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Abstract. Let ρ be the p-adic Galois representation attached to a cuspidal,

regular algebraic, polarizable automorphic representation of GLn. Assuming
only that ρ satisfies an irreducibility condition, we prove the vanishing of the

adjoint Bloch–Kato Selmer group attached to ρ. This generalizes previous
work of the author and James Newton.
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1. Introduction

Context. Let F,M be number fields, let Ĝ be a reductive group defined over
M , and suppose given a strictly compatible system

R =
(
ρλ : GF → Ĝ(Mλ)

)
λ

of continuous, Ĝ-irreducible λ-adic Galois representations.1 For any place λ of M

of residue characteristic l and any representation R : Ĝ→ GLN , we may define the

1By ‘strictly compatible’ we mean that for each finite place v of F , there is a Weil–Deligne

representation (rv , Nv) of WFv into Ĝ over M (all but finitely many of which are unramified) such

that for each place λ of M , the Frobenius-semisimple Weil–Deligne representation associated to
ρλ|WFv is conjugate to (rv , Nv). In particular, if v and λ have the same residue characteristic

then ρλ|GFv is de Rham.

1
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Bloch–Kato Selmer group of R ◦ ρλ:

H1
f (F,R ◦ ρλ)

= ker

H1(F,R ◦ ρλ)→
∏
v|l

H1(Fv, (R ◦ ρλ)⊗Ql
Bcris)×

∏
v-l

H1
ur(Fv, (R ◦ ρλ))

 .

Fixing an embedding M → C, we may also define the associated L-function

L(R, R, s) =
∏
v

det(1− (R ◦ rv)IFv ,Nv=0(Frobv)q
−s
v )−1.

Conjectures of Fontaine–Mazur, Beilinson, and Bloch–Kato [FM95, Bei84, BK90]
together lead to the expectation that L(R, R, s) converges absolutely in some right
half-plane and admits a meromorphic continuation to C, and moreover that for any
λ there is an equality

(1.1) dimH1
f (F,R ◦ ρλ)− dimH0(F,R ◦ ρλ) = ords=1 L(R, R∨, s).

We are concerned here with the special case where R = AdĜ is the adjoint repre-

sentation of Ĝ, when we should have

(1.2) dimH1
f (F,AdĜ ρλ)− dimH0(F,AdĜ ρλ) = ords=1 L(R,AdĜ, s).

The representations AdĜ ρλ should be pure of weight 0, and one expects the group

dimH1
f (F,AdĜ ρλ) to vanish. Since the representation AdĜ is self-dual, (1.2) is

expected to be equivalent (applying Poitou–Tate duality to the left-hand side and
functional equation of the L-function to the right-hand side) to the equality

(1.3) dimH1
f (F,AdĜ ρλ(1))− dimH0(F,AdĜ ρλ(1)) = ords=0 L(R,AdĜ, s).

An interesting case arises when the number field F is totally real, Ĝ is the L-
group of a reductive group G over F , and ρλ is the compatible system of Galois
representations conjecturally attached by Buzzard–Gee [BG14] to an automorphic
representation π of G(AF ) such that π∞ is square-integrable. Gross predicted [Gro]
that the representations ρλ should then be odd, in the sense that for each place
v|∞ and complex conjugation cv ∈ GF , Ad ρλ(cv) is the unique (up to conjugacy)

involution of Ĝ such that the trace on ĝ equals − rank Ĝ. Poitou–Tate duality then
implies the equality

(1.4) dimH1
f (F,AdĜ ρλ) = dimH1

f (F,AdĜ ρλ(1)).

In this paper we essentially establish the equalities (1.2) and (1.3) for many com-
patible systems associated to automorphic representations π of classical groups G
over totally real fields F such that π∞ is discrete series. We are able to do this
because the equality (1.4) is exactly the ‘numerical coincidence’, described in the
introduction to [CHT08], under which the Taylor–Wiles method applies. Using the
Taylor–Wiles method, we can identify the Bloch–Kato Selmer group of AdĜ ρλ with
the Zariski tangent space of a Hecke algebra acting on a space of cuspidal automor-
phic forms. The vanishing of the Selmer group is thus ultimately a consequence of
the fact that this action is semisimple.

This theme, sometimes with integral refinements, has been explored by sev-
eral authors (see e.g. [Kis04, DFG04, All16, NTa]). On the other hand, Calegari–
Geraghty [CG18] have recently explained how the Taylor–Wiles method can be
generalized to cases where the numerical coincidence no longer holds, and applied



THE VANISHING OF ADJOINT SELMER GROUPS 3

this, with Harris, to prove unconditionally the vanishing of the adjoint Bloch–Kato
Selmer group in some cases for automorphic representations of GSp4(AQ) associ-
ated to abelian surfaces over Q [CG20, Theorem A.1]. Our aim here is to leverage
the relative maturity of the Taylor–Wiles case to prove vanishing results that are
as general as possible.

Results. To state our results, we prefer to work with automorphic represen-
tations of general linear groups satisfying self-duality conditions. Let F be a CM
number field, and let π be a cuspidal, regular algebraic automorphic representa-
tion of GLn(AF ) which is polarizable, in the sense of [BLGGT14]. Then for any
prime p and isomorphism ι : Qp → C, there is an associated Galois representation

rπ,ι : GF → GLn(Qp). Since π is polarizable, rπ,ι is conjugate self-dual up to twist,

and Ad rπ,ι extends to a representation of GF+ on Mn(Qp) (which we may think of

arising from the adjoint representation of the L-group of a unitary group over F+).
This defines the associated adjoint Bloch–Kato Selmer group H1

f (F+,Ad rπ,ι).

In a previous paper [NTa], we proved that this adjoint Selmer group vanishes
provided that the group rπ,ι(GF (ζp∞ )) is “enormous”; roughly speaking, that it
contains enough regular semisimple elements. The main theorem of this paper
strengthens this result, proving the same vanishing under the weaker condition
that rπ,ι|GF (ζp∞ )

is irreducible:

Theorem A. [Theorem 6.1] Let F be a CM number field, and let π be a polar-
izable, cuspidal, regular algebraic automorphic representation of GLn(AF ). Let p
be a prime, and let ι : Qp → C be an isomorphism. Suppose that rπ,ι|GF (ζp∞ )

is

irreducible. Then H1
f (F+, ad rπ,ι) = 0.

This theorem is probably the best possible using the kinds of methods considered
here. We hope that this theorem will have applications of a similar sort to those
of the main result of [NTa] (see for example the papers [NTb, NT20]). For an
analogous theorem in the case where F is a totally real field, see Theorem 6.2
below.

We now explain what is new here compared to the arguments of [NTa]. As in
that paper, we show that H1

f (F+, ad rπ,ι) = 0 by using auxiliary Selmer groups,
with torsion coefficients, and where we allow ramification at Taylor–Wiles places
of the base number field. Previously, we considered ramification at places where
the image of Frobenius under rπ,ι is regular semisimple, with the modified Selmer
conditions allowing arbitrary ramification at these places. Here we do not impose
any condition on the image of Frobenius. However, we must then cut down the
relevant Selmer condition, as allowing arbitrary ramification would otherwise define
a Selmer group that was ‘too large’. The condition we impose is roughly that,
selecting an eigenvalue α of the Frobenius at a Taylor–Wiles place, inertia acts
through a scalar character on the α-generalized eigenspace (an idea similar to the
one used in [Tho12]).

The hardest part of the proof is showing that this condition makes sense both
at the level of Galois deformation theory and at the level of automorphic forms.
We note that as in [NTa], we impose no condition on the residual representation
rπ,ι (which might even be trivial), so we need to study carefully the interaction of
these conditions with the various integral structures that appear in order to make
the final patching argument go through.
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Table 1. Summary of notation

Symbol Meaning
GF Absolute Galois group of field F of characteristic 0
Fv, OFv , $v,
k(v)

Completion of number field F at finite place v, ring of
integers, fixed choice of uniformizer, residue field

FS/F , GF,S Maximal extension of number field F unramified outside
finite set S, Gal(FS/F )

E,O, $, k Finite extension of Qp with ring of integers, uniformizer,
residue field

CO, CE Category of complete Noetherian localO, resp. E-algebras
H(G,U) Hecke algebra of locally profinite group G with identity

element [U ]
WK , IK ,ArtK Weil group, inertia group, Artin map of p-adic local field

K
recK , recTK Local Langlands correspondence for GLn(K) and its Tate-

normalised version
WD(ρ),
WD(ρ)F−ss

Weil–Deligne representation associated to continuous rep-
resentation ρ : GK → GLn(Ql) (assumed geometric if
l = p) and its Frobenius-semisimplification

rπ,ι p-adic Galois representation associated to a regular al-
gebraic, cuspidal, polarizable automorphic representation
of GLn(AF ), F a CM or totally real number field, and
ι : Qp → C an isomorphism

Gn, ad Group scheme with neutral component GLn × GL1 con-
sidered in [CHT08, §2], and its adjoint representation on
Lie GLn

Organization of this paper. In §2, we compute the different of the ring
extension Z[x1, . . . , xn]Sn → Z[x1, . . . , xn]Sn1

×Sn2 : it is the resultant, and occurs
constantly throughout this paper. In §3, we realise this ring extension as a map of
Hecke algebras and show how the different controls the difference between certain
spaces of automorphic forms which naturally appear in the Taylor–Wiles method.
In §4 and §5 we study our auxiliary Selmer groups. Finally, in §6, we combine
everything to prove Theorem A.

Acknowledgements. This work received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No 714405).

Notation. We use the same notation as defined in [NTa, §1]. Table 1 gives a list
of symbols used with their meanings. We refer to loc. cit. for precise definitions.

2. A different computation

Let A = Z[e1, . . . , en] ⊂ C = Z[x1, . . . , xn] denote the ring of symmetric poly-
nomials in n variables. Fix a decomposition n = n1 + n2, and define elements
a1, . . . , an1 and b1, . . . , bn2 by the relations

(T − x1) . . . (T − xn1
) =

n1∑
i=0

Tn1−iai,
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(T − xn1+1) . . . (T − xn) =

n2∑
i=0

Tn2−ibi,

hence

(T − x1) . . . (T − xn) =

n∑
i=0

Tn−iei =

(
n1∑
i=0

Tn1−iai

) n2∑
j=0

Tn2−jbj

 .

We define B = Bn1,n2
= Z[a1, . . . , an1

, b1, . . . , bn2
]. Thus the group Sn acts on C;

B is the ring of polynomials invariant under the subgroup Sn1 × Sn2 , and is a free
A-module. An important element of B is the resultant

Resn1,n2
= Res(

n1∑
i=0

Tn1−iai,

n2∑
i=0

Tn2−ibi) =

n1∏
i=1

n2∏
j=1

(xi − xn1+j).

Another important element of B is the q-resultant, defined for q ∈ N:

Resq,n1,n2
= Res(

n1∑
i=0

Tn1−iqiai,

n2∑
i=0

Tn2−ibi) =

n1∏
i=1

n2∏
j=1

(qxi − xn1+j).

Proposition 2.1. There exists a unique element R̃esn1,n2 =
∑
i zi ⊗ wi ∈ B ⊗A B

with the following properties:

(1)
∑
i ziwi = Resn1,n2

.
(2) For each σ ∈ Sn − Sn1

× Sn2
,
∑
i σ(zi)wi = 0.

Proof. Let µ : B⊗AB → B be theA-algebra homomorphism given by µ(z⊗w) = zw.
Let I = ker(µ), and let J = AnnB⊗AB(I). The statement of the proposition is
equivalent to the assertion that the map µ|J is injective and its image contains
Resn1,n2

. In fact, we will show that µ|J is an isomorphism onto the ideal of B
generated by Resn1,n2

.
The ring extension A ⊂ B satisfies the hypotheses of [Sta13, Lemma 0BWD],

which implies that µ|J is an isomorphism onto the ideal of B generated by the
determinant of the Jacobian matrix (∂(e1, . . . , en)/∂(a1, . . . , an1

, b1, . . . , bn2
)). The

determinant of this matrix is (up to sign) Resn1,n2
. �

Proposition 2.2. The morphism SpecB → SpecA is étale away from the locus
Resn1,n2

= 0.

Proof. The proof of Proposition 2.1 shows that Resn1,n2
generates the Noether

different of A → B. The morphism A → B is flat, and [Sta13, Tag 0BVU] shows
that SpecB → SpecA fails to be unramified precisely at the points defined by the
equation Resn1,n2

= 0. �

In this paper we will frequently use the interpretation of SpecB as the scheme
of factorisations F (X) = F1(X)F2(X), where F1, F2 are monic of degrees n1, n2,
respectively. A related construction is given by the following lemma.

