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Abstract— We develop explicit, general bounds for the
probability that the empirical sample averages of a func-
tion of a Markov chain on a general alphabet will exceed
the steady-state mean of that function by a given amount.
Our bounds combine simple information-theoretic ideas
together with techniques from optimization and some
fairly elementary tools from analysis. In one direction,
motivated by central problems in simulation, we de-
velop bounds for the general class of “geometrically
ergodic” Markov chains. These bounds take a form that
is particularly suited to simulation problems, and they
naturally lead to a new class of sampling criteria. These
are illustrated by several examples. In another direction,
we obtain a new bound for the important special class
of Doeblin chains; this bound is optimal, in the sense
that in the special case of independent and identically
distributed random variables it essentially reduces to the
classical Hoeffding bound.

I. INTRODUCTION
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required valuer(F'), with probability one, as — co.
Furthermore, the central limit theorem tells us that the
estimates converge at a rate@f1/,/n), in that,

Va[La(F) —m(F)] 25 N(0,02),

where o2
variance ofF.

The asymptotic results mentioned above are of lim-
ited use if we want to have any kind of “guarantee”
that, after a certain number of steps in the simulation,
the estimatel’,,(F) will indeed be close tor(F).
There are several well-studied approaches in the very
extensive literature on this subject. Partly motivated
by this discussion, here we consider the problem of
providing simple, computable bounds for probabilities
of “large deviations” type,

P, (F) > r}, 2)

lim,, nVar(T',,(F)) is the asymptotic

In many important scientific applications, we wish to

compute the expected valud F') = E;[F| = [ Fdn

for general classes of Markov chaidsand functions

of a given functionF', with respect to a probability .

distribution = which is known explicitly, but which

Sanov’s celebrated theorem for i.i.d. random vari-

cannot be computed numerically. In several areas, e.gPles states that, for appropriate s&tef probability
Bayesian statistics, image processing, and statisticdfasures oix, for largen we have,

mechanics, this is the rule rather than the exception; —jog P{Fn c g} ~ ninf{H (u|7) : p € S},

see [3], [25], [35] and the references therein.

Perhaps the most commonly used approach, is

estimater (F') through the sample averages,

n>1,

1)

where the sequenc® = {®; : i > 0} is a Markov

(3)

\é\é’uere the relative entropy between two probability
istributions, 7 on (X, B) is defined as usual by

du . .
log —d fdu/d t
H () = /og gL if du/dn exists

00 otherwise

(4)

Donsker and Varadhan’s classical large deviations

Chain_which is known to have stationf':lry diStribUtiOl’princime [11][32] provides the natural extension of
7. This is the celebrated Markov Chain Monte Carl&anov’s theorem to the case of Markov chains. It states

(MCMC) paradigm. Under appropriate conditions, ithat, under appropriate conditions on the Markov chain
is typically easy to check that the Markov chalnis and onF, asn — oo we have,

positive recurrent, and then the law of large nhumbers ) 1
implies that the estimates in (1) will converge to the ~ 108 Po{ln(F) 271} ~ ”13fH(7|\7 © P),

(%)



wherey! ©® P denotes the bivariate measufg¢' © for constrained problems in the i.i.d. case in [31].
P)(z,dy) = v'(dx)P(x,dy), and the infimum is over  Most of our results are present here without proofs,
all bivariate distributionsy with marginalsy! and~? or with brief proof outlines. The complete arguments
that satisfyy! = 42 and+!(F) > r. will be given in a longer version of this paper.

In this work, simple information-theoretic ideas are
combined together with techniques from optimization !l. GENERAL BOUNDS AND DOEBLIN CHAINS

and some fairly elementary tools from analysis, 10 |, the following two sections we present several non-
Q_bta|n expllcnnorl_-asymptot@oundsforthe probabil- asymptotic versions of exponential upper bounds for
ities (2). Information-theoretic methods have been Vegyg nronanility that the sample averages of a function of

influential in the development of asymptotic results as parkov chain deviate from their (asymptotic) mean
well as non-asymptotic inequalities for probabilities ag,, 5 certain amount

in (2). Combinatorial techniques based on the metho Throughout the paper, we consider a discrete-time
of types have provided some of the simplest prooﬁarkov chain® — {®, :'Z. > 0} with values in the
as well as some of the strongest results when o, spaceX, B) where 5 is the natural Boreb-
is an independent and identically distributed (i.i.d. lgebra associ:altea With. The distribution of® is
sequence [7], [8], [6]. But in the case of Markov chain§ ecified by its initial stateb, — = € X and its

