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Abstract

Let F' be a CM number field. We prove modularity lifting theorems for
regular n-dimensional Galois representations over F' without any self-duality
condition. We deduce that all elliptic curves E over F' are potentially mod-
ular; and furthermore satisfy the Sato—Tate conjecture. As an application
of a different sort, we also prove the Ramanujan Conjecture for weight zero
cuspidal automorphic representations for GLa(Ar).
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1. Introduction

In this paper, we prove the first unconditional modularity lifting theo-
rems for n-dimensional regular Galois representations without any self-duality
conditions. A version of these results were proved in [CG18] conditional on
two conjectures. The first conjecture was that the Galois representations con-
structed by Scholze in [Sch15] satisfy a strong form of local-global compatibility
at all primes. The second was a vanishing conjecture for the mod-p cohomology
of arithmetic groups localized at non-Eisenstein primes which mirrored the
corresponding (known) vanishing theorems for cohomology corresponding to
tempered automorphic representations in characteristic zero. We prove the first
of these conjectures in this paper. Our arguments crucially exploit work in
preparation of Caraiani and Scholze [CS] on the cohomology of non-compact
Shimura varieties (see also [CS17b] for the compact version of these results).
The details of this argument are carried out in §4 and §5. (It turns out that,
in the easier case when [ # p, one can argue more directly using the original
construction in [Sch15], and this is done in §3.) On the other hand, we do not
resolve the second conjecture concerning the vanishing of mod-p cohomology in
this paper. Rather, we sidestep this difficulty by a new technical innovation; a
derived version of “Ihara avoidance” which simultaneously generalizes the main
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idea of [Tay08] as well as a localization in characteristic zero idea first used
in [KT17]. This argument, together with the proofs of the main automorphy
lifting theorems, is given in §6. The result is that we are able to prove quite
general modularity lifting theorems in both the ordinary and Fontaine-Laffaille
case for general n-dimensional representations over CM fields, in particular
Theorems 6.1.1 and 6.1.2. Instead of reproducing those theorems here (which
require a certain amount of notation), we instead reproduce here a few corollar-
ies of our main theorems which are worked out in §7. The first theorem is a
special case of Corollaries 7.1.12 and 7.1.13:

THEOREM 1.0.1. Let E be an elliptic curve over a CM number field F'.
Then E and all the symmetric powers of E are potentially modular. Conse-
quently, the Sato—Tate conjecture holds for E.

For an application of a different sort, we also have the following special
case of the Ramanujan conjecture (see Corollary 7.1.14):

THEOREM 1.0.2. Let F' be a CM field, and let m be a regqular algebraic
cuspidal automorphic representation of GLo(Afr) of weight 0. Then, for all
primes v of F, the representation m, is tempered.

This is, to our knowledge, the first case of the Ramanujan conjecture to
be proved for which neither the underlying Galois representation V' nor some
closely related Galois representation (such as V®2 or Symm? V) is known to
occur as a summand of the étale cohomology of some smooth proper algebraic
variety over a number field; in such cases temperedness (at unramified primes)
is ultimately a consequence of Deligne’s purity theorem. Our proof, in contrast,
follows more closely the original strategy proposed by Langlands. Langlands
explained [Lan70] how one could deduce Ramanujan from functoriality; namely,
functoriality implies the automorphy of Symm™(7) and Symm™(7") as well as
the product Symm”(7) X Symm”(7"). Then, by considering standard analytic
properties of the standard L-function associated to Symm"(7) X Symm”(7")
(and exploiting a positivity property of the coefficients of this L-function) one
deduces the required bounds. As an approximation to this, we show that all
the symmetric powers of 7 (and 7") are potentially automorphic, and then
invoke analytic properties of the Rankin—Selberg L-function (in the guise of the
Jacquet—Shalika bounds [JS81]) as a replacement for the (potential) automorphy
of their product.

1.1. A brief overview of the argument. Let F/FT be an imaginary CM
field, let K C GL,(A%) be a compact open subgroup, let X denote the
corresponding (non-Hermitian) locally symmetric space, let £/Q, denote a
finite extension with ring of integers O, and let V = V) denote a local system
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on X which is a lattice inside an algebraic representation of weight A defined
over E. (For example, V could be the trivial local system O.) After omitting
a finite set of primes S containing the p-adic places (and satisfying some
further hypotheses), one may define a Hecke algebra T = T as the image of
a formal ring of Hecke operators in Endp ) (RI'(Xk,V)) where D(O) is the
derived category of O-modules. (This is isomorphic to the usual ring of Hecke
operators acting on H*(Xg, V) up to a nilpotent ideal, but for technical reasons
it is better to work in the derived setting, c.f. [NT15].) For a non-Eisenstein
maximal ideal m, the main result of [Sch15] guarantees the existence of a Galois
representation

pm : Gps — GL,(Tw/J)

characterized, up to conjugation, by the characteristic polynomials of Frobenius
elements at places v € S, where J is a nilpotent ideal whose exponent depends
only on n and [F : Q]. It is crucial for applications to modularity lifting
theorems (following the strategy outlined in [CG18]) to know that this Galois
representation satisfies local-global compatibility at all primes. (As usual, in
order to talk about local-global compatibility at a prime in S, one has to work
with variants of T including Hecke operators at these primes — we ignore all
such distinctions here). Since Ty,/J is (in general) not flat over O, it is not
exactly clear what one should expect to mean by local—global compatibility.
For example, for primes [ # p, a (torsion) representation which is Steinberg at [
need not be ramified at [. Instead, we ask that the characteristic polynomials
of pm(c) for o € I, for v|l € S and | # p have the expected shape. Such a
condition is amenable to arguments using congruences, and we prove a version
of this compatibility in §3 (see Theorem 3.1.1). Note that our theorem only
applies to a limited range of [; in particular, we assume that the level K,
(for v|l € S and [ # p) satisfies the inclusions Iw,; C K, C Iw, (where Iw,
and Iw, ; are the Iwahori and pro-l Iwahori respectively) and additionally !
satisfies various splitting conditions relative to the field F'. This suffices for
applications to modularity, however, since it includes both Taylor—-Wiles primes
and also (after some soluble base change) another auxiliary set of ramified
primes S away from p. This part of the argument requires only the construction
of Galois representations in [Sch15].

Local-global compatibility for [ = p is more subtle. Indeed, we are
not confident enough to formulate a precise conjecture of what local-global
compatibility means in general in the torsion setting. Instead, we restrict to
two settings where the conjectural formulation of local-global compatibility is
more transparent; the case when py should be Fontaine-Laffaille (assuming, in
particular, that p is unramified in F') and the ordinary case (with no restriction
on F); §4 and §5 are devoted to proving such theorems. In both of these cases,
the underlying strategy is as follows. Associated to our data is a quasi-split



POTENTIAL AUTOMORPHY OVER CM FIELDS 5

unitary group G over F™ which is a form of GLs,, that splits over F//F*. There
is a parabolic subgroup P of G whose Levi subgroup G over F'™ may be identified
with Resp/p+ GLp, and hence associated with the locally symmetric spaces X

as above. The point of this construction is that G may be associated to a
Shimura variety X = (and thus to Galois representations of known provenance)
whereas the cohomology of Xy appears inside (in some non-trivial way) a
spectral sequence computing the cohomology of the boundary 0X 7 of the

Borel-Serre compactification of X Pa One now faces several complications.
The first is that the cohomology of the boundary involves different parabolic
subgroups of G besides P. This is resolved by the assumption that m is
non-Eisenstein. The second is separating inside the boundary cohomology
(associated to P) the contribution coming from G and that coming from the
unipotent subgroup U of P. Fortunately, the unipotent subgroup U is abelian
and well understood, and we show (for p > n?) that the relevant cohomology
we are interested in occurs as a direct summand of the cohomology of 0X 7 (see
Theorem 4.2.1). Note that, for a general coefficient system V = V) on Xk, there
are a number of different coefficient systems V5 on X 7 for which H *(a)? P VX)
can be related to H*(Xg, V), and this freedom of choice will be important in
what follows. By these arguments, we may exhibit RT'(Xx, V)/w™)m up to
shift as a direct summand of RT'(8X 7 V5/@")5- (Here m is the corresponding

ideal of the Hecke algebra T for 5, and p is the corresponding (reducible)
2n-dimensional representation associated to m, from which p,, was constructed.)
Now suppose that d is the complex (middle) dimension of X 7 We now make
crucial use of the following theorem, which is the main theorem of [CS] (see
Theorem 4.3.3 for a more general statement.)

THEOREM 1.1.1 (Caraiani-Scholze [CS]). Assume that F+ # Q, that m
is non-Fisenstein, and that p is decomposed generic in the sense of Defini-
tion 4.3.1. Assume that, for every prime | which is the residue characteristic
of a prime dividing S or Ap, there exists an imaginary quadratic field Fy C F
in which | splits. Then

HZ(XI?’VX/w)I?I =0if i <d, and Hé(yf{’vx/w)ﬁ =0if i > d.

This immediately gives a diagram as follows:
HY Xz, V5[1/p))g <= HU(X 2, V5)q - HY(0X 2 V5)s-

where the left hand side can be understood in terms of automorphic forms on
Shimura varieties, and in particular (under appropriate assumptions) gives rise
to Galois representations having the desired p-adic Hodge theoretic properties,
and the right hand side (by construction) now sees the part of RT'\(dX = W5/ )5
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which (after shifting) contributes in degree d, at least up to a fixed level of
nilpotence.

The idea is then to choose the weight X so that V5 on X 7 1s related
to V) on Xx by the action of a Weyl group as in Kostant’s formula (to do
this integrally, we need to assume that p is sufficiently large), and that by
varying X we may see all of the cohomology of RI'(X g, V)/@™ )m in the degree
d cohomology of RI'(0X 7+ Vx/@™)5- This idea only works for some weights

and degrees, so to get around this, we first deepen the levels K and K at some
other place above p which allows us to modify the weight A at the corresponding
embeddings without changing the Hecke algebra. For the modified A\, we can
then find X and a Weyl group element giving us to access to H1(X g, V) )m for
q > | 4] (see Proposition 4.4.1), and we handle the remaining degrees by taking
duals. This part of the argument (including the invocation of Theorem 1.1.1)
requires various local assumptions on F' which can always be achieved after a
soluble base change but are not generally satisfied (in particular, they are not
satisfied when F™ = Q). We then extract the relevant properties of py, from
those of the determinant associated to m. This summarizes the argument of §4.

In §5, we prove a different local-global compatibility theorem in the
ordinary case. Although not strictly necessary for our main theorems (for
compatible families, by taking sufficiently large primes, one can aways reduce
to the Fontaine—Laffaille case), this allows us to prove a modularity lifting
theorem which may have wider applicability — in particular, the main local—-
global compatibility result of this section (Theorem 5.5.1) applies to any prime
p, provided F' contains an imaginary quadratic field in which p splits. The
general approach in this section is similar to that of §4. However, instead
of exhibiting RT'(X g, Va/@™)m up to shift as a direct summand (as a Hecke
module) of RT(8X 7 Vx/@™ )5, (whose proof in §4 required p > n?), we make
arguments on the level of completed cohomology, and exploit a version of
Emerton’s ordinary parts functor. A key computation is that of the ordinary
part of a parabolic induction from P to G in §5.3 following arguments of
Hauseux [Haul6]. Because only part of the cohomology of the unipotent radical
U is ordinary, only relative Weyl group elements appear in the degree shifts
(see Theorem 5.4.3) and consequently we only obtain shifts by multiples of
[F* : Q] in this way. We get around this by a trick using the centre of G,
showing that the Hecke algebra acting on H*(Xg,V)) can be understood in
terms of the Hecke algebra acting only in degrees that are multiples of [F* : Q]
(Lemma 5.4.15). As in the Fontaine-Laffaille case, we can then extract the
relevant properties of py from those of the determinant associated to m.

We now turn to the modularity lifting theorems of §6. A key hypothesis
of [CG18] was the truth of a vanishing conjecture for integral cohomology local-
ized at a non-Eisenstein maximal ideal m outside a prescribed range (mirrored
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by the characteristic zero vanishing theorems of Borel and Wallach [BW00]).
This conjecture remains unresolved. Instead, we exploit a localization in char-
acteristic zero idea first employed in [KT17]. This requires a slightly stronger
residual modularity hypothesis — namely, that p,, actually comes from an
automorphic representation rather than one merely associated to a torsion
class — but this will be satisfied for our applications, and is at any rate re-
quired at other points at the argument (for example to know that the residual
modularity hypothesis is preserved under soluble base change). Two points
remain. The first, which is mostly technical, is to show that the approach
of [CG18] and [KT17] is compatible with the fact that we only have Galois
representations to T/J for some nilpotent ideal J. The second, which is more
serious, is to show that the localization argument of [KT17] is compatible with
the “Ihara avoidance argument” of [Tay08] and the (essentially identical) Iy > 0
version of this argument in [CG18]. (Here [y is the parameter of [BW00] which
measures the failure of the underlying real group to admit discrete series and
which plays plays a fundamental role in [CG18].) To explain the problem, we
briefly recall the main idea of [Tay08] in the Iy = 0 setting (the difficulties are
already apparent in this case). One compares two global deformation problems
which (for exposition) differ only at an auxiliary prime v with [ = N(v) = 1
mod p, and which at all other primes have smooth local deformation conditions.
The corresponding local deformation rings stl) and RS,Q) at the prime v are
taken to be tame local deformation rings which the image of tame inertia
has minimal polynomial (X — 1)” or (X — (1)...(X — () respectively for
distinct roots of unity (; =1 mod v. The corresponding patched modules H<(><1>)
and H?) constructed via the Taylor-Wiles method ([TW95, Kis09]) have the
expected depth over S,,. On the one hand, the generic fibre of RS,2) is geo-
metrically connected, which forces Hég) to have full support over R1(,2). On
the other hand, there is an isomorphism R(l)/ w = R(Q)/ w, and this gives an
identification H&%)/w ~ Hg)/w. But now, the ring R()) has the convenient
property that any irreducible component of its special fibre comes from a
unique irreducible component of the generic fibre, and from this a modularity
result is deduced in [Tay08] using commutative algebra. Suppose we now drop
the hypothesis that the integral cohomology all contributes to cohomology in
a single degree (in our lp = 0 setting), but we still assume this holds after
inverting p. There is seemingly nothing to prevent H&l)) = Héé) Jw = Hg) /w,
in which case it seems unlikely that one can pass information from Hcg) [1/p]
to Héé) [1/p]. The resolution of this difficulty is not to simply compare the
patched modules in fixed (final) degree, but the entire patched complex in the
derived category. The point is now that these complexes in characteristic p
(which are derived reductions of perfect So.-complexes for the ring of diamond
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operators S.,) remember information about characteristic zero. As a simple
avatar of this idea, if M is a finitely generated Z,-module, then M][1/p] is
non-zero if and only if M @ F, has non-zero Euler characteristic over F,. The
main technical formulation of this principle which allows us to prove a version
of Thara avoidance in our setting is Lemma 6.3.7.

Finally, in §7, we apply the results of previous sections to prove Theo-
rems 1.0.1 and 1.0.2. We begin with some preliminaries on compatible systems
in order to show there are enough primes such that the corresponding residual
representations satisfy hypotheses of our modularity lifting theorems. As ex-
pected, the arguments of this section make use of the p-q switch ([Wil95], but
first exploited in the particular context of potential automorphy in [Tay03])
and a theorem of Moret-Bailly [MB89).

Acknowledgments. Tt was realized by two of us (A.C. and P.S.) that the
local-global compatibility for torsion Galois representations should be a conse-
quence of a non-compact version [CS] of their recent work on the cohomology
of Shimura varieties [CS17b]. This led to an emerging topics workshop at the
Institute for Advanced Study (organized by A.C and R.L.T. and attended by
all the authors of this paper) whose goal was to explore possible consequences
for modularity. It was during this workshop (in November 2016) that the new
Thara avoidance argument was found. The authors gratefully acknowledge the
IAS for the opportunity to run this workshop. We would also like to thank
Matthew Emerton for his participation in the workshop.

1.2. Notation. We write all matrix transposes on the left; so !A is the
transpose of A. We will write chary for the characteristic polynomial of a
matrix A. We write GL,, for the usual general linear group (viewed as a
reductive group scheme over Z) and T,, C B, C GL, for its subgroups of
diagonal and of upper triangular matrices, respectively. We will write O(n)
(resp. U(n)) for the group of matrices g € GL,(R) (resp. GL,(C)) such that
tgtg = 1n.

If R is a local ring, we write mp for the maximal ideal of R.

If A is an abelian group, we will let A%’ denote its maximal torsion
subgroup and A' its maximal torsion free quotient. If A is profinite and
abelian, we will also write A(() for its Sylow pro-l-subgroup, which is naturally
isomorphic to its maximal pro-I continuous quotient. If I' is a profinite group,
then I'*P will denote its maximal abelian quotient by a closed subgroup. If
p: T — GL,(Q)) is a continuous homomorphism, then we will let p : T —
GL,,(F;) denote the semi-simplification of its reduction, which is well defined
up to conjugacy (by the Brauer—Nesbitt theorem). If M is a topological abelian
group with a continuous action of I', then by H*(I', M) we shall mean the
continuous cohomology.
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If R is a (possibly non-commutative) ring, then we will write D(R) for
the derived category of R-modules. By definition, an object of D(R) is a
cochain complex of R-modules. An object of D(R) is said to be perfect if it is
isomorphic in this category to a bounded complex of projective R-modules.

If R is a complete Noetherian local ring, C' € D(R) is a perfect complex,
and 7" — Endp(g) (C) is a homomorphism of R-algebras, then the image T of T
in Endpg)(C) is a finite R-algebra, which can therefore be written as a product
T = [ T of its localizations at maximal ideals. There is a corresponding
decomposition 1 = S, em of the unit in T as a sum of idempotents. Since
D(R) is idempotent complete, this determines a decomposition C' = @y, Cy, in
D(R). The direct summands Cy, are well-defined up to unique isomorphism.
We usually reserve the symbol C*® to refer to an element in the category of
cochain complexes, although hopefully statements of the form C*®* =0 in D(R)
will not cause any confusion.

If G is a locally profinite group, and U C G is an open compact subgroup,
then we write H(U, G) for the algebra of compactly supported, U-biinvariant
functions f : G — Z, with multiplication given by convolution with respect
to the Haar measure on G which gives U volume 1. If X C G is a compact
U-biinvariant subset, then we write [X] for the characteristic function of X, an
element of H (U, G).

If G is a reductive group over field £ and T' C G is a split maximal torus,
then we write W (G, T) for the Weyl group (the set of k-points of the quotient
Ng(T)/T). For example, if F//Q is a number field, then we may identify
W((Resg/q GLn)c, (Resp/q Tn)c) with SaemFO) "1f P Gis a parabolic
subgroup which contains 7', then there is a unique Levi subgroup L C P which
contains 7. We write Wp(G,T) for the absolute Weyl group of this Levi
subgroup, which may be identified with a subgroup of W (G, T).

Suppose that G comes equipped with a Borel subgroup B containing 7.
Then we can form X*(T)* C X*(T), the subset of B-dominant characters. If P
is a parabolic subgroup of G which contains B, then BN L is a Borel subgroup
of L and we write X*(T)™¥ for the subset of (B N L)-dominant characters.
The set

WG, T) = {weW(G,T) | wX*(T)") c Xx*(T)"F}

is a set of representatives for the quotient Wp(G, T)\W (G, T).

Galois representations. If F is a perfect field, we let F' denote an algebraic
closure of F and G the absolute Galois group Gal(F/F). We will use ¢, to

th_root of 1. Let ¢ denote the l-adic cyclotomic character

denote a primitive n
and ¢ its reduction modulo I. We will also let w; : Gp — py—1 C Z;* denote

the Teichmiiller lift of €. If F/F is a separable quadratic extension, we will let
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dg/r denote the non-trivial character of Gal(E/F'). We will write Brp for the
Brauer group of F.

We will write Q- for the unique unramified extension of Q; of degree r
and Z;- for its ring of integers. We will write Qj" for the maximal unramified
extension of Q; and Z;" for its ring of integers. We will also write 2}“ for the
l-adic completion of Z;" and Q?r for its field of fractions.

If K is a finite extension of Q,, for some p, we write K™ for its maximal
unramified extension; I for the inertia subgroup of Gg; Frobg € Gg /I for
the geometric Frobenius; and Wy for the Weil group. If K'/K is a Galois
extension we will write I, for the inertia subgroup of Gal(K'/K). We will
write Artg : KX — Wf(b for the Artin map normalized to send uniformizers to
geometric Frobenius elements. We will write w;, for the character Gq,. — Z;
such that wy, o Artq,. sends [ to 1 and sends a € Z;; to the Teichmiiller lift of
a mod [. This is sometimes referred to as “the fundamental character of niveau
r.” (Thus w1 = w;.)

We will let reck be the local Langlands correspondence of [HT01], so that if
7 is an irreducible complex admissible representation of GL,,(K), then recy ()
is a Frobenius semi-simple Weil-Deligne representation of the Weil group Wi
We will write rec for recgx when the choice of K is clear. We write recﬂ for
the arithmetic normalization of the local Langlands correspondence, as defined
in e.g. [CT14, §2.1]; it is defined on irreducible admissible representations of
GL,(K) defined over any field which is abstractly isomorphic to C (e.g. Q;).

If (r, N) is a Weil-Deligne representation of Wy, we will write (r, N)¥—s
for its Frobenius semisimplification. If p is a continuous representation of
Gk over Q; with [ # p then we will write WD(p) for the corresponding Weil-
Deligne representation of Wy. (See for instance section 1 of [TY07].) By a
Steinberg representation of GL, (K) we will mean a representation Sp ,,(¢) (in
the notation of section 1.3 of [HT01]) where 1 is an unramified character of
K>*. If m; is an irreducible smooth representation of GLy,(K) for i = 1,2, we
will write m; B my for the irreducible smooth representation of GLy,yn, (K)
with rec(m; B mg) = rec(m) @ rec(mz). If K'/K is a finite extension and if =
is an irreducible smooth representation of GL,,(K) we will write BC g, (7)
for the base change of m to K’ which is characterized by recg(BC g/ /x (7)) =
recr (m)|w,, -

If p is a de Rham representation of G over Qp, then we will write WD(p)
for the corresponding Weil-Deligne representation of Wy, and if 7: K — Qp
is a continuous embedding of fields, then we will write HT(p) for the multiset
of Hodge-Tate numbers of p with respect to 7. Thus HT,(p) is a multiset
of dim p integers. In fact if W is a de Rham representation of Gx over Qp
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and if 7 : K < Q,, then the multiset HT,(W) contains ¢ with multiplicity

dimg (W @7,k K(i))“<. Thus, for example, HT,(¢,) = {~1}.

If G is a reductive group over K and P is a parabolic subgroup with
unipotent radical N and Levi component L, and if 7 is a smooth representation
of L(K), then we define Indggg 7 to be the set of locally constant functions
f : G(K) — 7 such that f(hg) = n(hN(K))f(g) for all h € P(K) and
g € G(K). It is a smooth representation of G(K) where (g1f)(g2) = f(g291)-
This is sometimes referred to as ‘natural’ or ‘un-normalized’ induction. We let
0p denote the determinant of the action of L on Lie N. Then we define the
‘normalized’ or ‘unitary’ induction n—Indgggg 7 to be Indggg (r® \(5p\}(/2). IfpP
is any parabolic in GL;,, +p, with Levi component GL,,, x GL,,, then 7 Hm
is a sub-quotient of n—Indg?[?)J”W(K) T Q o.

We will let ¢ denote complex conjugation on C. We will write Artg (resp.
Artc) for the unique continuous surjection

R* — Gal(C/R)

(resp. C* — Gal(C/C)). We will write recc (resp. recr), or simply rec, for the
local Langlands correspondence from irreducible admissible (Lie GL,(R) ®r
C, O(n))-modules (resp. (Lie GL, (C)®grC, U(n))-modules) to continuous, semi-
simple n-dimensional representations of the Weil group Wg (resp. W¢). (See
[Lan89].) If 7; is an irreducible admissible (Lie GL,,(R) ®g C, O(n;))-module
(resp. (Lie GL,, (C)®rC, U(n;))-module) fori = 1,...,r and if n = nyj+- - -+n,,
then we define an irreducible admissible (Lie GL,,(R) ®gr C, O(n))-module (resp.
(Lie GL,(C) ®r C,U(n))-module) m B --- B, by

rec(my B ---Bm,) =rec(m) @ - - B rec(m,).

If 7 is an irreducible admissible (Lie GL,(R) ®r C, O(n))-module, then we
define BC ¢/r (7) to be the irreducible admissible (Lie GL,(C) ®r C,U(n))-
module defined by

recc(BC ¢/r(m)) = recr(m)|we-

If 7 is an irreducible admissible representation of GL,(Afr) and £ €
(Zﬁ)Hom(F 'C) | we say that 7 is regular algebraic of weight £ if the infinitesimal
character of 7w, is the same as that of VEV, where V¢ is the algebraic represen-
tation of Resp/q GLy of highest weight { (see Section 2.2.1). We say that it is
regular algebraic if it is regular algebraic of some weight.

We will write || || for the continuous homomorphism

=111l - A*/Q* — RZ,,

where each | |, has its usual normalization, i.e. |p|, = 1/p.
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Now suppose that K/Q is a finite extension. We will write || ||x (or simply
[[ ]]) for || [|oNg/q. We will also write

Artg = HArtKv CAS /KX (KX)Y = Gab.

If v is a finite place of K, we will write k(v) for its residue field, ¢, for #k(v),
and Frob, for Frobg, . If v is a real place of K, then we will let [¢,] denote the
conjugacy class in G consisting of complex conjugations associated to v. If
K'/K is a quadratic extension of number fields, we will denote by /K the
nontrivial character of A /K*Ng//xAj,. (We hope that this will cause no
confusion with the Galois character dx /. One equals the composition of the
other with the Artin map for K.) If K'/K is a soluble, finite Galois extension
and if 7 is a cuspidal automorphic representation of GL, (A k) we will write
BC g/ () for its base change to K’, an (isobaric) automorphic representation
of GL,,(A k) satisfying

BC kr/k(m)v = BC Ky /1, (o))
for all places v of K'. If ; is an automorphic representation of GL,, (Ak)
for ¢ = 1,2, we will write m; H mo for the automorphic representation of
GLy, 40, (A k) satisfying
(m1 B m2)y =m0 By
for all places v of K.

We will call a number field K a CM field if it has an automorphism ¢ such
that for all embeddings i : K < C one has coi =i o c. In this case, either K
is totally real or a totally imaginary quadratic extension of a totally real field.
In either case, we will let K™ denote the maximal totally real subfield of K.

Suppose that K is a number field and

x:Ag/K* — C*
is a continuous character. If there exists a € ZHom(K.C) guch that
X‘(Koxo)o ST H (tx),
T€Hom(K,C)

we will call y algebraic. In this case, we can attach to x and a rational prime [
and an isomorphism 2 : Q, — C, a unique continuous character

ra(x) : G — Q
such that for all v /I we have
1011, () Wy, © Artr, = Xo-

There is also an integer wt(y), the weight of x, such that

x| = || 17072,
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(See the discussion at the start of  BLGGT14, §A.2] for more details.)
If K is a totally real field, we call a continuous character

x:Ag/K* — C*
totally odd if x,(—1) = —1 for all v|oo. Similarly, we call a continuous character
w:Gr — le
totally odd if u(e,) = —1 for all v|oo.

2. Basic results

Our main objects of study in this paper are n-dimensional Galois repre-
sentations and their relation to the cohomology of congruence subgroups of
GL,, (equivalently, the cohomology of the locally symmetric spaces attached to
congruence subgroups of GL,,). In this introductory section we establish some
basic notation and definitions concerning these objects, and recall some of their
fundamental known properties. In particular, we will define cohomology groups
associated to an arbitrary weight and level and also define the Hecke algebras
which act on these cohomology groups.

2.1. Arithmetic locally symmetric spaces: generalities.

2.1.1. Symmetric spaces. Let F' be a number field and let G be a connected
linear algebraic group over F'. We consider a space of type S — Q for G :=
Resp/qG, in the sense of [BS73, §2] (see also [NT15, §3.1]). This is a pair
consisting of a homogeneous space X for G(R) and a family of Levi subgroups
of Gg satisfying certain conditions. From [BS73, Lem. 2.1], the homogeneous
space XY is determined up to isomorphism. We will refer to X© as the
symmetric space for G. For example, if G = GL, r, we can take X6 =
GL,(Fx)/KxR* for K, C GL,(Fs) a maximal compact subgroup.

An open compact subgroup K¢ C G(A%) is said to be neat if all of its
elements are neat. An element g = (gy), € G(AY) is said to be neat if the
intersection N,I', is trivial, where I', C QX is the torsion subgroup of the
subgroup of F: generated by the eigenvalues of g acting via some faithful
representation of G.

We will call a ‘good subgroup’ any neat open compact subgroup Kg C
G(A%) of the form Kg = [[, Kg v, the product running over finite places v
of F. If K¢ is a good subgroup, then we define

Xg. = G(F)\ (X% x G(A¥)/Kc) and X¢ := G(F)\ (X9 x G(AY)),

the latter with the discrete topology on G(A%).
These topological spaces may be given the structure of smooth manifolds,
and G(A®) acts on Xg by right translation. We can identify X%G =Xqg/Kg.
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Note that the space X is diffeomorphic to Euclidean space. The neatness
condition on K¢ implies that X[%G can be identified with a finite disjoint union
of quotients of X© by the action of torsion-free arithmetic subgroups of G(F).

We let X denote the partial Borel-Serre compactification of X (see [BS73
§7.1]). Define

)

X =GP\ (X x G(AF)/Kg) and X = G(F)\ (X© x G(AF)).

For any good subgroup K¢ C G(A%; ), the space Y?%, which can be identified

with Xq/Kg, is compact (see [BS73, Theorem 9.3]). More precisely, Y%G
is a compact smooth manifold with corners with interior X%G; the inclusion

XI%G — Y?’(G is a homotopy equivalence. We also define 90X = X% - XG and
OXE, = G(F)\ (0X% x G(A¥)/Kg) and 0Xg := G(F)\ (0X° x G(AF)).

2.1.2. Hecke operators and coefficient systems. If S is a finite set of finite
places of F' we set G° := G(A%O’S) and Gg := G(AFrys), and similarly Ké =
[Togs Kcw and K s = [[ves Ka -

Let R be a ring and let V be an R[G(F) x Kg g|-module, finite free as R-
module. We now explain how to obtain a local system of finite free R-modules,
also denoted V, on X%G, and how to equip the complex RF(X%G,V) € D(R)
with an action of the Hecke algebra H(G®, K2), following the formalism of
[NT15] (in particular, viewing X x G(A%¥) as a right G(F) x G(AS)-space).

The R[G(F') x K¢ s]-module V determines (by pullback from a point) a
G(F) x G x K¢ s-equivariant sheaf, also denoted V, of finite free R-modules
on X% x G(A¥), hence (by descent under a free action, as in [NT15, Lem.
2.17]) a G¥ x Kg g-equivariant sheaf ¥ on Xg. By taking derived global
sections we obtain RI'(Xq,V), which is an object of the derived category
of R[G® x Kg g]-modules. By taking derived invariants under Kg we ob-
tain RI'(Kq, RI'(Xq, Vx.)), which is an object of the derived category of
H(GY, K&) ®z R-modules.

On the other hand, if we only think of V as a Kg-equivariant sheaf on X,
it is equivalent to a sheaf V on X%G (applying once again [NT15, Lem. 2.17]).
The complex RF(XI%G, V) is naturally isomorphic in D(R) to the image of the
complex RI'(Kq, RTI'(Xg, Vx)) under the exact forgetful functor

D(H(G®, K3) ®z R) — D(R),
cf. [NT15, Prop. 2.18]. In this way, we obtain a canonical homomorphism
(2.1.3) H(G®, K3) ®z R — Endpg)(RT(XF,, V).

The same formalism applies equally well to the Borel-Serre compactification
(because G(F) x K¢ acts freely on XY x G(A%)). Even more generally, if
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Y is any right G° x Kq s-space and C' is any bounded-below complex of
GS x K g s-equivariant sheaves of R-modules on Y, there is a homomorphism

H(G®, K&) ®z R — Endpg)(RT(Kq, RT(Y, C))).

Taking j : X© x G(A¥) — X x G(A%) to be the canonical open immersion
and V to be an R[G(F) x K¢ s]-module, finite free as R-module, this determines
an action of the Hecke algebra on the cohomology groups with compact support:
H(G, K&)@z R — Endp ) (RU(Kg, RU(X X G(AF), V) = Endpg) (RTe(XE,,, V).
We have the following lemma, which is a consequence of the existence of the

Borel-Serre compactification (see [BS73, §11]):

LEMMA 2.1.4. Let Kg be a good subgroup, let R be a Noetherian ring, and
let V be an R[G(F) x Kg]-module, finite free as R-module. Then H*(XI%G, V)

is a finitely generated R-module.

A variant of this construction arises when we are given a normal good
subgroup K{, C Kg with the property that K& = (K)“; then there is a
homomorphism

(2.1.5) (G5, K§) ®z R — Endp(p(x, /i) (BL(XE, V)
which recovers (2.1.3) after composition with the map
(2.1.6) Endpgir/x,)) (DX E . V) = Endpr) (RD(XE, V)

given by the functor RI'(Kq/K(,?). The following lemma is a strengthening
of Lemma 2.1.4:

LEMMA 2.1.7. Let K¢ be a good subgroup, and let K{, C Kg be a normal
subgroup which s also good. Let R be a Noetherian ring, and let V be an
R[G(F) x Kg|-module, finite free as R-module. Then RF(X%}, V) is a perfect
object of D(R[Kq/K(]); in other words, it is isomorphic in this category to a
bounded complex of projective R[K¢ /K ]-modules.

Proof. Pullback induces an isomorphism RF(Y?%, V) — RF(XI%;,V), S0
it suffices to show that RF(Y?%,V) is a perfect complex. As in [BS73, §11],

we see that Y?{G admits a finite triangulation; this pulls back to a G(F') x Kg-

invariant triangulation of X x G(AY). Let Cq be the corresponding complex
of simplicial chains. It is a bounded complex of finite free Z|G(F) x Kg]-
modules. The lemma now follows on observing that RF(YKE;,V) is isomorphic
in D(R[K¢/Kg]) to the complex Homgg(r)x sz (Ce, V). O

Finally we introduce some notation relevant for relating the Hecke operators
of G and of its parabolic subgroups. Let us therefore now assume that G is
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reductive, and let P = MN be a parabolic subgroup with Levi subgroup
M. Let Kg C G(A®) be a good subgroup. In this situation, we define
Kp = KgNP(AY), Kn = Kg NN(A%), and define K to be the image of
Kp in M(A%). We say that K¢ is decomposed with respect to P = MN if we
have Kp = Ky X Ky; equivalently, if Ky = Kg N M(AY).

Assume now that K¢ is decomposed with respect to P = MN, and let
S be a finite set of finite places of F' such that for all v ¢ S, Kg, is a
hyperspecial maximal compact subgroup of G(F,). In this case, we can define
homomorphisms

rp : H(GY, K&) — H(PY, K8) and ry : H(PY, K5) — H(M?, Ky)),

given respectively by “restriction to P” and “integration along N”; see [NT15,
§2.2] for the definitions of these maps, along with the proofs that they are
indeed algebra homomorphisms. We will write S = r\; o 7p for the composite
maps, or § = 81\(/}[ when we wish to emphasize the ambient groups.

2.1.8. The Hecke algebra of a monoid. We in fact need a slight generaliza-
tion of the discussion in the previous section, which we outline now in a similar
way to [NT15, §2.2].

We first discuss the local situation. Let F' be a non-archimedean local
field, and let G be a reductive group over F. If U C G(F’) is an open compact
subgroup and A C G(F) is an open submonoid which is invariant under left
and right multiplication by elements of U, then we can consider the subset
H(A,U) C H(G(F),U) of functions f : G(F') — U which are supported in A.
It follows from the definition of the convolution product that this subset is in
fact a subalgebra. If R is a ring and M is an R[A]-module (or more generally,
a complex of R[A]-modules) then there is a corresponding homomorphism
H(A,U) — Endp gy (RT(U, M)). This extends the formalism for the full Hecke
algebra described in [NT15, 2.2.5] and recalled in the previous section.

Now let P C G be a parabolic subgroup with Levi decomposition P = M N,
and let P = MN denote the opposite parabolic. Let U C G be an open
compact subgroup which admits an Iwahori decomposition with respect to P.
By definition, this means that if we define Uy = U N N(F), Uy = U N M(F),
and Uz = U N N(F), then the two product maps

UNXUMXUN%UandUNXUMXUN—)U

are bijective. In this case, we write Ayy C M(F') for the set of U-positive
elements, i.e. those t € M (F) which satisfy tUyt™' C Uy and Ugy C tUst ™.
We define A = UNAMUW-

LEMMA 2.1.9. Aps and A are monoids. Moreover, Ay is open in M(F),
A is open in G(F), we have UAU = A, and AN M(F) = Ayy.
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Proof. 1t is clear from the definition that Aj; is closed under multiplication,
and also that Aps, A are open in M (F') and G(F'), respectively. To show that
UAU = A, we simply observe that if m € Ay, then the definition of positivity
gives

UmU = UmUNUMUN = UmUMUﬁ = UNUMUNWLUMUW
= UNUMTTLUMUN C UNAMUW = A.

To show that A is closed under multiplication, we must show that UmUmoU C
UApU. Using the definition of positivity, we see that

UmlUmgU = UmlUNUMUNmQU = UmlUMmgU,

S0 it is equivalent to show m1Uprms C Ajy; and this is true, since Upy C Ay
Finally, the identity A N M(F) = Ay follows from the uniqueness of the
Iwasawa decomposition. U

It follows that the Hecke algebras H(A,U) and H (A, Ups) are defined.
Moreover, Ap = AN P(F) is a monoid, and we can consider also the Hecke
algebra H(Ap,Up).

LEMMA 2.1.10. Consider the two maps rp : H(A,U) = H(Ap,Up) and
rar s H(Ap,Up) — H(Aw, Unr) given by restriction to P(F') and integration
along Uy, respectively. Then both rp and ry; are algebra homomorphisms.

Proof. 1t follows from [NT15, Lemma 2.7] that the map H(P(F),Up) —
H(M(F),Up) is an algebra homomorphism whenever the condition Up =
Un x Uy is satisfied. It remains to show that rp is an algebra homomorphism.
The proof is the same as the proof of (see [NT15, Lemma 2.4, 1.]) once we take
into account the identity, valid for any function f : G(F') — R with compact
support contained in UP(F') (and a fortiori, any function f € H(A,U)):

/geG(F) f(g)dg = /ueU /peP(F) f(pu) dp du. 0

It will be helpful later to note that the maps rp and rj; o rp are quite
simple, being given on basis elements by the formulae rp([UmU]) = [UpmUp|
and 7y o rp([UmU]) = #(Uy/mUyxm=1)[UpymU,y], respectively.

LEMMA 2.1.11. Let R be a ring, let W be an R[P(F')]-module, and let V =
Indggg W. Then there is a natural morphism VU — rsWUP of H(G(F),U)®z
R-modules. Moreover, writing (7)™ for the forgetful functor from H(G(F'),U)®z
R-modules to R-modules, the induced morphism (VV)~ — (rxWUrP)™ has a
functorial splitting.

Proof. Let g1,...,9n € G(F) be representatives for the double quotient
P(F)\G(F)/U; we assume that g = 1. Then there is an isomorphism of
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R-modules VU = @ W9Us, '0P(F) which sends a function f € VU to the
tuple (f(g1),...,f(gn)). This is the desired functorial splitting. We claim that
the map VY — WUP corresponding given by projection to the first component
is in fact Hecke equivariant (with respect to 7p). To see this, choose f € VU,
and let v = f(1), m € Ap;. We calculate

(wmv)- 0= [ s |

/ 1pueUme(Pu) dp du
peP(F) JueU

= f(p)dp = [UpmUp] - f(1),
peP(F)NUmU

as required. O

We now describe how we will apply the above discussion in the global
situation. Let F' now denote a number field, let G be a reductive group over F,
and let P C G be a parabolic subgroup with Levi decomposition P = MN. Let
Kg C G(A$) be an open compact subgroup of the form K = KG’SKG,TKEUS,
notation and assumptions being as follows:

(1) T, S are finite disjoint sets of finite places of F.

(2) For each place v ¢ SUT of F, G, is unramified and K, is a hyperspecial
maximal subgroup of G(F}).

(3) For each place v € T, K,, admits an Iwahori decomposition with respect
to P. We write Ag,, C G(F},) for the corresponding open submonoid
and Ag 1 = [lver Ac,w- We define Ap 7 similarly.

Let R be a ring, and let V be an R[GSYT x Ag 1 x Kg,g]-module, finite free
as R-module. We can view V also as an R[P YT x Ap 1 x Kp g]-module, by
restriction. Then there is a split morphism in D(R)

RT([Indfx Xp]/Kc,V) — RT(Xj,, V),

which is equivariant for the action of H(GYT x Ar, Kg) ®z R by endomor-
phisms on the source and target (the latter action being via the map rp, and
induction being in the same sense as in [NT15, §3.1]). The splitting need not
be equivariant, but we see that in any case there is a surjective morphism

H*([Ind§= Xp]/Kq,V) » H (Xk,, V)
of H(GYT x Ar, K&) ®z R-modules.
2.2. Arithmetic locally symmetric spaces: the quasi-split unitary group.

2.2.1. The quasi-split unitary group, the Siegel parabolic, and its Levi
subgroup. We now specialize the above discussion to our case of interest. We
fix an integer n > 1. Let F' be an (imaginary) CM number field with maximal
totally real subfield F. Let ¥,, be the matrix with 1’s on the anti-diagonal
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o v,
= %)

We write CNJTL = G for the group scheme over Op+ with functor of points

and 0’s elsewhere, and set

é(R) = {9 € GL2x (R ®0,,, OF) | Ly dng = Jn}.

Then G p+ is a quasi-split reductive group over F'T; it is a form of GLs, which
becomes split after the quadratic base change F//F*. If v is a place of 't which
splits in F, then a choice of place v[v of F' determines a canonical isomorphism
Ly : é(Fg') >~ GLgy,(F,). Indeed, there is an isomorphism Ff @ g+ F 22 F,, x Fye
and ¢, is given by the natural inclusion G (F2F) C GLay(F,) x GLaoy (Fye) followed
by projection to the first factor.

We write T C B C G for the subgroups consisting, respectively, of the
diagonal and upper-triangular matrices in G. Similarly we write G C P C G
for the Levi and parabolic subgroups consisting, respectively, of the block upper
diagonal and block upper-triangular matrices with blocks of size n x n. Then
P =U x G, where U is the unipotent radical of P, and we can identify G with
Resop 0, GL,, via the map

A 0
g:( 0D ) — D € GL,(R®o,, OF).

We observe that after extending scalars to F', T' and B form a maximal torus
and a Borel subgroup, respectively, of 5, and G is the unique Levi subgroup of
the parabolic subgroup P of G which contains 7. N

In order to simplify notation, we now write X = X% and X = XC.
Similarly, we will use the symbols K and K to denote good subgroups of
§(A°F°+) and G(A%,) = GL,(A¥), respectively.

We now want to describe some explicit (rational and integral) coefficient
systems for these symmetric spaces. The integral coefficient systems we define
will depend on a choice of a prime p and a dominant weight for either G or G.
We therefore fix a prime p and a finite extension £/Q, in Qp which contains
the images of all embeddings F' — Q,,. We write O for the ring of integers
of F, and w € O for a choice of uniformizer.

We first treat the case of G. Let Q2 be a field of characteristic 0 and large
enough such that Hom(F, Q) has [F' : Q] elements. We identify the character
group X*((Resp+,q T)a) with (Z")Hom(F9) ip the usual way, by identifying

(Resp/qGLn)o = J[ GLa
T€Hom(F,Q)
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and by identifying (\1,...,\,) € Z™ with the character
diag(ty, ..., tn) = t}1 .. 1)
of the diagonal maximal torus in GL,. The Resp+,q(B N G)o-dominant

weights are exactly those in the subset (Z7 )Hom(#<)

satisfying the condition

given by those tuples (\r;)

)\7,1 > )\7,2 =2 )\T?’L

)

for each 7 € Hom(F, Q).

Associated to A we have the algebraic representation V) of (Res F/Q GL,)a
of highest weight A\. We may identify V\ = @ cHom(r,0)Va,, where V) is the
irreducible representation of GL,, o of highest weight A\,. If A € (Zﬁ)Hom(F )
we define \V € (Zﬁ)Hom(F’Q) by the formula \Y; = —X; 1. Then there is
an isomorphism V)Y 2 V)v, although this is not true for the integral lattices
defined below without further hypotheses on .

Now take Q = E. We write V\ = @ cpom(r,E) V2, for the O-lattice in V)
obtained by taking V\. C Vj_ to be the GL,(O)-invariant O-lattice defined
in [Gerl8, §2.2] (and called M) _ there). Thus Vy is an O[[],, GL.(OF,)]-
module, finite free as O-module.

We next treat the case of G. Let I C Hom(F, ) be a subset such that
Hom(F,Q) = TUI¢. Given 7 € Hom(F*, E), we will sometimes write 7 for the
unique element of I extending 7. The choice of I determines an isomorphism

(ResF+/Q G)Q = H GLQn,Q
re€Hom(F+,9)
taking (Resp+,q T)q to the product of the diagonal maximal tori in the GLa,’s,
and hence an identification of the character group X*((Resp+,qT)q) with
(Z2n)Hom(FT.Q) - The (Resp+/q B)o-dominant weights are exactly those in
the subset (Z%r”)Hom(F+’Q). The isomorphism (Z™)Hom(F2) o (z2n)Hom(F".Q)

identifies a weight A with the weight \ = (5\”) given by the formula
(2.2.2) Ar = (A= A A Ay A ).

TCem) 't ) Tc,10 7,1 YT
Now let 2 = E. We define integral structures under the assumption that each
place 7 of F't above p splits in F. Let S, denote the set of p-adic places of
F, and let S, denote the set ofp adic places of F'™. Let S’ C 5y be a subset
such that S, = S U SC Let [ = I denote the set of embeddings 7: F — FE
inducing an element of Sp. Given v € S, we will sometimes write ¥ for the
unique element of §p lying above v.
The choice of §p determines isomorphisms

G ®0,+ Or+p = [ GLano ot
vES)
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The lattice V' C V5 corresponding to a dominant weight X € X*((Resp+ /Q G)E)
is defined as in the previous paragraph. Thus V5 is an O[[ Iy, G(O o+ )]-module,
finite free as O-module. :

We can now define Hecke algebras. Again, we do this first for G. Let
S be a finite set of finite places of F' containing the p-adic ones, and let
K be a good subgroup of GL,(A%) such that K, = GL,(Op,) if v € S
and K, C GL,(OF,) if v[p. Then for any A\ € (Z7)Hm(FE) the complex
RT'(Xk,Vy) is defined (as an object of D(O), up to unique isomorphism),
and comes equipped with an action of Hecke algebras by endomorphisms (see
(2.1.3)). We define T® = H(G*, K°) ®z O and if V is an O[Ks]-module, finite
free as O-module, then we write T9(K,V) for the image of the O-algebra
homomorphism

T* — Endp (o) (RT (XK, V))

constructed in §2.1.2. If V = V) then we even write T(K, \) = T%(K, V).

We now treat the case of G. Let S be a finite set of finite places of F
containing the p-adic ones and such that S = S¢, and let S denote the set of
places of F™ below a place of S. Let K be a good subgroup of G (A% such
that Ky = é(OFj) for each place v ¢ S, and such that Ky C a((’)Fj) for

each place ©|p. In order to simplify notation, we set GS =G° , 55 = ég, and
similarly KS = K5 and Kg = %g; we will use the same convention for G.

For any \ € (Zi”)Hom(F+’E) the complex RI'(X 7, V) is defined, and comes
equipped with an action as in (2.1.3). We define TS = (G5, K5) ®z O and
if V is an O[Kg]-module, finite free as O-module, then we write TS (K, V) for
the image of the O-algebra homomorphism

T9 - Endp o) (RT (X7, V))

constructed in §2.1.2. If Y = V5, then we even write TS(K,\) = TS(K, V5)-

Note that Lemma 2.1.7 shows that both TS(K, A) and T5(K, \) are finite
O-algebras. We emphasize that the Hecke algebra T (K, \) is defined only
under the assumptions that S contains the p-adic places of F, that K is a good
subgroup such that K, = GL,(Op,) for all v ¢ S, and that A is a dominant
weight for G. The use of this notation therefore implies that these assumptions
are in effect. Similar remarks apply to the Hecke algebra T (K , X)

If K’ C K is a normal good subgroup with (K’)° = K and K/K' abelian,
and V is an O[Ks]-module, finite free as O-module, then we write T°(K/K’,V)
for the image of the homomorphism (cf. 2.1.5):

There are canonical surjective homomorphisms TS (K/K’,V) — TS(K',V)
and TS(K/K',V) — TS(K,V); the first of these has nilpotent kernel. The
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analogous construction is valid as well for G but since we will not use it, we do
not write down the definition.

We will also occasionally encounter other complexes endowed with actions
of the rings TS and T5. (For example, the cohomology RF(@X 7+ Vx) of the

boundary 9X ~ of the Borel-Serre compactification of X =) If C* € D(O)
and we are given an O-algebra homomorphism TS — EndD(O)(C'), then we
will write T(C®) for the image of this homomorphism. More generally, if
K' C K is a normal good subgroup with (K’)® = K and K /K’ abelian, and
C* € D(O[K/K']) is a complex endowed with an O-algebra homomorphism
TS — Endp o[k /k)(C*®), then we will write T9(C*®) for the image of T ®¢
O[K/K'] in Endp(o[k/k1)(C*). In particular, the algebra T9(C*) has a natural
structure of O[K/K']-algebra. We will employ similar notation for TS.

2.2.3. Some useful Hecke operators. In this section we define most of the
Hecke operators that we will need at various points later in the paper. We fix
once and for all a choice w, of uniformizer at each finite place v of F'.

We first define notation for unramified Hecke operators. If v is a finite place
of FFand 1 <i < n is an integer then we write T}, ; € H(GLy,(F,), GL,(OF,))
for the double coset operator

TUJ' = [GLTL(OFU) diag(wv, cee sy Wy, 1, ceay 1>GLn(OFU)]7

where w, appears i times on the diagonal. This is the same as the operator
denoted by Ty, in [NT15, Prop.-Def. 5.3]. We define a polynomial

Py(X)= X" =T X" oo (=18 002, X

(2.2.4)
+ q" V2T, e H(GLW(F,), GLa(Or,))[X].

It corresponds to the characteristic polynomial of a Frobenius element on
rec, (my), where m, is an unramified representation of GLy, (F,).

If v is a place of F* unramified in F, and v is a place of F' above ¥, and
1 <i < 2nis an integer, then we write T, ; € ”H(a(F;), é(on)) ®z Z[g; ') for
the operator denoted T¢ ,; in [NT15, Prop.-Def. 5.2]. We define a polynomial

Py(X) = X2 — Ty X2 o (=1 U V2T, 5+

(2.2.5) = G G 5
+q"C T, o, € H(G(F), G(Op)) ®z Zlgs " [X).

It corresponds to the characteristic polynomial of a Frobenius element on
reca(m), where 7, is the base change of an unramified representation oy of
the group CN}’(F;)

We next define notation for some ramified Hecke operators. If v is a finite
place of F', and ¢ > b > 0 are integers, then we write Iw, (b, ¢) for the subgroup
of GL,,(OF,) consisting of those matrices which reduce to an upper-triangular
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matrix modulo @¢, and to a unipotent upper-triangular matrix modulo @®. We
define Iw, = Iw(0,1) and Iw,; = Iw,(1, 1); thus Iw, is the standard Iwahori
subgroup of GL,,(Op,). If 1 <i < n is an integer and ¢ > 1, then we will write
Uy,i € H(GL,(Fy),Iwy(b, ¢)) for the double coset operator

Up,i = [Iwy (b, ¢) diag(wy, . .., @y, 1, ..., 1)Iw, (b, ¢)],

where w, appears i times on the diagonal. Note that this depends both on the
uniformizer w, and on the chosen level. We hope that this abuse of notation
will not cause confusion. We also define

Uy, = [Iwy (b, ¢) diag(w™™1, @2, ... @y, 1)Iw,(b, c)].
If u e T,,(OF,), then we define
(u) = [Iwy (b, c)ulw, (b, )]

Note that the subgroups Iw, (b, ¢) all admit Iwahori decompositions with respect
to the standard upper-triangular Borel subgroup of GL,. We write A, C
GL,,(F),) for the submonoid defined by

A, = uuezilwv diag(wh?, ..., wh™)Iw,.

We now assume that each p-adic place of F'* splits in F. In this case we set
Ap = Tlves, Do- IF X € (Zm)Hom(FE) " then we define a homomorphism (of
monoids) ay : A, — O by the formula

n

. v (WO .

ax((ky 1 diag(wn™', . .. , Wy ")k 2)ves,) = | I I I I | T (o ) 0 (W5 Vi
vES) TEHOme(Fv,E) i=1

where w§ is the longest element in the Weyl group W ((Resp+ /@ G)E; (Respy ) T)E).
If X e (Zﬁ)Hom(RE) is dominant, then G, acts on V) ®p E = V); we write
(g9,2) — g -« for this action. We endow V) with the structure of O[A,]-module
via the formula

gpr=ax(g) 'g-w
Using the construction in §2.1.2, we see that if K C GL,(A%) is a good
subgroup, and for each place v|p of F' we have K, = Iw, (b, c), then there is a
canonical homomorphism

H(G®, K®) @z H(Ay, Kp) = Endp o) (RT (X, V))),

and in particular all the Hecke operators U, ; and U, act as endomorphisms of
RT'(Xk,V)). Note that the action of these operators depends on the choice of
uniformizer w,, because the twisted action -, does.

Now suppose that ¥ is a finite place of F'T which splits in F, and let v
be a place of F above it. Then v, (Iw,(b,c)) = td (Iwye (b, ¢)) (where here
the subgroup Iw,(b,c) is inside GLayn(F,)), and we write Iwy(b,c) for this
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subgroup of C?(Fgr) We define a Hecke operator in H(a(Fg), Twy(b, c)) for
each i = 1,...,2n by the formula

ﬁv,i = 15 [Twy (b, ¢) diag(wy, . . ., @y, 1, . .., 1)Iwy (b, c)],
where w, appears i times on the diagonal. We also define
U, = 1 [Twy (b, ) diag(w?™ ™1, w272, ... @y, 1)Iw, (b, ¢)].
If u € T(Op+ 3), then we define
(u) = [Twg(b, c)ulwy(b, c)].

If wye = @, then Uye; = Uy an—iU, 3, and Upe = U,U, 52"

We write Ay C E(F; ) for the submonoid defined by

A -1 ] n
Ay =1, ('—lueZi"IWv diag(wh?, ..., wh? )va>
(which is independent of the choice of v). Now suppose that each p-adic place

of F* splits in F. In this case we set A, = [le5, Av- If X € (Z2n)Hom(FT.E)

then we define a homomorphism as : Zp — O* by the formula

2n ~_
~ — . v, v,2n 0,0 § T,1
ax((k@l%l(dlag(w% L ,w% ? ))k@g)iegz)) = H H HT(@';;)“ i (Wg Nri
€S, T€Homq, (FZ’E) =1

where woa is the longest element in the Weyl group W ((Resp+/q é)E, (Resp+ /g T)E).
Here we recall that v € S’p is a fixed choice of place of F' lying above v, and
that it appears also in the definition of VX' If e (Zi”)Hom(F TE) is dominant,

then ép acts on Vy ®o E = V5; we write (g,2) — g -z for this action. We

endow V5 with the structure of O[Ap]-module via the formula
gpr=az(g) g

Using the construction in §2.1.2, we see that if KcC CNJ(AOFOJr) is a good subgroup,

and for each place T|p of F* we have Ky = Iwg(b, ¢), then there is a canonical
homomorphism

H(GS, K%) @z H(Ap, Kp) — Endpo) (RT (X2, V5)),

and in particular all the Hecke operators ﬁv,i and (71, act as endomorphisms of
RU(X, V3).