Lemma 2.3. There are unique polynomials G1(X), G2(X) ∈ B[X] of degrees n2−
1, n1 − 1 such that G1(X)F1(X) +G2(X)F2(X) = Resn1,n2

.

Proof. For a ring R, let Pold(R) denote the free R-module of polynomials of degree
≤ d with coefficients in R. There is a morphism µ : Poln2−1(B) × Poln1−1(B) →
Poln1+n2−1(B), (G1, G2) 7→ G1F1 +G2F2. With respect to the standard bases the
matrix of this morphism is the Sylvester matrix, whose determinant is the resultant

https://stacks.math.columbia.edu/tag/0BVU
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Resn1,n2
. The existence follows from the existence of the adjugate matrix and the

uniqueness from linear algebra over FracB. �

We define e1(X) = G2(X)F2(X), e2(X) = G1(X)F1(X), so that e1(X) +
e2(X) = Resn1,n2

.
In the statement of the next lemma, we fix a discrete valuation ring O with

uniformizer $, and for each m ≥ 1 define Am = O⊕ εO/$mO (where ε2 = 0) and,
if x ∈ O, write αx : Am → Am for the O-algebra homomorphism which sends ε to
εx.

Lemma 2.4. Let f(X) ∈ O[X] be a monic polynomial of degree n ≥ 1, and
suppose given a factorisation f(X) = f1(X)f2(X) in O[X], where f1(X), f2(X)
are monic polynomials of degrees n1, n2, respectively. Suppose that the resultant
δ = Res(f1, f2) ∈ O is non-zero. Then:

(1) There exist unique polynomials g1(X), g2(X) ∈ O[X] of degrees strictly less
than n2, n1, respectively, such that g1(X)f1(X) + g2(X)f2(X) = δ.

(2) Let m ≥ 1, and suppose given a monic polynomial f̃(X) ∈ Am[X] such

that f̃(X) mod ε = f(X). Then there exists a canonical factorisation

αδ(f̃(X)) = f̃1(X)f̃2(X) in Am[X], where f̃1(X), f̃2(X) are monic poly-

nomials such that f̃i(X) mod ε = fi(X) (i = 1, 2).

Proof. The proof of the first part is essentially the same as the proof of Lemma

2.3 (except we replace B by O). For the second, write f̃(X) = f(X) + εh(X),

where h(X) ∈ Pn−1(O/$m). If f̃i(X) = fi(X) + εhi(X), then f̃1(X)f̃2(X) =

f(X)+ε(h2(X)f1(X)+h1(X)f2(X)). Solving αδ(f̃(X)) = f̃1(X)f̃2(X) is therefore
equivalent to solving δh(X) = h2(X)f1(X) + h1(X)f2(X), which we can do by
choosing (h2, h1) to be the image of h(X) under the adjugate of the morphism µ
considered in the proof of Lemma 2.3. �

3. Parahoric Hecke algebras

Let v be a finite place of a number field F , and let G be a split reductive group
over OFv (we will soon specialise to the case G = GLn). Fix a choice of split max-
imal torus and Borel subgroup T ⊂ B ⊂ G. If P ⊂ G is a standard parabolic sub-
group, then we let P = MPNP denote the standard Levi decomposition of P . Define

the modulus character δP : P (Fv) → Z[q
±1/2
v ]× by δP (p) = |det(Ad(p)|LieNP )|v.

Let WG = W (G,T ) denote the Weyl group of G, and WMP
= W (MP , T ) the Weyl

group of MP . Thus WG acts on X∗(T ) on the left.

If A is a Z[q
±1/2
v ]-algebra, and if π is a smooth A[G(Fv)]-module, then we write

πNP for the space of NP (Fv)-coinvariants of π, considered as A[MP (Fv)]-module,

and rP (π) = πNP (δ
−1/2
P ). Thus rP (π) is what we usually call the normalised

Jacquet module of π. If A = C and π = i
G(Fv)
B(Fv)χ is an unramified principal series

representation (i.e. the normalised induction of the inflation of χ to a character of
B(Fv))), then the characters of T (Fv) appearing in rB(π) are those in the Weyl
orbit of χ.

Let p ⊂ G(OFv ) be the standard parahoric subgroup associated to P (pre-image
of P (k(v)) in P (OFv )). It contains the standard Iwahori subgroup b. If P ⊂ Q are
standard parabolic subgroups of G then there is a natural inclusion H(G(Fv), q) ⊂
H(G(Fv), p) which is not an algebra homomorphism, since it does not preserve unit
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elements. We will write ·q for the multiplication in H(G(Fv), q) (so e.g. [q] ·p [q] =

[q : p][q]). Similarly if π is a Z[q
±1/2
v ]-module then we endow πp with its natural

structure of H(G(Fv), p)-module; if t ∈ H(G(Fv), p) and x ∈ πp, then we write
multiplication as t ·p x, so [p] ·p x = x for all x ∈ πp.

Given a standard parabolic subgroup P , let mP = MP (OFv ) = p ∩ MP (Fv).
Let NP denote the unipotent radical of the opposite parabolic with Levi subgroup
MP . Define nP = NP (OFv ) = p∩NP (Fv) and nP = ker(NP (OFv )→ NP (k(v))) =
p ∩NP (Fv). Then p has its Iwasawa decomposition

p = nPmnP .

We say that an element m ∈MP (Fv) is positive if we have the inclusions

mnPm
−1 ⊂ nP

and

m−1nPm ⊂ nP .

We write MP (Fv)
+ ⊂MP (Fv) for the submonoid of positive elements.

Lemma 3.1. Let λ ∈ X∗(T ) be a dominant cocharacter which is valued in the centre

Z(MP ) of MP . Then [pλ($v)p] is an invertible element of H(G(Fv), p)⊗ZZ[q
±1/2
v ].

Proof. We first recall the Iwahori–Matsumoto presentation of the Iwahori–Hecke

algebra H(G(Fv), b)⊗Z Z[q
±1/2
v ]. Define the affine Weyl group

W̃G = NG(Fv)(T )/T (OFv ) ∼= WG nX∗(T ).

The choice of b determines a set of simple affine roots, hence a set of simple affine

reflections in W̃G; they are the linear reflections sα ∈WG associated to the simple
roots of the pair (B, T ), together with the affine reflections sα0

α∨0 , where α0 is the
lowest root of a simple sub-root system of Φ(G,T ). There is an associated length

function l : W̃G → Z≥0 giving each simple affine reflection length 1. The associated

braid group BG is the free group generated by the elements Tw (w ∈ W̃G) subject
to the relations Tww′ = TwTw′ when l(ww′) = l(w)l(w′). The Iwahori–Matsumoto
presentation is a surjective algebra homomorphism

Z[q±1/2
v ][BG]→ H(G(Fv), b)⊗Z Z[q±1/2

v ],

Tw 7→ [bwb],

with kernel generated by the elements (Ts+ 1)(Ts− qv), s a simple affine reflection.
If w ∈ WMP

and λ ∈ X∗(T ) is a cocharacter valued in Z(MP ), then wλ = λ,
which implies ([Lus89, Lemma 2.2]) that Tw and Tλ commute in BG. We deduce
that [p] =

∑
w∈WMP

[bwb] and [bλ($v)b] commute in H(G(Fv), b). We also see that

[bλ($v)b] is an invertible element ofH(G(Fv), b)⊗ZZ[q
±1/2
v ]; let t ∈ H(G(Fv), b)⊗Z

Z[q
±1/2
v ] be its inverse.
The element t commutes with [p], while direct computation shows that [p] ·b

[bλ($v)b] = [pλ($v)p]. Let t′ = t ·b [p] ∈ H(G(Fv), p) ⊗Z Z[q
±1/2
v ]. We finally

compute

t′ ·p [pλ($v)p] = (t ·b [p]) ·p ([bλ($v)b] ·b [p]) = [p],

and similarly [pλ($v)p] ·p t′ = [p]. This completes the proof. �

The following proposition is basically contained in [BK98] and [Vig98].
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Proposition 3.2. (1) H(MP (Fv)
+,mP ) ⊂ H(MP (Fv),mP ) is a subalgebra.

(2) The homomorphism of Z[q
±1/2
v ]-modules

T+
P : H(MP (Fv)

+,mP )⊗Z Z[q±1/2
v ]→ H(G(Fv), p)⊗Z Z[q±1/2

v ]

defined on basis elements by

T+
P ([mPmmP ]) = δP (m)1/2[pmp]

is an injective algebra homomorphism, with image equal to the set of func-
tions with support in pMP (Fv)

+p.
(3) T+

P extends uniquely to an algebra homomorphism TP : H(MP (Fv),mP )⊗Z

Z[q
±1/2
v ]→ H(G(Fv), p)⊗Z Z[q

±1/2
v ].

(4) Let π be a smooth Z[q
±1/2
v ][G(Fv)]-module, and let q : πp → rP (π)mP denote

the canonical projection. Then q is an isomorphism and for any x ∈ πp,

t ∈ H(MP (Fv),mP )⊗Z Z[q
±1/2
v ], we have q(TP (t)x) = tq(x).

Proof. The first two parts follow from [BK98, Corollary 6.12]. The third part follows
from [BK98, Theorem 7.2], provided we can exhibit an element z ∈ Z(MP )(Fv) such

that [pzp] is invertible in H(G(Fv), p)⊗ZZ[q
±1/2
v ] and such that z is strongly (P, p)-

positive, in the sense of [BK98, Definition 6.16]. The existence of such an element
follows from Lemma 3.1.

For the fourth part, we first prove the formula q(TP (t)x) = tq(x). Because of
the presence of invertible elements, it is enough to show that the formula holds
for elements of the form t = [mPmmP ] with m ∈ MP (Fv)

+. Choose elements
xi ∈ MP (Fv) such that mPmmP = tiximP , and elements yij such that nP =

ti,jyijxinPx−1
i . Then the number of yij is δP (xi)

−1 = δP (m)−1 and pmp =
ti,jyijxip (here we use the positivity of m). We then compute

q(TP (t)x) = δ
1/2
P (m)

∑
i,j

q(yijxix) = δ
−1/2
P (m)

∑
i

q(xix) =
∑
i

xiq(x) = tq(x).

We next show that q is injective. If x ∈ πp and q(x) = 0 then we can write
x =

∑
i(ni−1)xi for some ni ∈ N(Fv), xi ∈ π. Let n0 ⊂ N(Fv) be a compact open

subgroup containing all of the ni and nP . Then we have trnP /n0
(x) = 0. Choose

m ≥ 0 such that zmn0z
−m ⊂ nP . Then we have

[pzmp]x = trzmnP z−m/nP z
mx = zm trnP /z−mnP zm x = 0.

Since [pzmp] acts invertibly on πp, we find that x = 0.
We finally show that q is surjective. Let x̄ ∈ rP (π)mP , and let x ∈ π be a

pre-image. We can assume that x is fixed by nP . We claim that we can further
choose x to be invariant under mP . Indeed, for any g ∈ mP , gx − x maps to
zero in rP (π). Using the argument of the previous paragraph, we can find an
open compact subgroup n0 ⊂ NP (Fv) containing nP , normalized by mP , such that
trnP /n0

(gx−x) = 0 for all g ∈ mP . Since g normalises both nP and n0, this implies

that g[n0 : nP ]−1 trnP /n0
x = [n0 : nP ]−1 trnP /n0

x. We see that [n0 : nP ]−1 trnP /n0
x

is a pre-image of x̄ which is invariant under mPnP .
We can findm ≥ 0 such that zmx is invariant under nP , hence under nPmP z

mnP z
−m.

It follows that trzmnP z−m/nP x is invariant under p. We finally find that

[pzmp]−1 trzmnP z−m/nP z
mx

lies in πp and is the desired pre-image of x. �
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The Satake isomorphism is a canonical isomorphism (see [Gro98])

SMP
: H(MP (Fv),mP )⊗Z Z[q±1/2

v ]→ (Z[X∗(T )]⊗Z Z[q±1/2
v ])WMP

f 7→ (SMP
f)(t) = δMP∩B(t)1/2

∫
n∈(NB∩MP )(Fv)

f(tn) dn.

We define

ΣP = TP ◦ S−1
MP

: (Z[X∗(T )]⊗Z Z[q±1/2
v ])WMP → H(G(Fv), p)⊗Z Z[q±1/2

v ].

If π is any smooth Z[q
±1/2
v ][G(Fv)]-module, then we regard πp as a (Z[X∗(T )] ⊗Z

Z[q
±1/2
v ])WMP -module via the map ΣP .

Corollary 3.3. Let π be a smooth Z[q
±1/2
v ][G(Fv)]-module, and let q : πp →

rP (π)mP denote the canonical projection. Then q is an isomorphism and for any

s ∈ (Z[X∗(T )]⊗Z Z[q
±1/2
v ])WMP and x ∈ πp, we have q(ΣP (s)x) = S−1

MP
(s)q(x).

