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Abstract— We develop explicit, general bounds for the
probability that the empirical sample averages of a func-
tion of a Markov chain on a general alphabet will exceed
the steady-state mean of that function by a given amount.
Our bounds combine simple information-theoretic ideas
together with techniques from optimization and some
fairly elementary tools from analysis. In one direction,
motivated by central problems in simulation, we de-
velop bounds for the general class of “geometrically
ergodic” Markov chains. These bounds take a form that
is particularly suited to simulation problems, and they
naturally lead to a new class of sampling criteria. These
are illustrated by several examples. In another direction,
we obtain a new bound for the important special class
of Doeblin chains; this bound is optimal, in the sense
that in the special case of independent and identically
distributed random variables it essentially reduces to the
classical Hoeffding bound.

I. I NTRODUCTION

In many important scientific applications, we wish to
compute the expected valueπ(F ) = Eπ[F ] =

∫
Fdπ

of a given functionF , with respect to a probability
distribution π which is known explicitly, but which
cannot be computed numerically. In several areas, e.g.,
Bayesian statistics, image processing, and statistical
mechanics, this is the rule rather than the exception;
see [3], [25], [35] and the references therein.

Perhaps the most commonly used approach, is to
estimateπ(F ) through the sample averages,

Γn(F ) :=
1

n

n−1∑

i=0

F (Φi), n ≥ 1, (1)

where the sequenceΦ = {Φi : i ≥ 0} is a Markov
chain which is known to have stationary distribution
π. This is the celebrated Markov Chain Monte Carlo
(MCMC) paradigm. Under appropriate conditions, it
is typically easy to check that the Markov chainΦ is
positive recurrent, and then the law of large numbers
implies that the estimates in (1) will converge to the

required valueπ(F ), with probability one, asn→ ∞.
Furthermore, the central limit theorem tells us that the
estimates converge at a rate ofO(1/

√
n), in that,

√
n
[
Γn(F ) − π(F )

] D−→ N(0, σ2),

where σ2 = limn nVar(Γn(F )) is the asymptotic
variance ofF .

The asymptotic results mentioned above are of lim-
ited use if we want to have any kind of “guarantee”
that, after a certain number of steps in the simulation,
the estimateΓn(F ) will indeed be close toπ(F ).
There are several well-studied approaches in the very
extensive literature on this subject. Partly motivated
by this discussion, here we consider the problem of
providing simple, computable bounds for probabilities
of “large deviations” type,

Pr
{
Γn(F ) ≥ r

}
, (2)

for general classes of Markov chainsΦ and functions
F .

Sanov’s celebrated theorem for i.i.d. random vari-
ables states that, for appropriate setsS of probability
measures onX, for largen we have,

− logP
{
Γn ∈ S

}
≈ n inf{H(µ‖π) : µ ∈ S}, (3)

where the relative entropy between two probability
distributionsµ, π on (X,B) is defined as usual by

H(µ‖π) =





∫
log

dµ

dπ
dµ if dµ/dπ exists

∞ otherwise.
(4)

Donsker and Varadhan’s classical large deviations
principle [11][32] provides the natural extension of
Sanov’s theorem to the case of Markov chains. It states
that, under appropriate conditions on the Markov chain
and onF , asn→ ∞ we have,

− log Px

{
Γn(F ) ≥ r

}
≈ n inf

γ
H(γ‖γ1 ⊙ P ), (5)



where γ1 ⊙ P denotes the bivariate measure(γ1 ⊙
P )(x, dy) = γ1(dx)P (x, dy), and the infimum is over
all bivariate distributionsγ with marginalsγ1 andγ2

that satisfyγ1 = γ2 andγ1(F ) ≥ r.

In this work, simple information-theoretic ideas are
combined together with techniques from optimization
and some fairly elementary tools from analysis, to
obtain explicitnon-asymptoticbounds for the probabil-
ities (2). Information-theoretic methods have been very
influential in the development of asymptotic results as
well as non-asymptotic inequalities for probabilities as
in (2). Combinatorial techniques based on the method
of types have provided some of the simplest proofs
as well as some of the strongest results whenΦ

is an independent and identically distributed (i.i.d.)
sequence [7], [8], [6]. But in the case of Markov chains
they have been much less successful, their applicability
limited essentially only to the more elementary case
of finite state-space Markov chains; see [9] and the
references therein. This difficulty reflects, to some
extent, the intrinsic limitations of the information-
theoretic methods, but it is also due to the much greater
complexity of the field of large deviations for general
Markov chains. For example, the elegant theorem of
Sanov, which holds in complete generality in the i.i.d.
case, requires extremely strong assumptions in order
to be translated to Markov chains; see Donsker and
Varadhan’s classic results [11][32], as well as the
numerous counter-examples indicating that such strong
assumptions are indeed necessary, e.g., [2], [4], [13].

In Section II and Section III we prove a series
of non-asymptoticdeviation bounds, which apply to
a variety to different problems. Then in Section III,
motivated by the form these bounds naturally take in
their most general form, we propose a new, general-
purpose sampling criterion, which can easily be applied
to a great variety of different MCMC problems. In
particular, this sampling criterion comes with a precise,
non-asymptotic performance guarantee.

