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ABSTRACT. Let p be the p-adic Galois representation attached to a cuspidal,
regular algebraic, polarizable automorphic representation of GL,. Assuming
only that p satisfies an irreducibility condition, we prove the vanishing of the
adjoint Bloch—Kato Selmer group attached to p. This generalizes previous
work of the author and James Newton.
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Context. Let F, M be number fields, let G be a reductive group defined over

M, and suppose given a strictly compatible system

R = (pA L Gp — é(ﬁk))A

of continuous, G-irreducible A-adic Galois representations For any place A of M
of residue characteristic [ and any representation R : G — GLy, we may define the

1By ‘strictly compatible’ we mean that for each finite place v of F', there is a Weil-Deligne
representation (7, Ny) of Wg, into G over M (all but finitely many of which are unramified) such

that for each place A of M, the Frobenius-semisimple Weil-Deligne representation associated

to

p)\|WFU is conjugate to (ry, Ny). In particular, if v and A have the same residue characteristic

then pX‘GFv is de Rham.
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Bloch—Kato Selmer group of R o py:
H} (Fa Ro PA)

=ker [ H'(F,Ropy) > [[H'(Fy.(Ro px) ®q, Beris) x [ [ Hip(Fo, (Ro py))
v|l vtl

Fixing an embedding M — C, we may also define the associated L-function

L(R,R,s) = [ [ det(1 — (Ror,) " Nv=0(Frob,)q, *)~".

Conjectures of Fontaine-Mazur, Beilinson, and Bloch-Kato [FM95] [Bei84, [BK90]
together lead to the expectation that L(R, R, s) converges absolutely in some right
half-plane and admits a meromorphic continuation to C, and moreover that for any
A there is an equality

(1.1) dimH}c(F,R o py) —dim HY(F,Ro py) = ords—; L(R, RY,s).
We are concerned here with the special case where R = Adg is the adjoint repre-
sentation of CA?, when we should have

(1.2) dim H}(F, Adg px) — dim H°(F, Adg py) = ord,—1 L(R, Adg, s).

The representations Adg py should be pure of weight 0, and one expects the group
dim H}(F7 Adg pa) to vanish. Since the representation Adg is self-dual, (1.2) is
expected to be equivalent (applying Poitou—Tate duality to the left-hand side and
functional equation of the L-function to the right-hand side) to the equality

(13)  dim H}(F,Adg pa(1)) — dim H°(F, Adg pa(1)) = ords—o L(R, Adg, 5).

An interesting case arises when the number field F' is totally real, G is the L-
group of a reductive group G over F, and p) is the compatible system of Galois
representations conjecturally attached by Buzzard—Gee [BG14] to an automorphic
representation 7 of G(A ) such that 7, is square-integrable. Gross predicted [Gro]
that the representations p) should then be odd, in the sense that for each place
v]oo and complex conjugation ¢, € Gg, Ad px(c,) is the unique (up to conjugacy)
involution of G such that the trace on g equals — rank G. Poitou Tate duality then
implies the equality

(1.4) dim H; (F, Adg px) = dim H}(F, Adg pa(1)).

In this paper we essentially establish the equalities and for many com-
patible systems associated to automorphic representations m of classical groups G
over totally real fields F' such that 7, is discrete series. We are able to do this
because the equality is exactly the ‘numerical coincidence’, described in the
introduction to [CHTO08], under which the Taylor—-Wiles method applies. Using the
Taylor-Wiles method, we can identify the Bloch-Kato Selmer group of Adg px with
the Zariski tangent space of a Hecke algebra acting on a space of cuspidal automor-
phic forms. The vanishing of the Selmer group is thus ultimately a consequence of
the fact that this action is semisimple.

This theme, sometimes with integral refinements, has been explored by sev-
eral authors (see e.g. [Kis04, [DFGO04] [AIl16l NTa]). On the other hand, Calegari—
Geraghty [CG18] have recently explained how the Taylor-Wiles method can be
generalized to cases where the numerical coincidence no longer holds, and applied
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this, with Harris, to prove unconditionally the vanishing of the adjoint Bloch—Kato
Selmer group in some cases for automorphic representations of GSp,(Aq) associ-
ated to abelian surfaces over Q [CG20, Theorem A.1]. Our aim here is to leverage
the relative maturity of the Taylor—Wiles case to prove vanishing results that are
as general as possible.

Results. To state our results, we prefer to work with automorphic represen-
tations of general linear groups satisfying self-duality conditions. Let ' be a CM
number field, and let m be a cuspidal, regular algebraic automorphic representa-
tion of GL,,(A ) which is polarizable, in the sense of [BLGGT14]. Then for any
prime p and isomorphism ¢ : Qp — C, there is an associated Galois representation

rr.: Gr — GL,(Q,). Since 7 is polarizable, rr , is conjugate self-dual up to twist,
and Adry, extends to a representation of Gp+ on M,(Q,) (which we may think of
arising from the adjoint representation of the L-group of a unitary group over F'1).
This defines the associated adjoint Bloch—-Kato Selmer group H} (Ft,Adr,,).

In a previous paper [NTa], we proved that this adjoint Selmer group vanishes
provided that the group 7. ,(G F(Cpoo)) is “enormous”; roughly speaking, that it
contains enough regular semisimple elements. The main theorem of this paper
strengthens this result, proving the same vanishing under the weaker condition
that 7"m|GF< ¢yoo) is irreducible:

Theorem A. [Theorem Let F be a CM number field, and let m be a polar-
izable, cuspidal, reqular algebraic automorphic representation of GL,(Ar). Let p
be a prime, and let ¢ : Qp — C be an isomorphism. Suppose that TW7L|GF<<pOO 18

)
irreducible. Then H} (Ft,adrg,) =0.

This theorem is probably the best possible using the kinds of methods considered
here. We hope that this theorem will have applications of a similar sort to those
of the main result of [NTa] (see for example the papers [NTb, INT20]). For an
analogous theorem in the case where F' is a totally real field, see Theorem
below.

We now explain what is new here compared to the arguments of [NTa]. As in
that paper, we show that H}(F *,adr,,) = 0 by using auxiliary Selmer groups,
with torsion coefficients, and where we allow ramification at Taylor—Wiles places
of the base number field. Previously, we considered ramification at places where
the image of Frobenius under 7, is regular semisimple, with the modified Selmer
conditions allowing arbitrary ramification at these places. Here we do not impose
any condition on the image of Frobenius. However, we must then cut down the
relevant Selmer condition, as allowing arbitrary ramification would otherwise define
a Selmer group that was ‘too large’. The condition we impose is roughly that,
selecting an eigenvalue « of the Frobenius at a Taylor—Wiles place, inertia acts
through a scalar character on the a-generalized eigenspace (an idea similar to the
one used in [Thol2]).

The hardest part of the proof is showing that this condition makes sense both
at the level of Galois deformation theory and at the level of automorphic forms.
We note that as in [NTal], we impose no condition on the residual representation
Tr,. (which might even be trivial), so we need to study carefully the interaction of
these conditions with the various integral structures that appear in order to make
the final patching argument go through.
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TABLE 1. Summary of notation

Symbol Meaning

GFp Absolute Galois group of field F' of characteristic 0

F,, Op,, w,, | Completion of number field F' at finite place v, ring of

k(v) integers, fixed choice of uniformizer, residue field

Fs/F,Grs Maximal extension of number field F' unramified outside
finite set S, Gal(Fs/F)

E O,w, k Finite extension of Q, with ring of integers, uniformizer,
residue field

Co,Cg Category of complete Noetherian local O, resp. F-algebras

H(G,U) Hecke algebra of locally profinite group G with identity
element [U]

Wi, Ik, Artg WEeil group, inertia group, Artin map of p-adic local field
K

recr, recy Local Langlands correspondence for GL,,(K) and its Tate-
normalised version

WD(p), Weil-Deligne representation associated to continuous rep-

WD(p)F'—ss resentation p : Gxg — GL,(Q;) (assumed geometric if
I = p) and its Frobenius-semisimplification

Try p-adic Galois representation associated to a regular al-
gebraic, cuspidal, polarizable automorphic representation
of GL,,(AFr), F a CM or totally real number field, and
L Qp — C an isomorphism

Gn,ad Group scheme with neutral component GL, x GL; con-
sidered in [CHTOS, §2], and its adjoint representation on
Lie GL,,

Organization of this paper. In §2| we compute the different of the ring
extension Z[z1,...,x,]%" — Z[x1,...,2,]%1 %% it is the resultant, and occurs
constantly throughout this paper. In we realise this ring extension as a map of
Hecke algebras and show how the different controls the difference between certain
spaces of automorphic forms which naturally appear in the Taylor-Wiles method.
In §4] and we study our auxiliary Selmer groups. Finally, in we combine
everything to prove Theorem [A]

Acknowledgements. This work received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No 714405).

Notation. We use the same notation as defined in [NTal, §1]. Table gives a list
of symbols used with their meanings. We refer to loc. cit. for precise definitions.

2. A DIFFERENT COMPUTATION

Let A = Zley,...,e,] C C = Z[xy,...,x,] denote the ring of symmetric poly-
nomials in n variables. Fix a decomposition n = n; + no, and define elements
G1,...,0Gn, and by, ..., by, by the relations

ni
(T—a1) ... (T —zn,) =Y _ T" "a;,
i=0
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na
(T = apys1) . (T —xp) =Y _T"'b;,
=0

hence

(T - .131) s (T - Sﬂn) = Xn: Tniiei = <§: Tﬂli@i) iT”zijbj

i=0 i=0 §=0

We define B = By, n, = Z[a1,...,an,,b1,...,by,]. Thus the group S, acts on C;
B is the ring of polynomials invariant under the subgroup S,, X S,,, and is a free
A-module. An important element of B is the resultant

ni no niy n2
m1—1 no—1
Resp, n, = Res( E T a,, g T ~',;) = H | I(ml — Tpy4j)-
i=0 i=0 i=1j=1

Another important element of B is the g-resultant, defined for ¢ € N:

n1 na ni N
Resgn,n, = Res(>_T™q'a;, T 7'b;) = [ [ [J (a2 — ny4s)-
i=0 =0 i=1j=1

Proposition 2.1. There exists a unique element lf%vesm,n2 =>,zQw cBsB
with the following properties:

(1) >, ziw; = Resp, ny-
(2) For each o € Sy — Spy X Spys D, 0(2:)w; = 0.

Proof. Let p: B 4B — B be the A-algebra homomorphism given by pu(z@w) = zw.
Let I = ker(u), and let J = Anngg ,p5(I). The statement of the proposition is
equivalent to the assertion that the map pu|; is injective and its image contains
Resp, n,- In fact, we will show that u|; is an isomorphism onto the ideal of B
generated by Resp, n,-

The ring extension A C B satisfies the hypotheses of [Stal3l Lemma 0BWD],
which implies that p|; is an isomorphism onto the ideal of B generated by the
determinant of the Jacobian matrix (d(ey,...,en)/0(a1,. ., any,b1,...,bpn,)). The
determinant of this matrix is (up to sign) Resp, n,- O

Proposition 2.2. The morphism Spec B — Spec A is étale away from the locus
Resyp, n, = 0.