If v is a finite place of F', prime to p, and I, is an open compact subgroup
of GL,(Fy) satisfying Iw,(1,1) C I, C Iw,(0,1), then Iw,(0,1)/I, can be
identified with a quotient of (k(v)*)", and we write =, for the corresponding
quotient of (F)". A choice of uniformizer then determines an isomorphism
=y 21w, (0,1)/1, x Z". We write 2 C Z, for the submonoid corresponding
to Iw,(0,1)/1, x Z (which does not depend on the choice of uniformizer).
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If v is prime to p, then we can define an algebra homomorphism O[Z,] —
H(GL,(F,), I,) ®z O as follows. On O[Z/], it is defined by sending A € =,
to qé/\/’pﬂn*l)ﬂdet) [I,AI,], where N € X.(T) denotes the image of A and
p € X*(T) is the usual half-sum of positive roots. The elements of this form
are invertible (as follows from [Flil1l, Corollary 3.4]; note that we are using
here only that g, is a unit in O), so this map extends uniquely to an algebra
homomorphism O[=,] — H(GL,(Fy,),I,) ®z O. Given a € F), we write
tvi(a) € H(GL,(F,),I,) ®z O for the image under this homomorphism of
the element (1,...,1,a,1,...,1) of Z, (where « sits in the i*" position) and
evi(a) € H(GL,(F,), I,) ®z O for the coefficient of (—1)*X* in the polynomial
[Tie1 (X —tyi(a)). Given an element o € Wp,, we define the polynomial
(2.2.6)

n n

Po(X) =[(X —tui(0) =D (-1)'eni(a) X" € H(GLn(F,), I,) ®z O[X],
i=1 =0

where a = Art;\j(0_|pgb).

PROPOSITION 2.2.7. Let m, be an irreducible admissible Q,[GLy(F,)]-
module.

(1) We have wlv # 0 if and only if m, is isomorphic to an irreducible

subquotient of a representation n—IndEiE}&vF)“) X, where x = X1 ®+ - ®Xn :

(E)" — Q; is a smooth character which factors through the quotient
(XY™ — 2,
(2) Suppose that Tlv # 0. Then for any o € FX, e, i(a) acts on wlv as a
scalar e, ;(a, my) € Q;
(3) Suppose that v # 0, and let (r, Ny) = recf, (m,). Then for any o €
W, , the characteristic polynomial of (o) is equal to S o (—1)%ey i (a, mp) X7,
where o = Art;j(0|ng).

Proof. The first part follows from [F1il1, Theorem 2.1]. The second part
is a consequence of the fact that the elements e, ;(«) lie in the centre of
H(GL,(Fy), I,) ®z O, which in turn follows from the explicit description of the
centre in [Flil1l, Proposition 4.11]. The final part follows from the description

in [Flill, §4] of the action of this centre on the I,-invariants in the induced
GLy, (Fy) 0

representation n-Ind g ' -

We now describe the behavior of some of the above Hecke operators under
parabolic restriction, with respect to the Siegel parabolic. We first give the
statements in the unramified case. In order to ease notation, we use the
following convention: if f(X) is a polynomial of degree d, with unit constant
term ag, then fV(X) = ag ' X9f(X ).
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PROPOSITION 2.2.8. Let v be a place of F', unramified over the place © of
F*. Let

S H(G(F),G(Op)) = H(G(F) ), G(Op+))
denote the homomorphism defined c:t the end of §2.1.2. Thven we have
S(Py(X)) = Py(X)gi®" VP (q) 2" X).
Proof. See [NT15, §5.1]. O

We now discuss the ramified split case. Suppose now that v is a place of F'
which is spht over the place D of F*. Let Iy be a subgroup of G (FL) satisfying
Iwg(1,1) C Iy C Iwg(0,1). Then IyN G(FZ) may be identified with a product
I, x Iye of open compact subgroups of GLy, (Fy) and GL, ( F,c), respectively.
We write Z7 for the quotlent of T(F} +) corresponding to IU, then there is a

natural identification Z5 = Z, X Epe. If 0 € Wg,, then we define
(2.2.9)

2n 2n
Pyo(x) = E(X—Lil(tv,i(a))) = ;(—1) 1y (ewi(@) X € H(G(FT), In)@z0(X],

where a@ = Art}v1 (0|pav). The polynomial P, ,(X) plays the same role for
é(Fg') = GLa2,(F,) as the polynomial P, ,(X) did for GL,(F,) in the first
part of this section.

Recalling the discussion in §2.1.8, we see that there is a homomorphism
O[=F] — O[=F x =] fitting into a commutative square

H(Ag, Iy) 07 O EZ5 H(A, x Aye, I, x Ipe) @7 O,
The top arrow extends uniquely to a homomorphism S : (’)[ég] — O[E, X Zyel.
We have the following simple consequence of Lemma 2.1.11 and the surrounding
discussion:

PROPOSITION 2.2.10. Let M be an O[G(F)]-module, and let M' =

G(E])
P(F)

f(z-x) =8(2)- f(z) forallx € (M’) 7, z € O[Zg]. Moreover, for any o € W,

we have

Ind M. Then the natural homomorphism f : (M’) 7 MT¥lve satisfies

S(PualX)) = Pug(X) o 3072 Par (o[ ).

Proof. The first assertion is a reformulation of Lemma 2.1.11. The second
assertion is a calculation using the remark immediately preceding Lemma
2.1.11. O



POTENTIAL AUTOMORPHY OVER CM FIELDS 27

2.2.11. Duality and twisting. In this section we record some operations
that relate cohomology groups of the GLy-arithmetic locally symmetric spaces
of different weights. We deal with duality first. There is a duality involution
v : T9 = T9, which sends a double coset [K°gK°] — [K%¢g~'K?®]. (This can
be defined rather more generally, in which case it would be an anti-involution;
since TY is commutative, we can drop the word ‘anti’.) Equivalently, for any
place v ¢ S of F, it sends the Hecke polynomial P,(X) to the polynomial

@™V PpY(gl="X). If m C T9 is a maximal ideal with residue field a finite
extension of k, then we define m" = ¢(m).

The relation between the involution ¢ and Poincaré duality is described by
the following proposition. We write D = dimg X©.

PROPOSITION 2.2.12. Let R = O or O/w™ for some m > 1. Let K C
GL,(A®) be a good subgroup, and let V be an R[Kg|-module, which is finite
free as an R-module. Let V¥ = Hom(V, R). Then there is an isomorphism

RHompg(RT(Xk,V),R) & RI'(Xk,VY)[D]

in D(R) that is equivariant for the action of T° when T acts by i* on the
left-hand side and in its usual way on the right-hand side.

Proof. See [NT15, Prop. 3.7]. O

COROLLARY 2.2.13. Let R = O or O/w™ for some m > 1. Let K C
GL,(A%) be a good subgroup, and let V be an R[Kg|-module, finite free as
R-module. Let V¥ = Hom(V, R). Then v descends to an isomorphism

T¥(Rle(Xk, V)) = TR (X, V7))
of R-algebras. If i € [0, D] is an integer, then v descends to an isomorphism
T(H\(Xk,V)) 2 T°(HP 7 (XK, V)).
In particular, if m is a mazimal ideal of TS in the support of H* (X, VV), then
m" is in the support of HX( X, V).
Proof. Tt suffices to note that the morphism
Endp(g)(RT(Xk,V)) = Endp gy (RT(Xk, V)

induced by the Poincaré duality isomorphism is itself an isomorphism. O

We next deal with twisting. If ¢ : Gp — O is a continuous character,
then we define an isomorphism of O-algebras fy, : TS — T by the formula
fo([K9gK5]) = ¢(Artp(det(g))) LK gK®]. (It is an isomorphism because
it has an inverse, given by the formula f; 1— fp—1) fmC T% is a maximal
ideal with residue field a finite extension of k, then we define m(¢)) = fy,(m).
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ProOPOSITION 2.2.14. Let K C GL,(A%¥) be a good subgroup, and let
¥ : Gp — O be a continuous character satisfying the following conditions:

(1) For each finite place v{p of F, ¢ o Artp, is trivial on det(K,).

(2) There is m = (my,), € ZHOEE) sych that for each place v|p of F, and

for each k € det(K,), we have
P(Artp, (k) = I1 (k)"
TEHome(FU,E)
Let € (Zi)Hom(F’E) be the dominant weight defined by the formula p, =
(mr,...,m;) for each 7 € Hom(F, E). Then for any \ € (Zﬁ)Hom(F’E) there is
an isomorphism
RT(Xg, V) = RI' (XK, Vagp)

in D(O) which is equivariant for the action of TS when TS acts in the usual
way on the left-hand side and and by fy, on the right-hand side.

Proof. The character ¢ defines a class in H*(Xx, V) = Homgy(x ) (O, V,.).
By tensor product this determines a morphism V\ — V) ®o V, = V)4, of
sheaves on X, hence a morphism RI'(Xx,Vy) = RI['(Xgk,Vyyy,) in D(O). In
order to determine how this morphism behaves with respect to the action of
Hecke operators, we will repeat this calculation in D(T%).

Let A= Indgtzgg)%o) O = H°(Xg, 0). There is an isomorphism
H(X6, V) = Ao V)

of O[GLn(A%O’S) x Kg)]-modules, and hence a canonical isomorphism in D(T?):
RT'(Xk,V)) & RT'(K,A®0 Vy).

The same applies when ) is replaced by any other dominant weight in (Zﬁ)Hom(F ),

The class v in HY( X, V,,) corresponds to the K-equivariant map gy : A —

A ®o V,, which sends a function f : GL,(F)\GL,(AF) — O to g4(f)(g) =

(det(g))f(g). The map gy becomes G® x Kg-equivariant when we twist the

action on the source, giving

gy A= Ao V(¥ ).

By definition, the twist (¢y~1%) means that the action of an element g € G°
is twisted by 1 (det(g))~!. Taking the tensor product by V) and then taking
derived K-invariants gives a morphism

RT (X, V) = RU(Xk, Vaiu(¥™5%))
in D(T?), hence a T*-equivariant isomorphism

RU(Xk, V) — BT (X, Vagn(p™5))
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in D(O). The proof of the proposition is complete on noting that there is a
canonical isomorphism

RU(X e, Vain (™)) 2 RT(X K, Vaiy)

in D(O), which is equivariant for the action of T when T* acts in the natural
way on the source and by f, on the target. O

COROLLARY 2.2.15. Let K C GL,(A%) be a good subgroup, and let
Y Gp — O be a continuous character satisfying the following conditions:

(1) For each finite place v{p of F, ¢ o Artp, is trivial on det(K,).
(2) There is m = (m,), € ZHEE) sych that for each place v|p of F, and
for each k € det(K,), we have

P(Artp, (k) = II (k)"

TeHomq, (Fv,E)

Let i € (Zi)Hom(F’E) be the dominant weight defined by the formula p,r =
(myy...,m;) for each 7 € Hom(F,E). Then for any X\ € (Z’_";)Hom(F’E), fo
descends to an isomorphism

TS(K,\) = T(K,\+ p).

In particular, if m is a mazimal ideal of T° which is in the support of
H*(Xk, V), then m(v) is in the support of H*(X g, Viyp)-

Proof. This is an immediate consequence of Proposition 2.2.14. ([

2.3. Some automorphic Galois representations. In the next two sections
of this chapter, we state some results asserting the existence of Galois rep-
resentations associated to automorphic forms. Although the main results of
this paper concern the relation between classical automorphic representations
and Galois representations, we must also consider the Galois representations
associated to torsion classes, and therefore valued in (possibly p-torsion) Hecke
algebras. This goes some way towards explaining the need to state so many
closely related results here. A large part of this paper will be taken up with the
problem of studying the local properties of the Hecke—algebra valued Galois
representations whose existence is asserted in the statement of Theorem 2.3.7.

2.3.1. Existence of Galois representations attached to automorphic forms.
If  is an irreducible admissible representation of GL, (A ) and A € (Z7)Hom(C)
we say that 7 is of weight A if the infinitesimal character of m, is the same as
that of V.

THEOREM 2.3.2. Letm be a cuspidal automorphic representation of GLy,(AF)
of weight \ € (Zﬁﬁ)Hom(F’C). Then for any isomorphism 1 : Q, — C, there
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exists a continuous semisimple representation r,(m) : Gp — GLn(Qp) satisfy-
ing the following condition: for each prime l # p above which both F and w
are unramified, and for each place v|l of F, r.(7)|cy, is unramified and the
characteristic polynomial of r,(m)(Frob,) is equal to the image of P,(X) in

Proof. This is the main theorem of [HLTT16]. O

THEOREM 2.3.3. Suppose that F' contains an imaginary quadratic field.
Let  be a cuspidal automorphic representation of CN¥(AF+), and let & be an
irreducible algebraic representation of éc such that 7 is &-cohomological. Then
there exists a partition 2n = ny + - -+ + n, and discrete, conjugate self-dual au-
tomorphic representations 111, ..., I, of GL,, (AF),...,GLy,, (AF), satisfying
the following conditions:

(1) Let T =11, B---BIL,.. Ifl is a prime unramified in F and above which
7 is unramified, then I1 is unramified above I and for each place v|l of
F lying above a place v of FT, 11, and 75 are related by unramified base
change.

(2) If Fy C F is an imaginary quadratic field and 1’ is a prime which splits in
Fy, then for each place v|l" of F lying above a place v of F*, 11, and w5
are identified under the induced isomorphism v, : CN;’(Fgr) = GLap (Fy).

(3) The infinitesimal character of I is the same as that of the representation

(§®€)Y of GLan(F ®q C).

Consequently, there exists for any isomorphism ¢ : Qp — C a continuous
semisimple representation r,(m) : Gr — GLn(Q,) satisfying the following
conditions:

(a) For each prime | # p which is unramified in F and above which m is

unramified, and for each place v|l of F', r,(7)|Gy, is unramified and the
characteristic polynomial of () (Froby) is equal to the image of Py(X)
in Q,[X].

(b) For each place vlp of F, r,(m) is de Rham and for each embedding
7: F = Q,, we have

HTT(TL(TF)) = {XT,l +2n — 17 XT,2 +2n — 2> s 7XT,27L}’

where \ € (Z?[‘)Hom(F’QP) is the highest weight of the representation
THE® €)Y of GLay, over Q.

(¢) If Fo C F is an imaginary quadratic field and [ is a prime which splits
in Fy, then for each place v|l of F lying above a place v of F*, there is

an isomorphism WD (r,(m)|c,, )™ = recf, (75 0 1).

Proof. We will deduce this from [Shil4]. The main wrinkle is that this
reference gives a case of base change for unitary similitude groups (while our
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group Gis a unitary group, with trivial similitude factor). Let [*™* be an
auxiliary prime at which both F' and 7 are unramified. In order to prove the
proposition, it suffices to prove the existence of an automorphic representation
IT of GLg,(AF) satisfying the second and third requirements, and satisfying
the first requirement at almost all rational primes, including /*"*. We can
then use strong multiplicity 1 and our freedom to vary [*"* in order to recover
the proposition as stated. The existence and local properties of the Galois
representation are then a consequence of the existence of II (a result due to
many people, but see e.g. [Carl4]).

Let G’ denote the similitude group associated to é; thus there is a short
exact sequence

1——Resp+ ) G—— G ——Gp——1

of reductive groups over Q. By the main result of [Shil4], it suffices to find
an irreducible algebraic representation &’ of G- and a cuspidal automorphic
representation 7' of G'(Aq) satisfying the following conditions:

e The restriction 7| & contains 7.
F+

e 7' is &’-cohomological. )

e 7’ is unramified at [*"*.
Arguing as in the proof of [HT01, Thm. VI.2.9], we see that it is enough to
show the existence of a continuous character 1 : AIX,O /Fp* — C* satisfying the
following conditions:

e The restriction 1| (A% )e=1 is equal to the restriction of the central
Fo
character wy : (A%)=! — C* of 7w to (AR )"
e 1 is of type Ay, i.e. its restriction to FO>,<oo arises from a character of the

torus (Resp,/q Gm)c-

® Y|nx is trivial.
Fo’laux

The existence of such a character follows from the algebraicity of wﬂ\( A% Je=1;
Fo

itself a consequence of the fact that m is £&-cohomological. O
2.3.4. Existence of Hecke algebra-valued Galois representations.

THEOREM 2.3.5. Let m C TS(K,\) be a mazimal ideal. Suppose that S
satisfies the following condition:

e Let v be a finite place of F' not contained in S, and let | be its residue
characteristic. Then either S contains no l-adic places of F and [ is
unramified in F, or there exists an imaginary quadratic field Fy C F in
which | splits.

Then there exists a continuous, semi-simple representation

P : Grs — QL (T (K, \)/m)
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satisfying the following condition: for each finite placev & S of F', the character-
istic polynomial of py,(Froby) is equal to the image of Py(X) in (T (K, X)/m)[X].

We note that our condition on S can always be achieved after possibly
enlarging S.

Proof. Fix an embedding T(K,\)/m — F,. According to [Sch15, Cor.
5.4.3], there is an n-dimensional continuous semisimple Galois representation gy, :
Grs — GL,(F,) such that for each finite place v ¢ S of F, the characteristic
polynomial of p,,(Frob,) is equal to the image of

X" w,an_l N (_1)iq3i_1)/2ﬂ,an_i NN q?u(n_l)/zTn,w
in F,[X]. (Our condition on S ensures that we can appeal to the results
of [Sch15] in a case where they are unconditional, cf. Theorem 2.3.3 and
the discussion in [Sch15, Rem. 5.4.6]). Combining the Chebotarev density
theorem, the Brauer—Nesbitt Theorem and the vanishing of the Brauer group

of a finite field [DS74, Lem. 6.13], we see that p,, can in fact be realized over
T (K, \)/m. O

DEFINITION 2.3.6. We say that a mazimal ideal m C T is of Galois
type if its residue field is a finite extension of k, and there exists a continuous,
semi-simple representation py, : Grs — GL, (T /m) such that for each finite
place v € S of F, the characteristic polynomial of py(Froby,) is equal to the
image of P,(X) in (T /m)[X].

We say that a mazimal ideal m C TS is non-Eisenstein if it is of Galois
type and p,, s absolutely irreducible.

Note that Theorem 2.3.5 can be viewed as asserting that, under a suitable
condition on S, any maximal ideal of T in the support of H*(Xf,\) is of
Galois type. We observe that if m € T9 is of Galois type, then so is mV,
and in fact pypv = ph @ 7"
is mY. Similarly, if ¢ : Gp — O* is a character satisfying the hypotheses of

. In particular, if m is non-Eisenstein, then so

Proposition 2.2.14, and m C T? is a maximal ideal of Galois type, then so is
m(¢), and in fact Pm(yp) = P @ 9. In particular, if m is non-Eisenstein, then so

is m(v).

THEOREM 2.3.7. Let m C TS(K,\) be a mazimal ideal. Suppose that S
satisfies the following condition:

o Let v be a finite place of F' not contained in S, and let | be its residue
characteristic. Then either S contains no l-adic places of F' and [ is
unramified in F', or there exists an imaginary quadratic field Fy C F in
which | splits.
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Suppose moreover that py, is absolutely irreducible. Then there exists an integer
N > 1, which depends only on n and [F : Q], an ideal I C TS (K, \) satisfying
IN =0, and a continuous homomorphism

P : Grs — GL, (TS (K, \m/I)

satisfying the following condition: for each finite placev ¢ S of F', the character-
istic polynomial of py, (Froby) is equal to the image of Py(X) in (T (K, N)w/I)[X].

Proof. This follows from [Sch15, Cor. 5.4.4]. O

THEOREM 2.3.8. Letm C TS(%,X) be a mazximal ideal. Suppose that S
satisfies the following condition:

e Let v be a finite place of F' not contained in S, and let | be its residue
characteristic. Then either S contains no l-adic places of F and [ is
unramified in F, or there exists an imaginary quadratic field Fy C F in
which | splits.

Then there is a continuous, semi-simple representation
7= : Grs — GLo, (T (K, N))

satisfying the following condition: for each finite place v & S of F, the
characteristic polynomial of Pm(Frob,) is equal the the image of P,(X) in
(T(K, A) /m)[X].

Proof. The existence of a 2n-dimensional group determinant valued in
TS(K,\)/m follows from [NT15, Theorem 5.6]. (It is implicit in [Sch15].)
Fix an embedding TS (K, \)/m < F,. The group determinant determines a
representation over F,, by [Chel4, Theorem A]. It follows by the same argument
as in the proof of Theorem 2.3.5 that this representation can in fact be realized
over TS(K,\)/m. O

2.4. Boundary cohomology. In the remaining two sections of this chapter
we prove some results about the boundary cohomology of the arithmetic locally
symmetric spaces of G and G. This is made possible by the existence of Galois
representations attached to Hecke eigenclasses in the cohomology of these
groups and of their Levi subgroups. The important observation is usually that
the cohomology of a certain stratum in the boundary can be observed to vanish
after localization at a sufficiently nice (e.g. non-Eisenstein) maximal ideal of a
suitable Hecke algebra.

2.4.1. The Siegel parabolic. Let KcC é(A%‘L) be a compact open subgroup
which is decomposed with respect to the Levi decomposition P = GU (cf.
§2.1.2). Weset K = K NG(A%,) and Ky = K NU(A%,). Let m € T9(K, \)
be a non-Eisenstein maximal ideal, and let m C TS denote its pullback under
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the homomorphism § : TS — TS defined in §2.1.2. In order to state the first
main result of this subsection, we recall that the boundary 0X = = X = — X = of
the Borel-Serre compactification of X = has a G (A%, )-equivariant stratification

indexed by the parabolic subgroups of G which contain B. See [NT15, §3.1.2],
especially [NT15, Lem. 3.10] for more details. For such a standard parabolic
subgroup @), we denote by )N(IQ{ the stratum labelled by ). The stratum X}%
can be written as

X9 = Q(F)\ (X9 x G(AF)/K).
As discussed in §2.1.2, there is, for any Xe (Zi")Hom(F +’E), a homomorphism
T% — Endp (o) (RT(X 2, V3)).

Therefore, we can define the localization RF(XVI%, V5)z- (This complex will be

m
non-zero in D(O/w™) if and only if the maximal ideal @ of TS occurs in the
support of the cohomology groups H *(X[%, VX)‘)

THEOREM 2.4.2. Let m C TS(K,\) be a non-Eisenstein mazimal ideal
and let m = S*(m) C T. Let \ € (Zi”)Hom(F+’E). Then there is a natural
TS -equivariant isomorphism

=p o ~
RF(XI?, V')\V)r} — RF((?XE., V’)\V)~

m

in D(O).

Proof. There is no harm in enlarging S, so we first add finitely many
places to S, ensuring that it satisfies the condition of Theorem 2.3.5. The
proof is similar to the proof of [NT15, Thm. 4.2], which applies to the case
of Resp/qGLy and which shows that the cohomology of the stratum labelled
by any proper parabolic subgroup of Resy/qGLy, is Eisenstein. Since P is a

maximal parabolic of CNJ, the inclusion X 11; CoX 7 is an open embedding, which

induces a natural, TS -equivariant map
~p ~
RFC(X[?, Vx)a — RF(@XI?, Vx)a,
and which fits into an excision distinguished triangle

P v ¥ o\ ¥P 1
RUW(XE,V5)z = RU(OX 5, Vy)z — RUOX\ X2, V)5 .

We will show that RF(@)N([? \ )?IL;,VX)T; = 0 in D(O), by showing that for
each fsvtandard proper parabolic subgroup @ C G with Q # P, we have
RFC(XI%, Vi)m = 0 in D(O). This will also show that the natural map

v P Yy P

m
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is an isomorphism.

In order to show this vanishing, it suffices (after possibly shrinking K at
the p-adic places of F') to show that if Q # P is a standard proper parabolic
subgroup of é, then RF(XVI%, k); = 0. (We are using here that if C'* is a perfect
complex in D(0), then C* = 0 in D(O) if and only if C*®% k = 0 in D(k). We
are also using Poincaré duality to exchange cohomology with compact support
for usual cohomology, as in [NT15, Prop. 3.7].)

We will in fact show that, for any maximal ideal m’ C TS in the support
of RF()?I%, k), there exists a semisimple residual Galois representation

P Grs — GLa, (TS /W)
such that for each place v € S of F, the characteristic polynomial of p, equals

the image of P,(X) in (TS /@')[X]. Moreover, assume that the Levi component
M of @ is of the form

ReSF/F+GLn1 X - X ReSF/F+GLnT X én_s
for integers r > 1,n; > 1,s € {1,...,n} satisfying >i_;n;, = s. (More
precisely, that it is the block diagonal subgroup of G associated to the partition

2n =mn1 +---+n, +2(n — ) +ny 4+ --- + ny. These describe all the standard
F*-rational Levi subgroups of G.) Then we have

(2.4.3) B = G115 & 7 (n — ) &Iy (7)Y,

where p, is n;~dimensional and p/'(n — s) is (2n — 2s)-dimensional. The non-
Eisenstein condition on m implies that

Py = P1 D P2,
where both p1, p2 are (absolutely) irreducible n-dimensional representations.
This shows that, unless 7 = 1 and s = n, RI’()N(I%, k); =0. Thecaser = 1,s =n
corresponds precisely to the Siegel parabolic P.

Let us define T% = H(Q?, Eg)@z(’) and TS, = H(MS,K?,). We recall (cf.

§2.1.2) that there are homomorphisms 7 : TS - T% and 7y : T% — TSM7 and

that we set Sg =1y orQ. An argument formally identical to that of [NT15,
Thm. 4.2] shows that for any maximal ideal m’ of T® in the support of
H*(Xg, k), there exists a good subgroup K, C Ky with (K,)® = K3, and a

maximal ideal m’ of T, in the support of H*(X% , k) such that m’ = S](\;j*(m/).

In order to complete the proof of the the(])wrem7 it therefore suffices to
show that for any good subgroup Ky C M(A®) with K, = K%, and for
any maximal ideal m’ of T3, in the support of H*(X KM]M7 k), there exists a
semisimple residual Galois representation

ﬁS*(m’) : GF,S — GLQn(TS/S*(m/))
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such that for each place v ¢ S of F, the characteristic polynomial of g« ()
equals the image of P,(X) in (TS/m')[X]; and moreover, that this Galois
representation admits a decomposition of the form (2.4.3).
After possibly shrinking K7, we can assume that it admits a decomposition
Ky = K1 x---x K, x K, where K; C GLy,, (A¥) and K, C Gy, s(A%,). After
possibly enlarging k, we can moreover assume, in the obvious notation, (by the
Kiinneth formula) that there exist maximal ideals my,..., m,, m; of the Hecke
algebras TéLnl e ’TéLnr’T%n,s’ respectively, which are in the supports of
the groups H* (Xg?"l k), .. ,H*(X%“"T k), H* (ng’s, k), respectively, and
such that m’ is identified with (my,..., m,, ms) under the isomorphism
T3 = T, ®0®- - 80 Ty, @0 T2

n—s
We can moreover assume that all of the the maximal ideals mq, ..., m,, ms and

m’ have residue field k. N
Let us write PJ(X) € Tgy, [X] and Pj(X) € T% [X] for the analogues

for the groups GL,, and E;’n_s of the Hecke polynomials defined in §2.2.3.
By Theorem 2.3.5 and Theorem 2.3.8, there exist continuous, semi-simple
representations

Pm; - Grs — GLy, (k) (i=1,...,7)
and
pq—an : GF,S - GLQ(n—s) (k)

such that for each finite place v ¢ S of F' and for each ¢ = 1,...,r, the
characteristic polynomial of p,, (Frob,) is equal to P!(X) mod m;; and the
characteristic polynomial of pj;, (Froby,) is equal to P;(X) mod ms.

The proof of the theorem is complete on noting that we can take

T
Psm) = D (Pm, @ €T TP @ gy @ e M)} g oo @ e,
i=1

That this choice is valid rests on the computation of the image of EU(X ) under

the map Sf;. The details are very similar to the proof of [NT15, Prop.-Def.
5.3], and are omitted. 0

We can now state the second main result of this subsection, which takes
Theorem 2.4.2 as its starting point. It involves in an important way the Hecke
operators defined in §2.2.3.

THEOREM 2.4.4. Let K C a(A°F°+) be a good subgroup, and let A €
(zn)Hom(FE) pe o dominant weight whose image in (Z2n)Hom(FT.E) 4o (.
dominant. Let m C T%(K,)\) be a non-Eisenstein mazximal ideal, and let
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m C TS denote its pullback under the homomorphism S : TS — TS. Suppose
moreover that there is a subset R C S satisfying the following condition:
e R is invariant under complex conjugation. We let R denote the set of
places of F lying below a place of R, and choose for each place T € R
a place v € R lying above it.
e For each place v of F* lying below a place v of R, Lv/l\(% s a subgroup
of Iw, which contains Iw, 1.

Let qu% = TS @0 Ruch (’)[Eg], where the group Z= is as defined in §2.2.3.

v
Similarly, let T3, = T°®@0Quer O[Zs]. Then the homomorphism S : T3, — T3,
descends to a homomorphism

TH(RT(0X 2, V5)z) — TH(RT (XK, Vi )m).

Proof. Let T%Hr C T% and T%,Jr C T]S% denote the subalgebras where we

replace each group =, by its submonoid Z; in the definition. The first step in

the proof is to note that it suffices to show that S descends to a homomorphism
T‘%ARF(@X}% Vi) — T% . (RT(Xk, V2)),

by Theorem 2.4.2, and because this homomorphism, if it exists, extends uniquely
to a homomorphism of Hecke algebras with the +’s removed.

On the other hand, the discussion at the end of §2.1.8 shows that S :
T% L T*}%y  descends to a homomorphism

(2.4.5) T} (RT(OXE, V) = Th  (RO(XE | V5)),

where ’T‘% 4 acts on the latter complex via rp. It therefore suffices to show that
S descends to a homomorphism

(2.4.6) T, +(RF(X£P, V5)) = T 4 (RT(Xk, V2)),

where TIS% 4 acts on the latter cohomology groups via § = rg orp. In fact, it
even suffices to show that for each m > 1, § descends to a homomorphism

(2.4.7) T}, +(J-zF(XIL;P, Vi/@™) = T (RT(Xk, /&™),

cf. [NT15, Lemma 3.12].
However, arguing in the same way as on [NT15, p. 58], we see that there
is an isomorphism

my ~ T PSxK f( m
RI‘(XII;P,VX/W ) = RU(KP x Kg, RU(Inf s 5 Xa, R1 V5 V5/w™)),

where the derived pushforward sends (complexes of) PS x K, p,s-equivariant
sheaves on X¢ to PS x K. s-equivariant sheaves on X¢. Suppose we knew that

V) /w™ was a direct summand of leU’SVX/ w™; then we could conclude, by
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arguing in the same way as at the top of [NT15, p. 59|, that 7§ RIN( X, Vy/@™)
is isomorphic to a direct summand of RT'(X 11% ; Vx/@™) in the category
P

D(H(PS x Ap x Kps_r, Kp) ®z O/a™),

implying the existence of the homomorphism (2.4.7).
It remains to construct the desired splitting of V /™ as a direct summand

of R15VS V5 /@w™. To do this, we recall the following two facts:

o K, p is a semidirect product K, p = fU x K (by assumption: K is
decomposed with respect to the Levi decomposition P = GU).

e There is a K, p-equivariant embedding V) — VX’ which splits after
restriction to K. (This follows from [NT15, Corollary 2.11].)

The morphism V) /@™ — leU’SVX/ w'™ is the composite of the reduction

m U,s

modulo @™ of the given map V\ — V; , together with the morphism

V5/ wm)Kus leU’SVX/ w™ whose existence is assured by the universal
property of the derived functor.

The morphism leU’SVX/ w™ — V) /@™ is the composite of the morphism

RI*KU’SVX/ @™ — V5 /w™ (given by restriction to the trivial subgroup) and the
reduction modulo @w™ of the K-equivariant splitting VK — V,. This completes
the proof. O

2.4.8. Some results on rational cohomology.

THEOREM 2.4.9. Fix a choice of isomorphism ¢ : Qp — C.

(1) Let w be a cuspidal, reqular algebraic automorphic representation of
GL,(AFr) of weight tA\. Suppose that there exists a good subgroup
K C GL,(AF) such that (7>°)X # 0. Then the map TS — Q,
associated to the Hecke eigenvalues of (:™17>)K factors through the
quotient TS — T(K, \).

(2) Letqo=[F':Qn(n—1)/2,lp = [F*:QJn—1. Let K C GL,,(AF) be
a good subgroup, and let m C TS(K, V) be a maximal ideal such that
Pm 15 absolutely irreducible. Then for each j € Z, the group

HY (X, V))ml[1/P]

is non-zero only if j € [qo, qo + lo]; moreover if one of the groups in this
range is non-zero, then they all are.

If f: T9(K,V\)m — Qp is a homomorphism, then there exists a
cuspidal, regular algebraic automorphic representation m of GL,(AFr) of
weight '\ such that f is associated to the Hecke eigenvalues of (1= %)X,
In particular, there is an isomorphism r,(7) = py,.
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Proof. For the first part, it suffices to show that there is a non-zero
eigenvector for H(GLn(A%O’S), K?%) in H*(Xg,V,)) with the eigenvalue of T}, ;
equal to its eigenvalue of T} ; on ko,

Likewise, for the second part it suffices to show that the group H? (X g, VA )m :
HI (X, Va)m®0,, C is non-zero only if j € [qo, g0 + o], that if one of the groups
in this range is non-zero they all are, and that if f : H(GLn(A?’S), K% — C
is a system of Hecke eigenvalues appearing in H*( Xk, V,))m then there is a
cuspidal, regular algebraic automorphic representation of GL,(Ar) of weight
LA giving rise to this system of Hecke eigenvalues.

As a consequence of Franke’s theorem [Frad8, Thm. 18], as in [FS98, §2.2],

we have a canonical decomposition

K
H*(Xg,V\) = < P H*(me, K Ay, (g} Oc VLA)(XA)) :
{Q}eC

In this formula, C is the set of associate classes of parabolic Q-subgroups
of Resp/q GLy,. The cohomology on the right hand side is relative Lie algebra
cohomology, m¢ is the Lie algebra of the real points of the algebraic group given
by the kernel of the map Np/q o det : Resp/q GL, — GL1, and Ay, (g) is a
certain space of automorphic forms (in particular, it is a GL,, (A% )-module).
Finally, the (x») denotes a twist of the GL,, (A% )-module structure, determined
by the central character of V,), which appears because the automorphic forms
considered in loc. cit. are by definition invariant under translation by R>? C
(Respyq GLn)(R). We set Eygy = H*(mg, Koo; Ay, 10y ®c Via)(xa)- The
summand Efé} is the cuspidal cohomology group

H::kusp(XKa Via) = @(WOO)K ®c H* (9, Keo; Too @c Vir)

™

where the sum is over cuspidal automorphic representations of GL,,(Af), and
g is the Lie algebra of (Resp/q GL,)(R).

Let 2t be a maximal ideal of %(GLn(A%O’S), K?%) ®z C in the support
of E{Z?}. Suppose Q C Resp/q GLy, is the standard (block upper triangular)
parabolic subgroup corresponding to the partition n = ny+---+n,. We denote
its standard (block diagonal) Levi factor by Lg. In order to simplify notation,
we set

W = W ((Resp/q GLn)c; (Resp/q Tn)c),
Wq = WQ((ReSF/Q GL,)c, (ResF/Q T.)c),

and
W9 = W9 ((Resp/q GLn)c, (Resp/q Tn)c)
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(notation as in §1.2). It follows from [FS98, Prop. 3.3] (see also the proof of
[Fra98, Thm. 20]) that 9t corresponds to the system of Hecke eigenvalues for
the (unnormalized) parabolic induction Indgb:(o?)%o) o™, where 0 = ®;_, m; is
a cuspidal automorphic representation of Lo(Aq) = [[j—; GLn,(Ar) whose
infinitesimal character matches that of the dual of the (Lg)c-representation
with highest weight w(:A4p) — p, for some w in the set W<. Here p denotes half
the sum of the (Resy/q Bn)c-positive roots, and we note that each w(tA+p)—p
is a dominant weight for (Lg)c. In particular, the m; are regular algebraic
cuspidal automorphic representations of GLj,,(Ar) (whose weight depends on
w).

We sketch how this statement can be deduced from the proof of [FS98,
Prop. 3.3]. The space Ay, (g} decomposes, as a GL,(A%)-module, into a
direct sum @4,Ay;, 10},,- Each space of automorphic forms Ay, 10y, is the
quotient of a space denoted Woz® S (&g) in loc. cit. It is also observed
in the proof of [FS98, Prop. 3.3] that this space, as a GL,(A%)-module,
has a filtration whose quotients are isomorphic as GL, (A% )-modules to a
normalized parabolic induction Indgag;? )(5Q ® m°). Our notation differs
from [FS98], as we are writing Ind for unnormalized parabolic induction. Here
7 is a cuspidal automorphic representation of Lg(Aq) whose infinitesimal
character corresponds under the normalized Harish-Chandra isomorphism to
a weight in the W-orbit of the infinitesimal character of V¥ (by [FS98, 1.2
c)]). The normalization is given by the character dg of Ly(Aq) defined by
5q(1) = etfara) where Hy is the standard height function defined in [FS98,
p.769] and pg is half the sum of the roots in the unipotent radical of Q.
Although 7 will not always be regular algebraic, the twist o := dg ® 7 will be.
More precisely, we show that the infinitesimal character of ¢ equals that of the
dual of the (Lg)c-representation with highest weight A\, := w(tA + p) — p, for
some w € W¥. Indeed, we have v € W€ such that the infinitesimal character
Xo = Xr + pg = v(LAY + p) + pg, where AV is the highest weight of V¥

(which has infinitesimal character tA\V + p). A short calculation shows that

—\V
Xo = )‘wngvwo

is the longest element of W and wy ¢ is the longest element of Wg. Note that

+PLgo; where PLq 18 half the sum of the positive roots for Lg, wo

since W is characterized by taking dominant weights for GL,, to dominant
weights for Lg (equivalently, taking anti-dominant weights to anti-dominant
weights), wo guwy is an element of W€, so this gives the desired statement.

Returning to the proof of the theorem, it now follows from Thm. 2.3.2 that
there is a Galois representation

r,(M) : Gp — GLn(Qp)

such that, for all but finitely many v ¢ S, the characteristic polynomial of
r,(9) (Frob,) equals P,(X) mod 9. Indeed, (cf. the proof of [NT15, Thm. 4.2])
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we have
-
7, (9N) = @ﬁ(m) ® e~ (Mitittnr),
i=1
We can now deduce that if () is a proper parabolic, then (E{%})m =
E@}@TS(K’VA)TS(K, V) )m vanishes. Suppose 91 is a maximal ideal ofH(GLn(A%O’S), K%)®y
C in the support of (Efz)})m. On the one hand, the representation r,(9) is
reducible in this case, but we have an isomorphism r,(7) = p,. This con-
tradicts the assumption that p,, is absolutely irreducible, so we deduce that
Finally, we show both parts of the theorem. It suffices to show that if 7 is
a cuspidal automorphic representation of GL,, (A ) then
(1) H*(9, Ko; Too ® V,») is zero unless 7 is regular algebraic of weight .
(2) If 7 is regular algebraic of weight ¢\ then H7 (g, Koo; oo @ V;) vanishes
for j ¢ [qo, qo + lo] and is non-zero for j € [qo, g0 + lo]-

The first claim follows from [BW0O0, Ch. II, Prop. 3.1]. The second claim follows
from [Clo90, Lem. 3.14]. O

THEOREM 2.4.10. Let p € X*(Resp+/qTn) denote half the sum of the
positive roots of Resp+ /g G. Fiz an isomorphism v : Q, — C. Let A €
(Zi”)Hom(FJF’E)) be a highest weight with the following property: for any w €
WP ((Resp+,q G, (Resp+/qT)c), there are no (characteristic 0) cuspidal
automorphic representations for G of weight 1\, where Ay, = w(\ + p)N— p.

Let m C T° be a mazimal ideal which is in the support of H*(XI?’VK)
with the property that ps is a direct sum of n-dimensional absolutely irreducible
representations of Gp. Let d = 1 dimg XG = p? [FT: Q).

Then Hd()N(f(, ]ﬁ)g‘[ml/?] is a semisimple TS[1/p|-module, and for every
homomorphism f : TS(K,\) — Qp, there exists a cuspidal, reqular algebraic
automorphic representation ™ of G(A~F+) of weight 1\ such that f is associated

to the Hecke eigenvalues of (1™17>)K.

Proof. The proof uses similar ingredients to the proof of Theorem 2.4.9
above. We must understand the systems of T®-eigenvalues occurring in

HY X, V5)q = H (X5 V)< [1/pl @5, C

m
As a consequence of [Fra98, Thm. 18], as in [FS98, §2.2], applied to the group
Resp+/QG, we have a canonical decomposition

K

diy _ * T .
TV = | @ 1 (mg Kaidy_ 5y 20 V5)
{Pyec '



42 P. ALLEN ET AL.

Here, C is the set of associate classes of parabolic Q-subgroups of Resp+ /QG
The cohomology on the right hand side is relative Lie algebra cohomology, m
the Lie algebra of the real points of the algebraic group given by the kernel of the

map Np/q o det ReSF+/QC~¥ — GL1, and A is a certain space of automor-

V"'a{ﬁ}
— 2N
phic forms for Resp+ QG- (We note that in this case there is no additional char-

acter twist of the G (A¥)-module structure, because the maximal split torus in
the center of ResF+/Q§ is trivial.) Set E{ﬁ} = H* (ma, foo; AVS’{ﬁ} ®c VLX)

The summand Elz is the cuspidal cohomology group

{G}
ngsp (Xﬁv V;}:) = @(%OO)E ®c H* <§7 goof}‘:oo Xc V;X) )

™

where the sum runs over cuspidal automorphic representations of é(A r+), and
g is the Lie algebra of (Resp+/QG)(R). We see that the theorem will be proved
if we can establish the following two claims:

(1) If Pisa proper standard parabolic subgroup of Resp+ /Qé different
from the Siegel parabolic, then

—1pK -1 fg s
¢ E{P})a = B @i T K Vs
(2) If P = P is the Siegel parabolic subgroup of ResF+/Q§, then we also
h ( “1pK ) =0.
ave (7}
The same argument as in the proof of Theorem 2.4.9 shows that if I is a
maximal ideal of TS[1/p] which occurs in the support of FIE{K];}, then I

corresponds to the system of Hecke eigenvalues appearing in

K
<IndG( )L_laoo> ,
P(AY))

where o is a cuspidal automorphic representation of L;(A r+) whose infinitesi-
mal character equals the dual of the infinitesimal character of the irreducible
algebraic representation of Lz of highest weight w(tA + p) — p, for some

w e WF((Resp+q G)c, (Resp+ /@ T)c). The second claim now follows imme-
diately from our hypothesis that there are no such automorphic representations
in the case P = P.

As in the proof of Theorem 2.4.2, we note that the Levi subgroup Lz is
isomorphic to a product Resg/p+ GLy, X -+ X Resp/p+ GLp, X U(n —s,n — 5),
for some decomposition 2n =ny + - -+ + n, + 2(n — s). We can now establish
the first claim: using the existence of Galois representations attached to regular
algebraic cuspidal automorphic representations of GL,, and U(m,m) for m < n
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(i.e. using Theorem 2.3.2 and Theorem 2.3.3), we see that there exists a Galois
representation r(ﬁjvt) :Gp — GLgn(Qp) such that, for all but finitely many
places v of F, r(9M) is unramified at v and 7(90) has characteristic polynomial
equal to F’U(X ) mod M. Moreover, this representation has at least 3 Jordan—
Hélder factors as soon as (r,s) € {(1,n), (0,0)} (by an argument identical to
the one appearing at the end of the proof of Theorem 2.4.2). Since we are
assuming that py has 2 irreducible constituents, each of dimension n, this would

lead to a contradiction, showing that we must in fact have (L_lEg;})N = 0.
This completes the proof. g

3. Local-global compatibility, [ # p

3.1. Statements. Let F be a CM field containing an imaginary quadratic
field, and fix an integer n > 1. Let p be a prime, and let E be a finite extension
of Q,, inside Qp large enough to contain the images of all embeddings of F' in
Qp. We assume that each p-adic place © of F'* splits in F.

Let K C GL,(A%¥) be a good subgroup, and let A € (Z7)Hom(FE) Let §
be a finite set of finite places of F', containing the p-adic places, stable under
complex conjugation, and satisfying the following condition:

e Let v be a finite place of F' not contained in S, and let [ be its residue
characteristic. Then either S contains no [-adic places of F' and [ is
unramified in F', or there exists an imaginary quadratic field Fy C F'in
which [ splits.

We recall (Theorem 2.3.7) that under these hypotheses, that if m ¢ TS (K, \)
is a non-Eisenstein maximal ideal, then there is a continuous homomorphism

pm 2 Grs — GLy (T (K, N)m/I)

characterized, up to conjugation, by the characteristic polynomials of Frobenius
elements at places v € S; here I is a nilpotent ideal whose exponent depends
only on n and [F': Q]. Our goal in this chapter is to describe the restriction of
pm to decomposition groups at some prime-to-p places where ramification is
allowed.

To this end, we suppose given as well a finite set R C S satisfying the
following conditions:

e For each place v € R, K, contains Iw, 1 and is contained in Iw,,.

e Fach place v € R is prime to p.

e For each place v € R, there exists an imaginary quadratic field Fy C F
in which the residue characteristic of v splits. Moreover, R is closed
under complex conjugation.
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Under these assumptions, we have defined (see §2.2.3) for each place v € R a quo-
tient 2, of T,,(F,) and an algebra homomorphism O[Z,] — H(GL,(F,), K,) ®z
O; moreover, we have defined, for each v € R and each 0 € W, , a polynomial
P, ,(X) € O[Z,][X]. We define

T%(K,\) C Endp(o)(RD(Xk, V)

to be the image of T7 = H(G, K%) ®z ®,cr O[Zs]. We observe that
T(K,\) C TZ(K,\).

THEOREM 3.1.1. Let notation and assumptions be as above. Then:

(1) We can find an integer N > 1 (depending only on n and [F : Q]), an
ideal Ip C T%(K, ANm satisfying Iﬁf =0, and a continuous homomor-
phism

pmr: Grs — GLy(TH(K, Nw/IR)

satisfying the following conditions:

(a) For each place v ¢ S of F, the characteristic polynomial of
pm.r(Froby) is equal to the image of Py(X) in (TZ(K, N)m/Ir)[X].

(b) For each place v € R, and for each element o € Wg,, the charac-
teristic polynomial of pm r(0) is equal to the image of P, ,(X) in
(TEE, Nm/IR)[X]-

In the statement of this theorem, T%(K, A)m is the localization of T}%(K, A)
as a T9(K, \)-algebra; it is an O-subalgebra of Endp(o)(RT(Xk, V)\)m) which
contains T (K, AM)m. Instead of proving this theorem directly, we will in fact
prove the following statement:

PROPOSITION 3.1.2. Let notation and assumptions be as above. Then
there exists an integer N > 1 (depending only on n and [F : Q]), an ideal
Ir C TE(K, N satisfying IN =0, and a T3(K, \)m/Ir-valued determinant
Dy, on Grs of dimension n satisfying the following conditions:

(1) For each place v & S, the characteristic polynomial of Frob, in Dy, is
equal to the image of Py(X) in (T%(K, Nm/Ir)[X].

(2) For each place v € R, and for each element o € W, , the characteristic
polynomial of o is equal to the image of Py »(X) in (T%(K, N)um/Ir)[X].

Proposition 3.1.2 implies Theorem 3.1.1 because of [Chel4, Theorem 2.22].
The remainder of §3 is devoted to the proof of Proposition 3.1.2. Although
Proposition 3.1.2 is an assertion about determinants, not true representations,
we will still use the assumption that m is non-Eisenstein in the proof, as it
simplifies our analysis of the boundary cohomology (using the results proved in
§2.4.1).
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3.2. The proof of Proposition 3.1.2. Let R denote the set of places of F'*
lying below a place of R. Let K C CNJ(A%ﬂ) be a good subgroup satisfying the
following conditions:

(1) For each place D of F™ prime to S, Ky = CNJ(O;EU)

(2) For each place 7 € R, Ky = Iwy(1,1).

(3) K is decomposed with respect to P.
Using the Hochschild—Serre spectral sequence, we can assume that K = KN
G(A%,). In particular, K, = Iw,(1,1) for each place v € R. We can moreover
(by a standard use of the Hochschild—Serre spectral sequence to trivialize the
weight modulo some power w™ at the expense of shrinking the level at p)
assume that A = 0.

Let T35, = H(GS,KS) @z ®veR [Z3]. In §2.2.3, we have defined homo-
morphisms S : TS 5 TS and S R TS — T%. These homomorphisms, together
with the analogue of Proposition 3.1.2 for the group 5, will be the key to the
proof. This analogue is as follows. We write m = §*(m) C TS,

PROPOSITION 3.2.1. There exists an integer N > 1, depending only
on [F : Q] and n, an ideal I C TS(K 0); satisfying IN =0, and a
TS, (K, O)m/IR valued determinant Dy on Grs of dimension 2n satisfying
the following conditions:

(1) For each place v ¢ S ofF the characteristic polynomial of Frob, is
equal to the image of P,(X) in (TS (K, 0)a /IR)[X].

(2) For each place v € R, and for each element o € Wr,, the characteristic
polynomial of o is equal to the image of ﬁM(X) in (T%(K, O);l/INR)[X].

Before giving the proof of Proposition 3.2.1, we explain how it implies
Proposition 3.1.2.

Proof of Proposition 3.1.2, assuming Proposition 3.2.1. Combining Propo-
sition 3.2.1, Theorem 2.4.4, Proposition 2.2.8, and Proposition 2.2.10, we see
that there exists an integer N > 1, depending only on [F' : Q] and n, an ideal
Ir C T3(K,0)y satisfying IN =0, and a T3 (K,0)n/I-valued determinant DZ,
on G g of determinant 2n satisfying the following conditions:

(1) For each place v € S of F, the characteristic polynomial of Frob, under
Dy, is equal to the image of PU(X)qﬁ(Qn_l)vac (g572"X) in (T3 (K, 0)m/Ir)[X].
(2) For each v € R and for each o € Wp,, the characteristic polynomial of &
under Dy, is equal to the image of PW,(X)||0H2’(1_2n)Pvc7oc(Ha||g"_1X)
in (T3 (K, 0)m/Ir)[X].
The problem remaining is to show that Dy, factors as a product of two deter-
minants of dimension n, one of which satisfies the requirements of Proposition
3.1.2. This can be done by considering ‘sufficiently many character twists’, as
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in the proof of [NT15, Theorem 5.8] (see also the proof of [Sch15, Theorem
5.3.1]), after possibly enlarging the nilpotent ideal Ir and replacing N by 2N.
Since the details are identical, we do not repeat them here. O

Finally, we give the proof of Proposition 3.2.1.

Proof of Proposition 3.2.1. We first note that this statement, in the case
where R is empty, is essentially [NT15, Thm. 5.7] (which also shows that one
can take N = 2 under the assumption that K is ‘small’). It is also contained
implicitly in the proof of [Sch15, Cor. 5.2.6]. Proposition 3.2.1 can be proved
in exactly the same way, by including the action of the Hecke operators O[ég],
¥ € R and re-doing the proof of [Sch15, Cor. 5.2.6].

For the reader’s benefit, we single out the follgwing essential statement
(cf. [Sch15, Thm. 4.3.1, Thm. 5.1.11]): let C' = Q,, and let m > 1 be an

integer, and let T denote TS , endowed with the weakest topology for which
all of the maps

T}, — Endc(H (X, [?p,w%’;f(p ®1))

are continuous. (Here the right-hand side, defined as in the statement of [Sch15,
Thm. 4.3.1], is endowed with its natural (finite dimensional C-vector space)
topology and we are varying over all £ > 1 and open compact subgroups
?p - é(F;) such that ?pﬁp is a good subgroup.) Then for any continuous
quotient Tf‘e — A, where A is a ring with the discrete topology, there is
a unique A-valued determinant D4 of Gpg of dimension 2n satisfying the
following conditions:

e For each place v € S of F, the characteristic polynomial of Frob,, equals
the image of P,(X) in A[X].

e For each place v € R, and for each element 0 € W, , the characteristic
polynomial of o equals the image of P, 5(X) in A[X].

This in turn can be proved in exactly the same way as [Sch15, Thm. 5.1.11].
The only additional ingredients we need are Proposition 2.2.7, which expresses
the relation between the action of Hecke operators at R and the characteristic
polynomials of Weil group elements via the local Langlands correspondence,
and Theorem 2.3.3, which replaces [Sch15, Thm. 5.1.4] and is the source of our
assumption, at the beginning of this section, that each place of R has residue
characteristic which splits in an imaginary quadratic subfield of F'. ([

4. Local-global compatibility, [ = p (Fontaine—Laffaille case)

4.1. Statements. Let F' be a CM field containing an imaginary quadratic
field, and fix an integer n > 1. Let p be a prime, and let E be a finite extension
of Q, inside Qp large enough to contain the images of all embeddings of F' in
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Qp. We assume throughout this chapter that F' satisfies the following standing
hypothesis:

e The prime p is unramified in F'. Moreover, F' contains an imaginary
quadratic field in which p splits.

Let K C GL,(A%) be a good subgroup, and let A\ € (Z7)Hom(FE) - Tet S
be a finite set of finite places of F', containing the p-adic places, stable under
complex conjugation, and satisfying the following condition:

e Let v be a finite place of F' not contained in S, and let [ be its residue
characteristic. Then either S contains no [-adic places of F' and [ is
unramified in F', or there exists an imaginary quadratic subfield of F’
in which [ splits.

We recall (Theorem 2.3.7) that under these hypotheses, that if m ¢ T(K, \)
is a non-Eisenstein maximal ideal, then there is a continuous homomorphism

pm 2 Grs — GLy (T (K, N)m/J)

characterized, up to conjugation, by the characteristic polynomials of Frobenius
elements at places v € S; here J is a nilpotent ideal whose exponent depends
only on n and [F : Q]. Our goal in this chapter is to show that under certain
conditions, we can show that the restrictions of p, to decomposition groups
at the p-adic places of F' satisfy conditions coming from p-adic Hodge theory.
More precisely, we can show, after perhaps enlarging the nilpotent ideal J, that
they are Fontaine—Laffaille with the expected Hodge—Tate weights.

Before stating the main theorem of this chapter we first briefly recall some
of the properties of the Fontaine-Laffaille functor [FL82], with normalizations
as in [CHTOS8, Section 2.4.1].

Let v be a p-adic place of F. We are assuming that F,/Q, is unramified.
Let MFo be the category of finite Op, ®z, O-modules M equipped with the
following data.

e A decreasing filtration Fil' M of OF, ®z, O-submodules that are direct
summands as Op,-modules. For an embedding 7: F,, — E, define
the filtered O-module Mr = M ®0,, @,,0 O where we view O as an
OF, @z, O-algebra via 7 ® 1. We assume that for each 7, there is an
integer a, such that Fil* M, = M, and Fil*tP=' M = 0.

° Froblgl ® 1-linear maps ®: Fil' M — M such that <I>i|Fﬂi+1 M= pPitt
and M =5, ¢ Fil' M.

Note that for M € MFo,
Fil' M = [[Fil' M; and @' =][[®; with @ Fil' Mr & M_ g1
T T

Given a tuple of integers a = (a,) € ZH™FvE) we let MF be the full
subcategory of MJF ¢ consisting of objects M such that for each 7, Fil*" M, =
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M, and Fil*P~L M. = 0. We write M]-'OO for M]-'Eg""’o). We let MF; and
MUF% be the full subcategories of MFp and MF¢), respectively, of objects
annihilated by w.

There is an exact, fully faithful, covariant functor G° from ./\/l]-"% to
the category of finite O-modules with continuous O-linear G, -action (see
[CHTO8, Section 2.4.1], where G is denoted G). The essential image of G° is
closed under subquotients, and the restriction of G? to MF? takes values in the
category of continuous G, -representations on finite dimensional k-vector spaces.
Moreover, if My and My are objects of M]:% such that M, ®O, ®z,0 M> also

lies in MFY, then
(4.1.0) GO (M) R0, 07,0 Ma) = G*(My) ®0 GO(Mp).