The exponential deviation bounds obtained in Sec-
tion II are established in four steps. We obtain an
information-theoretic bound for the probability of in-
terest in terms of relative entropy; this is done in
Theorem 2.2, which is inspired by an argument used by
Csiszár in the proof of [7, Theorem 1]. We next apply
Pinsker’s inequality to simplify the bound obtained in
Step 1. In Step 3 a further relaxation of this bound
is obtained, which is expressed as a linear program
over the space of probability measures. The final step
is to construct bounds on this linear program. This is
achieved by constructing a dual linear program. Similar
tools are used to obtain worst-case exponential bounds

for constrained problems in the i.i.d. case in [31].
Most of our results are present here without proofs,

or with brief proof outlines. The complete arguments
will be given in a longer version of this paper.

II. GENERAL BOUNDS AND DOEBLIN CHAINS

In the following two sections we present several non-
asymptotic versions of exponential upper bounds for
the probability that the sample averages of a function of
a Markov chain deviate from their (asymptotic) mean
by a certain amount.

Throughout the paper, we consider a discrete-time
Markov chainΦ = {Φi : i ≥ 0} with values in the
Polish space(X,B), whereB is the natural Borelσ-
algebra associated withX. The distribution ofΦ is
specified by its initial stateΦ0 = x ∈ X and its
transition kernelP , whereP (x,B) := Pr{Φi+1 ∈
B |Φi = x}. We write Px for the distribution of the
chain conditional on the initial stateΦ0 = x, and
Ex for the corresponding expectation. For an arbitrary
(measurable) functionF : X → R we writeΓn(F ) for
the sample averages (1).

We begin in Section II-A by deriving an elementary
bound which applies toall Markov chains, not even
requiring positive recurrence; this is given in Theo-
rem 2.1, and in a more general form in Theorem 2.2.
These bounds show that for deviation probabilities of
the form,

Px{Γn(F ) ≥ r} = Pr
{ 1

n

n−1∑

i=0

F (Φi) ≥ r
∣∣∣ Φ0 = x

}
,

we can always find a natural exponential upper bound,
where the exponent is expressed in terms of relative
entropy. The proofs are based on simple information-
theoretic ideas.

Although Theorems 2.1 and 2.2 hold in complete
generality, the exponent in these bounds is defined in
an implicit way and it cannot be easily evaluated in
specific cases. In order to obtain concrete, computable
bounds, in Section II-B we turn to the special class of
Doeblin (or “uniformly ergodic”) chains, and in The-
orem 2.4 we give an explicit bound for the deviation
probabilities of the sample averages of any bounded
function of a Doeblin chain.

Finally, in Section III we return to simulation and
consider the problem of empirically estimating the
meanπ(F ) :=

∫
Fdπ of a given functionF using

the sample averages of a Markov chain with stationary
distributionπ. For such simulation problems we intro-
duce a newsampling criterion, which gives a precise
guideline regarding which parts of the simulation give



more accurate estimates with high probability. The the-
oretical justification for this sampling criterion is given
in Theorem 3.1, where we present a general, explicit
bound for the probability of large deviations of the
sample averages from their mean. This is established
for the more general class of “geometrically ergodic”
chains, and it also allows us to consider the sample
averages of unbounded functions.

A. A General Information-Theoretic Bound

Recall the definition (1) for the sample averages
Γn(F ) of a function F of a Markov chainΦ =
{Φi : i ≥ 0}. The sup norm of any such function
F : X → R is denoted by‖F‖∞ = supx∈X |F (x)|,
andF+ denotes the functionmax{F, 0}. For any two
probability measuresµ, ν on (X,B), the L1 distance
‖µ − ν‖ between them is twice the total variation
distance,

‖µ− ν‖ := 2 sup
A∈B

|µ(A) − ν(A)|,

and the relative entropyH(µ‖ν) betweenµ and ν is
defined as in (4).

Our first result is a non-asymptotic version of the
upper bound in the Donsker-Varadhan large deviations
principle (5).

Theorem 2.1:Let Φ = {Φi : i ≥ 0} be anarbitrary
Markov chain with values onX. For any function
F : X → R which is bounded above, anyr ≥ π(F )
and any initial conditionx ∈ X, we have,

− log Px

{
Γn(F ) ≥ r

}
≥ (n− 1)H(γ‖γ1 ⊙ P ), (6)

where γ is a bivariate probability measure on(X ×
X,B × B) with respective marginalsγ1 and γ2, and
where the marginalsγ1, γ2 satisfy,

‖γ1−γ2‖ ≤ 2

n− 1
and γ1(F ) ≥ r− ‖F+‖∞ − r

n− 1
.

(7)
A more general version of this result is given in

Theorem 2.2 below, along with a proof.