More generally, let P ⊂ Q be another standard parabolic subgroup and let q :
πp → rQ(π)p∩mQ denote the canonical projection. Then q is an isomorphism

and for any s ∈ (Z[X∗(T )] ⊗Z Z[q
±1/2
v ])WMP and x ∈ πp, we have q(ΣP (s)x) =

ΣP∩MQ
(s)q(x).

Proof. The first part is a reformulation of the last part of Proposition 3.2. For the
second, we consider the composite

πp α //rQ(π)p∩mQ
γ
//rP (π)mP .

All the maps here are isomorphisms, and we have shown the equivariance for γ and
γα. The equivariance for α follows from this. �

Proposition 3.4. Let P ⊂ Q be standard parabolic subgroups of G, and let π be a

smooth Z[q
±1/2
v ][G(Fv)]-module. Then for any x ∈ πq ⊂ πp and s ∈ (Z[X∗(T )]⊗Z

Z[q
±1/2
v ])WMQ , we have ΣQ(s) ·q x = ΣP (s) ·p x.

Proof. We first observe that the proposition holds for the pair P ⊂ Q of parabolic
subgroups of G if it holds for the pair P ∩MQ ⊂ MQ of parabolic subgroups of
MQ. Indeed, there is a commutative diagram

πq //

��

rQ(π)mQ

��

πp // rQ(π)p∩mQ .

The horizontal arrows are isomorphisms, by Corollary 3.3, and are equivariant with
respect to the maps ΣP and ΣQ.

We next observe that the proposition holds when P = G and Q = B. Indeed, in
this case the restriction of ΣB to

(Z[X∗(T )]⊗Z Z[q±1/2
v ])WG ⊂ H(G(Fv), b)⊗Z Z[q±1/2

v ]

is the usual Bernstein isomorphism onto the centre of the Iwahori–Hecke algebra.
The proposition in this case is the compatibility between the Bernstein isomorphism
and the Satake isomorphism, cf. [HKP10, §4.6].

Finally we treat the general case. By the first paragraph of the proof, we can
assume Q = G, and allow P to be an arbitrary standard parabolic subgroup.
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We must show that for all x ∈ πg and s ∈ (Z[X∗(T )] ⊗Z Z[q
±1/2
v ])WG , we have

ΣG(s) ·g x = ΣP (s) ·p x. Equivalently, we must show that ΣB(s) ·b x = ΣP (s) ·p x.
To this end we consider the commutative diagram

πp q
//

��

rP (π)mP

��

πb
q
// rP (π)b∩mP .

where again the horizontal maps are isomorphisms. We compute

q(ΣB(s) ·b x) = ΣB∩MP
(s) ·b∩mP q(x) = ΣMP

(s) ·mP q(x) = q(ΣP (s) ·p x),

the first and third equalities by Corollary 3.3 and the middle one by the current
proposition for the pair B∩MP ⊂MP . Since q is an isomorphism this implies that
ΣB(s) ·b x = ΣP (s) ·p x, as required. �

The above proposition shows that (Z[X∗(T )]⊗ZZ[q
±1/2
v ])WG acts unambiguously

on πp for any standard parabolic subgroup P ⊂ G. The following corollary gives
slightly more information on this action.

Corollary 3.5. Let P be a standard parabolic subgroup of G. Then ΣP ((Z[X∗(T )]⊗Z

Z[q
±1/2
v ])WG) is contained in the centre of H(G(Fv), p)⊗ZZ[q

±1/2
v ]. If χ : T (Fv)→

C× is any unramified character, identified with a homomorphism χ : X∗(T )→ C×,

and s ∈ (Z[X∗(T )]⊗Z Z[q
±1/2
v ])WG , then s acts on (i

G(Fv)
B(Fv)χ)p by the scalar χ(s).

Proof. The last sentence follows from Proposition 3.4 and the fact, already men-

tioned, that the restriction of ΣB to (Z[X∗(T )]⊗ZZ[q
±1/2
v ])WG is the usual Bernstein

isomorphism to the centre of the Iwahori–Hecke algebra. The first part follows from

this: if s ∈ H(G(Fv), p) ⊗Z Z[q
±1/2
v ] then ΣP (s) and ΣB(s) ·b [p] act by the same

scalar on πp for any irreducible admissible C[G(Fv)]-module π. This implies that

they must be equal as elements of H(G(Fv), p) ⊗Z Z[q
±1/2
v ], and moreover that

ΣP (s) lies in the centre of this Hecke algebra (as ΣB(s) ·b [p] does). �

We now specialise to our intended context. Let G = GLn and let P = Pn1,n2

denote the standard parabolic associated to a partition n = n1 +n2. Let x1, . . . , xn
denote the standard basis of X∗(T ). Then we can identify W = Sn, WMP

=
Sn1
× Sn2

, and

A = Z[X∗(T )]W = Z[e1, . . . , en, e
−1
n ],

B = Z[X∗(T )]WMP = Z[a1, . . . , an1
, b1, . . . , bn2

, e−1
n ],

where e1, . . . , en (resp. a1, . . . , an1
, resp. b1, . . . , bn2

) are the standard symmetric
polynomials in x1, . . . , xn (resp. x1, . . . , xn1 , resp. xn1+1, . . . , xn1+n2). As in §2,
we have the resultant

Resn1,n2 =

n1∏
i=1

n1+n2∏
j=n1+1

(xi − xj) ∈ Z[X∗(T )]WMP .

By Proposition 2.1, there is a canonical lift of Resn1,n2
to an element R̃esn1,n2

∈
B ⊗A B. We record some useful properties.

Lemma 3.6. (1) For any s ∈ B, we have s⊗ 1 · R̃esn1,n2
= 1⊗ s · R̃esn1,n2

.
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(2) Let π be a smooth Z[q
±1/2
v ][GLn(Fv)]-module. Then for any s ∈ A, x ∈ πp,

we have trp/g(sx) = s trp/g(x).

(3) Let π be a smooth Z[q
±1/2
v ][GLn(Fv)]-module such that (qv−1)π = 0. Then

for any s ∈ B, x ∈ πg, we have trp/g(sx) = trB/A(s)x.

(4) Let π be a smooth Z[q
±1/2
v ][GLn(Fv)]-module such that (qv − 1)π = 0, and

let f1, . . . , fN be an A-basis for B. Write R̃esn1,n2 =
∑
i fi ⊗ zi. Then for

any y ∈ πp, we have Resn1,n2y =
∑
i fi trp/g(ziy).

Proof. The element (s⊗ 1− 1⊗ s) ∈ B⊗A B lies in the kernel of the multiplication

map B ⊗A B → B, so is annihilated by R̃esn1,n2
by definition. This shows the first

part. For the second, we can write trp/g(sx) = [g] ·p sx. Since s lies in the centre

of H(G(Fv), p)⊗Z Z[q
±1/2
v ], this equals s[g] ·p x = s trp/g(x).

For the remaining two parts of the lemma, we fix π, a smooth Z[q
±1/2
v ][GLn(Fv)]-

module such that (qv − 1)π = 0. The Iwahori–Matsumoto presentation of the
Iwahori–Hecke algebra descends to an isomorphism

Z[q±1/2
v ]/(qv − 1)[W̃G]→ H(G(Fv), b)⊗Z Z[q±1/2

v ]/(qv − 1).

Consequently, if w ∈ WG and s ∈ Z[X∗(T )] then we have the identity [bwb] ·b
ΣB(s) = ΣB(ws) ·b [bwb] in H(G(Fv), b) ⊗Z Z[q

±1/2
v ]/(qv − 1); and if w,w′ ∈ WG

then [bww′b] = [bwb] ·b [bw′b] in H(G(Fv), b)⊗Z Z[q
±1/2
v ]/(qv − 1). If x ∈ πp, then

we have

trp/g(x) = [g] ·p x =
∑

w∈WG/WMP

[bwb] ·b [p] ·p x =
∑

w∈WG/WMP

[bwb] ·b x.

This allows us to prove the third part of the lemma: if s ∈ B and x ∈ πg, we
compute

trp/g(sx) =
∑

w∈WG/WMP

[bwb] ·b ΣB(s) ·b x

=
∑

w∈WG/WMP

ΣB(ws) ·b [bwb] ·b x

= ΣB

 ∑
w∈WG/WMP

s

 ·b x = ΣG(trB/A(s)) ·g x.

For the final part, let y ∈ πp. Then we compute∑
i

fi trp/g(ziy) =
∑
i

∑
w∈WG/WMP

ΣB(fi) ·b [bwb] ·b ΣB(zi) ·b y

=
∑

w∈WG/WMP

∑
i

ΣB(fi
wzi) ·b [bwb] ·b y.

Now Proposition 2.1 says that
∑
i fi

wzi equals Resn1,n2
if w ∈ WMP

and 0 other-
wise. We get

ΣB(Resn1,n2) ·b y = Resn1,n2y.

This completes the proof. �
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If π is a smooth Z[q
±1/2
v ][GLn(Fv)]-module, then we define maps

f : B ⊗A πg → πp, s⊗ x 7→ sx,

g : πp → B ⊗A πg, x 7→
∑
i

fi ⊗ trp/g(zix),

where f1, . . . , fN is an A-basis of B and R̃esn1,n2
=
∑
i fi ⊗ zi. Note that f is

well-defined by Proposition 3.4.

Lemma 3.7. The map g is independent of the choice of basis f1, . . . , fN . Both f
and g are morphisms of B-modules.

Proof. Suppose that f ′1, . . . , f
′
N is another choice of basis. Then we can write f ′j =∑

i aijfi for some elements aij ∈ A, hence fj =
∑
i bijf

′
i for some elements bij ∈ A

with
∑
k aikbkj = δij , hence z′i =

∑
j bijzj . We then calculate using the first part

of Lemma 3.6:∑
i

f ′i ⊗ trp/g(z′ix) =
∑
i,j,k

ajifj ⊗ trp/g(bikzkx)

=
∑
i,j,k

ajibikfj ⊗ trp/g(zkx) =
∑
j

fj ⊗ trp/g(zjx).

This shows that g is independent of the choice of basis. It is clear from the definition
that f is a morphism of B-modules. To show that g is a morphism of B-modules,
let s ∈ B, and write sfj =

∑
i aijfi for some elements aij ∈ B. Then the relation

given in the first part of Lemma 3.6 implies that szi =
∑
j aijzj , and we compute

g(sx) =
∑
i

fi ⊗ trp/g(zisx) =
∑
i,j

fi ⊗ trp/g(aijzjx)

=
∑
i,j

aijfi ⊗ trp/g(zjx) =
∑
j

sfj ⊗ trp/g(zjx) = sg(x),

as required. �

Proposition 3.8. Suppose that (qv − 1)π = 0. Then both fg and gf are given by
multiplication by Resn1,n2 . Consequently, both f and g have the property that their
kernels and cokernels are annihilated by Resn1,n2

.

Proof. We compute gf and fg in turn. First, for any element s⊗ x ∈ B ⊗A πg, we
have

gf(x) = g(sx) =
∑
i

fi ⊗ trp/g(zisx).

Using the third part of Lemma 3.6, this becomes∑
i

fi trB/A(zis)⊗ x.

We now note the equality
∑
i fi trB/A(zis) =

∑
i fizis = sResn1,n2

, from which we
obtain gf(x) = Resn1,n2

s⊗ x.
For the other direction, we compute

fg(y) = f

(∑
i

fi ⊗ trp/g(ziy)

)
=
∑
i

fi trp/g(ziy).
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The final part of Lemma 3.6 is thus equivalent to the equality fg(y) = Resn1,n2
y,

as required. �

Now fix a prime p such that qv ≡ 1 mod p. In this case we define ∆v to be the
maximal p-power quotient k(v)×(p) of k(v)×. Reduction modulo $v, projection to
second factor and determinant gives a homomorphism

p→ GLn1
(k(v))×GLn2

(k(v))→ GLn2
(k(v))→ k(v)× → ∆v,

and we define p1 to be its kernel, mP,1 = p1 ∩MP (Fv).

Proposition 3.9. (1) H(MP (Fv),mP,1) is commutative.
(2) H(MP (Fv)

+,mP,1) ⊂ H(MP (Fv),mP,1) is a subalgebra.

(3) The homomorphism of Z[q
±1/2
v ]-modules T+

P,1 : H(MP (Fv)
+,mP,1)→ H(G(Fv), p1)

defined on basis elements by

T+
P,1([mP,1mmP,1]) = δP (m)1/2[p1mp1]

is an injective algebra homomorphism, with image equal to the set of func-
tions with support in p1MP (Fv)

+p1.
(4) T+

P,1 extends uniquely to an algebra homomorphism TP,1 : H(MP (Fv),mP,1)⊗Z

Z[q
±1/2
v ]→ H(G(Fv), p1)⊗Z Z[q

±1/2
v ].