We extend G° to a functor G on MFp by twisting as follows. Fix M € MFo
and a = (a,) € ZH™UE) such that M € MF%. Define the crystalline
character ¢,: Gg, — O* by

a0 Artp, (z) = HT(&:)*“T for x€Op and ¢,0Artg,(p) =1,

and the object M (a) € MF% by Fil' M(a), = Fil'™% M, and (1)3'\4(@ = ‘1’3\??-
We then set
G(M) = G*(M(a)) ®0 tq.

Using (4.1.0), one checks that this is independent of a such that M € MF%,.
We will denote by G® the restriction of G to MF¢. Any G is fully faithful
and its essential image is stable under subquotients and extensions, but G is
not full on all of MFn. We note also that the essential image of G is stable
under twists by crystalline characters.

Let M be an object of MF}. For each embedding 7: F, — E, we let
FL,(M) be the multiset of integers i such that

griM®0Fv®ZPk k 75 07

counted with multiplicity equal to the k-dimension of this space, where we view
k as a Op, ®z, k algebra via 7 ® 1. If M is a p-torsion free object of MF¢, the
representation G(M) ®p E is crystalline and for every embedding 7: F}, — F
we have

HT.(G(M) ®p E) = FL.(M ®0 k).

Moreover, if W is an O-lattice in a crystalline representation of G, such that
every T-Hodge-Tate weight lies in [a,, a; + p — 2] for some integer a,, then W
is in the essential image of G®.

We can now state the main theorem of this chapter (with the same num-
bering as it occurs again immediately before the proof).
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THEOREM 4.5.1. Let m C T9(K,\) be a non-FEisenstein mazimal ideal.
Suppose that T (K,\)/m = k has residue characteristic p. Let T be a p-adic
place of FT, and suppose that the following additional conditions are satisfied:

(1) The prime p is unramified in F'; and F' contains an imaginary quadratic
field in which p splits.

(2) Let w be a finite place of F' not contained in S, and let | be its residue
characteristic. Then either S contains no l-adic places of F' and [ is
unramified in F', or there exists an imaginary quadratic field Fy C F in
which 1 splits.

(3) For each place v|v of F, K, = GL,(Op,).

(4) For every embedding 7 : F — E inducing the place v of Ft,

)\T,l + )\Tc,l - A7',n - A7'c,n <p—-2n-1

(5) p>nZ
(6) There exists a p-adic place V' # v of Ft such that

1
> B Q] > S[Ft Q).
v £v v
(7) P 1s decomposed generic (Definition 4.3.1).
(8) Assume that one of the following holds:

(a) H (XK, V\)ull/p] #0, or
(b) for every embedding T: F — E inducing the place v of FT,

_ATC,TL - )\T,n S P — 2n —2 and — )\7—671 — )\T,l Z 0.

Then there exists an integer N > 1 depending only on [F : Q] and n, an ideal
J C T%(K, \) satisfying J™ =0, and a continuous representation

pm 2 Grs — GLy (T (K, N)m/J)

satisfying the following conditions:
(a) For each finite place v & S of F, the characteristic polynomial of
pm(Frob,) equals the image of Py(X) in (T (K, \)w/J)[X].
(b) For each place v|[v of F', puml|Gy, i in the essential image of G* (with
a = (Arp) € ZHMEE)) " and there is M € MFy, such that PmlGp, =
G(M) and for any embedding 7: F, — E,

FL(M)={A1+n—1LAo0+n—2,.... A}

The rest of this chapter is devoted to the proof of Theorem 4.5.1. The
proof will be by reduction to known results for automorphic forms on G (in
particular, Theorem 2.3.3).
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4.2. A direct summand of the boundary cohomology. In this section, we
show how to realize the cohomology of Xk as a direct summand of the coho-
mology of the boundary 0X 7 of the Borel-Serre compactification of X 7 This
is the first step in relating the cohomology of X to automorphic forms on
G. We must first introduce some new notation, in addition to the notation
introduced in Section 2.4.

We recall (cf. §2.2.1) that we write S, for the set of p-adic places of
FT, S, for the set of p-adic places of F, and that we have fixed a subset
S, = {v| v e S,} with the property that S, = S, LI 5‘; Moreover, we write I,
for the set of embeddings 7 : F — E inducing a place of gp. For any v € S,
we write Iy for the set of embeddings 7 : F' — FE inducing v. Similarly, we
write Iy for the set of embeddings 7 : F* < E inducing 7.

These choices determine an isomorphism (Resp+/q G)p = L. i, GLay,.
For any embedding 7 : F'™ < E, we set

W; = W(§®F+,T E7T®F+,T E)

and
WP,T = W(G ®F+,T EaT ®F+,T E),

these may be identified with the Weyl groups of GLy, and GL, x GL,, respec-
tively. Since G is equipped with the Borel subgroup B, we may also define the
subset W C W, of representatives for the quotient Wp . \W; (cf. §1.2). We
write p; € X*(T ®@p+ . E) for the half-sum of the B ® p+ , E-positive roots.

Ifv e gp, then we set Wy = [[rer, Wr, Wpz = [lrer, Wp,r, and Wip =
[Trer. WE. We define py € X*((Rest/Qp T)g) to be the half-sum of the
(Reng/Qp B) g-positive roots; thus we can identify py = ZTeHom(F;E) pr.
Given a subset T C S, we set Wz = [lyer Wa, and define WP,T and W%D
similarly. If " = S, then we drop 7" from the notation; thus W may be identified
with the Weyl group W ((Resp+/q g, (Resp+/Q T)E) of (Resp+/q G)g. We
write [ : W — Zx for the length function with respect to the Borel subgroup
B, and p € X*((Resp+,qT)E) for the half-sum of the (Resp+,q B)g-positive
roots; thus we can identify p = Ziegp 0.

If X e (Zi”)Hom(F+’E), and v € S, then we set

Y Y n\Hom(F+
Ay = ()\T)TGHome(Fg_,E) € (Zi )H 5.5,
If A € (Z7)Hom(PE) "and © € S, then we set

H F@p+ FYE
Ay = ()\T)TEHOIHQP(F:,E)UHOIHQP(FZC7E) e (Zh) omq, (F®p+ F7,E)



POTENTIAL AUTOMORPHY OVER CM FIELDS 51

THEOREM 4.2.1. Let K C a(A%O+) be a good subgroup which is decomposed
with respect to P, and with the property that for each v € Sp, ﬁUj =U(Op+).
Let m C T® be a non-FEisenstein mazximal ideal, and let m = S*(m) C TS.

Choose a partition S, = S1 U Sy. Let X € (Zi")Hom(F+’E) and \ €
(Z?F)Hom(F’E) be dominant weights for G and G, respectively. We assume that
the following conditions are satisfied:

(1) For each v € S1, A\ = Ay (identification as in (2.2.2)).

(2) For each T € Sy, Ay = 0.

(3) For each @ € Sa, there exists wy € WL such that Ay = wy(pz) — ps.
(4) p > n%. (We recall our blanket assumption throughout §4 that p is

unramified in F'.)
If v € 81, we let wy denote the identity element of Wy. We let w = (wg)ﬁegp.
Then for any m > 1, RI'( Xk, V\/@™)u[—l(w)] is a TS -equivariant direct
summand of RF(@XI?, Vi/w™)5-

(If S is a ring and A, B € D(S) are complexes equipped with homomor-
phisms of S-algebras

fa: R— Endp(s)(A), fp: R — Endps)(B),

then we say that A is an R-equivariant direct summand of B if there is a
complex C' € D(5) equipped with a homomorphism of S-algebras

fc R — EndD(S)(C)

and an isomorphism ¢ : B~ A @ C in D(S) such that for each r € R, we have
f5(r) = ¢ o (falr) @ fo(r)) o ¢.)

Proof. By Theorem 2.4.2, it is enough to show that RT'( X, Va/@™)[—1(w)]
is a T -equivariant direct summand of RT'(X IL; ,Vx/@™). We will argue in a
similar way to the proof of Theorem 2.4.4. _

Looking at the proof of Theorem 2.4.4, we see that there is a T*-equivariant
isomorphism

= ~ > PSxK Ky,

RF(XII;P, V5/w™) = RU(Kp x Ks, R (Inf s 5 X, R15 Vs /w™))
in D(O/w™), where T acts on both sides via the map rp, and that the current
theorem will be proved if we can establish the following claim:

o leU’SVX/wm admits V) /@™ [~I(w)] as a direct summand in D(Shps k. (Xa)),
the derived category of P° x Kg-equivariant sheaves of O /w™-modules
on Xg.
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In fact, RL{(U‘SVX/wm is pulled back from RI‘(}U’S, V5 /@w™) € D(Shi,(pt)),
so it suffices to show that V) /@™ [—1(w)] is a direct summand of RI'(K, u,s, Vi/@™)
in this category.

We observe that K vs =1]]
decomposition V5 = ®i€§pVxJ.
to show the following two claims:

(1) If v € Sy, then Vy_ /@™ is a direct summand of RI’(ng7 Vi /@™) in
D(0/w™ K= x K=.]). ’

(2) Ifv € Sy, then Vy_/@w™[—(wg)] is a direct summand of RF(%U@ O/w™)

in D(O/wm[Kg X K*Jc]).

55 f(JUj, and that VX admits a corresponding
By the Kiinneth formula, it is therefore enough

The first claim can be proved using the same argument as in the end of the proof
of Theorem 2.4.4. The second claim follows from Lemma 4.2.2 and Lemma
4.2.3 below (this is where we use our hypothesis p > n?). This completes the
proof of the theorem. O

LEMMA 4.2.2. Let v € S, let K = Fif

=, and fix an integer m > 1.

(1) For each i € Z>q there is a G(Ok)-equivariant isomorphism
H'(U(Ok),0/w™) = Homg, Az, U(Ok),0/w™) = Homo (Ao (U(Ok)®2,0),0/=™)

with G(Og)-action on the right hand side induced by its conjugation
action on U(Ok).

(2) Suppose p > 2n — 1. Given w € WL let Ay = w(ps) — pz €
(ZCLF)HomQP(K’E). For each i € Z>g there is a G(Ok)-equivariant iso-
morphism

Homo (A (U(Ok) ®z, 0),0)= B W,
wEWffD
l(w)=t

2 .
Proof. Note that U(Of) is isomorphic (as an abstract group) to Zj, [K:Q]

The usual isomorphism H*(U(Ok), O/w™) = Homg, (U(Ok),O/w™) extends,
by cup product, to a morphism A* Homg, (U(Ok), O/@™) — H*(U(Ok), O /x™).
This can be seen to be an isomorphism using the Kiinneth formula. This proves
the first part of the lemma.

For the second part, given 7 € Homq, (K, E) and w € WF, let A, =
w(pr) — pr € Z" . 1t is enough for us to show that for each i € Z>¢ there is a
G(Ok)-equivariant isomorphism

Homo (A (U(Ok) ®0yr 0),0) = ) Vi,
weWr
l(w)=i
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After tensoring up to E we do have such an isomorphism, by [Kos61]:

HOHI@(/\E(U(OK) ®ox.r O), E) = @ Vi -

wewr

l(w)=t
Since p > 2n — 1, it follows from [Jan03, Cor. I1.5.6] that V), ®p k is a simple
G ®o,» k-module for all w € WTP . It follows that intersecting the lattice
Homo (AL (U(Ok) ®oy + 0),0) with a copy of V), arising from the above
decomposition gives a sublattice isomorphic to V,,. By the remark following
[Jan03, Cor. I1.5.6], we know that there are no non-trivial extensions between
the simple modules V), ®o k with varying w. Combining this with the universal
coefficient theorem [Jan03, Prop. 1.4.18a] we deduce that there are also no
non-trivial extensions between the G ®p, » O-modules V, . This implies the
existence of the desired isomorphism. O

LEMMA 4.2.3. Letv € S, let K = Fj, and fix an integer m > 1. Suppose
that p > n%. Then we have a natural isomorphism (inducing the identity on
cohomology)

nQ[KQp]
RT(U(0k),0/@™) 5 P H(U(Ok),0/=™)[—i]
=0

in D(O/@™[G(Ok))]).
Proof. We have already observed that there is an isomorphism
RT(U(Ok),0/w™) = HY(U(Ok), O/w™) & 751 RT(U(Ok), O /™)

(see claim (1) in the proof of Theorem 4.2.1). Under the assumption that p > n?
we can distinguish the remaining degrees of cohomology appearing in the above
direct sum using the action of central elements of G(Ok). Let f = [K : Q).
The centre of G(Ok) is (OF ®0,,, Ok)* and an element z € (Of ®o,., Ok)*
acts on U(O) as multiplication by (Np/p+ ®id)(2) € Ok. We denote by ¢
a primitive p/ — 1 root of unity in O. We can choose an element z of the
centre of G(Ok) of order p/ — 1 which acts as multiplication by ¢ on U(Ok).
It follows from Lemma 4.2.2 and the decomposition

U(Ok)®z,0= P U(Ok) @0 O

0:0g—0

that, for each degree i, we have a decomposition of H'(U(Ok),O/w™) into a
direct sum of G(Of)-modules

M(’ig) = Hom(’) <® /\Zé)’(U(OK) ®0K70' O), O/wm>



54 P. ALLEN ET AL.

indexed by f-tuples of integers

{(7:0')0'1(9[(‘—%9 : O S ’L.o' S nQ,ZZ.O— == Z}
g

The action of z on M y is multiplication by [], o(¢)7%, so if we fix an
embedding o¢ and write i; for the jth Frobenius twist of oy then z acts as

multiplication by oq(¢ )_Z;;Ol P Since we are assuming p > n?, the value of
Zﬁ;& sz] mod pf — 1 determines the integers tj uniquely, with the exception
(only occurring if p = n? + 1) of when this value is 0 mod p/ — 1, in which
case there are two possibilities: i, = 0 for all o and i, = p — 1 for all
o. As a consequence, for each degree 1 < i < n?f we can write down an
idempotent e; € O[z] which induces the identity on H(U(Ok), O/w™) and
the zero map on other degrees i’ # i. There is a homomorphism O[z] —
Endp(0/wm(cox) (T>1RL(U(OKk), O/w™)), so the idempotent-completeness
of the derived category implies the existence of a natural decomposition

51 RT'(U(Ok), O /=™) @elRF (Ok),O0)a™).

This completes the proof. O

4.3. Cohomology in the middle degree. In this section we state the funda-
mental result that we need to study cohomology in the middle degree using
automorphic representations of G. We first need to recall a definition ([CS17D,
Defn. 1.9] — although note that since our representations are in characteristic p,
the roles of p and [ are reversed).

DEFINITION 4.3.1. Let k be a finite field of characteristic p.

(1) Let 1 # p be a prime, and let L/Q; be a finite extension. We say
that a continuous representation 7 : Gi, — GLy (k) is generic if it is
unramified and the eigenvalues (with multiplicity) ai,...,an € k of
7(Froby) satisfy /oy & {1,|O0r/mp|} for alli # j.

(2) Let L be a number field, and let 7 : G;, — GLy (k) be a continuous
representation. We say that a prime | # p is decomposed generic for T
if 1 splits completely in L and for all places v|l of L, T|g, is generic.

(3) Let L be a number field, and let 7 : G, — GL,(k) be a continuous
representation. We say that T is decomposed generic if there exists a
prime | # p which is decomposed generic for T.

Note that if 7 and 7 give rise to the same projective representation then
one is (decomposed) generic if and only if the other is.
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LEMMA 4.3.2. Let L be a number field, and let 7 : G, — GLy (k) be a
continuous representation. Suppose that T is decomposed generic. Then there
exist infinitely many primes | # p which are decomposed generic for T.

Proof. Let K'/Q denote the Galois closure of the extension of L((,) cut
out by 7. Let [y be a prime which is decomposed generic for 7; then any other
prime [ which is unramified in K’ and such that Frob;, Frob, lie in the same
conjugacy class of Gal(K'/Q) is also decomposed generic for 7. There are
infinitely many such primes, by the Chebotarev density theorem. (]

Let d = 2n2[F* : Q] = 4 dimg X = dimg X + 1.

THEOREM 4.3.3. Suppose that [F*t : Q] > 1. Let m C TS(K,\) be a
maximal ideal, and suppose that py has length at most 2. Suppose that S
satisfies the following condition:

e Let v be a finite place of F' not contained in S, and let | be its residue
characteristic. Then either S contains no l-adic places of F' and [ is
unramified in F, or there exists an imaginary quadratic field Fy C F in
which 1 splits.

Suppose that pg; is decomposed generic, in the sense of Definition 4.3.1. Then
we have

HY (X ViUl = HY (X Vo) — HYOX . V)i

Proof. This is an immediate consequence of the main result in [CS]. This
states that

HY(Xz,Vi/w)s =0if i <d, and H(Xz, Vy/w)z = 0if i > d,

under the assumptions on m in the statement of the theorem. By considering
the short exact sequence of sheaves of O-modules on X 7

0=V = V= Vi/w—0

and taking cohomology, we see that Hd(Xf(, V5 )zlw] = 0, since Hi1 (X Vy/w) =
0. By considering the excision sequence for

Xf( — Xf(?
we see that the cokernel of the map Hd(kvf?, Vi) — Hd(a)'(}(, V5)7 injects

into HA (X, V5) = 0. O

PROPOSITION 4.3.4. Suppose that [F*: Q] > 1. Let K C G(AS,) be a
good subgroup which is decomposed with respect to P. Let )€ (Z%r")Hom(F+’E).
Fix a decomposition §p = 81 US,y. Suppose that the following conditions are
satisfied:

(1) For each v € S2, Ay = 0.
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(2) Let v be a finite place of F' not contained in S, and let | be its residue
characteristic. Then either S contains no l-adic places of F' and [ is
unramified in F', or there exists an imaginary quadratic field Fy C F in
which 1 splits.

(3) p>n?. (We remind the reader of our blanket assumption in §4 that p
is unramified in F.)

Let w € Wé’;, and let Ay = WX+ p) — p € (zn)Hom(PE) - Let m ¢ TI
be a non-Eisenstein maximal ideal in the support of H*(Xk,V,), and let
m = S*(m) C T, and suppose that Pq s decomposed generic. Then the map

S: TS — T5 descends to a homomorphism
Ts(Hd(XI?, VX))I?I — TS(Hd_l(w) (XK, V)\w))m-
Moreover, the map
T (HY( X, V5))s = T (HY (X, 0))z(1/0]
18 1njective.
Proof. This results on combining Theorem 4.3.3 and Theorem 4.2.1. [

We introduce some useful language.

DEFINITION 4.3.5. A weight \ € (z2m)Hom(EE) il be said to be CTG
( “cohomologically trivial for G”) if it satisfies the following condition:

o Given w e WP, define Ay = w(A+p) —p € (zn)Hom(FE) - Then for
all w € WP and for all iy € Z, there exists T € Hom(F, E) such that
)\’LU,T - )\1\{;771 # (iOa 7:07 s ,iO)‘

This definition will be useful to us because Proposition 4.3.4 shows how to
relate a Hecke algebra for G acting on cohomology with integral coefficients to
a Hecke algebra for G acting on cohomology with rational coefficients of weight
X (say). If the weight A is moreover CTG, then Theorem 2.4.10 (together with
the purity lemma [Clo90, Lemma 4.9]) shows that this rational cohomology can
moreover be computed in terms of cuspidal automorphic forms for é, which
have associated Galois representations with well-understood local properties.

Exploiting this is not straightforward since the weight for G depends both
on the chosen weight X and the chosen Weyl group element w (which must be
of a suitable length [(w) in order to target a particular cohomological degree
for X ). This problem will be dealt with in the next section with a ‘degree
shifting’ argument.

We first state a lemma which shows that there are “many” dominant
weights for G which are CTG:
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LEMMA 4.3.6. Suppose that [Ft: Q] > 1. Let X € (Z%r”)Hom(F+’E), and
fiz a choice of embedding 1o : F™ < E. Then there exists N € (Zi”)Hom(F+’E)
satisfying the following conditions:

(1) ET =\, for all T # 7.
(2) N is CTG.

Proof. Let 7 # 19 be another embedding 7 : F™ < E. Note that a domi-
nant weight 1 € (Zi")Hom(F "E) is CTG if it satisfies the following condition:
for all w € WF, we have

n n

(4.3.7) Y (tzi = tapzes) # D (Hs i = Puwies)-

i=1 i=1

Let a € Zso, and define X € (Z2)Hom(EE) by the formula X, = A, if 7 # 70,
! A1 + a, )‘/m‘ = A if ¢ > 1. Then X will satisfy condition (4.3.7) as

70,1 —
soon as a is sufficiently large (in a way depending on A). [l

4.4. The degree shifting argument. We are now going to show how to use
Proposition 4.3.4 to control the Hecke algebra of G acting on the cohomology
groups HY(X g, V). We will do this “one place of F* above p at a time”.
The argument will involve induction on the cohomological degree g. Since
the cohomology groups of locally symmetric spaces for G may contain torsion,
one needs an inductive argument to pass from the cohomology groups with
O-coefficients (which appear in Proposition 4.3.4) to cohomology groups with
O /w™-coeflicients (where one can use congruences to modify the weight).

The first step is the following proposition. Given a non-Eisenstein maximal
ideal m C T, we will set @ = S*(m) C T°. We will use the notation

AK, N q) = TS(HY (X, V\)m),

A(K, )\, q,m) = TS(Hq(XK,V)\/wm)m),
and
AR, A) = T (H (X 3)s)-

Note that there is no natural morphism A(K, X, q) — A(K, A, q,m).

PROPOSITION 4.4.1. Let T, ¥ be distinct places of Sy, and let X € (Z7)Hom(FE),

(The condition that S, has at least two distinct places implies, in particular,
that F* # Q.) Fiz an integer m > 1. Let K C G(A%,) be a good subgroup.
Suppose that the following conditions are satisfied:

(1) For each embedding T : F — E inducing the place v of F*, we have
_)\Tc,l - )\T,l > 0.
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(2) We have
1
L Q) > 5[F+;Q].
v'eS)
5”75575’

(3) For each p-adic place v" of F* not equal to v, we have
~ 1
U(Op+ ) C Ky C no ¥ mod wi ¢ .
v O ITL v

We have Ky = é’(on).

(4) p > n?. (We recall our blanket assumption in §4 that p is unramified
in F.)

(5) Let v be a finite place of F not contained in S, and let | be its residue
characteristic. Then either S contains no l-adic places of F and | is
unramified in F, or there exists an imaginary quadratic field Fy C F in
which | splits.

(6) m C T is a non-Eisenstein maximal ideal such that Pr is decomposed
generic.

Define a weight \ € (Zi")liom(FJr’E) as follows: if 7 € Hom(F™, E) does not
induce either v or v, then \; = 0. If T induces v, then we set

XT:(_)\N ...,_)\’7‘_'071,)\;717-"1)\;771)'

Tc,n?
(Note that this is dominant because of our assumption on \.) If T induces V',
then we choose Ay to be an arbitrary element of Zi”.
Let q € H%J ,d— 1]. Then there exists an integer m’ > m, an integer N >
1, a nilpotent ideal J C A(K, X, q, m) satisfying JN =0, and a commutative
diagram

TS — 5 A(K(m'), \)

|l

TS —— A(K, \,q,m)/J
where f(/(m’) C K is the good subgroup defined by setting

?(m/)ﬂ// = ?E// N {( lg 1* ) mod ?DLT}//} C 5(0F+ )

if v is a p-adic place of FT not equal to v, and f(/(m’)gu = _/f(%,, otherwise.

(Thus K = K(m), by hypothesis.) Moreover, the integer N can be chosen to
depend only on n and [FT : Q).

Proof. The idea of the proof is to choose a Weyl group element w = w(q) €
WP such that I(w) = d—q and a weight A such that A = w(\ + p) — p, and then
apply Proposition 4.3.4. The actual argument is more subtle, because we need
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to work with O-coeflicients in order to access the Hecke algebras Z(ﬁ , X), whilst
the Hecke algebras A(K, A, ¢, m) act on cohomology with torsion coefficients.
We argue by descending induction on ¢, the induction hypothesis being as
follows:

Hypothesis 4.4.2. Let q € H%J ,d— 1}. Then the Proposition holds for
every cohomological degree ¢ € [¢+ 1,d — 1] and every m € Z>;. Moreover, the

integer N can be chosen to depend only on n, [F" : Q], and q.

The induction hypothesis is always satisfied when ¢ = d — 1. Assume
the induction hypothesis holds for some ¢ € H%J +1,d— 1}. We will prove

that the induction hypothesis holds for ¢ — 1. Let us fix m, K ,and A\ as in
the statement of the proposition. Note that the T-algebra A(K,\,q,m) is
independent of Ay for v’ € S, v # U, because Kg acts on V) /@™ via the
projection to Kz. Modifying A, we can therefore assume that in fact Ay = XE/.

Let S ={v,v'}, and So = S, — S1. Let w = w(q) € Wi be any element
of length I(w) = d—gq. Such an element exists because for any 7 € Hom(F ™', E),
I(w,) takes all integer values in [0,n?] as w, ranges over elements of W. We
have chosen our totally real field F'* to satisfy

This means that the desired sum can take any value in [0, % + %2] On the other
hand, ¢q € H%J ,d], sod—q<d-— {%J Since n > 2, we can indeed make an
appropriate choice of w.

Now we let N (q) = w(q)(XA+ p) — p. This can be different from X precisely
at those embeddings inducing a place of So. In particular, the Hecke algebras
A(K, N (q),q,m) and A(K, )\, q,m) are canonically isomorphic as T*-algebras,
once again because Kg acts on both Vy (4 /@™ and V) /@™ via projection to
Ky.

There is a short exact sequence of T®-modules
(4.4.3)

0 — HY( Xk, Vy(g)m/@™ = HU( X, Vy(g) /T ™)m = HTH (XK, V() Jm[@™] = 0.

Note that the w™-torsion HIt! (X, Vi (g))m[@™] does not, in general, inject
into HI (X g, V() /@™ )m, s0 we cannot reduce to understanding the Hecke al-
gebra A(q+1, K, X (q), m). However, the cohomology group H9! (X, VV(g))m
is a finitely generated O-module, so HIH (X g, Vi () )m[@™] does inject into
HIY X, Vi(g))m/ @™ provided that m’ > m is chosen large enough for @
to annihilate the torsion submodule of H9T( X, V\(g))m- This, in turn, injects
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into HIt! (X, Vvig)/ @™ ). Tt follows that we have an inclusion

AnnTs Hq(XK, V)\’(q))m' ADHTS Hq+1(XK, V/\/(q)/wm,)m

(4.4.4)
- AnnTs Hq(XK, V}\/wm)m'

Let K(m') = K(m/) N G(A%,). Let m¥ = ((m) C T (notation as in §2.2.11).
Then m" is a non-Eisenstein maximal ideal. Poincaré duality implies (cf.
Corollary 2.2.13 and [NT15, Thm. 4.2], and noting that O/w™ is an injective
O/w™-module) that there is an equality

Annps H' (X, W(g)/@" )m = t(Annps H&TV (X, V;/,(q)/wm)mv)
of ideals of T®. The existence of the Hochschild-Serre spectral sequence
H' (K/K(m'), H (X g (mr), Vi) /@™ Dv) = H™ (X, Vo) /™ )

implies that there is an inclusion

d—q—2 .
H Annps H' (X g (), V)Y,(q)/wm Jmv C Annps HY7279( X, V)Y/(q)/wm v
i=0

Applying Corollary 2.2.13 once more, we see that there is an inclusion

d—1
H AHDTS H (XK V)\/ /w ) C AHHTS Hq+1(XK, V)\/(q) /Wml)m,
i=q+1
or equivalently
d—1 ) , ,
H AnnTs Hl(XK(m/), V)\/wm )m C AnnTs fI(’H_l()([(7 V)\/(q)/wm )m,
i=q+1
Combining this with (4.4.4), we deduce that there is an inclusion

d—1
Annps HY (X g, Vi (g) H AnnTsH(XK my, V@™ Y
1=q+1
C Annps HY( X g, V)@ ).

(4.4.5)

By induction, we can find an integer N > 1 and foreachi=¢+1,...,d—1
an integer m, > m’ such that

- N
S (Ann,fs Hd(XI?(m(), VX)€1> C Anngs H’(XK N WA /@™ Nan-
Moreover, Proposition 4.3.4 implies that there is an inclusion
S <Ann,fs Hd(XI?, Vx)fﬁ) C Annps HY(Xr, Vi(g))m-
Let m” = sup; m/, and note that for each ¢ we have

Anni‘s Hd(j?[?(m”)’ Vx)a - Ann,f,s Hd()N(I? Vx)gl

(m})’
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(because this is true rationally, and the cohomology groups are torsion-free, by
Theorem 4.3.3). Finally, let N’ =1+ (d —¢g—1)N, and let J denote the image
of the ideal

S (Anng HU(X g V)s)
in A(K,q, A\,m). The existence of the inclusion (4.4.5) implies that S descends
to a morphism

A(K(m"), ) = AKX q.m)/J,
and that the ideal J satisfies JV' = 0. This completes the proof. U

This proposition has the following consequence for Galois representations.

PROPOSITION 4.4.6. Letv,v’ be distinct places ofgp, and let A € (ZV}F)HOH‘(F’E).
Fiz an integer m > 1. Let K C G(A%,) be a good subgroup. Suppose that the
following conditions are satisfied:

(1) For each embedding T : F' — E inducing the place U, we have —A;c1 —
A1 >0 and —Aren — A <p—2n— 1.
(2) We have

1
Z [Fg',, 1 Qp) > §[F+ 1 QJ.
v'eS,
6”;’5675,

(3) For each p-adic place v of F* not equal to v, we have
=~ 1, = m
U(OF+ ) (- K@N (- mod o v .
5! 0 1n v

We have Ky = é(@Fj).

(4) p>n2. (We recall our blanket assumption in §4 that p is unramified
in F.)

(5) Let v be a finite place of F' not contained in S, and let | be its residue
characteristic. Then either S contains no l-adic places of F' and [ is
unramified in F', or there exists an imaginary quadratic field Fy C F in
which 1 splits.

(6) m C TF is a non-Eisenstein mazimal ideal such that Pr 18 decomposed

generic.
d

Let q € Hﬂ ,d — 1}. Then there exists an integer N > 1 depending only on
[F: Q] and n, an ideal J C A(K, )\, q,m) satisfying JN =0, and a continuous
representation
Pm - GF,S — GLn(A(K, )\, q,m)/J)
satisfying the following conditions:
a For each place v & S of F, the characteristic polynomial of pm(Frob,)
is equal to the image of Py(X) in (A(K,\,q,m)/J)[X].
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b For each place v[v of F, pum|Gy, is in the essential image of the functor
G”, for a = (Arn) € Z1OM (B,

¢ For each place v[v of F, there exists N € MFy, with pz|a, = G(N)
and

FL(N)={-Xen+2n—1,...,—Xc1+n, A1+ (n—1),..., A}
for each embedding T € Homq, (Fy, E).

Proof. Our hypotheses include those of Proposition 4.4.1. We choose the
weight X of Proposition 4.4.1 to be CTG (as we may, using Lemma 4.3.6 and our
freedom to specify XE/). Let Ny be the integer denoted by N in the statement
of that proposition. Thus we can find an integer m’ > m, a nilpotent ideal
Jo C A(q, K, \,m) satisfying Jévo =0, and a commutative diagram

TS —— A(K(m/), \)

| J

TS —— A(K, )\, q,m)/Jp.

Let us abbreviate A = A(K(m’),\) and A = A(K, A, q,m). By Theorem 4.3.3,
Ais O-flat, and by Theorem 2.4.10, A ®o Qp is semisimple and can be computed
in terms of cuspidal automorphic representations of G. By Theorem 2.3.3, there
exists a continuous homomorphism

p:Grs — GLan(A®0 Q)

such that for any homomorphism f : A R Qp — Qp, and for any finite place
v & S of F, fo p(Frob,) has characteristic polynomial equal to the image
of Py(X) in Q,[X]; and for any place v[v of F, (f o p)|ay, is crystalline of
Hodge—Tate weights

HT, (f 0 plap,) = {~Arem + (20— 1), =Aret + At 4+ (0= 1), .., Ara ).

In particular, any Gp,-invariant O-lattice in A% g crystalline with all 7-Hodge—
Tate weights in the interval [A;,, (2n — 1) — A;¢5]. Using our hypothesis that
—Aren +(2n —1) — Arpy < p— 2, we see that any Gp,-invariant O-lattice in
A2 i in the image of the functor G* with a = (Arn) € ZHomap (Fo.B) (¢f the
discussion of the functor G* at the beginning of §4).

This establishes part (c) of the proposition. Since for each 7 € Homq, (F, E)
the integers

_)\TC,TL + (2n - 1)7 SR _)\Tc,l +n, )\7—,1 + (TL - 1), ceey )\T,TL

are all distinct, and p = 5y, @ (P’ ® €:727), it follows as well that Pulcr, #

(pﬁ{v ® 61_2”) |GF1, :
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Let D = det p, a continuous determinant of G g of dimension 2n valued
in A (by [Chel4, Ex. 2.32)). Its kernel is a 2-sided ideal of A[G ] (see [Cheld,
§1.17] for the definition of the kernel of a determinant). The formation of kernels
commutes with flat base change over ;4v, so there is an algebra embedding

(A[Grs)/ ker(D) @0 Q, = (A20 Q,)[GFs]/ ker(D®0Q,) C Man(A®0Q,),

by [Chel4, Thm. 2.12]. This is in particular an embedding of left A[GF g]-
modules. It follows that (A[G rs)/ ker(D)) ®o Q, is a subrepresentation of
p*", hence that for each v|7, the G, -representation Z[GF,S]/ker(]_N?) is in the
essential image of G“.

Theorem 2.3.7 implies that there there is an integer N; depending only on
[F': Q] and n, a nilpotent ideal J; C A(K, A, g, m) satisfying val =0, and a
continuous representation

Pm GF7S — GLn(A(Ka )‘a q, m)/‘]l)

such that for each finite place v & S of F', pm(Frob,) has characteristic polyno-
mial equal to the image of P,(X) in (A(K,\, q,m)/J1)[X]. Let J = (Jo, J1) C
A(K, X, q,m); then JY = 0, where N = Ny-+N;. We will show that the proposi-
tion holds with this choice of J and this value of N. Let us now write py, for the
projection of py to a representation with coefficients in A(K, \,q,m)/J = A/ J.
Set Dyjy =D ®zA/J. Then D4,y = det(pm & pa’ © €'=2"), hence
(ker det p) N (ker det p%" @ €' 72") C ker 5A/J.

The representation py, @ (pﬁ{v ® €' 72") induces an A-algebra homomorphism
which, by [Chel4, Thm. 2.22(i)], is surjective with kernel equal to (ker det pm)N
(ker det p3” ® €'72"). We deduce that (A/.J) [GFs]/ker(Dyyy) is a quotient
A/ J-algebra of My(A/J) x My(A/J). By [Cheld, Thm. 2.22(ii)], this forces
(A/D)[Grsl/ ker(Dayg) = Ma(A/J) x Mo(A/J).

The surjection A[GFs] — (A/J)[GEs]/ker(Dy, ) factors through the
quotient A[Grg]/ker(D) (see [Cheld, Lem. 1.18]). It follows that for each
place v[v of F that M, (A/J) x M,(A/J), viewed as a left (A/J)[GF,]-module,
is in the essential image of the functor G® (the essential image is stable

under passage to subquotients). Since M, (A/J) x My,(A/J) contains py as a
subobject, it follows that pm|cy, is in the essential image of G, as desired. [J

Remark 4.4.7. Ideas similar to, and more general than, those used in the
proof above were developed by Wake-Wang-Erickson [WW17].

We now extend the range of cohomological degrees and allowable level
subgroups to which Proposition 4.4.6 applies.
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COROLLARY 4.4.8. Let v € Sy, and let K C GL,(A%) be a good subgroup.
Let X € (Z7)HomPE) | and let m € T9(K, \) be a non-Eisenstein mazimal ideal.
Suppose that the following conditions are satisfied:
(1) For each place v|v of F', we have K, = GL,,(OF,).
(2) There exzists a place v’ € S, such that v # v and

S [F Q) > SF QL
v"eSy
v #v v

(3) For each embedding T : F — E inducing the place v of F*, we have
_)\Tc,l - A7—,1 >0 and _)\Tc,n - )\T,n <p—1-2n.

(4) p > n? (We recall our blanket assumption in §4 that p is unramified
in F.)

(5) Let v be a finite place of F not contained in S, and let | be its residue
characteristic. Then either S contains no l-adic places of F' and [ is
unramified in F', or there exists an imaginary quadratic field Fy C F in
which 1 splits.

(6) P is decomposed generic.

Let g € [0,d — 1] and m > 1 be integers. Then there exists an integer N > 1
depending only on [F : Q] and n, an ideal J C A(K, )\, q,m) satisfying JN =0,
and a continuous representation
Pm : GF,S — GLn(A(K, )\, q,m)/J)
satisfying the following conditions:
(a) For each place v ¢ S of F, the characteristic polynomial of pym(Froby)
is equal to the image of Py(X) in (A(K,\,q,m)/J)[X].
(b) For each place v[v of F, pu|Gy, is in the essential image of the functor
G, fora= (Arp) € zHoma, (1o, B)
(¢) For each place v|v of F, there exists N € MFy, with pyla, = G(N)

and

FLT(N) = {_)‘TCJL + (Qn - 1)) RN _)‘Tc,l +n, )\T,l + (7’L - 1)7 s 7)\7',n}'
for each embedding T € Homq, (F,, E).

Proof. Note that the existence of a py satisfying only condition (a) (local-
global compatibility at unramified places) is already known (Theorem 2.3.5).
We are therefore free to enlarge S if necessary. We first prove the corollary
with hypothesis (6) replaced by the stronger assumption that 5 is decomposed
generic. Let K/ C K be the good normal subgroup defined by the formula
K| = K, if v { p or v|v, and K| = K, Nker(GL,(OF,) — GL,(Op,/@"))
otherwise. Let K C a(A°F°+) be a good subgroup satisfying the following
conditions:
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Kn GAZy) =K.

K5 =G(05,).

For each place v”|p of F™, U(Og) C Ky
Ky = G(Op+).

Let K' = K (m) be the good subgroup defined as follows: if v is a finite place
of F* which is prime to p or equal to v, then K, = K. Otherwise, we set

N%// = ?{%N N {( 10n 1*n ) mod wgﬁ} .

Note that the triple (f(/ "'\, m) satisfies the hypotheses of Proposition 4.4.6. We
let K’ = K'NG(A%;). There is a Hochschild-Serre spectral sequence

HY(K/K' H (Xg, V\/@™)m) = H( Xk, Va /@™ ).

It follows that we have an inclusion

q

H Annps Hq_i(XK/, Wi/ )m C Anngps HY( X, V) /@™ ).

i=0
Suppose we could show that there is an integer Ny depending only on [F'" : Q]
and n and for each i = 0,...,q anideal .J; C A(K', \, g—1i, m) satisfying JiNO =0
and a continuous representation pn; : Gpg — GL,(A(K',\,q —i,m)/J;)
satisfying the conditions the same conditions as py. Then the corollary would
follow, with J equal to the image in A(K, A, ¢, m) of the intersection of the
pre-images of Jy, ..., J, in TS, and N = ¢gNy. Indeed, [CHTO08, Lemma 2.1.10]
(Carayol’s lemma) implies that the product representation

q q
H Pmyi * GF,S' — GLn (H A(Kla Aa q— lam)/‘]l>
1=0 1=0

can be conjugated to take values in GL,, (im(T* — [, A(K’,\,q —i,m)/J;)),
and the ring im(T° — ], A(K’,\,q — i,m)/J;) has A(K,\,q,m)/J as a
quotient.

We are therefore free to assume that K = K’ and K = K’ , which we now do.
In this case, we can moreover assume that A\y» = 0 if v € S, and v” # v. Note
that K satisfies the conditions of Proposition 4.4.6, so if ¢ — i > |d/2], there’s
nothing to do. Suppose instead that ¢ —i < |d/2]. Then d —1—q+1i > [d/2].

Our condition on Ay then implies, together with [Jan03, Cor. I1.5.6],
that there is an isomorphism Vyv = VY. Let ng = (2n + 1 — p)/2, and
let y € (Z7)Hom(FE) be defined by po,r = (no, . ..,no) for each 7. Then the
maximal ideal m" (e 7"0) of T (cf. §2.2.11) is in the support of H*(Xx, VAv ),
and the weight \V + pq also satisfies the hypothesis (3) of the corollary.
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Proposition 4.4.6 implies the existence of an ideal
Ji C T H (XK, Vaviue /™)) v (o)
and a continuous representation
i 2 Grs = GLn (T (H (X e, Vv /™) v (=0 /)

satisfying the same conditions as pn,. Proposition 2.2.12 and Proposition 2.2.14
together imply that the isomorphism

T — T%, [K¥gK®] — e(Artg (det(g))) " [Kg ' K]
descends to an isomorphism
Fe T HT T X i, Vav g /™)) (e-m0) = A(K, A g —i,m).
The proof in this case is completed by taking J; = f(J7) and pm; = (fopy ;)" ®
el—2n+(p—1)/2
We now remove the assumption that p is decomposed generic, assuming
instead only that p,, is decomposed generic. After possibly enlarging k, we can

find a character ¢ : Gp — k* such that
(P @) & (P @ )Y @ € 77)

is decomposed generic, and E‘GFU is trivial for each place v € S of F. Let
Y : Gp — O denote the Teichmiiller lift of 1.
Choose a finite set S’ containing S and the set of places where 1) is ramified
and a good normal subgroup K’ C K, all satisfying the following conditions:
° (K/)SLS — KS'-S.
e The quotient K'/K is abelian of order prime to p.
e For each place v of F', the restriction of ¥|g,, o Artp, to det(K}) is
trivial.
o S’ satisfies the analogue of hypothesis (5) of the corollary.
Then there is a surjection A(K’,\,q,m) — A(K,\, ¢, m) of TS -algebras, so it
suffices to establish the corollary for A(K’, \,q, m). We write m(y)) ¢ T for
the non-Eisenstein maximal ideal with pg ) = P ® ).

Let m(y)) = S*(m(¢))). Then Pa(y) 15 decomposed generic, so the already
established case of the corollary implies that we can find an integer N > 1
depending only on [+ : Q] and n, and an ideal J' € TS (HY(X g, W@ )m())
satisfying J'"* = 0, and a continuous representation

() - Grsr = GLo(TY (HY( X5, VA /™)) /)

satisfying the conditions (a) — (c) of the corollary. Proposition 2.2.14 implies
that the isomorphism

T = T, [K'°gK'®] — o(Artp(det(g)))[K'° gK"°]
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descends to an isomorphism
f : TSI(Hq(XK/, V)\/wm))m(w) — A(K’, A, q, m)
The proof is completed on taking J = f(J') and pm = (f © p(y)) @ ¥~ O

4.5. The end of the proof. We can now prove the main theorem of this
chapter. (For the reader’s convenience, we repeat the statement here.) To
avoid confusion, we also restate the standing hypotheses for this chapter in the
statement of the theorem.

THEOREM 4.5.1. Let m C T9(K,\) be a non-FEisenstein mazimal ideal.
Suppose that T3 (K,\)/m = k has residue characteristic p. Let T be a p-adic
place of FT, and suppose that the following additional conditions are satisfied:

(1) The prime p is unramified in F', and F contains an imaginary quadratic
field in which p splits.

(2) Let w be a finite place of F' not contained in S, and let | be its residue
characteristic. Then either S contains no l-adic places of F and [ is
unramified in F', or there exists an imaginary quadratic field Fy C F in
which 1 splits.

(3) For each place v|[v of F', K, = GL,(Op,).

(4) For every embedding T : F — E inducing the place v of F't,

)\’T,l + )\Tc,l - ATJ’L - )\TC,TL <p-— 2n — 1.

(5) p>nZ
(6) There exists a p-adic place V' #7v of Ft such that

1
> IFL Q) > 5[F+:Q].
v'eS)
v 40,0
(7) P 1s decomposed generic (Definition 4.3.1).
(8) Assume that one of the following holds:

(a) H (XK, V\)ull/p] #0, or
(b) for every embedding T: F — E inducing the place v of F'T,

—Xren — A <p—2n—2 and —Ae1— A1 >0,

Then there exists an integer N > 1 depending only on [F* : Q] and n, an ideal
J C TY(K, \) satisfying J™ =0, and a continuous representation

pm s Grs — GLy (T (K, N/ J)

satisfying the following conditions:

(a) For each finite place v ¢ S of F, the characteristic polynomial of
pm(Frob,) equals the image of Py(X) in (T3 (K, N)w/J)[X].
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(b) For each place v|[v of F', puml|cy, i in the essential image of G* (with
a = (Arp) € ZHMEE)) " and there is M € MFy, such that PmlGp, =
G(M) and for any embedding 7: F, — E,

FLT(M> = {AT,l +n—-1, )\7—’2 +n—2,..., )\7',71}'

Proof. Note that the existence of a py satisfying only condition (a) is
already known (Theorem 2.3.5). We are therefore free to enlarge S if necessary.
We first prove the theorem under the assumption that H*(Xg, V) )m[1/p] # 0.
By Theorem 2.4.9, there exists an isomorphism ¢ : Qp — C and a cuspidal
automorphic representation m of GL, (A ) of weight ¢\ such that (7°°) # 0
and such that r,(7) = 5,. By [Clo90, Lemma 4.9], there is an integer w €
Z such that for each embedding 7: F — FE and for each i = 1,...,n, we
have Ar; + Areny1-i = w. Fix an embedding 79 € Homq, (¥, E) such that
Aro.1 + Aren is maximal. (Recall that v is a fixed choice of place of F' lying
above T.)

After possibly enlarging E, we can (cf. [HSBT10, Lemma 2.2]) find a

continuous character ¢: Gp — O satisfying

e ¢ is crystalline at each v | p,
e 1 is unramified at v,

[ ] QIZ) () AI'tF,;C‘O;N = HTZ F:HE(TC))\TO,IJFATOC,I'

Define a weight p = (tr,1,. .., ftrn) € (Z7)HMEE) by letting u-; be the
unique 7-Hodge—Tate weight for ¢ for each 1 < i < n. Note that for 7 inducing
U, fir; = 0 and fire; = —Apg1 — Age,1 forall 1 <4 <n.

Choose a finite set S’ containing S and the set of places where 1 is ramified
and a good normal subgroup K’ C K, all satisfying the following conditions:

° (K/)S’—S = KS'-S.

e The quotient K'/K is abelian.

e For each finite place v { p of F', the restriction of ¥|g, o Artg, to

det(K7) is trivial.

e S5’ satisfies the analogue of hypothesis (2) of the theorem.
By an argument with the Hochschild—Serre spectral sequence, just as in the
proof of Corollary 4.4.8, we are free to assume that K = K’ and S = S, and
we now do this. Let N = X + u. By Proposition 2.2.14, the map

T - T, [K%gK®] — ¢(Artp(det(g)))[K7gK"]

descends to an isomorphism f : T(K, N Jm(y) = T (K, \)m. We observe that
for any 7 € Homq, (F, E), we have

/ /
“Arel T A1 T _)‘TC,l - )‘T,l + )‘7'0071 + )‘7'071 >0



POTENTIAL AUTOMORPHY OVER CM FIELDS 69

and (using that A\r; + Arcnt1—i = w is independent of 7 and )
N = N = —Aren — A+ Agel + Argt = Al + Arel — Argn — Arepn
< A1t Argel — Amgen — Agn Sp—1—2n.
In particular, \" satisfies the assumptions of Corollary 4.4.8.
We recall (Lemma 2.1.7) that RI'(Xg,Vy) is a perfect complex, with

cohomology concentrated in the range [0,d — 1]. It follows (cf. [NT15, Lemma
3.11]) that the map
T%(K,X) = lim T%(RD(Xk, Yy /@™))
m>1

is an isomorphism. On the other hand, [KT17, Lem. 2.5] shows that for any
m > 1, the kernel of the map

TS<RF(XK, V)\//wm)) — H TS(Hq(XK, V)\//wm))
q
is a nilpotent ideal I satisfying I¢ = 0. Applying Corollary 4.4.8, we see that
we can find an integer N > 1 depending only on [F'T : Q] and n, an ideal
J' C T¥(K, N )y satisfying (J')Y =0, and a continuous representation

Pt Grs = GLn (TS (K, X))/ )
satisfying the following conditions:
(a’) For each place v ¢ S of F', the characteristic polynomial of pyy) (Frob,)
is equal to the image of P,(X) in (TS (K, X)) /J")[X].
(b’) For each place v[v of F, py(y)lcy, is in the essential image of the functor
G, for a' = (A%n) € Homq, (Fy, E).
(¢’) For each place v|v of F, there exists N € MFj, with

(me) ® (P © 61‘2”)) G, = G(N)
and
FL,(N) ={-XN..,+(2n—1),..., =X 1 +n,XN  +(n—1),....\ .}

for each embedding 7 € Homgq, (F}, E).
Let us define J = f(J') and pm = (f © pm(y)) @ 1p~1. We see immediately that
Pm satisfies the requirements (a) and (b) of the theorem; it remains to establish
requirement (c), in other words to recover the Fontaine-Laffaille weights of 7.

By the above, there is M € MF such that p, = G%(M). Let x: T(K, Ay —

Qp denote the homomorphism which gives the action of Hecke operators on
1~ (7>)K. The pushforward p, = x o py, via z is a continuous representation
of Gr g which is crystalline at v and v, satisfying HT;(p,) = FL, (M) for each
7 € Hom(F, E) inducing the place v of F'*. Tt therefore suffices to show that

HT (pz) ={ 1 +n—1L A 2+n—2,..., A}
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for each 7 € Hom(F, E) inducing the place v of F'*, or equivalently that
HT (pe @¢) ={N;+n -1, N ,+n—2,... .7\ }.

Let wr : Aj — C* denote the central character of m. Then w, is a
character of type Ag and for each embedding 7 : F' — FE inducing the place ©

of F™, we have
HT,(r,(wr)) {Z)\”}.

Moreover, we have det p, = 7, (wr)e"™/2 hence det(p, @) = r,(wy )=/ 2m
as this can be checked on Frobenius elements at unramified places. We are now
done: HT;(p, ® 1) is an n-element subset of

FL ( )_{ )“rcn ( n-— 1)7"'7_)‘;'@1 +n7)‘fr,1 +(n_ 1)?"‘7)‘;',n}'
with sum equal to Y 1 (A} ; +n — i). By construction, we have
Nen+Cn—=1)>-->=XN 1 +n>N +(n—-1)>--->X |

The only possibility is that HT(p, ® 1) has the required form. This completes
the proof of the theorem in the case H*(Xg, Vi )m[l/p] # 0.

We now treat the second case, assuming that for every embedding 7 €
Hom(F, E) inducing the place v of F'", we have

_)\Tc,n - )\7',7’1 <p-— 2n —2 and — ATC,I — )\7_71 > 0.

In this case Corollary 4.4.8 applies directly, and it only remains to identify the
Fontaine-Laffaille weights of p,, for each place v|v of F. There are M, M e
MUF$ such that ﬁm|Gp >~ G(M) and (p3" ® €'~ 2")\GF ~ G(M'). We choose

a continuous character V: Gp — O satisfying

e 1) is crystalline at each v’ | p,

e 1 is unramified at v,

e o ArtF;c =TI pg(Tc) on (’);~c
After enlarging S, as in the first part of the proof, we can assume that 1 is
unramified outside S, in which case the maximal ideal m(v)) of T is defined
and occurs in the support of H*(Xf, Vy), where the weight \' € (Z7 )Hom(FE)
is defined by the formula X = A, if 7 does not induce the place ¥ of F, and
A=A —(1,...,1) if 7 does induce the place ¥ of F. We observe that the
weight A also satisfies the assumptions of Corollary 4.4.8.

We can now conclude. Let 7 € Hom(F, E') be an embedding inducing the
place ¥ of F. The sets FL.(M) and FL,(M') partition the 2n distinct integers

“Xren+@n—1)>--->-Aci1+n> 1+ n—-1)>---> A,
and FL, (M) and FL, (M) + 1 partition the 2n distinct integers
“Aren F2n > > A1+ (n+1) > g+ (n—1) > > A
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Using Lemma 4.5.2, this forces

FL,(M)={ 1+ (n—1), A2+ (n—2),..., A n}
and
FL,(M') = {~Arem + (20— 1),...,=Are1 +n}.
Since G(H/) =% ® €' 7?")|¢,._, this implies that for each place v[v of F,

Pmlcy, has the correct FontaineLaffaille weights. (]

LEMMA 4.5.2. Let m > 1 be an integer and let A, B,C,D be sets of
integers each of size m. Assume that for any ¢ € C and d € D, we have ¢ > d.
IfAUB=CUD and (A+1)UB = (C+1)UD and both of these sets have
2m elements, then A= B and C = D.

Proof. We induct on m. Let ¢ be the largest element of C' and let d be the
smallest element of D. Since AUB=CUD and (A+1)UB=(C+1)UD,
we must have ¢ € A and d € B. We can then apply the inductive hypothesis to

A=A\ {¢}, B'= B\ {d}, C' = C\ {c}, and D' = D\ {d}. O

5. Local-global compatibility, [ = p (ordinary case)

5.1. Statements. Let F be a CM field, and fix an integer n > 1. Let p be a
prime, and let £ be a finite extension of Q, inside Qp large enough to contain
the images of all embeddings of F' in Qp. We assume throughout this chapter
that F satisfies the following standing hypothesis:

e F' contains an imaginary quadratic field in which p splits.

In contrast to §4, we do not assume that p is unramified in F. As in §4,
our goal in this chapter is to establish local-global compatibility for some
Hecke algebra-valued Galois representations at the p-adic places of F'. More
precisely, we will show that after projection to the ordinary Hecke algebra,
these Galois representations satisfy an ordinariness condition (see (b) and (c) in
the statement of Theorem 5.5.1 below — the consequences of this condition will
be explored in §6.2.6). Before formulating the main theorem of this chapter,
we must define these ordinary Hecke algebras.

Let K C GL,(A%) be a good subgroup, and let A € (Z’}F)Hom(F’E). Let S
be a finite set of finite places of F', containing the p-adic places, stable under
complex conjugation. We assume that the following conditions are satisfied:

e Let v be a finite place of F' not contained in S, and let [ be its residue
characteristic. Then either S contains no [-adic places of F' and [ is
unramified in F, or there exists an imaginary quadratic subfield of F’
in which [ splits.

e For each place v|p of F', K, = Iw,. For each finite place v & S of F,
K, = GL,(Op,).
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If ¢ > b > 0 are integers with ¢ > 1, then we define a good subgroup K (b, c) C
by the formula K (b, c), = K, if v {p and K, = Iw,(b, ¢) if v|p. Thus K(O 1)
K. Then there is an isomorphism K (0,c)/K(b,c) = [Ty, T,.(OF, /@b). (W
are using here notation for open compact subgroups and Hecke operators that
has been defined in §2.2.3.)

We define a Hecke algebra

oord _ S Ro O[[Tn(OF,p)]][{Uv,la o Uy B2 Uy, n}vlp]

(where the U, ; are viewed as formal variables). We write U, = Uy 1Uy 2+ Uy -1 €
T and U, = [Iojp Uv. We observe that there is a canonical surjective O-
algebra homomorphism O[T, (OF,)] — O[K(0,c)/K(b,c)]. This extends to a

homomorphism

TS,ord N EHdD(O[K(O,c)/K(b,C)])(RF(XK(va)’ V)\))>

where each element U, ; of Sord

acts on the complex RI'(Xg (), Va) by
the Hecke operator of the same name. By the theory of ordinary parts (cf.
[KT17, §2.4]), there is a well-defined direct summand RI'(X K(b7c),V>\)°rd of
RU(Xk (b,¢), V2) in D(O[K (0, c)/K(b,c)]) on which U, acts invertibly, and we

define T(K (b, c), A)°™ to be the image of the associated homomorphism

TS,Ord N EndD(O[K(O,C)/K(b,C)D (RF(XK(I),C)7 V)\)Ord)

or equivalently, extending our usage for the Hecke algebra T,
TS(K(b7 C)a A)Ord = TSVOrd(RF(XK(b,c)v V)\)Ord)'

We observe that there is a canonical homomorphism TS (K (0, ¢)/K (b, c),\) —
T(K (b, c), \)°*d. In general this is neither injective nor surjective. However,
we do see that for any maximal ideal m of T(K (b, c), A\)'d, there exists an
associated Galois representation py, : Gps — GL, (T (K (b, c), \)/m). We
call a maximal ideal m of TS with residue field a finite extension of k of
Galois type (resp. non-Eisenstein) if its pullback to T is of Galois type (resp.
non-Eisenstein).

