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Abstract

We consider elliptic curves over global fields of positive characteristic with two distinct marked non-
trivial rational points. Restricting to a certain subfamily of the universal one, we show that the average
size of the 2-Selmer groups of these curves exists, in a natural sense, and equals 12. Along the way, we
consider a map from these 2-Selmer groups to the moduli space of G-torsors over an algebraic curve,
where G is isogenous to SL4

2, and show that the images of 2-Selmer elements under this map become
equidistributed in the limit.
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1 Introduction

Let K be a global field. To any elliptic curve E/K and integer n ≥ 1 not dividing the characteristic of K,
one can attach the n-Selmer group

Seln(E) = ker(H1(K,E[n]) →
∏
v

H1(Kv, E)).

∗This research was partially conducted during the period the author served as a Clay Research Fellow. The author re-
ceived funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No 714405).
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The cohomology groups here are Galois cohomology, and the product is over the set of all places v of the
global field K. The n-Selmer group then fits into a short exact sequence of finite abelian groups

0 //E(K)/nE(K) //Seln(E) //TS(K,E)[n] //0 .

Since it is often easier to compute Seln(E) than the group E(K)/nE(K), this provides a useful tool for
studying the group of rational points E(K). However, computing Seln(E) for reasonably complicated curves
E, even when an algorithm is known, can require a large amount of effort. For these reasons, it is of interest
to understand the behaviour of the groups Seln(E) on average. Recent years have seen striking progress in
problems of this type; for some work of particular relevance to this paper, we refer the reader to any of the
papers [dJ02, BS15, HLHN14].

In this paper, we prove new results about the average size of the 2-Selmer group of elliptic curves
over global fields of positive characteristic. Such a field is, by definition, the function field K = Fq(X) of an
algebraic curve over a finite field. We will consider the universal family of elliptic curves with two marked
rational points and calculate the average size of the 2-Selmer groups of the curves in this family satisfying
certain conditions. We will accomplish this by relating these 2-Selmer groups to the invariant theory of a
representation constructed and studied in [Tho13], and then counting sections of certain associated vector
bundles on X.

In order to state our main theorems precisely, we must introduce some notation. If E/K is an elliptic
curve, we can associate its relatively minimal regular model pE : E → X with identity section O : X → E .
The isomorphism class of the line bundle LE = (R1pE,∗OE)

⊗−1 is an invariant of E, and there are only
finitely many elliptic curves over K up to isomorphism with a given LE , this number tending to infinity as
degLE → ∞. This means we can use the invariant degLE to order elliptic curves over K, for example in
order to define the average size of the 2-Selmer group. (To further motivate this, recall that if X = P1

Fq
and

K = Fq(t), then degLE = N if and only if E can be described by a minimal Weierstrass equation

y2 = x3 + a(t)x+ b(t),

where a(t), b(t) ∈ Fq[t], deg a(t) ≤ 4N , and deg b(t) ≤ 6N ; see [Mir81, Corollary 2.5].)
If L is a line bundle on X, then we write XL for the finite set of isomorphism classes of triples

(E,P,Q) as follows:

1. E/K is an elliptic curve such that LE
∼= L⊗2 and the fibres of pE are all of type I0 or I1.

2. P,Q ∈ E(K) are distinct non-trivial rational points such that sections O,P,Q : X → E associated to
the origin of E and the points P,Q, respectively, do not intersect.

Provided that the characteristic of K does not divide 6, an elliptic curve E with two non-trivial marked
points can be represented by an equation

Y (XY + 2q4Z
2) = X3 + p2X

2Z + p4XZ2 + p6Z
3, (1.1)

which sends the marked points, together with the origin, to the line at infinity. The curves in XL are exactly
those for which the discriminant ∆(p2, . . . , p6) of this equation vanishes to order at most 1 everywhere, when
viewed as a section of H0(X,L⊗24); see §2 below.

We can now state our first main theorem.

Theorem 1.1. Suppose that charK > 19. The limit

lim
degL→∞

∑
(E,P,Q)∈XL

| Sel2(E)| × |Aut(E,P,Q)|−1 × |E(K)[2]|−1

|XL|

exists and equals 12.
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Remark 1.2. 1. This result is what one might expect given known results about the 2-Selmer groups
of elliptic curves without marked points: for the curves in our family, there is a ‘trivial subgroup’
A(E,P,Q) ⊂ Sel2(E), generated by the classes of the points P , Q, and which generically has size 4.
It follows that the remainder Sel2(E)/A(E,P,Q) should have average size 3. For those who prefer an
additive decomposition, we find that the (weighted) average size of Sel2(E) equals the average size of
the trivial subgroup plus the Tamagawa number τ(G) of the reductive group G defined below.

2. We believe that the weighting of Selmer elements by automorphisms is natural; similarly for the
weighting by K-rational 2-torsion points (which can be thought of as K-rational automorphisms of
the trivial 2-covering [2] : E → E). In fact, the contribution of E(K)[2] can be suppressed: for the
curves we consider, the groups E(K)[tors] are trivial (because they inject into the product of fibral
component groups, which our hypotheses imply are trivial; see [Shi91]).

3. The restriction on the characteristic arises because we need to apply Jacobson–Morozov style results
to the Lie algebra over Fq of type D4, for example in the construction of the Kostant section (see
Proposition 3.3 below). It may be possible to relax this restriction slightly.

Let G = (SO4 × SO4)/∆(µ2), where SO4 is the split special orthogonal group over Fq, and µ2 is its
centre. A key role in our proof of Theorem 1.1 is played by a family of canonically defined maps

inv = inv(E,P,Q) : Sel2(E) → G(K)\G(AK)/
∏
v

G(OKv ), (1.2)

that we call ‘invariant’ maps. In fact, our consideration of these maps leads to the following generalization
of Theorem 1.1, which is a kind of equidistribution result:

Theorem 1.3. Suppose that charK > 19. Let f : G(K)\G(AK)/
∏

v G(OKv ) → R be a bounded function,
and let τG denote the Tamagawa measure on G(K)\G(AK)/

∏
v G(OKv ). Then the limit

lim
degL→∞

∑
(E,P,Q)∈XL

∑
x∈Sel2(E)−A(E,P,Q)

f(inv x)× |Aut(E,P,Q)|−1 × |E(K)[2]|−1

|XL|

exists and equals
∫
g∈G(K)\G(AK)/

∏
v G(OKv )

f(g) dτG.

Taking f = 1 to be the constant function, we recover Theorem 1.1 (after accounting for the average
number of elements in the group A(E,P,Q), which is a simple task). In general, Theorem 1.3 can be interpreted
as saying that the invariants of non-trivial Selmer elements of elliptic curves in XL become equidistributed
in G(K)\G(AK)/

∏
v G(OKv ) as degL → ∞. It would be very interesting to get a better understanding of

this phenomenon, which persists in other situations (for example, in the case of 2-Selmer groups of elliptic
curves without marked points, in which case G should be replaced by the group PGL2). Can one relate
Theorem 1.3 to existing conjectures about statistics of ranks of 2-Selmer groups, as in [PR12]?

The proofs of Theorem 1.1 and Theorem 1.3 rely on a connection between the universal family of
elliptic curves (E,P,Q) with two marked points and a certain representation (G,V ) which was analyzed in
[Tho13] from the point of view of Vinberg theory, and which is constructed using the adjoint group over Fq

of type D4. The link here exists because the family of curves (1.1) is a miniversal deformation of the simple
curve singularity of type D4. This connection reduces the problem of counting elements of Selmer groups to
that of counting orbits in certain representations of V . Using the map inv described above, we reduce this
to a problem of counting sections of certain vector bundles over X.

An interesting point in our proof is the calculation of the image under (1.2) of the trivial elements of
the 2-Selmer group. We can describe these images explicitly using the principal cocharacter of the ambient
group H of type D4 (inside which the pair (G,V ) is constructed); see Lemma 5.7. This gives a quantitative
version of the intuitive statement that ‘trivial elements appear far into the cusp of V ’.

Aside from the intrinsic interest of results like Theorem 1.1, one of our motivations was to understand
how the techniques of Bhargava–Shankar for counting integral orbits in coregular representations (see e.g.
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[BS15]) can be transferred to this function field setting. Instead of reduction theory we use the Harder–
Narasimhan (or Shatz) stratification of the space G(K)\G(AK)/

∏
v G(OKv ) by the canonical reduction

of G-torsors (an idea implicit in [HLHN14]). After some reinterpretation, we find that the methods of
Bhargava–Shankar are still very effective. In particular, the technique of ‘cutting off the cusp’ works in a
very similar way (compare e.g. [Tho15, §5] and the proof of Theorem 5.9 below).

We have restricted ourselves to pointed curves (E,P,Q) satisfying conditions 1. and 2. above, since
this simplifies our analysis of the invariant map (1.2). From the point of view of the invariant theory of
(G,V ), it corresponds to restricting to orbits with square-free discriminant ∆. It would be possible to remove
this restriction, at the cost of a more detailed analysis of integral orbits. For example, the invariant map
would become multi-valued, since the uniqueness of integral representatives (see Theorem 5.5) does not hold
in general. Compare [BS15, §3.2] for the kinds of problems that arise.

The preprint [BH], made available after this paper was written, treats the average sizes of Selmer
groups of a number of families of elliptic curves with marked rational points, considered over the rational
numbers. The F2 family studied there is the same (up to a change of variable) as the one studied here, and
indeed the coregular representation used to study it is also the same. We note that in op. cit. the authors
obtain only an upper bound of 12 for the average size of the Selmer group. In the function field setting, we
are able to sidestep all difficulties involved in sieving to Selmer elements by using the results of [Poo03] (a
tactic also used in the paper [HLHN14]), which is why we are able to obtain an exact average.

We now describe the structure of this paper. In §2, we introduce the universal family of elliptic
curves with two marked points, and study their projective embeddings and integral models. In §3, we
introduce the representation (G,V ) and describe its invariant theory. We also introduce the discriminant ∆
and the important notion of trivial orbits in G(K)\V (K); these are the orbits that will eventually correspond
to elements of the trivial subgroup A(E,P,Q) of the 2-Selmer group. We also give some useful criteria for
elements in V (K) either to have vanishing discriminant, or to lie in a trivial orbit. In §4, we describe the
Harder–Narasimhan stratification of G(K)\G(AK)/

∏
v G(OKv ) (at the level of points only) and the relation

between summing over strata and integrating over the adelic points of parabolic subgroups of G. Finally, in
§5, we describe the relation between the pair (G,V ) and the family of curves (1.1), and exploit this to prove
our main theorems Theorem 5.9 and Theorem 5.11.

1.1 Acknowledgments

I would like to thank Tom Fisher and Beth Romano for useful conversations, and the anonymous referees
for their careful reading of this paper.

1.2 Notation

In this paper, we will generally use the letter K to denote a global field of positive characteristic, therefore
the function field Fq(X) of a smooth, projective, geometrically connected curve X over Fq. If v is a place
of K, then we will write Kv for the completion of K at v, OKv for the ring of integers of v, and ϖv ∈ OKv

for a choice of uniformizer. We will write ordKv : K×
v → Z for the corresponding normalized discrete

valuation, k(v) = OKv/(ϖv) for the residue field, and qv = |k(v)| for the cardinality of the residue field.
We will generally fix a separable closure Ks/K and separable closures Ks

v/Kv, together with compatible
embeddings Ks ↪→ Ks

v . We then define ΓK = Gal(Ks/K) and ΓKv = Gal(Ks
v/Kv). There are canonical

maps ΓKv → ΓK . We let κ(v) denote the residue field of Ks
v , which is an algebraic closure of k(v). We write

IKv ⊂ ΓKv for the inertia group.

We write ÔK =
∏

v OKv
for the maximal compact subring of the adele ring AK =

∏′
v Kv. We will

write | · |v : K×
v → R>0 for the valuation satisfying |ϖv| = q−1

v , and ∥ · ∥ =
∏

v | · |v : A×
K → R>0 for the adelic

norm, which satisfies the product formula ∥γ∥ = 1 for all γ ∈ K×. If Y is a integral smooth scheme over Kv,
and ωY is a non-vanishing differential form of top degree on Y , then we write |ωY |v for the corresponding
measure on Y (Kv).

If S is a scheme, a reductive group over S is a smooth group scheme G → S with geometric fibres
which are (connected and) reductive. If G is a group scheme over S which acts on another scheme X → S,
then for x ∈ X(S) we write ZG(x) for the scheme-theoretic stabilizer of x. If Z ⊂ X is a closed subscheme,
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then we write ZG(Z) and NG(Z) for the scheme-theoretic centralizers and normalizers of Z. If G is a
reductive group over a field then we write Z0(G) for the identity component of the centre ZG of G. Lie
algebras will be denoted using gothic letters (e.g. LieG = g).

If G is a smooth group scheme over Fq, and K = Fq(X), then we write µG for the right-invariant

Haar measure on G(AK) which gives measure 1 to the open compact subgroup G(ÔK) ⊂ G(AK). If G is
semisimple, then we will write τG for the Tamagawa measure on G(AK). These two measures are related by
the formula (see [Wei95]):

τG = qdimG(1−gX)

[∏
v

∫
G(OKv )

|ωG|v

]
µG,

where ωG is a non-vanishing invariant differential form of top degree on G (hence defined over Fq) and gX
denotes the genus of X.

If Y is any Fq-scheme and k/Fq is a field extension, then we write Yk = Y ×Spec Fq Spec k for the
base extension and Y (k) for the set of k-points.

2 Elliptic curves with two marked points

Let k be a field of characteristic not dividing 6. We consider tuples (E,P,Q), where E is an elliptic curve
over k (with origin point O ∈ E(k)) and P,Q ∈ E(k) are distinct, non-trivial marked points.