Proof. The proof of Proposition shows that Resy, n, generates the Noether
different of A — B. The morphism A — B is flat, and [Stal3, Tag 0BVU| shows
that Spec B — Spec A fails to be unramified precisely at the points defined by the
equation Resy, n, = 0. g

In this paper we will frequently use the interpretation of Spec B as the scheme
of factorisations F(X) = F|(X)Fy(X), where Fy, F5 are monic of degrees nj,ns,
respectively. A related construction is given by the following lemma.

Lemma 2.3. There are unique polynomials G1(X), G2(X) € B[X] of degrees ngo —
1,711 — 1 such that Gl(X)Fl(X) + GQ(X)FQ(X) = RethnQ.

Proof. For aring R, let Pol;(R) denote the free R-module of polynomials of degree
< d with coefficients in R. There is a morphism p : Pol,,_1(B) x Pol,,—1(B) —
Poly, 4n,—1(B), (G1,G2) — G1F; + GoF». With respect to the standard bases the
matrix of this morphism is the Sylvester matrix, whose determinant is the resultant
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Resp, n,. The existence follows from the existence of the adjugate matrix and the
uniqueness from linear algebra over Frac B. (]

We define e1(X) = G2(X)Fa(X), e2(X) = G1(X)F1(X), so that e1(X) +
e2(X) = Resn, n,-

In the statement of the next lemma, we fix a discrete valuation ring O with
uniformizer w, and for each m > 1 define 4,, = O ® eO/w™O (where €2 = 0) and,
if x € O, write a, : A,, = A,, for the O-algebra homomorphism which sends € to
€x.

Lemma 2.4. Let f(X) € O[X] be a monic polynomial of degree n > 1, and
suppose given a factorisation f(X) = f1(X)f2(X) in O[X], where f1(X), f2(X)
are momnic polynomials of degrees ni,ns, respectively. Suppose that the resultant
0 = Res(f1, f2) € O is non-zero. Then:

(1) There exist unique polynomials g1(X), g2(X) € O[X] of degrees strictly less
than na, nq, respectively, such that g1(X)f1(X) + g2(X) f2(X) =9.

(2) Let m > 1, and suppose given a monic polynomial f(X) € An[X] such
that~f(X) mod e = f(X). Then there exists a canonical factorisation
as(f(X)) = fi(X)f2(X) in An[X], where f1(X), fo(X) are monic poly-

nomials such that f;(X) mod e = f;(X) (i=1,2).

Proof. The proof of the first part is essentially the same as the proof of Lemma
(except we replace B by ©). For the second, write f(X) = f(X) + eh(X),
where h(X) € Po1(O/@™). If fi(X) = fi(X) + ehi(X), then fi(X)fa(X) =
FX) +e(ha(X) f1(X)+h1(X)f2(X)). Solving as(f(X)) = f1(X) f2(X) is therefore
equivalent to solving dh(X) = ho(X)f1(X) + hi1(X)f2(X), which we can do by
choosing (he, h1) to be the image of h(X) under the adjugate of the morphism p
considered in the proof of Lemma [2.3 O

3. PARAHORIC HECKE ALGEBRAS

Let v be a finite place of a number field F, and let G be a split reductive group
over O, (we will soon specialise to the case G = GL,,). Fix a choice of split max-
imal torus and Borel subgroup T'C B C G. If P C G is a standard parabolic sub-
group, then we let P = MpNp denote the standard Levi decomposition of P. Define
the modulus character dp : P(F,) — Z[q;_Ll/2]>< by ép(p) = | det(Ad(p)|Lie Np)|ov-
Let W = W(G, T) denote the Weyl group of G, and Wy, = W(Mp,T) the Weyl
group of Mp. Thus W acts on X,.(T) on the left.

If Ais a Z[qvil/Q}—algebra, and if 7 is a smooth A[G(F,)]-module, then we write
7N, for the space of Np(F,)-coinvariants of m, considered as A[Mp(F,)]-module,

and rp(m) = 7N, (5;1/2). Thus 7p(7) is what we usually call the normalised

Jacquet module of 7. If A = C and 7 = zgg’;g X is an unramified principal series
representation (i.e. the normalised induction of the inflation of x to a character of
B(F,))), then the characters of T'(F,) appearing in rp(m) are those in the Weyl
orbit of .

Let p C G(OF,) be the standard parahoric subgroup associated to P (pre-image
of P(k(v)) in P(Op,)). It contains the standard Iwahori subgroup b. If P C @ are
standard parabolic subgroups of G then there is a natural inclusion H(G(F,),q) C
H(G(F,),p) which is not an algebra homomorphism, since it does not preserve unit
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elements. We will write -4 for the multiplication in H(G(F,),q) (so e.g. [q] - [q] =

[q : p]lg]). Similarly if 7 is a Z[qflﬂ]—module then we endow 7P with its natural

structure of H(G(F,),p)-module; if t € H(G(F,),p) and = € #P, then we write
multiplication as ¢ -, z, so [p] -p x =  for all x € 7P.

Given a standard parabolic subgroup P, let mp = Mp(Op,) = p N Mp(F,).
Let Np denote the unipotent radical of the opposite parabolic with Levi subgroup
Mp. Define np = NP(OFv) =P QNP(FU) and np = ker(Np(OFv) — Np(k(v))) =
pN Np(F,). Then p has its Iwasawa decomposition

p=npmnp.
We say that an element m € Mp(F,) is positive if we have the inclusions
mnpnf1 Cnp
and
m_lﬁpm Cnp.
We write Mp(F,)" C Mp(F,) for the submonoid of positive elements.

Lemma 3.1. Let A € X,.(T) be a dominant cocharacter which is valued in the centre
Z(Mp) of Mp. Then [pA(w,)p] is an invertible element of’H(G(FU),p)Q@zZ[qfl/Q].

Proof. We first recall the Iwahori-Matsumoto presentation of the Iwahori—-Hecke
algebra H(G(F,),b) @z Z[qvilﬂ}. Define the affine Weyl group

We = Ng(e) (T)/T(OR,) = Wg x X.(T).

The choice of b determines a set of simple affine roots, hence a set of simple affine
reflections in Wg; they are the linear reflections s, € W associated to the simple
roots of the pair (B,T), together with the affine reflections s,y , where «q is the
lowest root of a simple sub-root system of ®(G,T). There is an associated length
function [ : WG — Z>( giving each simple affine reflection length 1. The associated

braid group Bg is the free group generated by the elements Ty, (w € Wg) subject
to the relations Ty = Ty Ty when [(ww’) = I[(w)l(w’). The Iwahori-Matsumoto
presentation is a surjective algebra homomorphism

Z[qF'?][Bs] — H(G(F,),b) ®z ZlgF'/?),

Ty — [bwb],
with kernel generated by the elements (75 +1)(Ts — gy, s a simple affine reflection.

If we Wy, and A € X, (T) is a cocharacter valued in Z(Mp), then wA = A,
which implies ([Lus89, Lemma 2.2]) that T, and T) commute in Bg. We deduce
that [p] = ZweWMP [bwb] and [bA(w,)b] commute in H(G(F,),b). We also see that
[6A(cm,,)b] is an invertible element of H(G(F,), b)®zZ[gi /%] let t € H(G(F,), b)®z
Z[qéﬂ/z} be its inverse.

The element ¢t commutes with [p], while direct computation shows that [p] -y
[bA(,)b] = [pA(w,)p]. Let ¢/ =t [p] € H(G(F,),p) @z Zlgo /*). We finally
compute

tp [PA(@0)p] = (¢ -6 [p]) - ([0A(0)b] -6 [p]) = [p];
and similarly [pA(w,)p] -, t' = [p]. This completes the proof. O

The following proposition is basically contained in [BK98] and [Vig9§].
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Proposition 3.2. (1) H(Mp(F,)",mp) C H(Mp(F,),mp) is a subalgebra.
(2) The homomorphism of Z[q il/2]

Ty H(Mp(F,)" mp) @z Zlgy /%] = H(G(Fy). p) @z Zlgy )
defined on basis elements by
T ([mpmmp]) = 6p(m)"/* [pmp]

s an injective algebra homomorphism, with image equal to the set of func-
tions with support in pMp(F,)p.

(3) T extends uniquely to an algebra homomorphism Tp : H(Mp(F,),mp)®z
Zlg;"?] = H(G(F).p) @z Zlar ).

(4) Letm be a smooth Z[q;—Ll/z][G(Fv)]-module, and let q : w° — rp(m)™P denote
the canonical projection. Then q is an isomorphism and for any r € 7P,
t e H(Mp(F,),mp) ®z Z[q il/2], we have ¢(Tp(t)x) = tq(x).

Proof. The first two parts follow from [BK98|, Corollary 6.12]. The third part follows
from [BK98| Theorem 7.2], provided we can exhibit an element z € Z(Mp)(F,) such

that [pzp] is invertible in H(G(Fy), p) @z Z[go £1/2 | and such that z is strongly (P, p)-
positive, in the sense of [BK98| Definition 6.16]. The existence of such an element
follows from Lemma [B.11

For the fourth part, we first prove the formula q(Tp(t)x) = tq(x). Because of
the presence of invertible elements, it is enough to show that the formula holds
for elements of the form ¢ = [mpmmp] with m € Mp(F,)". Choose elements
x; € Mp(F,) such that mpmmp = U;z;mp, and elements yi; such that np =
Ui jyi;zinpx; . Then the number of y;; is dp(x;)~! = dp(m)~" and pmp =
U; jyi;x:p (here we use the positivity of m). We then compute

o(Tp(t)z) = 612 (m) 3 qlyijziz) = 65 *(m qul Zmzq ) = tg().

5]

modules

We next show that ¢ is injective. If x € P and ¢(x) = 0 then we can write
x =) ,(n;—1)z; for some n; € N(F,), x; € m. Let ng C N(F),) be a compact open
subgroup containing all of the n; and np. Then we have try, /4, (2) = 0. Choose
m > 0 such that z"ngz~™"™ C np. Then we have

[pzmp]x = trananfm,/nP me = Zm trnp/zfm,npan z =0.

Since [pz™p] acts invertibly on 7P, we find that z = 0.

We finally show that ¢ is surjective. Let T € rp(m)™P, and let © € 7 be a
pre-image. We can assume that x is fixed by np. We claim that we can further
choose x to be invariant under mp. Indeed, for any ¢ € mp, gr — = maps to
zero in rp(m). Using the argument of the previous paragraph, we can find an
open compact subgroup ng C Np(F,) containing np, normalized by mp, such that
T, /me (92 — ) = 0 for all g € mp. Since g normalises both np and ng, this implies
that g[ng : np] ! tru, /2 = [0 : np] ! trn, e, 2. We see that [ng : np] = try, m, @
is a pre-image of T which is invariant under mpnp.