(5) Let π be a smooth Z[q
±1/2
v ][G(Fv)]-module, and let q : πp1 → rP (π)mP,1

denote the canonical projection. Then q is an isomorphism and for any

x ∈ πp1 , t ∈ H(MP (Fv),mP,1)⊗Z Z[q
±1/2
v ], we have q(TP,1(t)x) = tq(x).

Proof. H(MP (Fv),mP,1) is commutative by Gelfand’s trick: there is a set of double
coset representatives for mP,1\MP (Fv)/mP,1 which is invariant under g 7→ tg (we
can take the matrices of the form

diag($k1
v , $

k2
v , . . . , $

kn1
v , α$

kn1+1
v , $

kn1+2
v , . . . , $kn

v ),

where k1 ≥ k2 ≥ · · · ≥ kn1
, kn1+1 ≥ · · · ≥ kn, and α ranges over a set of represen-

tatives for the quotient ∆v of O×Fv ). The proof of the remainder of the proposition
is basically the same as the proof of the corresponding parts of Proposition 3.2,
provided we can exhibit a strongly (P, p1)-positive element z ∈ Z(MP )(Fv) such
that [p1zp1] is invertible. In fact, the result of Lemma 3.1 holds with p replaced by
p1, with essentially the same proof, using [Vig05, Corollary 1]. �

We have defined a map ΣP : B ⊗Z Z[q
±1/2
v ] → H(G(Fv), p) ⊗Z Z[q

±1/2
v ] us-

ing TP and the Satake isomorphism. We define a map ΣP,1 : B[q
±1/2
v ,∆v] →

H(G(Fv), p1) ⊗Z Z[q
±1/2
v ] as follows: it is the composite with TP,1 of the tensor

product of the homomorphisms B ⊗Z Z[q
±1/2
v ] → H(MP (Fv),mP,1) ⊗Z Z[q

±1/2
v ],

Z[∆v]→ H(MP (Fv),mP,1) given by the formulae

ai 7→ qi(i−n1)/2
v [mP,1 diag($v, . . . , $v︸ ︷︷ ︸

i

, 1, . . . , 1)mP,1]

bi 7→ qi(i−n2)/2
v [mP,1 diag(1, . . . , 1︸ ︷︷ ︸

n1

, $v, . . . , $v︸ ︷︷ ︸
i

, 1, . . . , 1)mP,1]

and

α ∈ ∆v 7→ 〈α〉 = [mP,1 diag(1, . . . , 1︸ ︷︷ ︸
n1

, α, 1, . . . , 1)mP,1].
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If π is a smooth Z[q
±1/2
v ][GLn(Fv)]-module then we use ΣP,1 to view πp1 as an

B[q
±1/2
v ,∆v]-module.

Lemma 3.10. Let π be a smooth Z[q
±1/2
v ][GLn(Fv)]-module. Then πp ⊂ πp1 is an

B[∆v]-submodule on which ∆v acts trivially, and the induced structure of B-module
agrees with the one induced by ΣP .

Proof. It is clear from the definitions that ∆v acts trivially on πp. What needs to
be checked is that e.g. the two operators

[p1 diag($v, . . . , $v︸ ︷︷ ︸
i

, 1, . . . , 1)p1], [pdiag($v, . . . , $v︸ ︷︷ ︸
i

, 1, . . . , 1)p]

defining the action of ai act in the same way on πp (and similarly for the operators
defining the action of bi). This is true because, writing

ηi = diag($v, . . . , $v︸ ︷︷ ︸
i

, 1, . . . , 1),

the maps p1ηip1/p1 → pηip/p are bijections. �

Let π be an irreducible admissible C[GLn(Fv)]-module. Suppose that recFv (π) =
⊕ri=1 Spmi(χi ◦ Art−1

Fv
), where χi : F×v → C× are smooth characters and Spm =

(rm, Nm) is the Weil–Deligne representation given by rm = ⊕mi=1| · |(m+1−2i)/2 ◦
Art−1

Fv
, Nmei = ei−1 if i > 0, e1, . . . , em the standard basis of Cm. Then π is

isomorphic to a subquotient of the induced representation

Π = i
GLn(Fv)
Pm1,...,mr

(Fv) ⊗
r
i=1 Stmi(χi),

where Pm1,...,mr is the standard parabolic subgroup of GLn corresponding to the
partition n = m1 +m2 + · · ·+mr.

Proposition 3.11. Let π be an irreducible admissible C[GLn(Fv)]-module. If

Resn!
qv,n1,n2

πp 6= 0, then π is unramified and πp = πp1 .

Proof. Since πp 6= 0, we have in particular πb 6= 0, so there is an isomorphism
recFv (π) = ⊕ri=1 Spmi(χi ◦ Art−1

Fv
), where the characters χi are unramified, and

π is isomorphic to a subquotient of the representation Π as above. We compute
the Jacquet module rP (Π). According to the ‘geometrical lemma’ [BZ77, Lemma
2.12] and [Tho12, Lemma 5.1], rP (Π) admits a filtration whose graded pieces σλ
are indexed by decompositions mj = λ1j + λ2j , j = 1, . . . , r, where λij are non-
negative integers such that

∑
j λ1j = n1 and

∑
j λ2j = n2. The representation σλ

can be described as follows: let Pλ,i denote the standard parabolic subgroup of
GLni associated to the decomposition ni = λi1 + · · ·+ λir. Then we have

(3.1) σλ =
(
i
GLn1

(Fv)

Pλ,1(Fv) ⊗
r
j=1 Stλ1j

(| · |(mj−λ1j)/2ψj)
)

⊗
(
i
GLn2

(Fv)

Pλ,2(Fv) ⊗
r
j=1 Stλ2j

(| · |(λ2j−mj)/2ψj)
)
.

Since passage to invariants under an open compact subgroup is exact, Proposition
3.2 implies that Πp 6= 0 if and only if σmP

λ 6= 0 for some λ, or in other words if
there exists a decomposition mj = λ1j + λ2j (j = 1, . . . , r) such that λij = 0 or
1 for all i, j. This implies that mj ≤ 2 for all j. Suppose that mj = 2 for some
j and that λ1j = λ2j = 1. Then Resqv,n1,n2

acts on σmP
λ by a scalar which is
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divisible by (qvψj($v)|$v|1/2 − ψj($v)|$v|−1/2) = 0. Since the dimension of Πp

as C-vector space is bounded above by n!, we conclude that if mj = 2 for some j

then Resn!
qv,n1,n2

Πp = 0, contradicting our hypothesis.
We conclude that mj = 1 for all j and therefore that π is unramified (since

recFv (π) is). It remains to explain why πp = πp1 . Since passage to invariants under
an open compact subgroup is exact, it’s enough to show that Πp = Πp1 or even
that σmP

λ = σ
mP,1
λ for each λ. This is true. �

Corollary 3.12. Let p be a prime such that (p, qv) = 1, and let π be an irreducible
admissible Qp[GLn(Fv)]-module such that πp 6= 0. Suppose given a continuous

homomorphism ρ : GFv → GLn(Qp) such that WD(ρ)F−ss ∼= recTFv (πv). Then

either Resn!
qv,n1,n2

πp = 0 or ρ is unramified.

Proposition 3.13. Let π be an irreducible admissible C[GLn(Fv)]-module. Sup-
pose that πp = 0 but πp1 6= 0. Then πp1 has dimension 1. If recFv (π) = (r,N),
then N = 0 and there is an isomorphism r = ⊕ni=1χi ◦ Art−1

Fv
, where the char-

acters χ1, . . . , χn1
are unramified and the characters χn1+1, . . . , χn are ramified

with equal restriction to O×Fv . The algebra B acts on πp1 according to the factori-

sation det(X − r(φv)) = F1(X)F2(X), where F1(X) =
∏n1

i=1(X − χi($v)) and
F2(X) =

∏n2

j=1(X − χn1+j($v)), and the group ∆v acts on πp1 according to the

character 〈α〉 7→ χn(α).
Finally, let fπ : B[∆v] → C be the character giving the action of B[∆v] on πp1 .

Then for every pair τ ∈ IFv , α ∈ O×Fv such that α = Art−1
Fv

(τ), we have

(3.2) fπ(Res2
n1,n2

)r(τ) = fπ(Resn1,n2)(e1(r(φv)) + fπ(〈α〉)e2(r(φv))).

Proof. The argument is similar to the proof of Proposition 3.11. By [CHT08,
Lemma 3.1.6], there exist characters χ1, . . . , χn : F×v → C× such that χ1, . . . , χn1

are unramified, χn1+1, . . . , χn are tamely ramified with equal restriction to inertia,
and such that r = ⊕ni=1χi◦Art−1

Fv
. We can also write (r,N) = ⊕tj=1 Spmj (ψj◦Art−1

Fv
)

for tamely ramified characters ψj : F×v → C×, so that π is a subquotient of the
induced representation

Π = i
GLn(Fv)
Pm1,...,mt

⊗tj=1 Stmj (ψj).

As in the proof of Proposition 3.11 we see that rP (Π) admits a filtration with
graded pieces σλ indexed by decompositions mj = λ1j + λ2j with λij non-negative
integers such that

∑
j λij = ni, and σλ given by the equation (3.1). Since mP,1

contains GLn1
(OFv ), we see that σ

mP,1
λ can be non-zero only if λij ≤ 1 for each i, j

and moreover that if λ1j = 1 then ψj is unramified.

Fix λ such that σ
mP,1
λ 6= 0. We see that if mj = 2 (hence λ1j = λ2j = 1) then

ψj is unramified, hence all characters ψk must be unramified, hence σmP
λ 6= 0. It

follows that Πp = Πp1 , hence πp = πp1 6= 0, contradicting our hypothesis.
We conclude that mj = 1 for all j, or in other words that N = 0. Thus t = n,

and we can assume that ψj = χj . Then there is a unique choice of λ for which

σ
mP,1
λ 6= 0, namely (λ1j , λ2j) = (1, 0) if j = 1, . . . , n1 and (0, 1) if j = n1 + 1, . . . , n.

This shows that Πp1 is 1-dimensional, hence that πp1 is 1-dimensional (since it is
assumed non-zero).

It remains to establish the formula (3.2). We split into cases. If fπ(Resn1,n2
) =

0 then both sides are zero. If fπ(Resn1,n2
) 6= 0 then e1(r(φv)) is fπ(Resn1,n2

)
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times the idempotent which projects to the subrepresentation ⊕n1
i=1χi of r, and

similarly for e2(r(φv)), in which case the formula follows from the fact that the
characters χ1, . . . , χn1 are unramified and the characters χn1+1, . . . , χn have the
same restriction to O×Fv . �

Corollary 3.14. Let p be a prime such that (p, qv) = 1, and let π be an irreducible
admissible Qp[GLn(Fv)]-module. Suppose that πp = 0 but πp1 6= 0, and suppose

given a continuous homomorphism ρ : GFv → GLn(Qp) such that WD(ρ)F−ss ∼=
recTFv (πv). Then πp1 is 1-dimensional; let fπ : B[∆v] → Qp be the character by

which this algebra acts on πp1 . Then for every pair τ ∈ IFv , α ∈ O×Fv such that

α = Art−1
Fv

(τ), we have

fπ(Res2
n1,n2

)ρ(τ) = fπ(Resn1,n2
)(e1(ρ(φv)) + fπ(〈α〉)e2(ρ(φv)).

Proof. If fπ(Resn1,n2
) = 0 then both sides of the proposed equality are zero, so we

can assume that fπ(Resn1,n2) 6= 0. In this case we write WD(ρ)F−ss = (r,N), where
N = 0 and, if ρ(φv) = su is the multiplicative Jordan decomposition, then r(φv) =
s. The result will follow from Proposition 3.13 if we can show that ei(ρ(φv)) = ei(s).
This is true, since s and su have the same generalised eigenspaces. �

4. Weak adequacy in characteristic 0

In this section, let k be a field of characteristic 0.

Lemma 4.1. Let G be a linear algebraic group over k such that G0 is reductive.
Then we can find a dense open subset U ⊂ G consisting entirely of semisimple
elements.

Proof. We are free to replace k by a finite extension, and can assume that each
connected component of G has a rational point. Then it suffices to construct for
each h ∈ G(k) a dense open subset Uh ⊂ G0h consisting entirely of semisimple
elements. The unipotent part of h is in G0, so we can assume that h is semisimple.
Then Ad(h) is a semisimple automorphism of G0, so [Ste68, Theorem 7.5] implies
that, after possibly further enlarging k, we can find a split maximal torus and Borel
subgroup T ⊂ B ⊂ G0 which are invariant under Ad(h).