The Hecke operators U, ; € T9(K(b,c), \)*'? are invertible (because U,

is). For each place v|p and for each i = 1,...,n, we define a character x),; :

Gr, — T9(K(b,c), )" as the unique continuous character satisfying the
identities

XowioArtp, (u) = ' (Artp, (u (HT —(wgiA ) (diag(1,...,u,...,1)) (v € OF)

(the product being over 7 € Homgq, (F,, F)) and

—i Uv i
X © Att () = (At (@)
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We can now state the main theorem of this chapter. (As with Theorem 4.5.1
in §4.1, with the same numbering as it occurs again immediately before the
proof).

THEOREM 5.5.1. Suppose that [F™ : Q] > 1. Let K C GL,(A%) be a
good subgroup such that for each place v € S, of F, K, =Iw,. Letc>b2>0
be integers with ¢ > 1, let A € (Z™)H™EE)  and let m ¢ T9(K (b, c), \)*d
be a non-FEisenstein mazximal ideal. Suppose that the following conditions are
satisfied:

(1) Let v be a finite place of F not contained in S, and let | be its residue
characteristic. Then either S contains no l-adic places of F and | is
unramified in F, or there exists an imaginary quadratic field Fy C F in
which | splits.

(2) P is decomposed generic.

Then we can find an integer N > 1, which depends only on [F* : Q] and n, an
ideal J C T9(K (b, c), &Y such that JN =0, and a continuous representation

pum : G — GLn (TS (K (b, ), \)ord/.J)

satisfying the following conditions:

(a) For each finite place v ¢ S of F, the characteristic polynomial of
pm(Frob,) equals the image of Py(X) in (T°(K(b,c), \)ord/J)[X].
(b) For each v € Sy, and for each g € GF,, the characteristic polynomial

of pm(g) equals TTim1 (X — Xaw,i(9))-
(c) For each v € Sy, and for each g1, ...,9n € GR,, we have

(Pm(91) = Xr0,1(91)) (Pm(92) — X2,2(92)) - - - (Pm(gn) — X2w,n(gn)) = 0.

The rest of §5 is devoted to the proof of Theorem 5.5.1. In the rest of the
chapter, we make the following additional standing hypothesis:

e For each place v|p of F, our fixed choices of uniformizer satisfy w,ec =

c
v

w.
This simplifies notation once we introduce the group G. Tt is important to
note that while the definition of the operators U, ; above depends on the choice
of uniformizer w,, neither the complex RT(Xx, V»)*'4, nor the Hecke algebra

T (K (b, c),\)°", nor the truth of Theorem 5.5.1 depend on this choice.

5.2. Hida theory. In the previous section we introduced the ordinary Hecke
algebras T (K (b,c), \)°". In §5.2, we recall the basic results about these
Hecke algebras and the complexes on which they act: this material goes under
the name “Hida theory”. We also describe how this theory is related to the
corresponding theory for the group G.
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5.2.1. The ordinary part of a smooth representation. Our first goal is to
show, following Emerton [EmelOa, EmelOb], how to define ordinary parts in
a more representation-theoretic way. We will work throughout with O/w™
coefficients (for some fixed m > 1) in order to avoid topological issues. We first
need to introduce some more notation. If G is a locally profinite group, then
we write Mod(O/w™[G]) for the category of O/w™[G]-modules, and

(5.2.2) Modgm (O/w™[G]) C Mod(O/@™[G])

for the full subcategory of smooth modules. More generally, if A C G is an
open submonoid which contains an open compact subgroup of G, then we write

(5.2.3) Modgm (O/w™[A]) € Mod(©/w™[A])

for the full subcategory of smooth modules (by definition, those for which every
vector is fixed by an open subgroup of A). We write

M — M*™ : Mod(O/w™[A]) = Modgm (O/w™[A])
for the functor of smooth vectors; it is right adjoint to the inclusion (5.2.3).

LEMMA 5.2.4. (1) The category Mod g, (O/w™[A]) is abelian and has
enough injectives.

(2) Let A’ C A be a subgroup which is either compact or open. Then the
forgetful functor

Mod (O /@™ [A]) = Modgn(O/w™[A"])
preserves injectives.

Proof. The functor M +— M"™ has an exact left adjoint, so preserves
injectives. Since the category Mod(O/@w™[A]) has enough injectives, so does
Modgm (O/w™[A]).

For the second part of the lemma, we split into cases. Suppose first that
A’ C A is an open subgroup. Then compact induction c—Indﬁl is an exact left
adjoint to the forgetful functor. Suppose instead that A’ C A is a compact
subgroup. In this case, we can find a compact open subgroup of A which
contains A’. Using what we have already proved, we can assume that A = G,
in which case the result follows from [EmelOb, Prop. 2.1.11]. O

We write Doy (O/w™[A]) for the derived category of Modsm (O/@™[A]).
We introduce some monoids, with the aim of studying the theory for
G = GL,(F},). We write T,,(F,)" C T,,(F}) for the open submonoid consisting
of those elements t € T),(F,) with tN,,(Op,)t™t C N,(OF,), and T,,(F,) " =
T (Fy) N T, (F,)*". We recall (§2.2.3) that A, C GL,(F},) denotes the monoid
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[Tojp Iwo T (Fy) tIw,. If b > 0 is an integer, we define

Tr(OF,p) (b H ker (T, (OFy) — Tn(Op, /@)
vES)
and
Tn(Fp)l;F = Tn(Fp>+/Tn(OF,p)(b)
and

To(Fp)o = Tn(Fp) /Tn(OF,) (D).
We write u, € T,,(Q,) C Tn(F,) for the element (p"~1 p"=2 ... 1). It lies
in T,,(Fp)". We define B,(F,)" = N,(Opp) - To(F,)" C By(F,). Note
that B,(F,)" C A,. We write B,(OF,)(b) for the pre-image in B, (OF,)
of T,(OFp)(b). It will be important for us to note that a complex C €
Dy (O/w™|[T,,(F});]) comes equipped with a functorial homomorphism

O[[TH(OF,p)H [{Uv,la sy Uv,m U;;}UESI,] — Enstm(o/wm[Tn(Fp);r])(C)
via the map which is the canonical homomorphism

O[Tn(Orp)] = O/@™ [Tn(OFp)/ Tn(OF,)(b)]

on this subalgebra and which sends U, ; to the matrix
diag(wy, ..., @y, 1,...,1) € T, (Fy) C T (F)p)

(with 4 occurrences of w,). Consequently, if T acts on a complex C, then we
can extend this to an action of the algebra TS0,

If A € X*((Resp/qTn)E) = (Zm)Hom(FE) - then we write O()\) for the
O[T}, (F})]-module defined as follows: it is a free rank 1 O-module on which an el-
ement u € T,,(OF,) acts as multiplication by the scalar [T, ctiom(r,£) [Ti=1 7 ()M
and on which any element diag(w',...,w%") (a; € Z) acts trivially.

We recall that in §2.2.3 we have defined, for any \ € (Z7)Hom(E) 5
twisted action (d,v) — 6 -, v of Ay on V. Projection to the lowest weight space
determines an O-module homomorphism V) — O(w§\) which is equivariant
for the action of B, (F,)" (where B, (F,)" acts through the -p-action on the
source and through its projection to T),(F)) on the target). We write K for
the kernel of the projection Vy — O(w§ \); it is again an O[B,(F,)*]-module,
finite free as O-module.

We now define various functors that together will allow us to study ordinary
parts using completed cohomology. We write

L(Nn(OFp), =) : Modsm(0/@™[Ap]) = Modsm (O™ [T,(F,) )

for the functor of N, (Op,)-invariants. If V€ Modsm (O/@w™[A,]), then the
action of an element ¢ € T,,(F,)" on v € I'(N,(OF,), V) is given by the formula

(5.2.5) tov= > tv

neNy (Op,p)/th(Opyp)tfl
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(cf. [EmelOa, §3]). We write
L (Bn(Opp) (), =) : Modsm (O/@"™[A]) = Mod(O/w™ [T,(£,);])

for the functor of B, (Op,,)(b)-invariants. The action of an element ¢ € T,,(F,);
is given by the same formula (5.2.5).

Ifc > b > 0 are integers with ¢ > 1, then we define Iw, (b, ¢) = [Tves, IWu(b, ¢) C
GL,,(F},). We write

I'(Iwp (b, ), —) : Modem (O/w™[A,]) = Mod(O/w™[T,,(F,)i])

for the functor of Iwy,(b, c)-invariants. If V' € Modgm (O/@w™[A,]), then the
action of an element ¢ € T,,(F,)* on v € T'(N,(Op,), V) is given by the action
of the Hecke operator [Iwy (b, ¢)tIw,(b, ¢)] (cf. §2.1.8).

For any b > 0, we consider the functors

L(T(OFp) (b), =) : Modsm (O /w™ [T (Fp) ) = Mod(O/a™ [T (Fp)y )
and
I(Tn(OFp)(b), =) : Modsm (O/@™ [T, (Fp)]) = Mod(O /@™ [Tn(F})s))
of T,(OFp)(b)-invariants. Finally, we write
ord : Modgm (O/@™ [T (F,) ) = Modsm (O/w™ [T (Fp)])
and
ord, : Mod(O /@™ (T,,(F,)i]) — Mod(O /@™ [T, (F},)))
for the localization functors —®¢ /em 7, (7,)+O/@" [Tn(F})] and ~®0 /w1 (F)} ]
O/w™ (T, (Fp)s), respectively. (As the notation suggests, we will use localization
to define “ordinary parts”. The reader may object that the ordinary part usually
denotes a direct summand, rather than a localization. At least in the context
of O/w™(T,(F,);]-modules which are finitely generated as O/w™-modules,
the two notions agree (cf. [EmelOb, Lemma 3.2.1] and also Proposition 5.2.15

below). We use localization here since it is easier to define without finiteness
conditions.)

LEMMA 5.2.6. The following diagram is commutative up to natural iso-
morphism:

D(T0(OFp) (D), —)

Modm(O/ @™ [Tn(F)*]) Mod(O/w"™ [T (Fp)y 1)
ordl Jordl7
Mod (O [T () Mod (/=™ [Ty, (Fy)y))-

D(T0(OFp)(b), —)
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Proof. Let M € Modgm, (O/@™[T,,(F,)"]). There is a natural morphism
0ty DT (Opy)(b), M) — T(Ta(Opy)(b), 0xd M),
or equivalently

M OEIOD 0 g, (51 O/ [Ta(Fl] = (M0 ez, (5,110 @™ [T (Fy)]) ),

We must show that it is an isomorphism. It is injective because M (Orp)(®)
M is injective and localization is exact. To show it is surjective, let m € M,
and suppose that m ® 1 € (M ®0/mm(1, (F,)+] O /@™ [Ty, (F,)]) T (Orr)b) . We
must show that there exists n > 0 such that u;}x € MTn(Orp)®)  Since M is
smooth, there exists ¢ > b such that x € M™(©Orp)(©)  On the other hand,
our assumption on m ® 1 means that for any ¢t € T;,(OF,)(b), there exists
n(t) such that ug(t)(t — 1)z = 0 in M. Choosing n(t) to be as small as
possible, we see that n(t) depends only on the image of ¢ in the (finite) quotient
Tn(OFp)(0)/Trn(OFp)(c). We can therefore take n = sup, n(t). O

LEMMA 5.2.7. (1) Each functor I'(Nyn(OFyp), =), T'(Bn(OFp)(b), —),
and I'(Iwy, (b, ), —) is left exact. For anyb > 0, the functor I'(N,(OFpy), —)
sends injectives to I'(T,(OFp)(b), —)-acyclics.

(2) The functors ord and ordy are exact and preserve injectives.

Proof. 1t is immediate from the definitions that the three functors in the
first part are left exact. We now show that the functor I'(N,,(OF,), —) sends
injectives to I'(T5,(OF,) (), —)-acyclics.

We have a commutative diagram

Modm (O/w"™[Ap]) ———— Modw(0/@™ [T (F})*]) —— Mod(O/@™ [T (Fp),])

| g |
Modsm (O/@™ By (OFp)(b)]) —— Modsm (O/@™[1,(OF,p) (b)]) ————— Mod(O/w™)
where the horizontal arrows are taking invariants and the vertical arrows are
restriction to compact or open subgroups. By Lemma 5.2.4, the vertical arrows
are exact and preserve injectives. We must show that if Z € Modgm (O/@™[A,])
is injective, then for each i > 0, R'T(T,,(Op,)(b), [(Nn(OFp),T)) = 0. Equiva-
lently (using the formula for a composition of derived functors, [Wei94, Corollary
10.8.3]), we must show that
YR (T (OFp) (0), T(Nu(OFyp). 1)) = RT(T(OFy) (0). T (Na(OF,), aZ)) = 0.
However, aZ is injective, so this follows from the fact that the functor

L(Nn(OFp), =) : Modsm (O /@™ [Bn(OF,) (b)]) = Modsm (O™ [T, (OFp) (b)])

preserves injectives (because it has an exact left adjoint, given by inflation).
This proves the first part of the lemma.
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We now prove the second part of the lemma. Both ord and ord, are
exact because localization is an exact functor. Since localization preserves
injectives in the case of a Noetherian base ring, ord, preserves injectives. To
show that ord preserves injectives, we go back to the definitions. Let Z be
an injective object of Modgy (O/@™ [T}, (F,)T]), let M < N be an inclusion
in Modgm (O/w™ [T, (F}p)]), and let o : M — ord(Z) be a morphism. We must
show that o extends to N.

For any b > 0, passing to T,,(Op,)(b)-fixed vectors gives a morphism (cf.
Lemma 5.2.6)

a(b) : MTn(Orp) () _ Ord(I)Tn(OF,p)(b) o Ordb(IT"(OF’p)(b)).

The object ZT(Or)(%) € Mod(O/w™[T,,(F,);]) is injective, showing that we
can extend a(b) to a morphism a(b)’ : NTn(Orp)(b) s rd(Z)T(Ors)®) | Since
N = Up>oN Tn(Orp)®) | Zorn’s lemma implies that there exists an extension of
a to the whole of N, as desired. O

LEMMA 5.2.8. For any ¢ > b > 0 with ¢ > 1, there s a natural isomor-
phism
ordy oI'(Iwp (b, ¢), —) = ordy oI'(B(OFy)(b), —)
of functors
Modspm(O/w™[Ap]) = Mod(O/w™ [T7,(Fp)s))-

Proof. We first show that for any V' € Modsm(O/@w™[A,]), the natural
inclusion I'(Iw,(b, ¢), V) C T(Bn(OF,p)(b), V) is a morphism of O /™ (T,,(F,); ]-
modules. A given element ¢ € Tn(Fp);r acts on the source via the Hecke operator
[Iw, (b, ¢)tIwp (b, ¢)] and on the target by the formula (5.2.5). We see that we
must show that the map

N(Op7p)/tN((’)F’p)t_1 — Iwp (b, ¢)/(Iwy(b, c) N tIwy (b, c)t_l)

is bijective. This is true, because Iw,(b, c) admits an Iwahori decomposition
with respect to B,, (cf. §2.1.8).

The exactness of ord, implies that for any V' € Modgm(O/w™[A,]), there
is an inclusion ord, I'(Iwy (b, ¢), V) C ordy I'(B,(OFp)(b), V). We must show
that this is an equality.

We have O/w™ [T, (Fpy)i [uy]™t = OJ/@w™[T,(F,)p]. Consequently, the
lemma will follow if we can show that for any v € I'(B,,(Op,)(b), V), there
exists n > 0 such that uy; - v € I'(Iwy(b,¢),V) = Viwa(be),

Since V is smooth, there exists ¢ > ¢ such that v € VI¥p(5:c) | By induction,
it is enough to show that U, -v € VIwp(b:c'=1) © The definition of the Hecke
operator U, shows that this will follow if the double coset Iwy (b, ¢/ )u,Iw, (b, ¢)
is invariant under left multiplication by the group Iw,(b,¢’ — 1). This is true,
as proved in e.g. [Gerl8, Lemma 2.5.2]. O
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LEMMA 5.2.9. Let m € Dy, (O/w™[Ap]) be a bounded below complex.
Then for any ¢ > b >0, c > 1, there is a natural isomorphism

RI(T,(OFp)(b),ord RT'(Nyp(OF,), 7)) = ordy, RT (Iwy (b, ¢), )
in D(O /=" [T, (Fy)u).
Proof. We will use [Wei94, Corollary 10.8.3] (composition formula for

derived functors) repeatedly. Since ord preserves injectives, this implies the
existence of a natural isomorphism

RT(T(Opyp)(b), —) o ord = R(D(T(OF)(b), ord(—))
= R(Ol‘db OF(Tn(OF,p>(b)7 _))
= ordy, RT(Ty(OF,)(b), —).

It follows that for 7w as in the statement of the lemma, there is a natural
isomorphism

RT(T,(OFp)(b), ord RT'(Np(OFp), m)) = ordy RI'(T,(OFp)(b), RT'(Np(OFp), m)).
Using the first part of Lemma 5.2.7, we see that there is a natural isomorphism
RE(T0(OFp)(0), RU(Nn(OFp), 7)) = R (Bp(Opy(b), 7).
Lemma 5.2.8 implies the existence of a natural isomorphism
ord RT'(Bn(OF,)(b), 7)) = R(ordy I'(Bn(Orp)(b), —))(7)
= R(ordy I'(Tw, (b, ¢), —))(m)
= ordy, RI'(Iwp (b, ), m).
This concludes the proof. O

5.2.10. The ordinary part of completed cohomology. We now apply the
formalism developed in the previous section to the cohomology groups of the
spaces Xg. If K C GL,(A%) is a good subgroup, then there are functors

I'kpsm : Mod(O/w™[G™]) — Modsm((’)/wm[G(F;)})
and
'k sm : Mod(O/@™[GP™ x Ap]) = Modsm (O™ [Ap])

which send a module M to I'(KP, M)*™. If X € (Z’}F)Hom(F’E), then we define
the weight A completed cohomology

7(KP, \,m) = RT kp s RT (X, Va/@™) € D (O /™ [A,)).

If K9 = [Togs GLn(OF,), then m(KP, X\, m) comes equipped with a homomor-
phism

(5.2.11) T® = Endp,,, (0/wm(a,)) (T(EK?, A, m))
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and, if K,, C AAp, a canonical TS-equivariant isomorphism
(5.2.12) RI(Kp,m(KP,A\,m)) = RI'(Xg, Vy/@w™)

in D(O/w™). We define 7(K?,m) = RT gr sm RT (Xg, O/w™) € D (O /@™ [G(F,;1)]);

this complex comes equipped with a homomorphism

which recovers (5.2.11) in the case A = 0 after applying the forgetful functor to
D (O/@m™[A,]). We write T(KP, m) for the image of (5.2.13).

LEMMA 5.2.14. Let K C GL,(AS) be a good subgroup. Then TS(KP,m)
is a semi-local ring, complete with respect to the J-adic topology defined by
its Jacobson radical J. For each mazimal ideal m C TS(KP,m), there is
a unique idempotent e, € T3 (KP,m) with the property enH*(m(K?,m)) =
H*(n(KP,m))n.

Proof. See [GN16, Lemma 2.1.14]. O
One important consequence of Lemma 5.2.14 is that the localization
m(KP,m), € Dsm(O/wm[G(F;)])

is defined.
We define the ordinary part of completed cohomology

7(KP, X, m) = ord RT(N,, (Opp), 7(K?, A, m)) € Da(O /@™ [T (F}))).

(If A = 0, then we write simply 7°9(KP,m).) Its relation to the complex
RT'(X g, V))° defined in §5.1 is the expected one:

PROPOSITION 5.2.15. Let K C G* be a good subgroup with K, = Iw,
for each v|p and K = [T,z GLy(OF,). Let ¢ >b >0 be integers with ¢ > 1.
Then for any A € (Z:‘_)Hom(F’E), there is a TS -equivariant isomorphism
RP(Tn(OF,p)(b)7 ﬂ-ord(va )‘7 m)) = RF(XK(b,c)v V)\/wm)ord
in D(O/="[K(0,)/K (b, )]).
Proof. We compute. We have T®-equivariant isomorphisms
RI(T,(OFp)(b),ord RT'(Np(OFp), 7(KP, X,m))) = ordy, RI'(Iw,(b, c), 7(K?, A\, m))
= ordy RU(Xg (p,e) Va/@™),
all objects being considered in the category D(O/w™ [T}, (F})s]). We have a
morphism
RU(X g (b,e), VA/@™)” = RT(X (e Va/@"™) = ordy, RT(X (3,00, Va /™)

in D(O/@™ [T, (OFp)s]). To complete the proof, we must show that this induces
an isomorphism on cohomology groups. This, in turn, reduces us to the problem
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of showing that if M is an O/@w™[U]-module, finite as O/@w™-module, and
M is the maximal direct summand of M on which U acts invertibly, then
the natural map M4 — M — M ®¢ Jwmu] O/ U, U~1] is an isomorphism
of O/w™-modules. This is true (cf. [EmelOb, Lemma 3.2.1]). O

COROLLARY 5.2.16 (Independence of level). Let K C GL,(A%) be a good
subgroup with K,, = Iw, for each v|p and KS = [Togs GLn(OF,). Letc>b>0
be integers with ¢ > 1. Then for any A € (Zi)Hom(F’E), the natural morphism

RT (X e (pmax(1.6)), VA/@™) 7 = RO(X (5,09, Va /@) ™
in D(O/@™[Th(OFp)s)) is an isomorphism.

PROPOSITION 5.2.17. Let K C GL,(A%) be a good subgroup with KS =
[Togs GLn(Opw). Then there are TS -equivariant isomorphisms in D(O /@™ [T, (Fp))):

7 4(KP, X, m) = ord RT(N,,(Op,), R kv sm RL (X, O(w§ A) /™))
= 1" KP m) @0 O(w§ ).
Proof. By definition, we have
7" 4(KP, X\, m) = ord RT(N,,(OF,), RT k» sm R (X, VA /™).

This depends only on the image of RI'k» ¢m RI'(X¢, Vy/@™) in the category
D(O /@™ B, (F,)"]. In this category, the B, (F,)t-equivariant morphism V) —
O(w§ ) induces a morphism

7" Y(KP, X\, m) — ord RT(Ny(OF,), RT k» sm R (X, O(w\) /™).
To show that this is an isomorphism, we just need to check that
ord RT'(N,(OFp), Rl gp sm R (X, Ky /™)) = 0,

where we recall that K, = ker(Vy — O(w§ \)). This follows from the observa-
tion that for sufficiently large N > 1, we have u;,V /@™ = 0. The existence

of the second isomorphism follows from the fact that N,,(Op,) acts trivially on
O(w§ ). O

COROLLARY 5.2.18 (Independence of weight). Let K C GL,(AY¥) be a
good subgroup with K, = Iw, for each vlp and K° = [[,gs GLn(Op,). Let
¢ >b>0 be integers with ¢ > 1. Then for any \,\' € (Z’_}_)Hom(F’E) such that
O(w§N) /o™ = O(w§N) /@™ as O)w™ [T, (F,)]-modules, there is an TS°"d-
equivariant isomorphism

BRI (X g (5,0, V/@™)” 22 R (X g (b, Vo /™)
in D(O/@™[T(Fp)s))-
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5.2.19. Results for the group G. We recall that by assumption each p-adic
place of F'* splits in F, and that we have fixed for each place v € Fp of F* a
lift v € S, to a place of F. These choices determine an isomorphism

I1 :GEH = [] GLon(F)

vES) vES)

We have also fixed a maximal torus and Borel subgroup 7' C B C G which
correspond under this isomorphism to Ts, C B, C GLs,. The theory of §5.2.1
can thus be easily generalized to study the completed cohomology of G. Since
we will need to do this only in passing on our way to analyzing the complexes
74 (KP,\,m), we just give some brief indications. We will use some of the
Hecke operators and open compact subgroups defined in §2.2.3. We define

TS @0 O[T(Op+ )IH{Un1,- - Uszn, Uy oy }ues, |

({Uvei = Un2o-iUp 30} ves, )
i=1,...2n
We define UU = vlﬁvg ﬁvn 1 and U, = [Tves, U c TS If K ¢
G(AF+) is a good subgroup with Kz = Iwy for each ¥ € Sp,and ¢ > b >0
are 1ntegers with ¢ > 1, then we define K(b c) to be the good subgroup
with K(b,c)y = Ky if 7 ¢ Sp and K(b,¢)y = Iwg(b,c) otherwise. If X €
(Z2n)Hom(F, *.E) | then there is a well-defined direct summand RF(X R(b.o)’ V~)°rd

of RT(Xz,

TS,ord _

VX) on which Up acts invertibly, and we define

o Tyord _ mS,ord o
T(K(ba C)’ A)O =T>° (RF(XK(b,c)

(i.e. the image of the TS in the endomorphism algebra in D(O[K (0, ¢)/K (b, c)])
of this direct summand).

We extend the homomorphism S : TS 5 TS toa homomorphism TSord
T5°rd also defined S, using the identification

O[[T(OF+,p)]] = O[[Tn(OF,p)ﬂ >

ord
V5)%)

and by sending each operator ﬁv,i to the operator ch,n_iUv_c}n (if 1 <i<n)
andU WUvion (ifn+1<1i<2n).

We write T (E,5)* € T(F,) for the submonoid of elements which are
contracting on N(Op+ ). Under our identification T'(F,\) = T, (F,), we
have T(F,/)* C T, (Fp)* (and the inclusion is strict provided n > 2). Let
ﬂ;Vp(b, c) = [Tses, Iwy(b, c). We recall (§2.2.3) that we have defined Zp =
IA\;Vp(b, C)T(F;)+ﬁvp(b, ¢), an open submonoid of a(F;), and that we have
defined an action -, of this monoid on VX‘ If b > 0 is an integer then we
define T(Op+ ,)(b) = Th(OFp)(b) and write B(Op+ ,)(b) for the pre-image



POTENTIAL AUTOMORPHY OVER CM FIELDS 83

in B(Op+,) of T(Op+ ,)(b) under the natural projection to T. We define
B(F,)" = N(Op+,)  T(F)".

Fixm>1.IfK C a(A%O+) is a good subgroup with Ky = Iwg for each
7€ 5, and A € (Z2")Hom(FTE) then we define

(5.2.20)  #(KP,A,m)= Rz,  RU(X5 Vy/w™) € Do (O/w™[A,).

If KS = é(@fw), then this complex comes equipped with a homomorphism

o .
(5.2.21) T —>Enstm(O/wm[Zp])(ﬂ(Kp,)\,m)).

We define 7#(K?,m) = Rz, RI'(X5,0/w™) € D (O/w™[G(F,")]); this
complex comes equipped with a homomorphism

~ i .
(5.2.22) T _>EndDS,,,(O/wm[G(F;)])(W(K ,m))

that recovers (5.2.21) after applying the forgetful functor induced by the

inclusion Zp C CNJ(FJ ). We also need the completed boundary cohomology. We
thus define

(5.2.23)  Fo(KP,X\,m) = Rl'z, RI(9Xg,Vi/@™) € Dan(O/m™[A,)).
This complex comes equipped with a homomorphism

. R
(5.2.24) T = Bndy, o)z, (Fo (K" A m)).

We define #(K?,m) = Rz, RT(0Xz,O/w™) € D (O/w™[G(F;))); this
complex comes equipped with a homomorphism

~ .
(5.2.25) T _>Enstm(O/wm[é(F;)])(ﬂa(Kp’m)>'

If ¢ > b > 0 are integers with ¢ > 1, then there are canonical TS’Ord—equivariant
isomorphisms

(5226) RF(R/’Vp(ba C)a ,ﬁ:(ﬁp’ :\a m)) = RF(X%(b’C), V/)\v/wm)
and
(5.2.27) RI(Iwp(b, ¢), o (K?, A, m)) = RU(0X g, . V5/@™)

in D(O/w™). We define the ordinary part of completed and completed bound-
ary cohomology:

7ord(KP, X, m) = ord RT(N(Op+ ,), 7(K?, X\, m)) € D (O/w™ [T (F,)])

P
and
A (R?, 2 m) = ord RE(N(Op+ ), (P, 3, m) € DO/ [T ().

If A = 0, then we omit it from the notation. We have the following result, which
contains the analogues of some of the results in §5.2.10 for the group G. The
proofs are entirely similar, so are omitted.
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PROPOSITION 5.2.28. Let K C é(A%ﬁ) be a good subgroup with f{% = f\\{fy
for each S, and K® = G(O3.). Let ¢ > b > 0 be integers with ¢ > 1. Then for
any Xe (Z?F”)H‘)m(lﬁ’E)7 there are T equivariant isomorphisms

RP(T(OF+,p)(b)7 %ord(f(/p7 X? m)) = RF(T(OF+,p)(b>7 O( )‘) ®o Ford (Kp7 m))
=~ RD(Xjz, 00 Vi/@™) ™
and

RU(T(Op+ ) (b), 74 (K?, X, m)) = RT(T(Op+ ,)(b), O(w§X) @0 754 (K?,m))

R
~ RT'(0X %, ),v~/wm)°fd

in Dyn(O/w™[K (0, ¢)/ K (b, ¢))).

5.3. The ordinary part of a parabolic induction. In this subsection, we
compute the ordinary part (in the sense defined above) of a parabolic induction
from G to G , with the aim of understanding the ordinary part of the cohomology
of the boundary of the Borel-Serre compactification of X 7 In terms of the
ordinary part of the cohomology of Xg. Our calculations here are purely local;
the global application will be carried out in §5.4 below.

Let ¥ be a p-adic place of F'™. In this section, we write "W = VV(CNJRJr Tt ),

Wpy = W(G g+, Tp+ ), and TWEP C "Wy for the set of representatives for the

)

quotient "Wpz\"Wg which is associated to the choice of Borel subgroup B+.
We define "W = [[c5, "Wo, "Wp = [Iyes, "Wep, and "W =[5 "W

vES) veS, 'O
Thus "W is the relative Weyl group of the group (Resg+,q G)q,- Note that
in §4 we made use of the absolute Weyl group W; there is a natural inclusion
"W C W, by which "W acts on e.g. the group X*((Resp+,qT)r). We write
lr(w) for the length of an element w € "W as an element of the relative Weyl
group, and [(w) for its length as an element of the absolute Weyl group. Thus
wf, the longest element of W (equivalently, of "WF) has I, (wf) = |S,|n?
and l(w() = [FT : Q]n?. As in §4, we write p € X*((Resp+,q T)g) for the
half-sum of the (Resp+ /g B)g-positive roots.

We recall (cf. §2.2.1) that P denotes the Siegel parabolic of G, which has
unipotent radical U, while the Borel subgroup B has unipotent radical N. We
identify G with Resp/p+ GLy,; this group has standard Borel Resp/p+ By, with
unipotent radical Resp/p+ Np. The parabolic induction functor

Indg ; Mods (O/@™[P(F,")]) — Modsw (O /@™ [G(F;)))

is exact and preserves injectives (it is right adjoint to the exact restriction
G(F;)
P(E;)
parabolic induction.

functor Res ). We now define several more functors which are related to
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We identify "W with the subgroup of permutation matrices of (?(F;r ) =
L. GLgn( ~). We recall (cf. [BT65, Cor. 5.20]) that there is a (set-theoretic)
decomposﬂmn

GEH = || PEHwBE)).
werwr
If w € "WF, then we define Sw~: P(F)wN(ES)and Sy, = P(F, )JwN(Op+ ;) C
Sw. The closure S, of S, in G(F:;r ) can be described in terms of the Bruhat
ordering of "W
L] S

w!' <w
Note that if w’ < w, then I(w') < I(w). For an integer ¢ > 0, we define
Gsi= || S
werwFk
Ir(w)>1

It is an open subset of G (F,F) which is invariant under left multiplication by
P(F,;) and right multiplication by B(F").
If 4 > 0, then we define a functor

Is;: Modsm((’)/wm[P(F;)]) — Modsm((’)/wm[B(Fp+)])
by sending 7 to

Isi(m) = {f: ézi — 7 | f locally constant, of compact support modulo P(F;),
Vpe P(ES), g€ G, f(pg) = pf(9)},

where B(F,) acts by right translation. If w € "WP, then we define a functor
w - Modsm((’)/wm[P(F;)]) — Modsm((’)/wm[B(F;)])
by sending 7 to
Ly(m) = {f : Sw = 7 | f locally constant, of compact support modulo P(E),
Vp € P(F,"),9 € Sw. f(pg) =pf(9)},
where again B (F;r ) acts by right translation. We define a functor
I3, : Modsm (O /@™ [P(F;1)]) = Modsm (O /@™ [B(F,)*])
by defining I (7) C I,(7) to be the set of functions with support in Sg,.

+
PROPOSITION 5.3.1. (1) I>p = Res E ; IndPE§+§
(2) Each functor I»;, I, and I, is exact.
(3) For each integer i > 0 and each m € Mod (O /@™ [P(F,})]), there is a
functorial exact sequence

0— IZi+1(7T) — IZi(”) — @werWPIw<7T) — 0.
Ir (W)=t
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Proof. The first part is the definition of induction. The remainder can be
proved as in [Haul6, §2.1]. O

It follows that for any m € Dgyn(O/@™[P(F,")]), there is a functorial

distinguished triangle

(532) Izi+1 (71') — Izi(ﬂ') — @werWPIw(TF) — Izi+1(7r)|:].:|
Ir(w)=t

in Don(O/@™[B(ES))).

LEMMA 5.3.3. Let m € Dyn(O/w™[P(E,})]) be a bounded below complex,
and fiz an integer b > 0. Let \ € (Zi”)Hom(F+’E). Then for any i > 0 and any
j € Z, the sequence

0 = RIT(B(Ory) (b), O(w§A) ®0 I>i41(m))
= RIT(B(OF,)(b), O(w§\) ©o Ixi(r))
= RIT(B(Ory) (), ®yeryyrO(wiX) ©0 Ly(r)) = 0
Ir(w)=t
in Mod(O/@w™[T(F,")]) associated to (5.3.2) is exact.

Proof. It suffices to show exactness after applying the exact forgetful
functor to Mod(O/w™). We consider decompositions ézi = U; U Uy where
Uy, Us are open sets which are invariant under left multiplication by P(szL )
and right multiplication by B(Op+ ,), and such that U; C CNJEiH. Any such
decomposition determines a functorial decomposition I>;(mw) = Iy, (1) & Iy, (1),
where Iy, denotes functions with support in Uj, and similarly for Us. This
decomposition exists in the category Modsm(O/@™[B(Op+ ,)]). We see in
particular that for any bounded below complex 7 € Dy (O/@w™[P(F;")]), the
associated morphism

RIT(B(Ory)(b), Ow§X) @0 Isp, (1)) = RIT(B(Op,)(b), O(w§X) @0 Isi(w))

in Mod(O/w™) is injective. Since I>;;1 is the filtered direct limit of the Iy,
(which can be proven by following the same technique as in the proof of [Haul6,
Prop. 2.2.3]), it follows that the morphism

RIT(B(Orp)(b), OGN @0 Isi1(m)) = RIT(B(Orp)(b), O(w ) 00 Isi(w))

is injective. Since this applies for any j € Z, the exactness of the long exact
sequence in cohomology attached to the distinguished triangle (5.3.2) implies
that the sequence in the statement of the lemma is indeed a short exact
sequence. O

LEMMA 5.3.4. Let w € "WF. Then:
(1) I, takes injectives to I'(N(Op+ ), —)-acyclics.
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(2) Let m € Dy (O/w™[P(F,1)]) be a bounded below complex. Then there
s a natural isomorphism

ord RT'(N(Op+ ), I (1)) = ord RT(N(Op+ ), L ().

Proof. For the first part, let 7 € Modsm (O/@™[P(F,})]), and fix an O /w™-

embedding m < I, where I is an injective O/w"-module. Then there is an
+
F2) T of O/w™[P(F,; )]-modules. We will show that
+

I;(Indf(Fp )I) is an injective smooth O /@™ [N (Op+ ,)]-module. By [Emel0b,
Lem. 2.1.10], this will show the first part of the lemma.

Let C*°(P(F,")wN(Op+ ), I) denote the set of locally constant functions

F: P(Ff)wN(Op+ ;) — I. Tt is an injective smooth O /@™ [N (Op+ ,)]-module
when N(Op+ ) acts by right translation. There is a natural isomorphism

embedding ™ — IndiD

+
15(nd} ") 1) & ¢ (P(FwN (Op+ ), 1),

+
which sends a function f : P(F;)wN(OF;) — Indf(F” 'T to the function

F: P(F;)wN(OF;) — I given by the formula F(x) = f(x)(1). This proves
the first part of the lemma.
For the second part, we note that we may define an exact functor

Juw : Modsm (O /@™ [P(F1)]) = Modew (O/=™ [B(F,7)*])
by the formula Jy,(7) = I,(7)/I;, (7). Then for a bounded below complex
T € Dy (O/@w™[P(F;")]) there is a natural distinguished triangle
ord RT'(N(Op+ ), Iy (7)) = ord RT(N(Op+ ), Ly(7)) — ord RT(N(Op+ ), Ju (7))
— ord RT(N(Op+ ,,), I (7)) [1].

To prove the desired result, it is therefore enough to show that
ord RT'(N(Op+ ), Jw(m)) = 0.

It is even enough to show that for any 7 € Modg, (O/@w™[P(F,)]) and for any
j € Z, we have ord HY (N (Op+ ), Ju(m)) = 0, and this can be proved in the
same way as [Haul6, Lemme 3.3.1]. O

If we "WP, we define N, = P(F) NwN(Op+ ,)w™!. Tt is a compact
subgroup of P(F,") which contains N,,(OF,). We define a functor

['(Ny, =) : Modsm (O/@™ [P(F;1)]) = Modsm (O/=™ [T(F,)*]),

where an element ¢ € T(F,")" acts by the formula t - v = trywn, ()15, (t*0)
(t € T(F;)*"). Note that this makes sense because ¢ Ny, (t*)~! = P(F;5) N
wtN(Op+ )t 'w™ C Ny,. Note as well that wT(F;7)Tw™! C T,(F,)" (by
definition of "W).
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LEMMA 5.3.5. Let w € "W and let 7 € Dn(O/@w™[P(F,5)]) be a

bounded below complex. Then there is a natural isomorphism
RU(N(Op+ ), 15 (7)) = RU(P(F) NwN(Op+ p)w™ ", 7).

Proof. By the first part of Lemma 5.3.4, it’s enough to show that there is
a natural isomorphism of underived functors

(N (Op+ ), I(=)) £ T(P(F) NwN(Op+ ,)w ™", —).

The map sends an N(Op+ p)-invariant function f : P(F, )wN(Op+ ) — 7
to the value f(w) € 7™V, It is easy to see that this is an isomorphism of
O/w™-modules; what we need to check is that it is equivariant for the action of
T(F,F)*. In other words, we need to check that for any f € T(N(Op+ ), I, (7)),
we have
(5.3.6) Z f(wnt) = Z mwtw ™ f (w).
NEN(Ops ) /tN(O i )t MEN, /4 Ny (tw) 1
Conjugation by w™! determines a map Ny, /t“ Ny, (t*) ™" — N(Op+ ) /tN(Op+ ,)t 1,
which is easily seen to be injective. On the other hand, if n € N(Op+ ;) and
f(wnt) # 0, then the class of n is in the image of this map; indeed, f(wnt)
can be non-zero only if wnt € P(F,)wN(Op+ ,), in which case we write
wnt = qum, with ¢ € P(F,}) and m € N(Op+ ), hence n = wtqut~tmt 1L,
As wlquwt™t € wP(E)w N N(Op+ ) this shows that n is in the image of
this map. It follows that we can rewrite the left-hand side of (5.3.6) as

Z flmwt) = Z mwtwf(w),

MENu /19 Ny (1)1 MEN /4% Ny (£2)~1
which equals the right-hand side of (5.3.6). O

For the statement of the next lemma, we define, for any w € "W7¥, a
character x,, : T(F,") — O* by the formula

Net/q, detpy (Ad(tw)‘LieU(F;)mwN(F;)w—l)_l

Xwl(t) = .
© |NF;/QP detFI;"(Ad(tw)|LieU(F,;")ﬂwN(F;)w*1)|P

Note that there is an isomorphism O(x.,) = O(—p + w™lwl’(p)) ®o O(aw)
of O[T (F,")]-modules, where w} = wfw§ is the longest element of "W,
and where a,, : T(F;") — O is the character which is trivial on T'(Op+ )
and which satisfies the identity ., (t) = xw(t) for any element of the form

t =1 (diag(w®, ..., @) (a; € Z). We also write
Tw : Modsm (O/w™ [17,(Fp)]) = Modgm (O/@w™ [T, (F))])

for the functor which sends a module 7 to 7, (7) = 7, with action 7, (7)(¢)(v) =

(@ ") (v).
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LEMMA 5.3.7. Let w € "W and let 7 € Dn(O/@w™[G(F,1)]) be a
bounded below complex. Then there is a natural isomorphism between the
following two complezes in D g (O /@™ [T, (F))]):

+
ord RT(P(F;) NwN(Op ,)w ™, Infgg’;; )
p

and
O/@™ (Xw) ®0 jemm 7., ord RU(N,(Opyp), ™) [—[FT : Qln? + l(w)).

Proof. Let Ny x,,T(F,)" denote the monoid Ny, x T'(F,") ", equipped with
multiplication (t“n(t*)~%, 1)(1,t) = (1,t)(n,1) (where the product t“n(t¥)~*
is formed using the usual multiplication of the group é’(Fer )). Let Nyu =
Ny NU(F,F). Then there is a short exact sequence

0= Ny,u = Ny — Nn(oﬂp) —0

which is equivariant for the conjugation action of T'(F,F)* via the map T'(F,")* —
T, (Fp), t — t*. We consider the diagram, commutative up to natural isomor-
phism:
Modgy, (O/w™ [P(sz‘)])
Res™
MOdsm(O/wm [Nw Naw T(F;—)—i_])

1—\Nu),U

Modgm (O/@™ [Np(OFp) Xw T(F;)ﬂ) —2 s Modg (O /@™ [Ny (OFp) % Tn(F,) ™))

PNn(0p ) fzvnwp,p)

Modg (O/=™[T(F;)*]) d Modam (O /@™ [T (F,) 1)

Twoord
ord

Modsm (O /@™ [Tn(F))))-

In this diagram we have abbreviated e.g. I'(Ny v, —) = I'y,, ,,- We also abbrevi-

P(Ef
ate Inff, = InfGEF;;
(cf. [Haul6, §3.2]). The exact functor Res” is defined by taking Res"(7) =7
as an O/w™-module, with Res” (7)(nt)(v) = w(nt*)(v). We also use Res” to

denote the functor Res" o Infg. The « is the composite of the equivalence

The torus action on e.g. I'y,, ,, is defined in the usual way

U

Modgm (O/w™ [Nn(Op,p)wa(F;)Jr]) — Modgm (O/=w™ [Nn(OF’p)wa(FpJ“)J“w_l])
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induced by the map nt € Ny, (Opyp) x wT(Ff)Tw™ — (n, 17" € No(OFp) X
T(F,")" with the localization

MOdsm(O/wm [Nn(OF,p) wa(FJ)+w_1]) - MOdsm(O/wm [Nn(OF,p) >qTn(Fp)—"_])

induced by the inclusion U)T(sz')‘*'w_1 C T,,(F,)*. Similarly, the functor f is
the composite of the equivalence

Modsw (O/@™[T(F,F)*]) = Modem (O /@™ [wT(F," ) w™])
with the localization
Modsm(O/wm[wT(F;)er_l]) — Modgp, (O /™ [Tn(Fp)+]).

Note that o takes injectives to I'y, o )-acyclics; this can be deduced from
[Emel0b, Prop. 2.1.3], using the compactness of N, (Op,) and the observation
that this localization can be thought of as a direct limit. Note that the composite
of all left vertical arrows is the functor I'y,,.

Let m now be as in the statement of the lemma. We compute

ord RT(P(F;F) NwN(Op+,)w™", Inf§ ) = ord BRL y, (0, ) RI'N,, y Res® Inf&
= ord RT'y, (0.,)@RT'N,, ;; Res® Infg .
Since U(F,) acts trivially on 7, there is an isomorphism
RTy, , Res” Inf m = Res® (1) ® jom RI(Nu,y, O/w™)

in Dy (O/@™ [Nn(OFp) Xw T(F,F)*]). To go further, we need to compute the
complex aRI' (N, O/w™). To this end, we consider the action of the element

zp = diag(p,...,p,1,...,1) e T(FS)"

(where there are n entries equal to p and n entries equal to 1; note that this
element depends on our choice of set gp, which determines the identification
of a(F;) with [T;cs, GLaon(F5)). Tt is in the centre of G(F}"), and therefore
invertible in 7},(F,)T. Its action on the cohomology groups H* (N, 17, O/=™)
is the one induced by its natural conjugation action on N, y; in other words,
multiplication by p on this abelian group. The group N, 7 has rank n?[F+ .
Q| — l(w) as Z,-module, from which it follows that the Hecke action of z, on
HY(Nyy,0/w™) factors through multiplication by pFTQIw) i (g < <
n?[F* : Q] — I(w)). The cohomology groups below the top degree i = n?[F+ :
Q] — l(w) therefore vanish after applying the functor «, and it follows from
[Haul6, Prop. 3.1.8] that

aRT(Nuy, O/w™) = O/w"™ ((xw)*)[=[F : QIn* + l(w)]
= a0 /w"™ (xw)[-[F* : QIn® + [(w)],
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hence that
BRIy, Res” Infg T /BRFNR(OF,p) Res® ﬁ@o/me/wm(Xw)[—[F+ : Q]n2+l(w)].
We finally see that ord RI(P(F;") NwN(Op+ ,)w ™!, Inff ) is isomorphic to
7, ord BRI, (0.,) Res” T @0 jem O /@™ (xw)[—[F 7 : QJn? + l(w)]
= 0/ (Xw) @0 jem 75 ord RFNn(Opr)W[—[F*' :Qn? + l(w))]. O

PROPOSITION 5.3.8. Let w € "W and let 7 € Dgn(O/@™[G(F,})]) be
a bounded below complex. Then there is a natural isomorphism between the
following two complexes in D (O /™ [T;,(Fp)]):

+
ord RT(N(Op+ ), Ly(Inf -7 ) )

G(E)
and
O/@"™ (xw) ®0/wm Ty-1 0rd RL(Nu(OFp), ™) [~ [F - Qn® + I(w)].
Proof. This follows on combining Lemma 5.3.4, Lemma 5.3.5, and Lemma
5.3.7. 0

5.4. The degree shifting argument. In this section, we give the analogue
for completed cohomology of the results of §4.2, by relating the completed
cohomology of X to the completed cohomology of the boundary dX. The
statement is simpler for completed cohomology than for cohomology at finite
level because the contribution of the unipotent radical of the Siegel parabolic
vanishes in the limit.

THEOREM 5.4.1. Let K C a(A%O+) be a good subgroup which is decomposed
with respect to P. Let m C TS be a non-Eisenstein mazimal ideal, and let

m=S*(m) C C TS. Then the complex Ind EFQ) T(KP,m)m is a TS -equivariant

direct summand of the complex T5(KP, m m)a in Dy (O/m™[G (F+)])
Here and below we have written w(KP, m)y, for the complex previously

+
denoted Infggﬂ; m(KP, m)y in order to lighten the notation.
p

Proof. We first show that there is a TS -equivariant isomorphism

(Rff{p SmRP(Indgz Xp,0/w™))~ (er{ RI( ax ,O0/w™))~ = %8(§p’m)~.

m
As in the proof of Theorem 2.4.2, it suffices to show that for each standard
proper parabolic subgroup Q C G with @ # P, we have

H*(RT ~

o e RL (05T X, 1)) = ling A (X, - vy M =0

m
K/
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This follows from the corresponding finite level statement, which has already
been proved in the course of the proof of Theorem 2.4.2.

We therefore need to compute RI'z, RF(Indgz Xp,0/w™). We will
in fact show that this complex admits Ind EF ;RTKp smBRL (X, O/@™) as a
TS-equivariant direct summand in Dy, (O /@ [G(Fp+ )]), where TS acts on the
latter complex via the map S.

To see this, we compute

Rng,stF(Indgi Xp,O/w™) = Rl Ind% RU(Xp, 0/=™)

~ g e dSTDRr,  Res?

g€P(F+)\Gs_s,/Ks_s, O P(F;) n , RT(Xp, O/™).

PS SpxgKp,s— Sp9~
Taking the summand corresponding to g = 1, we see that it will be enough to
exhibit an isomorphism

Res?

PS—5p xKp ,S—Sp

RI'~

P
Kp,sm

RT(Xp,0/™)

~ Inf, PE) RE o om ResCy

A RD(Xg, O /a™).

GS- SPXKS Sp

Let us write

I pgm : Mod(O /@™ [P(F,")]) = Modan (O/@™[P(F;))),

Ly-sm : Mod(O/@™ [P(F,")]) = Mod(O/@™[G(F,)]),

and
Léesm : Mod(O/@™[G(F,)]) — Modaw (O/w™[G(F;)))

for the functors of P, U and G-smooth vectors, respectively. Unpacking the
above, we see that it is enough to construct a Hecke-equivariant isomorphism

(5.4.2)

+

) BlaamHY (G(P)\G(AF)/KP, O/=™)
- RFP-SHIHO(P(F)\P( %ﬂ)/fp,()/wm).

The existence of the morphism (5.4.2) follows from [NT15, Corollary 2.8], the

existence of the natural isomorphism Inf P(F;) oRl'g.sm = RI'p.gm © Inf P(E)

() ()

and the existence of the morphism Inf E 2 ; HY(G(F)\G(A%,)/KP,O0/w™) —

HO(P(F)\P(A%,)/K%,O/w™). To show that (5.4.2) is an isomorphism, it
will be enough to show that

RTy o H(P(F)\P(A, ) /K, 0/=™) = H(G(F)\G(AE)/K”, O/=™).
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However, the left-hand side here can be computed as

I1 RUy s HO(U(FO\U(AS,) /KD, O /™).
gEG(FH\G(A%, )/ KP

Using strong approximation, we compute

Ry HO(U(F)\U (AR /KF, Ow™)

= lim  H(UF")N(KLY,),0/=™),
VoCU(F)

the limit running over all open compact subgroups V,, C U(F,). This is O /@™
in degree 0, and 0 in all higher degrees. This completes the proof. O

Combining this theorem with the results of the previous section, we obtain
the following.

THEOREM 5.4.3. Let K C a(A%O+) be a good subgroup which is decomposed
with respect to p, and such that f(/y = Iwg for each place v € §p. Let \ €
(22 )Hom(FE) ety € "WP, and let Ay = w(X + p) — p € (Z7)Hom(FE),
Let m C TF be a non-Eisenstein mazximal ideal, and let m = S*(m). Fix
integers ¢ > b >0 with ¢ > 1. Then for any j € Z, S descends to a surjective
homomorphism

TS,ord (HJ (aXI?(b,c) ) VX)%{d) — TS,Ord <O(awwa5)®OT_cl: 5Hj_l(w) (XK(b,c) ) V)\u) )glrd) :
0 Wwg w§ ww§

Proof. Let m > 1. To save space, we abbreviate functors I'(H, —) of
H-invariants as I'y. By Theorem 5.4.1, Proposition 5.2.17, and Proposition
5.2.28, the complex

RI(0X .00 Vi/@™)E!

m

admits the complex

G(F)

ordb RFB( P(F;)

)(b)O(ng) Ko RFN(OF+7P) Ind m(KP,m)~

Op+ p m

as a T equivariant direct summand. These direct sum decompositions are
compatible as m varies, so after passing to the inverse limit we get a surjection
of T9°rd_algebras:

(5.4.4)

mS,ord [ J Yo y_yord
T5 (RIT(0X . V)2

TS0 (Jim ordy, RIT OwCX) ®0 RT mdC ) 1 (KP.m)~
- (gor b B(Op+ ,)(b) (w5'A) @o N(Op+ ) Pp (et m(KF,m)g).

) m
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On the other hand, it follows from Lemma 5.3.3 that for any ¢ > 0, we have a
short exact sequence of T%°"-modules:

0 = ordy R p(o,., )i)Ow§A) ©o Rl (o, )Izinm(K?,m)g
— ordy RjFB(OF+,p)(b)O(w§X) Ko RFN(OF+!p)IZi7r(Kpa 771);1

— @MGTWP OI‘db RjFB((’)FJpr)(b)O(w(?X) Ko RFN(

Ir(w)=i

OF+,p)Iw7T(Kp’ m)a — 0.
These are compatible as m varies, and the cohomology groups are finitely
generated O-modules, so we can pass to the limit to obtain short exact sequences
of O-modules. It follows that for any i > 0 and any element w € "W of length
I.(w) =4, there are surjective homomorphisms of T°"-algebras

(5.4.5)
TS,ord Q&l ordy RjPB(OF_,_’p)(b)O(wOGX) Ko RPN(

m

y>im(KP,m)5)

Op+
N T\S,ord(l-£1 ord, RjFB(OF-k,p)(b)O(ng) Ko RFN(OF_FJ))IZH‘“T(KP: m){ﬁ)

and
(5.4.6)

TS-ord (I&H ord, RjFB(OF+,p)(b)O(w(?X) Ko RFN( IZi'/T(pr m)r?‘)

OF+’p)

— TS,ord Qin ordy RjPB(OF+’p)(b)O(w€X) Ko RPN(

m

0 T (K, m)g).

G+
By definition, I>om(KP,m) is (the restriction to B(F,") of) Indggﬂ; w(KP,m).
p

On the other hand, Proposition 5.3.8 shows that there is a TS’Ord—equivariant
isomorphism

(5.4.7)

ordy, RjFB(OFtp)(b)O(won) ®o Ry Lym(KP,m)g

OFJr,p)

2~ O(aw) ®o RIFQHOIDL 6 1) O/5™ (xw) @0 OWEN) @0 75 7 (KP, m).

We recall that there is an isomorphism O(xy) = O(—p +w™wl’p) @ O(aw).

We have (—p + w™lwlp + w&ﬁ)w = w§ Az, where © = w§ww§. Here we

write wg for the longest element of Wp, wg for the longest element of W,
G G

and note that the map w — wywwy is an involution of "WF which satisfies
H(w§ww§) = [F* : Qn? — I(w). Applying Corollary 5.2.18, it follows that the
cohomology group in (5.4.7) may be identified with
O(O&wcwwg) KXo T_; 5Hj_l(x) (XK(b,c)7 Vi, /wm)%rd.
0

0 0 wy TW
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Putting all of this together, we see that we can chain together the surjections
(5.4.4), (5.4.5) and (5.4.6) to obtain a surjection homomorphism of T°rd-
algebras

TY Y HI (0X 0o V)2 = T9O0(a , )00t ) —HITO (X0, Va,)29).

LD Wo' TWo Wy TWq
The proof is complete on noting that H*(X (), Va,)od is a TS invariant
direct summand of H*(X K(bye)s V)\Z)Q}d, O

m

In order to apply Theorem 5.4.3, we will make use of the following com-
binatorial lemma. We use the following notation: if A € (Z’?F)Hom(F ) and
a € Z, then \(a) € (Z7)1om(FE) is the highest weight defined by the formula
Aa)ri = Ari+aforall 7 € Hom(F, E), i =1,...,n. We recall as well that we
have previous fixed the notation §p for a set of p-adic places of F lifting S,,,
and I, for the set of embeddings 7 : F < E inducing a place of S, (cf. §2.2.1).