Remark.As mentioned in the Introduction, the clas-
sical extension of Sanov’s theorem to Markov chains
is Donsker and Varadhan’s [11], [32] large deviations
principle. It states that, under appropriate conditions
on the Markov chain and onF , asn→ ∞ we have,

− log Px

{
Γn(F ) ≥ r

}
≈ n inf

γ
H(γ‖γ1 ⊙ P ), (8)

where the infimum is over all bivariate measuresγ with
marginalsγ1 andγ2 that satisfy

γ1 = γ2 and γ1(F ) ≥ r. (9)

Comparing the Donsker-Varadhan result in equations
(8)-(9) with the bound of Theorem 2.1 in equations (6)-
(7), we see that the theorem provides anon-asymptotic
version of the upper bound in (8), and thus offers an el-
ementary “explanation” for the Donsker-Varadhan rate
function. Of course the intimate relationship between
large deviations and the entropy functional has been
noted by many authors in the literature, and several
other alternative points of view have been offered.
For example, as argued in [12], the minimization of
the entropy in (8) can be seen as an optimal control
problem, where the entropy naturally appears as the
cost functional. For more on this relationship, see,
e.g., the monographs [14][12], the review [33], and
the references therein.1

For some of our subsequent results, we will need a
somewhat more general version of the above theorem.
Instead of a single functionF , we now consider a
finite collection of functions{F1, F2, . . . , Fm}, and we
bound the probability of the following event,

E = {Γn(Fj) ≥ rj for all j, andΦn−1 ∈ B}, (10)

where the sample averageΓn(Fj) of each functionFj

is taken to exceed some constantrj , and we also “pin”
the position of the Markov chain during the last time
stepΦn−1 to be in some fixed setB.

Large deviation limit theory for events with pinning
of the form (10) has been studied extensively; see,
e.g., [10][23][29][30] and the references therein. In
the present context, the value of the additional pinning
constraint{Φn−1 ∈ B} is that it allows us to treat
unbounded functionsFj . Theorem 2.2 forms the basis
for analysis of the simulation algorithm introduced in
Section III.

Theorem 2.2:Let Φ = {Φi : i ≥ 0} be anarbitrary
Markov chain with values onX, let B ∈ B be fixed
measurable set, and letF1, F2, . . . , Fm be an arbitrary
(finite) collection of functions fromX to R. For any
constantsr1, r2, . . . , rm, and any initial conditionx ∈
X, we have that

− logPx

{
Γn(Fj) ≥ rj for all j , and Φn−1 ∈ B

}

is bounded below by

(n− 1)H(γ‖γ1 ⊙ P ),

where γ is a bivariate probability measure on(X ×
X,B × B) whose marginalsγ1 andγ2 satisfy,

‖γ1 − γ2‖ ≤ 2

n− 1

1In fact, Varadhan in [33] remarks that “It is not hard to see that
any ‘large deviation’ has to be related to ‘entropy’.”



and

γ1(Fj) ≥ rj −
‖(Fj)+‖∞,B − rj

n− 1
, for all j,

where ‖F‖∞,B is the sup norm of the restriction
of the function F to the setB, i.e., ‖F‖∞,B :=
supx∈B |F (x)|.

The first step in the proof of Theorem 2.2 is an
application of the following observation due to Csiszár
[7]. It states that the probability ofany event can be
expressed as the exponential of a relative entropy. The
proof is immediate from the definitions.

Lemma 2.3 (Csiszár’s Lemma): Let p be an arbi-
trary probability distribution on any probability space,
and E any event withp(E) > 0. Let p|

E
denote the

conditional distributionp|
E
( · ) = p( · ∩E)/p(E). Then:

− log p(E) = H(p|
E
‖p).

PROOF OFTHEOREM 2.2. Fix an initial statex ∈
X. Let p denote the measure onXn induced by
the distribution of(Φ0,Φ1, . . . ,Φn−1) conditioned on
{Φ0 = x}, and letµn denote the conditional measure
µn = p|

E
with E for the event of interest expressed in

(10). From Csiszár’s Lemma,

− logPx

{
E
}
≥ H(µn‖p). (11)

For anyk ≥ 1, we write xk
0 = (x0, x1, . . . , xk) for a

(k+1)-dimensional vector fromXk+1. Writing µn and
p as products of conditional distributions,µn(dxn−1

0 )
is

µ1(dx0)µ2(dx1|x0) · · ·µn(dxn−1|xn−2
0 ),

andp(dxn−1
0 ) is

δx(dx0)P (x0, dx1) · · ·P (xn−2, dxn−1).

Then the relative entropy in (11) can be expanded,

n−1∑

i=1

∫

x
i−1

0

H
(
µi+1( · |xi−1

0 )‖P (xi−1, ·)
)
µi(dx

i−1
0 ).

Denote byµi the one-dimensional marginal ofµn

corresponding toxi−1, andµi,i+1 the two-dimensional
marginal corresponding to(xi−1, xi). The above ex-
pansion forH(µn‖p) can be expanded as follows,

n−1∑

i=1

∫

xi−1

∫

x
i−2

0

H
(
µi+1( · |xi−1

0 )‖P (xi−1, ·)
)

µi(dx
i−2
0 |xi−1)µ

i(dxi−1).

Now, using the joint convexity of the relative entropy in
its two arguments, we can take the innermost integral

inside the relative entropy, to thatH(µn‖p) is bounded
below by

n−1∑

i=1

∫

xi−1

H
(
µi+1( · |xi−1)‖P (xi−1, ·)

)
µi(dxi−1)

which equals

n−1∑

i=1

H
(
µi,i+1‖µi ⊙ P

)
.