We can find m > 0 such that 2™z is invariant under np, hence under npmpz"npz~

It follows that tr my,.—m /4, © is invariant under p. We finally find that

[pzmp]il trzmnpz*m/np M

lies in 7P and is the desired pre-image of x. O

m
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The Satake isomorphism is a canonical isomorphism (see [Gro98])

Sup t H(Mp(F,),mp) ®z Zlgi /%] — (Z[X.(T)] ®z ZlgF'/?]) Ve

[ (Supf)t) = §Mme(t)1/2/ f(tn)dn.

nE(NBﬁMp)(FU)
We define

Sp=Tp oSy (Z[Xu(T)] ®z Z[g;*)) " Mr — H(G(F,), p) ©z Zlg, /7).

If 7 is any smooth Z[qflm][G(Fv)]—module, then we regard 7P as a (Z[X.(T)] ®z

Z[qvﬂ/QDWMP -module via the map Xp.

Corollary 3.3. Let m be a smooth Z[qfl/z][G(Fv)]-module, and let q : ™ —

rp(m)™P denote the canonical projection. Then q is an isomorphism and for any
s € (Z[X.(T)] ®z Z[qfl/QDWMP and x € 7, we have ¢(Xp(s)zr) = S]\}L (s)q(z).

More generally, let P C @Q be another standard parabolic subgroup and let q :
™ — ro(m)P™e denote the canonical projection. Then q is an isomorphism
and for any s € (Z[X.(T)] ®z Z[qfl/QDWMP and x € 7, we have ¢(Xp(s)x) =
Ypamg (8)q(z).

Proof. The first part is a reformulation of the last part of Proposition [3:2} For the
second, we consider the composite

TP —2 g (m)Pme Ly p ()P,

All the maps here are isomorphisms, and we have shown the equivariance for v and
~va. The equivariance for « follows from this. O

Proposition 3.4. Let P C Q be standard parabolic subgroups of G, and let w be a
smooth Z[qfl/Q][G(Fv)]-module. Then for any © € ©1 C w¥ and s € (Z[X.(T)] @z

Z[qluil/ﬂ)WMQ , we have ¥q(s) -qx = Xp(s) -p .

Proof. We first observe that the proposition holds for the pair P C @ of parabolic
subgroups of G if it holds for the pair P N Mg C Mg of parabolic subgroups of
Mg. Indeed, there is a commutative diagram

Tl ——— ro(m)™e

|

P —— ro(m)Pme.

The horizontal arrows are isomorphisms, by Corollary 3.3 and are equivariant with
respect to the maps ¥p and ¥q.

We next observe that the proposition holds when P = G and @ = B. Indeed, in
this case the restriction of X g to

(ZIX.(T)] @z Zlgy /*)™e € H(G(EF,),b) @2z Zlgy /7]

is the usual Bernstein isomorphism onto the centre of the Iwahori—-Hecke algebra.
The proposition in this case is the compatibility between the Bernstein isomorphism
and the Satake isomorphism, cf. [HKP10, §4.6].

Finally we treat the general case. By the first paragraph of the proof, we can
assume (Q = G, and allow P to be an arbitrary standard parabolic subgroup.
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We must show that for all z € 79 and s € (Z[X.(T)] ®z Z[qffl/Q])WG, we have
Ya(s) gz =2Xp(s) -p x. Equivalently, we must show that Xz (s) -y 2 = Zp(s) -p 2.

To this end we consider the commutative diagram

a1 rp(m)™r

I

7® — rp(m)erme,
where again the horizontal maps are isomorphisms. We compute
q(E5(s) v ¥) = Tpnatp () ormp 4(%) = Tarp (5) mp ¢(x) = ¢(Xp(s) - @),
the first and third equalities by Corollary [3.3] and the middle one by the current
proposition for the pair BN Mp C Mp. Since g is an isomorphism this implies that
Yp(s) v v =%p(s) -p z, as required. O

The above proposition shows that (Z[X, (T)]®z Z[¢r 1/ *))"e acts unambiguously

on 7P for any standard parabolic subgroup P C G. The following corollary gives
slightly more information on this action.

Corollary 3.5. Let P be a standard parabolic subgroup of G. Then Lp((Z[X.(T)]|®z
Z[qflm})WG) is contained in the centre of H(G(Fy),p) ®z Z[qvil/z]. If x: T(F,) —
C* is any unramified character, identified with a homomorphism x : X, (T) — C*,

and s € (Z[X.(T)] ®z Z[qflm])WG, then s acts on (igEI;Z;X)p by the scalar x(s).

Proof. The last sentence follows from Proposition [3.4] and the fact, already men-
tioned, that the restriction of X to (Z[X. (T)}(X)ZZ[qvil/Q])WG is the usual Bernstein
isomorphism to the centre of the Iwahori—-Hecke algebra. The first part follows from
this: if s € H(G(F,),p) ®z Zlge/*] then Sp(s) and Sp(s) -6 [p] act by the same
scalar on 7P for any irreducible admissible C[G(F,)]-module 7. This implies that
they must be equal as elements of H(G(F,),p) Rz Z[qffl/Q]7 and moreover that
Y p(s) lies in the centre of this Hecke algebra (as Y p(s) -p [p] does). O

We now specialise to our intended context. Let G = GL,, and let P = P,,, ,,
denote the standard parabolic associated to a partition n = ny +no. Let z1,..., 2,
denote the standard basis of X, (7). Then we can identify W = S,, Wy, =
Sy X Sp,, and

A=Z[X. (D)W =Zley,...,en, e,
B=Z[X.(T)"Mr =Zlay, ... an, b1, ..., bnys €],
where e1,...,e, (resp. ai,...,an,, resp. by,...,by,,) are the standard symmetric
polynomials in 1,...,2, (TeSp. X1,...,Tpn,, T€SP. Tpyt1,---sTnytny)- As in §2)
we have the resultant
ni nitng

Resp, n, = H H (z; — x;) € Z[X.(T))"Mp.

i=1j=n1+1

By Proposition there is a canonical lift of Resy, ,, to an element f{\e/snl,nz €
B ®4 B. We record some useful properties.

Lemma 3.6. (1) For any s € B, we have s ® 1 'P’{\ernhm =1®s- P,{\ermynQ,
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(2) Let m be a smooth Z[qfl/Q}[GLn(Fv)}—module. Then for any s € A, z € 7P,
we have try q(sz) = stry/q(z).

(3) Letm be a smooth Z[qfl/Q][GLn(Fv)]—module such that (¢, —1)m = 0. Then
for any s € B, x € m%, we have tr, 4(sx) = trg 4(s)z.

(4) Let w be a smooth Z[qfl/z] [GL,,(F,)]-module such that (g, — 1)m =0, and
let fi,..., fn be an A-basis for B. Write Resp, n, = >, fi ® z;. Then for
any y € ©°, we have Resp, n,y = Y_; fitry q(2iy).

Proof. The element (s®1—1®s) € B® .4 B lies in the kernel of the multiplication
map B®4 B — B, so is annihilated by Res,,, », by definition. This shows the first
part. For the second, we can write tr,,4(sx) = [g] -p sz. Since s lies in the centre

of H(G(Fy),p) @z Z[q?fl/Q]7 this equals s[g] -p x = stry/4(2).

For the remaining two parts of the lemma, we fix 7, a smooth Z[qfl/z] [GL,, (Fy)]-
module such that (¢, — 1)m = 0. The Iwahori-Matsumoto presentation of the
Iwahori—-Hecke algebra descends to an isomorphism

Z[g) /(a0 = 1) [We)] = H(G(E), b) @2 Z[g;/*] /(00 — 1).
Consequently, if w € Wg and s € Z[X,.(T)] then we have the identity [bwb] -p
Sa(s) = Sp("s) - [bwb] in H(G(E,),b) ®z Zlgr %)/ (g0 — 1); and if w,w' € Wg
then [bww'b] = [bwb] -y [bw'b] in H(G(Fy),b) @z Z[qfl/Q}/(qv —1). If x € 7P, then

we have

trojg@) =lglpz= > [owb]y[plpz= > [bwb]

weEWe /Wnp weEWe /Wy

This allows us to prove the third part of the lemma: if s € B and =z € 7%, we
compute

trp/g(sz) = > [bwb] s Tp(s) v
wEWG/WMP

= > Tp("s)pbwb] pa

weEWe /Wiy

=Yg Z 5| o2 =Ta(trg/a(s)) g 2.
weWea /Wnrp

For the final part, let y € 7P. Then we compute

Zfi trosg(z) =Y, > Tp(fi) s [bwb] 4 Tp(2i) 6y

t weWe /Wiy

= Y S Ss(fia) e lbwb] .

weWa /Wnp &
Now Proposition says that Zz fi"z; equals Res,,, n, if w € Wy, and 0 other-
wise. We get
EB(ReSnlanz) Y = Resn1,n2y~
This completes the proof. ([
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If 7 is a smooth Z[q j[1/2][GL (Fy)]-module, then we define maps

f:Boam®— 7P, 5@ 1 sz,

g:m?P - Bsmt x> Zfi@)trp/g(zim),

where f1,..., fy is an A-basis of B and f{\/esnl,n2 = Y .fi ® z. Note that f is
well-defined by Proposition

Lemma 3.7. The map g is independent of the choice of basis fi1,..., fn. Both f
and g are morphisms of B-modules.

Proof. Suppose that fi,..., fy is another choice of basis. Then we can write f; =
>-; aij fi for some elements aw € A, hence f; =), b;; f] for some elements b;; € A
with >, airbr; = 0i;, hence 2z = Z bijzj. We then calculate using the first part
of Lemma [3.6}

Zf ® try/g( 2ix) Z ajifj @ try g (binzex)

i,k
= Za’j’b zkfj t—/I‘p/g ka ij trP/g 25T )

1,5,k

This shows that g is independent of the choice of basis. It is clear from the definition
that f is a morphism of B-modules. To show that g is a morphism of B-modules,
let s € B, and write sf; = >, a;; f; for some elements a;; € B. Then the relation
given in the first part of Lemma implies that sz; = ; @ij %5, and we compute

Z fi @ try/q(2is1) Z fi @ try/q(aijz;z)

i,j
= Zaijfi ® try/g(2zix) = Z sfj @ try q(zjw) = sg(x),
i, j
as required. ([
Proposition 3.8. Suppose that (g, — 1)m = 0. Then both fg and gf are given by

multiplication by Resy,, n,. Consequently, both f and g have the property that their
kernels and cokernels are annihilated by Resy, n,.

Proof. We compute gf and fg in turn. First, for any element s ® x € B® 4 79, we
have

gf( )_g SSU Zfz(g)trp/g(zzsx)
Using the third part of Lemma [3.6] this becomes

Z fi tTB/A(ZiS) X x.