they have been much less successful, their applicabilify, - <ition kernelP. where P(z,B) = Pr{®;y, €

limited essentially only to the more elementary casg |®; = 2}. We write P, for the distribution of the
1 T . xr

of finite state-space Markov chains; see [9] and tr@hain conditional on the initial stat®, = z, and

references t_her_eln_. T.h'§ d.'ﬁ'CUIty reﬂec_:ts, to SOME for the corresponding expectation. For an arbitrary
extent, the intrinsic limitations of the mformann-ﬁ&H

. o measurable) functiod : X — R we write T, (F') for
theoretic methods, but it is also due to the much greatgr, sample averages (1)
complexity of the field of large deviations for general We begin in Section II-A by deriving an elementary
Markov chains. For example, the elegant theorem gf

S hich holds i lot lity in the i ound which applies t@ll Markov chains, not even
anov, which hoids in complete generatity in the i.1. equiring positive recurrence; this is given in Theo-

case, requires extremely strong assumptions in orr‘\%1 2.1, and in a more general form in Theorem 2.2

to be trar,lslated FO Markov chains; see Donsker a ese bounds show that for deviation probabilities of
Varadhan's classic results [11][32], as well as th?ne form

numerous counter-examples indicating that such strong
assumptions are indeed necessary, e.g., [2], [4], [13]. 1ot

In Section Il and Section Ill we prove a seriesP={l'n(F) =7} = Pr{ﬁ > F(@i)>r ‘ ©o = I}’
of non-asymptotiadeviation bounds, which apply to =0
a variety to different problems. Then in Section lllwe can always find a natural exponential upper bound,
motivated by the form these bounds naturally take where the exponent is expressed in terms of relative
their most general form, we propose a new, generantropy. The proofs are based on simple information-
purpose sampling criterion, which can easily be appligtieoretic ideas.
to a great variety of different MCMC problems. In  Although Theorems 2.1 and 2.2 hold in complete
particular, this sampling criterion comes with a precisgenerality, the exponent in these bounds is defined in
non-asymptotic performance guarantee. an implicit way and it cannot be easily evaluated in

The exponential deviation bounds obtained in Sespecific cases. In order to obtain concrete, computable
tion Il are established in four steps. We obtain ahounds, in Section II-B we turn to the special class of
information-theoretic bound for the probability of in-Doeblin (or “uniformly ergodic”) chains, and in The-
terest in terms of relative entropy; this is done imrem 2.4 we give an explicit bound for the deviation
Theorem 2.2, which is inspired by an argument used Ipyobabilities of the sample averages of any bounded
Csiszar in the proof of [7, Theorem 1]. We next applyunction of a Doeblin chain.
Pinsker’s inequality to simplify the bound obtained in Finally, in Section Il we return to simulation and
Step 1. In Step 3 a further relaxation of this boundonsider the problem of empirically estimating the
is obtained, which is expressed as a linear programeanw(F) := [ Fdr of a given functionF using
over the space of probability measures. The final stéipe sample averages of a Markov chain with stationary
is to construct bounds on this linear program. This idistributionz. For such simulation problems we intro-
achieved by constructing a dual linear program. Similatuce a newsampling criterion which gives a precise
tools are used to obtain worst-case exponential boungisideline regarding which parts of the simulation give



more accurate estimates with high probability. The th&Somparing the Donsker-Varadhan result in equations
oretical justification for this sampling criterion is given(8)-(9) with the bound of Theorem 2.1 in equations (6)-
in Theorem 3.1, where we present a general, expligif), we see that the theorem providesan-asymptotic

bound for the probability of large deviations of theversion of the upper bound in (8), and thus offers an el-
sample averages from their mean. This is establishethentary “explanation” for the Donsker-Varadhan rate
for the more general class of “geometrically ergodicfunction. Of course the intimate relationship between
chains, and it also allows us to consider the samplarge deviations and the entropy functional has been

averages of unbounded functions. noted by many authors in the literature, and several
other alternative points of view have been offered.