Let S = ZT (h)◦. We define a map µ : G0 × S → G0h, (g, s) 7→ gshg−1 =
gsAd(h)(g−1)h. We claim that the image of µ is dense in G0h. This will imply the
lemma: the image of µ is constructible, so contains a dense open subset of G0h.
The image of µ consists of semisimple elements, since Sh consists of semisimple
elements.

To prove the claim, it is enough to exhibit s ∈ S(k) such that the centralizer in
LieG0 of Ad(sh) is LieS. Indeed, then computing the differential shows that µ is
smooth in a neighbourhood of (1, s). The existence of an s with this property can
be read off from [Ree10, Proposition 3.8]. �

In the statement of the next result, we write h = hsshu for the multiplicative
Jordan decomposition of an element h ∈ GLn(k).

Lemma 4.2. Let H ⊂ GLn(k) be a subgroup, and suppose that for each h ∈ H, the
characteristic polynomial of h splits into linear factors over k. Then the following
are equivalent:

(1) The span of the set {hss | h ∈ H} equals Mn(k).
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(2) For every non-zero H-invariant subspace W ⊂ Mn(k), there exists h ∈ H
and an eigenvalue α ∈ k of h such that tr eh,αW 6= 0 (where eh,α projects
to the generalised α-eigenspace of H).

Proof. For a given subspace W ⊂Mn(k), the existence of h, α such that tr eh,αW 6=
0 is equivalent to the existence of an element h ∈ H such that trhssW 6= 0 (as eh,α
is a polynomial in hss). �

When k has characteristic p, Guralnick [Gur12] calls subgroups satisfying the
analogue of the equivalent conditions of Lemma 4.2 “weakly adequate”. The fol-
lowing (easy) proposition shows that when k has characteristic 0, this condition is
equivalent to absolute irreducibility.

Proposition 4.3. Let H ⊂ GLn(k) be a subgroup which is absolutely irreducible.
Then the span of the set {h ∈ H | h = hss} equals Mn(k).

Proof. Let G be the Zariski closure of H in GLn, and let U ⊂ G be a dense open
subset consisting of semisimple elements. Then U ∩ H ⊂ {h ∈ H | h = hss} and
U ∩H is Zariski dense in G. If the span of U ∩H does not equal Mn(k), then G
is contained in a proper linear subspace of Mn(k), hence so is H. This contradicts
Burnside’s lemma. �

We conclude this section by giving some examples of subgroups of GLn(k) which
are irreducible but not enormous, in the sense of [NTa, Definition 2.27], along
similar lines to the examples of non-big subgroups given by Barnet-Lamb [BL10,
§5.2]. This shows that the results of this paper really are stronger than those of
[NTa].

It is easy to give examples of finite irreducible subgroups of GLn(k) contain-
ing no regular semisimple element (for example, the image of the 10-dimensional
irreducible representation of A6). The definition implies that such subgroups can
not be enormous. Such examples are less relevant to the context considered here,
since we are interested in the images of the Galois representations attached to reg-
ular algebraic automorphic representations; Sen theory implies that images of such
representations should always contain regular semisimple elements, so we need to
consider the interaction with the decomposition of the adjoint representation.

To this end, let H ′ ⊂ GL2(k) denote the normalizer of the group of diagonal
matrices, and let H denote the image of H ′ ×H ′ under the tensor product repre-
sentation GL2 × GL2 → GL4. One can check that H is absolutely irreducible but
not enormous, because the span of the regular semisimple elements of H in M4(k)
is contained in the subspace of matrices with 0’s on the anti-diagonal.

5. Galois pseudodeformation theory

Let us suppose given the following data:

• A prime p, a finite extension E/Qp inside the fixed algebraic closure Qp,

and an isomorphism ι : Qp → C. We assume that E contains all quadratic

extensions of Qp, so that using ι, O has a canonical structure of Z[q±1/2]-
algebra for any prime number q 6= p.
• A CM field F with maximal totally real subfield F+.
• A finite set S of finite places of F+, including the set Sp of p-adic places,

which all split in F .



18 JACK A. THORNE

• For each v ∈ S, a factorisation v = ṽṽc in F . We write S̃ for the set of
places ṽ.
• A continuous representation r : GF+,S → Gn(O) such that ρ = r|GF,S ⊗OE

is absolutely irreducible and ν ◦ r = δnF/F+ε1−n.

• Integers a ≤ b such that all of the Hodge–Tate weights of ρ lie in the interval
[a, b] and a+ b = n− 1.

In this section, we will write DET (σ) for the group determinant (in the sense
of [Che14]) associated to a representation σ. Let D = DET (ρ) denote the group
determinant of GF,S associated to ρ, and let RS ∈ CO denote the object representing

the functor of conjugate self-dual deformations of D that are unramified outside S
and semistable with Hodge–Tate weights in [a, b], as defined in [NTa, §2.19].

We define WO = ad r, Wm = WO/($
m), WE = ad r ⊗O E, and WE/O =

WO ⊗O E/O; these are O[GF+,S ]-modules. We write LS = {Lv,m} for the Selmer
conditions for Wm defined as in [NTa, §2.19] (semistable with Hodge–Tate weights
in [a, b] at places above p, unramified outside S, no restriction at places of S −
Sp). We write DS for the universal group determinant over RS and Λi : GF,S →
RS for the coefficients of the universal characteristic polynomial DS(X − σ) =∑n
i=0(−1)iΛi(σ)Xn−i.

We define a Taylor–Wiles datum Q = (Q, Q̃, (fv,1(X))v∈Q, (fv,2(X))v∈Q) of level
N ≥ 1 to be a tuple consisting of the following data:

• A tuple Q = (v1, . . . , vq) of distinct finite places of F+ such that for each
i = 1, . . . , q, vi 6∈ S, vi splits in F , and qvi ≡ 1 mod pN .
• A tuple (ṽ1, . . . , ṽq) of finite places of F such that ṽi lies above vi.
• For each i = 1, . . . , q, a factorisation fvi(X) := det(X − ρ(Frobṽi)) =
fvi,1(X)fvi,2(X) in O[X], where fv,1(X), fv,2(X) are monic polynomials

with no common roots in Qp.

If Q is a Taylor–Wiles datum and v ∈ Q, then we define ∆v to be the maximal
p-power quotient of k(ṽ)× and ∆Q =

∏
v∈Q ∆v. If τ ∈ IFṽ , we write 〈τ〉 ∈ ∆v for

the image of Art−1
Fṽ

(τ) in ∆v. We write tv : IFṽ → Zp for any choice of surjective

homomorphism. We defineA(Q) = ⊗qi=1A and B(Q) = ⊗qi=1Bdeg fv,1,deg fv,2 , where
A,B are as considered in §2.

We define an enhancement R(Q) of the universal deformation ring RS∪Q as
follows. It will be a complete Noetherian semi-local O-algebra. If v ∈ Q, let
Fv(X) = DS∪Q(X − φṽ) ∈ RS∪Q[X] be the characteristic polynomial of a fixed
Frobenius lift φṽ in the universal deformation. The polynomials Fv(X) (v ∈ Q)
give RS∪Q the structure of A(Q)-algebra. Over the ring RS∪Q ⊗A(Q) B(Q), we
have universal factorisations Fv(X) = Fv,1(X)Fv,2(X), where Fv,1(X), Fv,2(X) are
monic polynomials of degrees deg fv,1, deg fv,2, respectively, and (after Lemma 2.3)
polynomials ev,1(X), ev,2(X) such that ev,1(X) + ev,2(X) = Resv, where we write
Resv for the image of Rdeg fv,1,deg fv,2 in B(Q). We also write Resv,q for the image
of Rqv,deg fv,1,deg fv,2 in B(Q). We define R(Q) be the quotient of

RS∪Q ⊗A(Q) B(Q)⊗O O[∆Q]

defined by the relation

(5.1) Resn!
v,q Λ1(σ(Res2

v τ − Resv ev,1(φṽ)− 〈τ〉Resv ev,2(φṽ))) = 0
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for all v ∈ Q, τ ∈ IFṽ , σ ∈ GF,S∪Q. We write P (Q) ⊂ R(Q) for the kernel of the
homomorphism

fQ : R(Q)→ RS ⊗A(Q) B(Q)→ O
associated to DET (ρ) and the fixed factorisations fv(X) = fv,1(X)fv,2(X) (v ∈ Q).

If Q is a Taylor–Wiles datum of level N ≥ 1 and m is an integer such that
1 ≤ m ≤ N , then we define modified local conditions L(Q) = {L(Q)v,m} for the
O[GF+,S∪Q]-module Wm as follows: if v 6∈ Q, then L(Q)v,m = Lv,m. If v ∈ Q,
then we define Lv,m to be the pre-image (under restriction) in H1(F+

v ,Wm) of the
O-submodule of

H1(IFṽ ,Wm)GFṽ ∼= Homcts(IFṽ ,W
GFṽ
m ),

generated by the homomorphism

τ 7→ tv(τ)ev,2(ρ(Frobṽ)) mod $m.

(In interpreting this, we point out that ev,2(ρ(Frobṽ)) ∈Mn(O) is fQ(Resv) times
the idempotent inMn(E) which projects to the sum of the α-generalised eigenspaces
of ρ(Frobṽ) for those α with fv,2(α) = 0; moreover, the definition of Lv,m is inde-
pendent of the choice of homomorphism tv.) We write l(Q)v,m for the length of
L(Q)v,m as O-module. We write L(Q)⊥ = {L(Q)⊥v,m} for the dual local conditions
for the O[GF+,S∪Q]-module Wm(1).

Lemma 5.1. There exists a constant d ≥ 0 with the following property: for any
m ≥ 1 and for any Taylor–Wiles datum Q of level N ≥ m, there exists a homo-
morphism of O-modules

H1
L(Q)(F

+,Wm)→ HomO(P (Q)/P (Q)2,O/$mO)

with kernel and cokernel annihilated by $d Res(Q)3+n!, where we define

Res(Q) = lcm({fQ(Resv)}v∈Q) ∈ O.

Proof. We can identify HomO(P (Q)/P (Q)2,O/$mO) with the set of O-algebra
morphisms R(Q)→ O⊕ εO/$mO which recover fQ after reduction modulo ε. Let
[φ] ∈ H1

L(Q)(F
+,Wm). We associate to φ a homomorphism ρφ : GF,S → GLn(Am)

by the formula ρφ(σ) = ρ(σ)(1 + εφ(σ)). If v ∈ Q, let fφ,v(X) = det(X −
ρφ(φṽ)) ∈ Am[X]. Using Lemma 2.4, we are given a factorisation fRes(Q)φ,v(X) =
αRes(Q)(fφ,v(X)) = fRes(Q)φ,v,1(X)fRes(Q)φ,v,2(X) in Am[X] lifting the factorisa-
tion fv,X = fv,1(X)fv,2(X) in O[X]. There exists a constant λv ∈ O such that
φ(τ) = λvtv(τ)ev,2(ρ(Frobṽ)) for all τ ∈ IFṽ , and we define a homomorphism
∆v → 1 + εO/$mO by τ 7→ 1 + εRes(Q) Resv λvtv(τ) (this depends only on φ and
not on the choice of λv). With the group determinant DET (ρRes(Q)φ), these data
define a homomorphism RS∪Q ⊗A(Q) B(Q) ⊗O O[∆Q] → Am. We claim that it
factors through the quotient R(Q). It is enough to show the equality

Res2
v(1 + εRes(Q)φ(τ))

= Resv ev,1(ρRes(Q)φ(φṽ)) + (1 + εRes(Q) Resv λvtv(τ)) Resv ev,2(ρRes(Q)φ(φṽ))

for all v ∈ Q, τ ∈ IFṽ . This follows on multiplying both sides of the equality
Resv = ev,1(ρRes(Q)φ(φṽ)) + ev,2(ρRes(Q)φ(φṽ)) by Resv(1 + εRes(Q)φ(τ)) and re-
arranging.

We have defined a map H1
L(Q)(F

+,Wm) → HomO(P (Q)/P (Q)2,O/$mO). It

is easy to see that it is in fact a homomorphism of O-modules. We need to bound
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the exponent of the kernel and cokernel of this homomorphism. It is helpful here
to introduce the commutative diagram

H1
L(Q)(F

+,Wm) //

��

HomO(P (Q)/P (Q)2,O/$mO)

��

H1
LS∪Q(F+,Wm) // HomO(PQ/P

2
Q,O/$mO),

where PQ ⊂ RS∪Q is the kernel of the homomorphism RS∪Q → RS → O associated
to DET (ρ), and the arrows may be described as follows: the left vertical arrow is
the natural inclusion, the right vertical arrow is pullback along RS∪Q → R(Q), and
the bottom horizontal sends [φ] to the classifying map of DET (ρRes(Q)φ). Using
[NTa, Proposition 2.20], we get the existence of a constant d ≥ 0 (not depending on
Q) such that the kernel and cokernel of the bottom horizontal map are annihilated
by $d Res(Q). After possibly increasing d, we can assume as well that ρ(O[GF,S ])
contains $dMn(O).