LEMMA 5.4.8. Fizm > 1. Then we can find A € (Z7)HomE) with the
following properties:
(1) There is an isomorphism O(X)/w™ = O/w™ of T, (F))-modules.
(2) The sum Y 7 i (Ari+Arc,i) is independent of the choice of T € Hom(F, E).
(3) For eachi=0,...,n?, there exists an element w; = (wi,g)iegp e"Wwr,
an integer a; € (p — 1)Z, and a dominant weight \; € (Zi”)Hom(F+7E),
all satisfying the following conditions:
(a) N is CTG (cf. Definition 4.3.5).
(b) For each v € Sy, l.(wiz) = n? —i. Consequently, l(w;) = [FT :
QJ(n® —i). _
(¢) We have wi(Ni + p) — p = Na;).

Proof. Let M > 16n be a non-negative integer which is divisible by 8(p —
1)#(O/w™)*. We will show that we can take A to be the dominant weight
defined by the formulae

W[ (M 200, —n?M) if e I
T (0,—M,...,(1—n)M) if 7c € I,.
If A(a) denotes the element of (Z27)Hom(F".E) that corresponds to A(a) under
our identifications, then we have

Ma)=((n—1)M —a,...,—a,—nM +a,...,—n>M +a).

In order to construct the elements w; and a;, we make everything explicit. Our
choice of the set S}, determines an isomorphism of the group (Resp+,q G)q,
with the group nggp Res ~/Q, GLs,, hence an identification of "W% with Sy,

and of "Wpz with the subgroup S, x §,. We can identify the set ’”WUP of
representatives for the quotient "Wpz\" Wy with the set of n-element subsets
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of {1,...,2n}. Given such a subset X, there is a unique permutation 7 of
{1,...,2n} with 7({1,...,n}) = X and with the property that 7 is increasing
on both {1,...,n} and {n + 1,...,2n}. The corresponding element of "W
is 0x = 77!. The length of a permutation w € Sy, is given by the formula
llwy={1<i<j<2n|w()>w()}

Given i, we choose integers r,x > 0 withnz+n—r = n2—jand1<r<n
(the choice is unique). We define w; by setting w; 5 = oy, for each 7 € gp,
where X; ={z+1,2+2,...,z4+rc+r+2,2+r+3,...,2+n+1}. We have

(wiz(1),... wiz(2n)) =
m+1n+2,...,n+2,1,2,....r,n+x+1,r+1,
r+2,...,n,n+x+2,n+x+3,...,2n).

We observe that indeed I, (w;3) = n? —i. We need to choose a; so that the
weight A; = w; '(A(a;) + p) — p is dominant. We first calculate w; 1 (X(a;)).
For any 7 € Hom(F*, E), we have w; '(A(a;))r; = X(ai)ﬂwi(j), hence the 7
component of w;” Y(X(ai)) is equal to

()\(ai)f,n+1a cee 7)\(ai)‘r,n+17)\(ai)ﬂlv ceey )‘(ai)T,ra A(ai)T,n+m+17

)\T,r—i—l (ai)u cee a)\T,n(ai)a )\T,n+x+2(ai)a ceey X7',271,(042'))-
= (—nM +a;,...,—nxM +a;,(n — )M —a;,...,(n —r)M — a;, —n(x + 1) M + a;,
(n—r—1)M —aj,...,—aj,—n(x+2)M +aj,...,—n*M + a;).

We see that w; Y(X(a;)) is dominant if and only if the following 4 inequalities
are satisfied:

(5.4.9) —nxM +a; > (n—1)M — a;,
(5.4.10) (n—r)M —a; > —n(x +1)M + a;,
(5.4.11) —n(z+1)M +a; > (n—r—1)M — a;,
(5.4.12) —a; > —n(x+2)M + a;.

These 4 inequalities are together equivalent to requiring that a; € [(nx 4 2n —
r—1)M/2, (nz+2n—r)M/2], a closed interval of length M /2 > 4n. Requiring
instead that w;*(A(a;) + p) — p is dominant leads to 4 similar inequalities,
where the left-hand side and right-hand side differ to those in (5.4.9)-(5.4.12)
by an integer of absolute value at most 2n — 1. If we choose a; to be the unique
integer in [(nx + 2n —r — 1)M/2, (nx + 2n — r)M /2] which is congruent to
M/8 mod M, then w[l(X(ai) + p) — p is dominant.
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To complete the proof of the lemma, we just need to explain why N\ =

w; Y(N(a;) + p) — p is CTG. Tt suffices to show that for any 7 € Hom(F™, E),
and for any w € WX’ (where ¥ is the place of F™ induced by 7), the number

[w(Xi + p) = plrj + WA + p) = plr2nii—;
= w(xi +p)rj + w(xi +0)r2nt1—j

is not independent of j as j varies over integers 1 < j < n. To show this, it
suffices to show that the multiset

I={(i + p)rg + (i Pl | 1 < j < k < 20}
does not contain any element with multiplicity at least n. We first consider the
multiset
I'={Nirj+Xirp | 1< <k<2n}.
It is a union of the three multisets

II={(-na+B)M|1<a<n0<B<n—1},

Iy ={-n(la+B)M+2a; |1 <a < <n},
and

L={(a+B8)M—-2a;|0<a<pB<n-—1}
Note that each element of I] has multiplicity 1. Each element of I and Ij has
multiplicity at most n/2. Moreover, I1, I4, and I} are mutually disjoint (look
modulo M). Tt follows that no element of I’ has multiplicity at least n. To
show that I has no element of multiplicity at least n, we use the analogous
decomposition I = I; U Iy UI5. The sets 1, I3 and I3 are disjoint (look modulo
M, and use the fact that each entry of p has absolute value at most (2n —1)/2).
Each element of I; appears with multiplicity 1, while each entry of I and I3
has multiplicity at most n/2. This completes the proof. ([

Lemma 5.4.8 allows us to express certain cohomology groups of the spaces
Xk in degrees divisible by [F™ : Q] in terms of middle degree cohomology of
the spaces 0X i (and hence, using Theorem 4.3.3, of the spaces X k). In order
to access all degrees of cohomology, we use a trick based on the fact that the
group G has a non-trivial centre. This is the motivation behind the next few
results.

If K C GL,(A%) is a good subgroup, then we define

Ag = F*\A}/ det(K) det(Ko)Ro.
The quotient map
A — FX\AL/det(K)EX
identifies A with an extension of a ray class group by a real torus of dimension
[FT: Q] —1 (with cocharacter lattice F* Ndet(K), a torsion-free congruence
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subgroup of Of). We denote the identity component of Ax by Aj. If g €
GL,,(A%), then we set I'y x = GL,(F) N gKg™', or Ty = I'y  if the choice of
K is fixed.

LEMMA 5.4.13. (1) The maps x — (z,g) induce a homeomorphism
11 L\ X = Xp.
[91€GLn (F)\GLn (AF)/K
(2) The determinant gives a continuous map

det
XS Ag

which induces a bijection on sets of connected components.
(3) Suppose g € GL,,(AF) and the two subgroups det(I'y) and det(F* NK)
of F* are equal. Let F; = SL,(F)NT,. Then the product map

I} x (F*NK) =T,
s a group isomorphism. Decomposing X similarly as
X' x (H R>0)/Rs0 = X,

v]oo

where X = SLy(Fso)/ Tlvjeo SU(n), we obtain a decomposition
IA\X = (TA\XY) x (F*n K)\(]] R0)/Rso.
v]oo
(4) Still assuming that det(I'y) = det(F* N K), the map det : F* N K —

F* Ndet(K) is an isomorphism. The composition of maps
(TA\XY) x (F* N E\(J] R>0)/Rso =T\X — Xx — Ag

v]oo

is given by (x, z) — det(g)z", and the map z — det(g)z" is an isomor-
phism from (F* N K)\([Tyjsc R>0)/R>0 to the connected component

A[;et(g)} of Ak containing [det(g)].

Proof. The first part can be checked directly. The second part is equivalent
to the statement that det induces a bijection

G(FTNG(AF)/K — FX\(AF)*/ det(K).

This follows from strong approximation for the derived subgroup of GG, which is
isomorphic to Resp/p+ SLy. For the third part, injectivity of the natural map
F; X (F* N K) — Ty follows from neatness of K (since F* N K contains no
roots of unity, and hence no non-trivial elements of determinant 1). Surjectivity
follows from the assumption that det(I'y) = det(F* N K). The remainder of
the third part (on the decomposition of I'j\ X) is an immediate consequence.
Finally, for the fourth part, everything follows from the claim that det :
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F*NK — F*Ndet(K) is an isomorphism. Injectivity follows from neatness of
K. Surjectivity follows from strong approximation for SL,, and the assumption
that det(F* N K) = det(I'y). Indeed, suppose we have k € K with det(k) € F'*.
We can find v € GL,(F) such that det(y) = det(k), and strong approximation
implies that we can find v/ € SL,,(F) and k' € gKg~' N SL,(A%) such that
v(gkg™!) ™t = 4'k'. We deduce that (v')~1y = K'gkg™! € gKg~' NGL,(F) has
the same determinant as k, which shows surjectivity. (]

The following lemma shows how to choose K so that the conditions of
Lemma 5.4.13 are satisfied.

LEMMA 5.4.14. Let K be a good subgroup of G(AY.). Fix a finite set
T of finite places of F. There exists a good normal subgroup K' C K with
K7 = Kr such that det(T'y ) = det(F* N K') for all g € GL,(AY).

Proof. We begin by choosing an ideal a of Op, prime to T, such that
ker(Op — (Op/a)*) is torsion-free and is contained in F* N K. This is
possible by Chevalley’s theorem [Che51, Thm. 1]. Similarly, we can choose
another ideal b of Op, prime to a and T, such that ker(O; — (Op/ab)*) is
contained in (ker(Op — (Op/a)*))"™. We claim that

K' :=ker(OF — (Op/a)*) - K(ab)

has the desired properties, where K(ab) is the intersection of K with the
principal congruence subgroup of level ab. Indeed, by construction we have
det(GL,(F)NgK'g™!) = (ker(OF — (Op/a)*))" for all g € GL,(A$), whilst
F*N K" =ker(Op — (Op/a)*). O

The next lemma shows how to use Lemma 5.4.13 to understand all coho-
mology groups of a space X solely in terms of those in degrees divisible by

[FT:Q].

LEMMA 5.4.15. Let K C GL,(A%) be a good subgroup, and let \ €
(Zi)Hom(F’E). Suppose that the following conditions are satisfied:

(1) det(I'y) = det(F* N K) for all g € GL,(AF).

(2) F* N K acts trivially on Vy.
Recall that we have defined a map det : Xxg — Ag. Then Rdet.(Vy) (a
complez of sheaves of O-modules) is constant on each connected component
of Ax, and we have Rdet.(V)) = @?;%(Xl)Ri det.(Vy)[—i]. We obtain a
TS _equivariant isomorphism of graded O-modules

dim(X1)
(5.4.16) H*(Xg,V)) = H (A%, 0)®0 P H(Ak,R'det.(Vy))
i=0

where the Hecke action on the first factor H*(A$,, O) is trivial.
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In particular, the image of TS in Ende(H* (X, V) is equal to its
image in End@(@ﬁng"[F+:Q] (XK, V\)).

Proof. Tt follows from our first assumption and Lemma 5.4.13 that every
connected component of X decomposes as a product (Fé\X by x A[;et(g)],
with the map det given by the projection to the second factor. Our second
assumption implies that the local system V) on this component is pulled back

from a local system on I'j\X'. We deduce that Rdet.(V)) is constant on

A[Iget(g)] (corresponding to RI(I'j\X',V,)) and it decomposes as the direct
sum of its shifted cohomology sheaves (since the same is true for any object in
D(0), such as RT'(T,\X',Vy)). Passing to global sections on Ax we get an
isomorphism

* ~ o dim(X ) s i
H (XK,VA) :@i:() H (AK,Rdet*<V)\))

im 1 * e 7
o @ miX) BlgleGL, (F)\GLn(A)/ K H (A[fi t91 Ridet.(Vy))
im(X1! * e e i
= B @ car, (L azyx H (AR, 0) @0 HO(AK", Ridet. (V))).

We now use that the groups H *(A[get 9]7 O) are canonically independent of g,
so can all be identified with H*(A%,O). We thus obtain an isomorphism of
graded O-modules

im(X1! e i
H* (X, W) = H* (A%, 0) @0 D20 ™) @pecr, (mnrazyx HOAL, Ridet, (V)

dim(X1)
=~ H*(A%,0)®0 @ H°(Ak, R'det.(Vy)).
i=0
We next need to understand the action of Hecke operators. If g € G, then the
action of the Hecke operator [K°gK*®] can be described with the aid of the
diagram

p1 p2
X Xgngrg-t — Xk

Jdet Jdet ldet

AK (T AngKgfl T AK

Here p; and ¢; are induced by the action of g, while py and ¢o are the natural pro-
jections; the action of [K°gK®] on RI'(Xk, V) is given by the formula ps . o pj.
Pushing forward by det, we have a morphism ¢jRdet.Vy — ¢5Rdet, V),
and the induced endomorphism of the complex RI'(Ag, Rdet. V) in D(O)
agrees with [K®¢gK*] under the natural identification RT'(Af, Rdet, Vy) =
RT'(Xk,Vy). We see that the isomorphism (5.4.16) respects the action of
[K9gK?9] if [K¥gK?®] acts in the usual way on the left-hand side, as multipli-
cation by [F* Ndet(K) : F* Ndet(K NgKg 1)]* on H'(A%,O), and in the
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natural way on H°(Ag, R'det, V). Our assumption det(T'y) = det(F* N K)
implies that F* Ndet(K) = F* Ndet(K NgKg™1'), giving the statement in the
lemma.

It remains to check the final statement of the lemma. There is an isomor-
phism H*(A%,O) = Ao Hom(F* Ndet(K), O) of graded O-modules. It follows
that each cohomology group HY(Ag, R'det,(Vy)) appears as a direct summand
of H*(Xk, V) in [F' : Q] consecutive degrees. In particular, it appears as a
direct summand of a cohomology group in a degree divisible by [F't : Q]. This
completes the proof. O

Combining the results so far of this section, we obtain the following result.

PROPOSITION 5.4.17. Suppose that [FT : Q] > 1. Let m > 1 be an
integer. Then there exists a dominant weight \ € (Z:i)Hom(F’E) such that
Oy acts trivially on Vs and for each i = 0, ... ,n? — 1, a dominant weight
\i € (Zi")Hom(F+’E) which is CTG, an integer a; divisible by (p — 1), and a
Weyl element w; € "W such that the following conditions are satisfied: Let
K C é(A%ﬂ) be a good subgroup which is decomposed with respect to P and
such that for each v € gp, f(/g = I,X\/Vg. Fix integers ¢ > b > 0 with ¢ > 1, and
also an integer m > 1. Let m C T® be a non-Eisenstein mazimal ideal. Let
m=3S5%m) C TS, and suppose that py, is decomposed generic. Then:

(1) There is an isomorphism O(X)/@w™ = O/w™ of O[T (F,’)]-modules.

(2) For eachi=0,...,n*>—1, the map S descends to an algebra homomor-
phism
mS,or v T T - i[Ft: T
T5° d(Hd(X[?(b7C)? VXZ)%d) — T%° d(o(awi)®OTwi1HZ[F < (XK(b,c)> V/\(ai))?nd)'

Proof. This follows on combining Theorem 4.3.3, Theorem 5.4.3, and
Lemma 5.4.8. U

For the statement of the next proposition, we remind the reader that in
85.1 we have defined for each A\ € (Z’}r)Hom(F’E), veSyandi=1,...,n, a
character

Xow,i : G, = T2 H (X 4,00, Vo)) <.

PROPOSITION 5.4.18. Suppose that [FT : Q] > 1. Let K C GL,(A%) be a
good subgroup such that for each v € S,, K, = Iw,. Fix integers ¢ > b > 0 with
c>1, and also an integer m > 1. Let m C TS be a non-Fisenstein maximal
ideal, and let m = 8*(m). Suppose that the following conditions are satisfied:

(1) pm is decomposed generic.

(2) Let v be a finite place of F' not contained in S, and let | be its residue
characteristic. Then either S contains no l-adic places of F' and [ is
unramified in F', or there exists an imaginary quadratic field Fy C F in
which | splits.
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Then we can find A € (ZZ‘F)Hom(F’E) and an integer N > 1 depending only on
[F*: Q] and n such that the following conditions are satisfied:
(1) There is an isomorphism O(X)/w™ = O /@™ of O[T (F,)]-modules.
(2) Foreachi=0,...,d—1, there exists a nilpotent ideal .J; ofTS’Ord(Hi(XK(b,C), Vy)ord)
satisfying J-N =0 and a continuous n-dimensional representation

pm : Grs — GLy (T H (X0, V) /i)

such that the following conditions are satisfied:

(a) For each place v ¢ S of F, the characteristic polynomial of
pm(Froby) is equal to the image of Py(X) in (T*" Y H (X g (p,0), V)94 [ Ji) [ X].

(b) For each place v|p of F' and for each g € GF,, the characteristic
polynomial of p(g) equals [[2_ (X — Xu;(9))-

(¢) For each place v|p of F, and for each sequence g,...,qn € GF,,
the image of the element

(g1 — X\, 1(91))(92 — X\, 2(92)) - - - (gn — XA\v n(gn))

of T (H Xk .0 VW DIGE,] in My (T (H (X (b.e) VW In )/ Ji)
under pm 1S z€ro.

Proof. We choose A using Proposition 5.4.17. Note that, for each cohomo-
logical degree i, by Theorem 2.3.7, we can find N, J; and

pm s Grs — GLo (T H (X 3,0, VAR ) /i)

satisfying condition (a) of the proposition. Arguing with the Hochschild—Serre
spectral sequence and twisting with characters as in the proof of Corollary
4.4.8, we are free to enlarge S and to shrink K at the prime-to-p places of S.
We can therefore assume that the following conditions are satisfied:

(1) For each place v € S, the two representations py|c;. , (P2’ @ =) g .
have no Jordan-Holder factors in common.

(2) pg is decomposed generic.

(3) K satisfies the conditions of Lemma 5.4.15.

After enlarging O, we can assume that there exists a character x : Gpg — k*
satisfying the following conditions:

(1) For each place v € Sy, x|Gp, is unramified.

(2) For each place v € S,, the two representations (7, ®pm’ @€' ") @ Xlap,
and (G, © pa’ ® €72 ® x“"|ay, have no Jordan-Holder factors in
common.

(3) The representation g, ® x & pa’ @ x“Ve! 2" is decomposed generic.

It follows from Lemma 5.4.15 and Carayol’s lemma (applied as in the proof
of Corollary 4.4.8) that it suffices to establish conditions (b) and (c) for cohomo-
logical degrees 0, [F™ : Q], ..., (n?—1)[FT : Q] (Carayol’s lemma then gives us a
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Galois representation with coefficients in TSvord(@?:ZalHi[F+:Q} (XK (be)s Vo) =
TS’Ord(EB?;&Hi(XK(b’C), VA)2') modulo a nilpotent ideal with the desired prop-
erties).

We choose a good subgroup K C é(AC>O ) which satisfies the conditions of
Proposition 5.4.17 and such that KN G(A%,) = K. Foreachi=0,1,...,n*—1,
we let XZ-, a; and w; be as in the statement of Proposition 5.4.17. Generahzmg
Proposition 2.2.14 slightly, we note that there is an isomorphism (cf. the proof
of Theorem 4.5.1)

J T HTT (X e 0, Vaga ) = TN HIT V(X e, VR,

which carries [K°gK°] to e % (Artp(det(g)))[K°gK 7] and satisfies the identity
o X = Xows @€ % (v € Spy). (Note that a; is divisible by p — 1,
by construction, so we have m(e~*) = m in the notation of §2.2.11.) To
prove the proposition, it will therefore suffice to prove the analogue of prop-
erties (b), (c) for the representation (f~! o pn) ® €% with coefficients in
TSord( il Q] (XK (be)s VA(ai))gfd)/f_lJi[F+:Q}, which we already know satis-
fies the analogue of property (a). In order to simplify notation, we now write py
for this representation, J; for the ideal f _1J,-[ F+:q)» and Xy,; for the character
X(a;)w,j valued in TS,ord(Hi[FJr:Q] (XK(b,c)v V}\(al))ord)
We obtain from Proposition 5.4.17 a surjective algebra homomorphism

TSord(Hd(X (bc)’VN )ord)%TS,ord(O( )®OT IHl[F Q}(XK(bc) V)\(a,))ord)-

Theorem 4.3.3 says that H%(X Rb.c)’ V5 )% ard §g 3 torsion-free O-module, and The-
orem 2.4.10 (or rather its proof) shows how to compute Hd(X R(be)’ Vi )Ord ®o
Qp in terms of cuspidal automorphic representations of G(A%‘;). Then [Gerl8,
Lemma 5.1.3] (which is stated for automorphic representations of GL,,, but
which applies here, since G is split at the p-adic places of F'T) shows that
TS’Ord(Hd(XK(b o Vs )Ord)[l/p] is a semisimple E-algebra. By Theorem 2.3.3
and [Thol5, Theorem 2.4], we can find a continuous representation

p:Grs — GLQn(TS’Ord(Hd(Xf{(b ¢y V~i)ord) ®o Qp)

satisfying the following conditions:

(1) For each finite place v ¢ S of F', the characteristic polynomial of
p(Frob,) is equal to the image of P,(X).
(2) For each place v|p of F, there is an isomorphism

Pu1 * * *
- 0 Q;Z)v,2 * *

(5‘4'19) p|GF.U ~ . . . >
: .. .. *
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where for each i = 1,...,2n, ¥y; : Gy — Q; is the continuous
character defined as follows. First, if v € S, then 1, ; is the unique
continuous character satisfying the following identities:

4 _ - ~@§N) e ) (g %
hy joArtp (u) = € 7 (Artp, (u)) HT(u) e ) (diag(1, ..., 1,u,1,...,1)) (ue Of)

T

(the product being over 7 € Homgq, (F, F)) and
by j 0 Artp, (@y) = €' (Artp, (@0)Usj/Us 1.

: Y (-2
Second, if v°¢ € Sp, then ¢y j = Ve g yq_€6

We write D for the 2n-dimensional determinant of G F,s associated to p. By
[Chel4, Example 2.32], D is valued in T Ord(Hd(XI?(b o Vs )Ord) To conserve
notation, we now write

A TS Ord(Hd(X V~ )QVrd

and
AO = TS’Ord(HZ[F+:Q} (XK(b,C)? V)\(ai))?;fd)a

and J = J;. By construction, we are given a homomorphism ZO — Ag which
agrees with & on Hecke operators away from p, and such that for each v € S,
the image of the sequence

(w’u,lv v 71/)U,2n)

of characters is the image of the sequence

¢,V 1-2n eV 1-2n
(Xve,ne 9. 7ch,1€ 7XU,17 sty XUJI)

under the permutation w; L

The rings ;4Vo and Ag are semi-local finite O-algebras. Let A be a local
direct factor of Ag, and let A be the corresponding local direct factor of Ao.
Thus there is a map A — A such that A — A/ J is surjective. We will show
that the properties (b), (c) in the statement of the proposition hold in the ring
A/ J; since Ag/J is a direct product, this will give the desired result.

We first verify that for each place v € S, we have (Pnlcp, )™ = ST Xy j,
where the overline denotes reduction modulo the maximal ideal of A By
construction, we have

(P @157 © €M, )™ = (Prlan, )™ 2 B (Yo © Xoeye' ).

Using the existence of the character y and a character twisting argument as in
the proof of Corollary 4.4.8, we see that we also have an isomorphism (over the
residue field of A)

((,Om XX D P“;V ® Xc Vo 1— 2n)’GFv )SS ~ @?:1 (YU,jX ® Yic),cvjxc,vel—Zn)'

Our conditions on the character x now force (pwlcy, )™ = ©J_1X, ;-
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We can now argue in a similar way to the proof of Proposition 4.4.6.
Let 5A/J = D®y A/J. Then 5A/J = det(pm @ p5’ @ €727). Just as in
the proof of Proposition 4.4.6, we can identify (A/J) [GF}S]/ker(b/A/J) with
M, (A/J) x M,(A/J) (where the first projection gives p5’ ® €!=2", and the
second projection gives ppn).

On the other hand, the map X[GF,S] — (A/J)[GFs]/(ker EA/J) factors
through the quotient A[G r.s]/ (ker D). There is an algebra embedding

AlGrs]/(ker D) C A[Grs]/(ker D) @0 Q, C Man(A®0 Q).

The explicit form of p|g,, shows that for each v € S;, and for each sequence of

elements Y,Y1,..., Y5, of elements of Z[G r,], we have
2n

(5.4.20) det(X — (V) = [J(X = (V)
j=1

in A[X] and

(6.4.21)  (p(Y1) — Yo, 1 (Y1) (P(Y2) — 0 2(Y2)) - .. (P(Y2n) — Yv2n(Y2n)) =0

in My, (A @0 Q,). It follows that the same identities hold in /T[Gp’s]/(ker D),
hence in

(A/T)[Grs)/(ker Dayy) = Ma(A[J) % My(A[J).

More precisely, for any sequence of elements Y,Y7,...,Ys, of elements of
(A/J)|GF,], we have

2n
(5.4.22) det(X — pm(Y)) det(X — pi/ e 72"(Y)) = [T (X = 45(Y))

j=1

in (A/J)[X] and

2n 2n
(54.23) <H<pﬁ;v © € 7(Y) = (1), TL(om(¥7) - wv,j%))) = (0,0)
j=1 j=1

in M, (A/J) x M,(A/J) (note that order matters in these products). We need
to show how to deduce our desired identities (b), (c) from these ones. We now
fix a choice of place v € S}, for the rest of the proof.

We can find an element e € (A/.J)[Gp,] which acts as 0 on 7y’ ® "y,
and as the identity in py|c,, (because these two representations have no
Jordan-Hélder factors in common). By [Bou61, Ch. III, §4, Exercise 5(b)]
(lifting idempotents), we can assume that py(e) = 1 and pg” @ €' 727(e) = 0,
and moreover that 1, j(e) = 1 if 1, ; appears in py|q,, (in other words, if
Ew = X,y for some 1 < j' < n, or equivalently if j = w;l(n + k) for some
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1 <k <n), and 9, ;(e) = 0 otherwise. Then applying the identity (5.4.22) to
ge € (A/)[Gr,) gives

2n n

X" det(X — pm(g)) = H(X Y,j(g€)) H (X = Xv,i(g

i=1 =1
which is the sought-after property (b) of the proposition. To get property (c),
let g1,...,9n € GF,, and let Y1,...,Ys, € (A/J)[GF,] be defined by Y; = e
if j € w;'({1,...,n}), and Y; = gge if j = w; ' (n + k), k € {1,...,n}. The
identity (5.4.23) then becomes

(0, (pm(91) = Xx0,1(91))(Pm(92) = Xv.2(92)) - - (Pm(9n) = Xv.n(gn))) = (0,0)
in M,(A/J) x My,(A/J). This completes the proof. O

5.5. The end of the proof. We can now complete the proof of the main
result of this chapter (Theorem 5.5.1). For the convenience of the reader, we
repeat the statement here. We recall our standing hypothesis in this chapter
that F' contains an imaginary quadratic field in which p splits.

THEOREM 5.5.1. Suppose that [F* : Q] > 1. Let K C GL,(A¥) be a
good subgroup such that for each place v € S, of F, K, =Iw,. Letc>b2>0
be integers with ¢ > 1, let A € (Z™)HomEE) - and let m ¢ TY(K (b, c), \)*™d
be a non-Fisenstein maximal ideal. Suppose that the following conditions are
satisfied:

(1) Let v be a finite place of F' not contained in S, and let | be its residue
characteristic. Then either S contains no l-adic places of F and | is
unramified in F', or there exists an imaginary quadratic field Fy C F in
which | splits.

(2) Py is decomposed generic.

Then we can find an integer N > 1, which depends only on [FT : Q] and n, an
ideal J C T9(K (b, c), \)& such that JN =0, and a continuous representation

w: Grg — GLy (T (K (b, c), \)&/.J)
satisfying the following conditions:

(a) For each finite place v ¢ S of F, the characteristic polynomial of
pm(Frob,) equals the image of Py(X) in (TS (K (b,c), \)ord/J)[X].
(b) For each v € Sy, and for each g € GF,, the characteristic polynomial

of pm(g) equals [TiZ; (X — xx0.i(9))-
(c) For each v € S, and for each g1,...,9n, € GF,, we have

(Pm(91) = X20,1(91)) (Pm(92) = X20,2(92)) - - - (Pm(9n) — Xr0n(9n)) = 0.
Proof. Let 0 < ¢ <d—1, m > 1 be integers, and define
A(K7 A, q) = Tsprd(Hq(XK(b,c)? V)\)&rd)'
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and
A(K7 )\7 q, m) = TS’Ord(Hq(XK(b,C)v V)\/wm)%rd)'

By the same sequence of reductions as in the proof of Theorem 4.5.1, it is
enough to show the existence of an ideal J C A(K, \, g, m) satisfying JV = 0
and a continuous representation py : Gpg — GL,(A(K, A, ¢, m)/J) satisfying
conditions (a), (b) and (c) of the theorem. After an application of the Hochschild—-
Serre spectral sequence and Corollary 5.2.16, we can assume that ¢ =b > m.
Corollary 5.2.18 allows us to assume that A is the weight whose existence
is asserted by Proposition 5.4.18. The existence of a Galois representation
valued in (quotients by nilpotent ideals of) the Hecke algebras A(K, A, q) and
A(K, )\, q+ 1) is then a consequence of Proposition 5.4.18. The existence of
the short exact sequence of T%°"d-modules

0 = HY (X (.00 VAR /@™ = HU X ey ), Va /@™o
= H (X g .0, V)R @™ — 0

then implies the existence of a Galois representation p, over a quotient of
A(K, A\, q,m) by a nilpotent ideal with the required properties. O

6. Automorphy lifting theorems

6.1. Statements. In this chapter, we will prove two automorphy lifting
theorems (Theorem 6.1.1 and Theorem 6.1.2) for n-dimensional Galois repre-
sentations of CM fields without imposing a self-duality condition. The first is
for Galois representations which satisfy a Fontaine-Laffaille condition.

THEOREM 6.1.1. Let F' be an imaginary CM or totally real field, let
c € Aut(F) be complex conjugation, and let p be a prime. Suppose given a con-

tinuous representation p : Gp — GLyn(Q,,) satisfying the following conditions:

(1) p is unramified almost everywhere.

(2) For each place v|p of F, the representation p|a,, is crystalline. The
prime p is unramified in F.

(3) p is absolutely irreducible and decomposed generic (Definition 4.3.1).
The image of ﬁ’GF(Cp) is enormous (Definition 6.2.28).

(4) There exists 0 € Gp — Gp,) such that p(o) is a scalar. We have
p>n?.

(5) There exists a cuspidal automorphic representation © of GL,(AF) sat-
isfying the following conditions:
(a) m is reqular algebraic of weight X\, this weight satisfying

>\T,1 + >\‘rc,l - )\T,n - )\Tc,n <p- 2n

for all T.
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(b) There exists an isomorphism ¢ : Q, — C such that p = r (r) and
the Hodge—Tate weights of p satisfy the formula for each 7 : F —

Q,:
HTT(p) = {)‘LTJ +n— 17 ALT,Q +n— 27 ey ALT,’VZ}'

(¢) If vlp is a place of F, then m, is unramified.
Then p is automorphic: there exists a cuspidal automorphic representation 11
of GL,(AF) of weight A such that p = r,(I1). Moreover, if v is a finite place of
F and either v|p or both p and w are unramified at v, then I, is unramified.

The second main theorem is for Galois representations which satisfy an
ordinariness condition.

THEOREM 6.1.2. Let F' be an imaginary CM or totally real field, let
c € Aut(F) be complex conjugation, and let p be a prime. Suppose given a con-
tinuous representation p : Gp — GLn(Qp) satisfying the following conditions:

(1) p is unramified almost everywhere.

(2) For each place v|p of I, the representation pla,, is potentially semi-
stable, ordinary with reqular Hodge—Tate weights. In other words, there
exists a weight \ € (Z’}F)Hom(F’QP)
an isomorphism

such that for each place v|p, there is

Y1 * * *
0 ¢U,2 * *
p|GFv ~ . . . ’
: - Lk
0 - 0 Pun
where for each i =1,...,n the character 1, ; : Gg, — Q; agrees with

the character

o¢clf, — H T(Art;,vl(g))*(/\r,n_mﬂq)
TEHom(Fmap)

on an open subgroup of the inertia group IF,.

(3) p is absolutely irreducible and decomposed generic (Definition 4.3.1).
The image of ﬁ’GF(Cp) is enormous (Definition 6.2.28).

(4) There exists 0 € Gp — Gp,) such that p(o) is a scalar. We have
p > n.

(5) There exists a reqular algebraic cuspidal automorphic representation 7
of GL,,(AF) and an isomorphism . : Qp — C such that 7 is t-ordinary

and r,(w) = p.

Then p is ordinarily automorphic of weight tA: there exists an t-ordinary
cuspidal automorphic representation I1 of GL,(AFr) of weight t\ such that
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p = r,(II). Moreover, if v { p is a finite place of F and both p and 7 are
unramified at v, then Il, is unramified.

Remark 6.1.3. It follows from the existence of II that the weight A is
conjugate self-dual up to twist: there is an integer w € Z such that for all
7:F < C and for each i = 1,...,n, we have A\r; + A\rent1—i = w. (This in
turn is a consequence of the purity lemma of [Clo90, Lemma 4.9].) However,
we do not need to assume this at the outset. What we in fact prove is that p
contributes to the ordinary part of the completed cohomology; we then deduce
the existence of II by an argument of “independence of weight”.

Remark 6.1.4. The image of the projective representation Pp coincides
with the image of the adjoint representation adp. Hence the first part of
conditions Theorem 6.1.1 (4) and Theorem 6.1.2 (4) are equivalent to ¢, ¢
Freredr g p is unramified in F' (as in condition (2) of Theorem 6.1.1), it
is implied by the non-existence of a surjection (adp)(Gr) — (Z/pZ)*. It
may be possible to remove the requirement of such a ¢ by using arguments
similar to those of [Thol2], in particular by adding Iwahori level structure at
a prime which is not 1 mod p and then using [Thol2, Prop. 3.17]. However,
this would (at least) necessitate some modifications to the Ihara avoidance
arguments of §6.3, and so we have not attempted to do this, especially because
condition (4) is usually easy to verify in practice.

The proof of these two theorems will occupy the rest of this chapter. Since
this chapter is quite long, we now discuss the structure of the proof. We recall
that the authors of [CG18| implemented a generalization of the Taylor—Wiles
method in situations where the ‘numerical coincidence’ fails to hold, assuming
the existence of Galois representations associated to torsion classes in the
cohomology of arithmetic locally symmetric spaces, and an appropriate form of
local-global compatibility for these Galois representations. They also had to
assume that the cohomology groups vanish in degrees outside a given range,
after localization at a non-Eisenstein maximal ideal. (This range is the same
range in which cohomological cuspidal automorphic representations of GL,
contribute non-trivially.) Under these assumptions, they proved rather general
automorphy lifting theorems; in particular, they were able to implement the
‘Thara avoidance’ trick of [Tay08] to obtain lifting results at non-minimal level.

There are a few innovations that allow us to obtain unconditional results
here, building on the techniques of [CG18]. The first is the proof (in the
preceding sections) of a sufficiently strong version of local-global compatibility
for the torsion Galois representations constructed in [Sch15]. The second is
the observation that one can carry out a version of the ‘Thara avoidance’ trick
under somewhat weaker assumptions than those used in [CG18]. Indeed, in



110 P. ALLEN ET AL.

[KT17], it was shown that one can prove some kind of automorphy lifting
results using only that the rational cohomology is concentrated in the expected
range — and this is known unconditionally, by Matsushima’s formula and its
generalizations (in particular, Theorem 2.4.9). Here we show that the ‘Thara
avoidance’ technique is robust enough to give a general automorphy lifting
result using only the assumption that the rational cohomology is concentrated
in the expected range.

We now describe the organization of this chapter. As the above discussion
may suggest, our arguments are rather intricate, and we have broken them
into several parts in the hope that this will make the individual steps easier to
digest. We begin in §6.2 by giving a set-up for Galois deformation theory. This
is mostly standard, although there are some differences to other works: we do
not fix the determinant of our n-dimensional Galois representations, and we
must prove slightly stronger versions of our auxiliary results (e.g. existence of
Taylor-Wiles primes) because of the hypotheses required elsewhere to be able
to prove local-global compatibility.

In §6.3 and §6.4, we carry out the main technical steps. First, in §6.3, we
give an axiomatic approach to the ‘Ihara avoidance’ technique that applies
in our particular set-up. Second, in §6.4, we describe an abstract patching
argument that gives as output the objects required in §6.3. We find it convenient
to use the language of ultrafilters here, following [Sch18] and [GN16]. Finally,
in §6.5, we combine these arguments to prove Theorem 6.1.1 and Theorem 6.1.2

6.2. Galois deformation theory. Let E C Qp be a finite extension of Q,,
with valuation ring O, uniformizer w, and residue field k. Given a complete
Noetherian local O-algebra A with residue field k, we let CNLj denote the
category of complete Noetherian local A-algebras with residue field k. We refer
to an object in CNL, as a CNLy-algebra.

We fix a number field F, and let S, be the set of places of ' above p. We
assume that E contains the images of all embeddings of F' in Qp. We also
fix a continuous absolutely irreducible homomorphism p: Gp — GL, (k). We
assume throughout that p { 2n.

6.2.1. Deformation problems. Let S be a finite set of finite places of F
containing S, and all places at which p is ramified. We write Fis for the maximal
subextension of F'/F which is unramified outside S. For each v € S, we fix
A, € CNLo, and set A = ®uegA,, where the completed tensor product is
taken over O. There is a forgetful functor CNLy — CNL,, for each v € S
via the canonical map A, — A. A lift (also called a lifting) of plg,, is a
continuous homomorphism p: Gg, — GL,(A) to a CNLy -algebra A such that
p mod ma = plgy, -
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We let DS denote the set valued functor on CNLy,, that sends A to the
set of all lifts of ﬁ|GFU to A. This functor is representable, and we denote the
representing object by RL.

A local deformation problem for p|g,, is a subfunctor D, of DY satisfying
the following:

e D, is represented by a quotient R, of RY.
e For all A € CNL,,, p € Dy(A), and a € ker(GL,(A) — GL,(k)), we
have apa~! € D,(A).

The notion of global deformation problem that we use in this paper is the
following:

DEFINITION 6.2.2. A global deformation problem is a tuple

S = (ﬁ, S, {Av}v657 {D’U}’UGS)7

where:

e 1, S, and {A,}ves are as above.
e For each v € S, D, is a local deformation problem for pla,. -

This differs from that of [CG18, §8.5.2] and [KT17, Definition 4.2] in that
we don’t fix the determinant. As in the local case, a lift (or lifting) of p is
a continuous homomorphism p: Gp — GL,(A) to a CNLy-algebra A, such
that p mod my = p. We say that two lifts p1, p2: Gp — GL,,(A) are strictly
equivalent if there is a € ker(GL,(A) — GL,(k)) such that py = apja=t. A
deformation of p is a strict equivalence class of lifts of p.

For a global deformation problem

S = (ﬁ, S, {Av}vES7 {DU}’UGS)7

we say that a lift p: Gp — GL,(A) is of type S if p|g,, € Dy(A) for each v € S.
Note that if p; and po are strictly equivalent lifts of g, and p; is of type S, then
so is pa. A deformation of type S is then a strict equivalence class of lifts of
type S, and we denote by Dg the set-valued functor that takes a CNLj-algebra
A to the set of deformations p: Gp — GL,(A) of type S.

Given a subset T' C S, a T-framed lift of type S is a tuple (p, {ay tver),
where p: Gp — GL,,(A) is a lift of p of type S and o, € ker(GL,(A) — GL,,(k))
for each v € T. We say that two T-framed lifts (p1, {ow }ver) and (p2, { By }ver)
to a CNLj-algebra A are strictly equivalent if there is a € ker(GL,(A) —
GL,(k)) such that ps = apia™', and B, = aa, for each v € T. A strict
equivalence class of T-framed lifts of type S is called a T'-framed deformation
of type §. We denote by Dg the set valued functor that sends a CNLj-algebra
A to the set of T-framed deformations to A of type S.
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THEOREM 6.2.3. Let S = (p, S, {Av}ves, {Dv}tves) be a global deformation
problem, and let T be a subset of S. The functors Ds and Dg are representable;
we denote their representing objects by Rs and Rg, respectively.

Proof. This is well known. See [Gou0l, Appendix 1] for a proof of the
representability of Dg. The representability of Dg can be deduced from this. [J

If T = (), then tautologically Rs = ng. Otherwise, the relation between
these two deformation rings is given by the following lemma.

LEMMA 6.2.4. Let S = (p,S,{Av}ves,{Dv}ves) be a global deforma-
tion problem, and let T be a nonempty subset of S. Fix some vy € T, and
define T = O[{Xy,ij}tveri<ij<nl/(Xvo,1,1). The choice of a representative
ps: Gp — GL,(Rs) for the universal type S deformation determines a canoni-
cal isomorphism Rg ~ Rs®oT.

Proof. This can be proved in the same way as the second part of [CHT08],
using Schur’s lemma. A representative for the universal T-framed deformation
over Rs®oT is (ps, {1 + (Xv,i,j) bver)- O

6.2.5. Some local deformation problems. We now fix some finite place v of
F' and introduce the local deformation rings that we will use in the proofs of
our automorphy lifting theorems.

6.2.6. Ordinary deformations. Assume that v|p, and that there is an

increasing filtration

0=TFil, C Fil, C --- C Fil, = k"
that is Gp,-stable under p|g,, with one dimensional graded pieces. We will
construct and study a local deformation ring RI°%°'d whose corresponding
local deformation problem Dﬂetﬂord will be used in the proof of our ordinary
automorphy lifting theorem.

Consider the completed group algebra O[OF (p)"] where OF (p) denotes
the pro-p completion of O . There is an isomorphism Artr, : Of (p) —
Ipas /5, (p). Fix a non-empty set of minimal prime ideals of O[O0z, (p)"], and
let a be their intersection. We then set A, = O[O, (p)"]/a.

For each 1 <i < n, let X;: Gp, — k* denote the character given by Plap,
on m/ﬁzfl, and let x; = ;i\[Fv. For each 1 <4 < n, we have a canonical
character x{™V: I, — AX that is the product of the Teichmiiller lift of ; with
the map that sends I, to the ith copy of O, (p) in OF, (p)" via Art;j. The
ideal a corresponds to a fixed collection of ordered tuples of characters of the
torsion subgroup of Ipa/p, (p).

We recall some constructions from [Ger18, §3.1]. We recall that RS’ €
CNL,, denotes the universal lifting ring of p|g,, . Let F denote the flag
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variety over O classifying complete flags 0 = Fil® ¢ --- C Fil* = O, and
let G, C F Xgpeco SpPec RE denote the closed subscheme whose A-points for
an RU-algebra A consist of those filtrations Fil € F(A) such that for each
i=1,...,n, Fil' is preserved by the specialization of the universal lifting to
A and such that the induced action of I, C GF, on Fil'/Fil’"! is by the
pushforward of the character y™.

We now define two ordinary deformation rings:

e We define R to be the image of the homomorphism
o Let A, = O[F(p)"] Rooz ()] Ay, and let RY = RJ @), A,. The

Suniv

naturally extend to characters Y™ : G, — AX lifting

univ
i

X;- Let Egetmd denote the maximal quotient of EE’ over which the
relations

characters x

n

(6.2.7) det(X — p7(9)) = [T(X — xi""(9))
1=1

and

(6:2:8) (p7(91) = Xi"™(91)) (7 (g2) — X8V (92)) - - - (p7(gn) — Xi"™¥(9n)) = 0

hold for all g,g1,...,9, € Gr,. We define Rget’ord to be the image of
the homomorphism

RE N Eget,ord.
(A ring similar to RI4°™d was also defined in [CS17a].)
LEMMA 6.2.9. Egetvord is a finite RI4r_glgebra.

Proof. 1t is enough to show that Egetvord is a finite R -algebra or, by the
completed version of Nakayama’s lemma, that Ret0rd /m gD Is an Artinian k-
algebra. This follows from the relation (6.2.7) applied with g = Artp, (w,). O

For a domain R € CNL,, and K an algebraic closure of the fraction field
of R, an R-point of Spec R factors through Spec RvA if and only if the following
condition is satisfied:

o Let p: Gp, = GL,(R) be the pushforward of the universal lifting to R.
Then there is a filtration 0 = Fil® ¢ ... ¢ Fil" = K™ on p ®g K which
is preserved by Gp,, and such that the action of I, on Fil' /Fil*~!
(i =1,...,n) is given by the push-forward of the universal character
X}miv to R.

On the other hand, suppose that R — S is an injective morphism of RJ-
algebras, and suppose that there exist characters ¢1,...,%, : Gg, = S such
that for each i = 1,...,n, 9|1, equals the pushforward of XY to S, and that
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for each g, ¢1,...,9n € GF,, the analogues of the relations (6.2.7) and (6.2.8)
for the characters ¢; and the pushforward of the universal lifting hold in S.
Then R — R factors through R¢%°"d. We see in particular that there is an
inclusion of topological spaces Spec RvA C Spec RSEtﬁord.

The ring RvA was introduced in [Gerl8]. Its properties in an important
special case are summarized in the following proposition.

PROPOSITION 6.2.10. If [F, : Qp] > @ + 1 and plg,, is trivial, then
R% is O-flat, reduced and equidimensional of dimension 1+n?+ %[Fv 1 Qpl.
Moreover, the map Spec R> — Spec A, is bijective on the level of generic points,

hence on the level of irreducible components.

Proof. This is essentially contained in [Thol5, Proposition 3.14]. More
precisely, that reference proves the proposition under the assumption that
A, = O[Op (p)"], but also shows that minimal prime ideals of A, generate
minimal prime ideals of RS. The more general case where A, is allowed to
be a quotient of O[O, (p)"] by the intersection of an arbitrary collection of
minimal prime ideals follows from this. U

Our analysis of the ring RI°°™ will be coarser. It begins with the following
lemma.

LEMMA 6.2.11. Let K be a field, G a group and p : G — GL,(K) a
representation. Suppose that there exist pairwise distinct characters x1,...,Xn :
G — K satisfying the following conditions:

(1) Forall g € G,

n

det(X — p(g)) = [T(X — xi(9))-

=1

(2) For all g1,...,94 € G,

(p(g1) — x1(91))(p(g2) — x2(92)) - - - (p(gn) — Xn(gn)) = 0.

Then there is a filtration 0 = Fil¥ C --- C Fil" = K™ by G-stable subspaces such
that for eachi=1,...,n, Fil' /Fil'"t = K(y;).

Proof. We define subspaces 0 = Vo c Vi c Vo C ---CV, CV = K"
be declaring that for each i = 1,...,n, V;/V;_1 is the maximal subspace of
V/V;_1 where G acts by the character y;. Each V; is G-stable and the second
condition of the lemma implies that V,, = V. On the other hand, each V;/V;_;
is isomorphic to K (y;)dm« Vi/Vi-i The first condition of the lemma implies
that we must therefore have dimg V;/V;_1 =1 for each i = 1,...,n. The proof
is complete on taking Fil’ = Vj. O
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Let U C Spec A, be the open subscheme where the characters YV, ...y
are pairwise distinct, and let Z denote its complement.

PROPOSITION 6.2.12. Let f : Spec RS — SpecA,, g : Spec Rdetord
Spec Ay, be the structural maps. Suppose that pla,, is trivial and that [F, :

Q) > "t 4,

(1) We have f~1(U) = g~ (U) as subspaces of Spec R}). Consequently, for
each irreducible component C' of Spec A, there is a unique irreducible
component C' of Spec R4 which dominates C. It has dimension
n2+1+%[ﬂ, : Q-

(2) Let C' be an irreducible component of RI4°*d which does not dominate
an irreducible component of Spec A,. Then C' C g='(Z) and C' has
dimension at most n® — 1 + %[Fv 1 Q.

Proof. We have already observed that there is an inclusion Spec RS C
Spec Rdetord We must first show that if s : Spec K — g~ }(U) C Spec Rdet-ord
is a geometric point, then s factors through Spec RUA. By Lemma 6.2.9, s lifts
to a point s’ : Spec K — Spec Eﬂet’ord. Then Lemma 6.2.11 shows that s factors
through R%. The first part of the proposition now follows from Proposition
6.2.10, which says that f|y induces a bijection on generic points, hence on
irreducible components.

For the second part, let C’ be an irreducible component of Rget’ord which
does not dominate an irreducible component of Spec A,,. It follows from the
first part that we must have g(C’) C Z. To bound the dimension of C’, we
claim that there is a permutation o € S,, such that C’ is contained in the closed
subspace h~1(Z) of Spec RUA’U, where h : Spec RUA’” — Spec A, is the quotient
of RY which is defined in the same way as R%, except that we require the
action of Ir, on the i*" graded piece of the filtration to be by the character
XE?ZI;’ There is a corresponding surjective morphism G — Spec RvA’U. To
show the claim, it suffices to check that there is a ¢ such that a geometric
generic point of C’ is contained in Spec R,UA"’. To see this, we observe that
the Galois representation corresponding to a geometric generic point of C’
has semisimplification a direct sum of characters whose restriction to I, is the
push-forward of @ ;x}'
with the Galois action on its graded pieces given by the universal characters in
some order.

We thus have

niv Tt follows that this representation has a filtration

dimC’ < dimh™'(Z) < dimG7.

We can bound dim G by bounding the dimension of the completed local rings
at its closed points, using essentially the same tangent space calculation as in
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[Gerl8, Lemma 3.2.3] (although over a finite field). This yields

dim g7 < 1+n2+n(n+1)/2+n(n+1)[Fv cQpl/2—[Fy s Qp) < n271+n(n+1)[Fv 1 Qpl/2,

n(n+1)
2

using our assumption [F, : Q,] > + 1. This completes the proof. O

6.2.13. Fontaine—Laffaille deformations. We again suppose v|p, but take
A, = O. We assume that F,,/Q), is unramified. Recall that in §4.1 we defined
a category MFp and a functor G on MF that take values in the category
of finite O-modules with continuous O-linear G, -action.

For each embedding 7: F;, — E, let Ay = (Ar1,...,Ary) be a tuple of
integers satisfying

)\T,l > )\7,2 > > )\T,n-
and
>\T,1 - >\T,n <p—n

We say a representation of G, on a finite O-module W is Fontaine—Laffaille
of type (Ar)reHom(F,,E) if there is M € MFo with W = G(M), and

FL,(M ®@ok)={A1+n—1, 2+n—2,..., A}

for each 7: F,, — E. The following proposition follows from [CHTO08, §2.4.1]
and a twisting argument (see §4.1).

PROPOSITION 6.2.14. Assume that plg,, is Fontaine-Laffaille of type
(Ar)reHom(F,,E)- Then there is a quotient RFY of RS satisfying the following.

(1) REY represents a local deformation problem DL
(2) For a CNLp-algebra A that is finite over O, a lift p € DJ(A) lies in
DEL if and only if p is Fontaine-Laffaille of type (Ar)reHom(Fy,E)-

(3) REY is a formally smooth over O of dimension 1+n? + @[Fv 1 Qpl.

6.2.15. Level raising deformations. Assume that ¢, = 1 mod p, that p|g,,
is trivial, and that p > n. We take A, = O.

Let x = (x1,---,Xn) be a tuple of continuous characters x;: (’);v — O
that are trivial modulo w. We let DX be the functor of lifts p: Gp, — GL,(A)
such that

n

Charp(a) (X) = H(X - Xz(ArtE‘vl(U)))

i=1
for all o € Ir,. Then DY is a local deformation problem, and we denote its
representing object by RX. The following two propositions are contained in
[Tay08, Proposition 3.1].

PROPOSITION 6.2.16. Assume that x; = 1 for all1 < i < n. Then R})
satisfies the following properties:
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(1) Spec R! is equidimensional of dimension 1+ n? and every generic point
has characteristic zero.

(2) Every generic point of Spec Rl /w is the specialization of a unique
generic point of Spec R).

PROPOSITION 6.2.17. Assume that the x; are pairwise distinct. Then
Spec RY is irreducible of dimension 1 +n?, and its generic point has character-
18tic zero.

6.2.18. Taylor—Wiles deformations. Assume that g, = 1 mod p, and that
plap, is unramified. We take A, = 0. We assume that p|g,, has n-distinct
eigenvalues aq,...,a, € k. For each 1 < i < n, let 7;: Gp, — k™ be the
unramified character that sends Frob, to «;.

LEMMA 6.2.19. Let p: Gg, — GLy,(A) be any lift of p. There are unique
continuous characters v;: Gg, — A*, for 1 <1i < n, such that p is GL,(A)-
conjugate to a lift of the form y1 @ --- @ v, where v; mod my = 7; for each
1< <n.

Proof. This is similar to [DDT97, Lemma 2.44]. The details are left to the
reader. g

Let A, = k(v)*(p)™, where k(v)*(p) is the maximal p-power quotient of
k(v)*. Let p: Gg, — GLy(RY)) denote the universal lift. Then p is GLy,(R%)-
conjugate to a lift of the form v @ --- @ 7,, with 7; mod mpo = 7%;. For each
1 < ¢ < n, the character ~; o Artpv|(9;v factors through k(v)*(p), so we obtain

a canonical local O-algebra morphism O[A,] — RL. Note that this depends
on the choice of ordering «y, ..., a,. It is straightforward to check that this

morphism is formally smooth of relative dimension n?.

6.2.20. Formally smooth deformations. Assume that vt p. The following
is a standard argument in obstruction theory, and the proof is left to the reader.

PROPOSITION 6.2.21. If H*(F,,adp) = 0, then RS is isomorphic to a

power series ring over O in n? variables.

6.2.22. Presentations. Fix a global deformation problem

S=(p,S,{Av}ves, {Dv}ves),

and for each v € S, let R, denote the object representing D,. Let T be a
(possibly empty) subset of S such that A, = O for all v € S\ T, and define
Rg’loc = ®Quer Ry, with the completed tensor product being taken over O. It
is canonically a A-algebra, via the canonical isomorphism ®yerAy = QpesAy.
For each v € T, the morphism D& — D, given by (p, {ow}ver) — oy 'play, o
induces a local A,-algebra morphism R, — Rg. We thus have a local A-algebra
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morphism Rg’loc — Rg. To understand the relative tangent space of this map,
we use a Galois cohomology complex following [CHTO8, §2] (cf. [KT17, §4.2]).

We let ad p denote the space of n x n matrices My, xp (k) over k with adjoint
G p-action via p. For each v € S, we let Z'(F,,adp) denote the k-vector space
of continuous 1-cocycles of G, with coefficients in ad p. The map ¢ — (1+¢cc)p

gives an isomorphism
Z'(F,,adp) = Homenr,, (R, k[e]/(e2)).
We denote by £} the pre-image of
Homenty, (R k[e]/(€%)) € Homenw,, (R, kle]/(€))

under this isomorphism. Note that £} contains the subspace of coboundaries.
We then let £, be the image of £ in H'(F,,adp).
We define a complex C§ -(ad p) by

CY(Fs/F,adp) ifi=0,

Ci (adp) C'(Fs/F,adp) ® @ver C°(Fy, adp) ifi=1,

’ C?(Fs/F,adp) ® @ver C' (Fy,ad p) Gues.r C'(Fy,adp) /Ly if i =2,
Ci(Fs/F,adp) ® @ues C' 1 (Fy,adp) otherwise,

with boundary map CfiT(ad ) — C’gfi,lw(ad p) given by

(@, (Wo)o) = (99, (Plar, — Obv)w)-

We denote the cohomology groups of this complex by H};,T(ad p), and denote
their k-dimension by hgT(ad p) (we use similar notation for the k-dimension
of local and global Galois cohomology groups).

There is a long exact sequence in cohomology

(6.2.22)

0 — Hr(adp) — H(Fs/F,adp) — @perH(F,,ad p)
— H r(adp) — H' (Fs/F,adp) = ®perH' (Fy,ad p) Svesr H' (Fy,ad p) /Ly
— Hgp(adp) — H*(Fs/F,adp) = GuesH?*(Fy,adp) — -+ - .