Such pointed curves have a distinguished class of plane embeddings which are different to the usual
Weierstrass embeddings, being defined by the linear system associated to the degree 3 divisor O + P + Q.
Indeed, this linear system is very ample, so embeds E into the projective plane P2

k in such a way that the
points O, P , Q are collinear. If X,Y, Z are the co-ordinates on P2

k then we can assume, after a projective
transformation, that O, P , Q are given respectively by [0 : 1 : 0], [1 : 1 : 0], and [−1 : 1 : 0]. The co-ordinate
system is then uniquely determined up to substitutions of the form X ; aX + bZ and Y ; aY + cZ with
a ∈ k×, b, c ∈ k. It is easy to check that there is a unique such substitution with a = 1 leading to an equation
of the form

Y (XY + 2q4Z
2) = X3 + p2X

2Z + p4XZ2 + p6Z
3. (2.1)

We define the associated polynomial f(x) = x4 + p2x
3 + p4x

2 + p6x + q24 , and ∆(p2, p4, q4, p6) = disc f ∈
Z[p2, . . . , p6]. The following is elementary:

Lemma 2.1. Let p2, p4, q4, p6 ∈ k, and let E be the plane curve over k defined by the equation (2.1). Then E
is smooth if and only if ∆(p2, p4, q4, p6) ̸= 0. The assignment (E,P,Q, t) 7→ (p2, p4, q4, p6) defines a bijection
between the following two sets:

• The set of tuples (E,P,Q, t), where E is an elliptic curve over k and P,Q ∈ E(k) are distinct non-trivial
rational points, and t is a basis for H0(E,OE(O)/OE). These tuples are considered up to isomorphism
(i.e. isomorphisms φ : E → E′ of elliptic curves which preserve the other data).

• The set of tuples (p2, p4, q4, p6) ∈ k4 such that ∆(p2, p4, q4, p6) ̸= 0.

Under this bijection, a tuple (E,P,Q, λt) (λ ∈ k×) corresponds to (λp2, λ
2p4, λ

2q4, λ
3p6).

Proof. The only thing to note is that the bijection is normalized by the requirement that Y/Z ∈ H0(E,OE(O+
P +Q)) has image in OE(O)/OE equal to t.

A similar story works over a more general base:

Proposition 2.2. Let S be a Z[1/6]-scheme, and let p : E → S be a (smooth, proper) family of elliptic curves
equipped with identity section O ∈ E(S) and sections P,Q ∈ E(S) such that on every fibre, the associated
points are distinct and non-trivial. Let L = (p∗[OE(O)/OE ])

⊗−1. Then L is an invertible OS-module, and
there are canonically determined sections p2 ∈ H0(S,L), p4, q4 ∈ H0(S,L⊗2), and p6 ∈ H0(S,L⊗3), such
that E is isomorphic to the subscheme of P(L ⊕ L⊕OS) defined by the equation

Y (XY + 2q4Z
2) = X3 + p2X

2Z + p4XZ2 + p6Z
3, (2.2)
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where (X,Y, Z) is the co-ordinate system relative to the decomposition L⊕L⊕OS. Moreover, ∆(p2, . . . p6) ∈
H0(S,L⊗12) is an everywhere non-vanishing section.

Conversely, suppose given an invertible OS-module L, together with sections p2, . . . , p6 as above such
that ∆(p2, p4, q4, p6) is a non-vanishing section of L⊗12. Then the relative curve defined by the equation (2.2)
is an elliptic curve with marked points at infinity that are distinct and non-trivial in each fibre.

Proof. The direct image p∗(Ω
1
E/S) is locally free of rank 1. By Grothendieck–Serre duality, there is a canonical

isomorphism R1p∗OE
∼= p∗(Ω

1
E/S)

⊗−1. If R ∈ E(S), then there is a short exact sequence

0 //OE
//OE(R) //OE(R)/OE

//0, (2.3)

which leads to an isomorphism p∗[OE(R)/OE ] ∼= R1p∗OE . The pairing p∗[OE(R)/OE ] × p∗(Ω
1
E/S) → OS

can be described as follows: it sends a pair (g, ω) to the residue of the meromorphic differential gω along R.
We are free to localize, so we can assume that S = SpecA is affine and that p∗(Ω

1
E/S) is a free

A-module of rank 1. Let ω be a basis element; by the above this determines, for any R ∈ E(S), a dual basis
element fR ∈ H0(E,OE(R)/OE), and hence an isomorphism H0(E,OE(R)/OE) ∼= A. It follows that the
short exact sequence

0 //OE
//OE(O + P +Q) //OE(O + P +Q)/OE

//0 (2.4)

gives rise to a long exact sequence of finite A-modules

0 //A //H0(E,OE(O + P +Q)) //A3 η //A //0, (2.5)

where the map η is summing co-ordinates. We choose functions x, y ∈ H0(E,OE(O + P + Q)) to map to
(0, 1,−1) and (−2, 1, 1) in A3, respectively. Then x, y are uniquely determined up to addition of constants.
We have 10 elements

1, x, y, x2, xy, y2, x3, x2y, xy2, y3 ∈ H0(E,OE(3(O + P +Q))).

Note that x3 and xy2 have polar divisors 3P + 3Q and 2O + 3P + 3Q, respectively, and that x3 − xy2 ∈
H0(E,OE(2O+2P +2Q)). Continuing in this fashion, we see that there is a unique A-linear relation of the
form

xy2 + a1y
2 + a2xy + a3y = x3 + a4x

2 + a5x+ a6 (2.6)

for constants a1, . . . , a6 ∈ A. We are free to add constants to x, y, and there is a unique way to do this in
order to get a1 = a2 = 0, giving an equation

y(xy + 2q4) = x3 + p2x
2 + p4x+ p6 (2.7)

which is uniquely determined by (E,P,Q) and our chosen basis element ω ∈ p∗(Ω
1
E/S). The proposition now

follows from this and the observation that the affine curve defined by the equation (2.7) is smooth if and
only if the discriminant of the polynomial f(x) = x4 + p2x

3 + p4x
2 + p6x+ q24 is non-zero.

We can use this theory to describe integral models of such triples (E,P,Q) over a Dedekind scheme.
Let S be a Dedekind scheme on which 6 is a unit, let K = K(S), and let L be an invertible OS-module.
Suppose given sections p2 ∈ H0(S,L), p4, q4 ∈ H0(S,L⊗2), and p6 ∈ H0(S,L⊗3) such that ∆(p2, p4, q4, p6) ∈
H0(S,L12) is non-zero. Then the equation (2.2) defines a proper flat morphism p : E → S with smooth
generic fibre (and indeed, singular fibres exactly above those points of S where ∆ vanishes).

We call the data of (L, p2, . . . , p6) minimal if we cannot find an invertible subsheaf M ⊂ L such that
the sections p2, . . . , p6 all come fromM. The minimal data is uniquely determined by the triple (E,P,Q) over
K, in the following sense: if (L, p2, . . . , p6) and (M, p′2, . . . , p

′
6) are two sets of minimal data associated to E,

then we can find an isomorphism α : L → M of invertible OS-modules such that α(p2, . . . , p6) = (p′2, . . . , p
′
6).

Indeed, it follows from Lemma 2.1 that we can find an isomorphism αη : Lη → Mη over the generic point
η of S such that α(p2, . . . , p6) = (p′2, . . . , p

′
6). Choosing an isomorphism Lη

∼= K, we see that both L and
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M can be characterized as the smallest invertible subsheaves of K containing the sections p2, . . . , p6 in their
respective tensor powers.

We refer to the morphism p : E → S associated to minimal data (L, p2, . . . , p6) as a minimal integral
model of the triple (E,P,Q). By the above discussion, it is also uniquely determined up to isomorphism
by (E,P,Q). We can describe this minimal model in elementary terms in case K = Fq(X) is the function
field of a smooth, projective, geometrically connected algebraic curve over Fq. Let (E,P,Q) be an elliptic
curve over K with two distinct non-trivial marked rational points, and choose an arbitrary equation of type
(2.2) with p2, . . . , p6 ∈ K. Then for each place v of K there is a unique integer nv satisfying the following
conditions:

1. The tuple (ϖnv
v p2, ϖ

2nv
v p4, ϖ

2nv
v q4, ϖ

3nv
v p6) has co-ordinates in OKv .

2. The integer nv is minimal with respect to this property.

We then define L ⊂ K to be the invertible subsheaf whose sections over a Zariski open U ⊂ X are given by
the formula

L(U) = K ∩

[∏
v∈U

ϖ−nv
v OKv

]
.

Then p2, . . . , p6 are sections of the tensor powers of L, and the tuple (L, p2, . . . , p6) is minimal.
In this paper we will ultimately only be interested in those curves (E,P,Q) for which the associated

minimal data (L, p2, . . . , p6) satisfies the following two conditions:

1. The line bundle L is a square: L ∼= M⊗2.

2. The discriminant ∆(p2, . . . , p6) ∈ H0(S,L12) ∼= H0(S,M24) is square-free, in the sense that its zeroes
are multiplicity free.

The reason for this restriction is that these are exactly the curves which are related to orbits of squarefree
discriminant in a certain representation, to be considered in the next section. We now give a geometric
characterization of curves of square-free discriminant.

Lemma 2.3. Let R be a DVR in which 6 is a unit, let K = FracR, and let S = SpecR. Let (E,P,Q) be
an elliptic curve over K together with distinct non-trivial marked points P,Q ∈ E(K). Let ∆ ∈ R denote
the discriminant of a minimal integral model of (E,P,Q) over S, therefore determined up to R×-multiple.
Then ordK ∆ ≤ 1 if and only if the following conditions are satisfied:

1. The minimal regular model of E over S has special fibre of type I0 or I1 (in Kodaira’s notation, see
for example [Tat75]).

2. The reductions modulo mR in the minimal regular model of E of the points P,Q ∈ E(K) are distinct
and non-trivial.

Proof. We begin with some general remarks. A cubic equation of the form (2.2) with coefficients in R
defines a genus one model of degree 3, in the sense of [CFS10]. Moreover, an easy computation shows that
the discriminant ∆ = ∆(p2, . . . , p6) defined above coincides with the discriminant of a genus one model of
degree 3 defined in [CFS10]. It then follows from [CFS10, Lemma 3.2] that we have ordK ∆ = ordK ∆E+12ℓ,
where ∆E is the usual minimal Weierstrass discriminant of the curve E and ℓ ≥ 0 is an integer called the
level of the genus one model. In particular, if ordK ∆ ≤ 1, then we must have ordK ∆ = ordK ∆E ∈ {0, 1},
showing that E has reduction of type I0 or I1. If Z is a minimal integral model of (E,P,Q) and E is the
minimal regular model of E, then [Sad12, Theorem 4.1] shows that there is an isomorphism E ∼= Z, hence
the points O,P,Q have distinct images under the map E(R) → E(R/mR).

Now let us assume that E has reduction of type I0 or I1, with the points O,P,Q remaining distinct
in the special fibre of the minimal regular model. We are going to do an integral version of the proof of
Proposition 2.2. Let E denote the minimal regular model of E. Then (by cohomology and base change
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and [Liu02, Ch. 9, Lemma 4.28]) H1(E ,OE) is a free R-module of rank 1. We choose an isomorphism
H1(E ,OE) ∼= R. For any point A ∈ E(R), the short exact sequence

0 //OE //OE(A) //OE(A)/OE //0

gives rise to an isomorphism H0(E ,OE(A)/OE) ∼= H1(E ,OE) ∼= R. Therefore the short exact sequence of
sheaves

0 //OE //OE(O + P +Q) //OE(O + P +Q)/OE //0

gives rise to a long exact sequence

0 //R //H0(E ,OE(O + P +Q)) //R3 //R //0,

where the map R3 → R is summing co-ordinates. We can therefore choose x, y ∈ H0(E ,OE(O + P + Q))
which map to (0, 1,−1) and (−2, 1, 1), respectively, in R3; then the elements 1, x, y ∈ H0(E ,OE(O+P +Q))
span this free R-module. The elements

1, x, y, x2, xy, y2, x3, x2y, xy2, y3 ∈ H0(E ,OE(3(O + P +Q)))

generate this free rank 9 R-module. Considering once more their images in H0(E ,OE(3O + 3P + 3Q)/OE),
we see that they must satisfy a unique R-linear relation of the form

xy2 + a1y
2 + a2xy + a3y = x3 + a4x

2 + a5x+ a6 (2.8)

for constants a1, . . . , a6 ∈ R. We are again free to add constants to x, y, and there is a unique way to do this
in order to get a1 = a2 = 0, giving an equation

y(xy + 2q4) = x3 + p2x
2 + p4x+ p6. (2.9)

Let Z ⊂ P2
R denote the closed subscheme defined by the homogenization of the equation (2.9). Then Z is

normal and R-flat, and we get a morphism E → Z. Since E has irreducible special fibre, Zariski’s main
theorem (see [BLR90, Ch. 2, Theorem 2’]) shows that this morphism is in fact an isomorphism. It is now
a very special case of [Sad12, Theorem 4.1] that ordK ∆(p2, p4, q4, p6) equals the valuation of the minimal
discriminant of E, which is at most 1. This concludes the proof.

If D is a divisor on X, then we will write XD for the set of isomorphism classes of triples (E,P,Q)
of elliptic curves over K with two marked points such that the minimal data (L, p2, . . . , p6) satisfies L ∼=
OX(2D), and the discriminant ∆(p2, . . . , p6) ∈ H0(X,L⊗12) ∼= H0(X,OX(24D)) is square-free. Lemma 2.3
shows that this is the same as the set XOX(D) defined in §1.

We also write BD = OX(2D) ⊕OX(4D) ⊕OX(4D)⊕OX(6D), a vector bundle over X, and write
H0(X,BD)sf ⊂ H0(X,BD) for the set of sections (p2, p4, q4, p6) ∈ H0(X,BD) for which the discriminant
∆(p2, . . . , p6) ∈ H0(X,OX(24D)) is square-free. We can summarize the results of this section as follows:

Corollary 2.4. The map ι : H0(X,BD)sf → XD, (p2, . . . , p6) 7→ (E,P,Q) which sends sections of H0(X,BD)sf

to the curve given by the equation (2.2) is surjective, each fibre having finite cardinality equal to |F×
q | ·

|Aut(E,P,Q)|−1.

