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Abstract

We consider elliptic curves over global fields of positive characteristic with two distinct marked non-
trivial rational points. Restricting to a certain subfamily of the universal one, we show that the average
size of the 2-Selmer groups of these curves exists, in a natural sense, and equals 12. Along the way, we
consider a map from these 2-Selmer groups to the moduli space of G-torsors over an algebraic curve,
where G is isogenous to SL3, and show that the images of 2-Selmer elements under this map become

equidistributed in the limit.
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1 Introduction

RNy

Let K be a global field. To any elliptic curve F/K and integer n > 1 not dividing the characteristic of K,

one can attach the n-Selmer group

Sel, (F) = ker(H* (K, E[n] —>HH (K., E))
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The cohomology groups here are Galois cohomology, and the product is over the set of all places v of the
global field K. The n-Selmer group then fits into a short exact sequence of finite abelian groups

0——=E(K)/nE(K)——>Sel,(EF)——=TS(K, E)[n]—0.

Since it is often easier to compute Sel,(E) than the group E(K)/nE(K), this provides a useful tool for
studying the group of rational points F(K). However, computing Sel,, (F) for reasonably complicated curves
E, even when an algorithm is known, can require a large amount of effort. For these reasons, it is of interest
to understand the behaviour of the groups Sel,,(E) on average. Recent years have seen striking progress in
problems of this type; for some work of particular relevance to this paper, we refer the reader to any of the
papers [dJ02, BSTS, HLHNTA].

In this paper, we prove new results about the average size of the 2-Selmer group of elliptic curves
over global fields of positive characteristic. Such a field is, by definition, the function field K = F4(X) of an
algebraic curve over a finite field. We will consider the universal family of elliptic curves with two marked
rational points and calculate the average size of the 2-Selmer groups of the curves in this family satisfying
certain conditions. We will accomplish this by relating these 2-Selmer groups to the invariant theory of a
representation constructed and studied in [ThaT3], and then counting sections of certain associated vector
bundles on X.

In order to state our main theorems precisely, we must introduce some notation. If F/K is an elliptic
curve, we can associate its relatively minimal regular model pg : £ — X with identity section O : X — £.
The isomorphism class of the line bundle Lg = (R'pg .Og)®~! is an invariant of E, and there are only
finitely many elliptic curves over K up to isomorphism with a given Lg, this number tending to infinity as
deg Lg — oo. This means we can use the invariant deg Lg to order elliptic curves over K, for example in
order to define the average size of the 2-Selmer group. (To further motivate this, recall that if X = ]P’Ilpq and
K =T,(t), then deg Lg = N if and only if E can be described by a minimal Weierstrass equation

y? = 2° + a(t)z + b(t),

where a(t),b(t) € Fy[t], dega(t) < 4N, and degb(t) < 6N; see [Mirg1, Corollary 2.5].)
If £ is a line bundle on X, then we write X, for the finite set of isomorphism classes of triples
(E, P,Q) as follows:

1. E/K is an elliptic curve such that L = £%2 and the fibres of pg are all of type I or I;.

2. P,Q € E(K) are distinct non-trivial rational points such that sections O, P, Q : X — & associated to
the origin of E' and the points P, Q, respectively, do not intersect.

Provided that the characteristic of K does not divide 6, an elliptic curve E with two non-trivial marked
points can be represented by an equation

Y(XY +2q42%) = X3 + po X2 Z 4 py X Z? + ps Z3, (1.1)

which sends the marked points, together with the origin, to the line at infinity. The curves in X are exactly
those for which the discriminant A(ps, ..., pg) of this equation vanishes to order at most 1 everywhere, when
viewed as a section of HO(X, £®?%); see §2 below.

We can now state our first main theorem.

Theorem 1.1. Suppose that char K > 19. The limit

: | Selo(E)| x |Aut(E, P,Q)| " x |E(K)[2]|!
lim Z )

deg L— 00
(E,P,Q)eX,

ezists and equals 12.



Remark 1.2. 1. This result is what one might expect given known results about the 2-Selmer groups
of elliptic curves without marked points: for the curves in our family, there is a ‘trivial subgroup’
A(g,pg) C Sela(E), generated by the classes of the points P, @, and which generically has size 4.
It follows that the remainder Sels(E)/A(g,p,q) should have average size 3. For those who prefer an
additive decomposition, we find that the (weighted) average size of Sely(FE) equals the average size of
the trivial subgroup plus the Tamagawa number 7(G) of the reductive group G defined below.

2. We believe that the weighting of Selmer elements by automorphisms is natural; similarly for the
weighting by K-rational 2-torsion points (which can be thought of as K-rational automorphisms of
the trivial 2-covering [2] : E — E). In fact, the contribution of E(K)[2] can be suppressed: for the
curves we consider, the groups E(K)[tors| are trivial (because they inject into the product of fibral
component groups, which our hypotheses imply are trivial; see [Shi9l]).

3. The restriction on the characteristic arises because we need to apply Jacobson-Morozov style results
to the Lie algebra over F, of type Dy, for example in the construction of the Kostant section (see
Proposition BZ3 below). It may be possible to relax this restriction slightly.

Let G = (SO4 x SO4)/A(u2), where SOy is the split special orthogonal group over F,, and s is its
centre. A key role in our proof of Theorem I is played by a family of canonically defined maps

inv = inv(g,p,q) : Sel2(E) = G(K)\G(Ak)/ [ G(Ok,), (1.2)

that we call ‘invariant’” maps. In fact, our consideration of these maps leads to the following generalization
of Theorem [, which is a kind of equidistribution result:

Theorem 1.3. Suppose that char K > 19. Let f : G(K)\G(Ak)/ ][, G(Ok,) = R be a bounded function,
and let T denote the Tamagawa measure on G(K)\G(Ak)/ [, G(Ok,). Then the limit

. flinvz) x |Aut(E, P,Q)|~! x |[E(K)[2]|~!
lim Z Z EA

deg L— o0
(E,P,Q)eX, xz€Sel2(E)—~A(E,p,qQ)

exists and equals fgeg(K)\G(AK)/ M, G(Oxc.) flg)dra.

Taking f = 1 to be the constant function, we recover Theorem I (after accounting for the average
number of elements in the group A (g p,q), which is a simple task). In general, Theorem =3 can be interpreted
as saying that the invariants of non-trivial Selmer elements of elliptic curves in X become equidistributed
in G(K)\G(Ak)/ 11, G(Ok,) as deg L — oo. It would be very interesting to get a better understanding of
this phenomenon, which persists in other situations (for example, in the case of 2-Selmer groups of elliptic
curves without marked points, in which case G should be replaced by the group PGLs). Can one relate
Theorem I3 to existing conjectures about statistics of ranks of 2-Selmer groups, as in [PRTZ]?

The proofs of Theorem [0 and Theorem =3 rely on a connection between the universal family of
elliptic curves (E, P, Q) with two marked points and a certain representation (G, V') which was analyzed in
[ThoT3] from the point of view of Vinberg theory, and which is constructed using the adjoint group over F,
of type Dy4. The link here exists because the family of curves () is a miniversal deformation of the simple
curve singularity of type Dy4. This connection reduces the problem of counting elements of Selmer groups to
that of counting orbits in certain representations of V. Using the map inv described above, we reduce this
to a problem of counting sections of certain vector bundles over X.

An interesting point in our proof is the calculation of the image under (I=2) of the trivial elements of
the 2-Selmer group. We can describe these images explicitly using the principal cocharacter of the ambient
group H of type D, (inside which the pair (G, V) is constructed); see Lemma B7. This gives a quantitative
version of the intuitive statement that ‘trivial elements appear far into the cusp of V.

Aside from the intrinsic interest of results like Theorem I, one of our motivations was to understand
how the techniques of Bhargava—Shankar for counting integral orbits in coregular representations (see e.g.



[BSTH]) can be transferred to this function field setting. Instead of reduction theory we use the Harder—
Narasimhan (or Shatz) stratification of the space G(K)\G(Ak)/[[, G(Ok,) by the canonical reduction
of G-torsors (an idea implicit in [HLHNT4]). After some reinterpretation, we find that the methods of
Bhargava—Shankar are still very effective. In particular, the technique of ‘cutting off the cusp’ works in a
very similar way (compare e.g. [ThoI3, §5] and the proof of Theorem 53 below).

We have restricted ourselves to pointed curves (E, P, Q) satisfying conditions 1. and 2. above, since
this simplifies our analysis of the invariant map (IZ2). From the point of view of the invariant theory of
(G, V), it corresponds to restricting to orbits with square-free discriminant A. It would be possible to remove
this restriction, at the cost of a more detailed analysis of integral orbits. For example, the invariant map
would become multi-valued, since the uniqueness of integral representatives (see Theorem 53H) does not hold
in general. Compare [BSI3, §3.2] for the kinds of problems that arise.

The preprint [BH], made available after this paper was written, treats the average sizes of Selmer
groups of a number of families of elliptic curves with marked rational points, considered over the rational
numbers. The F5 family studied there is the same (up to a change of variable) as the one studied here, and
indeed the coregular representation used to study it is also the same. We note that in op. cit. the authors
obtain only an upper bound of 12 for the average size of the Selmer group. In the function field setting, we
are able to sidestep all difficulties involved in sieving to Selmer elements by using the results of [Pool3] (a
tactic also used in the paper [HLHNIZ]), which is why we are able to obtain an exact average.

We now describe the structure of this paper. In §B, we introduce the universal family of elliptic
curves with two marked points, and study their projective embeddings and integral models. In §B, we
introduce the representation (G, V') and describe its invariant theory. We also introduce the discriminant A
and the important notion of trivial orbits in G(K)\V (K); these are the orbits that will eventually correspond
to elements of the trivial subgroup A(g p ) of the 2-Selmer group. We also give some useful criteria for
elements in V(K) either to have vanishing discriminant, or to lie in a trivial orbit. In §Al, we describe the
Harder-Narasimhan stratification of G(K)\G(Ak)/ ], G(Oxk,) (at the level of points only) and the relation
between summing over strata and integrating over the adelic points of parabolic subgroups of GG. Finally, in
88, we describe the relation between the pair (G, V') and the family of curves (I0), and exploit this to prove
our main theorems Theorem b9 and Theorem BTI.

1.1 Acknowledgments

I would like to thank Tom Fisher and Beth Romano for useful conversations, and the anonymous referees
for their careful reading of this paper.

1.2 Notation

In this paper, we will generally use the letter K to denote a global field of positive characteristic, therefore
the function field F,(X) of a smooth, projective, geometrically connected curve X over F,. If v is a place
of K, then we will write K, for the completion of K at v, O, for the ring of integers of v, and w, € Ok,
for a choice of uniformizer. We will write ordg, : K — Z for the corresponding normalized discrete
valuation, k(v) = Ok, /(w,) for the residue field, and ¢, = |k(v)| for the cardinality of the residue field.
We will generally fix a separable closure K*®/K and separable closures K:/K,, together with compatible
embeddings K° — K:. We then define 'y = Gal(K*®/K) and ', = Gal(K;/K,). There are canonical
maps I'x, = I'x. We let x(v) denote the residue field of K3, which is an algebraic closure of k(v). We write
Ix, C 'k, for the inertia group.

We write @K = [1, Ok, for the maximal compact subring of the adele ring Ax = H; K,. We will
write |- |, : K — Ry for the valuation satisfying |@,| = ¢, !, and |- || = [T, || : Aj — R for the adelic
norm, which satisfies the product formula ||y|]| = 1 for all v € K*. If Y is a integral smooth scheme over K,
and wy is a non-vanishing differential form of top degree on Y, then we write |wy |, for the corresponding
measure on Y (K,).

If S is a scheme, a reductive group over S is a smooth group scheme G — S with geometric fibres
which are (connected and) reductive. If G is a group scheme over S which acts on another scheme X — S,
then for x € X (S) we write Zg(z) for the scheme-theoretic stabilizer of z. If Z C X is a closed subscheme,



then we write Z(Z) and Ng(Z) for the scheme-theoretic centralizers and normalizers of Z. If G is a
reductive group over a field then we write Zy(G) for the identity component of the centre Zg of G. Lie
algebras will be denoted using gothic letters (e.g. Lie G = g).

If G is a smooth group scheme over Fy, and K = F,(X), then we write pg for the right-invariant
Haar measure on G(Ag) which gives measure 1 to the open compact subgroup G(@K) C GAk). f G is
semisimple, then we will write 7¢ for the Tamagawa measure on G(A k). These two measures are related by

the formula (see [Weidd)):
_ dimG(1—gx) /
G =4 lwelv| ke,
[1:[ G(Ok,) ]

where wg is a non-vanishing invariant differential form of top degree on G (hence defined over Fy) and gx
denotes the genus of X.