Since we are assuming that p > 2, the groups H*(Fs/F,adp) vanish for i > 3,
as do the groups H(F,,adp). So Hé’T(adﬁ) = 0 for ¢ > 3, and we have a
relation among Euler characteristics

(6.2.23)

xs.r(adp) = X(Fs/F,adp) — 3" x(Fpadp) — 3 (dimy £y — h(Fy,ad 7).

veS veSNT

The trace pairing (X,Y) — tr(XY) on adp is perfect and G p-equivariant,
so adp(1) is isomorphic to the Tate dual of adp. For each v € S, we let
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L C H'Y(F,,adp(1)) be the exact annihilator of £, under local Tate duality.
We then define

H;H’T(adﬁ(l)):ker <H1(FS/F,adp(1))—> 11 Hl(Fv,adp(l))/LQf).
veESNT

The following is proved in the same way as [KT17, Proposition 4.7], based on
ideas of Kisin [Kis07, Prop. 4.1.5, Rem. 4.1.7].

PROPOSITION 6.2.24. Let the notation and assumptions be as in the
beginning of §6.2.22, assume further that T is nonempty. Then there is a local
A-algebra surjection Rg’loc [X4,...,X,] = REL, with

g9 =hsr(adp) = hi: p(adp(1)) — h°(Fs/F,adp(1))
=Y h(F,,adp)+ > (dimg £, — hO(F,,adp)).

v|oo veS\T
Proof. The first claim with g = h}iT(ad p) follows from showing
HY (ad p) 2 Homene, (RE/(m o), Ke)/(2)
= Homk(ng/(még, ng,loc), kj)

To see this, note that any T-framed lifting of p to k[e]/(?) can be written as
((1 4+ er)p, (1 + cay)ver), with k € ZY(Fs/F,adp), and «, € adp. It is the
trivial lift at v € T if and only if

(1 - EOzv)(l + €R|GFU )p‘GFU (1 + Eav) = ﬁ|GFU7
equivalently,
klar, = (adplap, —1)aw.
Such a lift is further of type S if and only if x|, € L} for all v € S\ T. This
sets up a bijection between the set of 1-cocycles of the complex C’&T(ad p) and
the set of T-framed lifts of type & that are trivial at v € T. Two cocycles
(K, {aptver) and (K',{a}yer) define strictly equivalent T-framed lifts if and
only if there is 5 € ad p such that
K =r+(adp—1)8 and o =a,+f,
for all v € T', i.e. if and only if they differ by a coboundary. This induces the
desired isomorphism
Hy,r(adp) = Homox, (R /(mgraee ), k[e]/(€7)).

Since T is nonempty, h%T(ad p) = 0. Then (6.2.23) together with the local
and global Euler characteristic formulas imply

hsp(adp) = h p(adp)—he r(adp)—>_ hY(Fy,adp)+ > (dimy L,—h0(F,,adp)).

v]oo veSNT
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To finish the proof, we deduce equalities h?ng(a,dﬁ) = hg. p(adp(1)) and
hgT(ad p) = h%(Fs/F,ad (1)) by comparing the exact sequence

— H'(Fs/F,adp) = GerH' (Fy,adp) ®ves-r H' (Fy,ad ) /L,
— HE r(adp) — H*(Fs/F,adp) = ®yesH*(Fy, ad p)
— H r(adp) — 0,
which is part of (6.2.22), with the exact sequence

— HY(Fs/F,adp) = ®perH' (F,,ad D) ®pesr H (F,,adp)/L,
— Hg. p(adp(1))" — H*(Fs/F,adp) — ®uesH*(F,,ad p)

— HY(Fs/F,adp(1))Y — 0,
which is part of the Poitou—Tate long exact sequence. O

We will apply this with our choices of local deformation rings as in §6.2.5.
By applying Propositions 6.2.14, 6.2.16, 6.2.17, 6.2.21, and [BLGHT11, Lemma
3.3], we obtain the following:

LEMMA 6.2.25. We assume that our deformation problem S and T C S
satisfy the following.

o T is a disjoint union S, U R S,.

e For each v € Sy, we assume that F,/Q, is unramified and that pla,,
is as in Proposition 6.2.14. We take D, = DEL.

e For each v € R, we assume that ¢, = 1 mod p and that ﬁ]GFU is trivial.
We take D, = DX for some tuple x» = (Xuv,15---,Xvn) Of characters
Xov,i: (’);v — O* that are trivial modulo w.

e For each v € S,, we assume that H2(FU7 adp) = 0 and we take D, =
DL

Then Rg’loc satisfies the following properties.

(1) Assume that xy,; =1 for each v € R and 1 <i <n. Then Spec Rg’loc
is equidimensional of dimension 1+ n?|T| + W[F : QJ, and ev-
ery generic point has characteristic 0. Further, every generic point
of SpecRg’loc/w is the specialization of a unique generic point of
Spec Ri:’loc.

(2) Assume that X1, .., Xon are pairwise distinct for each v € R. Then
Spec Ry is irreducible of dimension 1+ n2|T| + @[F : Q] and
its generic point has characteristic 0.

In the ordinary case, we will use the following.

LEMMA 6.2.26. We assume that our deformation problem S and T C S
satisfy the following.
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T is a disjoint union Sy, LI R S,.
For each v € Sy, we assume that [Fy, : Qp] > +1 and that pla,,, is
trivial. We take A, to be the quotient of(’)[[C’)f% (p)"] by a minimal prime
ideal , and take D, = DI to be the local deformation problem
classified by RIeHord,
For each v € R, we assume that ¢, = 1 mod p and that p|a,, is trivial.
We take D, = DX* for some tuple xo» = (Xuv,15---,Xvn) Of characters
Xuv,i: O — O* that are trivial modulo w.
For each v € S,, we assume that H*(F,,adp) = 0 and we take D, =
DD
Then RT loc satisfies the following properties.

(1) Assume that x,; =1 for eachv € R and 1 <i < n. Then Spec Ry’

has dimension 1 + n?|T| + ”H [F Q|, any irreducible component
of mazximum dimension has a chamctemstzc 0 generic point, and any
irreducible component that does mot have maximum dimension has
dimension < n?|T| —1+ %[P : QJ. Further, any irreducible compo-

nent of Spec RT 10C/( A) of mazimum dimension is the specialization of
T,loc

n(n+1)
2

Tloc

a unique generic point of Spec Ry’

(2) Assume that Xy1,- .., Xon are pairwise distinct for each v € R. Then
Spec ng’loc has dimension 1 + n?|T| + W[F : Q], it has a unique
irreducible component of maximum dimension and the generic point of
this irreducible component has characteristic 0. Any other irreducible
component has dimension < n?|T| — 1+ M[F : Q.

(3) If x is a point of Spec Rg’loc lying in an irreducible component of non-
maximum dimension, then there is some v € S, such that the image of

univ

x in Spec A, lies in the closed locus defined by X}
i
Proof. For each v € S, Proposition 6.2.12 implies that Spec R, has a

= x}-m“’ for some

unique irreducible component of dimension dim R, = 1 + n? + W[Fv 1 Qpl,
and this irreducible component has characteristic 0. Let q, be the minimal
prime of R, corresponding to this irreducible component. Then we can apply
[BLGHT11, Lemma 3.3] to

R= ®v€SpRv/qv®v€RUSaRv

together with Propositions 6.2.16, 6.2.17, and 6.2.21 to obtain the following:

(1) If xp; = 1 for each v € R and 1 < i < n, then Spec R is equidimen-
sional of dimension 1 4 n?|T| + n(nH) [F: Q], and every generic point
has characteristic 0. Further, every generic point of Spec R/w is the
specialization of a unique generic point of Spec R.
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(2) If xv,1,--,Xon are pairwise distinct for each v € R, then Spec R is
irreducible of dimension 1 + n?|T| + %[F : Q] and its generic point
has characteristic 0.

Since any minimal prime p of Rg’loc pulls back to prime ideals p,, of R, for each

v € T, and induces a surjection
~ T,
®v€TRv/pv — RS Oc/pa

we see that Spec R is a union of irreducible components of Spec Rg’loc. To finish
the proof of the lemma, it suffice to note that if p,, # q, for some v € S}, then
by Proposition 6.2.12, dim R, /p, < n? — 1+ n(nTH)[FU : Qp) and the image of

p, in A, lies in the closed locus defined by i

7

case, dim Rg'*°/p < n?|T| — 1+ %[F : Q. O

= X}»miv for some ¢ # j. In this

6.2.27. Taylor—Wiles primes. In this section we show how to generate
Taylor—-Wiles data. We first need to introduce a definition, essentially equivalent
to that of [KT17, Defn. 4.10] and [CG18, §9.2] (see Remark 6.2.30 below). For
the moment, let k be any algebraic extension of F,.

DEFINITION 6.2.28. Let ad’ denote the space of trace zero matrices in
My, xn (k) with the adjoint GLy,(k)-action. An absolutely irreducible subgroup
H C GL,, (k) is called enormous over k if it satisfies the following:

(1) H has no nontrivial l-power order quotient.

(2) H°(H,ad’) = H'(H,ad’) = 0.

(3) For any simple k[H]-submodule W C ad®, there is a reqular semisimple
h € H such that Wh # 0.

Note that this only depends on the image of H in PGL, (k). If p divides
n, then no subgroup of GL, (k) is enormous (because ad® contains the scalar
matrices).

LEMMA 6.2.29. Let k'/k be an algebraic extension, and let H C GLy (k)
be a subgroup. Then H is enormous over k if and only if it is enormous over

K.

Proof. Tt suffices to address condition (3), which is equivalent to the
following statement: for all non-zero k[H]-submodules W C ad’, there is a
regular semisimple element h € H such that W # 0. This makes it clear that
if H is enormous over k', then it is enormous over k.

Suppose therefore that H is enormous over k. The property that a k'[H]-
module V satisfies V" # 0 is closed under taking direct sums and taking
quotients (the latter is true because V" # 0 if and only if V}, # 0). If V C
ad’ @k, then chv = hov (since H C GL,(k)) and so V" # 0 if and only
if (¢V)* # 0. In particular, if W’ is a simple &'[H]-submodule of ad’ @3k’ with
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no invariants by h € H, the same is true for W’ for all o € Gal(k’/k), as well
as the submodule of ad® @k’ generated by the sum of all such cW’. But the
latter is stable under both H and Gal(k’/k), and thus (by descent) has the
form W @y, k" for some k[H]-submodule of ad®. But now applying condition (3)
to any k[H]-simple submodule of W, we deduce that W" # 0 for some regular
semisimple h, from which it follows that the same holds for W’. O

Henceforth we drop the ‘over &’ and refer simply to enormous subgroups
of GL,, (k).

Remark 6.2.30. Assuming that k is sufficiently large to contain all eigenval-
ues of the elements of H, it can be checked that Definition 6.2.28 is equivalent
to [KT17, Definition 4.10].

We now return to the assumptions described at the beginning of §6.2,
assuming further that k contains all eigenvalues of the elements of p(Gr). We
again fix a global deformation problem

S = (ﬁ, 57 {Av}UES7 {DU}UES)'

We define a Taylor—Wiles datum to be a tuple (Q, (ay 1, - ., ®yn)veq) consisting
of:

e A finite set of finite places @ of F, disjoint from S, such that ¢, =
1 mod p for each v € Q.

e For each v € @), an ordering a1, . . ., @y 5 Of the eigenvalues of p(Frob,),
which are assumed to be k-rational and distinct.

Given a Taylor-Wiles datum (@, (a1, - - -, Qyn)veq), we define the augmented
global deformation problem

‘SQ = (pa Su Qa {AU}UES U {O}vEQa {Dv}ves U {DE}UGQ)'

Set Ag = [lveq k(v)*(p)". By §6.2.18, the fixed ordering a1, ..., n, for
each v € Q, determines a A[Ag]-algebra structure on R% o for any subset T
of S. Letting ag = ker(A[Ag] — A) be the augmentation ideal, the natural
surjection RgQ — Rg has kernel aQRgQ.

LEMMA 6.2.31. Let T C 5. Assume that F' is CM with maximal totally
real subfield F*, that ¢, ¢ F, and that p(Gp,)) s enormous. Let ¢ >
h‘lsl r(adp(1)). Then for every N > 1, there is a choice of Taylor—Wiles datum
(QN, (Qw1s - 0n)veqy) Satisfying the following:

(1) #Qn =q.
(2) For each v € Qn, ¢, = 1 mod p, and v has degree one over Q.

(3) hly p(adp(1) =0,
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Proof. Since the augmented deformation datum Sg, has D, = DY for
v € Qu, we have £, = H'(G,,adp) and

HééNj(adﬁ(l)):ker <H§l7T(adp(1))—> 1;[ Hl(Fv,adp(l))>.

So by induction, it suffices to show that given any cocycle k representing a

nonzero element of HL, -.(ad5(1)), there are infinitely many finite places v of

SL.T
F such that
e v has degree one over Q and splits in F'(,~);
e p(Frob,) has n-distinct eigenvalues oy 1, ..., Qyp in k;

e the image of k in H'(F,,ad (1)) is nonzero.

The set of places of F' that have degree one over Q has density one, so it suffices
to show that the remaining properties are satisfied by a positive density set
of places of F. Then by Chebotarev density, we are reduced to showing that
given any cocycle k representing a nonzero element of HL, —.(ad5(1)), there is

st
o € Gp(c y) such that
D

e p(0) has distinct k-rational eigenvalues;

e pok(o) # 0, where p,: adp — (adp)? is the o-equivariant projection.
(The second condition guarantees that the restriction of £ will not be a cobound-
ary.) Since p { n, we have a G p-equivariant decomposition adp = k @ ad’ 7,
and we treat separately the cases where k represents a cohomology class in
H'(Fs/F,ad’5(1)) and in H'(Fs/F, k(1)).

First assume that s represents a cohomology class in H'(Fg/F,ad’5(1)).
Let L/F be the splitting field of p. The definition of enormous implies that the
restriction map

H'(Fs/F,ad’p(1)) = H'(Fs/L(Gn), ad” p(1))*

is injective. Indeed, letting H = p(Gr(c,)), since H has no p-power order
quotients, H = ﬁ(GF(CpN)) and HY(H,ad"5) = 0 implies that the restriction
to H'(Fs/F(¢,n),adp) is injective. Then the condition H'(H,ad’p) = 0
implies that the further restriction to H 1(F5/L((pzv),ad0 p(1)) is injective.
So the restriction of k defines a nonzero G F(CPN)—equivariant homomorphism
Gal(Fs/L((,n)) — ad’p.
Let W be a nonzero irreducible subrepresentation in the k-span of x(Gal(Fs/L(C,v)).

The enormous assumption implies that there is og € G F(C,n) such that p(oy)
has distinct k-rational eigenvalues and such that any nonzero irreducible subrep-
resentation W of the k-span of x(Gal(Fs/L((,~)) has W7 # 0. This implies
that x(Gal(Fs/L(,n)) is not contained in the kernel of the og-equivariant

g0

projection py,: ad’p — (ad’p) If psyr(oo) # 0, then we take o = oy.
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Otherwise, we choose T € GL(CPN) such that py,k(7) # 0, and we take o = 70y.
This does the job since p(c) = p(0g) and k(o) = k(o) + (7).

Now assume that x represents a cohomology class in H'(Fg/F,k(1)).
The cohomology class of k corresponds to a Kummer extension F'((p,y) with
yP € F((p). Since k is nontrivial and (, ¢ F', this extension F((p,y) is not
abelian over F. It follows that y? ¢ F'((,~) for any N > 1, and the restriction
of k to GF(CpN) is nontrivial. Since the extension F((,~,y)/F(,~) has degree
p, it is disjoint from the extension cut out by the restriction of p to G F(,n) by
N such that
p(o) has distinct eigenvalues and such that k(o) # 0 € k. This completes the
proof. O

the enormous assumption. It follows that we can find o € Gp(

PROPOSITION 6.2.32. Take T = S, and let ¢ > hg, (adp(1)). Assume
that F' = FTFy with FT totally real and Fy an imaginary quadratic field, that
Cp & F, and that p(G p(c,)) is enormous. Then for every N > 1, there is a choice

of Taylor-Wiles datum (Qn, (0,1, .., 0n)veqy) Satisfying the following:

(1) #Qn =q.
(2) For each v € Qn, ¢, = 1 mod p"V and the rational prime below v splits
n Fy.

(3) There is a local A-algebra surjection Rg’loc [Xi,....X4] — REQ , with
N
g=qn—n’[F*:Q]

Proof. If v is a finite place of F' that is degree one over Q, then the rational
prime below it must split in Fy. So Proposition 6.2.24 and Lemma 6.2.31 imply
that the proposition holds with

g=—h"(Fs/F,adp(1)) —n’[F*: Q]+ > (dim L, — dim h°(F,,ad p)).
vEQR
The assumptions that p(G F(Cp)) is enormous and that (, ¢ F' imply that
HY(Fg/F,adp(1)) is trivial. For each v € @, we have £, = H'(F,,adp), so
dim £, — dim h°(F,,adp) = h°(F,,adp(1)) = n,

where the first equality follows from local Tate duality and the local Euler
characteristic, and the second from the fact that ¢, = 1 mod p and p(Frob,)
has distinct eigenvalues. ([l

6.3. Avoiding Ihara’s lemma. Let A be a ring which is isomorphic to a
power series ring over O.
6.3.1. Set-up. We assume given the following objects:

(1) A power series ring Soc = A[[X1, -+, X,]] with augmentation ideal
Goo = (X1,..., Xp).



126 P. ALLEN ET AL.

(2) Perfect complexes C, CL of Soo-modules, and a fixed isomorphism
Coo ®Y., Seo/w =2 Ch, ®. Seo/w

in D(Seo/w).
(3) Two Sso-subalgebras

Ty C EndD(Soo) (Coo)

and
T., C Endp(s..)(CL.),

which have the same image in
Endp s, /) (Coo @6, Seo/@) = Endp(s.. /o) (Ch ®E.. Soc/@),

where these endomorphism algebras are identified using the fixed iso-
morphism. Call this common image Tw,. Note that T, and T. are
finite S.o-algebras.

(4) Two Noetherian complete local Soo-algebras R, and R._ and surjections
Roo - T /1o, R, — T.o /I, where I, and I/ are nilpotent ideals.
We write I, and T;O for the image of these ideals in T+. Note that it
then makes sense to talk about the support of H*(Cy) and H*(CL))
over Ry, R._, even though they are not genuine modules over these
rings. These supports actually belong to the closed subsets of Spec Ry,
Spec R/ given by Spec T, Spec T..., and hence are finite over Spec So..

(5) An isomorphism R../w = R, /w compatible with the S-algebra
structure and the actions (induced from T, and 7)) on

H*(Cos ®goo Soc/@)/(Tos +T,oo) = H"(Cy ®gm Soc/@)/(Tos +T£>o)7

where these cohomology groups are identified using the fixed isomor-
phism.
(6) Integers qop € Z and Iy € Z>.

Unless otherwise specified, codimension means codimension with respect to
Spec Sy. If C is a complex of S-modules and = € SpecS, we denote the
localization C' ®g S, by C,, and the completed localization C' ®g S, by C..

Assumption 6.3.2. Our set-up is assumed to satisfy the following:

(1) dim Ry = dim R, = dim So — lp, and dim Ro/w = dim R, /w =
dim Soo — l() — 1.

(2) (Behavior of components) Assume that each generic point of Spec Roo /w
of maximal dimension (i.e. of dimension dim R, —1) is the specialization
of a unique generic point of Spec Ry, of dimension dim R, and Spec R,
has a unique generic point of dimension dim R.,. Assume also that
any generic points of Spec Roo, Spec R, _, Spec R /@ which are not of
maximal dimension have dimension < dim Sy, — [y — 1.
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These hypotheses imply every generic point of Spec Ry, and Spec R,
of dimension dim R, has characteristic 0.
(3) (Generic concentration) There exists a dimension 1 characteristic 0
prime p of S, containing as, such that

HY (O 0% soo/m[;] 40,

and these groups are non-zero only for degrees in the interval [go, o +lo]-

We will find ourselves with this collection of objects in §6.5.1 and again in
§6.6.1, having applied patching results proved in §6.4 below.

6.3.3. Application to cohomology.

LEMMA 6.3.4. Let A be a Noetherian local ring, and let B be a finite
A-algebra. Let M be a finite B-module such that depthy M = n > dim B.
Then dim B = n and Suppg M is a union of irreducible components of Spec B
of dimension n.

Proof. This is a mild generalization of [Tay08, Lem. 2.3]. It follows from
[Eis95, Theorem 3.1], [Stal3, Tag 0BK4], and [Stal3, Tag 0AUK] that if P C B
is a prime ideal, minimal in the support of M, and n O P is a maximal ideal of
B, then

dim B, /P > depthp (M) > depthy M = n > dim B.

It follows that dim B = dim B,/P and so V(P) C Spec B is an irreducible
component of Spec B of dimension n. O

LEMMA 6.3.5.

(1) The support of H*(Cs) and H*(CL,) over S has codimension > ly. If
x s a point of SpecTo, which is generic in Spec Roo and of dimension
dim R, then x contracts to a point of Spec Soo of dimension dim R.
If T is a point of Spec T,/ which is generic in Spec Roo/w and of
dimension dim Ry, — 1, then T contracts to a point of Spec S /w of
dimension dim Roo — 1. The same is true with T, replacing Tro and R
replacing Rs. All generic points of Spec Roo, Spec R._, Spec Ry /™
of non-mazximal dimension contract to points of Spec S of dimension
< dim Ry — 1.

(2) Letp be a prime of Soc as in Assumption 6.3.2(3). Then the cohomology
of Cop 18 concentrated in degree qo + lo, and is non-zero. Moreover
Toop # (0) and if x is a generic point of Spec Twop then x is a generic
point of Spec Roy of dimension dim R .

(3) Let § € Spec Soo/w be a point of dimension dim Ry, /w. Then every
point of Spec T 5/w is a minimal prime of Spec Ro/w. Moreover
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H*(Coo®%_ (Soc,y/w)) and H*(é\oo,yéég\ B (Ssoy/w)) have finite length
0,y

over Seoy and §oo,g respectively. (The same is true with Ty, replaced
by T', and Cw replaced by CL.).

Proof. (1) The first part is obvious from the fact that dim Ro, =
dim R = dim So — lp. The remaining parts follow from the finiteness
of T, over S, and our assumption on the generic points of Spec R
and Spec R._.
(2) Since S p/p = (Soo/p)[%], our assumption implies C p is non-zero
and has cohomology concentrated in degrees [qo, go + lo]-
Now the first part implies that the support of H*(Cup) over Soo
has codimension at least ly. It then follows from [CG18, Lemma 6.2]
(see also [Han12, Theorem 2.1.1]) and the concentration of cohomology
in the range [qo, go +lo] that H*(C p) has codimension exactly [y as an
Seo,p-module, that H*(Cw p) is non-zero exactly in degree g + lp, and
that the group H%th (Coo,p) has depth dim S p — lp = dim Ry — 1 as
Soo,p-module.
Thus

depthg_  HP*(Cio)p = dim Rog — 1 > dim Tho — 1 > dim Tho .

We deduce from Lemma 6.3.4 that Suppr,_, H®©%o(CL),.. is a finite
union of irreducible components of Spec T .. of dimension dim R, —1.
Thus 2z has dimension dim Ry, — 1 in Spec7p and so dimension
> dim Ry in SpecTy. It follows that x is also a generic point of
Spec Ry, of dimension dim R..

(3) By the assumption on the dimension of 7 and the going up theorem,
the primes of T 3/w have dimension > dim R /w in Spec T /w. As
SpecTw,/w is a closed subset of Spec R/t we see that all the primes
of Tro 3/ are minimal primes of T /w of dimension dim R — 1.

Thus Ti 5/ is zero dimensional and hence Artinian. As H*(Coo®§_
Ssoy/w) is a finitely generated Th 5/ to-module, it follows that H*(Coo®%_
Seo5/@) is finite length over S 5. The completed version follows from
this. ([l

LEMMA 6.3.6. Let S be a local Noetherian ring and f € S a non-zero-
divisor.

(1) If M is a finitely generated S-module such that M/(f) has finite length,
then M[f*°] also has finite length.

(2) Let C be a bounded complex of S-modules with finitely generated coho-
mology groups such that H*(C ®% S/(f)) has finite length over S. Then
H*(C)/(f) and H*(C)[f*°] also have finite length over S.
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Proof. Consider the first part. As M/M|[f*] is f-torsion free, the snake
lemma shows that M[f>°]/fM][f°] is a submodule of M/fM and hence finite
length over S. As M[f°] is finitely generated, f" M[f°] = (0) for some positive
integer r. Thus it suffices to show that fiM[f>°]/f 1 M[f>] is finite length
for all 4, but this module is a quotient of M[f>°]/fM][f°°], which completes the
proof of the first part.

Now consider the second part. There is a spectral sequence converg-
ing to HH(C ®Y% S/(f)) with Ey page Torfj(Hi(C), S/(f)). Note that
Torf (H'(C),S/(f)) = (0) for j > 1, that Tor{(H'(C),S/(f)) = H'(O)[f],
and that Torg (H*(C), S/(f)) = H(C)/(f). We show by reverse induction on i
that H'(C)/(f) and H*(C)[f>] are finite length S-modules, and hence so are
Torgj(Hi(C’), S/(f)) for all j. For i sufficiently large these groups are all (0),
so suppose we have proved the claim for all i’ > i. We see that the quotient of
HY(C)/(f) by a finite length S-module is itself a quotient of H'(C ®% S/(f)).
Thus H'(C)/(f) has finite length over S. The first part of the lemma im-
plies that H*(C)[f*] has finite length over S, which completes the inductive
step. U

Recall that the length of a complex C' of R-modules with finite length
cohomology is Ig(C) = S (—1)g(H!(C)).

LEMMA 6.3.7. Let S be a local Noetherian ring and f € S a non-zero
divisor. Let C be a bounded complex of S-modules with finitely generated
cohomology groups such that H*(C ®% S/(f)) has finite length over S.
(1) IfIs(C ®% S/(f)) # 0, then H*(C)[1/f] # 0.
(2) If HY(C)[1/f] is non-zero for evactly one value of i, then ls(C ®%
S5/(f)) # 0.

(3) Suppose that S is excellent and that f is a non-unit. Assume also
that there is a finite 1-dimensional S-algebra T and a homomorphism
T — Endp(s)(C) such that SpecT is irreducible. Lety be the image of
the unique generic point of SpecT in Spec S, and assume f ¢ y. Let
T = T®sS = Hi be the completion of T along the mazimal ideal of S,
decomposed into a product of local factors. Let e; denote the idempotent
corresponding to the i-th factor in T. The fact that the derived category
is idempotent complete (see [BN93, Proposition 3.2]) tells us that C ® S
18 quasi-isomorphic to

~

@ e(C®8),
where e; maps to 1 in Endpg)(e;(C® S)) and 0 in Endpg)(e;(C® S))
for j #i. Then H*(e;(C @ ) ®% S/(f)) is finite length over S and
there exists a mon-zero constant a depending only on S — T, f, y and i
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(but not C') such that
I5(ei(C @ S) @% 8/(f)) = als, (Cy).

Proof. (1) Suppose that H*(C)[1/f] = (0); we must show that 5(C®%

S/(f)) = (0). Since C is filtered by its cohomology groups, which are
f°°-torsion and so finite length, it is filtered by simple S-modules. Thus
it suffices to check lg(S/m ®% S/(f)) = 0, which follows from a direct
computation.

As in the previous part we may filter C' so that the successive quotients
are S-modules in certain degrees, of which exactly one, M say, is
f-torsion free and non-zero, and the others are all isomorphic to S/m.
Thus Is(C ®% S/(f)) = £ls(Mo ®% S/(f)) = £ls(Mo/ f M) # 0.

Note that any finitely generated, f°°-torsion T-module has finite length
over S.

Let R = T and let R be the normalization of R. Then R is a
semi-local 1-dimensional normal domain finite over S, and so also a
PID. The image of f in R is non-zero and lies in every maximal ideal.
The quotient R/R is f>-torsion. Moreover ei(R®g 8)/(f) is non-zero
and finite length over S. Also R is finite field extension of S, /y and
hence a non-zero finite length S, module. Define a # 0 by

Is(ei(R®s S)/(f)) = als, (Ry)
Note that both sides of the claimed equality are additive on exact
triangles. Since we can filter C' by its cohomology groups, it suffices
to treat the case that C' = M is a finitely generated T-module. By
filtering M with powers of the radical of T', we further reduce to the
case where M is an R-module. But now the kernel and cokernel of the
map M — M ®g R are finitely generated f°°-torsion T-modules, and
so finite length over S. So by the first part we reduce to the case of a
finitely generated R-module. As M [f°°] is finite length over S we can
similarly replace M by M /M][f*°] and so assume that M is f*°-torsion
free. But since R is a PID, in this case M is finite free over S, in which
case the equality is clear. O

We now return to the setup introduced at the beginning of this section.

PROPOSITION 6.3.8. The support of H*(Cw) over Roo contains all irre-
ducible components of mazimal dimension dim R

Proof. Let p be as in part two of Lemma 6.3.5. Let x; be a generic point
of Spec T p, and so 1 is also a generic point of Spec R, of dimension dim R,

Let a2 be any generic point of Spec Roo of dimension dim R,. Our goal is to

show that x9 is also in the support of H*(C).
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Choose T, Ta to be generic points of Spec Ry, /w of dimension dim R, —
that are specializations of z1, xa. Let y1, y2, U, Uy be the (possibly equal) images
of x1, x2, T1, To in Spec Sw. Let T}, Th, Ty =Ty, Uy = Yy be the corresponding
points in Spec R, and Spec So, via our identification Ry /w = R, /w. Let
2’ be the unique generic point of Spec R, of dimension dim R, with image
y' in Spec Sw. Note that z1 and T lie in Spec T /I = Spec T, and T lies
in Spec T/ /I . Thus y; has dimension dim R+ and §; = 7} has dimension
dim Ry —

For each point 7 € Spec So/w of dimension dim R, — 1, the localization
Too ®5.., Scoyy is either (0) or semi-local of dimension 0 or 1. The completed
localization Tn ®g,, Soo 7 decomposes into a direct product of finite local Soo T
algebras: T ®g,, Seo s0.j = |1z Tz, Where T runs over primes of T, /w above
7. We write ez for the factor corresponding to Z. As in Lemma 6.3.7 we have
an isomorphism in the derived category

500@ =~ @ 65(5007?).

We observe that H*(egc(CC>O 7)) is a summand of H* (Co y) = H* (C ) @5
Soo 5 supported on the clopen subset Spec ToO =z of Spec(Tw ®s.. S 7). The
corresponding statements hold with 7’ replacing T, and C’ replacmg Coo
In particular we have the idempotents ez, and ez, and complexes (up to

isomorphism in the derived category) ez, (5007?1) and ez (é\oo,ﬂ’l ).

The image of SpecTz, in SpecSy is {y1,7;}. Thus the image of
Spec T\oo,gl [1/p] in Spec S is {y1}. Thus if s € So —p then s lies in no element
of Spec T\OO@ [1/p], i.e. s maps to a unit in T\m@l [1/p]. Thus the localization of
H*(ez, (Coog,))[1/p] at p € Spec Sw is equal to itself. As H*(ez, (Coog, ))[1/]
is a direct summand of H *(500@1)[1 /p], we see that it is also a direct summand
of H*(é\oo,yl)p = H" (Cxop @3, 551). Part two of Lemma 6.3.5 implies that
ez, (6’\007@1)[%] has non-zero cohomology exactly in degree gg + lp. Part three of
Lemma 6.3.5 implies that

H((e5,Coez) % (Sou /) = H* (e, Crei) 8% (Soeiy /),

oo:yl

is a finite length §OO o = Seo ;5,-module. Applying the second part of Lemma
6.3.7 (with C = ez, Cn oy, and S = Seo oy, and T'= Tooﬁl) shows that

Ig  ((exCls) @aw/ Soogi/@) =15 ((ez,Co0g,) @500@1 Sz, /@) # .

0, Y
Y7 1

Applying the first part of Lemma 6.3.7, we see that

1
H (e Ch )11 #0.
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We conclude that no power of p annihilates H *(65’1 é\éo 7 ), and so p is not
Y1

nllpotent in T hoz, OF In T’ hoz, OF In T # /I . Tt follows that 2’ must lie in
SpecT. /I, = Spec T! (since Spec T’ must contain a strict generization of
7, which must be of dimension > dim R._, and 2’ is the unique such point),
and so SpecT. /I = SpecT/, contains the unique irreducible component of
maximal dimension dim R of Spec R._.

In particular @ lies in Spec T/ . The point T, must lie on the irreducible
component of Spec R, of maximal dimension, since T4 has dimension dim R/ —
1. Thus T3 lies in Spec Tw,. Also Yy = 75 has dimension dim R, — 1, and for
i = 1,2 the ring T' 7 is irreducible with unique minimal prime z’ and every
other prime must be max1mal and contract to . In particular T' 7 is one
dimensional. By the third part of Lemma 6.3.5 we see that the ‘modules
H*(C' 7 ®S . Seo /@) are finite length as S, zr-modules. We also obtain

1dempotents €z /2 and ez, and complexes (up to 1somorphism in the derived
category) ez (Cooz,) and ez, (Coo g, )-
We may apply the third part of Lemma 6.3.7 (with S = S 7, C= C(’)O 7
) sYq
T= Té,1 and e; = ez ) to obtain

ZSOo ’ (C{)o,y’) 7& 0.
Then we may apply it again (with S = Sz, C = C 7 T = Ti, and
e; = ez ) to deduce that H*(emCOo Ty ®L §oo@2 Jw) is of ﬁmte length as a

ooy2

SOO@Q-module and that

ls _ (em,Co, @% ; Soon/@) =l (ex,Clogy ®F Sy /@) #0.
0,y

00,72 00,7 A

Then we apply the first part of Lemma 6.3.7 (with S = goo% and C = 6’\00;72)

to obtain
. —~ 1
1 (65,000 ) ] 0.

We conclude that no power of p annihilates H*(ez, &o@), and so p is not

nilpotent in Too@ or in Tho 7, or in Too 3, /Is. Thus, being the unique strict
generization of Ty, x2 lies in Spec Ty /Ino = Spec T, as desired. O

COROLLARY 6.3.9. Let x be a dimension 1 characteristic 0 prime of
R containing 0.0 Roo, which lies in an irreducible component of Spec Ry of
maximal dimension. Let y be the contraction of x in S. Then the support of
H*(C ®I§OO Soo/y)[%] over Spec Ry /0o contains x.

Proof. Note that y is a dimension 1 characteristic 0 prime of Spec A. Tt
follows from Proposition 6.3.8 that = is contained in SpecT,, and occurs in
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the support of H*(Cs ). We have the idempotent e, and a complex exé\oqy.
Then H*(e;Co0y) # 0, and hence H*(e;Cuo y ®g\ Seo,y/y) # 0. But this is
00,y

exactly the summand of H*(Cos ®§_ Seoy/y) = H,"‘(C’C>O ®%_ Soo/y)[%] which
is supported at x. ([l

6.4. Ultrapatching.

6.4.1. Set-up for patching. We begin by fixing a non-principal ultrafilter §
on the set N = {N > 1}. We fix a ring A which is isomorphic to a power series
ring over O.

Let 4, g, q be positive integers and set Ao = Z7. We let T be a formal
power series ring over A (it will come from framing variables in our application)
and let Soo = T[[Ax]]. We view S as an augmented A-algebra, and denote
the augmentation ideal by as.. We also suppose we have two rings R°¢, R/1°¢
in CNL, with a fixed isomorphism R'°¢/)\ = R'°°/)\ and denote by R and
R/ the formal power series rings in ¢ variables over R'°¢ and R'l°c.

Our input for patching is the following data for each N € N U {0}:

(1) A quotient Ay of A such that the kernel of Ay, — Ay is contained
in (pNZ,)" C Aso. If N =0, we let Ag be the trivial group, thought
of as a quotient of Ay. We set Sy = T[Ap].

(2) A pair of perfect complexes Cy, Cy in D(A[AnN]), together with an iso-
morphism Cy ®k[AN} A/w[AN] = Cly ®k[AN] A/w[AN] in D(A/w[AN]).
We denote these complexes by Cn/w and Cy /w for short. We more-
over assume that we have commutative A[Ay]-subalgebras Ty C
Endp(aay))(Cn), Ty C Endppqa ) (Cly) which map to the same sub-
algebra

T'n C Endp(s/way])(Cn/@) = Endp (s jmian)) (Ch /@),

where these endomorphism algebras are identified using our fixed quasi-
isomorphism Cy/w = Cy/w.

(3) A pair of rings Ry, Ry in CNLy[a ) with an isomorphism Ry /o =

v/ together with R'°°- and R'!°°-algebra structures on 7®xRx
and 7—@AR9\7 respectively which are compatible modulo w with the
isomorphisms Ry /w = Rl /@ and R"°¢/w = R'°¢ /.

(4) Surjective R°°- and R'!°°-algebra maps Ro, — T®aRx and R, —
T&aRN, which are compatible modulo .

(5) Nilpotent ideals I of T and I}, of T with nilpotence degree < ¢,
and continuous surjections Ry — Tn/In, Ry — Tn/I). We demand
that these maps are also compatible modulo w, in the following sense:
denote by Iy and T’N the images of Iy and Iy in T . Then the induced
maps Ry/w — Tn/(In +Ty) and Ry /w —Tn/(IN +T) are equal



134 P. ALLEN ET AL.

when we identify Ry /w and Ry /w via the fixed isomorphism between
them.

We moreover assume that for each N > 1 we have isomorphisms my :
CN@%[AN}A = Cp and 7y : C§V®k[AN]A = Cj in D(A) which are compatible mod
w. We obtain induced maps Ty ®a[a ] A — Endp(a)(Co) and Ty ®@p(a, A —
Endp(s)(Cj) which we assume factor through maps Ty ®ppa,) A — To and
Ty ® Alan] A — T} which are surjective when composed with the projections to
T()/IQ and Té/]é

Finally, we assume that we have isomorphisms Ry ®@xja,) A = Ro and
Ry ®aran) A = Rj which are compatible mod w and with the maps from R in
part (4). We also also demand compatibility with the maps Ty ®p(a, A — To
and Ty ®p(ay] A — T above. More precisely, we denote by In o and Iy the
images of Iy and Iy in Ty/Iy and T}/I)), and demand that the surjective maps
Ry ®A[AN] A — (T()/Io)/INp and R;\f ®A[AN} A— (Té/I(/))/IjV,O are identified
with the maps Ro — (Tv/1o)/Ino and Ry — (T/1y)/ Iy o via the isomorphisms
Ry QAjAN] A = Ry and Ry QA[AN] A = Ry,

6.4.2. Patched complexes. Apart from Remark 6.4.14 and Proposition
6.4.17, results and definitions in this subsection will be stated just for the
complexes Cn and the associated objects and structures, but they also apply
to the complexes Cl.

DEFINITION 6.4.3. Let J be an open ideal in So. Let 1; be the (cofinite)
subset of N € N such that J contains the kernel of Soo — Sn. For N € 1, we
define

C(J,N) = Sac/J ®[a ) CN € D(Sx/J),
let T(J,N) denote the image of Seo/J @a[ay] TN in Endps,, /.0y (C(J, N)), and
denote by I(J, N) the ideal generated by the image of In in T(J,N). We have
I(J,N)° =0.
Additionally, for d > 1 we define

R(d, J,N) = Ry/m$ . @p(a,] Soo/ .

For every d,J and N we have a surjective R°°-algebra map R, — R(d, J,N),
which factors through a finite quotient Roo/m;fi"]) for some e(d,J) which is
independent of N.

For each pair (J, N) such that C(J, N) is defined, we fix a choice F(J, N)
of minimal complex of finite free S,/ J-modules which is quasi-isomorphic to
C(J,N) (cf. [KT17, Lemma 2.3]). Then for any i € Z we have

rks._ /7 (F(J,N)') = dimy, H'(Co ®% k).
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Remark 6.4.4. Recall that we have a surjective map Ry — Tn/In. We
therefore obtain a surjective map Ry ®j(ay] Seo/J — T(J,N)/I(J,N). For d
sufficiently large depending on J (but not depending on N) this map factors
through a surjective map R(d, J,N) — T'(J,N)/I(J, N). Indeed, it suffices to
show that there is an integer dy(J) such that for any d > dy(J), and for any
T € mry, the image of 24 in Endps..,.7)(C(J, N)) (and therefore the image of
x% in T'(J, N)) is zero. Since

H*(C(J,N) ®§M/J k) = H*(Co ®% k)

is a vector space of finite dimension independent of N and J, we can find an
integer d; such that @ H*(C(J, N) ®§OO/J k) = 0 (because x acts through a
nilpotent endomorphism). The existence of the spectral sequence of a filtered
complex implies that there is an integer dy such that 292 H*(C(J, N)) = 0 (here
we are using the fact that S, /J has finite length as a module over itself).
Finally, the fact that C(J, N) is a perfect complex, with cohomology bounded
in a range which depends only on Cy, implies the existence of the integer dy(.J)
(use [KT17, Lemma 2.5]). (A similar argument appears at the start of the proof
of [KT17, Proposition 3.1].)

Remark 6.4.5. If J contains as, then we can identify So/J with A/s(J),
where s(J) is an open ideal of A. For each N € I, the isomorphism 7y :
Cn ®k[AN} A =2 Cy induces an isomorphism 7y : C(J, N) 2 Co @% A/s(J).

Remark 6.4.6. Suppose we have open ideals J; C J2 of S and N € I,.
Then we have a natural map C(J;, N) — C(J2,N) which induces a quasi-
isomorphism

Seo/J2 ®8._ 7, C(J1,N) = C(Ja, N).

We obtain a surjective map T'(J;, N) — T'(J2, N) and the image of I(Ji, N)
under this map is equal to I(Jy, N). So we also obtain a surjective map
T(J1,N)/I(J;,N) = T(J2,N)/I(Ja, N).

For J an open ideal in S, § restricts to give a non-principal ultra-
filter on I;, which we again denote by §. This corresponds to a point zz €
Spec([Iner, Soo/J) by [GN16, Lemma 2.2.2], with localization ([Tyer, Soo/J)zy
canonically isomorphic to S/ J.

DEFINITION 6.4.7. We make the following definitions:

C(J,00) = ([ Soo/)es lyer, Sw/d I ¢(J.N) e D(5/J),
Nel; Nel,

R(d, J,00) = ( [ Soo/J)as 2 I R, J,N),
Nel; 7 Nel,;



136 P. ALLEN ET AL.

T(J,00) is defined to be the image of ([Iner, SOO/J)IS@HN@ seo/ilIner, T(J,N)
J

in Endp (s, /) (C(J,00)), and the ideal 1(J,00) C T(J,00) is defined to be the

image of (Iner, Soo/ J)as @1y, Souss lner, 1(J,N) in T(J, 00).

Remark 6.4.8. Since the rings R(d, J, N) are all quotients of Roo/m;(i"])
(and are in particular finite of bounded cardinality), the ultraproduct R(d, J, c0)

is itself a quotient of Ro/ m;(i‘]).

LEMMA 6.4.9.

(1) I(J,00) is a nilpotent ideal of T(J,00), with I(.J,00)° = 0.

(2) Ford sufficiently large depending on J, the maps R(d, J,N) — T(J,N)/I(J,N)
(see Remark 6.4.4) induce a surjective S /J-algebra map R(d, J, 00) —
T(J,00)/1(J,0).

Proof. The first part follows from the fact that [[ye, I(J, N) is a nilpotent
ideal of [[ner, T(J, N) with nilpotence degree < 6. The second part follows
by first considering the map [[nes, R(d, J,N) = [Iner, (T(J,N)/I(J,N)) =
(IIner, T(J,N))/(IIner, L(J, N)), localising at 23 and finally passing to the
image in 7'(.J, 00)/1(J, 00). O

ProPOSITION 6.4.10.
(1) C(J,00) is a perfect complex of Soo/J-modules.
(2) The maps Roo — T(J,N)/I(J,N) induce a surjection Roo — T(J,00)/1(J,0).
(3) If J contains ao, then the isomorphisms myn induce an isomorphism
Treo : C(J,00) 2 Co @% A/s(J).
(4) Suppose we have open ideals J; C Jo of Soo. Then the maps C(J1, N) —
C(J2,N) in D(Sx/J1) for N € 1;, induce an isomorphism

SOO/JQ ®gcx>/=]1 C(Jl, OO) = C(Jz, OO)

(5) Let Ji, Ja be as in the previous part. The map C(J1,00) — C(J2,00) in-
duces a surjective map T'(J1,00) — T'(J2,00) and the image of I(.J1,00)
under this map is equal to I(J2,00).

Proof. (1) Perfectness of C(.J, c0) follows from [GN16, Corollary 2.2.7]
— to apply this Corollary we need to show that there are constants
D, a,b (independent of N) such that the complexes C(J, N) are each
quasi-isomorphic to complexes of finite free S /J-modules of rank
< D concentrated in degrees [a,b]. This follows from the theory of
minimal resolutions, which we have already applied in order to assert
the existence of the complexes F(J, N) above.

(2) By the previous part of the proof, the complexes F(J, N) (N € I;) fall
into finitely many isomorphism classes. Therefore there is an element
Yo of the ultrafilter § on I; such that the F(J, N) are isomorphic for
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all N € ¥y. We fix isomorphisms (of complexes) between the F(J, N)
for N € ¥y and a single complex F(.J,00). Then for all N € ¥y we
can identify all the finite endomorphism algebras Endps_ /.7)(C(J, V))
with each other. We deduce that there is a subset X1 C g with X1 € §
such that, under this identification, the finite Hecke rings T'(J, N)
and their ideals I(J,N) are also identified. So T'(J,00) = T(J,N)
and I(J,00) corresponds to I(J,N) for N € 3;. Since each map
Rs — T(J,N)/I(J,N) is surjective, the map Ro, — T'(J,00)/I(J,0)
is also surjective.

(3) The third part follows immediately from the exactness of products and
localization.

(4) First we consider the map of complexes

II ¢(i.N)— ] ¢(J2.N).

NGIJl NEIJl

Since [[ner,, Soo/J2 18 a finitely presented []ner, Sso/J1-module (as
direct products are exact) the tensor product ([]yer 7 Seo/ J2)®H Seo /1
commutes with direct products ([Stal3, Tag 059K]). We deduce (using
Remark 6.4.6) that

H SOO/JQ ®HS /Jl H CJ17

NEIJl NEIJl
L
[T e/t Cln )= T[ €l
NEIJl NEIJI

Localizing at zz gives the desired statement — since I, is cofinite in
I, we can naturally identify the localization of []ner, C(J2, N) with
the localization of []ner,, C(J2, N).

(5) The final statement follows from the proof of part (2): thereisa ¥ C Iy,
with ¥ € § such that T'(J;,00) = T'(J;, N) and I(J;,00) corresponds
to I(J;, N) under these isomorphisms for all N € ¥. Now the desired
statement is a consequence of Remark 6.4.6. O

We write F(J,00) for the minimal complex isomorphic to C(J,00) in
D(Sw/J) constructed in the proof of the previous proposition.

DEFINITION 6.4.11. We define a complex of Seoc-modules
OO _L (mS ’ )7

where the transition maps in the inverse limit are given by making a choice

for each v >1 of a map of complexes lifting the natural maps C(myg TH ,00) —

C(m_,00) in D(S /mr+1). To see that such a map of complewes exists,

r+1

note that since F(myg T“ ,00) is a bounded complex of free Soo/mg  -modules,
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viewed as an element of the homotopy category K(Soo/mg';l) of chain complexes
of Soo/mgj;l-modules, we have

Similarly, we let T = l'&nJ T(J,00), where the transition maps in the
inverse limit are described in Proposition 6.4.10(5). The inverse system of
ideals 1(J,00) defines an ideal I, of Ts, which satisfies 12, = 0.

PROPOSITION 6.4.12.

(1) Coo is a bounded complex of finite free Soo-modules and for each open
ideal J of Soo there is an isomorphism Cs ®s,, Seo/J = C(J,00) in
D(Sx/J).

(2) The natural map Endp(g_)(Coo) — lim  Endps,, /) (C(J,0)) is an iso-
morphism, and we therefore obtain an injective map T — Endps,,) (Coo)-

(3) The surjective A-algebra maps Roo — T'(J,00)/1(J, 00) induce a surjec-
tion Reo — Too/Ino, which factors as a composition of the map Roo —
@d,J R(d, J,00) and the So-algebra map &iLnde R(d, J,00) = Too /1o
defined by taking the inverse limit of the maps in Lemma 6.4.9(2).

Proof. (1) Tt follows from the proof of Proposition 6.4.10(1) that

rksm/mgoo (F(ms_, oo)l) = dimy, Hi(CO ®k k)

for all . Moreover, it follows from Proposition 6.4.10(4) and the fact that
any quasi-isomorphism of minimal complexes is an isomorphism that
the transition map F (mgj;l, o0) — F(mj_,00) induces an isomorphism
Soo /M, B e /! F(mH, 00) = F(my_, 00).

It is now clear that C, is a bounded complex of finite free S,,-modules.
If J is an open ideal of Se, then for 7 sufficiently large so that ms  C J,
Coo ®5., Soo/J is isomorphic to S /J B o fm_ F(my_,00), which is
quasi-isomorphic to C(J,c0) by Proposition 6.4.10(4).

(2) For the second part, we first note that T, injects into I'&nJ Endps,./.7)(C(J;0)),
since inverse limits are left exact. The natural map Endp g, )(Cx) —
Im  Endps,, /) (C(J,0)) is an isomorphism, by the first part of this
proposition and (the proof of) [KT17, Lemma 2.13(3)].

(3) Since the T'(J,00) are finite rings, the inverse system I(J,00); sat-
isfies the Mittag-Leffler condition and the natural map To/Ioe —
Jim | T(J,00)/1(J,00) is an isomorphism. For each J the surjective map
Rs — T(J,00)/1(J,00) factors through a finite quotient Roo/m;i%(i)
of Rw. Again, finiteness implies that the Mittag-LefHer condition
holds, so taking the inverse limit over J gives a surjective map Ry =
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lim | Roo/mcll%(i) = Too/Ino = Jim | T(J,00)/1(J,00). The desired factor-
ization of the map Ry, — T /I~ follows from the fact that the maps
Ry — T(J,00)/1(J,00) factor through R(d,.J,c0) for d sufficiently
large. (]

Remark 6.4.13. There is a natural isomorphism H*(Cs) = Jim H*(Cx/J) =
lim  H *(C(J,00)), so the cohomology of Co is independent of the choices
of transition maps made to construct Co. Moreover, if we denote by Dy
the complex constructed with a different choice of transition maps, we have
Homp g, )(Coos Peo) = lim Homps,. /.) (C(J,>),C(J,00)) by the argument of
Proposition 6.4.12(2), so there is a canonical isomorphism between Cs, and Dy
in D(Sx).

Remark 6.4.14. Note that the map a : Ry — T&ld JR(d, J,00) is surjec-
tive, and yLnva R(d, J,00) is an Syo-algebra. As S, is f07rmally smooth over A,
we can choose a lift of the map Sy, — a(Rx) to a map Sy, — Rso. In fact, we
can and do make such a choice for R and R compatibly mod w since

(% R<d7 J, OO))/W = %(R@l? J, OO)/w) = %(R/(d, J, OO)/W)7
and since the sequence

z—(z mod w,a(x)) (y,2)—a(y)—z mod w

R R(d, J,0)/w

R /w x@dJR(d,J,oo)

(and the analogous one for R._) is exact. We regard R as an S-algebra from
now on. The map Ro — T/l is an Soo-algebra map.

LEMMA 6.4.15. The isomorphisms R(d,J,N) ®g_ /5 Sec/(J + c0) =
Ro/(deO, s(J + aso)) induce a surjective map Roo /0 — Ro.
Proof. First we note that, following the proof of 6.4.10(4), the isomorphisms
R(d, J,N) ®s.. /.7 Seo/(J + 8c0) = Ro/(m%,, s(J + ts0))
induce an isomorphism
R(d, J,00) ®s.__ /7 Soc/(J + 8os) = Ro/(m%b,, s(J + au0)).

In particular, the map Roo /000 — R(d, J,00)®5_ /.15/(J+00) = Rg/(m?%o, s(J+

0x)) is surjective, and factors through Roo/(m;gi"]) + ay) for some e(d, J).
Taking the inverse limit, we obtain a surjective map R /000 — Rp. (]

PROPOSITION 6.4.16. There is an isomorphism Coo /05 — Co in D(A)
which induces a map Tso — Ty which becomes surjective when composed with
the projection Ty — Ty/ly. Denoting the image of I under this surjective
map by I o, we obtain a surjective map Roo /000 — (T0/10)/Isc,0. This map
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is the composition of the map R /0 — Ry in Lemma 6.4.15 with the map
Ry — (Tv/1p)/Isc,0 coming from our original set-up.

Proof. We have Coo /000 = lim, F(mG_,00)/0, and F(m ,00)/ax is a
minimal resolution of Coo /(MG + o) = C(m  + doo,00). By Proposition
6.4.10(3), this is quasi-isomorphic to Co ®@% A/s(m%_ + ass). Replacing Co by a
quasi-isomorphic bounded complex of finite projective A-modules and applying
[KT17, Lemma 2.13], we see that the quasi-isomorphisms F(mY_,00)/a =
Co ®@% A/s(m%__ + as) induce a quasi-isomorphism Jm F (m’_,00)/ax = Co.

The induced map To, — Endp(s)(Co) is the composite of the surjec-
tive map To, — @ach T(J,00) and an inverse limit of maps T'(J,00) —
Endpa/s(1))(Co ®% A/s(J)). Each of these maps factors through Ty, and if
we denote the image of Ty in Endp (s /(7)) (Co @Y A/s(J)) by Ty then T(J,0)
surjects onto Ty /1. Passing to the inverse limit gives the desired map T, — Tp.

The compatibility with the map R — Ry follows from the compatibility
between the maps Ty — T1p and Ry — Ry in our original set-up. ([l

We now separate out the primed and unprimed situations; so we have two
perfect complexes of Sy-modules, Co, and C._.

PROPOSITION 6.4.17.

(1) The quasi-isomorphisms Cy/w = C /w induce a quasi-isomorphism
Coo/w = CL .

(2) Too and T7, have the same image in Endp g )(Coo /™) and Endpg..)(Co /@),
via the identification Coo /N = CL_/ww of the previous part. Call this com-
mon image T oo .

(3) Write I, and T;O for the images of I and I’ in T The actions of
Roo/w = R /w (induced from Ty, and T, respectively) on H*(Coo /w) /(I oo+
1) and H*(C\ /@)/(Iss + 1) are identified via Cop/ww = C._|w.

Proof. (1) The isomorphisms Cy/w = Cy/w in D(A[AN]) induce
compatible isomorphisms C(J + w, 00) = C'(J + w, 00) for all J. Since
Coo/w = Hm F (m_,00)/w and F(mY_,00)/w is a minimal resolution
of C(mg_ + @, 00) we have

HomD(Sm/w)(Coo/w,Céo/w) = @HomD(Sw/(J+w))(C(J+w, OO),C,(J-HE, OO))
J

We therefore deduce the first part of the Proposition.

(2) By the proof of the previous part, it suffices to show that the images of
T and T3, in Endps., /(j+w)) (C(J+w,00)) and Endp s /(J+)) (C'(J+
w, 00)) respectively (which are T'(J + w, 00) and T"(J + w, x0)), are
identified via the quasi-isomorphisms C(J + w,o0) = C'(J + w, ).
This follows from the fact that for every N € I, T(J + w, N) and
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T'(J + w, N) are identified via the quasi-isomorphism C(J + w, N) &
C'(J + w, N), which is a consequence of our original assumptions (see
point (2) in Section 6.4.1).

(3) It suffices to show that the maps Roo/w — T(J + w,00)/I(J + w, o0)
and R._/w — T'(J + w,00)/I'(J + w, ) are equal when we identify
Ry /w with R /w, T(J + w,o0) with T'(J 4+ w,00), and pass to
the quotient by I(J 4 w,o0) + I'(J 4+ @, o). This follows from the
compatibility in point (5) of Section 6.4.1. O

6.5. The proof of Theorem 6.1.1. We are now in a position to prove the
first main theorem of this chapter (Theorem 6.1.1). We first establish the result
under additional conditions in §6.5.1, then reduce to this case using soluble
base change in §6.5.12.