Using the joint convexity ofH again,

H(µn‖p) ≥ (n− 1)
n−1∑

i=1

1

n− 1
H

(
µi,i+1‖µi ⊙ P

)

≥ (n− 1)H(γ‖γ1 ⊙ P ),

where the bivariate measureγ and its first marginalγ1

are,

γ =
1

n− 1

n−1∑

i=1

µi,i+1 and γ1 =
1

n− 1

n−1∑

i=1

µi.

This final bound combined with (11) gives the
required bound, and it only remains to verify thatγ
satisfies the stated properties. Indeed, since the second
marginal ofγ is γ2 = 1

n−1

∑n−1

i=1 µ
i+1, their difference

is γ1−γ2 = µ1−µn

n−1
, and since theL1-norm is bounded

by 2 it follows that‖γ1 − γ2‖ ≤ 2/(n − 1). Finally,
by the definition ofγ1 and the eventE , for any j we
have thatγ1(Fj) is equal to

1

n− 1

n−1∑

i=1

µi(Fj) = Ex

[ 1

n− 1

n−1∑

i=1

Fj(Φi−1)
∣∣ E

]

which becomes,

n

n− 1
Ex

[ 1

n

n−1∑

i=0

Fj(Φi)
∣∣ E

]
− Ex

[Fj(Φn−1)

n− 1

∣∣ E
]
,

and this is bounded below byrj − 1
n−1

[
‖(Fj)+‖∞,B−

rj
]
, as required. �

B. Doeblin Chains

As before, we start with a Markov processesΦ =
{Φi : i ≥ 0} taking values in a general state space
(X,B), with initial stateΦ0 = x ∈ X and transition
kernelP . Throughout the rest of the paper we assume
thatΦ is ψ-irreducibleandaperiodic. This means that
there is aσ-finite measureψ on (X,B) such that,
for any A ∈ B satisfyingψ(A) > 0 and any initial
conditionx,

Pn(x,A) > 0, for all n sufficiently large,



where Pn(x, ·) is the probability measure that de-
scribes the conditional distribution ofΦn, given that
Φ0 = x.

Recall that any kernelP (x, dy) acts linearly on
functionsF : X → R on the right and signed measures
µ on (X,B) on the left, via,

PF (x) =

∫
F (y)P (x, dy)

and

µP (dy) =

∫
P (x, dy)µ(dx),

respectively, whenever the above integrals are well-
defined.

The Markov chains we consider are also positive
recurrent. This means that there is a unique invari-
ant probability measureπ satisfying πP = π. The
first such class of Markov chains we consider are
Doeblin chains. This is probably the “nicest” class of
general-alphabet Markov chains. For the aperiodic,ψ-
irreducible chains that we consider, Doeblin’s condi-
tion is equivalent to requiring thatΦ is “uniformly
ergodic,” namely, that it has a unique stationary distri-
bution π such that, asn→ ∞,

dn := sup
x

‖Pn(x, ·) − π‖ → 0 geometrically fast,

(12)
where, as before,‖µ − ν‖ denotes theL1-distance
between two probability measuresµ, ν. Alternatively,
an aperiodic andψ-irreducible chainΦ is a Doeblin
chain if and only if either one of the following two
conditions is satisfied:

(i) There exists somen ≥ 1 for whichdn < 2.
(ii) Doeblin’s minorization conditionholds:

There exists an integern0 ≥ 1, a constant
a0 > 0, and a probability measure̺ on
(X,B), such that,

Pn0(x,A) ≥ a0̺(A), ∀x ∈ X, A ∈ B. (13)

The main advantage of the minorization condition (13)
is that it can usually be easily verified in applications,
and with explicit values for the constantsn0 and a0.
See [28] for a detailed discussion of Doeblin chains
and their characterizations.

Our next result, Theorem 2.4 below, gives a non-
asymptotic, exponential bound, on the probability that
the sample averagesΓn(F ) of a bounded function of
a Doeblin chain deviate from their steady-state mean
π(F ) by a certain amount. This bound improves upon
a recent result of Glynn and Ormoneit [17] by a factor
of 2 in the exponent. The proof technique of [17] is
completely different, relying on martingale methods

and a generalization of Hoeffding’s original argument
[22].2

Theorem 2.4:Suppose the Markov chainΦ =
{Φi : i ≥ 0} is ψ-irreducible, aperiodic, and satisfies
the Doeblin condition (13), so that it has a unique sta-
tionary distributionπ. Then, for any bounded function
F : X → R and anyǫ > 0 we have that

log Px

{
Γn(F ) ≥ π(F ) + ǫ

}

is bounded above by

≤ −n− 1

2

[ a0

n0‖F‖sp

ǫ− 4

n− 1

]2

+
,

where‖F‖sp denotes the normalized span norm ofF ,
defined by‖F‖sp := infu∈R ‖[F − u]‖∞.

Remarks.

1) WhenΦ is a sequence of i.i.d. random variables
with common distributionπ, then the Doeblin
condition holds withn0 = a0 = 1 and ̺ = π,
and the bound of Theorem 2.4 reduces to

−n− 1

2

[ ǫ

‖F‖sp

− 4

n− 1

]2

+
.