If Y is any Fy-scheme and k/F, is a field extension, then we write Y, =Y XspecF, Speck for the
base extension and Y (k) for the set of k-points.

2 Elliptic curves with two marked points

Let k be a field of characteristic not dividing 6. We consider tuples (E, P, Q), where E is an elliptic curve
over k (with origin point O € E(k)) and P,Q € E(k) are distinct, non-trivial marked points.

Such pointed curves have a distinguished class of plane embeddings which are different to the usual
Weierstrass embeddings, being defined by the linear system associated to the degree 3 divisor O + P + Q.
Indeed, this linear system is very ample, so embeds F into the projective plane ]P’% in such a way that the
points O, P, @ are collinear. If X,Y,Z are the co-ordinates on P% then we can assume, after a projective
transformation, that O, P, Q are given respectively by [0:1:0], [1:1:0], and [-1:1:0]. The co-ordinate
system is then uniquely determined up to substitutions of the form X ~» aX +bZ and Y ~ aY + c¢Z with
a € k*,b,c € k. It is easy to check that there is a unique such substitution with a = 1 leading to an equation
of the form

Y(XY +2qu7%) = X? + po X2 Z 4+ pa X 72 + ps Z°. (2.1)
We define the associated polynomial f(z) = % + po® + psa? + pex + 3, and A(p2, p4, qa, pe) = disc f €
Z[pa, . ..,ps]. The following is elementary:

Lemma 2.1. Let pa, p4, qa,p6 € k, and let E be the plane curve over k defined by the equation (Z3). Then E
is smooth if and only if A(pa, pa,qa, ps) # 0. The assignment (E, P,Q,t) — (p2, pa, qa,ps) defines a bijection
between the following two sets:

o The set of tuples (E, P, Q,t), where E is an elliptic curve over k and P,Q € E(k) are distinct non-trivial
rational points, and t is a basis for HO(E,Og(O)/Og). These tuples are considered up to isomorphism
(i.e. isomorphisms ¢ : E — E' of elliptic curves which preserve the other data).

o The set Of tuples (anp47q47p6) € k/A such that A(anp4aq4ap6) 7é 0.
Under this bijection, a tuple (E, P,Q,\t) (XA € k*) corresponds to (Ap2, \*pa, \2qq, N3ps).

Proof. The only thing to note is that the bijection is normalized by the requirement that Y/Z € H(E, Og(O+
P+ Q)) has image in Og(0)/OFg equal to t. O

A similar story works over a more general base:

Proposition 2.2. Let S be a Z[1/6]-scheme, and letp : E — S be a (smooth, proper) family of elliptic curves
equipped with identity section O € E(S) and sections P,Q € E(S) such that on every fibre, the associated
points are distinct and non-trivial. Let L = (p.[O(0)/Og))®~t. Then L is an invertible Og-module, and
there are canonically determined sections pa € H°(S, L), ps,qu € H°(S,L%?), and ps € H®(S, LZ?), such
that E is isomorphic to the subscheme of P(L ® L ® Og) defined by the equation

Y(XY +2q2%) = X? + po X2 Z 4+ pa X 2% + pe 22, (2.2)



where (X,Y, Z) is the co-ordinate system relative to the decomposition L& LD Og. Moreover, A(pa,...ps) €
HO(S, £L®'?) is an everywhere non-vanishing section.

Conversely, suppose given an invertible Og-module L, together with sections pa, . .., pe as above such
that A(p2, pa, qa,pe) is a non-vanishing section of LZ*2. Then the relative curve defined by the equation (23)
is an elliptic curve with marked points at infinity that are distinct and non-trivial in each fibre.

Proof. The direct image p. (Q}a / ) is locally free of rank 1. By Grothendieck-Serre duality, there is a canonical
isomorphism Rl'p,Of = p*(Q}s/s)(@_l- If R € E(S), then there is a short exact sequence

0——=0p——0p(R)——=0g(R)/Op——0, (2.3)

which leads to an isomorphism p.[Og(R)/Og] = R'p.Og. The pairing p.[Or(R)/Og] X p*(Q}E/s) — Og
can be described as follows: it sends a pair (g,w) to the residue of the meromorphic differential gw along R.
We are free to localize, so we can assume that S = Spec A is affine and that p*(Q}E/s) is a free

A-module of rank 1. Let w be a basis element; by the above this determines, for any R € E(S), a dual basis
element fr € H°(E,Or(R)/Og), and hence an isomorphism H°(E,Og(R)/OF) = A. Tt follows that the
short exact sequence

0——=0p——=0p(0+P+Q)—=0p(0O+P+Q)/Og——=0 (2.4)

gives rise to a long exact sequence of finite A-modules

0——=A——>H(E,05(0 + P +Q)) A3 0, (2.5)

where the map 7 is summing co-ordinates. We choose functions x,y € H°(E,Og(O + P + Q)) to map to
(0,1,—1) and (—2,1,1) in A3, respectively. Then z,y are uniquely determined up to addition of constants.
We have 10 elements

Lz,y, 2% 2y, y°, 2°, 2%y, 2y’ y* € H'(E,0p(3(0 + P+ Q))).

Note that 22 and zy? have polar divisors 3P + 3Q and 20 + 3P + 3Q, respectively, and that 3 — zy? €
H°(E,Op(20 +2P +2Q)). Continuing in this fashion, we see that there is a unique A-linear relation of the
form

xy2 + a1y2 + a2xy + azy = 2+ a4x2 + asx + ag (2.6)

for constants ay,...,as € A. We are free to add constants to x,y, and there is a unique way to do this in
order to get a1 = ag = 0, giving an equation

y(zy + 2q4) = 2° + poa® + pax + pe (2.7)

which is uniquely determined by (E, P, Q) and our chosen basis element w € p.(Q}, / 5)- The proposition now
follows from this and the observation that the affine curve defined by the equation (E72) is smooth if and
only if the discriminant of the polynomial f(x) = 2 + pe® + ps2? + pex + ¢3 is non-zero. O

We can use this theory to describe integral models of such triples (E, P, Q) over a Dedekind scheme.
Let S be a Dedekind scheme on which 6 is a unit, let K = K(S), and let £ be an invertible Og-module.
Suppose given sections py € H°(S, L), ps,qs € H°(S, LZ?), and ps € H(S, LZ3) such that A(pz, p4, s, ps) €
HO(S, £'?) is non-zero. Then the equation (22) defines a proper flat morphism p : & — S with smooth
generic fibre (and indeed, singular fibres exactly above those points of S where A vanishes).

We call the data of (£, pa, ..., ps) minimal if we cannot find an invertible subsheaf M C £ such that
the sections po, . .., pg all come from M. The minimal data is uniquely determined by the triple (E, P, Q) over
K, in the following sense: if (£, pa,...,ps) and (M, ph, ..., p§) are two sets of minimal data associated to E,
then we can find an isomorphism « : £ — M of invertible Og-modules such that a(pa,...,ps) = (ph,-- -, Ds)-
Indeed, it follows from Lemma P that we can find an isomorphism a, : £, — M,, over the generic point
n of S such that a(ps,...,ps) = (Ph,...,ps). Choosing an isomorphism £, = K, we see that both £ and



M can be characterized as the smallest invertible subsheaves of K containing the sections pa, ..., pg in their
respective tensor powers.

We refer to the morphism p : £ — S associated to minimal data (£, ps, ..., ps) as a minimal integral
model of the triple (E, P,Q). By the above discussion, it is also uniquely determined up to isomorphism
by (E,P,Q). We can describe this minimal model in elementary terms in case K = F,(X) is the function
field of a smooth, projective, geometrically connected algebraic curve over F,. Let (E, P,Q) be an elliptic
curve over K with two distinct non-trivial marked rational points, and choose an arbitrary equation of type
() with po,...,ps € K. Then for each place v of K there is a unique integer n, satisfying the following
conditions:

1. The tuple (™ pa, w2 py, 2" qq, w>""pg) has co-ordinates in O, .
2. The integer n, is minimal with respect to this property.

We then define £ C K to be the invertible subsheaf whose sections over a Zariski open U C X are given by
the formula

c)y=xn|]] w;"’”(’)KU] .
vel
Then po, ..., pg are sections of the tensor powers of £, and the tuple (£, pa,...,ps) is minimal.
In this paper we will ultimately only be interested in those curves (E, P, Q) for which the associated
minimal data (£, ps, ..., ps) satisfies the following two conditions:

1. The line bundle £ is a square: £ =2 M®2,

2. The discriminant A(ps, ..., ps) € H(S, £1%) = HO(S, M?1) is square-free, in the sense that its zeroes
are multiplicity free.

The reason for this restriction is that these are exactly the curves which are related to orbits of squarefree
discriminant in a certain representation, to be considered in the next section. We now give a geometric
characterization of curves of square-free discriminant.

Lemma 2.3. Let R be a DVR in which 6 is a unit, let K = FracR, and let S = Spec R. Let (E,P,Q) be
an elliptic curve over K together with distinct non-trivial marked points P,Q € E(K). Let A € R denote
the discriminant of a minimal integral model of (E, P,Q) over S, therefore determined up to R*-multiple.
Then ordg A < 1 if and only if the following conditions are satisfied:

1. The minimal regular model of E over S has special fibre of type Iy or I (in Kodaira’s notation, see
for example [Tat73]).

2. The reductions modulo mg in the minimal regular model of E of the points P,Q € E(K) are distinct
and non-trivial.

Proof. We begin with some general remarks. A cubic equation of the form (E2) with coefficients in R
defines a genus one model of degree 3, in the sense of [CESTU]. Moreover, an easy computation shows that
the discriminant A = A(pe,...,ps) defined above coincides with the discriminant of a genus one model of

where Ag is the usual minimal Weierstrass discriminant of the curve E and ¢ > 0 is an integer called the
level of the genus one model. In particular, if ordx A < 1, then we must have ordg A = ordx Ag € {0,1},
showing that E has reduction of type Iy or I;. If Z is a minimal integral model of (E, P,Q) and & is the
minimal regular model of E, then [SadT2, Theorem 4.1] shows that there is an isomorphism £ 2 Z, hence
the points O, P, Q have distinct images under the map £(R) — £(R/mg).

Now let us assume that F has reduction of type Iy or I, with the points O, P, QQ remaining distinct
in the special fibre of the minimal regular model. We are going to do an integral version of the proof of
Proposition Z2. Let £ denote the minimal regular model of E. Then (by cohomology and base change



and [Lin02, Ch. 9, Lemma 4.28]) H'(E,O¢) is a free R-module of rank 1. We choose an isomorphism
H(E,0¢) = R. For any point A € E(R), the short exact sequence

0—=0¢ Oe(A) Oe(A) /O —0

gives rise to an isomorphism H%(£,0g(A)/Og) & H'(E,0¢) = R. Therefore the short exact sequence of
sheaves
0——=0g——=0g(O+ P+ Q)4>Og(0 + P+ Q)/054>0

gives rise to a long exact sequence

0—>R—>HO(E,0¢(0 + P + Q) —>R*—>R—>0,

where the map R®> — R is summing co-ordinates. We can therefore choose z,y € H°(£,0¢(0 + P + Q))
which map to (0,1, —1) and (—2,1, 1), respectively, in R?; then the elements 1,2,y € H°(£,0¢(0O+ P+Q))
span this free R-module. The elements

Lz,y,2% zy,y%, 2%, 2%y, 2%,y € H(E,0:(3(0 + P+ Q)))

generate this free rank 9 R-module. Considering once more their images in H°(&, O¢(30 + 3P + 3Q)/O¢),
we see that they must satisfy a unique R-linear relation of the form

zy? 4+ a1y + agxy + asy = 2° + agx® + asz + ag (2.8)

for constants a1, ...,as € R. We are again free to add constants to z,y, and there is a unique way to do this
in order to get a; = ap = 0, giving an equation

y(zy + 2q4) = 2° + p2a® + paz + pe. (2.9)

Let Z C P% denote the closed subscheme defined by the homogenization of the equation (Z9). Then Z is
normal and R-flat, and we get a morphism & — Z. Since £ has irreducible special fibre, Zariski’s main
theorem (see [BLRYU, Ch. 2, Theorem 2’]) shows that this morphism is in fact an isomorphism. It is now
a very special case of [SadT?, Theorem 4.1] that ordx A(p2, ps, q4,ps) equals the valuation of the minimal
discriminant of E, which is at most 1. This concludes the proof. O

If D is a divisor on X, then we will write Xp for the set of isomorphism classes of triples (E, P, Q)
of elliptic curves over K with two marked points such that the minimal data (£, ps,...,ps) satisfies £ =
Ox(2D), and the discriminant A(pa, ..., ps) € HO(X, £LZ12) =2 HO(X, Ox(24D)) is square-free. Lemma 223
shows that this is the same as the set X, (p) defined in 8.