We now note the equality ), fitrp, a(zis) = >, fizis = sResp, n,, from which we
obtain gf(x) = Resp, n,s ® .
For the other direction, we compute

fg (Z.fl@trp/g Zin) Zfltrp/g Zly)
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The final part of Lemma [3.6]is thus equivalent to the equality fg(y) = Resn, n,Ys
as required. ([

Now fix a prime p such that ¢, = 1 mod p. In this case we define A, to be the
maximal p-power quotient k(v)*(p) of k(v)*. Reduction modulo w,, projection to
second factor and determinant gives a homomorphism

p — GLy, (k(v)) X GLp, (k(v)) = GLp, (k(v)) = k(v)* = A,,
and we define p; to be its kernel, mp; = p1 N Mp(F,).

Proposition 3.9. (1) H(Mp(F,),mp31) is commutative.
(2) H(Mp(F,)",mp1) C H(Mp(F,),mp1) is a subalgebra.
(3) The homomorphism on[qfl/Q]—modules Th, : H(Mp(F,) T, mp1) — H(G(F,),p1)
defined on basis elements by 7

T;il([mp,lmmp’l]) = 5P(m)1/2[131m131]

s an injective algebra homomorphism, with image equal to the set of func-
tions with support in pyMp(F,)Tp;1.

(4) T;,fl extends uniquely to an algebra homomorphism Tpy : H(Mp(F,), mp1)®z
Zlgr'*) = H(G(F),p1) @2 Zlay ?).

(5) Let m be a smooth Z[q;tl/Q] [G(Fy)]-module, and let q : 7P — rp(m)™p1
denote the canonical projection. Then q is an isomorphism and for any

zemP t e H(Mp(F,), mp1) Rz Z[qflm], we have q(Tpq(t)x) = tq(x).

Proof. H(Mp(F,), mp;) is commutative by Gelfand’s trick: there is a set of double
coset representatives for mp;\Mp(F,)/mp; which is invariant under g — ‘g (we
can take the matrices of the form

. k k kn Knq+1 k42 kn
diag(wyt, wp?, ...,y oy T T L wt),
where k1 > ko > -+ > kyy, kny+1 > -+ > kp, and « ranges over a set of represen-

tatives for the quotient A, of OIX%)' The proof of the remainder of the proposition
is basically the same as the proof of the corresponding parts of Proposition
provided we can exhibit a strongly (P, p;)-positive element z € Z(Mp)(F,) such
that [pyzp1] is invertible. In fact, the result of Lemma holds with p replaced by

p1, with essentially the same proof, using [Vig05], Corollary 1]. O

We have defined a map Yp : B ®z Z[qflm] — H(G(Fy),p) ®z Z[qfl/Q] us-
ing Tp and the Satake isomorphism. We define a map Xp; : B[qﬁfl/z,Av] —
H(G(Fy),p1) @z Z[qvﬂ/?] as follows: it is the composite with Tp; of the tensor

product of the homomorphisms B ®z Z[qvﬂm] — H(Mp(F,),mp;) ®z Z[qﬂdm],

Z[A,] - H(Mp(F,),mp1) given by the formulae

a; — qf)(i’”l)m[mp,l diag(wy, ..., @y, 1,...,1)mp;]
—
bi = ¢ 2[mp ) diag(l,...,1, @y, ..., @y, 1,...,)mp]
ni K2

and

)

(RS Av — <Oé> = [mp,l dlag(l, .,1,0{,1,...,1)‘(\1;11].
——
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If 7 is a smooth Z[qvﬂ/Q] [GL,,(F})]-module then we use ¥p; to view 7P as an
B[qgﬂ/Q, A,]-module.

Lemma 3.10. Let m be a smooth Z[qfl/Q][GLn(Fq,)}—module. Then © C wP* is an
B[A,]-submodule on which A, acts trivially, and the induced structure of B-module
agrees with the one induced by Xp.

Proof. It is clear from the definitions that A, acts trivially on 7. What needs to
be checked is that e.g. the two operators
[p1 diag(wy, - - -, @, 1, ..., D)p1], [pdiag(wy, ..., @y, 1,...,1)p]
N N
3 K3
defining the action of a; act in the same way on «® (and similarly for the operators
defining the action of b;). This is true because, writing

n; = diag(wy, - .., @y, 1,...,1),
v
the maps p1m:p1/p1 — pnip/p are bijections. O

Let 7 be an irreducible admissible C[GL,,(F,)]-module. Suppose that recg, (7) =
©i—1 Spy, (xi © Art}j), where y; : F, — C* are smooth characters and Sp,, =
(s Nm) is the Weil-Deligne representation given by r,, = @] - |(m+1-20/2 ¢
Art}j, Npe; = e;_1 if ¢ > 0, eq,...,e, the standard basis of C™. Then =« is
isomorphic to a subquotient of the induced representation

‘GL'n v
I=ip (Fv) ) ®i=1 Stm, (Xs),

1 eeemy (
where P, .. m, is the standard parabolic subgroup of GL,, corresponding to the
partition n = mq +mo + - -+ + m,..

Proposition 3.11. Let 7 be an irreducible admissible C|GL,,(F,)]-module. If

| . .
Resy, ) n, T # 0, then 7 is unramified and 7¥ = 7P,

Proof. Since P # 0, we have in particular 7° # 0, so there is an isomorphism
recr, () = ©j_; Sp,y,, (xi © Art;ﬂvl)7 where the characters x; are unramified, and
7 is isomorphic to a subquotient of the representation II as above. We compute
the Jacquet module rp(II). According to the ‘geometrical lemma’ [BZ77, Lemma
2.12] and [Thol2, Lemma 5.1], rp(II) admits a filtration whose graded pieces o
are indexed by decompositions m; = Ay; + Ay, § = 1,...,r, where \;; are non-
negative integers such that Ej A1; = ng and Zj A2; = na. The representation oy
can be described as follows: let P, ; denote the standard parabolic subgroup of
GL,,, associated to the decomposition n; = A\j; + - - + Ajr. Then we have

.GLn, (Fy) _ m;—MA1
(31) o)\ = (ZPA71%FI)) ®j:1 St)‘lj(| . ‘( J Alj)/ij))

.GL,,, (Fy) Nosi—ms)/2
® (ZP;JFT,) ®7_1 Sty (|- |(A2i=mi)/ wj)).
Since passage to invariants under an open compact subgroup is exact, Proposition
implies that II? # 0 if and only if o}'” # 0 for some A, or in other words if
there exists a decomposition m; = A1; + Ag; (j = 1,...,r) such that \;; = 0 or

1 for all 4,j. This implies that m; < 2 for all j. Suppose that m; = 2 for some
J and that A\i; = Ag; = 1. Then Resg, n,,n, acts on o)” by a scalar which is
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divisible by (gu1;(w,)|w@|/? — (@) || ~H/?) = 0. Since the dimension of IT*
as C-vector space is bounded above by n!, we conclude that if m; = 2 for some j

then ResZU!m,712 IT? = 0, contradicting our hypothesis.
We conclude that m; = 1 for all j and therefore that 7 is unramified (since

recg, () is). It remains to explain why 7" = 71, Since passage to invariants under
an open compact subgroup is exact, it’s enough to show that IT? = TIP* or even
that o7 = oy ™" for each A. This is true. O

Corollary 3.12. Let p be a prime such that (p,q,) = 1, and let w be an irreducible
admissible Q,[GLy(F,)|-module such that 7 # 0. Suppose given a continuous
homomorphism p : Gp, — GL,(Q,) such that WD(p)¥ =% = recf, (m,). Then

. nl P . .
either Res; ., .. 7 =0 or p is unramified.

Proposition 3.13. Let m be an irreducible admissible C[GL,,(F,)]-module. Sup-
pose that 7 = 0 but 7P # 0. Then wP' has dimension 1. If recp, () = (r,N),
then N = 0 and there is an isomorphism r = ®j_;Xx; © Art;:, where the char-
acters xi,-..,Xn, are unramified and the characters Xnp,+1,---,Xn 6re ramified
with equal restriction to (’);v. The algebra B acts on 7' according to the factori-
sation det(X — 7(¢y)) = F1(X)Fo(X), where F1(X) = [[2(X — xi(wy)) and
Fy(X) = [172,(X = Xn,+j(@0)), and the group A, acts on 7' according to the
character {a) — xn ().

Finally, let f : B[A,] = C be the character giving the action of B[A,] on 7P,
Then for every pair T € Ip,, o € O;v such that o = Art;j(r), we have

(32)  fr(Resp, n,)r(7) = fr(Resny ) (e1(r(d0)) + fr({a))ez(r(40))).

Proof. The argument is similar to the proof of Proposition m By [CHTOS,
Lemma 3.1.6], there exist characters x1,...,xn : F,X — C* such that x1,...,Xn,
are unramified, xp,+1, -, Xn are tamely ramified with equal restriction to inertia,
and such that r = @?leioArt;vl. We can also write (r, N) = ®%_, SPy, (¥ oArt;j)
for tamely ramified characters v; : F,* — C*, so that 7 is a subquotient of the
induced representation
'GLn Fy
=g ™) @t Sty (1)

my,..., me

As in the proof of Proposition we see that rp(II) admits a filtration with
graded pieces o indexed by decompositions m; = A1j + Ag; with \;; non-negative
integers such that » . A;; = n;, and o, given by the equation . Since mp
contains GL,, (O, ), we see that oy ' can be non-zero only if \;; < 1 for each i, j
and moreover that if A;; = 1 then v; is unramified.

Fix A such that oy ™" # 0. We see that if m; = 2 (hence A;; = Ay; = 1) then
t; is unramified, hence all characters ¢, must be unramified, hence o' # 0. It
follows that ITP = IIP*, hence nP = 7Pt # 0, contradicting our hypothesis.

We conclude that m; = 1 for all j, or in other words that N = 0. Thus ¢ = n,
and we can assume that ¢; = x;. Then there is a unique choice of A for which
o\"t # 0, namely (A\1j, A\g;) = (1,0) if j=1,...,n; and (0,1) if j =n; +1,...,n.
This shows that IT** is 1-dimensional, hence that 7*! is 1-dimensional (since it is
assumed non-zero).

It remains to establish the formula . We split into cases. If fr(Resp, n,) =
0 then both sides are zero. If fr(Resp, n,) # 0 then ei(r(¢y)) is fr(Resn, n,)
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times the idempotent which projects to the subrepresentation &;*,x; of r, and
similarly for es(r(¢,)), in which case the formula follows from the fact that the
characters xi,...,Xn, are unramified and the characters xn,+1,...,Xxn have the
same restriction to O;v. O

Corollary 3.14. Let p be a prime such that (p,q,) = 1, and let w be an irreducible
admissible QP[GLH(FU)}—module. Suppose that 7 = 0 but 7" # 0, and suppose

~

given a continuous homomorphism p : Gp, — GLyn(Q,) such that WD(p)F~%* =
rect, (my). Then 7P is I-dimensional; let fr : B[A,] — Q,, be the character by
which this algebra acts on wP*. Then for every pair T € Ip,, a € O;U such that
o= Art;ﬂl (1), we have

Fr(Resy, ,)0(7) = fr(Resn, ny) (e1(p(60)) + fr({a))e2(p(¢0)).