A. A General Information-Theoretic Bound For example, as argued in [12], the minimization of
Recall the definition (1) for the sample averageihe entropy in (8) can be seen as an optimal control
I',(F) of a function F of a Markov chain® = problem, where the entropy naturally appears as the

{®;, : i > 0}. The sup norm of any such functioncost functional. For more on this relationship, see,
F : X — R is denoted by||F|« = sup,cx |[F(z)], €9 the monographs [14][12], the review [33], and
and F; denotes the functiomax{F,0}. For any two the references therein.

probability measures, v on (X, B), the L' distance  £q some of our subsequent results, we will need a
I — v|| between them is twice the total variationgomewhat more general version of the above theorem.
distance, Instead of a single functio#’, we now consider a
finite collection of functiond F, Fy, ..., F,,}, and we

—v|:=2 A) —v(4)),
=l ZEI;W( ) = Al bound the probability of the following event,

and the relative entropyf (u||v) betweeny andv is &€ = {T,,(F};) > r; for all j, and®,,_; € B}, (10)

defined as in (4). .
Our first result is a non-asymptotic version of thé{;s tlzrkeerght?) Se?(r:é)éz 2\(;?;2%5112 Jt ;;Jaizccvéu;ggqﬁ"
bound in the Donsker-Varadhan | deviati " ) . .
;ﬂﬁiirplgl(]g) n the Donsker-varadhan farge devia Ioe[.\we position of the Markov chain during the last time
Theorem é.l:Let ® = {P, : i > 0} be anarbitrary step®n 1 to_be_z in some fixed sef. e
Markov chain with vaIuesZ orX. For anv function Large deviation limit theory for events with pinning
. X — R which is bounded a.bove a y> (F) of the form (10) has been studied extensively; see,
aﬁd any initial condition: € X, we ha\,/e = e.g., [10][23][29][30] and the references therein. In
' ' the present context, the value of the additional pinning
~log P, {T,(F) > 7} > (n—1)H(v|y* ®@P), (6) constraint{®, , € B} is that it allows us to treat
unbounded functiong’;. Theorem 2.2 forms the basis

where v is a bivariate probability measure diX x  for analysis of the simulation algorithm introduced in
X, B x B) with respective marginals' and~?, and section III.

where the marginals', * satisfy, Theorem 2.2:Let ® = {®; : s > 0} be anarbitrary
L 2 . IFyfloe — 7 Markov chain with values oiX, let B € B be fixed
v =771l < ] and v (F) > r——— -1 - measurable set, and I&, F;, ..., F;, be an arbitrary
(7) (finite) collection of functions fronX to R. For any
A more general version of this result is given irconstants, s, ..., 7, and any initial condition: €
Theorem 2.2 below, along with a proof. X, we have that

Remark. As mentioned in the Introduction, the clas- — long{Fn(Fj) >r; forall j ,and ®,_; € B}
sical extension of Sanov’s theorem to Markov chains
is Donsker and Varadhan's [11], [32] large deviation¥ bounded below by
principle. It states that, under appropriate conditions (n— 1D H(y||y* @ P),

on the Markov chain and of", asn — oo we have, , L .
where is a bivariate probability measure X x

—logP,{T(F) >r} ~ninf Hy|y' @ P), (8) X,Bx B)whose marginals® and~* satisfy,
v

2
o . L . 1 2
where the infimum is over all bivariate measufesith v =7l < n_1
marginalsy! and~? that satisfy
1 9 1 1in fact, Varadhan in [33] remarks that “It is not hard to seatth
v =+ and v (F)>r. (9) any ‘large deviation' has to be related to ‘entropy’.”



and inside the relative entropy, to thaf(u., ||p) is bounded

||(Fj)+”oo,B —T; below by

n—1

YHE) > rj — , forall j,

where || F||«,5 is the sup norm of the restriction
of the function F' to the setB, i.e., ||F|lco,B =

sup,ep [F(2)].

nz:l/m H(Hiﬂ('|$i71)||P(~’Ci—1,'))ui(d:ci,l)

which equals
n—1
The first step in the proof of Theorem 2.2 is an il i
S . X s H(p" P).
application of the following observation due to Csiszar Z (M It © )
[7]. It states that the probability odiny event can be o ) )
expressed as the exponential of a relative entropy. THEING the joint convexity offf again,

=1

proof is immediate from the definitions. n=1l N _
Lemma 2.3 (Csi$z’s Lemma):Let p be an arbi- H(unllp) > (n—1) Z — (M1,1+1||‘uz © P)
trary probability distribution on any probability space, i "

and £ any event withp(£) > 0. Let p|. denote the (n— 1D H(y||y* @ P),

conditional distributiorp|,. (- ) = p(- NE)/p(E). Then:

Y

where the bivariate measueand its first marginal!