We also write Bp = Ox(2D) & Ox(4D) ® Ox(4D) ® Ox(6D), a vector bundle over X, and write
H(X,Bp)*f ¢ H°(X, Bp) for the set of sections (ps, p4,qs,ps) € H°(X, Bp) for which the discriminant
A(pa,...,pe) € H(X,0x(24D)) is square-free. We can summarize the results of this section as follows:

Corollary 2.4. The mapt: H(X,Bp)* — Xp, (pa,...,ps) — (E, P,Q) which sends sections of H*(X, Bp)*/
to the curve given by the equation (Z38) is surjective, each fibre having finite cardinality equal to |Fx| -
| Aut(E, P,Q)|~".

Proof. The only thing left to check is the cardinality of the fibres. Let F act on H %(X, Bp) by the formula
- (p2, P4, q4,P6) = (D2, A2pa, A2qa, \2pg). Lemma 20 shows that F acts transitively on the fibres of ¢, and
that the stabilizer of any point is Aut(E, P, Q). The result follows. O

3 Invariant theory

In this section, we introduce the semisimple group G and its representation V', the orbits of which will
eventually be interpreted as elements of the 2-Selmer groups of elliptic curves of the type considered in §B.
For the moment, IF, denotes a finite field of characteristic prime to 6. We will soon impose more severe
restrictions on the characteristic.



3.1 Preliminaries

Let J denote the 4 x 4 matrix with 1’s on the anti-diagonal and 0’s elsewhere, and define a block matrix

- ( - ) € Mys(Z). (3.1)

We write SOg for the special orthogonal group over F, defined by ¥, H = SOg/us for its adjoint group, and
H*° = Sping for its simply connected double cover. We write h = Lie H. We write 0 for the inner involution
of H given by conjugation by the element

s =diag(1,-1,-1,1,1,—1,—1,1). (3.2)

We define G = (H?)° (i.e. the identity component of the 6-fixed subgroup of H), and V = h®=—1. There is
an isomorphism G 2 (SO4 X SO4)/A(p2), where SOy is a split special orthogonal group and A(us) is the
diagonally embedded centre.

We write 7" for the (split) diagonal maximal torus of SOg. We can identify 7’ = G2, via the formula

(a,b,c,d) € G} — diag(a,b,b ,a e, d,d et e T

We write T for the image of T in H. We observe that T is also a maximal torus of G. The group H
is disconnected. Its component group H%/G can be computed as follows: let Wy = Ng(T')/T denote the
Weyl group of of H, Wg = Ng(T)/T the Weyl group of G. Then the map Zy,, (s) — H?/G is surjective,
with kernel equal to Zy, (s) (see [Hum93, §2.2]). A calculation shows that the component group is therefore
isomorphic to Z/27Z x 7Z./27. Explicit representatives can be given by the elements o, 7 € Wy satisfying

o(a,b,c,d) = (a,b,c_l,d_l),T(a,b7 ¢,d) = (b,a,d,c), (3.3)

which generate a subgroup Wy C Wy which projects isomorphically to H? /G.
We introduce sets of simple roots as follows. A set Ry C X*(T') of simple roots for H consists of
the characters
ag =a/b,ag =b/c,as =c¢/d,aq = cd. (3.4)

We let ag = ab, the highest root of H. A set R C X*(T') of simple roots for G consists of the characters
a1 = ac,ay = a/c,a3 = bd,ay = b/d. (3.5)

The group G is isogenous to SL3, and the group Wy € Wy normalizes the action of Wg on X*(T') and
leaves invariant the set {a1,...,a4}. Its action on this set is faithful, and identifies Wy with the Klein
4-group {e, (12)(34), (13)(24), (14)(23)}. The characters of T appearing in the representation V are exactly
the combinations

%(j:al +as +as+ay),

and can thus be thought of as the vertices of a hypercube. Each weight space is 1-dimensional and we thus
have dimp, V' = 16. We write &y C X*(T') for the set of weights appearing in V. Any vector v € V' admits
a decomposition v = Zaebv vq. There is a decomposition ®y = <I>‘V" U @, coming from the decomposition
of the roots of H into positive and negative roots. We write nq,...,n4 for the basis of X,(T)g dual to
ai,...,as. We define a partial order on ®y by setting a > b if n;(a) > n;(b) for each i = 1,...4. We label
these weights in @ as follows:



# 2711 2712 2’!13 2714 1

T 1 1 1 1 / \
201 1 1 1 5 5
31 a1 11

401 1 a1 <

501 1 1 - 3 .

6 -1 -1 1 1

701 1 a1 1

sl 1 1 1 1 6 7 10 11
9 1 a1 a1

0w 1 -1 1 -1 13 14

ml 1 1 a1 - 9

1201 1 a1

13 -1 -1 1 -1 12 15
Ml -1 1 1 \ /
1 a1 a1 - 16

6| -1 1 -1 -1

The figure above shows the Hasse diagram of ®y with respect to this partial order. The weight
labelled 1 is ag. If M C @y is a subset, we will write A(M) C &y — M for the set of maximal elements of
Py — M, i.e. the set

{a€e®y —M|Vbe Py — M,a < b= a=b}.

It is useful to note that the action of W preserves the partial order on @y, and consequently commutes
with application of the function A.

In the paper [ThaT3], we recalled part of the invariant theory of the pair (G, V) over a field of
characteristic 0. In this case, the most important results were established by Kostant—Rallis [KR7T]. They
have been extended to positive characteristic in many cases by Levy [Lex7]. We now summarise this. We
particularly draw the reader’s attention to the notions of semisimple and regular element, and to the notion
of the little Weyl group — they play an important role throughout this paper.

Proposition 3.1. Let k/F, be a field, and let k° /k be a separable closure.

1. The natural maps F,[V]¢ — Fq[V]He and F,[p]7 — F,[V]|C are isomorphisms, and all of these rings
are isomorphic to polynomial algebras over Fy on four homogeneous generators of degrees 2,4,4, and
6, respectively. We write A € F, [V]€ for the restriction of the standard discriminant polynomial Ay of
the Lie algebra Y. (By definition, Ay(X) € IE"q[h]H is the first non-zero coefficient of the characteristic
polynomial of ad X.) It is non-zero.

2. Let B = Spec Fq[V]G, and let w: V. — B denote the natural map. Then 7 has reduced, H?-invariant
fibres.

3. Letv € Vi,. Then Zg, (v) and Zp, (v) are smooth over k.

4. Let ¢ C Vi, be a k-vector subspace. We call ¢ a Cartan subspace if there exists a mazimal torus C C Hy,
such that 0(t) =t~ for all t € C and LieC = c. All such subspaces are conjugate under the action of
G(k*®).

5. Let ¢ C Vi be a Cartan subspace. Then the map Ng,(¢) = W(Hg,¢) = Np,(¢)/Zg, (¢) is surjective,
and the natural restriction map k[V]¢ — k[c]V Hr<) s an isomorphism. In this case we call the group
W (G, c) = Ng,(¢)/Zg, (c) 2 W(Hy,c) the little Weyl group of c.

6. Let v € V. Then the following are equivalent:

(a) v is semisimple as an element of hy,.
(b) Gy -v CV is closed.

10



(c) v is contained in a Cartan subspace of Vj,.
Any such element is called a semisimple element of V.
7. Let v € Vi.. Then the following are equivalent:

(a) dim Zg, (v) = dim T

Any such element is called a regular element of Vi. The condition of being reqular is open, and we
write V™9 C V' for the open subscheme of reqular elements.

8. Letb e B(k), and let Vi, = 7= 1(b) C Vi. Then Vi (k®) contains reqular semisimple elements if and only
if A(b) # 0. In this case, G(k*®) acts transitively on V,(k®) and for any v € V4(k®), 35, (v) = Lie Zy, (v)
is the unique Cartan subspace of Vi, containing v.

Proof. Rather than give detailed references to [Lex(7], we simply refer the reader to the introduction of that
paper, which features a thorough summary of the results therein. O

The group G,, acts on V' by scalar multiplication, and there is an induced G,,-action on the quotient
B which makes the morphism 7 : V' — B equivariant. We write B™ C B for the open subscheme where A
is non-zero. By the proposition, 77!(B™) = V" is the open subscheme of regular semisimple elements of V.

3.2 Singular and trivial orbits

Let k/F, be a field. We are now going to give simple criteria in terms of vanishing of certain matrix entries
for elements v € Vj, either to satisfy A(v) =0, or to be trivial in a sense we will soon define.

Lemma 3.2. Let k/F, be a field, and let v="> Vg € V.

acedy

1. Let S C {1,2,3,4} be a two-element subset, and suppose that v, = 0 if n;(a) > 0 for each i € S. Then
A(v) =0.

2. Suppose that v, = 0 if n;(a) < 0 for at most one i € {1,2,3,4}. Then A(v) = 0.

Proof. We will use the following criterion: let p C b be a parabolic subalgebra which contains t = Lie T,
and let v € p{?=~1. Then A(v) = 0. Indeed, if A(v) # 0 then v is regular semisimple, hence its centralizer
¢ = 3p, (v) is a Cartan subalgebra of b which is contained in V. We have dimy, ¢ < dimy 3p, (v) < dimyc,
hence ¢ = 3,,(v) and ¢ C p29:71. Let C' C Hj, denote the unique maximal torus with LieC' = ¢. We have
dim Zp, (v) > dim C, hence Zp, (v) = C is smooth and C C Pj. There is a unique Levi subgroup L C P
containing C, which is necessarily stable under the action of . The centre Z, is contained in C, on which
6 acts by ¢t — t~!. On the other hand, L projects isomorphically and §-equivariantly to the Levi quotient
of Py, and € acts on the centre of this quotient trivially (because it acts trivially on T"). This contradiction
implies that we must have A(v) = 0.

If S C ®y is a subset, we write Vg C V for the subspace given by the equations v, = 0 (a € 5).
The four maximal proper parabolic subalgebras p C § which contain the Borel subalgebra corresponding to

the root basis —Rpy have p?=—! = Vg for the following sets of weights:

1 1 1
S ={§(a1 +as tasztag)}, {i(al tastasz+aq)}, {§(a1 taz+aztag)}, and

1 1 1
{§(a1 +ag +as + a4), 5(—(11 +ag + as + (14)7 §(a1 —ag +as+ CL4)7 (3-6)
1 1
5(&1 +a2 — as + 0,4), 5(0,1 +a2 +CL3 — (14)}.

The last of these gives the subspace appearing in the second part of the lemma. On the other hand, each of
the subspaces appearing in the first part of the lemma is Wy-conjugate to one of the first three appearing in
(B™). The action of Wy leaves A invariant, so this implies the first part of the lemma. 0
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We now introduce the Kostant section. This is a section k : B — V of the morphism 7 : V — B,
which has image consisting of regular elements of V. We will follow Slodowy [SIoX(] in constructing x using
a fixed choice of regular sly-triple and we must therefore impose the restriction that the characteristic of
F, exceeds 4h — 2, where h is the Coxeter number of H, namely 6. We therefore now make the following
assumption, which holds for the remainder of §8:

o The characteristic of I, is at least 23.

This being the case, we define

01 0 0 0O0O0 O
00 0 0 100 O
00 0 -1 000 O
[ 00 0 0 O0O0O0 O
00 0 0 011 O
00 0 0 0O0O0 -1
00 0 0 0O0O0 -1
00 -1 0 0O0O0O O

and p : G,, — T by the formula
p(t) = diag(t®,¢%,¢72,¢7%,¢,1,1,¢71).

(Thus in fact p, which is the sum of the fundamental coweights, lifts to X,(7”).) We have the formula
Adp(t)(E) = tE, and we can decompose E = X, +Xq, + X0, +Xa, as asum of T-eigenvectors corresponding
to the simple roots Ry .

Proposition 3.3. 1. There exists a unique element F € V such that Adp(t)(F) =t 'F and [E,F] =

dp(2).
2. Let k = E + 35(F), an affine linear subspace of h. Then k C V and the restriction «|,, : kK — B is an
isomorphism.