This is essentially identical to the exponent
−n

2
[ǫ/‖F‖∞]2 of the classical Hoeffding bound

[22], which is known to be tight in the i.i.d. case.
2) Although Doeblin chains form a very restricted

sub-class of all ergodic chains, it is perhaps
the most natural class to consider in terms of
large deviations properties. To see that, recall that
Bryc and Dembo [4] have provided a counter-
example of a stationary Doeblin chain for which
the regular large deviations principle fails to
hold with any rate function. Moreover, if it
were possible to obtain meaningful exponential
bounds as in Theorem 2.4, with exponents that
were independent of the initial condition, this
would mean that the ergodic theorem would hold
for all bounded functions uniformly in the initial
condition, a fact which is known toimply that
the chain is Doeblin [28].

3) Once the Doeblin condition (13) has been veri-
fied, all the constants appearing in the result of
Theorem 2.4 are explicitly known. Moreover, if
the span norm cannot be easily evaluated, we
always have the trivial bound‖F‖sp ≤ ‖F‖∞.

2Note also that the result of [17] upon which we improve is
actually stated slightly incorrectly there; there should have been an
extra factor of2 in the estimate of the norm of the functiong, which
translates to an extra factor of1/2 in the exponent they finally obtain.
A factor of 2 is also missing in the ergodic theorem for uniformly
ergodic chains, [28, Theorem 16.2.4]. This ergodic theoremis a key
ingredient of the proof in [17].



PROOF OUTLINE. The proof of Theorem 2.4 consists
of four steps.

The first step is an application of the general bound
of Theorem 2.1, implying that

− log Px

{
Γn(F ) ≥ π(F ) + ǫ

}

is bounded below by(n−1)H(γ‖γ1⊙P ), for some bi-
variate probability measureγ satisfying the conditions
in (7) with r = π(F ) + ǫ.

The second step is to obtain a bound on the above
relative entropy using Pinsker’s inequality:

Lemma 2.5 (Pinsker’s inequality):The bound,

H(µ‖ν) ≥ 1
2
‖µ− ν‖2,

holds for any two probability measuresµ, ν on (X,B).
Consequently, the result of the previous step yields,

− log Px

{
Γn(F ) ≥ π(F )+ǫ

}
≥ n− 1

2
‖γ−γ1⊙P‖2.

(14)
Step 3 amounts to the following construction of a

linear programwhose value bounds the right hand side
of (14). Write γ = γ1 ⊙Q for some transition kernel
Q. An application of Jensen’s inequality gives that,

‖γ1 ⊙Q − γ1 ⊙ P‖

=

∫
γ1(dx)‖P (x, · ) −Q(x, · )‖

≥ ‖γ1[P −Q]‖. (15)

Moreoverγ1[P −Q] = γ1P − γ2, which we write as,

γ1[P −Q] = γ1P − γ2 = [γ1 − γ1P ] − [γ2 − γ1].

We have‖γ1 − γ2‖ ≤ 2/(n − 1) by Theorem 2.1,
which together with (14) and (15) gives,

− log Px

{
Γn(F ) ≥ π(F ) + ǫ

}

≥ n− 1

2

[
‖γ1 − γ1P‖ − 2/(n− 1)

]2

+
.(16)

A bound on the right hand side of (16) follows from
any lower bound on the solution to the following linear
program over the space of probability measures:

min ‖µ− µP‖ s.t. µ(F ) − π(F ) ≥ ǫn,
(17)

whereǫn:=ǫ−(‖F+‖∞−r)/(n−1), with ǫ = r−π(F ).
LettingL∗ denote the value of this linear program, we
obtain from (16),

− log Px

{
Γn(F ) ≥ π(F ) + ǫ

}

≥ n− 1

2

[
L∗ − 2/(n− 1)

]2

+
. (18)

The fourth and final step is to obtain a bound on
L∗. The details involve linear programming ideas and
duality. �

III. S IMULATION BOUNDS AND STOPPINGRULES

In this section we present a new, general-purpose
stopping rule, which can be easily applied to a va-
riety of Markov Chain Monte Carlo problems. In
Section III-A we treat a simple example illustrating
the stopping rule in a simple setting, Section III-B
contains the description of the general stopping rule,
and in Section III-C we present a non-asymptotic
bound that justifies this stopping rule and also offers
precise performance guarantees for its use.

A. A Stopping Rule for Simulating a Simple Queue

We begin by considering the example of the simple
discrete-time queue, described by the recursion,

Φk+1 = [Φk −Sk+1]+ +Ak+1, k ≥ 0, Φ0 ∈ R+,
(19)

where the processesA = {Ai : i ≥ 0} and
S = {Si : i ≥ 0} are mutually independent, each
consisting of i.i.d. random variables with values inR+,
and with marginals that possess finite means denoted
α, µ, respectively. If the ‘load condition’ρ :=α/µ < 1
is satisfied, then it is known thatΦ = {Φi : i ≥ 0}
is a positive recurrent Markov chain, and we denote
its stationary distribution byπ. If, in addition, the
marginal ofA has a finite second moment, then the
steady state mean ofΦi is finite, i.e.,π(F ) <∞ with
F (x) ≡ x.