—logp(&) = H(plclp)- are,
PROOF OFTHEOREM 2.2.  Fix an initial stater € 1 &S 1 1=,
X. Let p denote the measure oK™ induced by 77 ;1 Zl“' and " = —— 1 ;“'

the distribution of(®g, ®4,...,®,_1) conditioned on o . . _
{®o = z}, and lety,, denote the conditional measure This final bound combined with (11) gives the
1 = p|. With € for the event of interest expressed irféquired bound, and it only remains to verify that

(10). From Csiszar's Lemma, satisfies the stated properties. Indeed, since the second
marginal ofy isv? = 1+ S it their difference
—logPo{€} > H(pn|lp). 11) s A2 = %%’{" and since thé.'-norm is bounded
For anyk > 1, we write 2% — (20, 21,...,a3) for a DY 2 it follows that|y' —~?|| < 2/(n - 1). Finally,

(k+1)-dimensional vector fronX*+!. Writing 1,, and by the defilnition.ofw1 and the event, for anyj we
p as products of conditional distributiong,, (dz ) have thaty (F}) is equal to
is

n—1 n—1
_ 1 . 1
11 (Ao iz (da|0) - - i (A1 2 2), — S ) = B[ S F(@i0) €]
=1 =1

n—1y\ ;
andp(dz{ ™) is which becomes,

5z(d$0)P($0,dI1) o 'P(Infg,ddfnfl). n 1 n—1 F ((I)
. 3 i (Pn-1)
e 15wl e [t ]

Then the relative entropy in (11) can be expanded, n -1

n—1 .. 1
i i and this is bounded below by — —= || (F})+[/co,B —
Z; /zg;l H(Mz'+1(' |25~ )| P21, ')) i (daf ). r,], as required. 7 [IICE .

Denote by p® the one-dimensional marginal gf, B. Doeblin Chains
corresponding te;;_;, andy>**+! the two-dimensional
marginal corresponding téz;_1,z;). The above ex-
pansion forH (i, ||p) can be expanded as follows,

As before, we start with a Markov processés=
{®, : i > 0} taking values in a general state space
(X, B), with initial state®, = = € X and transition

n—1 _ kernel P. Throughout the rest of the paper we assume
> / /.72 H(Miﬂ( Jzg DI P(i-1, ')) that® is ¢-irreducible andaperiodic This means that
i=1 Jwio1 T . _ there is ac-finite measurey on (X,B) such that,
i (dal 2w ) (dwi—q). for any A € B satisfyingy(A) > 0 and any initial
conditionz,

Now, using the joint convexity of the relative entropy in
its two arguments, we can take the innermost integral P"(z, A) > 0, for all n sufficiently large,



where P"(z,-) is the probability measure that de-and a generalization of Hoeffding’s original argument

scribes the conditional distribution @#,,, given that [22].2

by =z Theorem 2.4:Suppose the Markov chaib =
Recall that any kernelP(z,dy) acts linearly on {®; : i > 0} is ¢-irreducible, aperiodic, and satisfies

functionsF : X — R on the right and signed measureshe Doeblin condition (13), so that it has a unique sta-

w on (X, B) on the left, via, tionary distributionz. Then, for any bounded function

F: X — R and anye > 0 we have that
PF = | F(y)P(x,d

and is bounded above by
uP(dy) = /P(x,dy)u(d:c), n—1 [ ao 4 }2

< - € —

respectively, whenever the above integrals are well- 2 Lnol|Fllsp n—1
defined. where||F'||s, denotes the normalized span normZof

The Markov chains we consider are also positiveefined by|| F||s, := infyer [|[F — u]]|oo-
recurrent. This means that there is a unique invari- Remarks.
ant probability measurer satisfyingmP = =w. The
first such class of Markov chains we consider are
Doeblin chains. This is probably the “nicest” class of
general-alphabet Markov chains. For the aperiodic,
irreducible chains that we consider, Doeblin’s condi-
tion is equivalent to requiring thad® is “uniformly _n- 1[ e __4 r
ergodic,” namely, that it has a unique stationary distri- 2 UFllsp n-1
bution 7 such that, ag — oo, This is essentially identical to the exponent
—31e/||F|l0)? of the classical Hoeffding bound