We now establish the analogous claim for the upper map. It is immediate that the
kernel of the upper map is also annihilated by $d Res(Q). To analyse the cokernel,
take a homomorphism P (Q)/P (Q)2 → O/$m corresponding to a homomorphism
f : R(Q)→ Am, and let D0 be the corresponding group determinant. By the cited
proposition, there exists [φ] ∈ H1

LS∪Q(F+,Wm) such that α$d ◦ D0 is the group

determinant associated to ρφ. Using the defining relations (5.1) we find that for all
v ∈ Q and τ ∈ IFṽ , we have

Resn!
v,q Res2

v ρ$dφ(τ) = Resn!
v,q Res2

v(1 + ε$dφ(τ))

= Resn!
v,q Resv ev,1(ρ$dφ(φṽ)) + 〈τ〉Resn!

v,q Resv ev,2(ρ$dφ(φṽ)).

We can find µv ∈ O such that 〈τ〉 = 1 + εµvtv(τ). The above identity then gives

εResn!
v,q Res2

v$
dφ(τ) = εResn!

v,q µv Resv tv(τ)ev,2(ρ$dφ(φṽ))

in Am, hence

Resn!
v,q Res2

v$
dφ(τ) = µv Resn!

v,q Resv tv(τ)ev,2(ρ(Frobṽ))

in O/$mO. It follows that [Res(Q)2 Resq(Q)n!$dφ] ∈ H1
L(Q)(F

+,Wm), where we

define

Resq(Q) = lcm({fQ(Resq,v)}v∈Q) ∈ O.
This element is a pre-image of α$2d Res(Q)3 Resq(Q)n! ◦ f . The proof is complete on

noting that Res(Q) ≡ Resq(Q) mod $N . �

Here is a variant which will be used later to conclude the vanishing of the adjoint
Selmer group.

Lemma 5.2. Suppose given elements σ1, . . . , σq ∈ GF and factorisations fi(X) :=
det(X−ρ(σi)) = fi,1(X)fi,2(X) for i = 1, . . . , q, where for each i, fi,1(X), fi,2(X) ∈
O[X] are monic polynomials with no common roots in Qp. Let A0 = ⊗qi=1A, B0 =

⊗qi=1Bdeg fi,1,fi,2 , and let P0 ⊂ RS ⊗A0
B0 be the kernel of the map RS ⊗A0

B0 → O
which classifies the group determinant of ρ, together with the factorisations fi(X) =
fi,1(X)fi,2(X) for i = 1, . . . , q. Then there is an isomorphism

H1
g,S(F+,WE) ∼= HomO(P0/P

2
0 , E).
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The definition of the group H1
g,S(F+,WE) is recalled in [NTa, §1]. We note that

when WD(ρ|GFṽ ) is generic for each v ∈ S, it equals H1
f (F+,WE).

Proof. Arguing in the same way as in the proof of the previous proposition shows
that there is a an isomorphism of E-vector spaces(

lim←−
m

H1
LS (F+,Wm)

)
⊗O E →

(
lim←−
m

HomO(P0/P
2
0 ,O/$mO)

)
⊗O E.

The left-hand side may be identified with H1
g,S(F+,WE), by [NTa, Proposition

2.21]. The right-hand side may be identified with HomO(P0/P
2
0 , E) (P0/P

2
0 is a

finitely generated O-module). This completes the proof. �

Lemma 5.3. Suppose that for each place v ∈ S, WD(ρ|GFṽ ) is generic, in the

sense of [NTa, Definition 1.1]. Then there exists d ≥ 0 with the following property:
for each Taylor–Wiles datum Q of level N ≥ 1 and for each integer 1 ≤ m ≤ N ,
we have

h1
L(Q)(F

+,Wm) ≤ d+ h1
L(Q)⊥(F+,Wm(1)) +m|Q|.

Proof. This is an application of the Greenberg–Wiles formula, compare [NTa, Lemma
2.23]. The only additional thing to check here is that if v ∈ Q, then l(Q)v,m −
h0(F+

v ,Wm) is bounded above by m. Inspecting the definition of L(Q), we see that

l(Q)v,m−h0(F+
v ,Wm) equals the length of the O-submodule of HomO(IFṽ ,W

GFṽ
m )

generated by the homomorphism τ 7→ tv(τ)ev,2(ρ(Frobṽ)), which is certainly bounded
above by m. �

Corollary 5.4. Suppose that for each place v ∈ S, WD(ρ|GFṽ ) is generic. Then
there exists d ≥ 0 such that for every N ≥ 1 and every Taylor–Wiles datum Q of
level N , there is a map

O|Q| → H1
L(Q)(F

+,WN )

with cokernel of length ≤ d+ h1
L(Q)⊥(F+,WN (1)).

Proof. By [NTa, Lemma 2.24] and Lemma 5.3, it is enough to show there are
constants d0, d1 ≥ 0 such that for every N ≥ 1 and any Taylor–Wiles datum Q of
level N , we have

(5.2) l(H1
L(Q)(F

+,WN )/($m)) ≤ h1
L(Q)(F

+,Wm) + d0

and

(5.3) l(H1
L(Q)⊥(F+,Wm(1)) ≤ l(H1

L(Q)⊥(F+,WN (1)) + d1.

This follows by the same argument as in the proof of [NTa, Corollary 2.25], provided
we can show that for each m ≥ 1 the natural maps Wm → Wm+1 (resp. Wm+1 →
Wm) send L(Q)v,m into L(Q)v,m+1 (resp. L(Q)v,m+1 into L(Q)v,m). This is clear
from the definitions. �

Lemma 5.5. Let q ≥ corankOH
1(FS/F

+,WE/O(1)), and suppose that ρ satisfies
the following conditions:

(1) There is a place v - S of F such that all of the eigenvalues of ρ(Frobv) are

q
(n−1)
v -Weil numbers.

(2) ρ|GF (ζp∞ )
is absolutely irreducible and for each σ ∈ GF (ζp∞ ), the eigenvalues

of ρ(σ) all lie in E.
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Then we can find the following data:

(1) An integer d ≥ 1.
(2) Elements σ1, . . . , σq ∈ GF (ζp∞ ), together with factorisations fi(X) := det(X−

ρ(σi)) = fi,1(X)fi,2(X), where fi,1(X), fi,2(X) are monic, coprime polyno-
mials in O[X].

These data have the property that for any Taylor–Wiles datum

Q = (Q, Q̃, (fv,1(X))v∈Q, (fv,2(X))v∈Q)

of level N > d such that Q = {v1, . . . , vq} and ρ(Frobṽi) mod $N = ρ(σi) mod $N

and fvi,j(X) ≡ fi,j(X) mod $N for each i = 1, . . . , q and j = 1, 2, the following
conditions are satisfied:

(1) For each v ∈ Q, we have ord$ Res(fv,1, fv,2) ≤ d.
(2) h1

L(Q)⊥(F+,WN (1)) ≤ d.

Proof. We first claim that to prove the lemma, it is enough to find elements
σ1, . . . , σq ∈ GF (ζp∞ ) with factorisations fi(X) = fi,1(X)fi,2(X) such that the
morphism of O-modules

H1(FS/F
+,WE/O(1))→ ⊕qi=1E/O,

[φ] 7→ (tr ei,2(ρ(σi))φ(σi))i=1,...,q,

has kernel of finite length. Indeed, suppose given elements with this property. Then
there exists d0 ≥ 0 such that for all m ≥ 1, the kernel of the map

H1(FS/F
+,Wm(1))→ ⊕qi=1O/$

m

[φ] 7→ (tr ei,2(ρ(σi))φ(σi))i=1,...,q,

has length bounded above by d0. Suppose that Q is a Taylor–Wiles datum such
that Q = {v1, . . . , vq} and ρ(Frobṽi) mod $N = ρ(σi) mod $N and fvi,j(X) ≡
fi,j(X) mod $N for each i, j. Then H1

L(Q)⊥(F+,WN (1)) is identified with the

kernel of the above map (for m = N) so has length bounded above by d0. The
lemma will hold with d = max(d0, {ord$ Res(fi,1(X), fi,2(X))}i=1,...,q).

We now explain how to finds elements σ1, . . . , σq with these properties. By
induction, it is enough to show that for any non-zero homomorphism κ : E/O →
H1(FS/F

+,WE/O(1)), we can find an element σ0 ∈ GF (ζp∞ ) and factorisation
f0(X) := det(X − ρ(σ0)) = f0,1(X)f0,2(X) such that the homomorphism κσ0

:
E/O → E/O, x 7→ tr e0,2(ρ(σ0))κ(x)(σ0) is still non-zero.

Let F∞ = F (ζp∞), let L′∞/F
+ be the extension cut out by WE(1), and let

L∞ = L′∞ · F∞. Then [Kis04, Lemma 6.2] implies that H1(L′∞/F
+,WE(1)) = 0,

hence H1(L∞/F
+,WE(1)) = 0, hence H1(L∞/F

+,WE/O(1)) has finite length and
the restriction of κ to GL∞ is non-zero.

We can interpret this restriction as a GF+ -equivariant homomorphism K :
E/O → H1(L∞,WE/O(1)). Let M ⊂ WE/O(1) be the O-submodule generated
by the elements K(x)(σ), x ∈ E/O, σ ∈ GL∞ . Then M is a divisible O-submodule
which is invariant under the action of GF∞ , so by Lemma 4.2 there exists x ∈ E/O,
τ ∈ GL∞ , σ ∈ GF∞ with eigenvalue α ∈ O such that tr eσ,α(ρ(σ))K(x)(τ) 6=
0. If tr eσ,α(ρ(σ))K(x)(σ) 6= 0, we’re done on taking σ0 = σ and f0,2(X) =
gcd(f0(X), (X − α)n). If tr e2,α(ρ(σ))K(x)(σ) = 0, we’re done on taking σ0 = τσ
and f0,2(X) = gcd(f0(X), (X − α)n). �
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Proposition 5.6. Let q ≥ corankOH
1(FS/F

+,WE/O(1)), and suppose that ρ
satisfies the following conditions:

(1) There is a place v - S of F such that all of the eigenvalues of ρ(Frobv) are

q
(n−1)
v -Weil numbers.

(2) ρ|GF (ζp∞ )
is absolutely irreducible.

(3) For each place v ∈ S, WD)(ρ|GFṽ ) is generic.

Then we can find the following data:

(1) An integer d ≥ 1.
(2) Elements σ1, . . . , σq ∈ GF (ζp∞ ), together with factorisations fi(X) := det(X−

ρ(σi)) = fi,1(X)fi,2(X), where fi,1(X), fi,2(X) ∈ O[X] are monic coprime
polynomials in O[X].

These data have the property that for any Taylor–Wiles datum

Q = (Q, Q̃, (fv,1(X))v∈Q, (fv,2(X))v∈Q)

of level N > d such that ρ(Frobṽi) mod $N = ρ(σi) mod $N , fvi,1(X) ≡ fi,1(X) mod $N

and fvi,2(X) ≡ fi,2(X) mod $N for each i = 1, . . . , q, the following conditions are
satisfied: there is a map

OJx1, . . . , xqK→ R(Q)

such that the images of x1, . . . , xq lie in P (Q) and

P (Q)/(P (Q)2, x1, . . . , xq)

is an O-module of length ≤ d. Moreover, we have ord$ Res(fv,1, fv,2) ≤ d.

Proof. We choose the data σ1, . . . , σq and fi,j(X) ∈ O[X] and integer d ≥ 1 using
Lemma 5.5. Suppose given a Taylor–Wiles datum Q satisfying the conditions in
the statement of the proposition. By Corollary 5.4 and Lemma 5.1, there exists a
morphism of O-modules Oq → P (Q)/P (Q)2⊗OO/$NO with cokernel annihilated
by $d. We define the map OJx1, . . . , xqK → R(Q) to send x1, . . . , xq to arbitrary
lifts to P (Q) of the images of the standard basis elements of Oq.