Simulation of the steady-state mean appears to be
straightforward: Simply computeΓn(F ) for large n.
However, it is well known that this can be computa-
tionally intensive since the variance ofΓn(F ) is very
large, actually of order(1−ρ)−4/n for ρ ∼ 1; see [1],
[34], [18], [27]. Moreover, it isimpossibleto obtain an
exponential bound on the error probability: It is shown
in [27] that for anyε > 0 we have,

lim
n→∞

n−1 log Px

{
Γn(F ) ≥ π(F ) + ǫ

}
= 0, (20)

provided the{Ai} are not identically zero.
One approach to improve this estimator is through

the application of the control variate method [24], [15].
Suppose that there is a functionD : X → R for which
it is known a priori thatπ(D) = 0. For any suchD,
the following will also be a consistent estimator,

Γn(F −D) =
1

n

n−1∑

i=0

(
F (Φi) −D(Φi)

)
, n ≥ 1.

(21)
The functionD is called ashadow function, since it is
meant to ‘eclipse’ the functionF to be simulated.

For queueing models, there is a specialized version
of the control-variate method corresponding to a par-
ticular choice of the shadow functionD, called the
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Fig. 1: Application of the shadow function sampling criterion for the simple queue (19) withD = J − PJ , J(x) ≡ 1

2
x2/(µ − α),

F (x) ≡ x, and forκ = 1, 2, 4. The grey regions indicate time periods during which|Γn(D)| ≤ 1 andΦn−1 ∈ B := [0, 104].

smoothed estimator. The starting point is the use of a
natural “value function”J(x), obtained from a deter-
ministic fluid model for the network to be simulated.
In our example, suppose that eachAk takes the values
(1 + κ)α and zero, with probabilities(1 + κ)−1 and
1 − (1 + κ)−1, respectively, and that eachSk takes
the values2µ and zero, each with probability 1/2.
The parametersα andµ describe the average arrival
rate and service rate, respectively, andκ describes the
variability of the arrival process. In this case, the value
functionJ(x) takes the form,

J(x) =
x2

2(µ− α)
, x ∈ R+. (22)

The smoothed estimator corresponds to following
choice for the shadow functionD,

D(x) = E[J(Φk) − J(Φk+1) | Φk = x]

= J(x) − PJ(x), x ∈ R+. (23)

The smoothed estimator was introduced for the single
queue in [20], [18], where it was shown that the
variance is brought down to(1 − ρ)−2/n for ρ ∼
1. Generalizations, analysis, and various numerical
experiments can be found in [21], [19], [5], [26], [27].

Here we will introduce a completely new application
of shadow functions. As we shall see, the result of
Theorem 2.2 motivates the formulation ofsampling
rules for simulation. In the context of the present
example, we have the following sampling criterion; its
more general version is in the next section.

SHADOW FUNCTION SAMPLING CRITERION

Fix a setB ∈ R+ on which‖F‖∞,B is finite, and also
fix a constantu > 0. Then sample from the estimator
Γn(F ) only at timesn ≥ 1 such that,

|Γn(D)| ≤ u and Φn−1 ∈ B,

where the shadow functionD is defined byD(x) =
J(x) − PJ(x), x ∈ X, with J given by(22).

The probability of interest in evaluating the estimate
at a sampling time is,

Px

{
Γn(F ) ≥ π(F ) + ǫ, |Γn(D)| ≤ u, Φn−1 ∈ B

}
.

(24)
Given a precise bound on this probability, we thus
obtain a precise guarantee on the probability that the
sample averages of interest are withinǫ of π(F ) at any
of the sampling times defined by the shadow function
sampling rule. The simulation is stopped when that
guarantee is satisfactory.

Simulation experiments were performed for the
simple discrete-time queue (19), as described above.
Shown in Figure 1 is a plot of the sample path average
Γn(F ) with F (x) ≡ x. Observe that wheneverΓn(F )
is sampled at time-points in the grey region, its value
is close to the steady state meanπ(F ).

Note that the sampling rule can also be used for
simultaneous simulation of several functions ofΦ.
Shown in Figure 2 are results from an experiment using
the two functionsF (x) ≡ x andG(x) ≡ x sin(0.1x).
The functionG is not globally Lipschitz continuous,
a property that that is used in the construction and
evaluation of the smoothed estimator. Hence it is not
obvious how one would construct a shadow function
for estimating the meanπ(G).
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Fig. 2: Application of the shadow function sampling criterion with
multiple functions. The simple queue (19) withκ = 1 was simulated
to obtain estimates of the steady state mean of the two functions
F (x) ≡ x, andG(x) ≡ x sin(0.1x). The grey regions indicate time
periods during which|Γn(D)| ≤ 1 andΦn−1 ∈ B := [0, 104].

B. The General Sampling Criterion

As mentioned already, our starting point for the de-
velopment of a general sampling rule for the estimator



Γn(F ) will be to obtain a bound on the deviation
probability (24) with an appropriately chosen shadow
function D. This bound, presented in the following
section, will be derived for the class of “geometrically
ergodic” Markov chains, a family much broader than
the Doeblin chains considered earlier. Aψ-irreducible,
aperiodic chainΦ = {Φi : i ≥ 0} is calledgeometri-
cally ergodic, if there exists a functionV : X → [1,∞),
positive constantsδ, b, and asmallsetS ∈ B such that

PV (x) − V (x) ≤ −δV (x) + bIS(x), x ∈ X. (25)

Recall that the setS is called small if there exists an
integern0 ≥ 1, ana0 > 0 and a probability distribution
̺ on X such that

Pn0(x,A) ≥ a0̺(A), for all x ∈ S, A ∈ B. (26)

The functionV satisfying (25) is called aLyapunov
function for the chain, and the bound (25) is the
Foster-Lyapunov drift condition (V4)of [28]. Note
that the Doeblin property of the previous section is
equivalent to the requirement that (V4) is satisfied with
V bounded, and also to the condition that the state
spaceX is itself a small set; see [28] for details.