Proof. If fr(Resp, n,) = 0 then both sides of the proposed equality are zero, so we
can assume that f,(Res,, »,) # 0. In this case we write WD(p)F'=** = (r, N), where
N =0 and, if p(¢,) = su is the multiplicative Jordan decomposition, then r(¢,) =
s. The result will follow from Proposition [3.13]if we can show that e;(p(¢.)) = e;(s).
This is true, since s and su have the same generalised eigenspaces. [

4. WEAK ADEQUACY IN CHARACTERISTIC 0
In this section, let k be a field of characteristic 0.

Lemma 4.1. Let G be a linear algebraic group over k such that GO is reductive.
Then we can find a dense open subset U C G consisting entirely of semisimple
elements.

Proof. We are free to replace k by a finite extension, and can assume that each
connected component of G has a rational point. Then it suffices to construct for
each h € G(k) a dense open subset U, C G%h consisting entirely of semisimple
elements. The unipotent part of h is in G¥, so we can assume that h is semisimple.
Then Ad(h) is a semisimple automorphism of G°, so [Ste68, Theorem 7.5] implies
that, after possibly further enlarging &, we can find a split maximal torus and Borel
subgroup 7' C B C GY which are invariant under Ad(h).

Let S = Zp(h)°. We define a map u : G° x S — G°h, (g,s) — gshg™!' =
gs Ad(h)(g~1)h. We claim that the image of y is dense in G®h. This will imply the
lemma: the image of u is constructible, so contains a dense open subset of GCh.
The image of u consists of semisimple elements, since Sh consists of semisimple
elements.

To prove the claim, it is enough to exhibit s € S(k) such that the centralizer in
Lie G of Ad(sh) is LieS. Indeed, then computing the differential shows that y is
smooth in a neighbourhood of (1, s). The existence of an s with this property can
be read off from [Reel0l Proposition 3.8]. O

In the statement of the next result, we write h = h®*h* for the multiplicative
Jordan decomposition of an element h € GL,, (k).

Lemma 4.2. Let H C GL, (k) be a subgroup, and suppose that for each h € H, the
characteristic polynomial of h splits into linear factors over k. Then the following
are equivalent:

(1) The span of the set {h** | h € H} equals M, (k).
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(2) For every non-zero H-invariant subspace W C M, (k), there exists h € H
and an eigenvalue o € k of h such that tre, oW # 0 (where ey, o projects
to the generalised a-eigenspace of H ).

Proof. For a given subspace W C M, (k), the existence of h, a such that trep, o W #
0 is equivalent to the existence of an element h € H such that tr h**W # 0 (as e o
is a polynomial in h*%). O

When k& has characteristic p, Guralnick [Gurl2] calls subgroups satisfying the
analogue of the equivalent conditions of Lemma [£:2] “weakly adequate”. The fol-
lowing (easy) proposition shows that when k has characteristic 0, this condition is
equivalent to absolute irreducibility.

Proposition 4.3. Let H C GL, (k) be a subgroup which is absolutely irreducible.
Then the span of the set {h € H | h = h**} equals M, (k).

Proof. Let G be the Zariski closure of H in GL,,, and let U C G be a dense open
subset consisting of semisimple elements. Then UNH C {h € H | h = h**} and
U N H is Zariski dense in G. If the span of U N H does not equal M, (k), then G
is contained in a proper linear subspace of M, (k), hence so is H. This contradicts
Burnside’s lemma. U

We conclude this section by giving some examples of subgroups of GL,, (k) which
are irreducible but not enormous, in the sense of [NTa, Definition 2.27], along
similar lines to the examples of non-big subgroups given by Barnet-Lamb [BLI0,
§5.2]. This shows that the results of this paper really are stronger than those of
[NTa].

It is easy to give examples of finite irreducible subgroups of GL,, (k) contain-
ing no regular semisimple element (for example, the image of the 10-dimensional
irreducible representation of Ag). The definition implies that such subgroups can
not be enormous. Such examples are less relevant to the context considered here,
since we are interested in the images of the Galois representations attached to reg-
ular algebraic automorphic representations; Sen theory implies that images of such
representations should always contain regular semisimple elements, so we need to
consider the interaction with the decomposition of the adjoint representation.

To this end, let H' C GLa(k) denote the normalizer of the group of diagonal
matrices, and let H denote the image of H' x H' under the tensor product repre-
sentation GLo X GLy — GL4. One can check that H is absolutely irreducible but
not enormous, because the span of the regular semisimple elements of H in My(k)
is contained in the subspace of matrices with 0’s on the anti-diagonal.

5. GALOIS PSEUDODEFORMATION THEORY

Let us suppose given the following data:
e A prime p, a finite extension E/Q, inside the fixed algebraic closure Qp,
and an isomorphism ¢ : Qp — C. We assume that F contains all quadratic

extensions of Q,,, so that using ¢, O has a canonical structure of Z[g*'/?]-
algebra for any prime number ¢ # p.

e A CM field F' with maximal totally real subfield F'*.

e A finite set S of finite places of F*, including the set S, of p-adic places,
which all split in F.
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e For each v € S, a factorisation v = 90¢ in F. We write S for the set of
places v.

e A continuous representation r : Gp+ g —+ Gn(O) such that p = r|g, s ®o E
is absolutely irreducible and v or = 3 1. et—n

e Integers a < bsuch that all of the Hodge—Tate weights of p lie in the interval
[a,b] and a +b=mn — 1.

In this section, we will write DET (o) for the group determinant (in the sense
of [Cheld]) associated to a representation . Let D = DET (p) denote the group
determinant of G s associated to p, and let Rg € Co denote the object representing
the functor of conjugate self-dual deformations of D that are unramified outside S
and semistable with Hodge-Tate weights in [a, b], as defined in [NTal §2.19].

We define Wo = adr, W, = Wo/(@™), Wg = adr ®o E, and Wg,p =
Wo ®0 E/O; these are O[G g+ g|-modules. We write Lg = {L,,} for the Selmer
conditions for W, defined as in [NTal §2.19] (semistable with Hodge—Tate weights
in [a,b] at places above p, unramified outside S, no restriction at places of S —
Sp). We write Dg for the universal group determinant over Rg and A; : Gps —
Rgs for the coefficients of the universal characteristic polynomial Dg(X — o) =
Dico(=1) A (o)X N

We define a Taylor-Wiles datum 2 = (Q, @, (fv,1(X))veq, (fv,2(X))veq) of level
N > 1 to be a tuple consisting of the following data:

e A tuple Q = (v1,...,v,) of distinct finite places of F* such that for each
i=1,...,q,v; €S, v; splits in F, and ¢,, = 1 mod p".

e A tuple (v1,...,7,) of finite places of F' such that v; lies above v;.

e For each ¢ = 1,...,q, a factorisation f,,(X) := det(X — p(Frobg,)) =
foi1(X) fo,2(X) in O[X], where f,1(X), fu,2(X) are monic polynomials

with no common roots in Q,,.

If 2 is a Taylor—-Wiles datum and v € @, then we define A, to be the maximal
p-power quotient of k(v)* and Ag = [[,cq Av. If 7 € Ik, we write (1) € A, for
the image of Art;;(T) in A,. We write t, : Ip, — Z, for any choice of surjective
homomorphism. We define A(2) = @7, A and B(2) = @, Bacg f, 1 deg f, 2, Where
A, B are as considered in §2

We define an enhancement R(2) of the universal deformation ring Rsyg as
follows. It will be a complete Noetherian semi-local O-algebra. If v € @Q, let
F,(X) = Dsug(X — ¢5) € Rsug|X] be the characteristic polynomial of a fixed
Frobenius lift ¢ in the universal deformation. The polynomials F,(X) (v € Q)
give Rsuq the structure of A(2)-algebra. Over the ring Rsuq ®4(2) B(2), we
have universal factorisations F,(X) = F, 1(X)F, 2(X), where F, 1(X), F, 2(X) are
monic polynomials of degrees deg f, 1, deg fy 2, respectively, and (after Lemma
polynomials e, 1(X), e, 2(X) such that e, 1(X) + e, 2(X) = Res,, where we write
Res, for the image of Rqeg 1, , deg f, » in B(Z2). We also write Res, 4 for the image
of Ry, deg fo.1.deg fo» i0 B(2). We define R(2) be the quotient of

Rsug ®a(2) B(2) @0 O[AqQ]
defined by the relation

(5.1) Restq Al(a(Resi T — Resy ey,1(¢5) — (7) Resy €4,2(¢%))) =0
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forallv e @, 7 € Ip,, 0 € Gpsug. We write P(2) C R(£2) for the kernel of the
homomorphism

fo:R(Z)— Rs ®A(2) B(2)— O
associated to DET (p) and the fixed factorisations f,(X) = fu,1(X)fu2(X) (v € Q).

If 2 is a Taylor—Wiles datum of level N > 1 and m is an integer such that
1 <m < N, then we define modified local conditions £(2) = {£(Z2), n} for the
O[G g+ sugl-module W, as follows: if v € Q, then L(2)y.m = Lom- If v € Q,
then we define £, ,,, to be the pre-image (under restriction) in H'(F,", W,,) of the
O-submodule of
H(Ip,, Wyn)97s = Hom ey (I, Wi '7),

generated by the homomorphism

T — ty(7T)ey,2(p(Froby)) mod @w™.

(In interpreting this, we point out that e, 2(p(Frobz)) € M, (O) is fa(Res,) times
the idempotent in M, (E) which projects to the sum of the a-generalised eigenspaces
of p(Frobg) for those a with f, 2(«) = 0; moreover, the definition of £, , is inde-
pendent of the choice of homomorphism ¢,.) We write I(2), , for the length of
L(2)y,m as O-module. We write £(2)+ = {£(2);,,} for the dual local conditions
for the O[Gp+ sugl-module W, (1).

Lemma 5.1. There exists a constant d > 0 with the following property: for any
m > 1 and for any Taylor-Wiles datum 2 of level N > m, there exists a homo-
morphism of O-modules

Hp(g)(F*, Wy,) = Homo (P(2)/P(2)*,0/w™0)
with kernel and cokernel annihilated by w? Res(2)3T™ | where we define
Res(2) = lem({f2(Resy) bveq) € O.