Proof. The only thing left to check is the cardinality of the fibres. Let F×
q act on H0(X,BD) by the formula

λ · (p2, p4, q4, p6) = (λp2, λ
2p4, λ

2q4, λ
3p6). Lemma 2.1 shows that F×

q acts transitively on the fibres of ι, and
that the stabilizer of any point is Aut(E,P,Q). The result follows.

3 Invariant theory

In this section, we introduce the semisimple group G and its representation V , the orbits of which will
eventually be interpreted as elements of the 2-Selmer groups of elliptic curves of the type considered in §2.
For the moment, Fq denotes a finite field of characteristic prime to 6. We will soon impose more severe
restrictions on the characteristic.

8



3.1 Preliminaries

Let J denote the 4× 4 matrix with 1’s on the anti-diagonal and 0’s elsewhere, and define a block matrix

Ψ =

(
J 0
0 J

)
∈ M8×8(Z). (3.1)

We write SO8 for the special orthogonal group over Fq defined by Ψ, H = SO8/µ2 for its adjoint group, and
Hsc = Spin8 for its simply connected double cover. We write h = LieH. We write θ for the inner involution
of H given by conjugation by the element

s = diag(1,−1,−1, 1, 1,−1,−1, 1). (3.2)

We define G = (Hθ)◦ (i.e. the identity component of the θ-fixed subgroup of H), and V = hdθ=−1. There is
an isomorphism G ∼= (SO4 × SO4)/∆(µ2), where SO4 is a split special orthogonal group and ∆(µ2) is the
diagonally embedded centre.

We write T ′ for the (split) diagonal maximal torus of SO8. We can identify T ′ = G4
m via the formula

(a, b, c, d) ∈ G4
m 7→ diag(a, b, b−1, a−1, c, d, d−1, c−1) ∈ T ′.

We write T for the image of T ′ in H. We observe that T is also a maximal torus of G. The group Hθ

is disconnected. Its component group Hθ/G can be computed as follows: let WH = NH(T )/T denote the
Weyl group of of H, WG = NG(T )/T the Weyl group of G. Then the map ZWH (s) → Hθ/G is surjective,
with kernel equal to ZWG

(s) (see [Hum95, §2.2]). A calculation shows that the component group is therefore
isomorphic to Z/2Z× Z/2Z. Explicit representatives can be given by the elements σ, τ ∈ WH satisfying

σ(a, b, c, d) = (a, b, c−1, d−1), τ(a, b, c, d) = (b, a, d, c), (3.3)

which generate a subgroup W0 ⊂ WH which projects isomorphically to Hθ/G.
We introduce sets of simple roots as follows. A set RH ⊂ X∗(T ) of simple roots for H consists of

the characters
α1 = a/b, α2 = b/c, α3 = c/d, α4 = cd. (3.4)

We let α0 = ab, the highest root of H. A set R ⊂ X∗(T ) of simple roots for G consists of the characters

a1 = ac, a2 = a/c, a3 = bd, a4 = b/d. (3.5)

The group G is isogenous to SL4
2, and the group W0 ⊂ WH normalizes the action of WG on X∗(T ) and

leaves invariant the set {a1, . . . , a4}. Its action on this set is faithful, and identifies W0 with the Klein
4-group {e, (12)(34), (13)(24), (14)(23)}. The characters of T appearing in the representation V are exactly
the combinations

1

2
(±a1 ± a2 ± a3 ± a4),

and can thus be thought of as the vertices of a hypercube. Each weight space is 1-dimensional and we thus
have dimFq V = 16. We write ΦV ⊂ X∗(T ) for the set of weights appearing in V . Any vector v ∈ V admits

a decomposition v =
∑

a∈ΦV
va. There is a decomposition ΦV = Φ+

V ⊔ Φ−
V coming from the decomposition

of the roots of H into positive and negative roots. We write n1, . . . , n4 for the basis of X∗(T )Q dual to
a1, . . . , a4. We define a partial order on ΦV by setting a ≥ b if ni(a) ≥ ni(b) for each i = 1, . . . 4. We label
these weights in ΦV as follows:
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# 2n1 2n2 2n3 2n4

1 1 1 1 1
2 -1 1 1 1
3 1 -1 1 1
4 1 1 -1 1
5 1 1 1 -1
6 -1 -1 1 1
7 -1 1 -1 1
8 -1 1 1 -1
9 1 -1 -1 1
10 1 -1 1 -1
11 1 1 -1 -1
12 -1 -1 -1 1
13 -1 -1 1 -1
14 -1 1 -1 -1
15 1 -1 -1 -1
16 -1 -1 -1 -1

12

16

6

13
9

15

7

14

3

10

2

8
4

11

1

5

The figure above shows the Hasse diagram of ΦV with respect to this partial order. The weight
labelled 1 is α0. If M ⊂ ΦV is a subset, we will write λ(M) ⊂ ΦV −M for the set of maximal elements of
ΦV −M , i.e. the set

{a ∈ ΦV −M | ∀b ∈ ΦV −M,a ≤ b ⇒ a = b}.

It is useful to note that the action of W0 preserves the partial order on ΦV , and consequently commutes
with application of the function λ.

In the paper [Tho13], we recalled part of the invariant theory of the pair (G,V ) over a field of
characteristic 0. In this case, the most important results were established by Kostant–Rallis [KR71]. They
have been extended to positive characteristic in many cases by Levy [Lev07]. We now summarise this. We
particularly draw the reader’s attention to the notions of semisimple and regular element, and to the notion
of the little Weyl group – they play an important role throughout this paper.

Proposition 3.1. Let k/Fq be a field, and let ks/k be a separable closure.

1. The natural maps Fq[V ]G → Fq[V ]H
θ

and Fq[h]
H → Fq[V ]G are isomorphisms, and all of these rings

are isomorphic to polynomial algebras over Fq on four homogeneous generators of degrees 2, 4, 4, and
6, respectively. We write ∆ ∈ Fq[V ]G for the restriction of the standard discriminant polynomial ∆h of
the Lie algebra h. (By definition, ∆h(X) ∈ Fq[h]

H is the first non-zero coefficient of the characteristic
polynomial of adX.) It is non-zero.

2. Let B = SpecFq[V ]G, and let π : V → B denote the natural map. Then π has reduced, Hθ-invariant
fibres.

3. Let v ∈ Vk. Then ZGk
(v) and ZHk

(v) are smooth over k.

4. Let c ⊂ Vk be a k-vector subspace. We call c a Cartan subspace if there exists a maximal torus C ⊂ Hk

such that θ(t) = t−1 for all t ∈ C and LieC = c. All such subspaces are conjugate under the action of
G(ks).

5. Let c ⊂ Vk be a Cartan subspace. Then the map NGk
(c) → W (Hk, c) = NHk

(c)/ZHk
(c) is surjective,

and the natural restriction map k[V ]G → k[c]W (Hk,c) is an isomorphism. In this case we call the group
W (Gk, c) = NGk

(c)/ZGk
(c) ∼= W (Hk, c) the little Weyl group of c.

6. Let v ∈ Vk. Then the following are equivalent:

(a) v is semisimple as an element of hk.

(b) Gk · v ⊂ Vk is closed.
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(c) v is contained in a Cartan subspace of Vk.

Any such element is called a semisimple element of Vk.

7. Let v ∈ Vk. Then the following are equivalent:

(a) dimZHk
(v) = dimT .

(b) dimZGk
(v) = 0.

Any such element is called a regular element of Vk. The condition of being regular is open, and we
write V reg ⊂ V for the open subscheme of regular elements.

8. Let b ∈ B(k), and let Vb = π−1(b) ⊂ Vk. Then Vb(k
s) contains regular semisimple elements if and only

if ∆(b) ̸= 0. In this case, G(ks) acts transitively on Vb(k
s) and for any v ∈ Vb(k

s), zhk
(v) = LieZHk

(v)
is the unique Cartan subspace of Vk containing v.

Proof. Rather than give detailed references to [Lev07], we simply refer the reader to the introduction of that
paper, which features a thorough summary of the results therein.

The group Gm acts on V by scalar multiplication, and there is an induced Gm-action on the quotient
B which makes the morphism π : V → B equivariant. We write Brs ⊂ B for the open subscheme where ∆
is non-zero. By the proposition, π−1(Brs) = V rs is the open subscheme of regular semisimple elements of V .

3.2 Singular and trivial orbits

Let k/Fq be a field. We are now going to give simple criteria in terms of vanishing of certain matrix entries
for elements v ∈ Vk either to satisfy ∆(v) = 0, or to be trivial in a sense we will soon define.

Lemma 3.2. Let k/Fq be a field, and let v =
∑

a∈ΦV
va ∈ Vk.

1. Let S ⊂ {1, 2, 3, 4} be a two-element subset, and suppose that va = 0 if ni(a) > 0 for each i ∈ S. Then
∆(v) = 0.

2. Suppose that va = 0 if ni(a) < 0 for at most one i ∈ {1, 2, 3, 4}. Then ∆(v) = 0.

Proof. We will use the following criterion: let p ⊂ h be a parabolic subalgebra which contains t = LieT ,
and let v ∈ pdθ=−1

k . Then ∆(v) = 0. Indeed, if ∆(v) ̸= 0 then v is regular semisimple, hence its centralizer
c = zhk

(v) is a Cartan subalgebra of hk which is contained in Vk. We have dimk c ≤ dimk zpk
(v) ≤ dimk c,

hence c = zpk
(v) and c ⊂ pdθ=−1

k . Let C ⊂ Hk denote the unique maximal torus with LieC = c. We have
dimZPk

(v) ≥ dimC, hence ZPk
(v) = C is smooth and C ⊂ Pk. There is a unique Levi subgroup L ⊂ Pk

containing C, which is necessarily stable under the action of θ. The centre ZL is contained in C, on which
θ acts by t 7→ t−1. On the other hand, L projects isomorphically and θ-equivariantly to the Levi quotient
of Pk, and θ acts on the centre of this quotient trivially (because it acts trivially on T ). This contradiction
implies that we must have ∆(v) = 0.

If S ⊂ ΦV is a subset, we write VS ⊂ V for the subspace given by the equations va = 0 (a ∈ S).
The four maximal proper parabolic subalgebras p ⊂ h which contain the Borel subalgebra corresponding to
the root basis −RH have pdθ=−1 = VS for the following sets of weights:

S ={1
2
(a1 + a2 ± a3 ± a4)}, {

1

2
(a1 ± a2 ± a3 + a4)}, {

1

2
(a1 ± a2 + a3 ± a4)}, and

{1
2
(a1 + a2 + a3 + a4),

1

2
(−a1 + a2 + a3 + a4),

1

2
(a1 − a2 + a3 + a4),

1

2
(a1 + a2 − a3 + a4),

1

2
(a1 + a2 + a3 − a4)}.

(3.6)

The last of these gives the subspace appearing in the second part of the lemma. On the other hand, each of
the subspaces appearing in the first part of the lemma is W0-conjugate to one of the first three appearing in
(3.6). The action of W0 leaves ∆ invariant, so this implies the first part of the lemma.
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We now introduce the Kostant section. This is a section κ : B → V of the morphism π : V → B,
which has image consisting of regular elements of V . We will follow Slodowy [Slo80] in constructing κ using
a fixed choice of regular sl2-triple and we must therefore impose the restriction that the characteristic of
Fq exceeds 4h − 2, where h is the Coxeter number of H, namely 6. We therefore now make the following
assumption, which holds for the remainder of §3:

• The characteristic of Fq is at least 23.

This being the case, we define

E =



0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 −1
0 0 −1 0 0 0 0 0


.

and ρ̌ : Gm → T by the formula

ρ̌(t) = diag(t3, t2, t−2, t−3, t, 1, 1, t−1).

(Thus in fact ρ̌, which is the sum of the fundamental coweights, lifts to X∗(T
′).) We have the formula

Ad ρ̌(t)(E) = tE, and we can decompose E = Xα1+Xα2+Xα3+Xα4 as a sum of T -eigenvectors corresponding
to the simple roots RH .

Proposition 3.3. 1. There exists a unique element F ∈ V such that Ad ρ̌(t)(F ) = t−1F and [E,F ] =
dρ̌(2).

2. Let κ = E + zh(F ), an affine linear subspace of h. Then κ ⊂ V and the restriction π|κ : κ → B is an
isomorphism.

Proof. The first part is a standard property of sl2-triples; we could also exhibit F directly. See for example
[SS70, III, 4.10]. The second part is [Slo80, §7.4, Corollary 2]. An essential role in the proof is played by the
fact that for t ∈ Gm, v ∈ κ, we have tAd ρ̌(t−1)(v) ∈ κ, and this Gm-action contracts to the central point
E ∈ κ. The morphism π|κ is also clearly equivariant with respect to this Gm-action. These properties of the
Kostant section will appear again in §5.3 below.

Corollary 3.4. Let k/Fq be a field, and let b ∈ B(k), and suppose that ∆(b) ̸= 0. Then there is a canonical
bijection

G(k)\V (k) ∼= ker(H1(k, ZG(κb)) → H1(k,G)),

sending κb to the zero element of H1(k, ZG(κb)).

Proof. This follows because Vb(k
s) is a single G(ks)-orbit, and because of the existence of the marked base

point κb ∈ Vb(k).

In the situation of the corollary, we refer to the G(k)-orbits of the elements w · κb (w ∈ W0) as the
trivial orbits. We call elements of Vk = V (k) which lie in a trivial orbit trivial elements. Note that this
notion depends on k (and indeed, all regular semisimple elements in V (ks) are trivial over ks).

