; ) € SLy(Z) such that g(u,v) = f(Au+ Bv,Cu+ Dv). The
discriminant of a binary quadratic form is the integer A(f) = b? — 4ac. The form f(x,y) is

primitive if its coefficients a, b, ¢ are coprime.

Lemma 13.2. If the forms f(x,y) and g(x,y) are equivalent, then A(f) = A(g) and f,g
represent the same integers. The form f(x,y) is positive definite (i.e. represents only positive
integers) if and only if A(f) <0 and a > 0.

Proof. 1t is clear that equivalent forms represent the same integers. A calculation shows that
the discriminant is invariant. If f(z,y) is positive definite, then a # 0, and we can write
f(z,y) = L((az+Ly)? + (ac— %)y2). Since f(z,y) is definite, we must have A(f) < 0. Since
f(z,y) is positive definite, we must have a > 0. Conversely, if a > 0 then we can write f in
this form, and if A(f) < 0 then this expression shows that f is positive definite. O

If D < 1 is an integer which equals A(f) for some binary quartic form f, then
D = 0,1 mod 4. Conversely, every such integer D appears as the discriminant of a primitive
positive definite binary quartic form: we can take 22 — 2y? or 2% 4+ zy + 52y* We call
these forms the principal forms of discriminant D. In this case, we write C'(D) for the set of
equivalence classes of primitive positive definite binary quadratic forms of discriminant D.
We will see that the arithmetic of the binary quadratic forms of discriminant D is
intimately tied up with the arithmetic of the quadratic field K = Q(\/ﬁ) To this end, we
recall that a Z-submodule M C K is called a Z-lattice if it spans K as a Q-vector space and
is finitely generated as a Z-module.
o
g

2
If M is a Z-lattice of K, then we define disc M = det ( a 3 ) , where {«, 5} is a

Z-basis of M. This is clearly independent of the choice of basis.
Definition 13.3. An order in K is a Z-lattice O C K that is also a subring.

Proposition 13.4. 1. Let O C K. Then O = Z+cOk for a uniquely determined integer
c > 1. In particular, O C Ok and disc O = ¢ disc Ok

2. Let M C K be a Z-lattice, and let Oy = {x € K | M C M}. Then Oy is an order.

Proof. For the first part, let o € Ok be such that O = Z ® Za. Then O, = Z 4+ cOg =
7 @ Zca is a subring, hence an order, and [Of : O.] = ¢. Conversely, suppose that O C K
is an order. Then O is a finitely generated Z-module, so is integral over Z, so contained in
Ok. Let ¢ =[Ok : O]. We have Z C O (since 1 € O), which means that ¢ = [Ok/Z : O/Z].
The quotient Ok /7Z is a cyclic group of infinite order, generated by the element «; so O/Z
is the subgroup generated by ca, hence O = Z & Zca = O,..

For the second part, we note that Oy is a ring and clearly spans K (since for any
x € K, we have Nz € Oy for some integer N > 1). It will be an order if it is finitely
generated over Z. But we get, by definition, an injection Oy, < Endz(M) into a finitely
generated Z-module, so Oy, is itself finitely generated. O
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Corollary 13.5. For each integer D < —1 such that D = 0,1 mod 4, there is a unique
imaginary quadratic field K and order Op C K such that discOp = D.

Proof. If O C K is an order of discriminant D, then K = Q(v/D), O C O, and hence O is
the unique order Q(v/D) such that disc O = [Ok : O] disc Of. This shows uniqueness.

To show existence, we set O = Z[v/D] or O = Z[(1++/D)/2], depending on the value
of D modulo 4. A calculation shows that this order has the correct discriminant. ]

From now on, we will write Op for the unique order of discriminant D. We will
always view the field Q(v/D) as being a subfield of C, with v/D the square root of D which
has positive imaginary part.