It is easy to verify that in most practical applica-
tions, the underlying Markov chain does indeed satisfy
condition (V4). Moreover, in many applications where
detailed quantitative results are sought, it is useful to
find a Lyapunov functionV satisfying (V4), even if
the chain is Doeblin or finite-valued.

The main difference between the earlier queueing
example and the general stopping rule we seek, is that,
in general, we cannot easily find a value function for
an associated fluid model. Instead, we define a shadow
functionD by analogy to the earlier definition in (23),
but with J replaced by the Lyapunov functionV :

D(x) = V (x) − PV (x), x ∈ X. (27)

Observe that the mean ofD underπ is always equal
to zero, sinceπ(V ) <∞ under (V4).

With this terminology in place, we can now state:

SHADOW FUNCTION SAMPLING CRITERION

(I) ASSUMPTIONS

Let Φ be a geometrically ergodic chain, so that(V4)
holds with respect to the Lyapunov functionV . Suppose
that the functionF is dominated by

√
V in the sense

that supx[F 2(x)/V (x)] <∞, and assume that the set
B ∈ B is such thatπ(B) > 0 and F is bounded on
B.

(II ) SAMPLING

Fix a constantu > 0, and sample from the estimator
Γn(F ) only at timesn ≥ 1 such that,

|Γn(D)| ≤ u and Φn−1 ∈ B,

where the shadow functionD is defined byD(x) =
V (x) − PV (x), x ∈ X.

C. Finite-n Performance of the Sampling Criterion

In Theorem 3.1 below, we provide a non-asymptotic
bound, which furnishes our sampling rule with a
precise performance guarantee, and at the same time
explains the motivation for its form.

For a geometrically ergodic chain the Lyapunov
function V is used to construct the Banach space of
measurable functionsF : X → R for which the norm

‖F‖V := sup
x∈X

|F (x)|
V (x)

, (28)

is finite [16], [28].
Writing 1 ⊗ π for the rank-one kernel defined by,

[1 ⊗ π](x,A) = π(A), x ∈ X, A ∈ B,
the fundamental kernelZ is defined to be the inverse
Z = [I − P + 1 ⊗ π]−1. That is, for any functionF
in the domain ofZ, the functionF̂ := ZF satisfies
Poisson’s equation,

PF̂ = F̂ − F + π(F ). (29)

The domain ofZ is equal to the range space of
[I − P + 1 ⊗ π], of which appropriate subsets can be
identified under reasonable conditions. For any func-
tion W : X → [1,∞) we define the induced operator
norm of a linear operatorQ on LW

∞ , as,

|||Q|||W = sup{‖QF‖W : ‖F‖W ≤ 1}. (30)

Under geometric ergodicity, the fundamental kernel is
a bounded linear operator onLV

∞, and for anyF ∈ LV
∞

we have the representation,

ZF (x) =

∞∑

k=0

[P kF (x) − π(F )]. (31)

We assume moreover that the functionF 2 is dom-
inated by the functionV in the sense that‖F 2‖V <
∞. These assumptions are identical to those used in
Theorem 17.5.4 of [28] to show that the central limit
theorem (CLT) holds for the sample averagesΓn(F ).
While these conditions are non-minimal for the CLT,
they are easily verified in many cases.

We now present a non-asymptotic bound for the
probabilities appearing in (24):

Theorem 3.1:Suppose that the chainΦ is geomet-
rically ergodic, so that (25) holds for some functionV ,
and the functionF satisfies‖F 2‖V < ∞. Then with
the shadow functionD defined as in (27), we have for
anyǫ > 0, u > 0, that the logarithm of the probability,

Px

{
Γn(F ) − π(F ) ≥ ǫ, |Γn(D)| ≤ u, Φn−1 ∈ B

}



is bounded above by

−n− 1

2

[1

8

δ

ξ

1

‖F̃ 2‖V

( [ǫn]2+
un + b

)
− 2

n− 1

]2

+
,

for all n ≥ 4b/δ, where ǫn := ǫ − ‖F‖∞,B/(n − 1)
andun := u + ‖D‖∞,B/(n− 1); b and δ are defined
in (V4); F̃ = F − π(F ); andξ = |||Z[I − 1 ⊗ π]|||√V .

It is somewhat remarkable that it is possible to
establish a large deviations upper bound at this level
of generality, since even the standard asymptotic large
deviations principle may well fail even for a bounded
function of a stationary Doeblin chain. Moreover, as
shown in the limit (20) for the simple queue, it may
be impossible to have a meaningful (positive, that is)
exponent for the deviations of an unbounded function
of a geometrically ergodic chain. Theorem 3.1 is
especially surprising since{|Γn(D)| ≤ u} is not a
rare event whenu > 0.