Lemma 3.5. Let k/Fq be a field, and let v =
∑

a∈ΦV
va ∈ Vk. Suppose that va = 0 for all a ∈ S and va ̸= 0

for all a ∈ λ(S), where S is one of the following sets:

{a1 + a2 + a3 + a4, a1 − a2 + a3 + a4, a1 + a2 − a3 + a4, a1 + a2 + a3 − a4},
{a1 + a2 + a3 + a4,−a1 + a2 + a3 + a4, a1 − a2 + a3 + a4, a1 + a2 + a3 − a4},
{a1 + a2 + a3 + a4,−a1 + a2 + a3 + a4, a1 + a2 − a3 + a4, a1 + a2 + a3 − a4},
{a1 + a2 + a3 + a4,−a1 + a2 + a3 + a4, a1 − a2 + a3 + a4, a1 + a2 − a3 + a4}.

(3.7)

Then if ∆(v) ̸= 0 then v belongs to a trivial orbit of G(k).

12



Proof. These sets S form a single W0-orbit, so it suffices to treat one of them, say

S = {a1 + a2 + a3 + a4, a1 − a2 + a3 + a4, a1 + a2 − a3 + a4, a1 + a2 + a3 − a4}.

In this case, we can compute

λ(S) = {−a1 + a2 + a3 + a4, a1 + a2 − a3 − a4, a1 − a2 − a3 + a4, a1 − a2 + a3 − a4} = {α1, α2, α3, α4}.

Thus if v ∈ V (k) is as in the statement of the lemma, we can write

v =
4∑

i=1

λiXαi +
∑

a∈Φ−
V

va,

where each λi ∈ k×. Since the group H is adjoint, we can find t ∈ T (k) such that αi(t) = λi for each
i = 1, . . . , 4. Replacing v by t−1 · v, we can assume that λi = 1 for each i.

We claim that this implies that v is Uθ
0 (k)-conjugate to κ(k), where U0 ⊂ H is the unipotent radical

of the Borel subgroup Q0 ⊂ H corresponding to the set −RH ⊂ Φ(H,T ) of simple roots. One can show that
the natural product map U0 × κ → E +LieU0 ⊂ h is an isomorphism. (The analogous fact in characteristic
0 is employed for a very similar purpose in the proof of [Tho15, Lemma 2.6]. One can easily check that it
is true here as well, under our restrictions on the characteristic.) Since v lies in E + LieU0,k, we find that
there is a unique pair (u, b) ∈ U0(k) × κ(k) such that u · b = v, and then u necessarily satisfies θ(u) = u,
hence u ∈ G(k), as required.

Corollary 3.6. Let k/Fq be a field, and let v =
∑

a∈ΦV
va ∈ Vk. Suppose that va = 0 for all a ∈ S, where

S is one of the following subsets (labelling as in the figure preceding Proposition 3.1):

{1, 2, 3, 4, 5}, {1, 4, 5, 11}, {1, 3, 4, 9}, {1, 3, 5, 10}, {1, 3, 4, 5}, {1, 2, 3, 5}, {1, 2, 4, 5}, (3.8)

{1, 2, 3, 4}, {1, 2, 3, 6}, {1, 2, 4, 7}, {1, 2, 5, 8}. (3.9)

Then if ∆(v) ̸= 0 then v belongs to a trivial orbit of G(k).

Proof. This follows from combining Lemma 3.2 and Lemma 3.5, as we now show. Let v ∈ V (k). The
sets S appearing in (3.8) are exactly those appearing in the statement of Lemma 3.2, so the result follows
immediately in this case (and indeed we have ∆(v) = 0). The sets S appearing in (3.9) are exactly those
appearing in the statement of Lemma 3.5. If S is one of these and va = 0 for all a ∈ S, then there are two
possibilities: either va ̸= 0 for all a ∈ λ(S), or there exists b ∈ λ(S) such that va = 0 for all a ∈ S′ = S ∪{b}.
In the first case, Lemma 3.5 shows that ∆(v) = 0 or v belongs to a trivial orbit. In the second case, we see
by inspection that S′ is one of the sets appearing in (3.8), hence ∆(v) = 0.

4 Interlude on G-bundles, semi-stability, and integration

In this section, we review the parameterization of G-torsors on curves by adeles and its relation to integration.
We also recall the theory of Harder–Narasimhan filtrations and canonical reductions for G-torsors, which
will be our substitute for reduction theory when it comes to counting points later on.

Let Fq be a finite field, and let M be a smooth affine group scheme over Fq. By definition, an
M -torsor over a scheme S/Fq is a scheme F → S, equipped with a right action of MS , and locally on S
(in the étale topology) isomorphic to the trivial torsor MS . A morphism F → F ′ of M -torsors over S is a
morphism F → F ′ respecting the M -action. A torsor F → S is trivial (i.e. isomorphic to the trivial torsor
MS) if and only if it admits a section. The set of isomorphism classes of torsors over S is in bijection with
H1(S,M) (non-abelian étale cohomology).

If M ′ ⊂ M is a closed subgroup, still smooth over Fq, then a reduction of F → S to M ′ is a pair
(F ′, φ), where F ′ → S is an M ′-torsor and φ : F ′ ×M ′ M → F is an isomorphism. Giving a reduction of F
to M ′ is then equivalent to giving a section of the sheaf quotient F/M ′.
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Let X be a smooth, projective, geometrically connected curve over Fq, and let K = Fq(X). Suppose
that M is connected. We say that an M -torsor F → X is rationally trivial if FK = F ×X SpecK is a
trivial M -torsor. This will always be the case if M satisfies the Hasse principle over K. Indeed, each pointed
set H1(OKv ,M) is trivial (by Lang’s theorem and Hensel’s lemma). It is useful to note that if M is split
reductive, and P ⊂ M is a parabolic subgroup, then for any rationally trivial M -torsor F → X with a
reduction FP → X to P , FP is also rationally trivial. Indeed, the morphism M → M/P admits Zariski local
sections, and FP /P defines a K-point of F/P .

For any connected smooth affine group M , the rationally trivial torsors over X can be parameterized
using adeles. Indeed, if YM denotes the set of isomorphism classes of such torsors, then there is a canonical
bijection

YM
∼= M(K)\M(AK)/M(ÔK). (4.1)

See [BLR90, Ch. 6, Proposition D.4]. We can describe the bijection explicitly as follows: given such a torsor
F → X, choose sections x0 ∈ F (K), xv ∈ F (OKv ) for each place v. Then for each v there is a unique
element mv ∈ M(Kv) such that x0mv = xv, and we assign to F the element mF = (mv)v ∈ M(AK). The

class [(mv)v] ∈ M(K)\M(AK)/M(ÔK) is then clearly well-defined. If m ∈ M(AK), we will write Fm for the
corresponding M -torsor over X. We can describe the group of automorphisms of Fm → X in these terms:
we have an isomorphism Aut(Fm) ∼= M(K)∩mM(ÔK)m−1. It follows that the bijection (4.1) can instead be
thought of as an equivalence of groupoids. Note that if M ′ ⊂ M is a smooth closed subgroup, then the map
YM ′ → YM given by pushout of torsors is the same as the map induced by the inclusion M ′(AK) ⊂ M(AK).

We will henceforth identify YM with this adelic double quotient. We endow YM with its counting
measure νM , each point F ∈ YM being weighted by |Aut(F )|−1. If µM is the (right-invariant) Haar measure

on M(AK) which gives M(ÔK) volume 1, and with modulus ∆l : M(AK) → R>0 defined by the formula
(f : M(AK) → R any compactly supported function):∫

m′∈M(AK)

f(m−1m′) dµM = ∆l(m)

∫
m′∈M(AK)

f(m′) dµM ,

then we have the formula (f : YM → R any compactly supported function):∫
F∈YM

f(F ) dνM =

∫
m∈M(K)\M(AK)

f(Fm)∆l(m)−1 dµM . (4.2)

An important special case arises when M is a split reductive group and P ⊂ M is a parabolic subgroup with
Levi decomposition P = LPNP . In this case we define a character δP ∈ X∗(P ) by δP (p) = detAd(p)|LieNP .
A right-invariant Haar measure is given by the formula∫

p∈P (AK)

f(p) dµP =

∫
l∈LP (AK)

∫
n∈NP (AK)

f(nl) dµNP
dµLP

, (4.3)

and the modulus character of P (AK) is ∆l(p) = ∥δP (p)∥, where ∥ · ∥ is the adele norm. In this case (4.2)
becomes ∫

F∈YP

f(F ) dνP =

∫
p∈P (K)\P (AK)

f(Fp)∥δP (p)∥−1 dµP . (4.4)

Now suppose that G is a reductive group over Fq with split maximal torus and Borel subgroup T ⊂ B ⊂ G.
Let P ⊂ G be a standard parabolic subgroup, i.e. one containing B, and let P = LPNP be its standard Levi
decomposition. Thus LP is the unique Levi subgroup of P containing T . If FP → X is a P -torsor, we can
associate to it an element σFP ∈ X∗(Z0(LP ))Q ⊂ X∗(T )Q, uniquely characterized by the requirement that
for any χ ∈ X∗(P ), the line bundle Lχ = FP ×P,χ A1

Fq
has degree degLχ = ⟨σFP

, χ⟩ (where ⟨·, ·⟩ is the usual
pairing between cocharacters and characters).

We call σFP
the slope of FP . If σ, τ ∈ X∗(T )Q, then we write σ ≤ τ if ⟨τ−σ, α⟩ ≥ 0 for all B-positive

roots α ∈ Φ(G,T ). The following formulations are taken from [Sch15].

Definition 4.1. Let G be a split reductive group over Fq, with split maximal torus and Borel subgroup
T ⊂ B ⊂ G. Let R ⊂ Φ(G,T ) denote the set of simple roots corresponding to B. Let F → X be an G-torsor.
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1. We say that F is semi-stable if for any standard parabolic subgroup P ⊂ G and any reduction FP → X
of F , we have σFP ≤ σF .

2. Let P be a standard parabolic subgroup with Levi quotient LP , and let FP → X be a reduction of F to
P . We say that FP is canonical if FP ×P LP is semi-stable and if for any simple root α ∈ R−Φ(LP , T ),
we have ⟨σFP

, α⟩ > 0.

The following result justifies the use of the word ‘canonical’:

Theorem 4.2. Let F → X be a G-torsor. Then there exists exactly one pair (P, FP ) consisting of a standard
parabolic subgroup P ⊂ G and a reduction FP → X of F which is canonical.

Proof. See [Sch15, Theorem 2.1] and the remarks following.

This theorem allows us to decompose

YG = ⊔PYG,P (4.5)

where YG,P denotes the set of G-torsors on X which admit a canonical reduction to the standard parabolic
subgroup P . We then have an identification

YG,P
∼= P (K)\P (AK)pos, ss/P (ÔK), (4.6)

where we define
P (AK)pos = {p ∈ P (AK) | ∀α ∈ R− Φ(LP , T ), ⟨mP (p), α⟩ > 0},

P (AK)ss = {p ∈ P (AK) | Fp ×P LP semi-stable},

and
P (AK)pos, ss = P (AK)pos ∩ P (AK)ss.

Here we write

mP : P (AK) → Hom(X∗(LP ),Q) ∼= X∗(Z0(LP ))Q ⊂ X∗(T )Q,

p 7→ (χ 7→ logq ∥χ(p)∥).

We observe the formulae

mP (p) = σFp and ∆l(p) = ∥δP (p)∥ = q⟨mP (p),δP ⟩. (4.7)

We define Λpos
P = mP (P (AK)pos) ⊂ X∗(T )Q. Theorem 4.2 implies that (4.6) is an equivalence of groupoids:

if p ∈ P (AK)pos, ss, then the inclusion P (K)∩pP (ÔK)p−1 → G(K)∩pG(ÔK)p−1 is an isomorphism (because
any automorphism of a G-torsor must preserve its canonical reduction). This leads to the following lemma.

Lemma 4.3. There exists a constant C > 0 depending only on X such that for any standard parabolic
subgroup P ⊂ G and function f : X∗(Z0(LP ))Q → R≥0, we have∫

F∈YG,P

f(σFP
) dνG ≤ C

∑
σ∈Λpos

P

q−⟨σ,δP ⟩f(σ).

Proof. Let P (AK)0 = kermP . Then P (K) ⊂ P (AK)0 and the quotient P (K)\P (AK)0 has finite µP -volume.
We choose the constant C to exceed the volume of P (K)\P (AK)0 for all standard parabolic subgroups of
G. Then (4.4) and (4.7) give∫

F∈YG,P

f(σFP ) dνP ≤
∫
p∈P (K)\P (AK)pos

f(mP (p))∥δP (p)∥−1 dµP ≤ C
∑

σ∈Λpos
P

q−⟨σ,δP ⟩f(σ),

as required.
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We need to discuss the behaviour of the canonical reduction under certain functorialities. For this
it is useful to recall that giving a GLn-torsor over X is equivalent to giving a vector bundle over X of rank
n, via F 7→ F ×GLn An

Fq
. If E → X is a vector bundle, then its slope is defined to be µ(E) = deg E/ rank E .

A vector bundle is said to be semi-stable if for any vector subbundle F ⊂ E , we have µ(F) ≤ µ(E). This
is equivalent to the semi-stability of the corresponding GLn-torsor, and Theorem 4.2 is equivalent to the
following statement: given a vector bundle E → X of rank n, there is a unique filtration

0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Em = E (4.8)

by vector subbundles such that each subquotient Ei+1/Ei is (non-zero and) semi-stable, and we have the
chain of inequalities

µ(E1) > µ(E2/E1) > · · · > µ(Em/Em−1). (4.9)

This is the Harder–Narasimhan filtration of E . It will play a key role for us because of the following lemma.

Lemma 4.4. Let E be a semi-stable vector bundle over X of rank n. Let gX denote the genus of X.

1. If µ(E) < 0, then h0(X, E) = 0.

2. If 0 ≤ µ(E) ≤ 2gX − 2, then h0(X, E) ≤ n(1 + µ(E)/2).

3. If µ(E) > 2gX − 2, then h0(X, E) = n(1− gX + µ(E)) and h1(X, E) = 0.

Proof. The first and third points are well-known properties of semi-stable bundles and follow easily from
the definition, together with the Riemann–Roch theorem. The second point is a generalization of Clifford’s
theorem for line bundles, see [BPGN97, Theorem 2.1].