Proof. The first part is a standard property of sly-triples; we could also exhibit F' directly. See for example
[SS70, II1, 4.10]. The second part is [SIo80, §7.4, Corollary 2]. An essential role in the proof is played by the
fact that for t € G, v € k, we have t Ad j(t~1)(v) € &, and this G,,-action contracts to the central point
E € k. The morphism 7|, is also clearly equivariant with respect to this G,,-action. These properties of the
Kostant section will appear again in §623 below. O

Corollary 3.4. Let k/F, be a field, and let b € B(k), and suppose that A(b) # 0. Then there is a canonical
bijection

G(k)\V (k) = ker(H' (k, Zg(rp)) — H' (k, G)),
sending ky, to the zero element of H (k, Zg(kyp)).

Proof. This follows because V;,(k?®) is a single G(k®)-orbit, and because of the existence of the marked base
point Ky, € Vy(k). N

In the situation of the corollary, we refer to the G(k)-orbits of the elements w - k, (w € Wy) as the
trivial orbits. We call elements of Vi, = V(k) which lie in a trivial orbit trivial elements. Note that this
notion depends on k (and indeed, all regular semisimple elements in V' (k®) are trivial over k°).

Lemma 3.5. Let k/F, be a field, and letv =73 4
for all a € \(S), where S is one of the following sets:

Vg € Vi. Suppose that v, =0 for alla € S and v, # 0

{a1+a2+a3—|—a4,a1—a2+a3—|—a4,a1—|—a2—a3+a4,a1—|—a2+a3—a4},
{a1 + a2 + a3 + ag, —a1 + az + a3 + ag, a1 — az + az + ag, a1 + ag + a3 — as},
{a1 + a2 + a3 + as, —a1 + az + a3 + as, a1 + a2 — az + ag, a1 + ag + a3 — as},
{a1 + a2 + a3 + a4, —a1 + as + ag + ag,a1 — as + a3 + aq,a1 + az — ag + as}.

Then if A(v) # 0 then v belongs to a trivial orbit of G(k).

12



Proof. These sets S form a single Wy-orbit, so it suffices to treat one of them, say
S={a1+as+as+as,a1 —as +as+as,a1 +as — as + ag,a1 + az + az — aq}.
In this case, we can compute
AS)={—-a1+a2+as+aq,a1 +as —az —ag,a1 —az —az + aq,a1 —as + az — ag} = {1, a0, a3, a4}

Thus if v € V(k) is as in the statement of the lemma, we can write

4
U:ZE:AmXa¢+ E: Va,
=1

ac®y,

where each A\; € k*. Since the group H is adjoint, we can find ¢ € T(k) such that a;(t) = A; for each
i=1,...,4. Replacing v by ¢t ! - v, we can assume that \; = 1 for each i.

We claim that this implies that v is U§(k)-conjugate to x(k), where Uy C H is the unipotent radical
of the Borel subgroup Qo C H corresponding to the set —Ry C ®(H,T) of simple roots. One can show that
the natural product map Uy X kK — E + Lie Uy C b is an isomorphism. (The analogous fact in characteristic
0 is employed for a very similar purpose in the proof of [TholH, Lemma 2.6]. One can easily check that it
is true here as well, under our restrictions on the characteristic.) Since v lies in E + Lie Uy %, we find that
there is a unique pair (u,b) € Uy(k) x k(k) such that u-b = v, and then u necessarily satisfies (u) = u,
hence u € G(k), as required. O

Corollary 3.6. Let k/F, be a field, and let v = Zae@v v € Vi. Suppose that v, = 0 for all a € S, where
S is one of the following subsets (labelling as in the figure preceding Proposition B1):

{1,2,3,4,5},{1,4,5,11},{1,3,4,9},{1, 3,5,10},{1,3,4,5},{1,2,3,5},{1,2,4, 5}, (3.8)

{1,2,3,4},{1,2,3,6},{1,2,4,7},{1,2,5,8}. (3.9)
Then if A(v) # 0 then v belongs to a trivial orbit of G(k).

Proof. This follows from combining Lemma B2 and Lemma BA, as we now show. Let v € V (k). The
sets S appearing in (B3) are exactly those appearing in the statement of Lemma B3, so the result follows
immediately in this case (and indeed we have A(v) = 0). The sets S appearing in (89) are exactly those
appearing in the statement of Lemma B3. If S is one of these and v, = 0 for all @ € S, then there are two
possibilities: either v, # 0 for all a € A(S), or there exists b € A(S) such that v, =0 for all a € S" = SU{b}.
In the first case, Lemma BH shows that A(v) = 0 or v belongs to a trivial orbit. In the second case, we see
by inspection that S’ is one of the sets appearing in (8H), hence A(v) = 0. O

4 Interlude on G-bundles, semi-stability, and integration

In this section, we review the parameterization of G-torsors on curves by adeles and its relation to integration.
We also recall the theory of Harder-Narasimhan filtrations and canonical reductions for G-torsors, which
will be our substitute for reduction theory when it comes to counting points later on.

Let F; be a finite field, and let M be a smooth affine group scheme over F,. By definition, an
M-torsor over a scheme S/F, is a scheme F — S, equipped with a right action of Mg, and locally on S
(in the étale topology) isomorphic to the trivial torsor Mg. A morphism F — F’ of M-torsors over S is a
morphism F' — F’ respecting the M-action. A torsor F' — S is trivial (i.e. isomorphic to the trivial torsor
Myg) if and only if it admits a section. The set of isomorphism classes of torsors over S is in bijection with
H(S, M) (non-abelian étale cohomology).

If M’ C M is a closed subgroup, still smooth over F, then a reduction of F' — S to M’ is a pair
(F',¢), where F' — S is an M'-torsor and ¢ : F/ X M — F is an isomorphism. Giving a reduction of F’
to M’ is then equivalent to giving a section of the sheaf quotient F/M’.
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Let X be a smooth, projective, geometrically connected curve over F,, and let K = F,(X). Suppose
that M is connected. We say that an M-torsor F' — X is rationally trivial if Fx = F X x Spec K is a
trivial M-torsor. This will always be the case if M satisfies the Hasse principle over K. Indeed, each pointed
set HY(Ok,, M) is trivial (by Lang’s theorem and Hensel’s lemma). It is useful to note that if M is split
reductive, and P C M is a parabolic subgroup, then for any rationally trivial M-torsor F' — X with a
reduction Fp — X to P, Fp is also rationally trivial. Indeed, the morphism M — M /P admits Zariski local
sections, and Fp/P defines a K-point of F/P.

For any connected smooth affine group M, the rationally trivial torsors over X can be parameterized
using adeles. Indeed, if YV, denotes the set of isomorphism classes of such torsors, then there is a canonical
bijection R

Vur = M(K)\M (Ag)/M(Ok). (4.1)
See [BLRYU, Ch. 6, Proposition D.4]. We can describe the bijection explicitly as follows: given such a torsor
F — X, choose sections zg € F(K), z, € F(Okg,) for each place v. Then for each v there is a unique
element m, € M(K,) such that zom, = z,, and we assign to F' the element mp = (m,), € M(Ag). The
class [(my)y] € M(K)\M(Ag)/M(O) is then clearly well-defined. If m € M(Ag), we will write F,,, for the
corresponding M-torsor over X. We can describe the group of automorphisms of Fj,, — X in these terms:
we have an isomorphism Aut(F,,) & M(K)NmM (Ox)m~!. It follows that the bijection (BT) can instead be
thought of as an equivalence of groupoids. Note that if M’ C M is a smooth closed subgroup, then the map
Yur — Vs given by pushout of torsors is the same as the map induced by the inclusion M'(Ag) C M (Ak).

We will henceforth identify Y, with this adelic double quotient. We endow Y, with its counting
measure vy, each point F' € Vs being weighted by | Aut(F)|~1. If uas is the (right-invariant) Haar measure
on M(Ag) which gives M(Ok) volume 1, and with modulus A; : M(Ag) — Rsq defined by the formula
(f : M(Ag) — R any compactly supported function):

/ Fm~ ') duag = Ag(m) / £ dpaas,
m’'e€M (Ak)

m'e€M(Ak)

then we have the formula (f : Y — R any compactly supported function):
G F () M)~ dpiag. (4.2)
FeYm meM (K)\M (Ax)

An important special case arises when M is a split reductive group and P C M is a parabolic subgroup with
Levi decomposition P = LpNp. In this case we define a character ép € X*(P) by dp(p) = det Ad(p)|Lic Np-
A right-invariant Haar measure is given by the formula

[ twdue= [ g das, du, (4.3
peP(AK) leLp(Ak) JnENp(AK)
and the modulus character of P(Ak) is Ai(p) = ||[0p(p)||, where || - || is the adele norm. In this case (E2)
becomes
| sy | FED60(0) | dup. (4.4
Feyp pEP(K)\P(AK)

Now suppose that G is a reductive group over IF, with split maximal torus and Borel subgroup 7' C B C G.
Let P C G be a standard parabolic subgroup, i.e. one containing B, and let P = LpNp be its standard Levi
decomposition. Thus Lp is the unique Levi subgroup of P containing T. If Fp — X is a P-torsor, we can
associate to it an element op, € X, (Zo(Lp))g C X.(T)g, uniquely characterized by the requirement that
for any x € X*(P), the line bundle £, = Fp xp,, AIqu has degree deg £, = (oF,, x) (where (-,-) is the usual
pairing between cocharacters and characters).

We call o, the slope of Fip. If 0,7 € X..(T)q, then we write 0 < 7 if (7 — 0, ) > 0 for all B-positive
roots a € ®(G,T). The following formulations are taken from [SchT3].

Definition 4.1. Let G be a split reductive group over Fy, with split mazimal torus and Borel subgroup
T CBCG. Let RC ®(G,T) denote the set of simple roots corresponding to B. Let F' — X be an G-torsor.
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1. We say that F is semi-stable if for any standard parabolic subgroup P C G and any reduction Fp — X
of F, we have o, < oFp.

2. Let P be a standard parabolic subgroup with Levi quotient Lp, and let Fp — X be a reduction of F' to
P. We say that Fp is canonical if Fp x p Lp is semi-stable and if for any simple root « € R—®(Lp,T),
we have {(op,,a) > 0.

The following result justifies the use of the word ‘canonical’:

Theorem 4.2. Let F' — X be a G-torsor. Then there exists exactly one pair (P, Fp) consisting of a standard
parabolic subgroup P C G and a reduction Fp — X of F which is canonical.

Proof. See [SchTd, Theorem 2.1] and the remarks following. O

This theorem allows us to decompose

Yo =UpVa,p (4.5)

where Vg p denotes the set of G-torsors on X which admit a canonical reduction to the standard parabolic
subgroup P. We then have an identification

Ya,p =2 P(K)\P(Ag)P* = /P(Ok), (4.6)

where we define
PAg)P*® ={pe P(Ak) |Ya € R—®(Lp,T), (mp(p),a) > 0},
P(Ag)* ={p e P(Ak) | F, xp Lp semi-stable},

and
P(AK)pOS’ ss _ P(AK)pOS N P(AK)SS.

Here we write
mp : P(AK) — HOIH(X*(LP),Q) = X*(Zo(Lp))Q C X*(T)Q,
p = (x = log, Ix(p))-

We observe the formulae
mp(p) = or, and Ay(p) = [|0p(p)[| = ¢t rP10P). (4.7)

We define AR = mp(P(Ag)P*®) C X, (T)g. Theorem B2 implies that (ET) is an equivalence of groupoids:
if p € P(Ag)P *, then the inclusion P(K)NpP(Ok)p~! — G(K)NpG(Ok)p~! is an isomorphism (because
any automorphism of a G-torsor must preserve its canonical reduction). This leads to the following lemma.

Lemma 4.3. There exists a constant C' > 0 depending only on X such that for any standard parabolic
subgroup P C G and function f: X.(Zo(Lp))g — R>o, we have

o dvg < C —(7:0P) £(5).
/Fewa( v <C Y g R f(o)

oeAR”
Proof. Let P(Ag)® =kermp. Then P(K) C P(Ak)° and the quotient P(K)\P(Af)? has finite yp-volume.

We choose the constant C' to exceed the volume of P(K)\P(Ag)? for all standard parabolic subgroups of
G. Then (E32) and (E71) give

/Feyc;,p Howe)dve < / Fmp)I6p(P)|~" dup < C Z q707) £ (o),

;DGP(K)\P(AK)POS O_EA};:’OS

as required. O
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We need to discuss the behaviour of the canonical reduction under certain functorialities. For this
it is useful to recall that giving a GL,-torsor over X is equivalent to giving a vector bundle over X of rank
n, via F— F Xgp, A, . If £ = X is a vector bundle, then its slope is defined to be p(€) = deg &/ rank €.
A vector bundle is said to be semi-stable if for any vector subbundle F C &, we have u(F) < u(€). This
is equivalent to the semi-stability of the corresponding GL,-torsor, and Theorem B2 is equivalent to the
following statement: given a vector bundle £ — X of rank n, there is a unique filtration

0oc&cé&c---CcéEL=E (4.8)

by vector subbundles such that each subquotient &;11/&; is (non-zero and) semi-stable, and we have the
chain of inequalities

(&) > p(&2/Er) > -+ > u(Em/Em—1). (4.9)

This is the Harder—Narasimhan filtration of £. It will play a key role for us because of the following lemma.
Lemma 4.4. Let £ be a semi-stable vector bundle over X of rank n. Let gx denote the genus of X.