This gives us a way to classify lattices M C K: we have a discrete invariant, namely
the order O); C K. We say that two lattices M, M’ are equivalent if there exists A € K*
such that M’ = AM; then clearly we have Oy = Oy, If M C K is a lattice, we define
its norm NM to be the index [Oy : M|, if M C Oyy; otherwise, we choose a > 1 such
that aM C Oy, and define the norm NM = a~2[Oy : aM]. This is clearly independent
of the choice of a. In all cases we have disc M = (NM)?*disc Oy, and if A € K* then
N(AM) = Ng/g(A)NM.

We can compute O,; as follows. Choose a Z-basis «, of M. After multiplying
through by o', we can assume that o = 1. We then apply the following lemma:

Lemma 13.6. Let M = Z ® 73, where f € K —Q lies in an imaginary quadratic field. Let
f(X) =aX?+bX +c € Z[X] be the unique polynomial such that f(3) =0, a > 0, and a,b, c
are coprime. Then Oy = 7 @ Zaf3, disc Oy = b? — dac, and NM = a~ !,

Proof. The proof is by direct calculation. Let v = A + B with A, B € Q, and suppose
that v € Oyy; equivalently, A+ B € M and (A + BfS)B € M. This happens if and only if
the rational numbers A, B, (A — Bb/a) and Bc/a are all in fact integers; equivalently, if and
only if A, B, Bb/a and Be/a are all integers. Since (a,b,c) = 1, this is equivalent to asking
that A € Z and B € aZ, i.e. 7 € Z ® afZ. We then have disc Oy = (aff — af)? = b*> — 4ac,
NM = a~ !, as claimed. O

The connection with binary quadratic forms is made as follows. Fix an identification
K = Q(v/D) C C, where v/D is the square-root with positive imaginary part. Choose a
Z-basis «, § of M such that /a has positive imaginary part. We define a binary quadratic
form f = fy; by the formula

oz + By)(ax + By
f(2,y) = Ngjglax + fy) /NM = ( X )
NM
This form has discriminant disc M/NM? = disc Oy;. It depends on the choice of basis, but
any other basis differs from the chosen one by the action of SLy(Z). (This is because a change
of basis preserves the sign of the imaginary part if and only if it lies in SLy(Z) C GLy(Z).)

It follows that the equivalence class of fj; depends only on M and not on the choice of basis.

Theorem 13.7. Let D < —1 be an integer congruent to 0,1 mod 4, and let K = Q(\/D).
The map M — fyr induces a bijection between the following two sets:
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1. The set of equivalence classes of lattices M C K such that Oy = Op.

2. The set of equivalence classes of primitive positive definite binary quadratic forms of
discriminant D.

Proof. A change of basis changes by a linear substitution in SLy(Z), so the map is well-
defined. We first show that this map is injective. If M;, My are lattices such that fy;, and
far, are equivalent, then we can find bases a, 8 of M; and o/, ' of My such that fy, = fu,
(i.e. the forms are actually equal). Since scaling M and its basis does not change f;, we can
further assume that a = o/ = 1, hence we have Ny g(x + By)/NM; = N g(x + 8'y) /NM,
for all z,y € Z. Comparing coefficients of 22, zy, y?, we see that NM; = NM,, and 3, 5’ have
the same characteristic minimal polynomial over Q. Since 3,5 are non-real with positive
imaginary part, this implies 8 = ', hence M; = M,.

We now show that the map is surjective. Let f(z,y) = az?+ bzy + cy? be a primitive
form of discriminant D, and let 8 € K be the unique root of f(x,1) = az?+bx + ¢ in K
with positive imaginary part. Let M = Z & Z$. The lemma shows that Oy = Z ® Zap,
disc Oy = D, NM = a~!; and then the form fs is Ny g(z+8y)/NM = a(x+By)(z+By) =
a(z® + bry/a + cy*a) = f(z,y), as desired. O

The set C(D) of equivalence classes of lattices with Oy = Op in fact forms a group
under multiplication. If D = disc O then this is just the usual ideal class group:

Theorem 13.8. Let D = 0,1 mod 4 be a negative integer. Then the set C'(D) becomes a
group under the law [M] - [M'] = [MM']. If m > 1 is an integer, then a primitive form
f(z,y) = fu(z,y) of discriminant D represents the integer m if and only if the inverse class
[M]~! contains an proper ideal a C Op such that Na = m.