PROOF OUTLINE. The proof of Theorem 3.1 is based
on essentially the same four steps used in the proof of
Theorem 2.4.

Step 1 is an application of Theorem 2.2 to establish
that the negative logarithm of the probability of interest
is bounded below by

(n− 1)H(γ‖γ1 ⊙ P ), (32)

where γ is a bivariate probability measure on(X ×
X,B × B), whose marginalsγ1 andγ2 satisfy,

‖γ1 − γ2‖ ≤ 2

n− 1
,

γ1(F ) − π(F ) ≥ ǫn, |γ1(D)| ≤ un.
(33)

Consider the remaining three steps: We again apply
Pinsker’s inequality to obtain a lower bound analogous
to (14), and Step 3 is the construction of a linear
program to obtain a lower bound on (14). Following
the same steps presented in Section II-B we find that
a bound analogous to (16) holds, and applying (32)
we conclude that the solution of the following linear
program provides a bound on (16):

min ‖µ− µP‖

s.t. µ(F ) − π(F ) ≥ ǫn , |µ(D)| ≤ un.
(34)

On lettingL∗ = L∗(ǫn, un) denote the value of this
linear program, we again arrive at the bound (18), for
any γ satisfying the constraints (33).

Hence, we arrive at Step 4: to complete the proof of
Theorem 3.1 it is enough to establish the following:

Proposition 3.2:Suppose that(V4) holds and that
‖F‖√

V
<∞. Then the following lower bound on the

value of the linear program in(34) holds for allǫ > 0,
u > 0:

L∗(ǫ, u) ≥ 1

8

δ

ξ

1

‖F̃ 2‖V

( ǫ2

u+ b

)
.

�

ACKNOWLEDGMENTS

I.K. was supported in part by a Sloan Foundation
Research Fellowship and by NSF grant #00-73378-
CCR. S.P.M. was supported in part by NSF grants ITR
#00-85929 and ECS #05-23620 We also wish to thank
Andrew Barron for a stimulating conversation on the
large deviations properties of Markov chains.

REFERENCES

[1] S. Asmussen. Queueing simulation in heavy traffic.Math.
Operations Res., 17:84–111, 1992.

[2] J.R. Baxter, N.C. Jain, and S.R.S. Varadhan. Some familiar
examples for which the large deviation principle does not hold.
Comm. Pure Appl. Math., 44(8-9):911–923, 1991.
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Ann. Inst. H. Poincaré Probab. Statist., 32(4):549–569, 1996.

[5] M. Chen, I.-K. Cho, and S.P. Meyn. Reliability by design in a
distributed power transmission network.Automatica, 42:1267–
1281, August 2006. (invited).

[6] T.M. Cover and J.A. Thomas.Elements of Information Theory.
J. Wiley, New York, 1991.

[7] I. Csiszár. Sanov property, generalizedI-projection and a
conditional limit theorem.Ann. Probab., 12(3):768–793, 1984.

[8] I. Csiszár. The method of types.IEEE Trans. Inform. Theory,
44(6):2505–2523, 1998. Information theory: 1948–1998.

[9] I. Csiszár, T.M. Cover, and B.S. Choi. Conditional limit
theorems under Markov conditioning.IEEE Trans. Inform.
Theory, 33(6):788–801, 1987.

[10] A. de Acosta and P. Ney. Large deviation lower bounds for
arbitrary additive functionals of a Markov chain.Ann. Probab.,
26(4):1660–1682, 1998.

[11] M.D. Donsker and S.R.S. Varadhan. Asymptotic evaluation
of certain Markov process expectations for large time. I. II.
Comm. Pure Appl. Math., 28:1–47; ibid.28 (1975), 279–301,
1975.

[12] P. Dupuis and R.S. Ellis.A weak convergence approach to the
theory of large deviations. John Wiley & Sons Inc., New York,
1997.

[13] P. Dupuis and O. Zeitouni. A nonstandard form of the
rate function for the occupation measure of a Markov chain.
Stochastic Process. Appl., 61:249–261, 1996.

[14] R.S. Ellis.Entropy, large deviations, and statistical mechanics.
Springer-Verlag, New York, 1985.

[15] P. Glynn and R. Szechtman. Some new perspectives on the
method of control variates. In K.T. Fang, F.J. Hickernell, and
H. Niederreiter, editors,Monte Carlo and Quasi-Monte Carlo
Methods 2000: Proceedings of a Conference held at Hong
Kong Baptist University, Hong Kong SAR, China, pages 27–49,
Berlin, 2002. Springer-Verlag.

[16] P. W. Glynn and S. P. Meyn. A Liapounov bound for solutions
of the Poisson equation.Ann. Probab., 24(2):916–931, 1996.

[17] P.W. Glynn and D. Ormoneit. Hoeffding’s inequality for
uniformly ergodic Markov chains. Statist. Probab. Lett.,
56(2):143–146, 2002.



[18] S. G. Henderson and P. W. Glynn. Approximating martingales
for variance reduction in Markov process simulation.Math.
Operations Res., 27(2):253–271, 2002.

[19] S. G. Henderson, S. P. Meyn, and V. B. Tadić. Performance
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