Proof. We can identify Homp (P(2)/P(2)?%, O/w™O) with the set of O-algebra
morphisms R(2) — O & eO/w™O which recover fg after reduction modulo e. Let
[¢] € Hé(c@)(F+7 W) We associate to ¢ a homomorphism pg : Grg — GLy(Ar,)
by the formula py(c) = p(o)(1 + €p(o)). If v € Q, let fs,(X) = det(X —
ps(93)) € A [X]. Using Lemma we are given a factorisation fres(2)g,0(X) =
Res(2) (fo,0(X)) = fRes(2)6,0,1(X) fRes(2)p,0,2(X) in A, [X] lifting the factorisa-
tion fi, x = fy,1(X)fv2(X) in O[X]. There exists a constant A, € O such that
d(1) = Mto(T)ey 2(p(Froby)) for all 7 € Ip,, and we define a homomorphism
A, = 14+e0/@w™O by T — 14 eRes(2) Res, Ayt (7) (this depends only on ¢ and
not on the choice of \,). With the group determinant DET (pres(2)e), these data
define a homomorphism Rsuq ®4(2) B(2) ®o O[Aq] — A,. We claim that it
factors through the quotient R(2). It is enough to show the equality

Res?(1 + eRes(2) (7))
= Res, 4,1 (PRes(2)4(¢5)) + (1 + € Res(2) Resy Ayt (7)) Resy €y,2(Pres(2)6 (¢5))

for all v € Q, 7 € Ip,. This follows on multiplying both sides of the equality
Resv = evJ(ﬂRcs(ﬁ)(ﬁ((bff)) + ev,?(pRcs(Q)d)(qs@)) by Resv(l + ERGS(Q)(]S(T)) and re-

arranging.
We have defined a map Hé(g)(F"’,Wm) — Homp (P(2)/P(2)?,0/w™0). Tt
is easy to see that it is in fact a homomorphism of @-modules. We need to bound
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the exponent of the kernel and cokernel of this homomorphism. It is helpful here
to introduce the commutative diagram

HE(Q) <F+7 W) —— HOIH@(P(Q)/P(Q)27 O/me)

| |

H} (F* W,,) —— Homo (P /P3,0/w™0),

where Pg C Rguq is the kernel of the homomorphism Rsug — Rs — O associated
to DET (p), and the arrows may be described as follows: the left vertical arrow is
the natural inclusion, the right vertical arrow is pullback along Rsug — R(Z2), and
the bottom horizontal sends [¢] to the classifying map of DET (pres(2)s). Using
[NTal, Proposition 2.20], we get the existence of a constant d > 0 (not depending on
2) such that the kernel and cokernel of the bottom horizontal map are annihilated
by @w? Res(2). After possibly increasing d, we can assume as well that p(O[G . s])
contains wM,, (0).

‘We now establish the analogous claim for the upper map. It is immediate that the
kernel of the upper map is also annihilated by @? Res(2). To analyse the cokernel,
take a homomorphism P(2)/P(2)? — O/w™ corresponding to a homomorphism
f: R(2) — Ay, and let Dy be the corresponding group determinant. By the cited
proposition, there exists [¢] € HESUQ (F+,W,,) such that a« o Dy is the group
determinant associated to ps. Using the defining relations we find that for all
veQand 7 € I, we have

Resﬁfq Res? pig(T) = Resﬁfq Res?(1 + ew?¢(7))
= Resﬁfq Resy €y,1(pmag(¢5)) + () Resﬂfq Resy €y,2(Pmag(¢5))-
We can find p,, € O such that (1) =1+ €euyt, (7). The above identity then gives
€ RGSZ’!q Res? wlp(1) = € Res:}’!q Ho Resy ty(T)ey 2(pmig (D))
in A,,, hence
Resgfq Res? wlo(1) = Resﬁfq Resy ty(T)ey,2(p(Froby))
in O/@™O. It follows that [Res(2)% Res,(2)"wi¢] € H}:(Q)(F*7 W), where we

define
Resq(2) = lem({f2(Resq ) }veq) € O.

This element is a pre-image of (24 Res(2)3 Res, (2)= © f- The proof is complete on
noting that Res(2) = Res,(2) mod w?. O

Here is a variant which will be used later to conclude the vanishing of the adjoint
Selmer group.

Lemma 5.2. Suppose given elements o1,...,04 € Gp and factorisations f;(X) :
det(X—p(0;)) = fii(X)fi2(X) fori=1,...,q, where for eachi, fi1(X), fi2(X)
O[X] are monic polynomials with no common roots in Qp, Let Ag = ®]_, A, By
QL Baeg fi1.f10, and let Py C Rg® 4, Bo be the kernel of the map Rg ® 4, Bo — O
which classifies the group determinant of p, together with the factorisations fi(X) =
fin(X) fi2(X) fori=1,...,q. Then there is an isomorphism

H, ¢(FT,Wg) = Homo(Py /Py, E).

m
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The definition of the group H, ¢(F'*, W) is recalled in [NTal §1]. We note that
when WD(p|g._ ) is generic for each v € S, it equals H}(F'*, Wg).

Proof. Arguing in the same way as in the proof of the previous proposition shows
that there is a an isomorphism of E-vector spaces

(h(LH Hp (FT, Wm)> ®o E — (@1 Home (Py/Pg, (9/@’”(9)) ®o E.
The left-hand side may be identified with H, ;7S(F+, Wg), by [NTa, Proposition
2.21]. The right-hand side may be identified with Home (Py/P3, E) (Py/Pg is a
finitely generated O-module). This completes the proof. (I

Lemma 5.3. Suppose that for each place v € S, WD(p|GF§) is generic, in the
sense of [NTal Definition 1.1]. Then there exists d > 0 with the following property:
for each Taylor—Wiles datum 2 of level N > 1 and for each integer 1 < m < N,
we have

hioy)(F5 Win) < d+ b gy (F7, W (1) +mlQl.

Proof. This is an application of the Greenberg—Wiles formula, compare [NTal Lemma
2.23]. The only additional thing to check here is that if v € @, then [(2),, —
hO(F.f, W,,) is bounded above by m. Inspecting the definition of £(2), we see that
U(2)y.m — h°(F}, Wp,) equals the length of the O-submodule of Homeo (15, ng)
generated by the homomorphism 7 + ¢, (7)e, 2(p(Frobyz)), which is certainly bounded
above by m. |

Corollary 5.4. Suppose that for each place v € S, WD(p|g, ) is generic. Then
there exists d > 0 such that for every N > 1 and every Taylor-Wiles datum 2 of
level N, there is a map

019 = H} o) (FT, Wy)

with cokernel of length < d + hlﬁ(g)L (Ft,Wn(1)).

Proof. By [NTa, Lemma 2.24] and Lemma it is enough to show there are
constants dgy,d; > 0 such that for every N > 1 and any Taylor-Wiles datum 2 of
level N, we have

(5.2) U Hpo)(FF W) [(@™)) < hpo)(FF, Won) +do
and
(5.3) ((H o) (FY Wi (1)) < UHp gy (FT,Wx (1)) + di.

This follows by the same argument as in the proof of [NTal, Corollary 2.25], provided
we can show that for each m > 1 the natural maps W,,, — W, 11 (resp. Wy,41 —
Wp,) send L(2)y,m into L{2)ym+1 (resp. L(2)y,m+1 into L(Z)y,m). This is clear
from the definitions. 0

Lemma 5.5. Let ¢ > corankp H'(Fs/F™, Wg0(1)), and suppose that p satisfies
the following conditions:
(1) There is a place vt S of F such that all of the eigenvalues of p(Frob,) are

qf,n_l) -Weil numbers.
(2) plpe .., is absolutely irreducible and for each o € Gp(¢,), the eigenvalues
p p

of p(o) all lie in E.
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Then we can find the following data:
(1) An integer d > 1.
(2) Elementsoy,...,04 € Gp(¢,), together with factorisations f;(X) := det(X—
p(0:)) = fir(X)fi2(X), where f; 1(X), fi 2(X) are monic, coprime polyno-
mials in O[X].

These data have the property that for any Taylor—Wiles datum

2=(Q,Q,(for(X))vea: (fu2(X))veo)

of level N > d such that Q = {v1,...,v,} and p(Frobg,) mod w" = p(o;) mod w™
and fu, ;(X) = fij(X) mod wN for each i = 1,...,q and j = 1,2, the following
conditions are satisfied:

(1) For each v € Q, we have ordg Res(fy 1, fv2) < d.

(2) h’lc(a@)L(FﬂWN(l)) <d.

Proof. We first claim that to prove the lemma, it is enough to find elements
01,...,04 € Gp(,) With factorisations [i(X) = fi1(X)fi2(X) such that the
morphism of O-modules

H'(Fs/F*,Wg0(1)) = &{_, E/O,

[¢] = (treia(p(0:))d(03))i=1,....q
has kernel of finite length. Indeed, suppose given elements with this property. Then
there exists dy > 0 such that for all m > 1, the kernel of the map

H'(Fs/F*,Wn(1)) = &_,0/w"™

[¢] = (treq2(p(0)d(09))i=1,....a»
has length bounded above by dy. Suppose that 2 is a Taylor-Wiles datum such
that Q = {v1,...,v,} and p(Frobz,) mod @ = p(o;) mod @ and f,, ;(X) =
fi.;(X) mod @w! for each i,j. Then Hp gy (FF, Wi (1)) is identified with the
kernel of the above map (for m = N) so has length bounded above by dy. The
lemma will hold with d = max(do, {orde Res(fi,1(X), fi2(X))}i=1,....q)-

We now explain how to finds elements oy,...,0, with these properties. By
induction, it is enough to show that for any non-zero homomorphism « : E/O —
H'(Fs/F*,Wg,0(1)), we can find an element 0p € Gp(c,.) and factorisation
fo(X) = det(X — p(o0)) = fo,1(X)fo,2(X) such that the homomorphism ks, :
E/O — E/O, x + trega(p(oo))k(x)(oo) is still non-zero.

Let Foo = F((p), let L /F* be the extension cut out by Wg(1), and let
Loo = L' - F. Then [Kis04, Lemma 6.2] implies that H!(L. /F*, Wg(1)) = 0,
hence H' (Lo /F*,Wg(1)) = 0, hence H' (Loo /F+, Wg/0(1)) has finite length and
the restriction of k to G'r_ is non-zero.

We can interpret this restriction as a Gp+-equivariant homomorphism K :
E/O = HY(Loo, Wg/o(1)). Let M C Wg/o(1) be the O-submodule generated
by the elements K (z)(0), x € E/O, 0 € Gr_,. Then M is a divisible O-submodule
which is invariant under the action of G, so by Lemma [4.2 there exists z € E/O,
T € G, 0 € Gp_ with eigenvalue a € O such that tre, o(p(0))K(z)(1) #
0. If treso(p(o))K(z)(o) # 0, we're done on taking o9 = ¢ and fp2(X) =
ged(fo(X), (X —a)™). If treg o(p(o))K(x)(c) = 0, we're done on taking o9 = 7o
and fo2(X) = ged(fo(X), (X —a)™). O
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Proposition 5.6. Let ¢ > corankp Hl(FS/F+,WE/O(1)), and suppose that p
satisfies the following conditions:

(1) There is a place vt S of F such that all of the eigenvalues of p(Frob,) are
qq(jnfl)-Weil numbers.

(2) p|GF(<pw) is absolutely irreducible.

(3) For each place v € S, WD)(pla,. ) is generic.

Then we can find the following data:

(1) An integer d > 1.

(2) Elementsoy,...,04 € Gp(c,), together with factorisations f;(X) := det(X—
p(0:)) = fi1(X) fi2(X), where f;1(X), fi2(X) € O[X] are monic coprime
polynomials in O[X].