Proof. If M is any Z-lattice of K, we write M for its complex conjugate. We first check
that for any choice of M, we have MM = NMQ©O,;. We can assume after rescaling that
M = 7 & 73, where 3 satisfies the polynomial aX? + bX + ¢, a,b,c € Z coprime integers.
Then MM = (1,8,5,58) = (1,3,b/a,c/a). Since a,b, c are coprime, this equals (1/a, 3) =

If O,0" ¢ K are orders and zO = (' for some rational number z, then O = O’
and z = 1. Therefore if M, M’ are lattices such that Oy = O}, = O, then we have
(MM(MM') = (MM)(M'M) = NMNM'Op = N(MM")Ouar. We conclude that
Ouyme = Op, showing that the set C(D) is preserved by multiplication of lattices. We
also see that N(MM') = NMNM’'. The lattice Op is clearly a multiplicative identity, so
to show that H(D) is a group we just need to show the existence of inverses. But we have
Oy = Oy = Op, so this follows from the identity MM = NMOp.

It remains to show that fj; represents m if and only if there exists M’ € [M]~! such
that NM’ = m and M’ C Op. The form f); represents the integer m if and only if there
exists v € M such that N g(y) = mNM. If there exists such a 7, let M’ = yM~!, where
MM~ = Op. Then NM' = Ng/o(y)NM~ =m, and if a € M~ then ay € Op, hence
M' C Op. Conversely, if there exists M’ € [M]™ such that NM' = m and M’ C Op,
we write M’ = yM~* for v € K. Then NM' = Ngo(7)N(M)~! = m, hence Ng/g(7) =

40



mNM. Moreover, we have MM' = vOp C MOp = M, hence v € M. This completes the
proof. ]

We thus have a group C(D) that tells us a lot about representation of integers by
primitive binary quadratic forms of discriminant D. In order to relate this to class field
theory, we need to relate C'(D) to generalized ideal class groups. If D = disc Ok, then
C(D) = H(Ok) is the usual ideal class group and the relation is immediate. We thus obtain
the following corollary:

Corollary 13.9. Suppose that D = disc Ok, and let p be a prime number not dividing D.
Then the binary quadratic form f(z,y) = x*— Dy?/4 (resp. x*+xy+(1—D)y?/4) represents
p if and only if p splits in the Hilbert class field of K.

Proof. We first observe that if D < —1 is any negative integer congruent to 0 mod 4, then
the identity element of C(D) corresponds to the form 2 — Dy?/4. Indeed, we have Op =
Z @® 7Z\/D /2, so the corresponding form is N o(z + v Dy/2) = 2% — Dy?/4. Similarly, if
D =1 mod 4 then the identity element corresponds to the form x? + zy + (1 — D)y?/4.
We see that when D = disc Ok, so that C(D) = H(Ok), the prime p is represented
by this form if and only if there exists an ideal a C Ok such that Na = p and a is principal.
The first condition forces a to be prime (as norm is multiplicative) and p either to be ramified
or split in Og. Since p does not divide D, it splits in K as pp, and the condition that p is
principal is then equivalent, by class field theory, to the condition that p splits in the Hilbert
class field of K. m

We can use this to understand our first examples. If D = —4 = discZ[i], then the
principal form is 2 + y%. The field Q(i) has class number 1, hence trivial Hilbert class field,
so we see that an odd prime p is represented by the form 2% + y? if and only if it splits Q(4),

if and only if 2 = —1 has a solution modulo p, if and only if p = 1 mod 4.

Similarly the field Q(y/—2) (disc O = —8) has class number 1, and p is represented
by 2% + 2y? if and only if the equation 22 = —2 has a solution modulo p, if and only if
p=1,3 mod 8.

The field Q(v/—5) (disc O = —20) has class number 2, and its Hilbert class field is
Q(v=5,v5) = Q(v/=5,1). The prime p is represented by 22 + 5y if and only if p splits in
Q(v/=5), if and only if the equations z? = —1 and y* = 5 have solutions in F,, if and only
if p=1,9 mod 20.