6.5.1. Application of the patching argument (Fontaine—Laffaille case). We
take I’ to be an imaginary CM number field, and fix the following data:

(1) An integer n > 2 and a prime p > n?.

(2) A finite set S of finite places of F', including the places above p.

(3) A (possibly empty) subset R C S of places prime to p.

(4) A cuspidal automorphic representation m of GL, (A ), regular algebraic

of some weight .

(5) A choice of isomorphism ¢ : Q, = C.

We assume that the following conditions are satisfied:

(6) If | is a prime lying below an element of S, or which is ramified in
F, then F' contains an imaginary quadratic field in which [ splits. In
particular, each place of S is split over 't and the extension F//F™T is
everywhere unramified.

(7) The prime p is unramified in F'.

(8) For each embedding 7 : F' — C, we have

)\T,l + )\Tc,l - >\T,n - >\'rc,n <p- 2n.

(9) For each v € S, let T denote the place of F't lying below v. Then there
exists a place ' # v of F* such that ¥'|p and

Z [F:Qp] > %[F‘*' : Q.
v A0 v
(10) The residual representation r,(7) is absolutely irreducible.
(11) If v is a place of F' lying above p, then m, is unramified.
(12) If v € R, then 7" # 0.
(13) If v € S — (RU S,), then 7, is unramified and H?(F,,adr,(r)) = 0.
Moreover, v is absolutely unramified and of residue characteristic ¢ > 2.

(14) S — (RUS,) is non-empty.



142 P. ALLEN ET AL.

(15) If v € S is a finite place of F, then 7, is unramified.

(16) If v € R, then g, = 1 mod p and 7,(7)|gp, is trivial.

(17) The representation r,(m) is decomposed generic in the sense of Defi-

nition 4.3.1 and the image of r,(m)|c ¢,y is enormous in the sense of
Definition 6.2.28.
We define an open compact subgroup K = [], K, of GLn((aF) as follows:
o Ifv ¢S, orve Sy, then K, = GL,(Op,).
e If v € R, then K, = Iw,,.
eIfveS—(RUS,), then K, = K,(1) is the principal congruence
subgroup of GL,,(Op,).

The following lemma shows that K is neat, hence is a good subgroup of
GL,(A).

LEMMA 6.5.2. Suppose that K =[], Ky, C GLn((/Q\F) is an open compact
subgroup and that there exists a place v of F' such that v is absolutely unramified
of residue characteristic ¢ > 2 and K, = K,(1) is the principal congruence
subgroup of GL,,(OF,). Then K is neat.

Proof. We show that if g, € K,(1), then the group I', (see the definition
of neat in §2.1.1) is trivial. If « is an eigenvalue of g, in F, then we have
a =1 mod ¢qOf . Therefore every element of I', satisfies this congruence. If
¢ € Iy, then it must be a g-power root of unity such that ¢ —1 € ¢O . This
can happen only if ( = 1. ([

By Theorem 2.4.9, we can find a coefficient field ¥ C Qp and a maximal
ideal m C T9(K, V) such that 5, = r,(m). After possibly enlarging E, we
can and do assume that the residue field of m is equal to k. For each tuple
(Xv,i)veR,i=1,..n of characters x,; : k(v)* — O* which are trivial modulo w,

we define a global deformation problem by the formula

SX = (pm’ S, {0}0687 {DEL}'UGSP U {D%(}UGR U {DE}’UGS—(RUSP))'

We fix representatives pg, of the universal deformations which are identified
modulo @ (via the identifications Rs /o = Rs,/w). We observe that the
local deformation problems defining &, are formally smooth away from the
places in R. We define an O[Kg]-module Vy\(x~!) = V\ ®0 O(x~!), where Kg
acts on Vy by projection to K, and on O(x~ 1) by the projection Kg — Kp =
HUER Iw, — HveR(k(U) 8 )n

PROPOSITION 6.5.3. There exists an integer § > 1, depending only on n
and [F : Ql, an ideal J C T(RT(Xg, VA(x™")))m such that J® = 0, and a
continuous surjective homomorphism

fs, : Rs, = T°(RT(Xg, VA(x™)))m/J
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such that for each finite place v € S of F, the characteristic polynomial of
fs, o ps, (Froby,) equals the image of P,(X) in T%(RT (X, VA(x™1)))m/J.

Proof. This is a matter of combining the various local-global compatibility
results we have proved so far. The existence of a Galois representation py, :
Grs — GL,(T%(RT (X, VA(x™)))m/J) satisfying the required condition at
finite places v ¢ S is contained in Theorem 2.3.7. After conjugation, we
can assume that pn, mod m equals p,,. To prove the proposition, we need to
show that for each v € S, pulcy, is a lifting of ﬁ\GFU of the appropriate type.
Theorem 4.5.1 shows that the Fontaine-Laffaille condition is satisfied for each
v|p. Theorem 3.1.1 shows that the appropriate condition on the characteristic
polynomials of elements pn(c) (o € If,) is satisfied for each v € R. This is
enough. O

We can now state our first key technical result, which we will prove below.

THEOREM 6.5.4. Under assumptions (1)—(17) above, H* (X, Vx(1))m
is a nearly faithful Rs,-module. We recall ([Tay08, Def. 2.1]) that a finitely
generated module over a Noetherian local ring is said to be nearly faithful if its
annihilator is a nilpotent ideal.

COROLLARY 6.5.5. Under assumptions (1)—(17) above, suppose given a
continuous representation p : Gp — GLn(Qp) satisfying the following condi-
tions:

(1) We have p = r,(m).
(2) For each place v|p of F', play, 1is crystalline. For each embedding
T:F <—>Qp, we have

HTT(P) = {)\LT,l +n—1,... 7)\L’T,TL}'

(3) For each finite place v & S of F, pla, is unramified.
(4) For each place v € R, p|a,, is unipotently ramified.

Then p is automorphic: there exists a cuspidal, reqular algebraic automorphic
representation 11 of weight X\ such that p = r,(II). Moreover, if v is a finite
place of F' such that v|p or v € S, then 11, is unramified.

Proof. After possibly enlarging the coefficient field E, and replacing p
by a GL,(Q,)-conjugate, we can assume that it takes values in GL,(O),
and that p mod @w = p,. Then p is a lifting of type Si, so determines a
homomorphism f : Rs, — E. Theorem 6.5.4 implies that ker f is in the support
of H*(Xk, VA(1))m[1/p]; Theorem 2.4.9 then implies that there exists a cuspidal,
regular algebraic automorphic representation IT of weight A such that p = r,(IT)
and (IT%°)% % 0. This is the desired result (recall that K, = GL,(OF,) if v|p

orv¢S). O
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Before proceeding to the proof of Theorem 6.5.4, we need to introduce
auxiliary level subgroups. These will be associated to a choice of Taylor—Wiles
datum (@, (a1, .., 0y n)veq) for St (see §6.2.27). We assume that for each
v € @, there exists an imaginary quadratic subfield of F' in which the residue
characteristic [, of v splits. This Taylor—Wiles datum is automatically a Taylor—
Wiles datum for all the global deformation problems S,, and so the auxiliary
deformation problems Sy ¢ are defined, and the deformation ring Rs_, has a
natural structure of O[Ag]-algebra, where Ag = [[yeq Av = [Tveq k(v)*(p)™.
The constructions we are about to give necessarily involve a lot of notation.
Accordingly, we invite the reader to review the notation related to Hecke
algebras in §2.2.1 before continuing.

We define two auxiliary level subgroups K1(Q) C Ko(Q) C K. They are
good subgroups of GL,,(A%), determined by the following conditions:

o If v g SUQ, then K1(Q)y, = Ko(Q)y = K.
e Ifv € Q, then Ky(Q), = Iw, and K;(Q), is the maximal pro-prime-to-p
subgroup of Iw,,.
Then there is a natural isomorphism Ko(Q)/K1(Q) = Ag, and surjective
morphisms of TSY?-algebras
(6.5.6)
T2 (Ko(Q)/ K1 (@), Ma(x 1) = T*P(Ko(Q), a(x ™) = T2 (K M(x ™).

The first of these arises by taking K (Q)-invariants (cf. §2.2.1) and the second is
given by the formula t — [K : Ko(Q)] 'mg.oto m5, where mq 1 Xpy @) = Xk
is the canonical projection; note that [K : Ko(Q)] = (n!)/9l mod p is a unit in
O because of our assumption that p > n. We define

T2 % (Ko(Q), Va(x ™)) € Endpo) (RT (X k(0 Valx ™))

as in §3.1; it is the commutative TYQ(Ko(Q), Va(x~1))-subalgebra generated
by the operators U,; (v € Q, i =1,...,n), or equivalently the image of the
algebra TZUQ defined in §3.1. Similarly we define

TgUQ(KO(Q)/Kl(Q)aVA(X_I)) C Endp(ojag) (BT (X, @), YW(X™H));
it is an O[Ag]-algebra, which coincides with the image of the algebra TgUQ.

The first map in (6.5.6) extends to a surjective homomorphism

(6.5.7) T ?(Ko(Q)/EK1(Q), Va(x™h) = T3 ™% (Ko(Q), Valx ™)

which takes U, ; to U, ; for each v € @) and for each ¢ =1,...,n.
We define m@ c TSYQ(K,Vy(x~")) to be the pullback of m under the
inclusion

T K TY) € T2 (E W)
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We define
mf © T2 (Ko (Q), Va(x ™))
to be the pullback of m? and

m§ € T9U9(Ko(Q)/K1(Q), \(x™h)

to be the pullback of mgz , these pullbacks being taken under the maps in (6.5.6).
We define ndQ C TgUQ(KO(Q), Vi(x71)) to be the ideal generated by mOQ and

the elements U, ; — qi(lfi)ﬂav’l ooy, foreach v € Q and 7 =1,...,n. We

define le C TgUQ(KO(Q)/Kl(Q), Vi(x1)) to be the pre-image of nf;? under

the map (6.5.7).

LEMMA 6.5.8. Each ideal m@, m(?, m?, nOQ, and n? is a (proper) mazimal
ideal.

Proof. This is clear for the ideals m®, mgg, and m?. Since n? is the pre-
image of ng} under a surjective algebra homomorphism, we just need to check

that noQ is a proper ideal. Equivalently, we must check that

H* (X0, Va(x 1) /@) m§)]

contains a non-zero vector on which each operator U, ; (v € Q,i=1,...,n) acts
by the scalar a1 - - - @y . This will follow from [KT17, Lemma 5.3] (or rather
its proof) if we can show that H*(Xg, VA(x~!))[m®] is annihilated by a power
of m. This follows from the existence of p,, and its local-global compatibility at
the places v € Q. O

We can therefore form the localized complexes
RU (X5, Va(X™ )y B (X, VA(X T ))mes
RT'(X k(@) VA(X_l))mOQ>RF(XK0(Q)> VA(X_l))ngz,
RU(X K, (@), VA(Xil))mf?vRF(XKl(Q)v VA(Xfl))n?-
The first four lie in D(O), the last two in D(O[Ag]).
LEMMA 6.5.9. The natural morphisms
RU (X, Va(X™)me = BL(X 5, VAKX
and
RU( Xk, (0); VA(X_l))ngz — RU(Xg, VA(X™))me
and

RT(Aq, RF(XKI(Q%VA(X_l))ng) — RU( Xk, (q) VA(X_l))nge

in D(O) are isomorphisms.
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Proof. We must show that these morphisms in the derived category give
isomorphisms at the level of cohomology. For the first morphism, it is enough to
show that m is the unique maximal ideal of TSY?(Ky(Q), Va(x™')) lying above
m®, and we have seen this already in the proof of Lemma 6.5.8. It is clear from
the definitions for the third morphism. For the second, it is enough to check
that we have an isomorphism after applying the functor —®@%k : D(O) — D(k).
We are therefore reduced to showing that the map of k-vector spaces

R /Ko (Q) - H*(XKO(Q)aVA(X_l)/w)nOQ = H*(Xg, Va(x 1)/ ®)me

is an isomorphism. This is the content of [KT17, Lemma 5.4]. O
We see that there is a surjective homomorphism
(6.5.10)
T59(RI (X, () V(X ),0) = T*PU(RN(X i, Valx ™ )me) = T (K VA ) me-

The ring TSUQ(RF(XKl(Q), Va(x™1)),e) is a local O[Aq]-algebra, its unique
1
maximal ideal being identified with the pre-image of m? under the surjective
homomorphism (6.5.10); indeed, this follows from the fact that it acts nearly
faithfully on H*(Xg, (), Va (X_l))nQ. We can now state a result asserting the
1
existence of Galois representations valued with coefficients in this Hecke algebra.

PROPOSITION 6.5.11. There exists an integer § > 1, depending only on
n and [F : Q], an ideal J C TSUQ(RF(XKI(Q),VA(Xfl))nQ) such that J° = 0,
1

and a continuous surjective O[Ag|-algebra homomorphism
fseo i Rs,.o — TSUQ(RF(XKI(Q),V,\(X_l))n(i,g)/J

such that for each finite place v & SUQ of F, the characteristic polynomial of
fs,.oops, o (Froby,) equals the image of P,(X) in T*Y9(RT (X, (o), VA(X_I))H?)/J.

Proof. To save notation, let T = TSUQ(RF(XKl(Q), V,\(X_l))nQ), and T/ =
1

T “(Ko(Q)/K1(Q), Va(x™")),e- Then T C T', and the inclusion T — T is
a local homomorphism of finite 1(Q[AQ]—algebras. By Theorem 2.3.7, there is a
nilpotent ideal J C T’ and a Galois representation Pag Grsug — GL,(T'/J")
satisfying local-global compatibility at unramified places. After conjugation,

we can assume that p ¢ mod n(f? equals p,,. We first need to show that p o
1 1

is a lifting of p,, of type Sy, g. The necessary conditions at places of S can
be checked just as in the proof of Proposition 6.5.3. There is no condition at
places of @, so we obtain a morphism fs_, : Rs,, — T’/J’ (which in fact
factors through the image of T in T'/J").

It remains to check that fs ., is a homomorphism of O[Ag]-algebras.

Q

Equivalently, we must check that it is a homomorphism of O[A,]-algebras for
each place v € Q. To this end, let us fix a place v € Q). Foreachi =1,...,n we
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define a character v, ; : Wg, — (T')* by the formula ¢, ;(Artg, (o)) = t,i(a)
(notation as in §2.2.3). Theorem 3.1.1 shows that (after possibly enlarging J')
for each 0 € Wp,, we have the identity

n

det(X — Pog (0)) = 1_[1(X — Yyi(0)).

i—
Observe that the characters 1, ; mod n? are pairwise distinct (because they
take Frobenius to ay, ;, and these elements of k are pairwise distinct, by definition
of a Taylor—Wiles datum). We can therefore apply [BC09, Prop. 1.5.1] to
conclude that pn?|WFU is isomorphic to @©;4ty;, which shows that fs , is
indeed a homomorphism of O[A,]-algebras (cf. §6.2.18 for the definition of the
O[A,]-algebra structure on Rs, ). The proof is complete on taking J to be
the kernel of the map T — T'/.J". O

We are now ready to begin the proof of Theorem 6.5.4.
Proof of Theorem 6.5.4. Let
g =h'(Fs/F,adpy(1)) and g=qgn—n’[F":Q]

and set Ao = Z739. Let T be a power series ring over O in n?S| — 1 many
variables, and let Soo = T[Ax]. Viewing S as an augmented O-algebra, we
let ao, denote the augmentation ideal.

Enlarging E if necessary, we can assume that F contains a primitive
pth root of unity. Then since p > n, for each v € R we can choose a tuple
of pairwise distinct characters x, = (Xv,1,---,Xon), With xpi: (’);v — O%
trivial modulo w. We write x for the tuple (xy)ver as well as for the induced
character x = [Jper Xv: [lver v — O. For each N > 1, we fix a choice of
Taylor-Wiles datum (Qn, (w1, - - ., 0w n)veQy) @s in Proposition 6.2.32 (this
is possible by our assumption that r,(7)(Gp(,)) is enormous; we choose any
imaginary quadratic subfield of F' in the application of Proposition 6.2.32). For
N =0, we set Qo = 0. For each N > 1, we let Ay = Ag, and fix a surjection
A — Ap. The kernel of this surjection is contained in (p* Z,)", since each
v € Q satisfies ¢, = 1 mod pV. We let A be the trivial group, viewed as a
quotient of A.

For each NV > 0, the auxiliary deformation problems S g, and S, g, are
defined, and we set Ry = RSLQN and Ry = RSX,QN‘ Note that Ry = Rs,

and Ry = Rs, . Let R = Rg’lloc and R'!°¢ = Rg;(loc denote the corresponding

Sloc  _ ploc
SLQN =R

and Rgiocj = R'°c. There are canonical isomorphisms R!°/w 2 R'1°¢ /7 and
QN

Ry/w = R)y/w for all N > 0. For each N > 1, Ry and Ry are canonically

O[A y]-algebras and there are canonical isomorphisms Ry ®pa ) O = Ro and

local deformation rings as in §6.2.22. For any N > 1, we have R
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Ry Rojay O = R{, which are compatible with the isomorphisms modulo w.
By Lemma 6.2.4, we have an R'°-algebra structure on RN®eT and an R'lec-
algebra structure on R\ ®07 . The canonical isomorphism R'¢/ww = R'1°¢ /t7 is
compatible with these algebra structures and with the canonical isomorphisms
Ry/w = Rl /w. We let Ry, and R._ be formal power series rings in g variables
over R°® and R'!°°, respectively. Using Proposition 6.2.24 when N = 0 (noting
that H(Fs/F,adp,(1)) = 0, because T‘L(7T)|GF(CP) is irreducible and ¢, ¢ F),
and Proposition 6.2.31 when N > 1, there are local O-algebra surjections
R — Ry and R., — Ry for any N > 0. We can (and do) assume that
these are compatible with our fixed identifications modulo w, and with the
isomorphisms Ry ®oja,] O = Ro and Ry ®oja,] O = Ry,

Let Co = RHomo (RT'( Xk, Va(x™1))m, O)[—d], and let Ty = T (K, V\(1))m.
Then H'(Co)[1/p] = Homp(H* (Xx, Vx(1))u[l/p], E) as Ty-modules. Simi-
larly, we let C) = RHomo (RT (X, VA(X™1))m, O)[—d], and T} = TS (K, V\(x""))m.
For any N > 1, we let

Cn = RHomo(a ) (BT (XK, (@), VA(1)) - O[AN])

and
Ty = TSUQN(RF(XKl(Q)yV)\(l))n?)‘

Similarly, we let
Cy = RHomoja 1 (RT (X, (@) VA(Xfl))ngv O[AN])

and
Th = T%Y9N (RT(X g, () V,\(X_l))ng)-

For any N > 0, there are canonical isomorphisms Cy @%[AN] k[An] = Cly ®g[AN]
k[An] in D(k[AN]). Using this isomorphism to identify Endp ) (Cn g k) =
Endpo)(Cy ®5 k), the images of Ty and T} in this endomorphism algebra
are the same, and we denote it by T'y. By Lemma 6.5.9, there are canonical
isomorphisms Cy ®I(5[AN] O = (Cp and Cy @%[AN] O = () in D(0O), and these
isomorphisms are compatible with our fixed isomorphisms modulo w. By
Proposition 6.5.11 we have nilpotent ideals Iy of T and I} of T}, for each N >
0, both of nilpotence degree < d, and local O[A y]-algebra surjections Ry —
Tn/In and Ry — Ty /I}. The surjections are compatible with the canonical
isomorphisms modulo . Moreover, using the isomorphism Ry/w = R /w
and letting I and T/N denote the images of Iy and Ily, respectively, in Ty,
the induced surjections Ry /@ — Tn/(In + Iy) and Ry/w—Tn/(Iy+ Iy)
agree. The maps Ty ®@pa] O — Tp and Ty ®p[a) O — Tj induce surjections
onto Ty /Iy and T{ /I respectively (surjectivity follows from Chebotarev density
and the existence of the Galois representations with coefficients in Ty /Iy and

To/I}).
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The objects introduced above satisfy the setup described in §6.4.1. We
can then apply the results of §6.4.2 and obtain the following.

e Bounded complexes Co, and C. of free Sy-modules, subrings T,, C
Endpg..)(Coo) and T, C Endps,.)(CL,), and ideals I, and I’ satis-
fying I, = 0 and I’2 = 0. We also have Sy.-algebra structures on R,
and R and So-algebra surjections Re — Too/Ioo and RL, — T7 /IL..
(See Proposition 6.4.12 and Remark 6.4.14.)

e Surjections of local O-algebras R /as — Ro and R, /as — Rj. We
have isomorphisms Cso ®§w Soo/0oo = Co and C. ®£~‘Oo Seo/tc0 = Cj in
D(0), inducing maps T, — Ty and 17, — Tj that become surjective
when composed with the projections Ty — Tp/Iy and T — T§/1;,
respectively. We let I o and I o denote the images of I and I,
respectively, under these surjective maps. Then the induced maps
Roo/t0 = (To/10) /1o and Ry, /as — (Ty/1y)/ 1% o factor through
Roo/0oo — Ry and R, /as, — Ry, respectively. (See Lemma 6.4.15 and
Proposition 6.4.16.)

e An isomorphism

Coo @8 Soo/w 2 Cho ®Y_ Soo/w™
in D(So/w). Under this identification, T, and T, have the same
image T in
EndD(Sw/w) (Coo ®gw Soo/w) = EndD(Soo)(Céo ®§oo Soo/w)

Let I and T;O denote the images of I, and I’_, respectively, in To.
Then the actions of Ry /w = R /w on

H (Coo 0%, @)/ (Too + Toy) = H'(Chy @Y., Soe/)/ (T + T

are identified via Coo @Y Soo/w = Cl, ®%_ Soc/w. (See Proposi-
tion 6.4.17.)

Recall that Ro, and R, are power series rings over R'°¢ and R'°°, re-
spectively, in ¢ = gn — n[F* : Q] many variables. By Lemma 6.2.25, we
have:

e Each generic point of Spec Ry /w is the specialization of a unique
generic point of Spec Ry, and every generic point of Spec Ry has
characteristic zero. Also, Spec R, is irreducible and has characteristic
zero generic point.

e R, is equidimensional, and R, and R._ have the common dimension

14 g+n?|S|+ 2. Q).

Since F' is CM, the quantity [y for the locally symmetric space Xg
is lp = n[F™ : Q] — 1. Then since dim Se = n?|S| + gn and g =
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gqn —n[F* : Q], we have
dim Ry = dim R._ = dim Seo — lp-

Finally, the isomorphism Co @4 _Soc/too = Co implies that (Coo®_ Soo/ts0)[1/p]
has cohomology isomorphic to Hompg(HY* (X, VA(1))m[1/p], E). So Theo-
rem 2.4.9 implies that H*(Coo ®I§N Soo/00)[1/p] # 0 and that the cohomology
is concentrated in degrees [qo, qo +1o]. We have now satisfied all the assumptions
of §6.3.1, so we can apply Proposition 6.3.8 to conclude that H*(C) is a nearly
faithful Roc-module, hence that H*(Coo @Y Sso/doc) = H*(Co) is a nearly
faithful Ry /(as)-module, hence that H*(Cp) is a nearly faithful Rs,-module.
This concludes the proof. ([

6.5.12. End of the proof (Fontaine—Laffaille case). We now deduce The-
orem 6.1.1 from Corollary 6.5.5. The proof will be an exercise in applying
soluble base change. We first state the results that we need. Note that while
up to now E has denoted the coefficient field of our Galois representations,
having carried out our patching argument we no longer need this notation, and
we find it convenient to use E to denote a number field in the rest of the proof.

PROPOSITION 6.5.13. Fix an integer n > 2, a prime p, and an isomor-
phism ¢ : Qp — C. Let F be an imaginary CM or totally real number field, and
let E/F be finite Galois extension such that Gal(E/F) is soluble and E is also
imaginary CM or totally real. Then:

(1) Let w be a cuspidal, reqular algebraic automorphic representation of
GL,(AF) of weight X = (Ar)rectom(r,c). Suppose that r,(7)|ay is
wrreducible. Then there exists a cuspidal, regular algebraic automorphic
representation 7g of GL, (Ag) of weight Ap » = Ar|, such that r(rp) =
r(m)|ag- If wis a finite place of E lying above the place v of F, then
we have recg, (Tg) = recr, (7)|wy, -

(2) Let p: Gp — GLn(Q,) be a continuous representation such that p|a,
1s irreducible. Suppose that there exists a cuspidal, reqular algebraic
automorphic representation m of GL,,(AE) of weight A such that p|g, =
r.(m). Define A\ = (Aryr)reHom(r,c) by the formula Ap; = A, where
7'+ E — C is any extension of 7 from F to E. Then \p is independent
of any choices, and there exists a cuspidal, reqular algebraic automorphic
representation mg of GL,(AF) of weight Ap such that p = r,(7p). If
w 15 a finite place of E lying above the place v of F, then we have
recp,, (m) = recg, (7F).

Proof. In either case we can reduce, by induction, to the case that E/F is
cyclic of prime order. Let o € Gal(E/F) be a generator of the Galois group,
and let n : Gal(E/F) — C* be a non-trivial character. We first treat the first
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part of the proposition. We claim that 7 ® (n o Art}l) 2 7. Otherwise, there
would be an isomorphism

rb(ﬂ—) ® L_177 = Tb(ﬂ-)y

implying that r,(7)|g, is reducible. We can therefore apply [AC89, Ch. 3,
Theorem 4.2] and [AC89, Ch. 3, Theorem 5.1] to conclude the existence of a
cuspidal, regular algebraic automorphic representation II of GL,,(Ag) of weight
Ap such that for almost all finite places w of E such that 7, is unramified,
I, is a lift of 7. The Chebotarev density theorem then implies that we
must have r,(IT) = r,(7)|g,, so we can take 7 = II.

We now treat the second part of the proposition. The isomorphism
play = r.(m), together with strong multiplicity one for GL,,, implies that we
have 7 = 7. By [AC89, Ch. 3, Theorem 4.2] and [AC89, Ch. 3, Theorem
5.1], there exists a cuspidal automorphic representation IT of GL,,(A ), which
is regular algebraic of weight Ap, such that for almost all finite places w of
such that IL,,. w|p- The Chebotarev density
theorem then implies that we must have r,(Il)|q, = r,(7) = p|g,. Using the
irreducibility of p|g,, we conclude that there is a twist IT ® (o Art')" such
that r,(TI® (no Art 1)) = p. We are done on taking mr = IT® (no Artz')". O

is unramified, 7, is a lift of II

Proof of Theorem 6.1.1. For the convenience of the reader, we recall the
hypotheses of Theorem 6.1.1. Let F' be an imaginary CM or totally real
field, and let ¢ € Aut(F') be complex conjugation. We are given a continuous
representation p : Gp — GLn(Qp) satisfying the following conditions:

(1) p is unramified almost everywhere.
(2) For each place v|p of F, the representation p|q,, is crystalline. The
prime p is unramified in F.
(3) p is absolutely irreducible and decomposed generic (Definition 4.3.1).
, is enormous (Definition 6.2.28).
(4) There exists 0 € G — Gp(,) such that p(o) is a scalar. We have
p > n?.
(5) There exists a cuspidal automorphic representation 7 of GL,(Af)

The image of ﬁ|GF(§p

satisfying the following conditions:
(a)  is regular algebraic of weight A, this weight satisfying
)\T,l + )\Tc,l - )\T,n - )\TC,?’L <p-—2n.

(b) There exists an isomorphism ¢ : Q, — C such that p = r,(r)
and the Hodge—Tate weights of p satisfy the formula for each
T:F — Qp:

HTT(p) = {)‘LTJ +n— 17 )‘“'72 +n— 27 ceey )\LT,TL}'

(c) If v|p is a place of F', then m, is unramified.



152 P. ALLEN ET AL.

The case where F' is a totally real field can be reduced to the case where
F' is totally imaginary by base change. We therefore assume now that F' is
imaginary, and write F'* for its maximal totally real subfield. Let K/F((,) be
the extension cut out by E|GF( &) Choose finite sets Vg, V1, Vo of finite places
of F' having the following properties:

e For each v € Vp, v splits in F'({p). For each proper subfield K/K'/F((),
there exists v € Vj such that v splits in F'(¢,) but does not split in K’.

e For each proper subfield K/K'/F, there exists v € V7 which does not
split in K'.

e There exists a rational prime py # p which is decomposed generic for p,
and V5 is equal to the set of pg-adic places of F.

e For each v € VU VL U Vo, v12, v1p, and p and w are both unramified
at v.

If E/F is any finite Galois extension which is Vp U V; U Va-split, then p|g, has
the following properties:

e p(Gg) =p(GFr) and p(Gg(,)) = p(Gr(,)). In particular, ﬁ|GE(<,,) has
enormous image and there exists 0 € Gg — Gg(c,) such that p(o) is a
scalar.

® p|g, is decomposed generic. Indeed, the rational prime pg splits in E.

Let Ey/F be a soluble CM extension satisfying the following conditions:

e Each place of V) U V; UV, splits in Ey and the rational prime p is
unramified in Ej.

e For each finite place w of Ej, 7TIE‘~N1’”w #0.

e For each finite prime-to-p place w of Ey, either both 7, ,, and p|GEO .
are unramified or p|GE0 L is unipotently ramified, ¢, = 1 mod p, and
mGEo,w is trivial. 7

e For each place w|p of E{f , W splits in Ey and there exists a place W' # w
of Ef such that w'[p and

1
S i @l > 5B QL
w' #w,w’
We can find imaginary quadratic fields F,, Ey, E. satisfying the following con-
ditions:

e Each rational prime lying below a place of VUV, UV5 splits in E, - Ey- E..
The prime p is unramified in E, - Fy, - E..

e The primes 2, p split in F,.

o If | ¢ {2,p} is a rational prime lying below a place of Ey at which 7g 4,
or p|E,,, is ramified, or which is ramified in Eo - E, - E¢, then [ splits in
Ey.
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e If [ ¢ {2,p} is a rational prime which is ramified in Ej, then [ splits in
E..

For example, we can choose any F, satisfying the given condition. Then we
can choose Ey, = Q(y/—pp), where py is a prime satisfying p, = 1 mod 4 and
pp = —1 mod [ for any prime [ ¢ {2, p} either lying below a place w of Ey at
which 7g, . or p|g,,, is ramified, or ramified in Ey - E,, and E. = Q(y/—pc),
where p. = 1 mod 4py, is any prime not equal to p. (Use quadratic reciprocity
to show that p. splits in Ej.)

We let E = Ey- E, - Ey - E.. Then E/F is a soluble CM extension in
which each place of V; U V7 U Vs splits, and the following conditions hold by
construction:

e The prime p is unramified in F.

e Let R denote the set of prime-to-p places w of I such that 7g, or
plGg, is ramified. Let S, denote the set of p-adic places of E. Let
S" =S, UR. Then if [ is a prime lying below an element of S, or which
is ramified in F, then E contains an imaginary quadratic field in which
[ splits.

o If w € R then p|g, is trivial and ¢, =1 mod p.

e The image of p|g B is enormous. The representation p|q, is decom-
posed generic.

e There exists 0 € Gg — G, such that p(o) is a scalar.

e For each place w|p of ET, there exists a place W’ # w of E* such that
w'|p and

)

S OEL Q) > 1[E+ : Q).
W' AW, 2
By the Chebotarev density theorem, we can find a place vg of E of degree
1 over Q such that p(Frob,,) is scalar and ¢,, # 1 mod p, and the residue
characteristic of vg is odd. Then H?(E,,,adp) = H(E,,,adp(1))" = 0. We
set S =5 U{vp}. Note that if Iy denotes the residue characteristic of vy, then
lp splits in any imaginary quadratic subfield of F.

We see that the hypotheses (1)—(17) of §6.5.1 are now satisfied for E, mp,
and the set S. We can therefore apply Corollary 6.5.5 to p|q, and Proposition
6.5.13 to conclude that p is associated to a cuspidal, regular algebraic automor-
phic representation IT of GL,,(A ) of weight \. Taking into account the final
sentence of Corollary 6.5.5, we see that Ilg ,, is unramified if w € S.

To finish the proof, we must show that II, is unramified if v is a finite
place of F' such that v t p and both p and 7 are unramified at v. Using our
freedom to vary the choice of place vy, we see that if v { p is a place of F' such
that both p and 7 are unramified at v, then Il ,, is unramified for any place
wlv of E. This implies that recg, (IL,) is a finitely ramified representation of
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the Weil group W, . Using the main theorem of [Varl4] and the fact that p
is unramified at v, we see that recg, (II,)) is unramified, hence that II, itself is
unramified. This concludes the proof. O

6.6. The proof of Theorem 6.1.2. We proceed to the proof of the second
main theorem of this chapter (Theorem 6.1.2). As in the case of the first theorem,
we begin by establishing the result under additional conditions (§6.6.1), then
reduce the general case to this one by using soluble base change (§6.6.10).

6.6.1. Application of the patching argument (ordinary case). We take F'
to be an imaginary CM number field, and fix the following data:

(1) An integer n > 2 and a prime p > n.

(2) A finite set S of finite places of F, including the places above p.

(3) A (possibly empty) subset R C S of places prime to p.

(4) A cuspidal automorphic representation m of GL,, (A ), regular algebraic
of some weight pu.

(5) A choice of isomorphism ¢ : Q, = C.

We assume that the following conditions are satisfied:

(6) If [ is a prime lying below an element of S, or which is ramified in
F, then F' contains an imaginary quadratic field in which [ splits. In
particular, each place of S is split over F't and the extension F/F™* is
everywhere unramified.

(7) The residual representation 7, () is absolutely irreducible.

(8) If v € S, then D
[Gerl8, Def. 5.1.2]).

(9) If v € R, then 7Vv #£ 0.

(10) If v € S — (RU Sp), then 7, is unramified and H?(F,,adr,(r)) = 0.
Moreover, v is absolutely unramified and of residue characteristic ¢ > 2.

(11) S — (RUS,) is non-empty.

(12) If v € S is a finite place of F, then 7, is unramified.

(13) If v € R, then ¢, = 1 mod p and 7,(r) Gy, is trivial.

(14) The representation r,(7) is decomposed generic and the image of r, ()

is enormous.
(15) If v € S), then [F, : Q,] > = nﬂ) +1 and r,(7)|q,, is trivial.

# 0 and 7 is t-ordinary at v (in the sense of

‘GF(CP)

THEOREM 6.6.2. With assumptions (1)—(15) as above, suppose given a
continuous representation p : Gy — GL,(Q,) and a weight X € (Z’}F)Hom(F’Qp)
satisfying the following conditions:

(1) We have p = r (7).
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(2) For each place v|p, there is an isomorphism

Y1 * * *
0 ¢v,2 * *
p|GFv ~ . . . s
: . °. *
0 - 0 Pun
where for each i =1,...,n the character 1, ; : Gp, — Q; agrees with

the character

o€ IFv — H T(Art;,vl (O‘))_(AT,’H.—Z'+1+7:—1)
TEHom(Fmap)

on the inertia group If,.
(3) For each place vlp of F, for each i = 1,...,n, and for each p-power
root of unity x € OF,, we have

H T(x)Ar,n+1—i—,Lm—,n+1—i -1,
TeHom(Fv,ap)

(4) For each finite place v € S of F, plg, is unramified.
(5) For each place v € R, p|ay, is unipotently ramified.

Then p is ordinarily automorphic of weight tA: there exists an t-ordinary cuspidal
automorphic representation I1 of GL,(AFr) of weight t\ such that p = r,(II).
Moreover, if v is a finite place of F and v € S, then 11, is unramified.

Note that we do not prove an analogue of Theorem 6.5.4 here, but rather
only an analogue of Corollary 6.5.5. This is due to our poor understanding of
the irreducible components of the local lifting rings of type Dget7°rd. Before
giving the proof of Theorem 6.6.2, we need to introduce some deformation
rings, Hecke algebras, and complexes on which they act. These complexes will
represent the ordinary part of completed homology with O-coefficients. We will
use the notation for ordinary parts established in §5.1.

We define an open compact subgroup K = [], K, of GLn(CADF) as follows:

If v ¢ S then K, = GL,(Op,).

If v € Sp, then K, = Iw,(1,1).

If v € R, then K, = Iw,,.

IfveS—-(RUS,), then K, = K,(1) is the principal congruence
subgroup of GL,,(Op,).

Then (by Lemma 6.5.2) K is neat, so is a good subgroup of GL,(A¥). By
Theorem 2.4.9, we can find a coefficient field F C Qp and a maximal ideal

m C T9(K, 1) of residue field k such that p,, = r,(7). If v € Sp, we let
Ay = O[[O}X,v (p)"]. We define Ay = ®veSpA1,va the completed tensor product
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being over . The n-tuple of characters

Xpyvyi © OE) (p) = OF, . — H T(a:)_(“”v”—“rl“"'_l) (i=1,...,n)
reHomgq, (Fy,E)

determines a homomorphism p,,, : A1, — O. We define p,,, = kerp,,,, and
write g, for the unique minimal prime of A, which is contained in g, ,.
We set Ay = Ay /000 and A = ®vespAv- We write p, : A — O for the
homomorphism induced by the p,, , and the universal property of the completed
tensor product, and set g, = kerp,. We use similar notation for p,; note
that condition (3) in the statement of the theorem implies that pg, is also the
unique minimal prime contained in g, , for each v € S).

We define a global deformation problem for each character x : K — O*
which is trivial modulo @ by the formula

S = (P S, {O0}ves—s,H{Av}ves, (D3 }oes, U{DX Yoe R D, Yues— (rus,))-
We fix representatives ps, of the universal deformations which are identified
modulo @ (via the identifications Rs, /@ = Rs,/w). We define an O[Kg]-
module V,(x™!) =V, ®o O(x™!), where Kg acts on V,, by projection to K,
and on O(x~!) by projection to K. After possibly enlarging E, we can assume
that p takes values in O and that p mod w = p,; then p is a lifting of p,, of
type S1.
If ¢ > 1 is an integer, then we define
Are = O[] ker(T(OF, /@5) = Tu(OF, /@0)));
vES)

it is naturally a quotient of A;. For any ¢ > 1, the complex RT'(X g (c,c), VM(X_l))Ord

is defined, as an object of D(A; ). We define
Aq (ua X5 C) = RHomA1,C(RF(XK(C,C)7 V,LL(Xil))Orda Al,c) [_d]

It is a perfect complex in D(A1 ) (because RT(X g (c¢), Vu(x ™)) is). The
Hecke algebra T%° acts on this complex by transpose. Moreover, Corollary
5.2.16 shows that for any ¢ > ¢ > 1 there is a T57°rd—equivariant isomorphism

(6.6.3) Ar(p,x ) @5, |, Ave = Ar(p, x. )

in D(A;1.). By construction, there are canonical T4 equivariant isomor-
phisms

(6.6.4) A1 (X €) ®F, M e/w 2 Ar(p1,0) ©F, A o/w

in D(Ay./w). By [KT17, Lemma 2.13], we can find a perfect complex
Ai(p, x) € D(A1) which comes equipped an action by T5°™ and with T%°rd-
equivariant isomorphisms

Ar(p,x) @, Are 2 Ar(p, X, ¢)
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in D(A; ) (for each ¢ > 1) and
Ar(p,x) ®F, Mifw = Ai(p, 1) @F, A1 /@

in D(A;/w). These isomorphisms are compatible with the isomorphisms (6.6.3)
for ¢ > ¢ and with the isomorphisms (6.6.4) for varying characters y, trivial
modulo w. Finally, we define A(y, x) = A1(u, x) ®%, A € D(A).

Let v € X*((RespqT)E) = (Zm)Hom(FE) he defined by

vy =(0,1,...,n—1)

for all 7 € Hom(F, E). We define By (i1, x) = A1 (i1, X) @0 O(v +w§ 11)~*, where
O(v + w§p)~! is the O[T),(F,)]-module described in §5.2.1. (In particular,
the action of T,,(Op,) extends uniquely to an action of the completed group
algebra O[T},(OFp)].) Thus Bi(u, x) is a perfect complex in D(A;), on which
the algebra T acts. We define B(u, x) = B1 (i, x) ®}\‘1 A.

LEMMA 6.6.5. The complex Bi(u,Xx) is independent of p. More pre-
cisely, for any p' € (Zi)Hom(F’E), there is a T -equivariant isomorphism
Bi(p, x) = Bi(p',x) in D(Ay).

Proof. This follows from Proposition 5.2.17 and [KT17, Lemma 2.13]. O

COROLLARY 6.6.6. Let p/ € (Z7)Hom(E) Then there is a TSomd-
equivariant isomorphism in D(O):
Bi(u, x) @, O(v +wi /)™ = Ai(i, x, 1) ®0 O(v + wip/) .

Proof. By the lemma, it suffices to treat the case / = u. In this case the
left-hand side may be identified with

A1 (1, X)®0O(v+w§ 1) ~tek, O(v+wiip) ™ = Ay (u, x) @), 0RO (v+w§ 1)~

Essentially by definition, this complex admits a T*°"9-equivariant isomorphism

to A1 (i, x,1) ®0 O(v +w§ p)~! in D(O). This completes the proof. O
Let TSM = TS @p Ay ¢ TS0,

PROPOSITION 6.6.7. There exists an integer 6 > 1, depending only on n
and [F : Q], an ideal J C TS (A(p, X)m ®0 O(v +w§ 1)) such that J° = 0,
and a continuous surjective homomorphism of A-algebras

fs, : Rs, = TN (A, X)m ®0 O + win) ™) /7

such that for each finite place v € S of F, the characteristic polynomial of fs, o
ps, (Froby) equals the image of Py(X) in TSN (A, X )m @0 O(v+w§p)™)/J.

Proof. We will construct a compatible family of homomorphisms

fSX,c : RSX - TS,Al (A(,uv X C)m ®o O(V + w()G:u)_l)/JC?
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one for each ¢ > 1. The desired homomorphism fs, is then obtained by passage
to the limit, in a similar way to the proof of Theorem 4.5.1. It even suffices to
construct a family of homomorphisms

R‘SX — ':[‘S’A1 (RP(XK(c,c)vV,U«(Xil))m)/‘]‘c;

in fact, the Hecke algebras are the same (the isomorphism being given by
transpose and twist by O(v + w§ 1)). Finally, it even suffices to construct a
family of homomorphisms

Rs, — TS’Ord(RF(XK(c,C)a VX ™)))m/ e

an application of Carayol’s lemma (cf. [CHT08, Lemma 2.1.10]) then implies
that the image of Rs, is in fact contained in a nilpotent quotient of the
subalgebra

TS’Al (RF(XK(C,C)7 VM(X_l))m> C Tsprd(Rr(XK(c,c)? V,U(X_l)))m'

This family of homomorphisms can be constructed exactly as in the proof of
Proposition 6.5.3, with the appeal to Theorem 4.5.1 being replaced instead
with an appeal to Theorem 5.5.1; here we are using the characterization of the
deformation functor Det°rd given in §6.2.6. O

We now need to describe the auxiliary objects associated to a choice of
Taylor-Wiles datum (Q, (ay1,- .., n)veq) for Si (see §6.2.27), where each
place of @) is assumed to have residue characteristic split in some imaginary
quadratic subfield of F. Once again, this datum is automatically a Taylor—
Wiles datum for all the global deformation problems S,, and so the auxiliary
deformation problems Sy ¢ are defined, and the deformation ring Rs_, has a

n

natural structure of O[AgJ-algebra, where Ag = [[yeq Av = [Tveg k(v)* ()™
If ¢ > 1 is an integer then we define two auxiliary level subgroups

K(Cv C)I(Q) C K(C> C)O(Q) - K(Cv C)'
They are good subgroups of GL,,(A%), determined by the following conditions:

o If v & SUQ, then K(c,¢)1(Q)y = K(c,¢)o(Q)y = K(c,¢)y.
e If v € Q, then K(c,¢)o(Q)y = Iw, and K(c,¢)1(Q), is the maximal
pro-prime-to-p subgroup of Iw,,.

Then there is a natural isomorphism K (c, ¢)o(Q)/K (c,¢)1(Q) = Ag. We define
Aq (M? X5 Qa C) = RHomALC[AQ] (RF(XK(QC)l(Q)? V;L(X_l))ord> ALC[AQ]) [_d]a

an object of D(A1 ([Ag]). The algebra Tqu’ord = T9V@ord @600 Tqu acts
on Aq(u, x, @, c) by transpose. As in the case where @) is empty, we can pass
to the limit with respect to ¢ to obtain a complex A;i(u,x, Q) € D(A1[Ag])
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which comes equipped with an action of TZUQ’Ord and with TgUQ’Ord—equivariant
isomorphisms

Al(/% X Q) ®k1 Al,c = Al (,ua X5 Q7 C)
in D(A; ) (for each ¢ > 1) and

Al(,u'v X5 Q) ®k1 Al/w = Al(:“’a 1, Q) ®k1 Al/w

in D(A1/w), all compatible with the similar data at level c. We define m®

to be the contraction of m to TSY9d and n? to be the ideal of TgUQ’Ord

generated by m® and the elements Upi—api-o; (WeEQ,i=1,...,n).

LEMMA 6.6.8. The ideal n® occurs in the support of H*(Ai(u,x,Q)).
There are TSV _cquivariant isomorphisms

A1 (X, Q)ne ®F,1ag) M1 2= A1, X)me = A1 (1 X

Proof. These properties can be established in the same way as in the finite
level (Fontaine-Laffaille) case. See §6.5.1. We omit the details. O

We define A(u, x,Q) = A1(p, x, Q) ®II\‘1 A. Then TSY@A(A(A, x, Q),e) is
a local A[Ag]-algebra.

PROPOSITION 6.6.9. There exists an integer § > 1, depending only on n
and [F : Q], an ideal J C TSYM(A(A, x, Q)ne ®o O(v +w§ 11)~1) such that
J% =0, and a continuous surjective homomorphism of A[Ag]-algebras

fseq i Rsyq = TOOM (A, X, Q)ue ®0 O(v + wlip) ™) /]
such that for each finite place v € S of F, the characteristic polynomial of
fs, o ps, (Froby) equals the image of Py(X) in TSY@M (A(u, x, Q)ne ®0 O(v +
wi )/ J.
Proof. The existence of a A-algebra homomorphism
Rs, o = TN (A, x, Qe @0 O(v + wip)™) /]

satisfying the given condition at finite places v € S U Q of F' is proved just
as in the proof of Proposition 6.6.7 above. The key point is to show that
this is a homomorphism of A[Ag]-algebras. This can be proved in the same
way as in the proof of Proposition 6.5.11, by considering the enlarged algebra
T (A X, Q) B0 O +wf )y -

We are now ready to begin the proof of Theorem 6.6.2.

Proof of Theorem 6.6.2. We recall that we have constructed a homomor-
phism f : Rs, — O, classifying the representation p that we wish to show is
automorphic. We will show that ker f is in the support of

H*(B(p, D @5 Ov + wiA) ™).
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By Corollary 6.6.6, this will show that ker f is in the support of
H*(A(\ 1, 1)m ©0 O(v + wiA) ™) [1/p],
in turn a quotient of
Hompg (H™ (X 1.1y, V\)m: O(v + w§A) "1 [1/p]).

The t-ordinary automorphy of p will then follow from Theorem 2.4.9.
Our proof now closely follows the proof of Thm. 6.5.4. Let

¢ =h'(Fs/F,adpy(1)) and g=qgn—n*[F": Q]

and set Ao, = Zy?. Let T be a power series ring over A in n?|S| — 1 many
variables, and let Soo = T[Ax]. Viewing S, as an augmented A-algebra, we
let a~ denote the augmentation ideal.

As in the proof of Thm. 6.5.4, we choose a character x = [[ver Xv: [lver IWo —
O* such that for each v € R the n characters x,;: k(v)* — O* are trivial
modulo @w and pairwise distinct.

Let Rl = Rgffdc and R'1°¢ = R:g;lf’dc denote the corresponding local defor-
mation rings as in 1§6.2.22. We let ROOX and R/ be formal power series rings in
g variables over R!°¢ and R'!°°, respectively.

We can then apply the results of §6.4.2 to complexes A(u, x, Q)ne @0 O(v+
w§ 1) =1 (for choices of Taylor-Wiles data (Q, (a1, - -, Qwn)veq), Proved to

exist using Proposition 6.2.32) and obtain the following.

e Bounded complexes Co, and C. of free Soo-modules, subrings T,, C

Endps..)(Coo) and T, C Endpg,.)(CL,), and ideals I, and I', satis-

fying I, = 0 and I’2 = 0. We also have S,.-algebra structures on R,

and R, and Se-algebra surjections Re — Too/Ioso and RL, — T7 /IL,.

e Surjections of local A-algebras Ry /000 — RS?rd and R._/as — RS)czrd.

e Isomorphisms Coo ®§Oo Soo/ oo = A, D) @0 O(v+w§ 1) ™! = B, 1)m

and CL, ®%_ Seo/8o0 = A, X)m @0 O(v +w§ 1) ™ = B(p, X)m in D(A).

This gives the necessary input for §6.3.1. Recall that R, and R, are power

series rings over R'° and R'!°°| respectively, in ¢ = qn — n[F* : Q] many

variables. It follows from parts (1) and (2) of Lemma 6.2.26 that we have

satisfied assumptions (1) and (2) of §6.3.1. To verify assumption (3), if we let

p denote the inverse image in Sy of Anny(O(v + w§p)™!), then (Corollary
6.6.6) the complex

(Coo @5, Soo/P)[L/P] = (B(p, L @5 O(v +wg ) ~H)[1/p]

has cohomology isomorphic to a quotient of HomE(Hd_*(XK(M), Vi)wll/p], E).
Since 7 contributes to this quotient, Theorem 2.4.9 implies that H*(Coo ®fg‘oo
Seo/P)[1/p] # 0 and that the cohomology is concentrated in degrees [go, o + lo].
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We have now satisfied all the assumptions of §6.3.1, and we apply Corol-
lary 6.3.9 with « € Spec(R«) the inverse image of ker f, so y € Spec(Sx) is
the inverse image of Ann(O(v +w§A)~1). For each v € S,, the inertial char-
acters on the diagonal of p|g,, are distinct, so z lies on a maximal dimension
irreducible component of Spec(Rs) by part (3) of Lemma 6.2.26, and this
Corollary does apply. We deduce that the support of

H*(B(p, 1)m @X O(v + wi X)) [1/p]
contains ker f. This completes the proof. ([l

6.6.10. End of the proof (ordinary case). We can now deduce Theorem
6.1.2, our main automorphy lifting result in the ordinary case, from Theorem
6.6.2. The proof is a minor variation of the proof of our main automorphy
lifting result in the Fontaine-Laffaille case (see §6.5.12).

Proof of Theorem 6.1.2. For the convenience of the reader, we recall the
hypotheses of Theorem 6.1.2. Let F be an imaginary CM or totally real
field, and let ¢ € Aut(F') be complex conjugation. We are given a continuous
representation p : Gp — GLn(Qp) satisfying the following conditions:

(1) p is unramified almost everywhere.

(2) For each place v|p of F', the representation p|q,, is potentially semi-
stable, ordinary with regular Hodge-Tate weights. In other words, there
exists a weight \ € (Z?F)Hom(F ") such that for each place v|p, there is
an isomorphism

Y1 * * *
0 %,2 * *
plag, ~ . , , ;
. C. t. *
0 -+ 0 tyn
where for each ¢ = 1,...,n the character v, ; : Gr, — le agrees with

the character

o&lp, = H T(Art;vl(g))—(/\m_mﬂ—l)
TEHom(Fme)

on an open subgroup of the inertia group I, .
(3) pis absolutely irreducible and generic. The image of p|q,, ) is enormous.
There exists 0 € Gr — Gp(c,) such that p(o) is a scalar. We have p > n.
(4) There exists a regular algebraic cuspidal automorphic representation 7
of GL,(AF) and an isomorphism ¢ : Q, — C such that 7 is t-ordinary

and r,(7) = p.
The case where F' is a totally real field can be reduced to the case where
F is totally imaginary by base change. We therefore assume now that F' is
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imaginary, and write F'* for its maximal totally real subfield. Let K/F((p,) be
the extension cut out by 5|GF( T Choose finite sets Vg, V1, Vo of finite places
of I having the following properties:

For each v € Vj, v splits in F'(¢,). For each proper subfield K/K'/F((p,),
there exists v € Vp such that v splits in F((,) but does not split in K’.
For each proper subfield K/K'/F, there exists v € V; which does not
split in K'.

There exists a rational prime py # p which is decomposed generic for 3,
and V5 is equal to the set of pg-adic places of F.

For each v € Vo U V3 U Vs, v 12, v1p, and p and 7 are both unramified
at v.

If E/F is any finite Galois extension which is Vp U V; U Va-split, then p|g, has
the following properties:

p(Gg) = p(GFr) and p(GE(,)) = pP(Gr(,))  In particular, ﬁ|GE(Cp) has
enormous image and there exists 0 € Gg — Gp((,) such that p(o) is a
scalar.

play is decomposed generic. Indeed, the rational prime pg splits in E.

Let Ey/F be a soluble CM extension satisfying the following conditions:

Each place of V) U V; UV, splits in Ey.

For each finite place w of Ey, Wg;é”w # 0.

For each finite prime-to-p place w of Ey, either both mg, ,, and p|GEO,w
are unramified or p’GEO,w is unipotently ramified, ¢,, = 1 mod p, and
p‘GEo,w is trivial.

For each place w|p of Ej, ﬁ|GE0’w is trivial and [Eo. @ Qp] > n(n +
1)/2 4+ 1.

For each place v|p of F, for each w|v of Ey, and for each i = 1,...,n
the character v, ; : Gp, — Q; agrees with the character

o< IFv = H T(Artg,vl (O'))f()“r,nfi+1+’ifl)
TGHom(Fv’ap)

on the whole of the inertia subgroup I, ,, C IF,.
Let p denote the weight of mg,. Then for each place w|p of Ey, and for
each p-power root of unity = € Eg,,, we have

Vui(Artg, , (7)) 11 ()it —
TEHom(Eg,w,Qp)

We can find imaginary quadratic fields F,, Ey, E. satisfying the following con-

ditions:

Each rational prime lying below a place of VoUV; UV, splits in E,- Ey- E.
The primes 2, p split in E,.
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o If I ¢ {2,p} is a rational prime lying below a place of Ey at which 7g 4,
or p|E,,, is ramified, or which is ramified in Eo - F, - E¢, then [ splits in
Ey.

e If [ ¢ {2,p} is a rational prime which is ramified in Ej, then [ splits in
E..

For example, we can choose any F, satisfying the given conditions. Then we
can choose Ey, = Q(y/—pp), where py, is a prime satisfying p, = 1 mod 4 and
pp = —1 mod [ for any prime [ ¢ {2, p} either lying below a place w of Fy at
which 7g, . or p|g,,, is ramified, or ramified in Ey - E,, and E. = Q(y/—pc),
where p. = 1 mod 4p, is a prime. (Use quadratic reciprocity to show that p.
splits in Ey.)

We let E = Ey- Ey - Ey - E.. Then E/F is a soluble CM extension in
which each place of Vy U Vi U Vs splits, and the following conditions hold by
construction:

e Let R denote the set of prime-to-p places w of I such that g, or
plGy, is ramified. Let S, denote the set of p-adic places of E. Let
S" = S,UR. Then if [ is a prime lying below an element of S/, or which
is ramified in F, then E contains an imaginary quadratic field in which
[ splits.

o If w € R then p|g,, is trivial and g, =1 mod p.

e The image of plc ¢, is enormous. The representation play is decom-
posed generic.

e There exists 0 € Gg — G, such that p(o) is a scalar.

e TFor each place w|p of E, p|g,, is trivial and [Ey, : Qp] > n(n+1)/2+1.

e Let mg denote the base change of 7 to F, which exists, by Proposition
6.5.13. Then 7 is t-ordinary, by [Gerl8, Lemma 5.1.6].