3
+

1) When® is a sequence of i.i.d. random variables
with common distributionr, then the Doeblin
condition holds withnyg = ag = 1 andp = m,
and the bound of Theorem 2.4 reduces to

+.

dp, :=sup ||P"(z, ) — w|| — 0 geometrically fast,
' (12)

where, as before||y — v|| denotes theL!-distance
between two probability measurgsvy. Alternatively,
an aperiodic andj-irreducible chain® is a Doeblin

[22], which is known to be tight in the i.i.d. case.
Although Doeblin chains form a very restricted
sub-class of all ergodic chains, it is perhaps
the most natural class to consider in terms of
large deviations properties. To see that, recall that

chain if and only if either one of the following two
conditions is satisfied:

(i) There exists some > 1 for whichd,, < 2.

(i) Doeblin’s minorization conditionholds:
There exists an integet, > 1, a constant
ap > 0, and a probability measurg on

(X, B), such that,

Pz, A) > app(A), Ve € X, A € B. (13)

Bryc and Dembo [4] have provided a counter-
example of a stationary Doeblin chain for which
the regular large deviations principle fails to
hold with any rate function. Moreover, if it
were possible to obtain meaningful exponential
bounds as in Theorem 2.4, with exponents that
were independent of the initial condition, this
would mean that the ergodic theorem would hold
for all bounded functions uniformly in the initial
condition, a fact which is known timply that
the chain is Doeblin [28].

3) Once the Doeblin condition (13) has been veri-
fied, all the constants appearing in the result of
Theorem 2.4 are explicitly known. Moreover, if
the span norm cannot be easily evaluated, we
always have the trivial bounflF||s, < || Fco-

The main advantage of the minorization condition (13)
is that it can usually be easily verified in applications,
and with explicit values for the constantg and ag.
See [28] for a detailed discussion of Doeblin chains
and their characterizations.

Our next result, Theorem 2.4 below, gives a non-
asymptotic, exponential bound, on the probability that
the sam_ple av.eragﬁ.l(F) of a bolunded function of °Note also that the result of [17] upon which we improve is
a Doeblin chain deviate from their steady-state meaa@tually stated slightly incorrectly there; there shoultvénbeen an
7w (F) by a certain amount. This bound improves upoextra factor of2 in the estimate of the norm of the functign which

a recent result of Glynn and Ormoneit [17] by a factolfanslates to an extra factor bf2 in the exponent they finally obtain.
. A factor of 2 is also missing in the ergodic theorem for uniformly

of 2 in the e>_(ponent. Th? proof teChnique of [17] I%rgodic chains, [28, Theorem 16.2.4]. This ergodic theoiemkey
completely different, relying on martingale methodsgredient of the proof in [17].



PROOF OUTLINE. The proof of Theorem 2.4 consists Ill. SIMULATION BOUNDS AND STOPPINGRULES

of four steps. o In this section we present a new, general-purpose
The first step is an a_ippllcatlon of the general boungiopping rule, which can be easily applied to a va-
of Theorem 2.1, implying that riety of Markov Chain Monte Carlo problems. In
—log P, {Tn(F) > n(F) + ¢} Section llI-A we treat a simple example illustrating

) . ~ the stopping rule in a simple setting, Section IlI-B
is bounded below byn—1)H (y[|y" © P), for some bi- - ¢qnains the description of the general stopping rule,
variate probability measure satisfying the conditions ;4 in Section 11I-C we present a non-asymptotic

in (7) with r = 7(F) te . bound that justifies this stopping rule and also offers
The second step is to obtain a bound on the aboﬁ?ecise performance guarantees for its use.
relative entropy using Pinsker’s inequality:

Lemma 2.5 (Pinsker’s inequality)fhe bound, A. A Stopping Rule for Simulating a Simple Queue
H > Ly, — |2 We begin by considering the example of the simple
il 2 3l =A% discrete-time queue, described by the recursion,

k>0, &R,
n—1 (19)
—logP {T,,(F) > n(F)+¢} > ——|ly—y'®P||*>. where the processed = {4, : ¢ > 0} and
2 14y S = {Si : i = 0} are mutually independent, each
Step 3 amounts to the following construction of £0nsisting of i.i.d. random variables with valuesin,,
linear programwhose value bounds the right hand sid@"d with marginals that possess finite means denoted
of (14). Writey = ~! ® Q for some transition kernel @ K respectively. If the ‘load conditior):=a/u < 1