These data have the property that for any Taylor—Wiles datum

2= (Q,Q, (fo1(X))veqs (fo2(X))veq)
of level N > d such that p(Frobg,) mod w™¥ = p(0;) mod @, fu, 1(X) = fi1(X) mod w
and fo, 2(X) = fi2(X) mod @™ for each i =1,...,q, the following conditions are
satisfied: there is a map
Ofz1,...,z4] = R(2)
such that the images of x1,...,xq lie in P(2) and
P(Q)/(P(Q)Q’ Tiy.-- 7xq)
is an O-module of length < d. Moreover, we have orde Res(fy 1, fu2) < d.

Proof. We choose the data 01,...,04 and f; ;(X) € O[X] and integer d > 1 using
Lemma [5.5] Suppose given a Taylor—-Wiles datum 2 satisfying the conditions in
the statement of the proposition. By Corollary and Lemma there exists a
morphism of O-modules 07 — P(2)/P(2)?>®0 O/w™ O with cokernel annihilated
by w?. We define the map O[z1,...,2,] — R(2) to send x1,...,z, to arbitrary
lifts to P(2) of the images of the standard basis elements of O1.

To finish the proof, we need to show that P(2)/(P(2)% z1,...,24) is an O-
module of uniformly bounded length. Since N > d,

P(2)/(P(2)* z1,...,2,)

is annihilated by w? The desired result will follow therefore if we can show that
there is a bound, independent of 2, for the number of generators for P(2)/P(2)2.
As in the proof of [NTa), Corollary 2.31], this follows from the corresponding state-
ment for mpg,, /mp, . O

6. THE MAIN THEOREM

In this section we prove our main theorem:

Theorem 6.1. Let F be a CM number field, let n > 2, and let (w,x) be a reg-

ular algebraic, cuspidal, polarized automorphic representation of GL,(AFp). Let

t:Q, — C be an isomorphism, and suppose that T7"7’/|GF(§ .y s irreducible. Then
P

H{(F*,adry,) = 0.

)

Proof. Using the same sequence of reductions as in the proof of [NTal Theorem
5.2], we can assume that 7 satisfies the following additional conditions:

e 7 is conjugate self-dual.
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e F/FT is everywhere unramified and [F'* : Q] is even.

e Let S denote the set of finite places of F' at which 7 is ramified, together
with the p-adic places of F. Then for each v € S, v is split over '™ and m,
is Iwahori-spherical.

The proof of the theorem in this special case will be given in the rest of this section,
starting in §6.3] O

Theorem [6.1] has the following consequence for automorphic representations over
totally real fields. We refer to [NTal §5] for the definition of the representation gs
appearing in the statement (it is the Lie algebra of a general similitude group of a
(£)-symmetric bilinear form, whose parity depends on the parity of the polarizing
character y):

Theorem 6.2. Let F be a totally real number field, and let (mw,x) be a regu-

lar algebraic, cuspidal, polarized automorphic representation of GL,(AF). Let

t:Q, — C be an isomorphism, and suppose that rﬂ,L|GF(< oy s drreducible. Then
P

)
H}(F*,gs)=0.

Proof. This can be deduced from Theorem using base change, cf. [AIl16, The-
orem BJ. O

6.3. Start of the proof. We begin by repeating, almost verbatim, the set-up from
[NTal, §4]; the arguments will diverge when we begin to describe the Hecke algebras
associated to Taylor—Wiles data.

We therefore suppose given n > 2, a CM number field F, a cuspidal, regular
algebraic, conjugate self-dual automorphic representation 7 of GL, (A ), and an
isomorphism ¢ : Qp — C. We assume that the following conditions are satisfied:

e F/F* is everywhere unramified and [F" : Q] is even.

e Let S denote the set of finite places of '™ above which 7 is ramified,
together with the p-adic places of F'*. Then for each v € S, v splits
v = ww’ in F and m, is Iwahori-spherical.

o .lc F(cyo0) is absolutely irreducible.

We remark that for each place v of F, WD(rr ,|c, ) is generic [Car12] [Carl4]. We
choose an extension of 7, , to a homomorphism Gp+ — Qn(Qp), which then gives
the action of Gp+ on adr,,. We have vor,, = 52,/1”61_". We must show that
Hi(F*,adrg,) = 0.
We can find the following data:
e For each place v € S, a choice of place v of F lying above v. We set
S={v|veStand S, = {7 |veS,}
e A Hermitian form (-,-) : F™ x F™ — F such that the associated unitary
group G (defined on R-points by G(R) = {g € GL,,(F ®p+ R) | g*g = 1})
is definite at infinity and quasi-split at each finite place of F'T.
e A reductive group scheme over Op+ extending G (also denoted G).
e For each finite place v = ww® of F* which splits in F', an isomorphism
Ly - G@F’ + — Reso,., /Ot GLy, of group schemes over Op+. We assume
that the induced isomorphism ¢, : G(F,}) — GL,,(F,) is in the same inner
class as the isomorphism given by inclusion G(F,) C GL,,(Fy) X GLy, (Fye),
followed by projection to the first factor.
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e An automorphic representation ¢ of G(A g+) with the following properties:

G(O,+4)
— For each finite place v of F'T which is inert in F', o & # 0 and oy,

m, are related by unramified base change.
— Tor each finite place v of F'™ which is split v = ww® in F, 0, = Ty, 0 Ly.
— If v|oo is a place of F'*, then the infinitesimal character of o, respects
that of m, under base change.
e An open compact subgroup U = [] U, of G(A%,) with the following
properties:
— For each place v € Sp, U, = ¢; ' (Iwz), where Iwy C GL,,(OF,) is the
standard Iwahori subgroup.
— For each inert place v of F'*', U, = G(Opy+).
— (%) £0.
— U is sufficiently small: for all g € G(A%,), gUg ' NG(FT) = {1}.
(We can find such a G because [F™ : Q] is even. The existence of o is deduced
from that of 7 using [LabI1l §5].) We can regard o, as an algebraic representation
of the group (Resp+,q G)c. Let INP C Hom(F,Q,) denote the set of embeddings

inducing places v € Sp. Then our choices determine an isomorphism

(RGSF+/Q G)Qp = H GL,.

TEI~p

Let A = (A7), ¢ i, € (Z’_f_)fp denote the highest weight of the algebraic representation
Vi of (Resp+/q G)gq such that V) ®, g C = 0Y. We can define a highest weight
¢ for (Resp/q GLn)Q by letting &, = A, and &.. = —woA, for 7 € fp (wp is the

longest element in the Weyl group of GL,,). The infinitesimal character of 7 is the
same as that of ng ®,q, C. We fix once and for all integers a < b such that for all
VP

7 € Hom(F, Q,), the elements of HT,(r,,) are contained in [a,b] and a+b=n—1.

We can find a representation V) of the group scheme (Res@ﬁ/z G)o, finite free
over O, and such that V\ ®o Q, = Vi. Thus V,(0) is a finite free O-module
which receives an action of U, = [], s, U,. For any open compact subgroup
V =TI, V, C U, and any O-algebra A, we define Sy (V, A) to be the set of functions
[+ G(A%) — Va(A) such that for each v € V, v € G(FT), g € G(AY,),
vpf(ygv) = f(g). We observe that

liy S5 (UU,,, A)
Up

has a natural structure of A[UP]-module, and the UP-invariants are S (U, A). It
follows that Sx(U, A) has a natural structure of H(G(A;”), UP)-module. There is
an isomorphism of #(G(A"), UP)-modules

S)\(Uv O) ®L,O C= @M(MOO)U’

where the sum is over automorphic representations of G(Ap+) (with multiplicity)
such that piee & 0so-

Let E/Q, be a coefficient field containing the image of every embedding F' — Qp.
After possibly enlarging F, we can assume that there is a model p : Gp g — GL,(O)
of rr ., which extends to a homomorphism r : Gp+ ¢ = G,(O) such that vor =
61_"5?, N We moreover assume that E contains every quadratic extension of Q,,
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and that for each o € G g, the characteristic polynomial det(X — p(o)) splits into
linear factors in O[X].

Let D = DET (p). With these choices the pseudodeformation ring denoted Rg =
R(0) in §5|is defined, as well as the prime ideal P((}) = ker(R(0) — O) determined
by p. Moreover, for any Taylor—Wiles datum 2 = (Q, @, (Ffo1(X))veq, (fu,2(X))veq)
we have the auxiliary ring R(2) and prime ideal P(2) = ker(R(Z2) — O).

If V =[], Vo is an open compact subgroup of U and T is a finite set of places of
F* containing all places such that V,, # G(O #+), then we write T1(V, A) for the A-
subalgebra of End 4 (S)(V, A)) generated by the unramified Hecke operators at split
places away from T'. The existence of o implies the existence of a homomorphism

hyo,: T3 (V,0) = O

giving the Hecke eigenvalues of t ~10°°. On the other hand, the results of [Lab11l §5]
(base change), together with the existence of Galois representations associated to
cuspidal, polarizable, regular algebraic automorphic representations of GL,, (A ),
imply the existence of a group determinant Dy, of G valued in T% (V,0) (con-
struction as in [Thol5l Proposition 4.11]).

Let m C T (U, O) denote the unique maximal ideal containing ker Ay ,, and set

Sy = S\(U,O)m, Tg = T (U, O) .

Then ([NTal Lemma 5.4]) there is a surjective homomorphism R(f)) — Ty classify-
ing the image of Dy  over Ty.

Now suppose that 2 = (Q,Q, (fo1(X))veq, (fv,2(X))veq) is a Taylor-Wiles
datum. If v € Q, we write p, C GL,(Op,) for the standard parahoric subgroup
associated to the partition n = deg f, 1 + deg f, 2 and p, 1 C p, for the kernel of
the associated map p, — GLqgeg 5, ,(k(V)) — k()" (p) = A, (notation as in .
We define open compact subgroups Ui (2) C Up(2) C U as follows: Up(2) =
I, Uo(2), and U1(2) =[], U1(L2),, where Uy(2), = U1(2), = U, if v € Q and
U(2), = Lglpv and U;(2), = Lglpm ifveq.

Thus there is a canonical isomorphism Up(2)/U1(2) = Aq = [[,cq Av- The
space Sx(Up(L2),O) has a canonical structure of module over the ring B(2). We
define Ti"’@(Uo (2), 0) to be the commutative O-subalgebra of Endp (Sx(Up(2), O)
generated by the unramified Hecke operators at split places v € S U @, together
with the image of the ring B(.2). Thus T5"%(Uy(2),0) C T2 (Up(2),0). We
define my o to be the pullback of m to TfUQ(UO(Q), O) and define

SQ,O = SA(UO(Q)7 O)mO,Q7T>@aO = Tig(UO(C@)v O)mo,g'
Lemma 6.4. There is a canonical surjective homomorphism R(Z) — Tag.