1. If u(€) < 0, then h°(X,E) = 0.

2. If 0 < u(€) < 2gx — 2, then h°(X,E) < n(1+ p(€)/2).

3. If u(€) > 2g9x — 2, then h°(X, &) = n(1 — gx + p(€)) and K1 (X,E) = 0.

Proof. The first and third points are well-known properties of semi-stable bundles and follow easily from
the definition, together with the Riemann—Roch theorem. The second point is a generalization of Clifford’s
theorem for line bundles, see [BPGNY?Z, Theorem 2.1]. O

Corollary 4.5. Let £ — X be a vector bundle of rank n and slope 1(€) = 0, and let its Harder—Narasimhan
filtration be as in (@=8). Let 0 < k < m + 1 be such that we have

(&) > p(&/Er) > -+ > u(&,/Ex—1) > 0> w(Ekt1/Ek) > - > pu(Em/Em—1),
and let qo = wW(Em/Em—1). Let D be a divisor on X such that deg D > 0.

1. Ifdeg D+ qo < 0, then h°(X, (/&) (D)) = 0 and h°(X,E(D)) < n(1 +deg D) — (rank &, /Ex) - (1 +
1(Em/Ex) + deg D).

2. If deg D + qo > 2gx — 2, then h®(X,E(D)) = n(1 — gx + deg D).
3. If 0 < deg D + qp < 2gx — 2, then h°(X,E(D)) < n(1 + deg D).
Proof. We prove the second part first. There are exact sequences for each ¢ > 1:

OHgm 1/5 —(i+1) (l))4> m/gmf(iJrl)(D);) m/g’m—l(D)HO

We have p(Epm—i/Em—(it1)(D)) > 2gx — 2 for each i > 1, hence h' (Ep—i /Em—(i+1)(D)) = 0. It follows that
h(E(D)) = Y i50 h0(Em—i/Em—(i+1)(D)) = n(1 — gx + w(E(D))) = n(1 — gx + deg D). The first and third
parts can be proved using the same exact sequences, except that we no longer need to calculate any H'
(since we are only looking for upper bounds). O

Consider again a reductive group G over IF, with split maximal torus and Borel subgroup ' C B C G.

Let V be a finite-dimensional representation of G. If F' — X is a G-torsor, then V = F xg V is a vector

bundle over X. If F' = F, for some g € G(A), then we write V, = Fy X¢ V. For any Zariski open subset
U C X, we can identify

H°(U,V,) )N ] 9V (Ok,) (4.10)

velU
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If V has ‘small height’, then we can describe the Harder—Narasimhan filtration of V explicitly in terms of
the canonical reduction of F'. Let Fip — X denote the canonical reduction of F'. For each rational number
q, we define
V.= P wev (4.11)

AEX*(T)

(oFp,\)>q
V) C V denoting the A-weight space. This defines a decreasing filtration V, of V. The subspaces are P-
invariant, and the action of P on the graded pieces factors through the Levi quotient Lp (see [Sch1H, Lemma
5.1]). By pushout, we get a filtration Vo = Fp X p V; of V by subbundles indexed by rational numbers ¢q. We
then have the following result.

Theorem 4.6. Let V be a finite-dimensional representation of G, and let p € X,.(T)g denote the sum of
the fundamental coweights. Suppose that V' has small height, i.e. that for all weights A € X*(T) such that
Vi # 0, we have 2(p, \) < charF,. (This condition depends only on the pair (G,V) and not on the choice of
T or B.) Then:

1. Each associated bundle gr, Ve = Fp xp gr, Vs is (either zero or) semi-stable of slope q.

2. The subbundles V4 = Fp xp Vg of V are the constituents of the Harder—Narasimhan filtration of
V=F Xa V.

Proof. The calculation of [SchTH, Proposition 5.1] goes over verbatim to show that the associated bundles of
the graded pieces have the claimed slopes. What we need to justify here is that they are semi-stable. In loc.
cit. this is justified by appeal to the results of [RRR4], which apply when the ground field has characteristic
0. In the present case we can use the assumption that V' small height to appeal instead to the main theorem
of [IMP03], which is extended to reductive groups G as [BHO4, Proposition 4.9]. O

We conclude this section by applying the preceding results to the pair (G, V') constructed in §8. We
therefore assume now that charFy > 3. We recall that G has the root basis R = {a1, a2, a3, as}. We write
R~ = —R for the negative of this root basis, and Py C G for the Borel subgroup corresponding to R~. We
call a parabolic subgroup P C G containing Py a standard parabolic; any such parabolic has a canonical
Levi decomposition P = LpNp, where Lp is the unique Levi subgroup of P which contains the maximal
torus 7.

If P C G is a standard parabolic subgroup, and D is a divisor on X, then we define a further
decomposition of Yg,p C Vg as follows:

Yo.pr =Yo.r(D)°UYe p(D)®UYgp(D)29x2, (4.12)

where Vg p(D)<° denotes the set of G-torsors F' — X for which the lowest slope piece of the Harder—
Narasimhan filtration of F' x¢ V has slope ¢y satistying deg D + g9 < 0; Vg, p(D)™ the set for which
0 < deg D+ qo < 2gx — 2; and Vg p(D)>29% =2 the set for which deg D + go > 2gx — 2. (Thus these subsets
of Ve p only depend on deg D.) We can reformulate Corollary B=3 as follows:

Corollary 4.7. Let g = [(9v)v] € Ya,p, and let Fp — X denote the canonical reduction of F,. Suppose that
deg D > 0, and let M C ®v denote the set of weights a € Oy such that (op,,a) + deg D < 0. Then:

1. If g € Yo.p(D)<C (i.e. M is non-empty), then |[H°(X,V,(D))| < qtimV(1+deg D)=|M|(1+deg D3 oenr(orpa)),
2. If g € Vg, p(D)*P, then |HO(X,Vy(D))| < gdimV(i+des D),
3. If g € Vg, p(D)>29x72 then |H°(X,V,(D))| = g4imV1-gx+deg D),

We can combine these ideas with Lemma B2 to obtain the following useful principle:

Corollary 4.8. Let P C G be a standard parabolic subgroup, and suppose that dim Zo(Lp) < 2. Let D be
a divisor on X, and let g € Ya p(D)<°. Then for all v € H°(X,V,(D)) C V(K), we have A(v) =0 (as a
section of H*(X,0x(24D)) C K ).
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Proof. Let D =% n, -v. If P C G satisfies dim Zy(Lp) < 2, then the lowest slope piece of the Harder—
Narasimhan filtration of V, has dimension at least 4. (It’s helpful to recall here that G is isogenous to SL3,
and V is then identified with the tensor product of the four 2-dimensional standard representations.) Under
the identification

HY(X,Vy(D)) =V(K)N ][ @, ™ 9.V (Ok,) C V(K),

we see that any v € H(X, V,(D)) must satisfy the condition of the first part of Lemma B, and therefore
satisfy A(v) = 0. O

5 Counting 2-Selmer elements

In this section, we describe the relation between the representation (G, V') of §8 and the family of pointed
elliptic curves (E, P, Q) described in §8. We proceed from the rational theory, to the integral theory, and
finally combine this with the other results established so far to prove our main theorems (Theorem B9 and
Theorem 5T below).

We assume throughout §B that F, is a finite field of characteristic > 19, and let (G, V') denote the
representation considered in §3.

5.1 (G,V) and 2-descent

Theorem 5.1. We can find homogeneous generators ps,ps,qs,ps € Fy[V] (of degrees 2, 4, 4, and 6,
respectively) and a 5-dimensional affine linear subspace ¥ C V together with functions z,y € F,[X] such
that:

1. The functions pa,pa,qa, z,y € Fy[X] generate Fy[X].
2. The relation y(zy + 2q4) = 23 + pax? + pax + pe holds on .

Proof. This theorem follows from [ThaT3, Theorem 3.8] when F, is replaced by a field of characteristic 0.
The same proof works over [Fy, with our restrictions on the characteristic. This is unsurprising, given that
the results of Slodowy [SIo80] are proved in positive characteristic with the same restrictions. We explain
the construction. Define a matrix

01 0 O 01 0 O
o0 0 0 10 0 2
00 0 -100 0 O
o 00 o 0 00 0 O
00 -2 0 00 1 0
00 0 0 10 0 -1
o0 0 -100 0 O
00 -1 0 0O0 -1 0

and a cocharacter A € X, (T") )
At) = diag(t?, 6,71 72, 1, ¢, ¢4 1).

Then Ad A(t)(e) = te and e € V is a subregular nilpotent element. Therefore we can find a unique subregular
nilpotent f € V such that the triple (e, dA(2), f) is a normal sly-triple. We define ¥ = e + 3 (f)40="1

If t € G,y,, then the action t-v =t Ad A(t~1)(v) leaves X invariant and contracts ¥ to the fixed base
point e. Moreover, the morphism 7|y is then G,,-equivariant. The functions x,y € F,[X] are chosen to have
weight 2 with respect to this action. O

At this point there are two natural discriminant polynomials A in F,[V]¢ that one might consider:
the one arising from the usual Lie algebra discriminant in , and the discriminant of the polynomial f(t) =
t* + pot3 + pat? + pet + ¢2, which is used in §B. In fact, these two functions are equal up to [ -multiple,
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because they both cut out the same irreducible divisor in B = SpecF,[V]¢. Since the precise value of A will
not be important for us, but rather only its order of vanishing, we will use the symbol A to denote either one
of these polynomials in F,[V]% = F,[ps, p4, qa, ps]. We recall that we write B™ C B for the open subscheme
which is the complement of the zero locus of A.
We write S — B for the natural compactification of 3 as a family of projective plane curves given
by the equation
Y(XY +2qu7%) = X? + po X2 Z 4+ pa X 72 + ps Z°. (5.1)

We write O, P, and @ for the three sections of S — 3 at infinity given respectively by [0:1: 0], [1: 1 : 0]
and [—1:1:0]. We write S™ for the restriction of this family to B™. The fundamental relation between
the pair (G, V) and this family of curves is as follows:

Theorem 5.2. 1. The morphism S — B is smooth ezxactly above B™. Consequently, S™ — B"™ is a
family of smooth, projective, geometrically connected curves.

2. Let Jgrs = Pic%M/BTs denote the (relative) Jacobian of this family, and let Z™ denote the equalizer of
the diagram

(9,2)—g-x
G x K./T’S —_— VTS

(g,x)—x

viewed as a finite étale group scheme over k™ = B™. Then there is a canonical isomorphism Jgrs[2] =
Z" of finite étale group schemes over B".

3. Let k/F, be a field, and let b € B™(k). Let Jy denote the pullback of Jgr along b : Speck — B™.
Consider the diagram

Ep(k) —— G(k)\Vs (k)

| i

Jb(k) —_— Hl(k7 Jb[Q]),

where the top arrow is induced by the inclusion ¥, C Vj; the left arrow is the map R — [(R) — (O)],
induced by an open immersion Xy, C Jp; the right arrow is the injection of Corollary B4, composed with
the isomorphism H*(k, Zg(kp)) = H(k, J,[2]); and the bottom arrow is the connecting homomorphism
associated to the multiplication-by-2 Kummer exact sequence for Jy. Then there exists a class x, €
H(k, Jy[2]) arising from a trivial orbit such that this diagram commutes up to addition of xy.

Proof. The first part is established over a field of characteristic 0 in [ITThoT3, Corollary 3.16], using a reduction
to [SIoR0], and again the same proof works in our positive characteristic setting. This is not the case

techniques. However, the same construction works to show that there is a map S : H,(X"/B",Fy) — Z**
of local systems of Fy-vector spaces on B™, arising from the inclusion X C V™. Here H,(X™/B™,Fs)
is the local system of étale homology groups of the curves ¥, (b € B). There is a canonical surjective
map 7y : H1(X"®/B",Fy) — Jg=[2]. We want to show that 8 factors through + to give an isomorphism
Jgrs [2] N ALS

To check this statement about morphisms of local systems of Fs-vector spaces, it suffices to check
that it holds on single stalk, and this can be accomplished by lifting to characteristic 0 and applying [ThoT3,
Corollary 4.12].