Q. An application of Jensen’s inequality gives that, 1S satisfied, then it is known thab = {®; : i > 0}
is a positive recurrent Markov chain, and we denote

holds for any two probability measurgsy on (X, B). 4
Consequently, the result of the previous step yields,cb’“rl = [Or = Ska]+ + A,

IeQ -y eP| its stationary distribution byr. If, in addition, the
_ /Vl(dx)”P(x7 = Qz, )| marginal of A has a f|r_1|te_ §ecc_)nd moment, the_n the
steady state mean d; is finite, i.e.,7(F) < oo with
>[Iy [P - Q. (15) F(z) ==

Simulation of the steady-state mean appears to be
straightforward: Simply comput®,,(F') for large n.

YP-Q=~+'P—~+*=[y' —=4'P] - [y* —~+'].  However, it is well known that this can be computa-
We have|y! — v2| < 2/(n — 1) by Theorem 2.1, tionally intensive since the variance Bf,(F') is very

: , . large, actually of ordef1l — p)~*/n for p ~ 1; see [1],
which together with (14) and (15) gives, [34], [18], [27]. Moreover, it isimpossibleto obtain an

—log Pz{Fn(F) >m(F)+ 6} exponential bound on the error probability: It is shown
n—1 in [27] that for anys > 0 we have,
> 5= =Pl - 2/(n - 1)]16)
, _ lim n~'log P, {T,(F) > 7(F)+e¢} =0, (20)
A bound on the right hand side of (16) follows from n—ce
any lower bound on the solution to the following lineaprovided the{ A;} are not identically zero.
program over the space of probability measures: One approach to improve this estimator is through
. _ _ n the application of the control variate method [24], [15].
min. - lu = pP| st u(F) =n(F) 6(i7) Suppose that there is a functi@h: X — R for which
wheree®:—e— (| P || oo—7)/ (n—1), with € = r—m(F). it is known a priori thatr(D) = 0. For any suchD,

Letting L* denote the value of this linear program, Wethe following will also be a consistent estimator,

Moreovery![P — Q] = v' P — ~2, which we write as,

obtain from (16), n_l
(19 Fn(F—D>:12(F(<I>i>—D(<In>), n>1
- log PI{FH(F) > W(F) + 6} n =0 (21)
n—1._, 2
2 — [L*—2/(n—1)],. (18) The functionD is called ashadow functiopsince it is

[peant to ‘eclipse’ the functio’ to be simulated.

d For queueing models, there is a specialized version
of the control-variate method corresponding to a par-
ticular choice of the shadow functioR, called the

The fourth and final step is to obtain a bound o
L*. The details involve linear programming ideas an
duality.
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Fig. 1: Application of the shadow function sampling criterifor the simple queue (19) with = J — PJ, J(z) = %xQ/(u - a),
F(z) =, and forx = 1,2, 4. The grey regions indicate time periods during whigh,(D)| < 1 and®,,_1 € B := [0, 10%].

smoothed estimatoilThe starting point is the use of a The probability of interest in evaluating the estimate
natural “value function”J(z), obtained from a deter- at a sampling time is,

ministic fluid model for the network to be simulated.
In our example, suppose that eadh takes the values
(1 + x)a and zero, with probabilitie$1 + x)~! and _ ) ) N (24)

1 — (1+ )", respectively, and that eaci, takes G|ve_n a precise bound on this probabllltyZ we thus
the values2u and zero, each with probability 1/2.0btain a precise guqrantee on thg probablhty that the
The parameters: and . describe the average arrivalSaMple averages of interest are withiof = () at any
rate and service rate, respectively, andescribes the ©f the sampling times defined by the shadow function
variability of the arrival process. In this case, the valu8&MPling rule. The simulation is stopped when that

function J(z) takes the form, guarantee is satisfactory.
Simulation experiments were performed for the

2 simple discrete-time queue (19), as described above.
J(x) = m’ r € Ry (22)  shown in Figure 1 is a plot of the sample path average
I, (F) with F(x) = . Observe that wheneveér, (F)
The smoothed estimator corresponds to following sampled at time-points in the grey region, its value

P.{TW(F) > m(F) +¢ [T,(D)| <u, ,_, € B}.