Finally, the field Q(v/—14) (disc O = —4x14) has class number 4. You'll show on the
example sheet that its Hilbert class field is Q(v/—14, v/2v/2 — 1). The minimal polynomial

of the element \/2v/2 — 1 is (X2 + 1) — 8. It follows that for a prime not dividing the
discriminant of this polynomial, p is represented by 2 + 14y? if and only if p splits in the
Hilbert class field, if and only if the equations #? = —14 and (y* + 1)? = 8 have solutions in
F,.

This is the story for D of the form disc O. To understand what happens for general
discriminants D, we need to work a bit harder. We start with a lemma.

Lemma 13.10. Let O be an order in an imaginary quadratic field, and let ¢ > 1 be an
integer. Then the following two sets are in canonical bijection:
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1. The set of non-zero ideals a C O such that a+cO = O (i.e. a is coprime to cO).
2. The set of non-zero ideals b of O[1/c]|.

The bijection is given by a — a[l/c|] and b — bNO. In particular, it preserves multiplication
of ideals. Moreover, we have O/a = O[1/c|/b.

Proof. We first note that for a non-zero ideal a C O, a+cO = O if and only if a = a[1/c]N O,
if and only if @/a has order prime to c. Indeed, the first condition says that multiplication
by ¢ on O/a is surjective. The second condition says that multiplication by c¢ is injective.
Since O/a is a finite group, these conditions are equivalent.

If a C O is a non-zero ideal prime to ¢, then a C a[l/¢] N O. The condition that a is
prime to ¢ implies that equality holds.

If b C O[1/¢] is a non-zero ideal, then a = b N O is prime to ¢, because if x € O and
cx € a, then z = ¢ 'cx € a. We have a[l/c] C b. To show equality, note that if z € b then
c"x € O for some n > 1, hence ¢"x € a, hence = € a[l/c|.

It is clear that the map a — a[l/c| preserves multiplication of ideals. Since it is
bijective, its inverse also preserves multiplication of ideals. Since localization is an exact
functor, and c is invertible in the quotient O/a, we have O/a = O/a[l/c] = O[1/c]/b. O

Corollary 13.11. Let D < —1, D = 0,1 mod 4 be a discriminant, and let K = Q(\/D).
Let ¢ =[Ok : Opl. Then there is a multiplication-preserving bijection between the following
two sets of ideals:

1. The set of non-zero ideals of O, prime to c.
2. The set of non-zero ideals of Op, prime to c.
The map is given by a — aN Op, with inverse a — a[l/c] N Ok.
Proof. We just need to observe that Op[l/c] = Ok[1/c]. O

This will allow us to relate the group C(D) to a ray class group of K, using the
following lemma:

Lemma 13.12. Let D < —1, D = 0,1 mod 4 be a discriminant, and let K = Q(v/D). Let
¢ = [0k : Op|. Then:

1. If a C Op is an ideal prime to c, then a is a lattice and Oy = Op, and Na = [Op : q
18 prime to c.

2. Fvery lattice M such that Oy = Op is equivalent to an ideal a C Op prime to c.

Proof. For the first part, we note that if a + cOp = Op, and § € K satisfies fa C a, then 8
is integral over Z, so satisfies 5 € Ok. We get 5Op = fa+ ¢SO0p C a+ cOx C Op. Since
Op is its own order, this shows that 8 € Op.

For the second part, we recall that such an ideal a exists if and only if the binary
quadratic form fy;-1(x,y) represents an integer prime to c. It therefore suffices to show that
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any primitive binary quadratic form represents integer prime to c. By the Chinese remainder
theorem, it suffices to show that for any prime p, a primitive binary quadratic form f(z,y)
represents integers not divisible by p. But one of f(1,0), f(1,1) and f(0, 1) will be prime to
p, because f(x,y) is primitive. ]

Corollary 13.13. There is a surjective homomorphism H(cOk) — C(D).