The third part has been established in characteristic 0 in [T'haT3, Theorem 4.15], which also shows
how to calculate the element x; using the geometry of the curve S. We describe the recipe, although it is
not strictly necessary for what we do here. Let 0 € B(F,) be the central point. Then the curve Sy is a union
of three lines. Let S{ C Sy be the branch containing the section O at infinity, and let E’ € Sj(Fy) — {e} be a
rational point. Then there exists a unique w € Wy such that wE’ is conjugate by G(F,) to ko, and for any
b € B(k) we can then take z; to be the class corresponding to the orbit of wky, € V (k).

We still need to extend this result to positive characteristic. However, this is an essentially formal
consequence of the first two parts of the theorem, and follows in exactly the same way as in [Thol3, §4]. O
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Theorem 5.3. Let k/F, be a field, and let b € B™(k).

1. The image of the injective map n : G(k)\Vy(k) — H'(k, Jp[2]) appearing in Theorem B3 contains the
image of the Kummer homomorphism Jy(k)/2Jy(k) — H*(k, Jp[2]).

2. Inside the image of 1, the trivial orbits of G(k)\Vy(k) correspond to the subgroup of Jy(k)/2Jp(k)
generated by the divisor classes [(P) — (O)] and [(Q) — (O)].

Proof. By Theorem B, it is enough to prove the second part of the theorem. By definition, the identity of
H(k, Jy[2]) corresponds to the orbit of the Kostant section r; € Vi (k). We have a short exact sequence of
étale homology groups (where overline denotes base change to a separable closure k°/k):

0—— 415/ A(pg) ——H1 (X, F2 ) ——H; (Sp, F2 ) —0. (5.2)

Here A(pa) C p3 denotes diagonal ps. There is a natural symplectic duality (-, -) on Hy (3, F2) with radical
w3 /A(uz), which descends to the Poincaré duality pairing on Hy(Sy, Fo). Identifying J,[2] = H; (S, F2), this
allows us to describe the subgroup of H!(k, Jy[2]) generated by the images of the divisor classes [(P) — (O)],
[(Q) — (0)] as follows: it is the image of [u3/A(u2)]Y = (43)s—o under the connecting homomorphism
attached to the dual exact sequence of F3[I'y]-modules (with I'y, = Gal(k®/k)):

0——H1(Sp, Fo)—H1 (3, Fa)Y ——(113)z—0—0, (5.3)

where we use the aforementioned pairing to identify H;(Sy,Fo)Y =2 Hy(Sp,F2). We now identify these exact
sequences using the representation theory of the pair (G,V). Let H® denote the simply connected cover
of H, and let G* = (H*)?. Then G*¢ is a connected subgroup of H*°. Let C®¢ denote the centralizer
of kp in H®, and C its image in H. Then we can identify Zgsc(kp) = C*[2], Zyo(kp) = C[2], and
Z¢(kp) = Im(C*°[2] — C[2]) (see [Tholl, Corollary 2.9]). The short exact sequence (62) is identified with
the sequence

0——=ker(G** — G) C*°[2] im(C*°[2] — C[2])——=0 (5.4)
(compare [ThaT3, Theorem 4.10] and the proof of Theorem B3). Its dual is identified with the sequence

0——=Zg(kp) —=C[2] —=mo(H?) —0, (5.5)

using the Weyl-invariant bilinear form on X, (C) (cf. [Thol3, Lemma 2.11]) and the canonical isomorphism
C[2]/Zc(kp) = mo(H?). The map Wy — mo(H?) is an isomorphism, and the composite Wy — mo(H?) —
H(k, Zg(kp)) sends an element w € Wy to the class corresponding to the orbit G(k) - wky. This concludes
the proof. O

The proof of the second part of Theorem B3 has a useful corollary: it gives a criterion to tell
when the trivial orbits generate a subgroup of Jy(k)/2Jy(k) of order 4 (which one expects to be the case
generically). Indeed, taking in mind the identification of the exact sequence (B33) with the sequence (63),
one sees that this should be the case exactly when HY(k, Zg(ky)) = H°(k,C[2]). The action of the Galois
group Iy, on C[2] arises from a homomorphism I'y, — W (H, C') 2 Wy giving the action on the torus C, and
this condition can be described in terms of the image of this homomorphism inside Wy. In particular, in
the ‘generic’ case where this image is the whole Weyl group, we have H°(k, Zg (k) = H(k,C[2]) = 0, and
consequently 4 trivial orbits in G(k)\V,(k).

Corollary 5.4. Let X be a smooth, projective, geometrically connected curve over Fy, and let K =F,(X).
Let b € B™(K). Then the subset G(K)\Vy(K) C H'(K, Jy[2]) appearing in Corollary (with k = K)
contains the 2-Selmer group Sela(Jp).

Proof. This follows from the fact that the Hasse principle holds for G, i.e. that the map H'(K,G) —
[1, H' (K., G) is injective. O
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5.2 (G,V) and local integral orbits

In the previous section, we have studied rational orbits. We now look at the integral situation. Let X be a
smooth, projective, geometrically connected curve over Fy, and let K = F,(X). Let v be a place of K, and
let (E, P, Q) be tuple consisting of an elliptic curve E over K, with two distinct, non-trivial marked rational
points P, Q) € E(K,). We assume that the minimal model (as in §B) of (E, P, Q) has squarefree discriminant,
and let b = (p2, pa, q4,p6) € B(Ok, ) denote the associated set of invariants. We write .J, for the Jacobian of
E, which we identify with E via the map E — J, R — [(R) — (O)].

Theorem 5.5. With assumptions as above, let Jp denote the Néron model of E over Ok,. Then:
1. The map H(Ok,, Tp[2]) — H'(K,, Jp[2]) in étale cohomology is injective.

2. An orbit in G(K,)\Vo(K,) admits an integral representative (i.e. intersects Vy(Ok,)) if and only if it
corresponds to an element of Jp(Ky)/2J(Ky).

3. Suppose that z,y € Vy(Ok,) and v € G(K,) satisfy yx =y. Then v € G(Ok,).

Proof. Lemma 3 shows that E has reduction of type Iy or I7. In particular, J, has connected special fibre.
We have HY (O, , J5[2]) = H(k(v), J[2](k(v))) and Jp[2](k(v)) = J[2](K$) xv, so the injectivity of the
first part is a consequence of the inflation-restriction exact sequence.

For the ‘if” of the second part, we use the existence of the section ¥ C V| which shows (together with
the commutative diagram of Theorem B32) that any element of J,(K,)/2J,(K,) which can be represented
by a divisor (R) — (O), where R € %,(Ok,), is represented by an element of V(Ok,). Since the trivial
orbits have integral representatives, essentially by definition, this reduces us to showing that any non-trivial
orbit in Jp(K,)/2J,(K,) is represented by such a divisor (R) — (O). We have a short exact sequence (which
defines J,(Ok,)°)

0——=T5(0k, ) ——Jp(Ky) ——=Tp(k(v)) —0,

where the kernel is a pro-p-group (p = charF,), hence an isomorphism
Io(Ok,)/205(Ok,) = To(k(v)) /2T (k(v)) = H' (Ok,, J[2)).

If [z] € p(k(v))/2T(k(v)) is a non-trivial class (i.e. not in the subgroup generated by the 3 marked points
of E at infinity), we can choose a representative 7 € J,(k(v)) of the form (R) — (O), where R € %y (k(v)).
Lifting R to a point R € X,(Ok,) via Hensel’s lemma then shows the existence of the desired integral
representative in V,(Ok, ).

We now turn to the ‘only if’ of the second part. We first note that any element = € V;,(Ok, ) in fact
lies in V;*¥(Ok, ), i.e. T =z mod (w,) is regular in Vj,y. This is clear if A(z) is a unit in Ok, , as then T
is regular semisimple. Otherwise, we note that Z is regular in Vj(,) if and only if it is regular in by (,); and
if it is not regular in by (,), then its centralizer has dimension at least dim T + 2 (see [SS70, III, 3.25]). Let
¢ =30, (@), " =cNbho,, . Let f:hoy, /¢ = boy, /¢ denote the map of finite free Ok, -modules induced
by ad z after passage to quotient. We have the relation det f = A(z), up to units in OIX( If T is not regular,
then f = f mod (w,) has kernel of dimension at least 2, hence ordx, det f > 2, a contradiction.

We next observe that the map Go,, — V,®, g — g - Ky, is étale, and a torsor over its image
V, o8 0 c V, 8 for the étale group scheme Zeo,. (kp) over Ok, . Moreover, we have V,® = Uyew,w -V, *® 0
(by [Cexii?, Theorem 0.17]). It follows that there is a bijection

G(Or,)\V;*®* *(Ok,) = H Ok, Zao, (Kb)): (5.6)

The isomorphism Zg, (k) = Jp[2] extends uniquely to an isomorphism ZGOKv (kp) 2 Jp[2). If A is a unit,
then this is immediate from Theorem B2. If A is not a unit, then it suffices to show that the isomorphism
ZGy, (kp) = Jp[2] identifies Zg(kp)(k(v)) C Za(ke) (K3 with Jp[2](k(v)) C Jp[2](K5)™. Since Jy(k(v))
has order 2, it is enough to show that Zg(kyp)(k(v)) is non-trivial. This follows from the fact that Xy has a
unique singularity of type A;, as we now show. Let b = b mod (w,). The element r; € V(k(v)) has a Jordan

21



decomposition kj = v + v, as a sum of commuting semisimple and nilpotent parts, and we can compute
(using the same technique as in [ThaT3, Proposition 2.8])

Zg(ﬁg) = ZZGSC(US)[Q]/keI'(GSC — G) (57)

(We remind the reader of that Zgsc(v,) denotes the stabilizer of vy in G, and s0 Zz,..(,,) denotes the
centre of this connected reductive group.) The fact that X has a singularity of type A; implies ([Thol3,
Corollary 3.16], the proof of which goes over without change in our setting) that Zgsc(vs) has derived group
of type A;. In particular, its centre contains a torus of rank 3. We have ker(G* — G) = u2, so the group
appearing in (B54) must be non-trivial.

We can thus enlarge (B8) to a commutative diagram

G(Ok,)\V;*® *(Ok,) —= HY(Ok,, J[2])

| |

G(Kv)\%(Kv) Hl(Kv;Jb[Q])'

This shows that any element of G(K,)\V;(K,) which is in the image of the left-hand vertical arrow lies in
the image of H'(Ok.,, J[2]) = Jp(K,)/2Js(K,) € HY(K,, J[2]). Since we have V;"® = Uyew, wV;*® ©, and
Wy acts on H(K,, J,[2]) as translation by trivial orbits, we finally see that any element of G(K,)\Vs(K,)
which admits an integral representative corresponds to an element of Jy(K,)/2Jp(K,).

Finally, we come to the third part of the theorem. The integrality is insensitive to passage to
unramified extensions of K,. After possibly replacing K, by an unramified extension, we can therefore
assume that = y = kyp, and reduce to showing the statement that the étale group scheme Zg(kp) satisfies
the Néron mapping property, i.e. its K,-points all extend to O, -points. We have shown that Zg (k) = Jp[2],
so this follows from the Néron mapping property for 7. O

5.3 (G,V) and global integral orbits

We can now discuss the global picture. Let X be a smooth, projective, geometrically connected curve over
Fq, and let K = Fy(X). Let D = )~ m, - v be a divisor on X, and let (E,P,Q) € Xp. We recall (see
§2) that this means that F is an elliptic curve over K with two distinct non-trivial marked rational points
P,Q € E(K), and which can be represented by an equation

y(xy + 2q4) = 2° + pox® + paz + pe (5.9)
with
b= (p2,p4,qs,06) € H'(X,0x(2D) ® Ox(4D) ® Ox(4D) ® Ox(6D)) = H°(X,Bp) C B(K)  (5.10)

of square-free discriminant in H°(X, Ox(24D)). (The reason for restricting to curves with Lp a square is
that the invariant degrees of the representation (G,V') then agree with the weights of the equation (59)
defining the curve F.)