choice for the shadow functioP, is close to the steady state meaf¥").
Note that the sampling rule can also be used for
D(z) = E[J(®r)— J(Ppt1) | P = 2] simultaneous simulation of several functions ®f
J(z) — PJ(x), zeR,. (23) ShowninFigure 2 are results from an experiment using

the two functionsF'(z) = = and G(z) = zsin(0.1z).
The smoothed estimator was introduced for the singlde functionG is not globally Lipschitz continuous,

queue in [20], [18], where it was shown that thé Property that that is used in the construction and
variance is brought down t¢1 — p)~2/n for p ~ €valuation of the smoothed estimator. Hence it is not
1. Generalizations, analysis, and various numeric@Pvious how one would construct a shadow function
experiments can be found in [21], [19], [5], [26], [27].for estimating the mean(G).

Here we will introduce a completely new application
Mnm n(F)

of shadow functions. As we shall see, the result of

Theorem 2.2 motivates the formulation eémpling
WW“G)
(

rules for simulation. In the context of the present
example, we have the following sampling criterion; its
more general version is in the next section.
SHADOW FUNCTION SAMPLING CRITERION Fig. 2: Application of the shadow function sampling criteriwith

" . S multiple functions. The simple queue (19) with= 1 was simulated
FIX asets € Ry on Wh|Ch|‘F||°°wB is finite, and _also to obtain estimates of the steady state mean of the two ot
fix a constant: > 0. Then sample from the estimatorr(z) = «, andG(z) = 2 sin(0.1z). The grey regions indicate time

I,.(F) only at timesn > 1 such that, periods during whicH', (D)| < 1 and®,,_1 € B := [0, 10%].

Q)

I'.(D)<u and &,_; € B, . .
B. The General Sampling Criterion

where the shadow functio® is defined byD(z) = As mentioned already, our starting point for the de-
J(x) — PJ(x), z € X, with J given by(22). velopment of a general sampling rule for the estimator



I',(F) will be to obtain a bound on the deviationwhere the shadow functio is defined byD(z) =
probability (24) with an appropriately chosen shadow (z) — PV (z), = € X.

func.tlon D This b_ound, presented in “the fO"O\.ngC. Finite-n Performance of the Sampling Criterion
section, will be derived for the class of “geometrically ) )
ergodic” Markov chains, a family much broader than In Theorem 3.1 below, we provide a non-asymptotic
the Doeblin chains considered earlieryAirreducible, Pound, which furnishes our sampling rule with a
aperiodic chain® = {®; : i > 0} is calledgeometri- Precise performance guarantee, and at the same time
cally ergodig if there exists a functiofr : X — [1,00), €Xplains the motivation for its form.

positive constants, b, and asmallsetS € B such that ~ For a geometrically ergodic chain the Lyapunov
function V' is used to construct the Banach space of

PV(z) = V(z) < =6V (z) + bls(z), v €X. (25 measurable functions': X — R for which the norm

Recall that the sef is called small if there exists an Fllo = |F(x)]
integerny > 1, anay > 0 and a probability distribution [Elv = Zlelg Vi)
e on X such that is finite [16], [28].

P™(z,A) > ago(4), forallze S, AeB. (26) Writing 1 ® « for the rank-one kernel defined by,

The functionV satisfying (25) is called dyapunov 1 ®7)(z,A) = m(A), zeX, AehB,
function for the chain, and the bound (25) is the i i i
Foster-Lyapunov drift condition (V4pf [28]. Note the fundamental kern_elZ is deflned to be the inverse
that the Doeblin property of the previous section i€ = [I - P+1@x]"". Thatis, for any functiont”
equivalent to the requirement that (V4) is satisfied witlf' (e d,omaln ofZ, the functionF" := ZI" satisfies
V bounded, and also to the condition that the stafe?!SSON's equation
spaceX is itself a small set; see [28] for details. PF=F —F +x(F). (29)

It is easy to verify that in most practical applica- ) )
tions, the underlying Markov chain does indeed satisif/he domain ofZ is equal to the range space of
condition (V4). Moreover, in many applications wherd! — £+ 1 ® ], of which appropriate subsets can be
detailed quantitative results are sought, it is useful {§entified under reasonable conditions. For any func-
find a Lyapunov function satisfying (V4), even if tion W: X — [1,00) we define the induced operator