Proof. The map will be induced by the map which sends an ideal a C Ok which is prime to ¢
to the ideal a[l/c]JNOp = aNOp. This is a bijection on ideals prime to ¢. We know that this
map preserves multiplication of ideals, so we get a homomorphism I(cOg) — C(D), which
is surjective by the previous lemma. To show that this descends to the quotient, we must
show that every ideal a C Ok of the form aOk, where a € Ok satisfies @« = 1 mod cOy, is
send to the trivial class in C'(D).

However, we have aOx N Op = aOp, which is indeed in the trivial class. This
completes the proof. O

By extending the arguments in the proof of the corollary, it is possible to calculate
explicitly the kernel of the map H(cOk) — C(D) and to give a formula for the order of the
finite group C(D), as we have already done for the group H(cOk).

Theorem 13.14. Let D < —1, D = 0,1 mod 4 be a discriminant, and let K = Q(\/D).
Let ¢ = [Ok : Op|. Then there exists an abelian extension Kp/K, called the ring class field
of K of discriminant D, which satisfies the following properties:

1. Kp is contained inside the ray class field of level cOk, and there is an isomorphism
b,k C(D) = Gal(Kp/K), uniquely characterized as follows: for every prime ideal
p C Ok not dividing cOg, the isomorphism sends the class of the lattice p N Op to
(p, Kp/K).

2. Let p be a prime not dividing D. Then p splits in Kp if and only if p is represented
by the principal form of discriminant D.

Proof. This is now a matter of assembling the ingredients. By the second main theorem
of class field theory, the quotient H(cOf) — C(D) corresponds to an abelian extension
Kp/K, contained inside the ray class field of level cOf, for which the Artin map gives a
surjection ¢x,/x : H(cOk) — Gal(Kp/K) which factors through an isomorphism C(D) =
Gal(Kp/K). The group H(cOf) is generated by the classes of non-zero prime ideals p C O
prime to ¢, so the group C(D) is generated by the classes pNOp, and ¢k (p) = (b, Kp/K).
On the other hand, we know that we can identify the group C(D) with the set of
primitive, positive definite binary quadratic forms of discriminant D; and that a given such
form f(z,y) represents a prime p if and only if the class [f]~! contains a lattice a C Op
such that Na = p, if and only if the class [f] contains a lattice a C Op such that Na = p
(because complex conjugation preserves norms and acts by inversion on the group C(D)).
If furthermore p is prime to D, then the ideal a must be prime to the conductor,
and this is equivalent to asking for an ideal a C Ok such that Na = p. Norm of ideals
is multiplicative (by the Chinese remainder theorem), so this happens if and only if a is
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prime, and in this case p must be split in K. We find that the form f(x,y) represents the
prime p if and only if there exists a non-zero prime ideal p C O such that p divides p and
pNOp| =|[f] in Op.

Now suppose that f(x,y) is the principal form, corresponding to the trivial element
[Op] in C(D). Then we see that for a prime p not dividing D, p is represented by f(z,y) if
and only if p splits in Ok and there is a prime p C Ok lying above p such that [pNOp] = [Op],
if and only if ¢k, /k([pNOp]) = (p, Kp/K) = 1, if and only if p splits in Kp/K, if and only
if p splits in K/Q. ]

Ezample 13.15. Let D = —4 x 27, Op = Z[\/=27]. Then K = Q(vD) = Q(v/=3), and
one can show that Kp = K(+/2). We find that for a prime p > 3, p is represented by the
principal form f(z,y) = 2?4 27y* of discriminant D if and only if p splits in Kp, if and only
if p=1 mod 3 and the equation z* = 2 has a solution in F,.

We can now analyze concrete examples by doing explicit calculations. To this end, it
is helpful to recall the following result in reduction theory from Part II Number Theory:

Theorem 13.16. Each primitive form of discriminant D is properly equivalent to a unique
primitive form ax® + bxy + cy? which is reduced, i.e. satisfies |b| < a < ¢, and b > 0 if either
bl =a ora=c.