To finish the proof, we need to show that P (Q)/(P (Q)2, x1, . . . , xq) is an O-
module of uniformly bounded length. Since N > d,

P (Q)/(P (Q)2, x1, . . . , xq)

is annihilated by $d. The desired result will follow therefore if we can show that
there is a bound, independent of Q, for the number of generators for P (Q)/P (Q)2.
As in the proof of [NTa, Corollary 2.31], this follows from the corresponding state-
ment for mRS∪Q/m

2
RS∪Q

. �

6. The main theorem

In this section we prove our main theorem:

Theorem 6.1. Let F be a CM number field, let n ≥ 2, and let (π, χ) be a reg-
ular algebraic, cuspidal, polarized automorphic representation of GLn(AF ). Let
ι : Qp → C be an isomorphism, and suppose that rπ,ι|GF (ζp∞ )

is irreducible. Then

H1
f (F+, ad rπ,ι) = 0.

Proof. Using the same sequence of reductions as in the proof of [NTa, Theorem
5.2], we can assume that π satisfies the following additional conditions:

• π is conjugate self-dual.
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• F/F+ is everywhere unramified and [F+ : Q] is even.
• Let S denote the set of finite places of F at which π is ramified, together

with the p-adic places of F . Then for each v ∈ S, v is split over F+ and πv
is Iwahori-spherical.

The proof of the theorem in this special case will be given in the rest of this section,
starting in §6.3. �

Theorem 6.1 has the following consequence for automorphic representations over
totally real fields. We refer to [NTa, §5] for the definition of the representation gs
appearing in the statement (it is the Lie algebra of a general similitude group of a
(±)-symmetric bilinear form, whose parity depends on the parity of the polarizing
character χ):

Theorem 6.2. Let F be a totally real number field, and let (π, χ) be a regu-
lar algebraic, cuspidal, polarized automorphic representation of GLn(AF ). Let
ι : Qp → C be an isomorphism, and suppose that rπ,ι|GF (ζp∞ )

is irreducible. Then

H1
f (F+, gs) = 0.

Proof. This can be deduced from Theorem 6.1 using base change, cf. [All16, The-
orem B]. �

6.3. Start of the proof. We begin by repeating, almost verbatim, the set-up from
[NTa, §4]; the arguments will diverge when we begin to describe the Hecke algebras
associated to Taylor–Wiles data.

We therefore suppose given n ≥ 2, a CM number field F , a cuspidal, regular
algebraic, conjugate self-dual automorphic representation π of GLn(AF ), and an
isomorphism ι : Qp → C. We assume that the following conditions are satisfied:

• F/F+ is everywhere unramified and [F+ : Q] is even.
• Let S denote the set of finite places of F+ above which π is ramified,

together with the p-adic places of F+. Then for each v ∈ S, v splits
v = wwc in F and πw is Iwahori-spherical.
• rπ,ι|GF (ζp∞ )

is absolutely irreducible.

We remark that for each place v of F , WD(rπ,ι|GFv ) is generic [Car12, Car14]. We

choose an extension of rπ,ι to a homomorphism GF+ → Gn(Qp), which then gives

the action of GF+ on ad rπ,ι. We have ν ◦ rπ,ι = δnF/F+ε1−n. We must show that

H1
f (F+, ad rπ,ι) = 0.
We can find the following data:

• For each place v ∈ S, a choice of place ṽ of F lying above v. We set

S̃ = {ṽ | v ∈ S} and S̃p = {ṽ | v ∈ Sp}.
• A Hermitian form 〈·, ·〉 : Fn × Fn → F such that the associated unitary

group G (defined on R-points by G(R) = {g ∈ GLn(F ⊗F+ R) | g∗g = 1})
is definite at infinity and quasi-split at each finite place of F+.
• A reductive group scheme over OF+ extending G (also denoted G).
• For each finite place v = wwc of F+ which splits in F , an isomorphism
ιw : GO

F
+
v

→ ResOFw/OF+
v

GLn of group schemes over OF+
v

. We assume

that the induced isomorphism ιw : G(F+
v )→ GLn(Fw) is in the same inner

class as the isomorphism given by inclusion G(F+
v ) ⊂ GLn(Fw)×GLn(Fwc),

followed by projection to the first factor.
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• An automorphic representation σ of G(AF+) with the following properties:

– For each finite place v of F+ which is inert in F , σ
G(O

F
+
v

)

v 6= 0 and σv,
πv are related by unramified base change.

– For each finite place v of F+ which is split v = wwc in F , σv ∼= πw ◦ιw.
– If v|∞ is a place of F+, then the infinitesimal character of σv respects

that of πv under base change.
• An open compact subgroup U =

∏
v Uv of G(A∞F+) with the following

properties:
– For each place v ∈ Sp, Uv = ι−1

ṽ (Iwṽ), where Iwṽ ⊂ GLn(OFṽ ) is the
standard Iwahori subgroup.

– For each inert place v of F+, Uv = G(OF+
v

).

– (σ∞)U 6= 0.
– U is sufficiently small: for all g ∈ G(A∞F+), gUg−1 ∩G(F+) = {1}.

(We can find such a G because [F+ : Q] is even. The existence of σ is deduced
from that of π using [Lab11, §5].) We can regard σ∞ as an algebraic representation

of the group (ResF+/QG)C. Let Ĩp ⊂ Hom(F,Qp) denote the set of embeddings

inducing places ṽ ∈ S̃p. Then our choices determine an isomorphism

(ResF+/QG)Qp

∼=
∏
τ∈Ĩp

GLn.

Let λ = (λτ )τ∈Ĩp ∈ (Zn+)Ĩp denote the highest weight of the algebraic representation

Vλ of (ResF+/QG)Qp
such that Vλ ⊗ι,Qp

C ∼= σ∨∞. We can define a highest weight

ξ for (ResF/Q GLn)Qp
by letting ξτ = λτ and ξτc = −w0λτ for τ ∈ Ĩp (w0 is the

longest element in the Weyl group of GLn). The infinitesimal character of π∞ is the
same as that of V ∨ξ ⊗ι,Qp

C. We fix once and for all integers a ≤ b such that for all

τ ∈ Hom(F,Qp), the elements of HTτ (rπ,ι) are contained in [a, b] and a+b = n−1.
We can find a representation Vλ of the group scheme (ResOF+/ZG)O, finite free

over O, and such that Vλ ⊗O Qp
∼= Vλ. Thus Vλ(O) is a finite free O-module

which receives an action of Up =
∏
v∈Sp Uv. For any open compact subgroup

V =
∏
v Vv ⊂ U , and any O-algebra A, we define Sλ(V,A) to be the set of functions

f : G(A∞F+) → Vλ(A) such that for each v ∈ V , γ ∈ G(F+), g ∈ G(A∞F+),
vpf(γgv) = f(g). We observe that

lim−→
Up

Sλ(UpUp, A)

has a natural structure of A[Up]-module, and the Up-invariants are Sλ(U,A). It
follows that Sλ(U,A) has a natural structure of H(G(A∞,pF+ ), Up)-module. There is
an isomorphism of H(G(A∞,pF+ ), Up)-modules

Sλ(U,O)⊗ι,O C ∼= ⊕µ(µ∞)U ,

where the sum is over automorphic representations of G(AF+) (with multiplicity)
such that µ∞ ∼= σ∞.

Let E/Qp be a coefficient field containing the image of every embedding F → Qp.
After possibly enlarging E, we can assume that there is a model ρ : GF,S → GLn(O)
of rπ,ι, which extends to a homomorphism r : GF+,S → Gn(O) such that ν ◦ r =
ε1−nδnF/F+ . We moreover assume that E contains every quadratic extension of Qp,
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and that for each σ ∈ GF,S , the characteristic polynomial det(X − ρ(σ)) splits into
linear factors in O[X].

Let D = DET (ρ). With these choices the pseudodeformation ring denoted RS =
R(∅) in §5 is defined, as well as the prime ideal P (∅) = ker(R(∅)→ O) determined

by ρ. Moreover, for any Taylor–Wiles datum Q = (Q, Q̃, (fv,1(X))v∈Q, (fv,2(X))v∈Q)
we have the auxiliary ring R(Q) and prime ideal P (Q) = ker(R(Q)→ O).

If V =
∏
v Vv is an open compact subgroup of U and T is a finite set of places of

F+ containing all places such that Vv 6= G(OF+
v

), then we write TT
λ (V,A) for the A-

subalgebra of EndA(Sλ(V,A)) generated by the unramified Hecke operators at split
places away from T . The existence of σ implies the existence of a homomorphism

hV,σ : TT
λ (V,O)→ O

giving the Hecke eigenvalues of ι−1σ∞. On the other hand, the results of [Lab11, §5]
(base change), together with the existence of Galois representations associated to
cuspidal, polarizable, regular algebraic automorphic representations of GLn(AF ),
imply the existence of a group determinant DV,λ of GF valued in TT

λ (V,O) (con-
struction as in [Tho15, Proposition 4.11]).

Let m ⊂ TS
λ(U,O) denote the unique maximal ideal containing kerhU,σ, and set

S∅ = Sλ(U,O)m,T∅ = TS
λ(U,O)m.

Then ([NTa, Lemma 5.4]) there is a surjective homomorphism R(∅)→ T∅ classify-
ing the image of DU,λ over T∅.

Now suppose that Q = (Q, Q̃, (fv,1(X))v∈Q, (fv,2(X))v∈Q) is a Taylor–Wiles
datum. If v ∈ Q, we write pv ⊂ GLn(OFṽ ) for the standard parahoric subgroup
associated to the partition n = deg fv,1 + deg fv,2 and pv,1 ⊂ pv for the kernel of
the associated map pv → GLdeg fv,2(k(ṽ)) → k(ṽ)×(p) = ∆v (notation as in §3).
We define open compact subgroups U1(Q) ⊂ U0(Q) ⊂ U as follows: U0(Q) =∏
v U0(Q)v and U1(Q) =

∏
v U1(Q)v, where U0(Q)v = U1(Q)v = Uv if v 6∈ Q and

U0(Q)v = ι−1
ṽ pv and U1(Q)v = ι−1

ṽ pv,1 if v ∈ Q.
Thus there is a canonical isomorphism U0(Q)/U1(Q) ∼= ∆Q =

∏
v∈Q ∆v. The

space Sλ(U0(Q),O) has a canonical structure of module over the ring B(Q). We

define TS,Q
λ (U0(Q),O) to be the commutativeO-subalgebra of EndO(Sλ(U0(Q),O)

generated by the unramified Hecke operators at split places v 6∈ S ∪ Q, together

with the image of the ring B(Q). Thus TS∪Q
λ (U0(Q),O) ⊂ TS,Q

λ (U0(Q),O). We

define m0,Q to be the pullback of m to TS∪Q
λ (U0(Q),O) and define

SQ,0 = Sλ(U0(Q),O)m0,Q ,TQ,0 = TS,Q
λ (U0(Q),O)m0,Q .

Lemma 6.4. There is a canonical surjective homomorphism R(Q)→ TQ,0.

Proof. We recall that R(Q) is a quotient of RS∪Q ⊗A(Q) B(Q) ⊗O O[∆Q]. The
map we construct will factor through the quotient RS∪Q ⊗A(Q) B(Q). There is
a surjective map RS∪Q ⊗O B(Q) → TQ,0 coming from the group determinant
DU0(Q),λ and the canonical map B(Q)→ TQ,0; therefore what we need to check is
first that this map factors through the quotient

RS∪Q ⊗O B(Q)→ RS∪Q ⊗A(Q) B(Q)

and second that for all v ∈ Q, τ ∈ IFṽ , σ ∈ GF,S∪Q, its kernel contains the element

Resn!
v,q Λ1(σ(Res2

v τ − Resv ev,1(φṽ)− 〈τ〉Resv ev,2(φṽ)))
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appearing in (5.1). The first claim is equivalent to the assertion that the two actions
of A(Q) on SQ,0 induced by the RS∪Q- and B(Q)-module structures agree. This
follows from Corollary 3.5. For the second claim, it is enough to show that for each
automorphic representation µ of G(AF+) such that ι−1µ∞ contributes to SQ,0, we
have the relation

Resn!
v,q Res2

v rµ,ι(τ) = Resn!
v,q Res2

v

in Mn(Bι−1µv ), where Bι−1µv is the Qp-subalgebra of EndQp
(ι−1µ

U0(Q)v
v ) gener-

ated by the image of Bdeg fv,1,deg fv,2 . This follows from Corollary 3.12: either

Resn!
v,q ι

−1µ
U0(Q)v
v = 0, in which case both sides are zero, or µv is unramified, in

which case rµ,ι(τ) = 1. �

The space Sλ(U1(Q),O) has a canonical structure of module over the ring
B(Q)[∆Q]. Moreover, Sλ(U1(Q),O) is free over O[∆Q] and the trace map induces
an isomorphism Sλ(U1(Q),O)⊗O[∆Q]O ∼= Sλ(U0(Q),O) ([NTa, Lemma 4.6]). We

define TS,Q
λ (U1(Q),O) to be the O-subalgebra of EndO(Sλ(U1(Q),O)) generated

by the unramified Hecke operators at split places v 6∈ S∪Q, together with the image

of the ring B(Q)[∆Q]. Thus TS∪Q
λ (U1(Q),O) ⊂ TS,Q

λ (U1(Q),O). We define m1,Q

to be the pullback of m to TS∪Q
λ (U1(Q),O) and define

SQ,1 = Sλ(U1(Q),O)m1,Q ,TQ,1 = TS,Q
λ (U1(Q),O)m1,Q .