(28)

the chain is Doeblin or finite-valued. norm of a linear operata® on LY, as,
The main difference between the earlier queueing 1Qlly = sup{||QF|lw : || Fllw < 1}. (30)

example and the general stopping rule we seek, is that, . o .
in general, we cannot easily find a value function fo¢nder geometric ergodicity, the fundamental kernel is
an associated fluid model. Instead, we define a shadéounded linear operator drf, and for anyF" € L,
functionD by analogy to the earlier definition in (23),we have the representation,
but with J replaced by the Lyapunov functidn: <
ZF = P°F —a(F)|. 31

D(x) =V(z) - PV(z), azeX  (27) () kzzo[ (&) = m(F)] (31)

Observe that the mean @ underr is always equal e assume moreover that the functidi is dom-

to zero, sincer(V) < oo under (V4). inated by the functior// in the sense thatF?||y <
With this terminology in place, we can now state: o, These assumptions are identical to those used in
SHADOW FUNCTION SAMPLING CRITERION Theorem 17.5.4 of [28] to show that the central limit
(1) ASSUMPTIONS theorem (CLT) holds for the sample averadgg F).

Let & be a geometrically ergodic chain, so that4) While these conditions are non-minimal for the CLT,
holds with respect to the Lyapunov functisnSuppose they are easily verified in many cases.

that the functionF" is dominated by/V in the sense ~ We now present a non-asymptotic bound for the
thatsup,[F?(z)/V (z)] < oo, and assume that the setprobabilities appearing in (24):

B € B is such thatr(B) > 0 and F is bounded on  Theorem 3.1:Suppose that the chai is geomet-

B. rically ergodic, so that (25) holds for some functigh
(1) SAMPLING and the functionF satisfies||F?||y < oo. Then with

Fix a constantu > 0, and sample from the estimatorthe shadow functio® defined as in (27), we have for

I, (F) only at timesn > 1 such that, anye > 0, u > 0, that the logarithm of the probability,

T.(D)|<u and &, ;€ B, P.{TW(F) = 7(F) > ¢, To(D)| <u, b, 1 € B}



is bounded above by

—-1r16 1
7 e, |

for all n > 4b/6, wheree™ := € — ||F||co,8/(n — 1)
andu” :=u + || D||eo,5/(n — 1); b and § are defined
in (V4), F'=F —(F); and§ = || Z[] — 1@ 7]|| /-

It is somewhat remarkable that it is possible to
establish a large deviations upper bound at this le\%

[")2 ) - 2 ]2

u™ +b n—114’

of generality, since even the standard asymptotic lar
deviations principle may well fail even for a bounde
function of a stationary Doeblin chain. Moreover, a
shown in the limit (20) for the simple queue, it mayA‘
be impossible to have a meaningful (positive, that |§?
exponent for the deviations of an unbounded function
of a geometrically ergodic chain. Theorem 3.1 is
especially surprising sincé|T",,(D)| < u} is not a
rare event whem > 0.

(1]

(2]

PROOF OUTLINE. The proof of Theorem 3.1 is based
on essentially the same four steps used in the proof d¢#]
Theorem 2.4.

Step 1 is an application of Theorem 2.2 to establishy)
that the negative logarithm of the probability of interest
is bounded below by

(n—1)H([lv' © P),

(5]

(32) g
where v is a bivariate probability measure diX x  [7]
X, B x B), whose marginals! and~? satisfy, -

2
1 2
— <
v =l < = 33 ©
YHE) =7(F) =€, |y/(D)] <u™
[10]

Consider the remaining three steps: We again apply
Pinsker’s inequality to obtain a lower bound analogo;&ll
to (14), and Step 3 is the construction of a linear
program to obtain a lower bound on (14). Following
the same steps presented in Section 11-B we find th

a bound analogous to (16) holds, and applying (3
we conclude that the solution of the following linear

program provides a bound on (16): (13]
min ||p — pP||

(34) 14

st w(F)—n(F) =€, |uD) <u” [15]

On letting L* = L*(e™,u™) denote the value of this
linear program, we again arrive at the bound (18), for
any ~ satisfying the constraints (33).

Hence, we arrive at Step 4: to complete the proof ¢fs]
Theorem 3.1 it is enough to establish the following: (7]
Proposition 3.2: Suppose thafV4) holds and that
[ 7]l /- < oc. Then the following lower bound on the

value of the linear program i(84) holds for alle > 0,
u > 0:
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