Since a reduced form has —D = 4ac—b* > 4a® —a? = 3a?, hence a < \/—D/3, we can
always calculate C'(D), at least as a set, by enumerating all reduced forms of discriminant
D. Tt is also possible to describe the group law on C(D) explicitly at the level of binary
quadratic forms, without passage to ideal classes. This was done by Gauss, and gives rise to
the famous composition law of binary quadratic forms.

A useful observation is that if f(z,y) = ax?® + bry + cy? is a primitive, positive
definite binary quadratic form of discriminant D, then the inverse class of [f] is represented
by az? — bxy + cy?. Using this one can show that, if f(x,%) is reduced, then it corresponds
to a class of order dividing 2 in C(D) if and only if either b =0, a = b, or a = c.

Let’s use this to calculate the ideal class group of the field K = Q(v/—5); this was
used in an earlier calculation. We have disc Ox = —20, so any reduced form has |a| < 2.
Enumerating all possibilities, we get 2%+ 5y? and 222 + 2zy + 3y?. The class group has order
2, and the Hilbert class field is K (y/5). We find that for a prime p not dividing 20, the prime
p is represented by 222 4 2zy + 3y if and only if p splits in K but does not split in Q(v/5),
if and only if p = 3,7 mod 20.

To end the course, we prove a result about the number of primes which are represented
by a given positive definite, primitive binary quadratic form.

Definition 13.17. Let K be a number field, and let S be a set of prime ideals of Ok,
d €[0,1]. We say that the set S has density 6 if the limit

{peS|Np< X}
X—o0 {p C Ok prime | Np < X'}

exists and equals 0. We write Np for the index [Of : p| of additive groups; it is easy to see
that the numerator and denominator are finite for any X < oo.
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Theorem 13.18. Let L/K be a Galois extension of number fields, let G = Gal(L/K), and
let C" C G be a conjugacy class. Let S denote the set of prime ideals of O unramified in

Oy, such that Froby, € C' for some (equivalently, every) prime ideal q C Oy lying above p.
Then the set S has density equal to #C/#G.

This is the Chebotarev density theorem. Its proof uses class field theory and L-
functions. Note that as a particular consequence, we see that if L/K is a Galois extension
of number fields, then the set of prime ideals p C Ok which split in L has density equal to
1/[L : K].

Theorem 13.19. Let f(x,y) be a primitive, positive definite binary quadratic form of dis-
criminant D, and let S denote the set of primes not dividing D which are represented by
f(z,y). Then the set S has density equal to either 1/24#C(D) or 1/#C(D), depending on
whether the class of f(z,y) in the group C(D) divides 2 or not.

Proof. Let Kp/K be the ring class field of discriminant D. Then Kp/Q is Galois, and its
Galois group Gal(Kp/K) = C(D) x Gal(K/Q) is a semi-direct product, with Gal(K/Q)
acting on C'(D) by inversion (which in this case, agrees with complex conjugation).

Let 0y = ¢k,/k([f]) € Gal(Kp/K). We know that for a given prime p, not di-
viding D, the form f(z,y) represents p if and only if p = pp splits in K and oy €
{(p,Kp/K),(p, Kp/K)}. We can calculate the density of the set of such primes using
the Chebotarev density theorem.

First suppose that o has order dividing 2. Then the conjugacy class of oy is just
{0}, so we see that the set has density 1/# Gal(Kp/Q) = 1/2#C(D).

Now suppose that oy has order not dividing 2, so that o, # 0]71. Then the conjugacy
class of o is {0y, 0;1}, and p is represented by f(x,y) if and only if Frobg,, € {oy, 0;1} for
some (equivalently every) prime p C Ok, lying above p. Calculating again using the Cheb-
otarev density theorem, we find that the set of such primes has density 2/# Gal(Kp/Q) =

1/4C(D). O

Corollary 13.20. Let n > 1 be an integer. Then there are infinitely many primes of the
form p = 22 + ny?.

Proof. Apply the theorem to the principal form of discriminant D = disc Z[v/—n]. O
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