Corollary 4.5. Let E → X be a vector bundle of rank n and slope µ(E) = 0, and let its Harder–Narasimhan
filtration be as in (4.8). Let 0 ≤ k ≤ m+ 1 be such that we have

µ(E1) > µ(E2/E1) > · · · > µ(Ek/Ek−1) > 0 > µ(Ek+1/Ek) > · · · > µ(Em/Em−1),

and let q0 = µ(Em/Em−1). Let D be a divisor on X such that degD > 0.

1. If degD+ q0 < 0, then h0(X, (Em/Ek)(D)) = 0 and h0(X, E(D)) ≤ n(1 + degD)− (rank Em/Ek) · (1 +
µ(Em/Ek) + degD).

2. If degD + q0 > 2gX − 2, then h0(X, E(D)) = n(1− gX + degD).

3. If 0 ≤ degD + q0 ≤ 2gX − 2, then h0(X, E(D)) ≤ n(1 + degD).

Proof. We prove the second part first. There are exact sequences for each i ≥ 1:

0 //Em−i/Em−(i+1)(D) //Em/Em−(i+1)(D) //Em/Em−i(D) //0.

We have µ(Em−i/Em−(i+1)(D)) > 2gX − 2 for each i ≥ 1, hence h1(Em−i/Em−(i+1)(D)) = 0. It follows that
h0(E(D)) =

∑
i≥0 h

0(Em−i/Em−(i+1)(D)) = n(1− gX + µ(E(D))) = n(1− gX + degD). The first and third

parts can be proved using the same exact sequences, except that we no longer need to calculate any H1

(since we are only looking for upper bounds).

Consider again a reductive groupG over Fq with split maximal torus and Borel subgroup T ⊂ B ⊂ G.
Let V be a finite-dimensional representation of G. If F → X is a G-torsor, then V = F ×G V is a vector
bundle over X. If F = Fg for some g ∈ G(AK), then we write Vg = Fg ×G V . For any Zariski open subset
U ⊂ X, we can identify

H0(U,Vg) = V (K) ∩
∏
v∈U

gvV (OKv ). (4.10)
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If V has ‘small height’, then we can describe the Harder–Narasimhan filtration of V explicitly in terms of
the canonical reduction of F . Let FP → X denote the canonical reduction of F . For each rational number
q, we define

Vq =
⊕

λ∈X∗(T )
⟨σFP

,λ⟩≥q

Vλ ⊂ V, (4.11)

Vλ ⊂ V denoting the λ-weight space. This defines a decreasing filtration V• of V . The subspaces are P -
invariant, and the action of P on the graded pieces factors through the Levi quotient LP (see [Sch15, Lemma
5.1]). By pushout, we get a filtration V• = FP ×P Vq of V by subbundles indexed by rational numbers q. We
then have the following result.

Theorem 4.6. Let V be a finite-dimensional representation of G, and let ρ̌ ∈ X∗(T )Q denote the sum of
the fundamental coweights. Suppose that V has small height, i.e. that for all weights λ ∈ X∗(T ) such that
Vλ ̸= 0, we have 2⟨ρ̌, λ⟩ < charFq. (This condition depends only on the pair (G,V ) and not on the choice of
T or B.) Then:

1. Each associated bundle grq V• ∼= FP ×P grq V• is (either zero or) semi-stable of slope q.

2. The subbundles Vq = FP ×P Vq of V are the constituents of the Harder–Narasimhan filtration of
V = F ×G V .

Proof. The calculation of [Sch15, Proposition 5.1] goes over verbatim to show that the associated bundles of
the graded pieces have the claimed slopes. What we need to justify here is that they are semi-stable. In loc.
cit. this is justified by appeal to the results of [RR84], which apply when the ground field has characteristic
0. In the present case we can use the assumption that V small height to appeal instead to the main theorem
of [IMP03], which is extended to reductive groups G as [BH04, Proposition 4.9].

We conclude this section by applying the preceding results to the pair (G,V ) constructed in §3. We
therefore assume now that charFq > 3. We recall that G has the root basis R = {a1, a2, a3, a4}. We write
R− = −R for the negative of this root basis, and P0 ⊂ G for the Borel subgroup corresponding to R−. We
call a parabolic subgroup P ⊂ G containing P0 a standard parabolic; any such parabolic has a canonical
Levi decomposition P = LPNP , where LP is the unique Levi subgroup of P which contains the maximal
torus T .

If P ⊂ G is a standard parabolic subgroup, and D is a divisor on X, then we define a further
decomposition of YG,P ⊂ YG as follows:

YG,P = YG,P (D)<0 ⊔ YG,P (D)sp ⊔ YG,P (D)>2gX−2. (4.12)

where YG,P (D)<0 denotes the set of G-torsors F → X for which the lowest slope piece of the Harder–
Narasimhan filtration of F ×G V has slope q0 satisfying degD + q0 < 0; YG,P (D)sp the set for which
0 ≤ degD+ q0 ≤ 2gX − 2; and YG,P (D)>2gX−2 the set for which degD+ q0 > 2gX − 2. (Thus these subsets
of YG,P only depend on degD.) We can reformulate Corollary 4.5 as follows:

Corollary 4.7. Let g = [(gv)v] ∈ YG,P , and let FP → X denote the canonical reduction of Fg. Suppose that
degD > 0, and let M ⊂ ΦV denote the set of weights a ∈ ΦV such that ⟨σFP

, a⟩+ degD < 0. Then:

1. If g ∈ YG,P (D)<0 (i.e. M is non-empty), then |H0(X,Vg(D))| ≤ qdimV (1+degD)−|M |(1+degD+
∑

a∈M ⟨σFP
,a⟩).

2. If g ∈ YG,P (D)sp, then |H0(X,Vg(D))| ≤ qdimV (1+degD).

3. If g ∈ YG,P (D)>2gX−2, then |H0(X,Vg(D))| = qdimV (1−gX+degD).

We can combine these ideas with Lemma 3.2 to obtain the following useful principle:

Corollary 4.8. Let P ⊂ G be a standard parabolic subgroup, and suppose that dimZ0(LP ) ≤ 2. Let D be
a divisor on X, and let g ∈ YG,P (D)<0. Then for all v ∈ H0(X,Vg(D)) ⊂ V (K), we have ∆(v) = 0 (as a
section of H0(X,OX(24D)) ⊂ K).
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Proof. Let D =
∑

v nv · v. If P ⊂ G satisfies dimZ0(LP ) ≤ 2, then the lowest slope piece of the Harder–
Narasimhan filtration of Vg has dimension at least 4. (It’s helpful to recall here that G is isogenous to SL4

2,
and V is then identified with the tensor product of the four 2-dimensional standard representations.) Under
the identification

H0(X,Vg(D)) = V (K) ∩
∏
v

ϖ−nv
v gvV (OKv ) ⊂ V (K),

we see that any v ∈ H0(X,Vg(D)) must satisfy the condition of the first part of Lemma 3.2, and therefore
satisfy ∆(v) = 0.

5 Counting 2-Selmer elements

In this section, we describe the relation between the representation (G,V ) of §3 and the family of pointed
elliptic curves (E,P,Q) described in §2. We proceed from the rational theory, to the integral theory, and
finally combine this with the other results established so far to prove our main theorems (Theorem 5.9 and
Theorem 5.11 below).

We assume throughout §5 that Fq is a finite field of characteristic > 19, and let (G,V ) denote the
representation considered in §3.

5.1 (G, V ) and 2-descent

Theorem 5.1. We can find homogeneous generators p2, p4, q4, p6 ∈ Fq[V ]G (of degrees 2, 4, 4, and 6,
respectively) and a 5-dimensional affine linear subspace Σ ⊂ V together with functions x, y ∈ Fq[Σ] such
that:

1. The functions p2, p4, q4, x, y ∈ Fq[Σ] generate Fq[Σ].

2. The relation y(xy + 2q4) = x3 + p2x
2 + p4x+ p6 holds on Σ.

Proof. This theorem follows from [Tho13, Theorem 3.8] when Fq is replaced by a field of characteristic 0.
The same proof works over Fq, with our restrictions on the characteristic. This is unsurprising, given that
the results of Slodowy [Slo80] are proved in positive characteristic with the same restrictions. We explain
the construction. Define a matrix

e =



0 1 0 0 0 1 0 0
0 0 0 0 1 0 0 2
0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 −2 0 0 0 1 0
0 0 0 0 1 0 0 −1
0 0 0 −1 0 0 0 0
0 0 −1 0 0 0 −1 0


and a cocharacter λ̌ ∈ X∗(T

′)
λ̌(t) = diag(t2, t, t−1, t−2, 1, t, t−1, 1).

Then Ad λ̌(t)(e) = te and e ∈ V is a subregular nilpotent element. Therefore we can find a unique subregular
nilpotent f ∈ V such that the triple (e, dλ̌(2), f) is a normal sl2-triple. We define Σ = e+ zh(f)

dθ=−1.
If t ∈ Gm, then the action t · v = tAd λ̌(t−1)(v) leaves Σ invariant and contracts Σ to the fixed base

point e. Moreover, the morphism π|Σ is then Gm-equivariant. The functions x, y ∈ Fq[Σ] are chosen to have
weight 2 with respect to this action.

At this point there are two natural discriminant polynomials ∆ in Fq[V ]G that one might consider:
the one arising from the usual Lie algebra discriminant in h, and the discriminant of the polynomial f(t) =
t4 + p2t

3 + p4t
2 + p6t + q24 , which is used in §2. In fact, these two functions are equal up to F×

q -multiple,
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because they both cut out the same irreducible divisor in B = SpecFq[V ]G. Since the precise value of ∆ will
not be important for us, but rather only its order of vanishing, we will use the symbol ∆ to denote either one
of these polynomials in Fq[V ]G = Fq[p2, p4, q4, p6]. We recall that we write Brs ⊂ B for the open subscheme
which is the complement of the zero locus of ∆.

We write S → B for the natural compactification of Σ as a family of projective plane curves given
by the equation

Y (XY + 2q4Z
2) = X3 + p2X

2Z + p4XZ2 + p6Z
3. (5.1)

We write O, P , and Q for the three sections of S − Σ at infinity given respectively by [0 : 1 : 0], [1 : 1 : 0]
and [−1 : 1 : 0]. We write Srs for the restriction of this family to Brs. The fundamental relation between
the pair (G,V ) and this family of curves is as follows:

Theorem 5.2. 1. The morphism S → B is smooth exactly above Brs. Consequently, Srs → Brs is a
family of smooth, projective, geometrically connected curves.

2. Let JSrs = Pic0Srs/Brs denote the (relative) Jacobian of this family, and let Zrs denote the equalizer of
the diagram

G× κrs
(g,x)7→g·x //

(g,x)7→x
// V rs

viewed as a finite étale group scheme over κrs ∼= Brs. Then there is a canonical isomorphism JSrs [2] ∼=
Zrs of finite étale group schemes over Brs.

3. Let k/Fq be a field, and let b ∈ Brs(k). Let Jb denote the pullback of JSrs along b : Spec k → Brs.
Consider the diagram

Σb(k) //

��

G(k)\Vb(k)

��
Jb(k) // H1(k, Jb[2]),

where the top arrow is induced by the inclusion Σb ⊂ Vb; the left arrow is the map R 7→ [(R) − (O)],
induced by an open immersion Σb ⊂ Jb; the right arrow is the injection of Corollary 3.4, composed with
the isomorphism H1(k, ZG(κb)) ∼= H1(k, Jb[2]); and the bottom arrow is the connecting homomorphism
associated to the multiplication-by-2 Kummer exact sequence for Jb. Then there exists a class xb ∈
H1(k, Jb[2]) arising from a trivial orbit such that this diagram commutes up to addition of xb.

Proof. The first part is established over a field of characteristic 0 in [Tho13, Corollary 3.16], using a reduction
to [Slo80], and again the same proof works in our positive characteristic setting. This is not the case
for the second part, where the corresponding fact is established in [Tho13, Corollary 4.12] using analytic
techniques. However, the same construction works to show that there is a map β : H1(Σ

rs/Brs,F2) → Zrs

of local systems of F2-vector spaces on Brs, arising from the inclusion Σrs ⊂ V rs. Here H1(Σ
rs/Brs,F2)

is the local system of étale homology groups of the curves Σb (b ∈ B). There is a canonical surjective
map γ : H1(Σ

rs/Brs,F2) → JSrs [2]. We want to show that β factors through γ to give an isomorphism
JSrs [2] ∼= Zrs.

To check this statement about morphisms of local systems of F2-vector spaces, it suffices to check
that it holds on single stalk, and this can be accomplished by lifting to characteristic 0 and applying [Tho13,
Corollary 4.12].

The third part has been established in characteristic 0 in [Tho13, Theorem 4.15], which also shows
how to calculate the element xb using the geometry of the curve S. We describe the recipe, although it is
not strictly necessary for what we do here. Let 0 ∈ B(Fq) be the central point. Then the curve S0 is a union
of three lines. Let S′

0 ⊂ S0 be the branch containing the section O at infinity, and let E′ ∈ S′
0(Fq)−{e} be a

rational point. Then there exists a unique w ∈ W0 such that wE′ is conjugate by G(Fq) to κ0, and for any
b ∈ B(k) we can then take xb to be the class corresponding to the orbit of wκb ∈ V (k).

We still need to extend this result to positive characteristic. However, this is an essentially formal
consequence of the first two parts of the theorem, and follows in exactly the same way as in [Tho13, §4].
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Theorem 5.3. Let k/Fq be a field, and let b ∈ Brs(k).

1. The image of the injective map η : G(k)\Vb(k) → H1(k, Jb[2]) appearing in Theorem 5.2 contains the
image of the Kummer homomorphism Jb(k)/2Jb(k) → H1(k, Jb[2]).

2. Inside the image of η, the trivial orbits of G(k)\Vb(k) correspond to the subgroup of Jb(k)/2Jb(k)
generated by the divisor classes [(P )− (O)] and [(Q)− (O)].