Let x € V,(K) be an element corresponding to an element of the group Sels(FE) (see Corollary B4).
Then for every place v of K, @}« has minimal, integral invariants w(w)wx) = wl™ - b € O}‘Q of squarefree
discriminant, and Theorem B3 implies that we can find g, € G(K,) such that @)z € g,V (Ok,). For all
but finitely many places v, we have m, = 0 and can choose g, = 1. Moreover, g, is defined up to right
multiplication by G(Ok, ), by the third part of Theorem B33. If we replace x by v for some v € G(K), then

gy can be replaced by vg,. We have therefore defined a map
inv : Sely(E) — G(K)\G(Ag)/G(Ok). (5.11)

It is clear that this map depends only on (E, P,Q) and not on the choice of equation b € H°(X, Ox (D))
representing (£, P, Q) (since all choices differ by the action of F).
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To any g € G(Ak), we associate the G-torsor F, and the vector bundle V, = F; x¢ V, which has
sections described by (E710). The above discussion shows that if [g] = inv(z), then x naturally defines an
element of

V(K)N Hng;mvv(oKU) = HO(Xa Vy(D)),

and the image of z under the map m : H°(X,V,(D)) — HY(X, Bp) equals b. This leads to the following
result.

Theorem 5.6. Let (E,P,Q) € Xp be represented by b € H°(X,Bp). Let g = (gy)y € G(Ak). Then the
following two sets are in canonical bijection:

1. The set of elements x € Sela(E) such that inv(z) = [(gy)v)-
2. The set of sections s € H°(X,V,(D)) such that 7(s) = b, taken up to the action of the group Aut(Fy).

Proof. We have constructed the map from the first set to the second set. We now construct its inverse. Let
s be a global section in

HO(X,Vy(D)) = V(E) N ][] 9w, ™V (Ok,)

such that w(s) = b. Writing = for the image of s in V(K) under the canonical inclusion, we obtain an orbit
in G(K)\V,(K). This orbit is independent of the choice of representative in the Aut(F,)-orbit of s; indeed,
we have Aut(Fy) = G(K) N gG(@K)g_l, so replacing s by s for v € Aut(F,) would just replace = by 7z,
leaving the G(K)-orbit of 2 unchanged.

We need to show that x lies in the subset of G(K)\V,(K) corresponding to the 2-Selmer group.
However, this follows from the second part of Theorem B3 and the fact that s has square-free discriminant.
It is clear from the construction that this map is inverse to the other, so this completes the proof. O

To illustrate the construction of this invariant map, we calculate its image when applied to the trivial
elements in J,(K)/2J,(K) C Sela(Jp). Recall that we have defined k = E + 35(F), where (E,dp(2), F) is
a regular normal slp-triple in h. The action ¢ -2 = t Ad p(t~1)(z) leaves x invariant and contracts to the
unique fixed point E (see Proposition B3). In particular, if v is a place of K, b € B(K,), and A € K S, then
we have the following formula giving the behaviour of the Kostant section under scaling:

Kap = PN Akp. (5.12)

If b € B(Ok,), then s € V(Ok,) is an integral representative of the orbit in V,(K') corresponding to the
identity element of Sely(J,). If b € H(X, Bp) C B(K) is associated to a pointed curve as above, then we
find w!™b € B(Ok,) is the minimal integral representative, hence

Ko = Py ™)@ b € WV (Ok, ). (5.13)

It then follows from the definition that we have inv(xy) = [(p(@]))s]. The same formalism applies to the
other trivial orbits: if w € Wy, then the representative of the corresponding trivial orbit in V(K) is wky.

For each place v of K, we have

1

— My
v

wp(w, ™ w T wyrwky, = wp(w, " )wn Ky € w V(0K ), (5.14)

so it follows from the definition that we have inv(wsy) = [(wp(ew™ )w1),]. This implies in particular:

Lemma 5.7. Let (E,P,Q) € Xp be represented by b € H°(X,Bp), and let x € Sely(J,) be a trivial
element. Suppose that deg D > 0. Then inv(z) € Vg p,(D)<?. (We recall that Py C G is the Borel subgroup
corresponding to the set —R = {—a1, —aa, —as, —a4} of simple roots of G.)
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Proof. We need to check that for each g € {(wp(w)w™1), | w € Wy}, we have g € Py(Ax )P %5 and the
‘lowest slope’ part of V(D) has strictly negative slope. Representatives for the elements of Wy are given in
(B3). Using the formulae

plt) = (3,62 72 73 4,1, 1,t7 1),

ao(a,b,b  a"t e,d,d7t ¢t = ab,

we see that (wpw™t ag) =5 for all w € Wy.
Since the Levi quotient of Py is a torus, the semi-stability condition is vacuous, so to show g €
Py(Ag )P =, we need to show that for all a € R, we have log, |la((wp(ww]™)w™),)|| > 0. We compute

log, la(w(p(w)w )| = —(wpw™', a) - deg D.

Using the explicit expression (B3) for R, we see that this is positive for all w € Wy, a € R~. On the other
hand, the lowest slope part of V,(D) has slope

log, oo ((wp(™)w™ )| = —(wpw™, ap) - deg D + deg D = —4deg D < 0,

as required. O

5.4 The main theorem

We once again suppose that X is a smooth, projective, geometrically connected curve over F,, and let
K =TF,(X). If D is a divisor on X, then we write H’(X, Bp)*f ¢ H°(X, Bp) for the set of elements of square-
free discriminant A € H°(X,Ox(24D)). Then (Corollary E4) there is a surjection H°(X, Bp)* — Xp, the
fibre above a given isomorphism class [(E, P, Q)] having cardinality equal to (¢ — 1) - | Aut(E, P,Q)|~*. If
g =1[(90)v] € Ve, then we write H°(X,V,(D))*f C H°(X,V,(D)) for the pre-image of H°(X, Bp)*f. We also
write HO(X, V,(D))stt ¢ HO(V,(D))* for the set of elements of H°(V,(D))* which are non-trivial when
viewed inside V' (K) (that is, they are not G(K)-conjugate to a point of a Wy-translate of x; see Lemma B33).

Proposition 5.8. Let g = (g,)y € G(Ak).

1. The limit 0 ¢
H(X,Bp)*

deg D—o0 |I{0()(7 BD)|

exists and is strictly positive.

2. The limit

o |H (X, V(D))
= et B THOX, 1, (D))

exists and is strictly positive, and does not depend on g.
3. We have fgeg(@K) drop = ¢*29x 1§y, where T denotes the Tamagawa measure on G(Ak).
Proof. If v is a place of K, define

_ {z € B(Ok, /(=) | A(z) =0 mod @y}

Qy
8
a4y

and

_ {2z €V(Ok,/(=})) | A(z) = 0 mod w3}
= 32 :

s
In [HLHNT4, §5.1] it is proved using results of Poonen [Pooli3] that the limit dy exists and equals [], (1—25,).
A similar argument using the results of [Pool03] shows that the limit dp exists and equals [], (1 — a,). It is
easy to see that both of these products are strictly positive. To finish the proof of the proposition, we need
to show that fqeG(@K) draép = q*2@x =Dy or even (using the definition of the Tamagawa measure) that

Bo
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fgeG(OK,U) lwals(1 — o) = (1 — B,) for each place v of K, wg being an invariant differential form of top
degree on G (over F,;). We will establish this using an integral formula.

Let wy and wg be invariant differential forms of top degree on V and G, respectively. Let wp =
dpa A dpg A dgy N dpg, a differential form of top degree on B. Let ¢ : B(K,) — R denote the characteristic
function of the open subset of b € B(Ok,) where ordg, A(b) < 1. Let f : V(K,) — R denote the
characteristic function of the open subset of z € V(Og,) where ordg, A(z) < 1. Then we must show the

identity
/ lwels / o(8) |l = / £(@) lovo.
g€G(0k,) beEB(K,) z€V(Ky)

If ¢ C Vg, is a Cartan subspace, we write u. : G, x ¢ — Vg, for the action map. Exactly the same
argument as in [ThaTi, Proposition 2.13] shows that for any Cartan subspace ¢ C Vi, , we have an identity

* *
Hewy = dwg A 7T|ch

for some scalar A € F;¢ which is independent of the choice of Cartan subspace.

Let ¢1,...,¢5 C Vi, denote representatives for the distinct G(K,)-conjugacy classes of Cartan
subspaces. If b € B(K,) then we will write, as usual, ¢;; for the fibre of the quotient morphism ¢; — B
above the point b. Each element v € V™(K,) is contained in a unique Cartan subspace, so we obtain an
identity

f(gcz')
) Jwv |y = / _JG) A s,
/xev(OK Z ,C)EG(Ky)X¢; Ne (i) (Ky)] ¢

Let ¢ = ¢; N [G(K,) - V(Ok,)], an open subset of ¢;. It follows from Theorem EA and the invariance of the
measure |wgl, that this last integral is equal to

S ol [ 2T
;‘/‘qea(oKu)| G|v/0ie(i |NG( z)( )|| ‘c B‘v

-y / ol Na(e) ()|~ / o)]cis(K) Ol
” geG(Ok,) beB(K,)

To finish the proof, we therefore just need to show that if b € B(Ok, ) satisfies ordgx A(b) < 1, then

S

3 leis(50) N €] % [Ne(e) (K,)[7F = 1.

i=1

The left-hand side counts the number of G(K,)-orbits in V4 (K, ) which have an integral representative, each
orbit being weighted by |Zg(ks)(K,)|~!. The total number of orbits equals |J,(K,)/2J,(K,)| = |Jo(K,)[2]],
by Theorem BH. This quantity in turn is equal to |Zg(kp)(Ky)|, by Theorem B2. This completes the
proof. [

We now come to the first main theorem of this paper. If D is a divisor on X and (F, P,Q) € Xp,
we write Ap p ) C Selp(E) for the ‘trivial subgroup’ which is generated by the points P and @, and
Sely(E)™ = Sela(E) — A(p,p,g) for its complement.

Theorem 5.9. The limit

|Sely(E)™] - | Aut(E, P,Q)|" - |[E(K)[2]]*
2 |Xp|

lim
deg D—oo

(E,P,Q)EXD
ezists and equals 8.

In the following proof, we write y = 2 — 2¢gx in order to avoid a proliferation of subscripts.
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Proof. Corollary B4 shows that we have

s q— 1 _
|H0(X,BD) 1C|= E m:(q_lﬂxﬂ_(q_l) E (1—\Aut(E,P,Q)| 1)~
(E,P,Q)eXD B (E,P,Q)EXD

It also shows that if (E,P,Q) € Xp and the group Aut(E, P,(Q) is non-trivial, then ps(b) = 0 for any
pre-image b € H°(X, Bp)*f. Thus the number of such curves is O(¢'49¢P). Using Proposition 68, we see

that
|XDp|

li = (q—1)"!
deg [1),2)00 |H (X B )Sf‘ (q )
Similarly, if b € H°(X, Bp)*! corresponds to (E, P,Q) € Xp, then Theorem B8 shows that
|Sela(B)| = Y [HO(X,Vy)s/ Aut(Ey)].
9€da
(Here the subscript b again denotes fibre over b.) By the third part of Theorem B33, the stabilizer in Aut(Fy)
of any point in H%(X,V,), is isomorphic to E(K)[2]. Weighting for this, we obtain

[Sela(E)] _ ~ [HOX, V)| _ 0
[B(K)[2]] 2 [Aut(F,)] /geyc [H7(X, Vol

(In fact, in our case the groups E(K)[2] are all trivial, cf. Remark I, but we don’t need this.) Summing
over all b € H°(X, Bp)*' and restricting to non-trivial elements of the 2-Selmer group, we obtain the identity

9€Va

Sela(E)™| - | Aut(E, P,Q)|~* - |E(K)[2]] 7! HO(X,V, (D))t nt
-y Y ISHEMIMEROULBUONT [ LD,
(E,P,Q)€XD » 2D 9€Va »bp
-/ [HY(X. V(D) ™| |HX.Bp)| -
ve |H°(X,Bp) |HO(X, Bp)| ™’
hence
. |Selo(B)™| - [ Awt(E, PQ)| ! - [EEOR)I ™", [HO(X, V(D)) ™|
dcghDHi>oo Z |XD| 753 ><dcghDHi>oo Yo |H0(X,BD)‘ dVG.