By the Chebotarev density theorem, we can find a place vy of E of degree
1 over Q such that p(Frob,,) is scalar and ¢,, # 1 mod p, and the residue
characteristic of vg is odd. Then H?(E,,,adp) = H(E,,,adp(1))" = 0. We
set S = 5" U{vp}. Note that if Iy denotes the residue characteristic of vy, then
lp splits in any imaginary quadratic subfield of F.

We see that the hypotheses (1)—(15) of §6.6.1 are now satisfied for E, g,
and the set S. We can therefore apply Theorem 6.6.2 to p|g, to conclude the
existence of a cuspidal, regular algebraic automorphic representation Ilg of
GL,(AE) such that IIg is t-ordinary of weight \g and r,(Ilg) = p|lg,. By
Proposition 6.5.13 and [Gerl8, Lemma 5.1.6], we can descend Il to obtain
a cuspidal, regular algebraic automorphic representation II of GL,(Ar) such
that II is t-ordinary of weight A and r,(IT) = p. Taking into account the final
sentence of the statement of Theorem 6.6.2, we see that Il ,, is unramified if

wéeS.
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To finish the proof, we must show that II, is unramified if v is a finite
place of F' such that v t p and both p and 7 are unramified at v. Using our
freedom to vary the choice of place vy, we see that if v {p is a place of F' such
that both p and 7 are unramified at v, then Il ,, is unramified for any place
wlv of E. This implies that recg, (IL,) is a finitely ramified representation of
the Weil group Wg,. Using the main theorem of [Varl4] and the fact that p
is unramified at v, we see that recp, (II,) is unramified, hence that II, itself is
unramified. This concludes the proof. O

7. Applications

7.1. Compatible systems. Suppose that F is a number field. We will
use a slight weakening of the definition of a weakly compatible system from
[BLGGT14]: By a rank n very weakly compatible system R of l-adic represen-
tations of Gr defined over M we shall mean a 5-tuple

(Mv S, {Q’U(X)}7 {TA}v {HT})
where

(1) M is a number field;

(2) S is a finite set of primes of F;

(3) for each prime v & S of F', Q,(X) is a monic degree n polynomial in
M[X];

(4) for 7: F < M, H, is a multiset of n integers;

(5) for each prime X of M (with residue characteristic [ say),

) : GF — GLH(MA)

is a continuous, semi-simple representation such that
(a) if v ¢ S and v [l is a prime of F, then r) is unramified at v and
rx(Frob,) has characteristic polynomial Q,(X),
(b) For [ outside a set of primes of Dirichlet density 0, the representa-
tion r)|q &, 18 crystalline, and for any M < M over M, we have
HT,(r)\) = H;.
(c) For all A\, we have HT,(detry) = > ey, h.
If we further drop hypothesis (5b), then we say that R is an extremely weakly
compatible system. The only requirement of an extremely weakly compatible
system on H is via the condition on the determinant via hypothesis (5¢). The
difference between very weakly compatible systems and the (merely) weakly
compatible systems in [BLGGT14] is that, if v|l, then we do not insist that
7Algp, is de Rham except for [ in a set of Dirichlet density 1. The notion of an
extremely weakly compatible system is what used to be known as a compatible
system, but we use this language so as to emphasize that the condition of being a
very weakly compatible system is more stringent than being an extremely weakly
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compatible system. (Here we implicitly use the following fact: any compatible
family of one dimensional representations is always de Rham [Hen82].) Of
course, we expect that any extremely weakly compatible system should give
rise to a weakly compatible system for an appropriate choice of H.. We have
adopted the present definition so that, as a consequence of Theorem 4.5.1, we
can deduce that the Galois representations constructed in [HLTT16] for n = 2
form a very weakly compatible system.

We will often write [ for the residue characteristic of a prime A of M
without comment. We shall write 7y for the semi-simplified reduction of r}.
The representation 7y is a priori defined over the algebraic closure of O/ .
However, because its trace lies in Oy /A and because the Brauer groups of all
finite fields are trivial, it is actually a representation

Tx: Gp — GL,(Op/)N).

We recall some further definitions from section 5.1 of [BLGGT14] which
apply mutatis mutandis to both very weakly and extremely weakly compatible
families:

A very (or extremely) weakly compatible system R is regular if, for each 7,
the set H, has n distinct elements.

A very (or extremely) weakly compatible system R is irreducible if there
is a set L of rational primes of Dirichlet density 1 such that, for A|l € L, the
representation ry is irreducible. We say that it is strongly irreducible if for all
finite extensions F’/F the compatible system R|GF, is irreducible.

LEMMA 7.1.1. If R is an extremely weakly compatible system of rank 2,
the following are equivalent:

(1) R is irreducible.
(2) For all \, the representation ry is irreducible.
(3) For one prime X of M, the representation ry is irreducible.

Proof. Suppose that for one prime )\g the representation r), is a sum of
characters ry, = x1 @ x2. By the main result of [Hen82|, we see that ry, is
de Rham. Hence each y; is also de Rham and so there are weakly compatible
systems X7 and A5 of rank 1 with x;», = x; for i = 1,2. Then for all A we
have ry = x1.x @ X2,x- O

In view of Lemma 7.1.1, we say that an extremely weakly compatible system
of rank 2 is reducible if it is not irreducible, in which case every representation 7y
is reducible. Say that a very (or extremely) weakly compatible system of rank 2
is Artin up to twist if there exists an Artin representation p : Gp — GLy(M)
with traces in M (possibly after increasing M) and a weakly compatible system

of one dimensional representations y such that ry ~ p ® x\.
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LEMMA 7.1.2. If R is an extremely weakly compatible system of rank 2
and R is irreducible, then either R is strongly irreducible, Artin up to twist,
or there is a quadratic extension F'/F and a weakly compatible system X of
characters of G such that

R =Tndg", X,

in which case we say that R is induced.
If for some T : F < M the sum Y pcp. h is odd, then the Artin up to twist
case can not occur.

Proof. Suppose that there exists a finite extension E/F such that R|q,
is reducible. We may suppose that E/F is Galois. Choose a prime A of M of
residue characteristic greater than 2. Write ry|g, = x1 ® Xxe.

Suppose that x1 = x2 = x. As in the proof of Lemma 7.1.1, we deduce
that y is de Rham. On the other hand, let ¢ denote the determinant of 7, and
let (¢) be the character such that ¢/(¢) is the Teichmiiller lift of the reduction ¢
of ¢. Since ¢ is a finite order character, we may assume (increasing E if
necessary) that this character is trivial after restriction to Gg. By construction,
(@) =1 and thus (because X is assumed to have odd residue characteristic) (¢)
admits a square root character 1) as a representation of G'r. But then 2| 5
and y? coincide as representations of G, since they are both equal to the
determinant of 7|, In particular, their ratio is a character of order dividing 2.
Increasing E by a finite extension if necessary, we may assume that ¢|q, = x.
Hence 9|g,, is de Rham, and thus ¢ is de Rham and extends to a compatible
system of characters of Gp. After twisting R by this compatible system, we
may assume that ry|g, is trivial. In particular, ry factors through Gal(E/F),
and is thus coming from an Artin representation py : Gr — GL2(M)), which
automatically extends to a (strongly) compatible system coming from an Artin
representation p : Gal(E/F) — GLy(M) with traces in some finite extension
of M (specifically, the extension of M coming from the coefficient field of the
compatible family ). Hence R is Artin up to twist in this case. Note that
the 7 Hodge-Tate number of ¥ equals (1/2) > pep. h, which is impossible if
> hem, h is odd.

Now assume that x1 # xo2. The group Gal(E/F) permutes the two
characters y; and, because r) is irreducible, this action is transitive. Let
F' denote the the stabilizer of x;. Then y; extends to a character of G g
and ry = Indg? X1- As in the proof of Lemma 7.1.1, there is a weakly

compatible system of characters X of G with x\» = x1. Then R = Indgi X,
as desired.
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LEMMA 7.1.3. If R is an extremely weakly compatible system of rank 2
and R is irreducible, then for all l in a set of Dirichlet density 1 and all |,
the residual representation Ty is absolutely irreducible.

If moreover R is neither induced nor Artin up to twist and F denotes
the normal closure of F/Q, then one may additionally assume that the image
TA(G5) contains SLa(F)).

Proof. This is immediate if R is Artin up to twist. If R = Indgi X
then choose a prime v € S of F which splits in F’ and such that Q,(X) has
distinct roots. (If no such prime v existed then we would have X = X', where
1 # o € Gal(F'/F), contradicting the irreducibility of R.) Then for any A
not dividing the residue characteristic of v and modulo which @,(X) still has
distinct roots, we see that 7 is irreducible.

Hence we may assume that R is strongly irreducible. In particular, since
the only connected Zariski closed subgroups of GLg which act irreducibly con-
tain SLo, it follows that the Zariski closure of the image of ) contains SLa (M y)
for all A\. We first prove, replacing M by a finite extension if necessary, that
the Galois representations r) can all be made to land inside GLa(M}).

The image of r) contains an element with distinct eigenvalues. Hence, by
the Cebotarev density theorem, there exists an auxiliary prime v ¢ S such
that r)(Frob,) has distinct eigenvalues. These eigenvalues are defined over a (at
most) quadratic extension of M. By enlarging M if necessary, we deduce that
the images of 7y for all A { N(v) contain an element with distinct eigenvalues
in M), which allows one to conjugate the representation r) to land in M.
By choosing a second auxiliary prime of different residue characteristic and
enlarging M once again, we may ensure the image of r) lies in GLy(M,) for
all \.

Let

si=@rx: Gr — GLops.q)(Qu),
Al

so that § = {s;} form an extremely weakly compatible system with coefficients
Q. Let G; denote the Zariski closure of the image of s;. It is contained in
(RSg GL3) xq Q;. The pushforward of G; to GL2/Q; via any embedding of
M — Q; will contain SLy. We will write G} for the connected component of
the identity of Gy, G?d for the quotient of G; by its center and and G3° for the
(simply connected) universal cover of G4, Then G is unramified for all [ € £
a set of rational primes of Dirichlet density 1 (see [LP92, Prop.8.9]). Also over
Q,, we see that G?d is contained in PGL[QM:Q} and surjects onto each factor.

The following facts are either well known or easy to check in the order
indicated:
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(1) The only morphisms PGLy — PGLy over Q; are the trivial map and
conjugation by an element of PGL2(Q;).

(2) The only morphisms PGL} — PGLy over Q; are the trivial map and
projection onto one factor composed with conjugation by an element of
PGL2(Q)).

(3) If I and J are finite sets then, up to conjugation by an element of
PGL2(Q,)”, the only morphisms PGLL — PGLJ over Q, are induced
by a pair (Jy, ¢) where Jy C J and ¢ : Jy — 1.

(4) If I is a finite set then the automorphism group of PGLI is PGLE x Sy,
where St is the group of permutations of I.

(5) If J is a finite set and G is a connected algebraic subgroup of PGLy
over Q; which surjects onto PGLy via each projection, then G = PGL%
and the inclusion PGL% — PGLg corresponds, up to conjugation by an
element of PGL2(Q;)! to a map ¢ : J — I. (Use induction on #.J and
Goursat’s lemma.)

(6) If M/Q is a finite extension, then (RS, PGLy)xq,Q; = PGL,
and the action of Gq, is via the map Gq, — Sy

Hole ( 761)

omaq, (M,Q)) where G,
acts by left translation.
7) Forms of PGLS are classified by the middle term of the (split) exact
2

sequence of pointed sets

H'(Qu, PGLY/Q) — H'(Qu, Aut(PGL3/Q))) — H'(Qu, Sy)

In order to split over an unramified extension, the image in H'(Qy, S,.) =
Hom(Gq,, Sr) must be unramified and hence land in H'(F;, S,). Every
class in H'(Fy, S,) comes from the image of a group of the form G =
I RSNi PGL;, where NV; / Q; are unramified extensions. On the other
hand, the fibres of [G] € H'(Qy, S,) are inner forms of G, and there
is a unique quasi-split form amongst all inner forms. Since G is quasi-
split, the only forms of PGL5 which are unramified (= quasi-split and
split over an unramified extension) are thus given by []; ngi PGL; for
unramified N;.

(8) Suppose that, for j € J a finite set, M;/Qy is a finite extension, and that
G CIljes ngj PGLs is an unramified connected algebraic subgroup
over QQ; such that, after base change to Q;, the projection of G onto each
factor of [T;cs (RS’ PGLy) xq, Q; & PGLH] Homa (M5 Q0) 5 Gurjective.,

jeJ Q 2)2Qp ] = J
Then there are unramified extensions N;/Q; for 7 in some finite set [
such that G = [];er ngj PGLs2. Moreover for each j € J and each
T : Mj < Q, the projection of the base change of G to Q; to the (j,7)

factor of Hjej(RSQ PGL2) xq, Q; = PGLHJ Homay (M;,Q) is conjugate
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by an element of PGL2(Q;) to projection onto one of the factors of
HiEI(RSgé PGLy) xq Ql o PGL;_L' Homgq, (Ninz)'
Thus for [ € £ there are finite unramified extensions N; ;/Q, for ¢ in some finite
index set I; such that G?d = [Tiey, ngll" PGLs. Moreover for any prime A\ of M
there is an index ¢ € I; and an embedding 7 : IV; ; < M ) such that the projection
of G xq, M) to PGLy/M, is conjugate by an element of PGLa(M)) to to

. Ewd i Hom (N,i7ﬁ )
the projection onto the (i,7) factor of G xq, M) = PGLg‘[ en TR

Let I'; denote the image of s;, let I'; =I'; N G°, let I'2d denote the image
of I'Y in G#. By [Lar95, Theorem 3.17], after replacing £ by a smaller set of
Dirichlet density 1, we may suppose that for [ € £ the group F?d contains a
conjugate of [[;c;, SL2(On,)/{£12}. Thus, for I € £ and A|l, we may suppose
that the image of r)(Gr) in PGLo(M ) contains SLy(Z;)/{+12} and the image
TA(GF) in PGLQ(OM/)\) contains SLQ(F[)/{:Elg}.

Now we may suppose that | € £ implies that [ > 3 so that SLo(F;) is
perfect. Suppose A|l € L. For every g € SLy(F;) the image of 7) contains
an element z(g)g where z(g) € (Op/N\)* and is well defined modulo Z =
(On/AN)* Nim7T. Then z defines a homomorphism SLy(F;) — (On/N)*/Z
which must be identically 1. Thus SLy(F;) is contained in the image of 7).

Finally if we remove finitely many primes from £ we may suppose that
PSLy(F;) is not a sub quotient of Gal(F/F) from which the last assertion
follows. (]

We now prove some further preliminary lemmas concerning enormous and
decomposed generic representations.

LEMMA 7.1.4. If n > 2 and 1l > 2n+ 1 and H is a finite subgroup of
GLo(F)) containing SLo(F)), then Symm" ' H C GLo(F)) is enormous.

Proof. The image of H in PGLy(F;) must be conjugate to PSLy(k) or
PGLy(k) for some finite extension k/F;. (See for instance [DDT97, Thm.
2.47(b)].) Thus

F, Symm"™ ! GLy(k) > H D Symm" ! SLy(k),
and the lemma follows from [GN16, Lem. 3.2.5]. O

LEMMA 7.1.5. Suppose that F//Q is a finite extension with normal closure
FV/Q and that m € Z~g. Suppose also that l > 2m + 3 is a rational prime
and that 7 : Ggp — GLa(F)) is a continuous representation such that T(Gz) D
SLo(Fy). Finally suppose that F'/F is a finite extension which is linearly
disjoint from T over F.

(1) If 1 is unramified in F'/Q then ( & er ad Symm™ T py
(2) (Symm™ 7)(Gpr(¢,)) is enormous.
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(3) Let F' denote the normal closure of F' over Q. Suppose that ad T(Gz) D
PSLy(Fy), then Symm™ 7|q ., is decomposed generic.

(4) Suppose that F'/Q is unramified at | and that no quotient of imadT
is unramified at all primes above I, then Symm™ 7|, is decomposed
generic.

(5) If1 > [F : F), then Symm™7 is decomposed generic.

Proof. The image 7)(Gr) in PGLy(F;) must be conjugate to PSLy(k)
or PGLy(k) for some finite extension k/F;. (See for instance [DDT97, Thm.
2.47(b)].)

For assertion (1), it suffices to treat the case m = 1, in which case
the assertion follows because Gal(F'((;)/F') = (Z/IZ)*, while (adT)(Gp') =
(ad7)(GF) does not surject onto (Z/1Z)*.

For assertion (2), note that 7(Gr/) = 7(Gp) D SL2(F;) and so, because
SLa(Fy) is perfect, we have that 7(Gpr(¢)) D SLo(F;). The assertion now
follows from Lemma 7.1.4.

For assertion (3), it suffices to prove that 7|g,, is decomposed generic
after replacing F/ with some finite extension. We first replace F’ by F'((),
which we can do as PSLy(F;) is perfect. Then, as above, (up to conjugacy)
the image of (ad7)(Gpr) is PSLa(k) or PGLy(k) for some finite extension k/F;.
Perhaps making a further extension, we may assume that ad 7(Gg) = PSLa(k)
for some finite extension k/F;, while maintaining the fact that F'/Q is Ga-
lois. Let H/F’ denote the finite Galois extension with Galois group PSLa(k)
cut out by this projective representation; and let H' denote its normal clo-
sure over Q. Using the simplicity of PSLa(k), we deduce, from Goursat’s
Lemma, that Gal(H'/F’) = PSLy(k)™ for some n. Moreover the conjugation
action of any o € Gal(H'/Q) on Gal(H'/F’") = PSLa(k)™ is via an element of
Aut(PSLa(k)™) = (PGLa(k) x Gal(k/F;))™ x Sy,. (To see this note two things.
Firstly PSLa(k) has automorphism group PGLa(k) x Gal(k/F;) - see for in-
stance [Die51]. Secondly the only normal subgroups of PSLy(k)" are PSLg(k)’
for I C {1,...,n}, as can be seen by induction on n, and so any automorphism
of PSLy (k)™ permutes the n factors of this product.)

There exists an element A € PSLy(F;) C PSLy(k) with distinct Fj-rational
eigenvalues such that the ratio a of any two of these eigenvalues satisfies o’ # 1
for 1 < ¢ < m. By the Cebotarev density theorem, there exists a rational
prime p such that (Frob,) in Gal(H’/Q) is (the conjugacy class of) the el-
ement (A,...,A) in PSLy(k)” = Gal(H'/F'). The image of this element is
trivial in the quotient Gal(F’/Q), and thus, in addition, we see that p splits
completely in F” and (hence) that p = 1 mod [. By construction, the ratio
of any two roots of the characteristic polynomial of Frobenius of any prime
above p in Symm™ 7 are given by o for i = 1,...,m, where « is the ratio
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of two roots of the characteristic polynomial of A. In particular, these ratios
are neither equal to 1 nor p =1 mod [. Hence Symm™ 7|g,, is decomposed
generic.

Assertion (4) follows from assertion (3), because F” is unramified above [

so that (F' N 2 aLd?) /F is unramified above [ and hence F' N et

= e 1. C . —=kerad 7
and F”’ is linearly disjoint from F over F.
—=kerad” —skerad?”

For assertion (5), note that [N F  F | <1, so that we have

(ad F)(Gﬁnfker aa7) DO PSLo(F;). However, being Galois extensions of F', the
—=kerad T

fields F and F are linearly disjoint over Fn , so that again the
result follows from assertion (3). O

err ad7

LEMMA 7.1.6. Suppose that 7 : Ggp — GL,(F;) is decomposed generic and
absolutely irreducible. Let E/Q be a Galois extension which is linearly disjoint
from the Galois closure offkerr(cl) over Q. Then 7|, is decomposed generic
and absolutely irreducible.

Proof. The irreducibility claim is clear. Write H for the Galois closure
of er”(g) over Q. As in the proof of Lemma 4.3.2, there exists a conjugacy
class of elements o € Gal(H/Q) such that any rational prime unramified in H
whose Frobenius element corresponds to o is decomposed generic for 7. By
assumption, Gal(HE/Q) = Gal(H/Q) x Gal(F/Q), and now any rational
prime whose conjugacy class in Gal(H E/Q) is of the form (0,1) € Gal(H/Q) x
Gal(E/Q) will be decomposed generic for 7|, O

LEMMA 7.1.7.

(1) Suppose that K/Qq is an unramified extension and that r : Gxg —
GL2a(Z)) is a crystalline representation with Hodge—Tate numbers {0,1}
(for each embedding K — Q). Either 7|3 = 1ag ! or7, = wZTQlEBwZTQl.

(2) Suppose that K is a number field in which 1 is unramified and that
r: Gxg — GLa(Z)) is a crystalline representation with Hodge—Tate
numbers {0,1} for each embedding K — QL If the image of T contains
SLo(Fy), then the only subextension offkerr/K unramified at all primes
above [ is K itself.

Proof. The first part is presumably well known, but for lack of a reference
we give a proof. (Note the slight subtlety that the result would be false if we
replaced the coefficients Z; with the ring of integers in an arbitrary extension
of Qq, which is one obstacle to finding a suitable reference.) Recall that r" arises
from the Tate module of a height 2 [-divisible group G over Ok (see [Bre00]
and [Kis06].) Moreover G # G° # (0), as otherwise we would have Hodge-Tate
numbers {1,1} or {0,0}. Thus there is a finite flat group scheme H over the
ring of integers of the completion of the maximal unramified extension of K
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of order 2 killed by I giving rise to 7¥. Moreover H # H° # (0). By [Ray74,
Prop. 3.2.1, Thm. 3.4.3], either 7§ = 1@¢, " or 7|, 2wy Gw;y or 73 2 1@1
or ?ﬁf > Efl @ Efl. If ] =2 then 1 = Efl and we are done, so suppose that
[ > 2. Then since det r is a crystalline character with all Hodge-Tate weights
equal to 1, we have detr|;, = el_l, so the last two possibilities cannot occur,
and the first part follows.

Consider the now the second part. It follows from the first part that the
image under det7 of any inertia group above [ is F}*, and so im7 = GLy(F;).
Let A denote the subgroup of GLa(F;) generated by the images of all inertia
groups above [. It is a normal subgroup of GLy(F;) which surjects under the
determinant map onto F;*. But any normal subgroup of GL2(F;) either contains
SLo(F;) or is central, and so A = GLo(F;) and the second part follows. O

A very (or extremely) weakly compatible system R is defined to be pure
of weight w if

e for each v € S, each root a of Q,(X) in M and each 2 : M — C we
have
al? = q;
e and for each 7: F < M and each complex conjugation ¢ in Gal(M/Q)
we have
Hey={w—h: heH,}.
If R is rank one then it is automatically pure. (See [Ser98].) The same is true
if R is induced from an extremely weakly compatible system of characters over
a finite extension of F', or if R is Artin up to twist.

If R is pure of weight w and if + : M — C, then the partial L-function
L%(1R, s) is defined as an analytic function in ®s > 1 +w/2. If R is pure and
regular and if v is an infinite place of F', then the Euler factor L,(+R,s) can be
defined (see [BLGGT14, §5.1]).

The very (or extremely) weakly compatible system R is defined to be
automorphic if there is a regular algebraic, cuspidal automorphic representation
m of GL,(AF) and an embedding ¢ : M < C, such that if v € S, then
7y is unramified and rec(m,| det |1(,1_n)/ 2)(F]robv) has characteristic polynomial
1(Qu(X)). Note that if R is automorphic, then L%(+R, s) defines an analytic
function in s > 0 which, for n > 1, has analytic continuation to the whole
complex plane. It follows from [Clo90, Thm. 3.13] that if R is automorphic,
then for any embedding 2’ : M < C there is a regular algebraic, cuspidal
automorphic representation m, of GL,(Ar) such that if v ¢ S, then 7y,

is unramified and rec(my ,| det |1(,17")/ 2)(Frobv) has characteristic polynomial
/(Qu(X)).

Suppose that F'is a CM field and 7 is a regular algebraic cuspidal auto-
morphic representation on GLy, (A ) of weight (a,;). From the main theorems
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of [HLTT16] and [Varl4] we may associate to 7 an extremely weakly compatible
system

Rz = (My, Sr, {QW,U(X)}> {7"7r,/\}> {Hﬂ',T})a
where

M, C C is the fixed field of {o € Aut(C) : 77> = 7°°};

Sy is the set of primes of F' with , ramified;

Qr(X) is the characteristic polynomial of rec(m,| det ]gl_n)/ 2)(Frobv);
Hyr={ar1+n—-1,...,a;,}

We now note that this can be upgraded to a very weakly compatible system

under some hypotheses.

LEMMA 7.1.8. Let F' be a CM field and let w be a regular algebraic cuspidal
automorphic representation on GL,(AF) of weight § = (ar;). Suppose that the
following hypothesis holds:

(DGI) (decomposed generic and absolutely irreducible) For a set of primes 1 of
Dirichlet density one, the representations

Taa: Grp — GLn(OM/)\)

are decomposed generic and absolutely irreducible for all X | I.

Then Ry is a very weakly compatible system.
Now suppose that n = 2. Then furthermore:

(1) Ifara+ar2 is even for any T, then hypothesis (DGI) holds. In particular,
this applies if 7w is of weight (0)7;.

(2) More generally, either hypothesis (DGI) holds, or Ry is Artin up to
twist.

Proof. The first part of the lemma follows from Theorem 4.5.1. Indeed,
the assumption that m is not Eisenstein is implied (for a set [ of density one) by
hypothesis (DGI). Conditions (3), (4), and (5) hold automatically hold for large
enough [. Similarly, [ will be unramified in F' for large enough [. Conditions (1),
(2), and (6), can always be satisfied after after making a solvable Galois base
change F'/F (using [AC89]) which is disjoint over F from the Galois closure
of "7 over Q and in which all primes dividing either S or [ are unramified.
(We are free to make a different such base change for each prime [.) In
particular, one can take the compositum of F' with a Galois extension F/Q
that is the compositum of various imaginary quadratic fields in which all primes
dividing S or [ split completely for (1), (2), and the compositum with a large
totally real cyclic extension F/Q in which [ splits completely for condition (6),
where E may be easily be chosen to be linearly disjoint over Q from FrerTea (Q)-
By Lemma 7.1.6, hypothesis (DGI) is preserved under such base extensions.
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Condition (8a) holds by the existence of 7, and finally, condition (7) holds for
for a set of [ of density one, by hypothesis (DGI).

We now assume that n = 2. Suppose first that R, = Indgg X for
some quadratic extension F/F and some very weakly compatible system of
characters X’ of Gg. In this case it is not too hard to see that R is very weakly
compatible. (X is strongly compatible and there is an algebraic grossencharacter
x of A% /E* such that X = R,. By the strong multiplicity one theorem we
see that 7 @ || det||~'/2 must equal the automorphic induction of y. Thus
H..=H, 1 H, ., where 7" and 7" are the two extensions of 7 to E. We
conclude that R, is very weakly compatible.) Suppose second that R, is
strongly irreducible. By Lemma 7.1.3 and part (5) of Lemma 7.1.5, we deduce
that hypothesis (DGI) holds and so R is very weakly compatible.

By Lemma 7.1.2 we are reduced to the case that R, is Artin up to twist.
Now assume that R is Artin up to twist by some compatible system of one
dimensional representations x). Since this system is de Rham, the Hodge—Tate
weights of the determinant of r, y will be even for all 7. However, the Hodge-
Tate weights of the determinant are given by > pecpy h = 1+ a;1 + a2 for
each 7. But this can only happen if 1 + a,1 + a2 is even, i.e. if a;1 + ar2 is
odd. O

Remark 7.1.9 (Eliminating the possibility that R is Artin up to twist).
It is almost certainly the case that R is not Artin up to twist. The reason
our results do not immediately eliminate this possibility is all our local-global
compatibility results for v|l are contingent on the decomposed generic assump-
tion. However, there do exist compatible families of Artin representations
none of whom are decomposed generic. Take, for example, an imaginary qua-
dratic field E and a Galois extension L/E with Gal(L/E) = 2.Ag, the unique
non-split central extension of Ag by Z/2Z. Now choose F/E inside L/F so
that Gal(L/F) = 2.A5 C 2.A4g. Then L/F gives rise to a compatible system of
Artin representations over F with image 2.A5. However, if v € F' is a prime
which splits completely, then it also splits completely in the Galois closure of F,
which contains L. But this forces py(Frob,) to be trivial for any such prime,
and thus p) is never decomposed generic for any .

If 29 is the canonical embedding M, < C, then L®(1gR,s) = L(r, s). If
moreover R is pure, and hypothesis (DGI) of Lemma 7.1.8 holds, then for each
infinite place v of F' we have L;(1Ry,s) = Ly(m,s). (This follows from the
definition of L,(10Rr,s) in [BLGGT14, §5.1] together with the determination
of the Hodge—Tate weights of R, in Lemma 7.1.8, and, in the case that F is
totally real, the main result of [CLH16].)

The following is our main theorem.
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THEOREM 7.1.10. Suppose that F/Fy is a finite Galois extension of CM
fields. Suppose also that FS"Oid is a finite Galois extension of F' and that Lg s
a finite set of rational primes. Suppose moreover that I is a finite set and that
fori € T we are given m; € Z~qg and a strongly irreducible rank 2 very weakly
compatible system of l-adic representations of Gp

Ri = (Mi7 Si, {Qi,U(X)}7 {7’1'7)\}, {{07 1}})

with S; disjoint from Ly.

Then there is a finite set L O Lo of rational primes; a finite CM Galois ex-
tension, FSUHces | B unramified above L, such that FS'Hes js Galois over Fy; and
a finite Galois extension F*°4/F containing FS"Oid, which is linearly disjoint
from Fsvfices oyper I with the following property: For any finite CM extension
F'/F containing FS'MCS which is unramified above L and linearly disjoint from
Favold ouer F the representations Symm™ Rila,, are all automorphic, and

each arises from an automorphic representation unramified above Ly.

We have phrased this in a rather technical way in the hope that it will be
helpful for applications. However let us record a simpler immediate consequence.

COROLLARY 7.1.11. Suppose that F' is a CM field and that the 5-tuple
R = (M,S,{Qu(X)},{ra},{{0,1}}) is a strongly irreducible rank 2 very weakly
compatible system of l-adic representations of Gg. If m is a non-negative
integer, then there exists a finite Galois CM extension F'/F such that the
weakly compatible system Symm™ R|q,, is automorphic.

Before proving Theorem 7.1.10 in the next section, we record some conse-
quences.

COROLLARY 7.1.12 (Potential modularity and purity for rank two compati-
ble systems over CM fields of weight zero and their symmetric powers). Suppose
that F is a CM field and that the 5-tuple R = (M, S,{Qv(X)}, {rx}, {H;}) is
an irreducible rank 2 very weakly compatible system of l-adic representations of
Gp such that Hr = {0,1} for all 7. Suppose further that m is a non-negative
integer. Then:

(1) R is pure of weight 1.

(2) The partial L-functions L° (: Symm™ R, s) have meromorphic continua-
tion to the entire complex plane.

(3) For v € S there are Euler factors L,(1Symm™ R, s) = P, ,.0(q, )71,
where Py, , . is a polynomial of degree at most m +1 and q, is the order
of the residue field of v, such that

A(2Symm™ R, s) = L° (2 Symm™ R, s) H L,(:Symm™ R, s) H L,(:Symm™ R, s)

v]oo ves
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satisfies a functional equation of the form
A(2Symm™ R, s) = AB*A(2 Symm™ RY,1 — s).

Suppose further that R is strongly irreducible and that m > 0. Then
L*(2 Symm™ R, s) is holomorphic and non-vanishing for Re(s) > m/2+ 1, and
in particular has neither a pole nor a zero at s =m/2 + 1.

Proof. If R is not strongly irreducible, then by Lemma 7.1.2 there is a
quadratic extension F’/F and a weakly compatible system X of characters of
Gpr such that R = Indgi . &X. In this case X is pure, necessarily of weight 1,
and automorphic. The corollary follows easily.

So suppose that R is strongly irreducible. Then for any positive integer m
we see from Theorem 7.1.10 that there is a finite Galois CM extension F,,/F
and, for any embedding 2 : M — C, a cuspidal automorphic representation
T,m of GLy41(AF,,), such that for each w|v ¢ S the roots of the characteristic

polynomial of rec(m, .| det |;m/ 2)(Flrobw) are the images under ¢ of the roots

of QSymmm 'R|GFm ;W (X)

For the first part of the corollary we combine the ‘Deligne-Langlands
method’ with our theorem: because detR is pure of weight 2, it suffices to
show that for every v € S, for every root o of Qr ,(X), and every 2 : M < C,
we have

| < qi/ 2,

It even suffices to show that for every m > 0, for every v € S, for every root 3
of Qsymm™ Rr.v(X) and every ¢ : M < C we have

18] < g™V,
(For then || < qql,/2+1/(2m).
m > 0, for every wlv € S, for every root v of Qgymmm Rlap w(X), and every

) Equivalently, it suffices to show that for every

1: M — C, we have

|Z’Y’ < qu)er1)/2.
If X, ,,, denotes the central character of 7, ,,,, then we see that det Symm™ R|g,. |
is equivalent to Rxm,mudet m/2 and so
X, (2)] =1

for all x € A;m. Thus 7,4, is unitary and, applying the bound of [JS81, Cor.
2.5] (which applies since each local factor of 7, ,,, is generic, by the final Corollary
of [Sha74]), we see that the image under ¢ of all the roots of the characteristic

polynomial of rec(m, ) (Frob,,) have absolute value < qilv/ ?. Thus the absolute

value of the image under : of any root of Qsymmm ®|q, w(X)is < ql(,]m+1)/2.
The first part of the corollary follows.
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The rest of the corollary follows on using the usual Brauer’s theorem
argument (together with known non-vanishing properties of automorphic L-
functions as in [JS77]) as in [HSBT10, Thm. 4.2]. O

COROLLARY 7.1.13 (Sato—Tate for Elliptic curves over CM fields). Suppose
that F is a CM field and that E/F is a non-CM elliptic curve. Then the numbers

(14 #k(v) = #E(k(v)))/2y/ #k(v)
are equidistributed in [—1,1] with respect to the measure (2/m)v/1 — t2 dt.

Proof. This follows from Corollary 7.1.12 and the corollary to [Ser98, Thm.
2], as explained on page 1-26 of [Ser98|. O

COROLLARY 7.1.14 (Ramanujan conjecture for weight 0 automorphic
representations for GL(2) over CM fields). Suppose that F is a CM field and
that  is a regular algebraic cuspidal automorphic representation of GLa(AF)
of weight (0);. Then, for all primes v of F, the representation m, is tempered.

Proof. The result is immediate for all primes v such that m, is a twist of
the Steinberg representation. At the remaining places, since m, is not a twist
of the Steinberg representation, it follows from the main theorems of [HLTT16]
and [Varl4], together with [TY07, Lem. 1.4 (3)], that it suffices to prove that
if v 11, then the restriction to G, of any of the [-adic Galois representations
associated to 7 is pure in the sense of [TY07, §1]. By [TY07, Lem. 1.4 (2)] and
solvable base change, we can reduce to the case that m, is unramified, in which
case the result follows from Corollary 7.1.12 (1), after noting by Lemma 7.1.8(1))
that the compatible system R associated to 7 is very weakly compatible of the
expected Hodge—Tate weights. O

COROLLARY 7.1.15. Suppose that F' is a CM field and that the 5-tuples
R = (M, S {Qu(X)},{r\},{{0,1}}) and R' = (Mlv S’ {QL(X)}’ {TS\}7 {{0,1}})
are a pair of strongly irreducible rank 2 very weakly compatible systems of l-adic
representations of Gr. Suppose further that m and m’' are non-negative inte-
gers, and that R and R’ are not twists of each other. Then L%(:Symm™ R ®
Symmm/ R',s) is meromorphic for s € C, has no zeroes or poles for Re(s) >
1 +m/24+m'/2, and satisfies a functional equation relating L°(2 Symm™ R @
Symm™ R',s) and L°(1Symm™ RY @ Symm™ (R)V,1 4+ m +m/ — s).

Proof. This follows from Theorem 7.1.10 by the same argument as [Har09]
(for example Theorem 5.3 of bid). (As usual, this argument involves the
known non-vanishing results of Rankin—Selberg convolutions as established in
Theorem 5.2 of [Sha81]). O

7.2. Proof of the main potential automorphy theorem.
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7.2.1. Preliminaries. Before turning to the proof of Theorem 7.1.10, we
record some preliminaries.

If L/Qq is a finite extension and X (resp. x) is an unramified character of G,
valued in F}* (resp. Z;), we will write H}(GL, Fi(ex)) (vesp. H(GL, Zy(erx)))
for the kernel of the composite

HYGp,Fi(gx)) — HY (G, Fi(g)) = L™ /(L) — Z/1Z
(resp.
HY(Gr, Zy(erx)) — H' (G o, Zy(er)) = lim L™/ (L) — Zy),

where the latter maps are induced by the valuation map. Note that if y (resp.
X) is non-trivial, then

H{(GL,Fi(ex)) = H(GL,Fi(&X))
(resp.
H}(GL, Zi(ex)) = H'(GL, Zi(ex)))-
Also note that
HY (G, Fi(a))/H}(GL, Fi(g)) = F.
LEMMA 7.2.2. The map
H}(Gr, Zi(ex)) — H}(GL, Fi(&X))

1s always surjective.

Proof. We will consider three cases. If the reduction of x is non-trivial,
we may suppress the f and the cokernel is simply H2(G', Z;(e;x))[l]- Because
H°(GpL,Qi/Zi(x™ 1)) = (0), Tate duality shows that this cokernel is zero.

Suppose now that y is non-trivial but that  is trivial. Using duality as
above, we have an exact sequence

Hl(GL, Zl(EZX)) — HI(GL,FZ(EZ)) — F;, — (0)
The image of H (G, Zi(e1x)) = H}(GL, Z(e1x)) in H' (G, F;(g)) is contained
in H}(GL,FZ(Q)). As HI(GL,Fl(El))/H}(GL,FZ(Q)) = Fy, we conclude that
this image equals H}(G L, Fi(§)), as desired.
Suppose finally that xy = 1. In this case the assertion of the lemma is just

the surjectivity of
lim OF /(07)" — OF /(OF )\ O

We will need a slight strengthening of [BLGGT14, Thm. 3.1.2], which we
now state. We will use the notation and definitions from [BLGGT14]. The
proof of this theorem given in [BLGGT14] immediately proves this variant also.

PROPOSITION 7.2.3. Suppose that:
e F/Fy is a finite, Galois extension of totally real fields,
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e T is a finite set,

o for each i € L, n; is a positive even integer, l; is an odd rational prime,
and 1; :Qli = C,

o [&id/F s q finite Galois extension,

o L is a finite set of rational primes which are unramified in F and not
equal to l; for any i € Z, and

o 7;: Gr — GSp,, (Fy,) is a mod l; Galois representation with open kernel
and multiplier Elli_"i, which is unramified above L.

Then we can find finite Galois extensions FS'HS | Fy and Faoid/Q, such that

o psuffices contains F and is linearly disjoint from F avold pavold e [
o fpvold g g Favoid gre linearly disjoint over Q, and

o [rsuffices ;o totally real and unramified above L;

and which has the following property: For each finite totally real extension
Fy/Fseffices which is linearly disjoint from F aVOidFlaVOid over F' and for each
i € I, there is a reqular algebraic, cuspidal, polarized automorphic representation
(i, xi) of GLy, (Apr) such that

(1) (Fliﬂi (W'L)7Fli,li (Xi)gll;ni) = (Fi|GF1 7€l1;ni);
(2) m; is v;-ordinary of weight 0.
(In the notation of the proof of [BLGGT14, Thm. 3.1.2] one must choose
N not divisible by any prime in £; M;/Q unramified at primes in £ and primes
dividing N; ¢ unramified in Fv°4(¢,y) and not in £; ¢; unramified above £
and all rational primes that ramify in F2°d; and I’ ¢ £ and not ramified in
Favoid e set Fpveid — ler I T;(g‘l/). It is linearly disjoint from F2¥°'d gver Q
because no rational prime ramifies in both these fields. We choose F'/F({n)"
to be linearly disjoint from Faveid pavoid (¢ )+ over F((n)t with F//F(Cy)*
unramified above £. The last choice is possible because 7; and 7, are unramified
above L, so that 7; becomes isomorphic to V,,,[A]((N — 1 — n;)/2)o and 7
becomes isomorphic to V;,, [N]((N — 1 —n;)/2)o over some unramified extension
of F(¢y); for any prime v above £. We take Fs'ffices to be the field F’. The
fields Fsuffices and fravoid pavoid gre Jinearly disjoint over I because Faveid pavoid
and F({y)* are linearly disjoint over F, because, in turn, all primes dividing
N are unramified in F2veid pavoid - The point P € T(F ") also provides a point
of T(Fl) Moreover 7;(GF, (¢,)) is adequate because F} is linearly disjoint from

e (¢r) over F.)

COROLLARY 7.2.4. Suppose that M is a finite set of positive integers, that
E/Q is a non-CM elliptic curve, and that L is a finite set of rational primes at
which E has good reduction. Suppose also that F*°'4/Q is a finite extension.

Then we can find
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e a finite Galois extension F39/Q linearly disjoint from F*°4 over Q,
and

e a finite totally real Galois extension Fsffices /Q unramified above L such
that Fsufices g5 linearly disjoint from F aVOidFQaVOid over Q;

which have the following property:

For any finite totally real extension F'/F suffices uhich is linearly disjoint
from F3¥°d over Q, and for any m € M, there is a reqular algebraic, cuspidal,
polarizable automorphic representation m of GLy11(Apr) of weight (0),; such
that for some, and hence every, rational prime | and any 1 : Q; = C we have

m Vv ~J
Symm™ rg |G, = ri(m).
Moreover, w is unramified above any prime where E has good reduction.

Proof. We may, and will, suppose that F2°4/Q is Galois. Choose a
rational prime [ > max,,ear 2(m + 2) such that E has good ordinary reduction
at [, T, has image GLo(F)), | € £, and [ is unramified in F27°d. (By [Ser81,
Thm. 20], the condition that E is ordinary at [ excludes a set of primes of
Dirichlet density 0. By the main result of [Ser72], each of the other conditions
excludes a finite number of primes.) Note that ler "Bl contains ¢; and, by part
2 of Lemma 7.1.7, is linearly disjoint from F2¥°'d gver Q.

Choose an imaginary quadratic field L which is unramified at all primes
in £, at all primes where E has bad reduction, and all primes which ramify in
Favoid " and in which [ splits. Also choose a rational prime ¢ ¢ £ U {l} which
splits as qu; in L, which is unramified in F2"'4 and at which E has good

reduction.
If m € M is even also choose a character
¢m : GL — QIX
such that

® 1, is crystalline above [ with Hodge-Tate numbers 0 at one place above
[ and m + 1 at the other.
o al# (/05 (Cr).
e 1, is unramified above £ and all primes which ramify in F#°d and all
primes at which E has bad reduction.
o S, = ¢ MY
([BLGGT14, Lem. A.2.5] tells us that this is possible.) The representation
IndgzQ ¥, has determinant e;(m+1). (This is true on G, by the construction

of ¥, and true on complex conjugation because m is even.)

G
. —kerInd L 4,
Let Lo denote the compositum of the Q % P for m € M even. Let Ly

denote the maximal sub-extension of Ly ramified only at [ and let T" denote the
set of primes other than [ that ramify in Ls. Then Lo ﬂler "Bl =T, ﬂler B

¥
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Let Lg = LngerTE ', We will now show that F2°ld is linearly disjoint from Ls
over Q; the argument is somewhat involved, and the reader may find it helpful
to refer to the diagram of field extensions below.

Let My denote the maximal subfield of Lg in which the primes of T" are all
unramified. Then M; > Q7" (

places where E has bad reduction), and M; N Ly = L; and M; = LlakeﬁE’l.
Thus

because T, can only be ramified at | and

I

Gal(Q“ "™ /(L1 N Q™)) x Gal(L1/(L1 N Q"))
Gal(Mi/Ly) x Gal(M; /Q 751,

Gal(M; /(L1 N Q")

12

As Gal(L1/Q) is soluble, we see that Llﬂﬁkerm '€ Q(¢) and that Gal(Ml/le”E’l)
is soluble and hence that Gal(M;/(Li N ler "21Y) contains a unique copy of
SLo(F;) (because this latter group is perfect, and in particular admits no solv-
able quotient) and this copy is therefore normal in Gal(M;/Q). Its fixed field

is L1(G1)-

Let H be the subgroup of Gal(M;/Q) generated by the inertia groups
above [. The group H maps surjectively to Gal(le”E '/Q) (because H is
normal, and the only subfield of ler "Bl unramified at [ is Q itself, by Lemma
7.1.7) and so must contain the unique copy of SLo(F;). Thus the maximal
sub-extension M of L3 in which [ and all elements of T are unramified is
contained in L;i((;). This latter field is only ramified above [ and so My = Q.
Finally we deduce that F2"°!d is linearly disjoint from L3 over Q (using that
all of the primes in 7'U {I} are unramified in Fvoid).

/
N

kerrEl Ll Cl

SLQ\/\/
N

Ll N lerrE,l

Q
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If m € M is odd, set
Tm = Symm™ 7’1\5,1 :Gq — GSpm—f—l(QZ)'

It has multiplier ¢, ™, is unramified above £, and is crystalline and ordinary at
[ with Hodge—Tate numbers {0, 1,...,m}. If m € M is even, set

Tm = (Symm™ 7%,[) ® Indg? U, -

As the representation (Symm™ 7%71) is orthogonal with multiplier ¢, ™, we see
that

T'm : GQ — GSpQ(m+1) (Ql)

with multiplier e . It is unramified above £ and it is crystalline and
ordinary at [ with Hodge-Tate numbers {0, 1,...,2m + 1}.

We apply Proposition 7.2.3 to F' = Fy = Q, {ry, : m € M}, L and Favoidp,,.
producing fields F{void and psuffices Qe fgvoid — pavoidp, - Then Fgveid g
linearly disjoint from F2°id over Q, and F®fices ig linearly disjoint from
FavoidFQavoid over Q.

Suppose that F’/Fsuffices js a finite totally real extension linearly disjoint
from F§V°ld over Q. Then Symm™ SLy(F;) C Symm™ F%,Z(GLF’(Q))’ and so for
m € M the tautological representation of the subgroup of Symm™ FE,I(G LF'(C))
generated by its elements of I-power order is absolutely irreducible. If m €
M is even, then ?m|GLF,(

—(2m+1)
!

o is the direct sum of two absolutely irreducible

constituents. The group Gal(LsF’ /ler?E’lLF ") acts by different characters on

these two constituents, and Gal(ler "ELLE /ler "B interchanges these two
characters (consider the action of inertia above q). Thus 7, |c,., . is absolutely
irreducible. It follows from [BLGGT14, Prop. 2.1.2] that, for m € M odd or
even, T, (Gpr(¢,)) is adequate.

Combining Proposition 7.2.3 with [BLGGT14, Thm. 2.4.1], we deduce
that r,, is automorphic for m € M. It follows (using, in the case that m is
even, [BLGGT14, Lem. 2.2.4] and the argument of [CHT08, Lem. 4.2.2]) that
Symm™ 7%,1|pr is automorphic. This finishes the proof of the corollary. ([

7.2.5. The main proof. Finally we turn to the proof of Theorem 7.1.10.

Proof of Theorem 7.1.10. Choose a non-CM elliptic curve E/Q with good
reduction above Ly. Choose distinct rational primes /; and Il and a prime A;|ly
of M; for each ¢ € Z such that:

Assumption 7.2.6.

(1) Iy splits completely in each M;.

(2) The image of Gr on El[l;] contains SLy(Fy,), and 7; ,(Gr) contains
SLo(Fy,) for each i € 7.

(3) 13 and Iy are unramified in F'.
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(4) E has good reduction above [y and [s.
(5) {1 and [y lie under no prime of any S;.
(6) l1,l > 2m; + 3 for all 7.

This is possible because all the conditions are satisfied for a set of primes
of Dirichlet density 1 (using Lemma 7.1.3), except for the first condition for s,
which is satisfied for a set of primes of positive Dirichlet density.

Set £ = Ly U{ly,l2}. The weakly compatible system of characters

(M;, Siy i, {qy ' Qin(0)}, {er det i 2}, {{0}})

has all Hodge-Tate numbers 0 and so there is a character ¢; : Gp — M, with
open kernel unramified outside S; such that detr; y = sz_l for all A (a prime
of M; with residue characteristic ). There is a sequence

Hom(Gp, M) -2 Hom(Gp, M) -% H2(Gp, {£1}) = Brp[2] < ®,Brr, [2,

which is exact at the second term. The element 0v; is non-trivial only at
places v € S;. We can find a soluble Galois totally real extension Fj/Q,
unramified above £ and linearly disjoint over Q from the normal closure F{void

of F(?VOiderr(FE’ll *[Timins) over Q, such that for each v € | J;c7 S;, the rational

prime p, below v has inertia degree in Fy" divisible by 2[F, : Qp,]. (See for

instance [CHTO08, Lem. 4.1.2].) Then we see that, for each i € Z, 8@Z)i|GFF+ is
1

trivial so that there is a continuous homomorphism
75X
2 2
such that ¢; = wi‘GFFj’ For v|l € L we see that ¢i|IFF+,v = 1. By the

Grunwald-Wang theorem (see Theorem 5 of Chapter X of [Aﬁ’OQ]), we can find
a continuous character ¢; : G, Fr {#1} such that ¢;0; is unramified at all
places above L. Replacing ¢; by ¢;d; we may suppose that ¢; is unramified at
all places above L. Set

1

R;=Rle_ ., ®o;

FF;F

e app orollary 7.2.4 to {m; : 1 € Z}, E, L an i . We obtain

Wi ly Corollary 7.2.4 t € T}, E, £ and FU T We obt

a finite Galois extension F§Vo'd /Q linearly disjoint from F¥4 " over Q and a
finite totally real Galois extension F+suces /Q which is unramified above £ and
linearly disjoint from F{void pavold it gyer Q. Set Favold = pavoid pavoid Tt jg
Galois over Q, and certainly contains ey *ILimin) C F#void by definition.
Moreover it is linearly disjoint from Fj" Frsuffices oyer Q (see the diagram of
field extensions later in this proof).

Let ‘/F;,)\‘ denote the vector space underlying F{L‘)\i and give it a non-

7

degenerate symplectic pairing, which F; »; Will then preserve up to multiplier
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€l_21. Let Y;/FF;" denote the moduli space of elliptic curves D along with
isomorphisms a1 : E[l;] — DI[l1] and ag : V. — Dlly], which preserve
i

symplectic pairings. Let X;/F +F1+ denote the restriction of scalars of Y.

If v is an infinite place of F¥F}", then a point of X;((F+F}"),) is the same
as an (FF;"),-point of ¥; and hence X;((F*+F;"),) # 0.

Suppose that w is a place of F1+F above Lo U {l;}. Then we can find a
positive integer f such that 77 ) (Froby,) ™/ ~ 7, (Frob,)!. Thus E gives rise
to a point of Y; over the unramified extension of degree f of (Fj F),,. Hence
X; has a point over an unramified extension of (F;" FT), for every place v
above Lo U {l1}. Moreover this point corresponds to an elliptic curve with good
reduction.

Now suppose that v is a place of F1+ FT above ly. We will show that X;
has a rational point over an unramified extension of (Fj"F*), corresponding
to an elliptic curve with good reduction. It suffices to show that Y; has a point
over an unramified extension of (F;"F),, for every prime w of F;"F over v and
that this point corresponds to an elliptic curve with good reduction. Because

Q, = M; »,, part 1 of Lemma 7.1.7 implies that the restriction F;’)‘i|G(F1+F)w

must have one of the following two forms:

(1) The induction from the unramified quadratic extension of (Fj" F),, of
wy, 12(5 , where ¢ is the unramified quadratic character.

*
(2) ( )0< e ) where X is unramified and where the extension class is
lo
peu ramifié in the sense that it lies in

H}<G(F1+F)wv Fi,(€,X%) C Hl(G(FfF)wv Fi, (€,X%))-

(While the statement of Lemma 7.1.7 does not prescribe the direction of the
extension in the second possibility, nor specify that it is peu ramifié, these follow
easily from the connected—étale sequence for the finite flat group scheme H
considered in the proof of Lemma 7.1.7.) In the first case, let D/(F; F),, be an
elliptic curve with good supersingular reduction. Choose a positive integer f
such that 7, (Frob,)?f = (=13)f mod ;. Then D provides a point of ¥; over
the unramified extension of (F;"F),, of degree 2f.

In the second case, let D/k(w) be an ordinary elliptic curve and let
Y Grw) = le denote the character by which Gy, acts on the Tate module
T,,D. If L/F,, is a finite extension then, by Serre-Tate theory, liftings of D to
Oy, are parametrized by H* (G, Z,(e,1072)) = H}(GL, Z1,(e1,72)), and we
shall write D, for the lifting corresponding to a class e. (Note that =2 always
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has infinite order.) Then

_ =1
TDely = ( 6121(/)’ % )

and the extension class is the image of e in H}(GL,Fl,Z (QQJ_Q)). Choose a
positive integer f such that ¥/ = 1 and ¢/ = 1 mod I, and FEyll(Froblz)f =1
and Frob! =1 on D[l1](k(w)). Let L/F, denote the unramified extension of
degree f, and let e € H}(GL, Z,,(e1,7~2)) lift the negative of the class of Tl
in H}(GL, k(w)(€,X?)) (the existence of such an e follows from Lemma 7.2.2).
Then D./L has D.[li] = E[li] and 7p, 1, = (7} ,,)"-

It follows (for instance, by [BLGGT14, Prop. 3.1.1]) that there is a finite
extension Fy"/F;"F* such that:

F5 is Galois over Fj.

F5 is totally real.

All primes above £ are unramified in F,” /F T, and D; has good reduction
at all primes in L.

Fyf is linearly disjoint over F;" F+ from Faveid ptsuffices i,

e J]; X; has an FQJr -rational point, i.e. there exist elliptic curves D; over Fb
such that D;[l1] = Ell]|cy, and D;[la] = F;,/\i%z@‘

Set preuffices — @ +’SumceSF; F, a CM extension of F' which is unramified
above £ and Galois over Fyp. We now show that this is linearly disjoint
from Fa°id gver F; the reader may find it helpful to consult the diagram of
field extensions below. As F1suffices is Jinearly disjoint from F Favold gyer
Q, we see that F+FF FHsuffices ig Jinearly disjoint from FyF Favold over FTF,",
and so Fy Frsuffices ig linearly disjoint from FifFavold over FTF". Thus
Feuffices g Jinearly disjoint from Fj" F2¥°ld gver FF;". On the other hand F;"
Favoid gyer Q and so Favold

is linearly disjoint from is linearly disjoint from
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FF;" over F. We conclude that F suffices j5 linearly disjoint from F¥°id over F.
Fsuf‘ﬁces F+Favoid

7N
N

+,suffices p+
F Ff ———

N\

F+F+F+ suffices F1+ F

F1+ Favoid

F-i—,sufﬁces - Q

Suppose that F’/F is a finite CM extension containing F suffices 41 d which is
unramified above £ and linearly disjoint from F2v°d gver F. By Corollary 7.2.4,
there are regular algebraic, cuspidal, polarizable automorphic representations
m; of GL14m, (A pr) unramified above £ and of weight (0);; such that for any

1:Q = C we have
Symm™ g, |¢5,, = 71y (7).

Applying Theorem 6.1.1 (the conditions on the residual representations are
satisfied by parts (1), (2) and (4) of Lemma 7.1.5 and Lemma 7.1.7), we see
that there are regular algebraic, cuspidal automorphic representations 7, of
GL14m, (Aps) unramified above £ and of weight (0); and ¢ : Q;, = C such that

m; V /
Symm™ rp, 1, ‘GF/ = 741171(7”)7
and so, for some 1 : 612 =~ C, we have
m; \ /
Symm™" TDi7l2‘GF/ = 7y ().

Applying Theorem 6.1.1 again (the conditions on the residual representations
again being satisfied by parts (1), (2) and (4) of Lemma 7.1.5 and Lemma 7.1.7)
we see that there is are regular algebraic, cuspidal automorphic representations
7} of GL14m, (A p) unramified above £ and of weight (0),;, and +: Q;, = C
such that

Symm"™ 7y |a,, = 11, (7).

Untwisting completes the proof of Theorem 7.1.10. [l
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