Proof. We recall that R(2) is a quotient of Rgug ® 4(2) B(2) ®o O[Ag]. The
map we construct will factor through the quotient Rsuq ®a4(2) B(£Z). There is
a surjective map Rsug ®o B(Z) — Tag, coming from the group determinant
Dy, (2),» and the canonical map B(2) — T ,0; therefore what we need to check is
first that this map factors through the quotient

Rsuq ®o B(2) = Rsuq ®a2) B(2)
and second that for all v € Q, 7 € Ir,, 0 € GF,suQ, its kernel contains the element

Res)', A1(o(Res) 7 — Res, €y,1(¢5) — (1) Res, €y.2(67)))
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appearing in (5.1)). The first claim is equivalent to the assertion that the two actions
of A(2) on Sg, induced by the Rsug- and B(2)-module structures agree. This
follows from Corollary For the second claim, it is enough to show that for each
automorphic representation u of G(A p+) such that =14 contributes to Sg., we
have the relation

n! 2 o n! 2
Resy , Res; 7,,.,(7) = Res;, Res;

in M,(B,-1,,), where B,-1,, is the Q, -subalgebra of Endg (rluff"(ﬂ@)”) gener-
ated by the image of Bqeg f,,,degf, .- Lhis follows from Corollary either

Uo(2)v
v

| _ . . . . . .
Resﬁ'qb T = 0, in which case both sides are zero, or pu, is unramified, in

which case Tu(T) =1 O

The space Sx(U1(£Z2),0) has a canonical structure of module over the ring
B(2)[Ag]. Moreover, Sx(U1(2),0) is free over O[Ag] and the trace map induces
an isomorphism Sx(U1(£2),0) ®o[a,) O = Sx(Un(£2),0) ([NTa, Lemma 4.6]). We
define Tf’Q(Ul(,"Z), 0) to be the O-subalgebra of Endp (S (U1(2),0)) generated
by the unramified Hecke operators at split places v € SUQ, together with the image
of the ring B(2)[Ag]. Thus TiUQ(Ul(Q), 0) C Tf’Q(Ul(Q), 0). We define m; o
to be the pullback of m to TfUQ(Ul(Q), O) and define

So1 = S\(U1(2),O)m, o, To1 =Ty (U1(2),0)m, -

Thus there is a canonical surjective homomorphism Tg 1 — T (here we apply

Lemma [3.10]).

Lemma 6.5. The homomorphism R(2) — T g, lifts to a surjective O[Ag]-algebra
homomorphism R(Z2) — Tg .

Proof. The proof is similar to the proof of Lemma There is a map Rsug ®o
B(2)[Ag] — T2, arising by tensor product of the maps Rsug — Tg2,1 classifying
hy, (2),» and the canonical map B(2)®0 O[Ag] — T 2,1. This map factors through
Rsuq ®4(2) B(2) ®o O]Aq] by Proposition To complete the proof, we need
to show the kernel of the resulting map contains the elements
Resﬁfq Ay (U(Resfj 7 — Resy €41 (¢5) — (7) Resy 61},2(¢5)))7

or even that for each automorphic representation pu of G(Ap+) such that (=!u*>
contributes to S 1, we have the relations

Resﬁfq Resi T (T) = Resﬁfq (Resy €4,1 (7, (03)) + (T) Resy €y 2(rp,. (67)))

in M, (B,-1,,1), where B,-1,,  is the Qp—subalgebra of EndQP(L_lugl(g)“) gen-

erated by the image of Byeg f, ;. deg f,»[Av]. This follows from Corollary and
Corollary [l

We need to control the difference between Sy and Sg . There is a homomor-
phism of Rsuq ®4(2) B(2)-modules:

f2:B(2)Ra2) S — Sa20
SQx — sx

(see Lemmal|3.7)). The following result will be used to control the kernel and cokernel
of fo.m = fo®0 O/w™O (when £ has level N and 1 <m < N):
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Proposition 6.6. Suppose that 2 has level N and that 1 < m < N. Then the
element HUEQ Res, € B(2) annihilates the kernel and cokernel of each of the maps
fQ,m-

Proof. By Proposition there is a morphism go : So0 — B(2) ®a.2) Sp of
Rsuq ®4(2) B(2)-modules such that foge mod @™ and gofe mod w™ are both
given by multiplication by HUEQ Res,. This implies the desired result. (Here we
use that U is sufficiently small, cf. the discussion on [CHTOS8, p. 98], so that
e.g. Boo/(@w™) may be viewed as the space of [[, ., p,-invariants in a suitable
O/(@™)[[1,eq GLn(F5)]-module.) O

6.7. Patching. We now collect together the data necessary to carry out the patch-
ing argument. We argue using ultrafilters, following Pan [Panl9] in a similar way
to [NTa).
e First fix ¢ = corankp H'(Fs/FT,adr(1)®0F/O). Let Rew = Oy, ..., x4].
e We next fix d > 1, elements 01,...,0, € Gp(,), and factorisations
det(X — p(o;)) = fi1(X)fi2(X) satisfying the conclusion of Proposition
(.6l For each N > d, we can find a Taylor-Wiles datum

2N = (Qn, Qn, (for(X))veq: (fo2(X))veq),

where Qn = {vn1,...,Un,q}, and the following additional conditions are
satisfied:
— The characteristic polynomials of Frobg, , and o; over R(0) /mg(m)

agree.
— The characteristic polynomials of Frobg,, , and o; over Ty/(w’) agree.
— p(Frobg, ,) = p(0;) mod @w® for each i =1,...,q.
— For each i = 1,...,q, we have f;1(X) = fuy,1(X) mod @™ and
fi2(X) = fuy.,2(X) mod @, Moreover, ords Res(fuy 1, fox.2) <
d.
(This is possible by the Chebotarev density theorem and Hensel’s lemma.)
We write Ry = R(QN) and Ay = A(QN), By = B(QN) We write
Py = P(QN) = ker(RN — O)

o We set So, = O[Z{] and fix for each N > 1 a surjection Z¢ — Ag, . This
gives each ring R(Zy) the structure of So.-algebra. We write as C Soo
for the augmentation ideal. We also set Ay = ®7_,Z[eq,...,e,| and By =
®7_ Zlay,...,adeg f; 1,01, -, bdeg f,,]- The choice of elements o1,...,0,
gives R(() the structure of Ap-algebra. We define Ry = R(0) ®.4, Bo.
There are isomorphisms Ay = Ay and By = By for any N > 1. We define
Py C Ap to be the kernel of the map Ry — O associated to DET (p) and
factorisations f;(X) = fi1(X)fi2(X) i=1,...,q).

e Finally, we fix a non-principal ultrafilter 7 on {N € N | N > d}, and set
R = [[ysqO. If I € F, then we define e; = (dner)n>a € R. Then e;
is an idempotent and S = {e; | I € F} is a multiplicative subset of R,
and we define R = S~'R. Note that the map R — R factors through
[Ins., O for any m > d.

We remark that if N > d then there is no canonical map Ry — Ry, but our
choice of Taylor-Wiles data means that the map Rsugy ®0 BN — Rs ®o By
descends to a surjection Ry — R/ m%m). Similarly, there is a canonical surjection

Ry — Tp/(@™) ®.4, Bo. We define modules:
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o My =lim Ry ®r][lys,, S21/(mg ).
o My= @m Rr®r HNZm Sg,o/(wm).
o M= @m Rr®r HNZm Sp @y By /(@™).
When N > m, the Ay— and Ap—actions on Sp/(@w™) are the same. Thus there

is a natural isomorphism M = Sy ® 4, By, where A acts via the canonical map
A() — R@ — T@.

Lemma 6.8. (1) My is a flat Soo-module.
(2) The trace maps induce an isomorphism My ®s._ O = M.
(3) The maps fay m induce a map f : M — My, with kernel and cokernel

annihilated by ([,cq, Res?) g € [Insq R(2N).
Proof. The proof is the same as the proof of [NTal Lemma 4.13]. O
We define

RP = l'glR]: R H RN/(mRSuQN H Resz)m.
m N>d VEQN

Then My, My, and M have natural structures of RP-modules with respect to which
the maps of Lemma are morphisms of RP-modules (same proof as [NTal, Lemma
4.15]). There is also a natural map

m N>d

Lemma 6.9. (1) The map RP — Ry just defined is surjective. The action of
RP on M factors through this map.
(2) Let PP denote the pre-image of Py under this map. Then PP equals the
image of [[y~q PN C [Insq BN under the map [y~ BRv — RP.
(3) For each k > 1, the ideal (PP)* equals the image of [[ g P C [Tnsa BN
in RP.

Proof. The first part is proved in the same way as [NTal, Lemma 4.17]. The second
and third parts can be proved in the same way as [NTa, Lemma 4.19, Lemma
4.20]. O

For each N > d, Proposition [5.6] implies the existence of a map
Ry = 0[[.T17...,,’Eqﬂ — Ry

which sends 1, ..., 7, into Py, and such that Py/(P%,z1,...,2,) has uniformly
bounded length (as O-module). There is an induced map Ro, — RP which sends
the ideal Py = (21,...,%4) into PP.

Proposition 6.10. The natural map Ro, — RP induces a surjection (Roo)p  —

oo

(RP) pp on completed local rings. In particular, (RP)p, € Cg.

Proof. The proof is the same as the proof of [NTal, Proposition 4.22]. O

We next define quotients of our patched modules as follows:
® 1M = (Ml/ago)Pp.
e my = (M) pr.
e m = Mpr = Mp,.
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Proposition 6.11. (1) The map f: M — My induces an isomorphism m —
mg.
(2) The trace maps induce an isomorphism mi/(as) = my.
(3) my is a finite free Seo a.. /(a2 )-module.

Proof. The first part is true because the image of the element ([, Res?)nsd €
[Insq RN in RP is not in PP. The second part is true because the analogous
statement is true before localization. The third part is true because m; is both flat
(as M is flat) and finitely generated (because Seca., /(a2) is Artinian and my is
a finite-dimensional E-vector space). (]

Finally, we conclude:

Proposition 6.12. m is a free (RO)AP0 -module. Consequently, H}(F"’, adrr,) =0.

Proof. According to Proposition (RP)pp is a quotient of (ROO)APOO, which is
a complete Noetherian regular local ring of dimension ¢. Applying Brochard’s
criterion [Brol7, Theorem 1.1] (along with the third part of Proposition , we
conclude that m; is a free (RP)p, /(a2 )-module, and hence that my = m is a free
(RP) pp /(a0 )-module. Since the action of (RP)p,/(as) on m factors through the
map (RP)p, — (RO)AP07 it must be the case that m is a free (RO)APO—module. To
prove the vanishing of H }(F *,adr,,) and finish the proof, we need to check the
following two points:

e m is a semisimple (1) p,-module.
e The E-vector spaces Hi(F*,adr ®o E) and Py/F§ ®o E have the same
dimension.

For the first point, we note that there is an isomorphism
m = (Sy ® 4, Bo)p,-

Since Sy ®p E is a semisimple Ty ®p E-module and the map Ty — Ty ®.4, Bo
is étale at Py, m is indeed semisimple. For the second, we simply apply Lemma
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