(E,P,Q)EXD

We would like to compute the pointwise limit of the integrand and then interchange the order of the integral
and the limit. This can be justified only after a process of ‘cutting off the cusp’. Applying the decompositions
(B3H) and (ET4), we get

|HO(X,V,(D))*" nt\ |[HO(X, Vg (D))" ™|
0 Z 0 dvg
Ve |H°(X, Bp)| Ye.r |HO(X, Bp)|

[HO (X, Vy (D)) ] |HO(X, Vy (D))t nt|
- Z 0 dVG + 0 dl/G
Ye.p(p)>—x  [HX, Bp)| Yor(oy»  |H'(X,Bp)|

P
0 sf, nt
oo, |
Ya,p(D)<0 ‘H (XvBD)|

where the sums are over the set of standard parabolic subgroups of G. (We recall that these are the parabolics
containing the Borel subgroup Py C G corresponding to the set R~ = {—ay, —as, —as, —a4} of simple roots
of G.) Applying Lemma 572, we see that when deg D > 0, this equals

0 sf 0 sf 0 sf, nt
> / |H(X, Vy(D)) IdVG+/ |HO(X, Vy(D)) IdVG+/ |H°(X, Vy(D)) \dVG _
= | /ve.p(D)>—x | Ya.,p(D) | Ye,p(D)<0

|H°(X, Bp) |H(X, Bp) |HY(X, Bp)|
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We will see that the terms corresponding to Vg, p(D)” X dominate, while the others vanish in the limit. Note
that for any g € Vg, p, we have g € Vg p(D)” X for all divisors D of sufficiently large degree (depending
on g). For divisors of degree greater than —y we have |H°(X, Bp)| = ¢?X*164e¢ D and Corollary EC2 shows
that for such D we have

/ [HO(X, V,y (D))™] dVG:/ [HO(X, Vy(D))] [HO(X, Vy (D))
Yo.r(p)>—x  [H°(X, Bp)| Yo.r(p)>—x [HY(X,Bp)| [H(X,V,(D))|

dyg.

_ 6)(/ |H0(XaV9(D))Sf| d
=4q 0 17
Yo r(D)>—x [HY(X,Vy(D))|

The integrand in this expression is bounded by 1, and as deg D — oo its value tends to a limit dy which is

independent of the choice of g, by Proposition B8. Applying the dominated convergence theorem, we find
that o ;
H°(X,V,(D))®

. [HO(X, (D))

dve = 6X5 dvg.
deg D—o0 Ya,p(D)>—x |HO(XaBD)| ¢ I v ¢

Ya,p

To take care of the contribution in the special range, we calculate using Corollary BZ4 and Lemma B=3:

|HO (X, Vy (D)) / [HO (X, Vy(D))| —(0.6p)
dvg < — 2 dvg =0 q ‘7P|
/JJGTP(D)SP |HO(X, Bp)| yeo.r(py | HO(X, Bp)| UGXA%DOS

deg D+ (o,a0)€[0,—x]

where the implied constant depends only on X. This tends to 0 as deg D — oo. To take care of the remaining
contributions, we note that Corollary =8 implies that

[ o,
Ya,p(D)<0

[H(X, Bp)
unless P = P or the Levi quotient of P has semisimple rank 1. In these cases we will show that

. [HO(X, V(D)™
deg D—oc0 yG,P(D)<O |H0(X,BD)|

dvg = 0. (5.15)

Let us first treat the (harder) case of P = Py. Let C denote the set of non-empty subsets M C ®y which
are closed under the relation >: ie. if a € &y, b € M, and a > b, then a € M. Note that ag € M for
all M € C. Then we have Vg p,(D)<° = UprecVa,p, (D) <M where we define Vg p,(D)<%M to be the set
of G-torsors F € yg,po(D)<0 such that for a € @y, the slope OFp, of the canonical reduction Fp, satisfies
(0Fp,.a) +deg D <0 if and only if @ € M. This allows us to decompose

/ |H0(X, VQ(D))Sf’ nt| " / |H0(X, Vg(D))Sf’ nt| " (5 16)
a = E G- .
Ya,py (D)<° |H°(X, Bp)| aee I Va.py (D)<0M |H°(X, Bp)|

Let Cy C C denote the set of subsets M € Cy not containing any of the sets S appearing in the statement of
Corollary B@. The summand in (68) corresponding to M € C can be non-zero only if M € Cy. To show
(B13) in case P = Py, it is therefore enough to show that the equality

H°(X D
lim X VoD g, — g (5.17)
deg D—o0 yG,Pg(D)<O’M ‘H (X,BD)|
holds for each M € Cy. If M € C and Vg p,(D)<%M, then Corollary E=7 implies that we have

[HO(X, V(D))
|H°(X, Bp)|

— O(q7|M| dEgD7<UvzaeM a))’
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where the implied constant depends only on X. Combining this with Lemma B=3, we get for any M € C:

|[H°(X,Vy(D))| _ — M| deg D— (0,6 5y + 5 o e ar @)
\/)}G,pO(D)<0,J\/I |H0(X7 BD)‘ dVG O O_E%DOS q ’ (5'18)
VaEM,{o’,a)-&-Odeg D<0

Vaedy —M,(o,a)+deg D>0
where the implied constant again depends only on X.

At this point, we recall the function A(M) defined in §87W: if M € C, then A(M) C &y — M is the
set of maximal elements of ®y — M. In particular, if M € C and a € A(M), then ¢! +9¢D > 1 for any o
appearing in the sum (BI8). It follows that for any function p : A(M) — R>o, (BI3) is bounded above by a
constant multiple of

E qug D(Xaexary P(@)—|IMD+(0, 3" cx(ary P(@)a—3 g cnr a—0Pg)
pos
O’EAPO
Ya€M,(o,a)+deg D<0
Va€®y —M,{c,a)+deg D>0

< gIED Eacxon PO-IMD ™ (o Tacran PO e a=0r).
TEAE

This last expression tends to 0 as deg D tends to infinity provided the function p is chosen so that the
following conditions are satisfied:

o [M[> 3 qeran P(a).

e Define w(M) = =3 cyya—dp, and w(M,p) = >\ pla)a =3 ,cpya—0p, € X*(T)r. Then
ni(w(M,p)) >0 foreachi=1,...,4.

We show that we can find such a function p simply by exhibiting one for each possible choice of M € Cy in
the following table (the weights being labelled as in §B8):

M ANM) | [M] 2w(M) P 2w(M, p)

I [2,3,4,5] 1 1 1 1 1] (0,0,0,0) 1 1 1 1
1,2 3,45 2 2 0 0 0](050505) |35 05 05 05
1,3 2,4,5 2 0 2 0 0](050505) |05 35 05 05
1,4 2,3,5 2 0 0 2 0]/(05,0505) |05 05 35 05
15 2,3.4 2 0 0 0 2/(05,0505) |05 05 05 35

123 | 456 3 1 1 -1 -1](0505,15 |05 05 05 05
124 | 357 3 1 -1 1 -1](05,05,15) |05 05 05 05
125 | 348 3 1 -1 -1 1](050515 |05 05 05 05
1,34 ] 259 3 /-1 1 1 -1](050515) |05 05 05 0.5
1,35 | 24,10 3 /-1 1 -1 1](050515) |05 05 05 0.5
145 | 23,11 3 /-1 -1 1 1](050515) |05 05 05 0.5

This shows that the equality (6T3) holds in case P = P;. We now treat the four remaining cases. By
symmetry, we can assume that P is the standard parabolic subgroup of G generated by Py and the root
subgroup corresponding to the root a;. Then the Levi quotient Lp of P is isogenous to SLs, and the same
argument as above shows that we need to show that

lim |H°(X, VQ(D))Sf’ o
deg D—o0 Ya.p(D)<0M |HO(Xa BD)l

dve =0 (5.19)

for each M € Cy. We observe that Vg, p(D)<0’M is non-empty only when M satisfies the condition a € M =
a’ € M, where a’ € ®y is defined by ni(a’) = —ni(a), ni(a’) = n;(a) for i = 2,3,4. The only set M € Cy
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which satisfies this condition is M = {1,2}, so we are reduced finally to showing that the equality (519)
holds in the single case M = {1,2}. This can be proved using exactly the same trick as before.
Putting everything back together and applying Proposition B8, we find

nt| , -1, -1
Y SROMLIAMEL OO S, [ g
P Yy

deg D—o00 |XD‘

(E,P,Q)eXD G.r

:/ R dTg/ dMG:/ drg = 7(G),
G(Ok) G(K)\G(Ak) G(K)\G(Ak)

the Tamagawa number of G. Since the fundamental group of G is isomorphic to x5 and the universal cover
of G is SL3, we have 7(G) = 8 (apply [BDOY, Theorem 6.1]). This completes the proof. O

Corollary 5.10. The limit

Sely(B)| - | Aut(E, P,Q)|~! - |E(K)[2]|~!
ZI()II( )|~ [ E(E)[2]]

lim
deg D—o0 (E,P.Q)eXD |XD‘
ezists and equals 12.
Proof. In view of Theorem B9, we just need to show that
lim 3 |Ap,pol - [Auwt(E, P,Q)| ™" - |[E(K)[2]| "
deg D— o0 |XD‘
(E,P,Q)€EXD

exists and equals 4. We recall from the proof of Theorem B3 that if k/F, is a field extension and b € B*(k),
then |Ag p | =4 if and only if in the short exact sequence

0——=Zg(kp) —=C[2] —=mo(H?)—0, (5.20)

we have HO(k, Zg(ky)) = H°(k,C[2]). This property can be detected at the level of the image W}, of the
map I'y = W(G, 3y(kp)) = Wy into the little Weyl group of the Cartan subspace 3y (k) C Vi. We see that
the corollary would follow from a quantitative Hilbert irreducibility theorem, which does not seem to exist
in the literature at the moment (but see [BS]).

Instead, we will give a direct proof of the corollary. For any of R € {P,Q, P® Q}, let Xp(R) denote
the set of (E, P,Q) € Xp such that the image of R in E(K)/2E(K) is trivial. To show the corollary, it is

enough to show that o (R)
. Xp(R
deglggoo EAR 0 (5.21)

for each possible choice of R. According to the proof of Theorem B33, the element R determines a class
vgr € mo(HY), and a triple (E, P,Q) € Xp lies in Xp(R) if and only if the image of this class in H' (K, Zg(k3))
under the connecting homomorphism is trivial. Let {w} C W(G,35(ksp)) = Wgu be a conjugacy class of
elements such that (w — 1)wr &€ (w — 1)Zg(ks), for any lift wg € C[2] of vg. (This condition depends
only on the conjugacy class of w, so makes sense independent of the choice of b. We can choose either
w = S383 and w = $18284, where s1,...,s4 are the simple reflections of H corresponding to the simple roots
aq,...,oy4 listed in §81.) Then if (E, P,Q) € Xp corresponds to b € B™(K) and {w} N W}, # &, then
(E,P,Q) ¢ Xp(R). Equivalently, if (E, P,Q) € Xp(R), then {w} NW, = @.

To prove the corollary, it is therefore enough to show that for any conjugacy class {w} of the little
Weyl group, we have

b e HOX Bp) n B(K)[{wy n W, = 2} _

0.
deg D—o0 |H0(X,BD)‘
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Let BA=% C B denote the vanishing locus of the discriminant A. The Chebotarev density theorem (see
[Cha97, Theorem 4.1]) states that for each place v of K we have

4

{0 € (ko) | (w} 01, = 2] = (1- [ ) gt 0(al ™)

where the implicit constant is independent of the choice of v. Let M > 0. If D is a divisor on X of sufficiently
large degree, then the map

H°(X,Bp)— [] H°(k(v),Bp)
No<M

is surjective. If v is a place of K, then the image of the set
{be H°(X,Bp) N B™(K)|{w} N W, = @}
in H°(k(v), Bp) is contained inside
BA2=9(k(v)) U {b, € B™(k(v)) | {w} W, = @}.

We find that for deg D sufficiently large, we have

{b € HO(X, Bp) N B*(K)|{w} W = o} IO
[O(X, )| <N£IM(< i) +0a").

This product converges to 0 as M — oo, and this concludes the proof. O
Finally, we prove the promised generalization of Theorem B4.

Theorem 5.11. Let f: Yo — R be a bounded function. Then we have

| Aut(E, P, Q)| ™" [E(E) 2] Xy esen, (ym f(inva)
Z ‘XDl /FeyG f(F)dTG

Proof. Arguing as in the proof of Theorem B, we get

lim
deg D—o0

(E,P,Q)EXD

(g—1)

u 1 -1 « f(invz st mt
s AE P BRI Syesagpe finvs) _ / } VoD oy gy
geVa

.. [HO(X, Bp)| [HO(X, Bp)T|

|HO (X, Vy (D))
XP: /ycp( D)>—x f(Fg) |H°(X, Bp))| a

|H°(X, V(D)™ [HO (X, Vy(D))* ™|
+/JJGP(D)5Pf(Fg) ‘HO(XB )| duG+/31GP(D)<Of(Fg) |HO(XvBD)‘ e -

Since f is bounded, the same arguments as before show that the boundary terms vanish in the limit. On the
other hand, the boundedness of f means we can again apply the dominated convergence theorem to deduce
that
. [HO(X, Vy (D))
deg D—oo Ya.p(D)>—x g |H0(X3BD)|

dUG = qGX(Sv/ f(Fg) dug,
Ya.p

and these terms can then be regrouped to obtain the statement of the theorem. O
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