Proof. By Theorem 5.2, it is enough to prove the second part of the theorem. By definition, the identity of
H1(k, Jb[2]) corresponds to the orbit of the Kostant section κb ∈ Vb(k). We have a short exact sequence of
étale homology groups (where overline denotes base change to a separable closure ks/k):

0 //µ3
2/∆(µ2) //H1(Σb,F2) //H1(Sb,F2) //0. (5.2)

Here ∆(µ2) ⊂ µ3
2 denotes diagonal µ2. There is a natural symplectic duality ⟨·, ·⟩ on H1(Σb,F2) with radical

µ3
2/∆(µ2), which descends to the Poincaré duality pairing on H1(Sb,F2). Identifying Jb[2] = H1(Sb,F2), this

allows us to describe the subgroup of H1(k, Jb[2]) generated by the images of the divisor classes [(P )− (O)],
[(Q) − (O)] as follows: it is the image of [µ3

2/∆(µ2)]
∨ = (µ3

2)Σ=0 under the connecting homomorphism
attached to the dual exact sequence of F2[Γk]-modules (with Γk = Gal(ks/k)):

0 //H1(Sb,F2) //H1(Σb,F2)
∨ //(µ3

2)Σ=0
//0, (5.3)

where we use the aforementioned pairing to identify H1(Sb,F2)
∨ ∼= H1(Sb,F2). We now identify these exact

sequences using the representation theory of the pair (G,V ). Let Hsc denote the simply connected cover
of H, and let Gsc = (Hsc)θ. Then Gsc is a connected subgroup of Hsc. Let Csc denote the centralizer
of κb in Hsc, and C its image in H. Then we can identify ZGsc(κb) = Csc[2], ZHθ (κb) = C[2], and
ZG(κb) = im(Csc[2] → C[2]) (see [Tho13, Corollary 2.9]). The short exact sequence (5.2) is identified with
the sequence

0 //ker(Gsc → G) //Csc[2] // im(Csc[2] → C[2]) //0 (5.4)

(compare [Tho13, Theorem 4.10] and the proof of Theorem 5.2). Its dual is identified with the sequence

0 //ZG(κb) //C[2] //π0(H
θ) //0, (5.5)

using the Weyl-invariant bilinear form on X∗(C) (cf. [Tho13, Lemma 2.11]) and the canonical isomorphism
C[2]/ZG(κb) ∼= π0(H

θ). The map W0 → π0(H
θ) is an isomorphism, and the composite W0 → π0(H

θ) →
H1(k, ZG(κb)) sends an element w ∈ W0 to the class corresponding to the orbit G(k) · wκb. This concludes
the proof.

The proof of the second part of Theorem 5.3 has a useful corollary: it gives a criterion to tell
when the trivial orbits generate a subgroup of Jb(k)/2Jb(k) of order 4 (which one expects to be the case
generically). Indeed, taking in mind the identification of the exact sequence (5.3) with the sequence (5.5),
one sees that this should be the case exactly when H0(k, ZG(κb)) = H0(k,C[2]). The action of the Galois
group Γk on C[2] arises from a homomorphism Γk → W (H,C) ∼= WH giving the action on the torus C, and
this condition can be described in terms of the image of this homomorphism inside WH . In particular, in
the ‘generic’ case where this image is the whole Weyl group, we have H0(k, ZG(κb)) = H0(k,C[2]) = 0, and
consequently 4 trivial orbits in G(k)\Vb(k).

Corollary 5.4. Let X be a smooth, projective, geometrically connected curve over Fq, and let K = Fq(X).
Let b ∈ Brs(K). Then the subset G(K)\Vb(K) ⊂ H1(K,Jb[2]) appearing in Corollary 3.4 (with k = K)
contains the 2-Selmer group Sel2(Jb).

Proof. This follows from the fact that the Hasse principle holds for G, i.e. that the map H1(K,G) →∏
v H

1(Kv, G) is injective.
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5.2 (G, V ) and local integral orbits

In the previous section, we have studied rational orbits. We now look at the integral situation. Let X be a
smooth, projective, geometrically connected curve over Fq, and let K = Fq(X). Let v be a place of K, and
let (E,P,Q) be tuple consisting of an elliptic curve E over Kv with two distinct, non-trivial marked rational
points P,Q ∈ E(Kv). We assume that the minimal model (as in §2) of (E,P,Q) has squarefree discriminant,
and let b = (p2, p4, q4, p6) ∈ B(OKv ) denote the associated set of invariants. We write Jb for the Jacobian of
E, which we identify with E via the map E → Jb, R 7→ [(R)− (O)].

Theorem 5.5. With assumptions as above, let Jb denote the Néron model of E over OKv . Then:

1. The map H1(OKv ,Jb[2]) → H1(Kv, Jb[2]) in étale cohomology is injective.

2. An orbit in G(Kv)\Vb(Kv) admits an integral representative (i.e. intersects Vb(OKv )) if and only if it
corresponds to an element of Jb(Kv)/2Jb(Kv).

3. Suppose that x, y ∈ Vb(OKv ) and γ ∈ G(Kv) satisfy γx = y. Then γ ∈ G(OKv ).

Proof. Lemma 2.3 shows that E has reduction of type I0 or I1. In particular, Jb has connected special fibre.
We have H1(OKv

,Jb[2]) = H1(k(v),Jb[2](κ(v))) and Jb[2](κ(v)) = Jb[2](K
s
v)

IKv , so the injectivity of the
first part is a consequence of the inflation-restriction exact sequence.

For the ‘if’ of the second part, we use the existence of the section Σ ⊂ V , which shows (together with
the commutative diagram of Theorem 5.2) that any element of Jb(Kv)/2Jb(Kv) which can be represented
by a divisor (R) − (O), where R ∈ Σb(OKv ), is represented by an element of V (OKv ). Since the trivial
orbits have integral representatives, essentially by definition, this reduces us to showing that any non-trivial
orbit in Jb(Kv)/2Jb(Kv) is represented by such a divisor (R)− (O). We have a short exact sequence (which
defines Jb(OKv )

0)
0 //Jb(OKv )

0 //Jb(Kv) //Jb(k(v)) //0,

where the kernel is a pro-p-group (p = charFq), hence an isomorphism

Jb(OKv )/2Jb(OKv )
∼= Jb(k(v))/2Jb(k(v)) ∼= H1(OKv ,Jb[2]).

If [x] ∈ Jb(k(v))/2Jb(k(v)) is a non-trivial class (i.e. not in the subgroup generated by the 3 marked points
of E at infinity), we can choose a representative x ∈ Jb(k(v)) of the form (R) − (O), where R ∈ Σb(k(v)).
Lifting R to a point R ∈ Σb(OKv

) via Hensel’s lemma then shows the existence of the desired integral
representative in Vb(OKv ).

We now turn to the ‘only if’ of the second part. We first note that any element x ∈ Vb(OKv
) in fact

lies in V reg
b (OKv ), i.e. x = x mod (ϖv) is regular in Vk(v). This is clear if ∆(x) is a unit in OKv , as then x

is regular semisimple. Otherwise, we note that x is regular in Vk(v) if and only if it is regular in hk(v); and
if it is not regular in hk(v), then its centralizer has dimension at least dimT + 2 (see [SS70, III, 3.25]). Let
c = zhKv

(x), c0 = c ∩ hOKv
. Let f : hOKv

/c0 → hOKv
/c0 denote the map of finite free OKv -modules induced

by adx after passage to quotient. We have the relation det f = ∆(x), up to units in O×
Kv

. If x is not regular,

then f = f mod (ϖv) has kernel of dimension at least 2, hence ordKv
det f ≥ 2, a contradiction.

We next observe that the map GOKv
→ V reg

b , g 7→ g · κb, is étale, and a torsor over its image

V reg, 0
b ⊂ V reg

b for the étale group scheme ZGOKv
(κb) over OKv . Moreover, we have V reg

b = ∪w∈W0w · V reg, 0
b

(by [Lev07, Theorem 0.17]). It follows that there is a bijection

G(OKv )\V
reg, 0
b (OKv )

∼= H1(OKv , ZGOKv
(κb)). (5.6)

The isomorphism ZGKv
(κb) ∼= Jb[2] extends uniquely to an isomorphism ZGOKv

(κb) ∼= Jb[2]. If ∆ is a unit,

then this is immediate from Theorem 5.2. If ∆ is not a unit, then it suffices to show that the isomorphism
ZGKv

(κb) ∼= Jb[2] identifies ZG(κb)(κ(v)) ⊂ ZG(κb)(K
s
v)

Iv with Jb[2](κ(v)) ⊂ Jb[2](K
s
v)

Iv . Since Jb(κ(v))
has order 2, it is enough to show that ZG(κb)(κ(v)) is non-trivial. This follows from the fact that Σb has a

unique singularity of type A1, as we now show. Let b = b mod (ϖv). The element κb ∈ V (k(v)) has a Jordan
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decomposition κb = vs + vn as a sum of commuting semisimple and nilpotent parts, and we can compute
(using the same technique as in [Tho13, Proposition 2.8])

ZG(κb) = ZZGsc (vs)[2]/ ker(G
sc → G). (5.7)

(We remind the reader of that ZGsc(vs) denotes the stabilizer of vs in Gsc, and so ZZGsc (vs) denotes the
centre of this connected reductive group.) The fact that Σb has a singularity of type A1 implies ([Tho13,
Corollary 3.16], the proof of which goes over without change in our setting) that ZGsc(vs) has derived group
of type A1. In particular, its centre contains a torus of rank 3. We have ker(Gsc → G) ∼= µ2

2, so the group
appearing in (5.7) must be non-trivial.

We can thus enlarge (5.6) to a commutative diagram

G(OKv )\V
reg, 0
b (OKv ) //

��

H1(OKv ,Jb[2])

��
G(Kv)\Vb(Kv) // H1(Kv, Jb[2]).

(5.8)

This shows that any element of G(Kv)\Vb(Kv) which is in the image of the left-hand vertical arrow lies in
the image of H1(OKv ,Jb[2]) ∼= Jb(Kv)/2Jb(Kv) ⊂ H1(Kv, Jb[2]). Since we have V

reg
b = ∪w∈W0wV

reg, 0
b , and

W0 acts on H1(Kv, Jb[2]) as translation by trivial orbits, we finally see that any element of G(Kv)\Vb(Kv)
which admits an integral representative corresponds to an element of Jb(Kv)/2Jb(Kv).

Finally, we come to the third part of the theorem. The integrality is insensitive to passage to
unramified extensions of Kv. After possibly replacing Kv by an unramified extension, we can therefore
assume that x = y = κb, and reduce to showing the statement that the étale group scheme ZG(κb) satisfies
the Néron mapping property, i.e. itsKv-points all extend toOKv -points. We have shown that ZG(κb) ∼= Jb[2],
so this follows from the Néron mapping property for Jb.

5.3 (G, V ) and global integral orbits

We can now discuss the global picture. Let X be a smooth, projective, geometrically connected curve over
Fq, and let K = Fq(X). Let D =

∑
v mv · v be a divisor on X, and let (E,P,Q) ∈ XD. We recall (see

§2) that this means that E is an elliptic curve over K with two distinct non-trivial marked rational points
P,Q ∈ E(K), and which can be represented by an equation

y(xy + 2q4) = x3 + p2x
2 + p4x+ p6 (5.9)

with

b = (p2, p4, q4, p6) ∈ H0(X,OX(2D)⊕OX(4D)⊕OX(4D)⊕OX(6D)) = H0(X,BD) ⊂ B(K) (5.10)

of square-free discriminant in H0(X,OX(24D)). (The reason for restricting to curves with LE a square is
that the invariant degrees of the representation (G,V ) then agree with the weights of the equation (5.9)
defining the curve E.)

Let x ∈ Vb(K) be an element corresponding to an element of the group Sel2(E) (see Corollary 5.4).
Then for every place v of K, ϖmv

v x has minimal, integral invariants π(ϖmv
v x) = ϖmv

v · b ∈ O4
Kv

of squarefree
discriminant, and Theorem 5.5 implies that we can find gv ∈ G(Kv) such that ϖmv

v x ∈ gvV (OKv ). For all
but finitely many places v, we have mv = 0 and can choose gv = 1. Moreover, gv is defined up to right
multiplication by G(OKv ), by the third part of Theorem 5.5. If we replace x by γx for some γ ∈ G(K), then
gv can be replaced by γgv. We have therefore defined a map

inv : Sel2(E) → G(K)\G(AK)/G(ÔK). (5.11)

It is clear that this map depends only on (E,P,Q) and not on the choice of equation b ∈ H0(X,OX(D))
representing (E,P,Q) (since all choices differ by the action of F×

q ).
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To any g ∈ G(AK), we associate the G-torsor Fg and the vector bundle Vg = Fg ×G V , which has
sections described by (4.10). The above discussion shows that if [g] = inv(x), then x naturally defines an
element of

V (K) ∩
∏
v

gvϖ
−mv
v V (OKv ) = H0(X,Vg(D)),

and the image of x under the map π : H0(X,Vg(D)) → H0(X,BD) equals b. This leads to the following
result.

Theorem 5.6. Let (E,P,Q) ∈ XD be represented by b ∈ H0(X,BD). Let g = (gv)v ∈ G(AK). Then the
following two sets are in canonical bijection:

1. The set of elements x ∈ Sel2(E) such that inv(x) = [(gv)v].

2. The set of sections s ∈ H0(X,Vg(D)) such that π(s) = b, taken up to the action of the group Aut(Fg).

Proof. We have constructed the map from the first set to the second set. We now construct its inverse. Let
s be a global section in

H0(X,Vg(D)) = V (K) ∩
∏
v

gvϖ
−mv
v V (OKv )

such that π(s) = b. Writing x for the image of s in V (K) under the canonical inclusion, we obtain an orbit
in G(K)\Vb(K). This orbit is independent of the choice of representative in the Aut(Fg)-orbit of s; indeed,

we have Aut(Fg) = G(K) ∩ gG(ÔK)g−1, so replacing s by γs for γ ∈ Aut(Fg) would just replace x by γx,
leaving the G(K)-orbit of x unchanged.