Thus there is a canonical surjective homomorphism TQ,1 → TQ,0 (here we apply
Lemma 3.10).

Lemma 6.5. The homomorphism R(Q)→ TQ,0 lifts to a surjective O[∆Q]-algebra
homomorphism R(Q)→ TQ,1.

Proof. The proof is similar to the proof of Lemma 6.4. There is a map RS∪Q ⊗O
B(Q)[∆Q]→ TQ,1 arising by tensor product of the maps RS∪Q → TQ,1 classifying
hU1(Q),λ and the canonical map B(Q)⊗OO[∆Q]→ TQ,1. This map factors through
RS∪Q⊗A(Q) B(Q)⊗O O[∆Q] by Proposition 3.13. To complete the proof, we need
to show the kernel of the resulting map contains the elements

Resn!
v,q Λ1(σ(Res2

v τ − Resv ev,1(φṽ)− 〈τ〉Resv ev,2(φṽ))),

or even that for each automorphic representation µ of G(AF+) such that ι−1µ∞

contributes to SQ,1, we have the relations

Resn!
v,q Res2

v rµ,ι(τ) = Resn!
v,q (Resv ev,1(rµ,ι(φṽ)) + 〈τ〉Resv ev,2(rµ,ι(φṽ)))

in Mn(Bι−1µv,1), where Bι−1µv,1 is the Qp-subalgebra of EndQp
(ι−1µ

U1(Q)v
v ) gen-

erated by the image of Bdeg fv,1,deg fv,2 [∆v]. This follows from Corollary 3.12 and
Corollary 3.14. �

We need to control the difference between S∅ and SQ,0. There is a homomor-
phism of RS∪Q ⊗A(Q) B(Q)-modules:

fQ : B(Q)⊗A(Q) S∅ → SQ,0

s⊗ x 7→ sx

(see Lemma 3.7). The following result will be used to control the kernel and cokernel
of fQ,m = fQ ⊗O O/$mO (when Q has level N and 1 ≤ m ≤ N):
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Proposition 6.6. Suppose that Q has level N and that 1 ≤ m ≤ N . Then the
element

∏
v∈Q Resv ∈ B(Q) annihilates the kernel and cokernel of each of the maps

fQ,m.

Proof. By Proposition 3.8, there is a morphism gQ : SQ,0 → B(Q) ⊗A(Q) S∅ of
RS∪Q⊗A(Q)B(Q)-modules such that fQgQ mod $m and gQfQ mod $m are both
given by multiplication by

∏
v∈Q Resv. This implies the desired result. (Here we

use that U is sufficiently small, cf. the discussion on [CHT08, p. 98], so that
e.g. BQ,0/($

m) may be viewed as the space of
∏
v∈Q pv-invariants in a suitable

O/($m)[
∏
v∈Q GLn(Fṽ)]-module.) �

6.7. Patching. We now collect together the data necessary to carry out the patch-
ing argument. We argue using ultrafilters, following Pan [Pan19] in a similar way
to [NTa].

• First fix q = corankOH
1(FS/F

+, ad r(1)⊗OE/O). LetR∞ = OJx1, . . . , xqK.
• We next fix d ≥ 1, elements σ1, . . . , σq ∈ GF (ζp∞ ), and factorisations

det(X − ρ(σi)) = fi,1(X)fi,2(X) satisfying the conclusion of Proposition
5.6. For each N > d, we can find a Taylor–Wiles datum

QN = (QN , Q̃N , (fv,1(X))v∈Q, (fv,2(X))v∈Q),

where QN = {vN,1, . . . , vN,q}, and the following additional conditions are
satisfied:

– The characteristic polynomials of FrobṽN,i and σi over R(∅)/mNR(∅)
agree.

– The characteristic polynomials of FrobṽN,i and σi over T∅/($
N ) agree.

– ρ(FrobṽN,i) ≡ ρ(σi) mod $N for each i = 1, . . . , q.

– For each i = 1, . . . , q, we have fi,1(X) ≡ fvN,i,1(X) mod $N and

fi,2(X) ≡ fvN,i,2(X) mod $N . Moreover, ord$ Res(fvN,i,1, fvN,i,2) ≤
d.

(This is possible by the Chebotarev density theorem and Hensel’s lemma.)
We write RN = R(QN ) and AN = A(QN ), BN = B(QN ). We write
PN = P (QN ) = ker(RN → O).

• We set S∞ = OJZqpK and fix for each N ≥ 1 a surjection Zqp → ∆QN . This
gives each ring R(QN ) the structure of S∞-algebra. We write a∞ ⊂ S∞
for the augmentation ideal. We also set A0 = ⊗qi=1Z[e1, . . . , en] and B0 =
⊗qi=1Z[a1, . . . , adeg fi,1 , b1, . . . , bdeg fv,2 ]. The choice of elements σ1, . . . , σq
gives R(∅) the structure of A0-algebra. We define R0 = R(∅) ⊗A0 B0.
There are isomorphisms A0

∼= AN and B0
∼= BN for any N ≥ 1. We define

P0 ⊂ A0 to be the kernel of the map R0 → O associated to DET (ρ) and
factorisations fi(X) = fi,1(X)fi,2(X) (i = 1, . . . , q).

• Finally, we fix a non-principal ultrafilter F on {N ∈ N | N > d}, and set
R =

∏
N>dO. If I ∈ F , then we define eI = (δN∈I)N>d ∈ R. Then eI

is an idempotent and S = {eI | I ∈ F} is a multiplicative subset of R,
and we define RF = S−1R. Note that the map R → RF factors through∏
N≥mO for any m > d.

We remark that if N > d then there is no canonical map RN → R0, but our
choice of Taylor–Wiles data means that the map RS∪QN ⊗O BN → RS ⊗O B0

descends to a surjection RN → R0/m
N
R(∅). Similarly, there is a canonical surjection

RN → T∅/($
N )⊗A0

B0. We define modules:
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• M1 = lim←−mRF ⊗R

∏
N≥m SQ,1/(m

m
S∞

).

• M0 = lim←−mRF ⊗R

∏
N≥m SQ,0/($

m).

• M = lim←−mRF ⊗R

∏
N≥m S∅ ⊗AN BN/($m).

When N ≥ m, the AN– and A0–actions on S∅/($
m) are the same. Thus there

is a natural isomorphism M ∼= S∅ ⊗A0 B0, where A0 acts via the canonical map
A0 → R∅ → T∅.

Lemma 6.8. (1) M1 is a flat S∞-module.
(2) The trace maps induce an isomorphism M1 ⊗S∞ O ∼= M0.
(3) The maps fQN ,m induce a map f : M → M0, with kernel and cokernel

annihilated by (
∏
v∈QN Res2

v)N>d ∈
∏
N>dR(QN ).

Proof. The proof is the same as the proof of [NTa, Lemma 4.13]. �

We define

Rp = lim←−
m

RF ⊗R

∏
N>d

RN/(mRS∪QN

∏
v∈QN

Res2
v)
m.

Then M1, M0, and M have natural structures of Rp-modules with respect to which
the maps of Lemma 6.8 are morphisms of Rp-modules (same proof as [NTa, Lemma
4.15]). There is also a natural map

Rp → lim←−
m

RF ⊗R

∏
N>d

R0/m
m
R(∅)
∼= R0.

Lemma 6.9. (1) The map Rp → R0 just defined is surjective. The action of
Rp on M factors through this map.

(2) Let P p denote the pre-image of P0 under this map. Then P p equals the
image of

∏
N>d PN ⊂

∏
N>dRN under the map

∏
N>dRN → Rp.

(3) For each k ≥ 1, the ideal (P p)k equals the image of
∏
N>d P

k
N ⊂

∏
N>dRN

in Rp.

Proof. The first part is proved in the same way as [NTa, Lemma 4.17]. The second
and third parts can be proved in the same way as [NTa, Lemma 4.19, Lemma
4.20]. �

For each N > d, Proposition 5.6 implies the existence of a map

R∞ = OJx1, . . . , xqK→ RN

which sends x1, . . . , xq into PN , and such that PN/(P
2
N , x1, . . . , xq) has uniformly

bounded length (as O-module). There is an induced map R∞ → Rp which sends
the ideal P∞ = (x1, . . . , xq) into P p.

Proposition 6.10. The natural map R∞ → Rp induces a surjection (R∞)̂P∞ →
(Rp)̂Pp on completed local rings. In particular, (Rp)̂Pp ∈ CE.

Proof. The proof is the same as the proof of [NTa, Proposition 4.22]. �

We next define quotients of our patched modules as follows:

• m1 = (M1/a
2
∞)Pp .

• m0 = (M0)Pp .
• m = MPp = MP0 .
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Proposition 6.11. (1) The map f : M → M0 induces an isomorphism m →
m0.

(2) The trace maps induce an isomorphism m1/(a∞) ∼= m0.
(3) m1 is a finite free S∞,a∞/(a

2
∞)-module.

Proof. The first part is true because the image of the element (
∏
v∈QN Res2

v)N>d ∈∏
N>dRN in Rp is not in P p. The second part is true because the analogous

statement is true before localization. The third part is true because m1 is both flat
(as M1 is flat) and finitely generated (because S∞,a∞/(a

2
∞) is Artinian and m0 is

a finite-dimensional E-vector space). �

Finally, we conclude:

Proposition 6.12. m is a free (R0)̂P0
-module. Consequently, H1

f (F+, ad rπ,ι) = 0.

Proof. According to Proposition 6.10, (Rp)̂Pp is a quotient of (R∞)̂P∞ , which is
a complete Noetherian regular local ring of dimension q. Applying Brochard’s
criterion [Bro17, Theorem 1.1] (along with the third part of Proposition 6.11), we
conclude that m1 is a free (Rp)̂Pp/(a2

∞)-module, and hence that m0
∼= m is a free

(Rp)̂Pp/(a∞)-module. Since the action of (Rp)̂Pp/(a∞) on m factors through the
map (Rp)̂Pp → (R0)̂P0

, it must be the case that m is a free (R0)̂P0
-module. To

prove the vanishing of H1
f (F+, ad rπ,ι) and finish the proof, we need to check the

following two points:

• m is a semisimple (R0)̂P0
-module.

• The E-vector spaces H1
f (F+, ad r ⊗O E) and P0/P

2
0 ⊗O E have the same

dimension.

For the first point, we note that there is an isomorphism

m ∼= (S∅ ⊗A0
B0)P0

.

Since S∅ ⊗O E is a semisimple T∅ ⊗O E-module and the map T∅ → T∅ ⊗A0 B0

is étale at P0, m is indeed semisimple. For the second, we simply apply Lemma
5.2. �
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the trace formula, Stab. Trace Formula Shimura Var. Arith. Appl., vol. 1, Int. Press,

Somerville, MA, 2011, pp. 429–470.
[Lus89] George Lusztig, Affine Hecke algebras and their graded version, J. Amer. Math. Soc.

2 (1989), no. 3, 599–635.

[NTa] James Newton and Jack A. Thorne, Adjoint Selmer groups of automorphic Galois
representations of unitary type, Preprint.

[NTb] , Symmetric power functoriality for holomorphic modular forms, Preprint.
[NT20] James Newton and Jack A. Thorne, Symmetric power functoriality for holomorphic

modular forms, II, 2020.

[Pan19] Lue Pan, The Fontaine–Mazur conjecture in the residually reducible case, ArXiv
preprint arXiv:1901.07166 (2019).

[Ree10] Mark Reeder, Torsion automorphisms of simple Lie algebras, Enseign. Math. (2) 56

(2010), no. 1-2, 3–47.
[Sta13] The Stacks Project Authors, Stacks Project, http://stacks.math.columbia.edu,

2013.

[Ste68] Robert Steinberg, Endomorphisms of linear algebraic groups, Memoirs of the Ameri-
can Mathematical Society, No. 80, American Mathematical Society, Providence, R.I.,
1968.

[Tho12] Jack Thorne, On the automorphy of l-adic Galois representations with small residual
image, J. Inst. Math. Jussieu 11 (2012), no. 4, 855–920, With an appendix by Robert

Guralnick, Florian Herzig, Richard Taylor and Thorne.



32 JACK A. THORNE

[Tho15] Jack A. Thorne, Automorphy lifting for residually reducible l-adic Galois represen-

tations, J. Amer. Math. Soc. 28 (2015), no. 3, 785–870.
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