We need to show that x lies in the subset of G(K)\Vb(K) corresponding to the 2-Selmer group.
However, this follows from the second part of Theorem 5.5 and the fact that s has square-free discriminant.
It is clear from the construction that this map is inverse to the other, so this completes the proof.

To illustrate the construction of this invariant map, we calculate its image when applied to the trivial
elements in Jb(K)/2Jb(K) ⊂ Sel2(Jb). Recall that we have defined κ = E + zh(F ), where (E, dρ̌(2), F ) is
a regular normal sl2-triple in h. The action t · x = tAd ρ̌(t−1)(x) leaves κ invariant and contracts to the
unique fixed point E (see Proposition 3.3). In particular, if v is a place of K, b ∈ B(Kv), and λ ∈ K×

v , then
we have the following formula giving the behaviour of the Kostant section under scaling:

κλb = ρ̌(λ−1)λκb. (5.12)

If b ∈ B(OKv ), then κb ∈ V (OKv ) is an integral representative of the orbit in Vb(K) corresponding to the
identity element of Sel2(Jb). If b ∈ H0(X,BD) ⊂ B(K) is associated to a pointed curve as above, then we
find ϖmv

v b ∈ B(OKv ) is the minimal integral representative, hence

κϖmv
v b = ρ̌(ϖ−mv

v )ϖmv
v b ∈ ϖmv

v V (OKv ). (5.13)

It then follows from the definition that we have inv(κb) = [(ρ̌(ϖmv
v ))v]. The same formalism applies to the

other trivial orbits: if w ∈ W0, then the representative of the corresponding trivial orbit in V (K) is wκb.
For each place v of K, we have

wρ̌(ϖ−mv
v )w−1ϖmv

v wκb = wρ̌(ϖ−mv
v )ϖmv

v κb ∈ ϖmv
v V (OKv ), (5.14)

so it follows from the definition that we have inv(wκb) = [(wρ̌(ϖmv
v )w−1)v]. This implies in particular:

Lemma 5.7. Let (E,P,Q) ∈ XD be represented by b ∈ H0(X,BD), and let x ∈ Sel2(Jb) be a trivial
element. Suppose that degD > 0. Then inv(x) ∈ YG,P0(D)<0. (We recall that P0 ⊂ G is the Borel subgroup
corresponding to the set −R = {−a1,−a2,−a3,−a4} of simple roots of G.)
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Proof. We need to check that for each g ∈ {(wρ̌(ϖmv
v )w−1)v | w ∈ W0}, we have g ∈ P0(AK)pos, ss and the

‘lowest slope’ part of Vg(D) has strictly negative slope. Representatives for the elements of W0 are given in
(3.3). Using the formulae

ρ̌(t) = (t3, t2, t−2, t−3, t, 1, 1, t−1),

α0(a, b, b
−1, a−1, c, d, d−1, c−1) = ab,

we see that ⟨wρ̌w−1, α0⟩ = 5 for all w ∈ W0.
Since the Levi quotient of P0 is a torus, the semi-stability condition is vacuous, so to show g ∈

P0(AK)pos, ss, we need to show that for all a ∈ R−, we have logq ∥a((wρ̌(ϖmv
v )w−1)v)∥ > 0. We compute

logq ∥a(w(ρ̌(ϖmv
v )w−1)v)∥ = −⟨wρ̌w−1, a⟩ · degD.

Using the explicit expression (3.5) for R, we see that this is positive for all w ∈ W0, a ∈ R−. On the other
hand, the lowest slope part of Vg(D) has slope

logq ∥α0((wρ̌(ϖ
mv
v )w−1)v)∥ = −⟨wρ̌w−1, α0⟩ · degD + degD = −4 degD < 0,

as required.

5.4 The main theorem

We once again suppose that X is a smooth, projective, geometrically connected curve over Fq, and let
K = Fq(X). IfD is a divisor onX, then we writeH0(X,BD)sf ⊂ H0(X,BD) for the set of elements of square-
free discriminant ∆ ∈ H0(X,OX(24D)). Then (Corollary 2.4) there is a surjection H0(X,BD)sf → XD, the
fibre above a given isomorphism class [(E,P,Q)] having cardinality equal to (q − 1) · |Aut(E,P,Q)|−1. If
g = [(gv)v] ∈ YG, then we write H0(X,Vg(D))sf ⊂ H0(X,Vg(D)) for the pre-image of H0(X,BD)sf. We also
write H0(X,Vg(D))sf,nt ⊂ H0(Vg(D))sf for the set of elements of H0(Vg(D))sf which are non-trivial when
viewed inside V (K) (that is, they are not G(K)-conjugate to a point of a W0-translate of κ; see Lemma 3.5).

Proposition 5.8. Let g = (gv)v ∈ G(AK).

1. The limit

δB = lim
degD→∞

|H0(X,BD)sf|
|H0(X,BD)|

exists and is strictly positive.

2. The limit

δV = lim
degD→∞

|H0(X,Vg(D))sf|
|H0(X,Vg(D))|

exists and is strictly positive, and does not depend on g.

3. We have
∫
g∈G(ÔK)

dτGδB = q12(gX−1)δV , where τG denotes the Tamagawa measure on G(AK).

Proof. If v is a place of K, define

αv =
|{x ∈ B(OKv/(ϖ

2
v)) | ∆(x) ≡ 0 mod ϖ2

v}|
q8v

and

βv =
|{x ∈ V (OKv/(ϖ

2
v)) | ∆(x) ≡ 0 mod ϖ2

v}|
q32v

.

In [HLHN14, §5.1] it is proved using results of Poonen [Poo03] that the limit δV exists and equals
∏

v(1−βv).
A similar argument using the results of [Poo03] shows that the limit δB exists and equals

∏
v(1− αv). It is

easy to see that both of these products are strictly positive. To finish the proof of the proposition, we need
to show that

∫
g∈G(ÔK)

dτGδB = q12(gX−1)δV , or even (using the definition of the Tamagawa measure) that
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∫
g∈G(OKv )

|ωG|v(1 − αv) = (1 − βv) for each place v of K, ωG being an invariant differential form of top

degree on G (over Fq). We will establish this using an integral formula.
Let ωV and ωG be invariant differential forms of top degree on V and G, respectively. Let ωB =

dp2 ∧ dp4 ∧ dq4 ∧ dp6, a differential form of top degree on B. Let φ : B(Kv) → R denote the characteristic
function of the open subset of b ∈ B(OKv ) where ordKv ∆(b) ≤ 1. Let f : V (Kv) → R denote the
characteristic function of the open subset of x ∈ V (OKv ) where ordKv ∆(x) ≤ 1. Then we must show the
identity ∫

g∈G(OKv )

|ωG|v
∫
b∈B(Kv)

φ(b) |ωB |v =

∫
x∈V (Kv)

f(x) |ωV |v.

If c ⊂ VKv is a Cartan subspace, we write µc : GKv × c → VKv for the action map. Exactly the same
argument as in [Tho15, Proposition 2.13] shows that for any Cartan subspace c ⊂ VKv , we have an identity

µ∗
cωV = λωG ∧ π|∗cωB

for some scalar λ ∈ F×
q which is independent of the choice of Cartan subspace.

Let c1, . . . , cs ⊂ VKv
denote representatives for the distinct G(Kv)-conjugacy classes of Cartan

subspaces. If b ∈ B(Kv) then we will write, as usual, ci,b for the fibre of the quotient morphism ci → B
above the point b. Each element v ∈ V rs(Kv) is contained in a unique Cartan subspace, so we obtain an
identity ∫

x∈V (OKv )

f(x) |ωV |v =

s∑
i=1

∫
(g,ci)∈G(Kv)×ci

f(gci)

|NG(ci)(Kv)|
|ωG ∧ π|∗cωB |v.

Let c0i = ci ∩ [G(Kv) · V (OKv )], an open subset of ci. It follows from Theorem 5.5 and the invariance of the
measure |ωG|v that this last integral is equal to

s∑
i=1

∫
g∈G(OKv )

|ωG|v
∫
ci∈ci

φ(π(ci))

|NG(ci)(Kv)|
|π|∗cωB |v

=
s∑

i=1

∫
g∈G(OKv )

|ωG|v|NG(ci)(Kv)|−1

∫
b∈B(Kv)

φ(b)|ci,b(Kv) ∩ c0i ||ωB |v.

To finish the proof, we therefore just need to show that if b ∈ B(OKv ) satisfies ordK ∆(b) ≤ 1, then

s∑
i=1

|ci,b(Kv) ∩ c0i | × |NG(ci)(Kv)|−1 = 1.

The left-hand side counts the number of G(Kv)-orbits in Vb(Kv) which have an integral representative, each
orbit being weighted by |ZG(κb)(Kv)|−1. The total number of orbits equals |Jb(Kv)/2Jb(Kv)| = |Jb(Kv)[2]|,
by Theorem 5.5. This quantity in turn is equal to |ZG(κb)(Kv)|, by Theorem 5.2. This completes the
proof.

We now come to the first main theorem of this paper. If D is a divisor on X and (E,P,Q) ∈ XD,
we write A(E,P,Q) ⊂ Sel2(E) for the ‘trivial subgroup’ which is generated by the points P and Q, and
Sel2(E)nt = Sel2(E)−A(E,P,Q) for its complement.

Theorem 5.9. The limit

lim
degD→∞

∑
(E,P,Q)∈XD

| Sel2(E)nt| · |Aut(E,P,Q)|−1 · |E(K)[2]|−1

|XD|

exists and equals 8.

In the following proof, we write χ = 2− 2gX in order to avoid a proliferation of subscripts.
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Proof. Corollary 2.4 shows that we have

|H0(X,BD)sf| =
∑

(E,P,Q)∈XD

q − 1

|Aut(E,P,Q)|
= (q − 1)|XD| − (q − 1)

∑
(E,P,Q)∈XD

(
1− |Aut(E,P,Q)|−1

)
.

It also shows that if (E,P,Q) ∈ XD and the group Aut(E,P,Q) is non-trivial, then p2(b) = 0 for any
pre-image b ∈ H0(X,BD)sf. Thus the number of such curves is O(q14 degD). Using Proposition 5.8, we see
that

lim
degD→∞

|XD|
|H0(X,BD)sf|

= (q − 1)−1.

Similarly, if b ∈ H0(X,BD)sf corresponds to (E,P,Q) ∈ XD, then Theorem 5.6 shows that

|Sel2(E)| =
∑
g∈YG

|H0(X,Vg)b/Aut(Fg)|.

(Here the subscript b again denotes fibre over b.) By the third part of Theorem 5.5, the stabilizer in Aut(Fg)
of any point in H0(X,Vg)b is isomorphic to E(K)[2]. Weighting for this, we obtain

| Sel2(E)|
|E(K)[2]|

=
∑
g∈YG

|H0(X,Vg)b|
|Aut(Fg)|

=

∫
g∈YG

|H0(X,Vg)b|.

(In fact, in our case the groups E(K)[2] are all trivial, cf. Remark 1.2, but we don’t need this.) Summing
over all b ∈ H0(X,BD)sf and restricting to non-trivial elements of the 2-Selmer group, we obtain the identity

(q − 1)
∑

(E,P,Q)∈XD

|Sel2(E)nt| · |Aut(E,P,Q)|−1 · |E(K)[2]|−1

|H0(X,BD)sf|
=

∫
g∈YG

|H0(X,Vg(D))sf, nt|
|H0(X,BD)sf|

dνG

=

∫
YG

|H0(X,Vg(D))sf, nt|
|H0(X,BD)|

× |H0(X,BD)|
|H0(X,BD)sf|

dνG,

hence

lim
degD→∞

∑
(E,P,Q)∈XD

| Sel2(E)nt| · |Aut(E,P,Q)|−1 · |E(K)[2]|−1

|XD|
= δ−1

B × lim
degD→∞

∫
YG

|H0(X,Vg(D))sf, nt|
|H0(X,BD)|

dνG.

We would like to compute the pointwise limit of the integrand and then interchange the order of the integral
and the limit. This can be justified only after a process of ‘cutting off the cusp’. Applying the decompositions
(4.5) and (4.12), we get∫

YG

|H0(X,Vg(D))sf, nt|
|H0(X,BD)|

dνG =
∑
P

∫
YG,P

|H0(X,Vg(D))sf, nt|
|H0(X,BD)|

dνG

=
∑
P

[∫
YG,P (D)>−χ

|H0(X,Vg(D))sf, nt|
|H0(X,BD)|

dνG +

∫
YG,P (D)sp

|H0(X,Vg(D))sf, nt|
|H0(X,BD)|

dνG

+

∫
YG,P (D)<0

|H0(X,Vg(D))sf, nt|
|H0(X,BD)|

dνG

]
,

where the sums are over the set of standard parabolic subgroups of G. (We recall that these are the parabolics
containing the Borel subgroup P0 ⊂ G corresponding to the set R− = {−a1,−a2,−a3,−a4} of simple roots
of G.) Applying Lemma 5.7, we see that when degD > 0, this equals

∑
P

[∫
YG,P (D)>−χ

|H0(X,Vg(D))sf|
|H0(X,BD)|

dνG +

∫
YG,P (D)sp

|H0(X,Vg(D))sf|
|H0(X,BD)|

dνG +

∫
YG,P (D)<0

|H0(X,Vg(D))sf, nt|
|H0(X,BD)|

dνG

]
.
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We will see that the terms corresponding to YG,P (D)>−χ dominate, while the others vanish in the limit. Note
that for any g ∈ YG,P , we have g ∈ YG,P (D)>−χ for all divisors D of sufficiently large degree (depending
on g). For divisors of degree greater than −χ we have |H0(X,BD)| = q2χ+16 degD, and Corollary 4.7 shows
that for such D we have∫

YG,P (D)>−χ

|H0(X,Vg(D))sf|
|H0(X,BD)|

dνG =

∫
YG,P (D)>−χ

|H0(X,Vg(D))|
|H0(X,BD)|

|H0(X,Vg(D))sf|
|H0(X,Vg(D))|

dνG.

= q6χ
∫
YG,P (D)>−χ

|H0(X,Vg(D))sf|
|H0(X,Vg(D))|

dνG.

The integrand in this expression is bounded by 1, and as degD → ∞ its value tends to a limit δV which is
independent of the choice of g, by Proposition 5.8. Applying the dominated convergence theorem, we find
that

lim
degD→∞

∫
YG,P (D)>−χ

|H0(X,Vg(D))sf|
|H0(X,BD)|

dνG = q6χδV

∫
YG,P

dνG.

To take care of the contribution in the special range, we calculate using Corollary 4.7 and Lemma 4.3:

∫
YG,P (D)sp

|H0(X,Vg(D))sf|
|H0(X,BD)|

dνG ≤
∫
YG,P (D)sp

|H0(X,Vg(D))|
|H0(X,BD)|

dνG = O

 ∑
σ∈Λpos

P

degD+⟨σ,α0⟩∈[0,−χ]

q−⟨σ,δP ⟩

 ,

where the implied constant depends only on X. This tends to 0 as degD → ∞. To take care of the remaining
contributions, we note that Corollary 4.8 implies that∫

YG,P (D)<0

|H0(X,Vg(D))sf, nt|
|H0(X,BD)|

dνG = 0

unless P = P0 or the Levi quotient of P has semisimple rank 1. In these cases we will show that

lim
degD→∞

∫
YG,P (D)<0

|H0(X,Vg(D))sf, nt|
|H0(X,BD)|

dνG = 0. (5.15)

Let us first treat the (harder) case of P = P0. Let C denote the set of non-empty subsets M ⊂ ΦV which
are closed under the relation ≥: i.e. if a ∈ ΦV , b ∈ M , and a ≥ b, then a ∈ M . Note that α0 ∈ M for
all M ∈ C. Then we have YG,P0(D)<0 = ⊔M∈CYG,P0(D)<0,M , where we define YG,P0(D)<0,M to be the set
of G-torsors F ∈ YG,P0(D)<0 such that for a ∈ ΦV , the slope σFP0

of the canonical reduction FP0 satisfies
⟨σFP0

, a⟩+ degD < 0 if and only if a ∈ M . This allows us to decompose∫
YG,P0

(D)<0

|H0(X,Vg(D))sf, nt|
|H0(X,BD)|

dνG =
∑
M∈C

∫
YG,P0

(D)<0,M

|H0(X,Vg(D))sf, nt|
|H0(X,BD)|

dνG. (5.16)

Let C0 ⊂ C denote the set of subsets M ∈ C0 not containing any of the sets S appearing in the statement of
Corollary 3.6. The summand in (5.16) corresponding to M ∈ C can be non-zero only if M ∈ C0. To show
(5.15) in case P = P0, it is therefore enough to show that the equality

lim
degD→∞

∫
YG,P0

(D)<0,M

|H0(X,Vg(D))|
|H0(X,BD)|

dνG = 0. (5.17)

holds for each M ∈ C0. If M ∈ C and YG,P0(D)<0,M , then Corollary 4.7 implies that we have

|H0(X,Vg(D))|
|H0(X,BD)|

= O(q−|M | degD−⟨σ,
∑

a∈M a⟩),
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where the implied constant depends only on X. Combining this with Lemma 4.3, we get for any M ∈ C:

∫
YG,P0

(D)<0,M

|H0(X,Vg(D))|
|H0(X,BD)|

dνG = O


∑

σ∈Λpos
P0

∀a∈M,⟨σ,a⟩+degD<0
∀a∈ΦV −M,⟨σ,a⟩+degD≥0

q−|M | degD−⟨σ,δP0
+
∑

a∈M a⟩

 , (5.18)

where the implied constant again depends only on X.
At this point, we recall the function λ(M) defined in §3.1: if M ∈ C, then λ(M) ⊂ ΦV −M is the

set of maximal elements of ΦV −M . In particular, if M ∈ C and a ∈ λ(M), then q⟨σ,a⟩+degD ≥ 1 for any σ
appearing in the sum (5.18). It follows that for any function p : λ(M) → R≥0, (5.18) is bounded above by a
constant multiple of ∑

σ∈Λpos
P0

∀a∈M,⟨σ,a⟩+degD<0
∀a∈ΦV −M,⟨σ,a⟩+degD≥0

qdegD(
∑

a∈λ(M) p(a)−|M |)+⟨σ,
∑

a∈λ(M) p(a)a−
∑

a∈M a−δP0
⟩

≤ qdegD(
∑

a∈λ(M) p(a)−|M |)
∑

σ∈Λpos
P0

q⟨σ,
∑

a∈λ(M) p(a)a−
∑

a∈M a−δP0
⟩.

This last expression tends to 0 as degD tends to infinity provided the function p is chosen so that the
following conditions are satisfied:

• |M | >
∑

a∈λ(M) p(a).

• Define w(M) = −
∑

a∈M a − δP0 and w(M,p) =
∑

a∈λ(M) p(a)a −
∑

a∈M a − δP0 ∈ X∗(T )R. Then

ni(w(M,p)) > 0 for each i = 1, . . . , 4.

We show that we can find such a function p simply by exhibiting one for each possible choice of M ∈ C0 in
the following table (the weights being labelled as in §3.1):

M λ(M) |M | 2w(M) p 2w(M,p)
1 2, 3, 4, 5 1 1 1 1 1 (0, 0, 0, 0) 1 1 1 1
1,2 3,4,5 2 2 0 0 0 (0.5, 0.5, 0.5) 3.5 0.5 0.5 0.5
1,3 2,4,5 2 0 2 0 0 (0.5, 0.5, 0.5) 0.5 3.5 0.5 0.5
1,4 2,3,5 2 0 0 2 0 (0.5, 0.5, 0.5) 0.5 0.5 3.5 0.5
1,5 2,3,4 2 0 0 0 2 (0.5, 0.5, 0.5) 0.5 0.5 0.5 3.5
1,2,3 4,5,6 3 1 1 −1 −1 (0.5, 0.5, 1.5) 0.5 0.5 0.5 0.5
1,2,4 3,5,7 3 1 −1 1 −1 (0.5, 0.5, 1.5) 0.5 0.5 0.5 0.5
1,2,5 3,4,8 3 1 −1 −1 1 (0.5, 0.5, 1.5) 0.5 0.5 0.5 0.5
1,3,4 2,5,9 3 −1 1 1 −1 (0.5, 0.5, 1.5) 0.5 0.5 0.5 0.5
1,3,5 2,4,10 3 −1 1 −1 1 (0.5, 0.5, 1.5) 0.5 0.5 0.5 0.5
1,4,5 2,3,11 3 −1 −1 1 1 (0.5, 0.5, 1.5) 0.5 0.5 0.5 0.5

This shows that the equality (5.15) holds in case P = P0. We now treat the four remaining cases. By
symmetry, we can assume that P is the standard parabolic subgroup of G generated by P0 and the root
subgroup corresponding to the root a1. Then the Levi quotient LP of P is isogenous to SL2, and the same
argument as above shows that we need to show that

lim
degD→∞

∫
YG,P (D)<0,M

|H0(X,Vg(D))sf, nt|
|H0(X,BD)|

dνG = 0 (5.19)

for each M ∈ C0. We observe that YG,P (D)<0,M is non-empty only when M satisfies the condition a ∈ M ⇒
a′ ∈ M , where a′ ∈ ΦV is defined by n1(a

′) = −n1(a), ni(a
′) = ni(a) for i = 2, 3, 4. The only set M ∈ C0
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which satisfies this condition is M = {1, 2}, so we are reduced finally to showing that the equality (5.19)
holds in the single case M = {1, 2}. This can be proved using exactly the same trick as before.

Putting everything back together and applying Proposition 5.8, we find

lim
degD→∞

∑
(E,P,Q)∈XD

| Sel2(E)nt| · |Aut(E,P,Q)|−1 · |E(K)[2]|−1

|XD|
= δ−1

B ×
∑
P

q6χδV

∫
YG,P

dνG

=

∫
G(ÔK)

dτG

∫
G(K)\G(AK)

dµG =

∫
G(K)\G(AK)

dτG = τ(G),

the Tamagawa number of G. Since the fundamental group of G is isomorphic to µ3
2 and the universal cover

of G is SL4
2, we have τ(G) = 8 (apply [BD09, Theorem 6.1]). This completes the proof.

Corollary 5.10. The limit

lim
degD→∞

∑
(E,P,Q)∈XD

|Sel2(E)| · |Aut(E,P,Q)|−1 · |E(K)[2]|−1

|XD|

exists and equals 12.

Proof. In view of Theorem 5.9, we just need to show that

lim
degD→∞

∑
(E,P,Q)∈XD

|AE,P,Q| · |Aut(E,P,Q)|−1 · |E(K)[2]|−1

|XD|

exists and equals 4. We recall from the proof of Theorem 5.3 that if k/Fq is a field extension and b ∈ Brs(k),
then |AE,P,Q| = 4 if and only if in the short exact sequence

0 //ZG(κb) //C[2] //π0(H
θ) //0 , (5.20)

we have H0(k, ZG(κb)) = H0(k,C[2]). This property can be detected at the level of the image Wb of the
map Γk → W (G, zh(κb)) ∼= WH into the little Weyl group of the Cartan subspace zh(κb) ⊂ Vk. We see that
the corollary would follow from a quantitative Hilbert irreducibility theorem, which does not seem to exist
in the literature at the moment (but see [BS]).

Instead, we will give a direct proof of the corollary. For any of R ∈ {P,Q, P ⊕Q}, let XD(R) denote
the set of (E,P,Q) ∈ XD such that the image of R in E(K)/2E(K) is trivial. To show the corollary, it is
enough to show that

lim
degD→∞

|XD(R)|
|XD|

= 0 (5.21)

for each possible choice of R. According to the proof of Theorem 5.3, the element R determines a class
vR ∈ π0(H

θ), and a triple (E,P,Q) ∈ XD lies in XD(R) if and only if the image of this class in H1(K,ZG(κb))
under the connecting homomorphism is trivial. Let {w} ⊂ W (G, zh(κb)) ∼= WH be a conjugacy class of
elements such that (w − 1)wR ̸∈ (w − 1)ZG(κb), for any lift wR ∈ C[2] of vR. (This condition depends
only on the conjugacy class of w, so makes sense independent of the choice of b. We can choose either
w = s2s3 and w = s1s2s4, where s1, . . . , s4 are the simple reflections of H corresponding to the simple roots
α1, . . . , α4 listed in §3.1.) Then if (E,P,Q) ∈ XD corresponds to b ∈ Brs(K) and {w} ∩ Wb ̸= ∅, then
(E,P,Q) ̸∈ XD(R). Equivalently, if (E,P,Q) ∈ XD(R), then {w} ∩Wb = ∅.

To prove the corollary, it is therefore enough to show that for any conjugacy class {w} of the little
Weyl group, we have

lim
degD→∞

|{b ∈ H0(X,BD) ∩Brs(K)|{w} ∩Wb = ∅}|
|H0(X,BD)|

= 0.
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Let B∆=0 ⊂ B denote the vanishing locus of the discriminant ∆. The Chebotarev density theorem (see
[Cha97, Theorem 4.1]) states that for each place v of K we have

|{bv ∈ Brs(k(v)) | {w} ∩Wbv = ∅}| =
(
1− |{w}|

|WH |

)
q4v +O(q

4− 1
2

v ),

where the implicit constant is independent of the choice of v. Let M > 0. If D is a divisor on X of sufficiently
large degree, then the map

H0(X,BD) →
∏

Nv<M

H0(k(v), BD)

is surjective. If v is a place of K, then the image of the set

{b ∈ H0(X,BD) ∩Brs(K)|{w} ∩Wb = ∅}

in H0(k(v), BD) is contained inside

B∆=0(k(v)) ∪ {bv ∈ Brs(k(v)) | {w} ∩Wbv = ∅}.

We find that for degD sufficiently large, we have

|{b ∈ H0(X,BD) ∩Brs(K)|{w} ∩Wb = ∅}|
|H0(X,BD)|

≤
∏

Nv<M

((
1− |{w}|

|WH |

)
+O(q−1/2

v )

)
.

This product converges to 0 as M → ∞, and this concludes the proof.

Finally, we prove the promised generalization of Theorem 5.9.

Theorem 5.11. Let f : YG → R be a bounded function. Then we have

lim
degD→∞

∑
(E,P,Q)∈XD

|Aut(E,P,Q)|−1 · |E(K)[2]|−1
∑

x∈Sel2(E)nt f(inv x)

|XD|
=

∫
F∈YG

f(F ) dτG.

Proof. Arguing as in the proof of Theorem 5.9, we get

(q−1)
∑

(E,P,Q)∈XD

|Aut(E,P,Q)|−1 · |E(K)[2]|−1
∑

x∈Sel2(E)nt f(inv x)

|H0(X,BD)sf|
=

∫
g∈YG

|H0(X,Vg(D))sf, nt|
|H0(X,BD)sf|

f(Fg) dνG

=
∑
P

[∫
YG,P (D)>−χ

f(Fg)
|H0(X,Vg(D))sf|
|H0(X,BD)|

dνG

+

∫
YG,P (D)sp

f(Fg)
|H0(X,Vg(D))sf|
|H0(X,BD)|

dνG +

∫
YG,P (D)<0

f(Fg)
|H0(X,Vg(D))sf, nt|

|H0(X,BD)|
dνG

]
.

Since f is bounded, the same arguments as before show that the boundary terms vanish in the limit. On the
other hand, the boundedness of f means we can again apply the dominated convergence theorem to deduce
that

lim
degD→∞

∫
YG,P (D)>−χ

f(Fg)
|H0(X,Vg(D))sf|
|H0(X , BD)|

dνG = q6χδV

∫
YG,P

f(Fg) dνG,

and these terms can then be regrouped to obtain the statement of the theorem.
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