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Unified Spatial Diversity Combining and Power
Allocation for CDMA Systems in Multiple
Time-Scale Fading Channels

Junshan Zhandvember, IEEEEdwin K. P. ChongSenior Member, IEEEand loannis Kontoyiannis

Abstract—in a mobile wireless system, fading effects can be clas- (see also [6], [8], and [14]). Large-scale effects include 1)
sified into large-scale (long-term) effects and small-scale (short- distance-related attenuation and 2) slow-shadowing fading,

term) effects. We use transmission power control to compensate \yich js due to the terrain, buildings, and other obstacles that
for large-scale fading and exploit receiver antenna (space) diver-

sity to combat small-scale fading. We show that the interferences lie betweer? the transm't_ter, and_ receier. Largg-scale effects
across the antennas are jointly Gaussian in a large system, and then CQuse relatively slow variations in the (mean) signal strength
characterize the signal-to-interference ratio for both independent as a mobile user moves through space. Large-scale fading is
and correlated (across the antennas) small-scale fading cases. Ourysually modeled as a log-normally distributed random variable.

results show that when each user's small-scale fading effects aregy5||_gcale effects are due to the scattering and/or reflections
independent across the antennas, there is a clear separation be-

tween the gains of transmission power control and diversity com- of the transmitted S'gr?als off SurrounFilng .Ob](_:"CtS' Small-scale
bining, and the two gains are additive (in decibels). When each €ffects may cause rapid and large swings in signal strength and
user’s small-scale fading effects are correlated across the antennas,are superimposed on top of the large-scale effects. Small-scale

we observe that, in general, the gains of transmission power con- fading is typically modeled as a complex Gaussian random
trol and diversity combining are coupled. However, when the noise variable

level diminis_hes to zero, using maximum rati(_) com_bining “dec_ou- In current mobile wireless systems, the main traffic is
ples” the gains and achieves the same diversity gain as in the inde- " . - e v
pendent case. We then characterize the Pareto-optimal (minimum) typically voice and its transmission rate is around ten Kb/s,
transmission power allocation for the cases of perfect and noisy which implies that large-sale fading may remain constant over a
knowledge of the desired user’s large-scale fading effects. We find region spanning thousands of information symbols. Hence, it is
that using antenna diversity leads to significant gains for the trans- e 550naple to assume that reliable estimates of large-sale fading
mission power. are available. Future wireless systems are expected to be able
Index Terms—CDMA, large-scale fading, maximum ratio com-  to accommodate multimedia traffic and the data transmission
bining, MMSE, power control, selection combining, small-scale ata will be much higher. Therefore, in these systems even
fading, space diversity. small-scale fading may change little in the duration of many
information symbols, which implies that it is also possible to
I. INTRODUCTION get reliable side information about small-scale fading in such

N A MOBILE RADIO communication system, signal cases. Thus motivated, we assume in this paper that estimates
fading may severely degrade the system pe,rformangé each user's large-scale fading are available at both its

and is a dominant source of impairment. Fading arises frotminsmitter and recgiver, and k.novyledge of ;mall-scale fading
randomly-delayed scattering, reflecting, and diffracting Oqependsonaspemﬂccommumcaﬂon scenario. For example, in
electromagnetic waves in a random medium. Accordi highly mobile communication system, it is more reasonable
to their time scales, fading effects can be classified in assume only partial side information about small-scale

two categories (as has been verified experimentally [14 _ding available whereas, in a fixed wireless communication
large-scale (long-term) effects and small-scale (short-ter Eenario, it is still possible to get reasonably reliable estimates
effects. Large-scale fading is on the order of seconds, whif s_mall-scalg fading [17]. .

small-scale fading is on the order of milliseconds. A morgF Little attention has been paid to the study of the system per-

detailed description of fading effects is given in the followin ormance in qmultlple 'gme—scale fadmg envwonmen_t. Qur am
n this paper is to provide some first steps along this line. We

consider a single-cell code-division multiple access (CDMA)

) . ) . s&stem, and our strategy is to use transmission power control
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placed at the same base station, large-scale fading affectsn@lision power. For example, there is nearly a six-dB gain for
the diversity channels more or less identically [8]. Thereforéhe transmission power allocation with four versus two receiver
we build on transmission power control to combat large-sca@tennas when the MRC method is used and thedoadnod-
fading. In fact, practical power control algorithms can often resrate; the gain in the SC method is still pronounced although it
spond quickly enough to compensate for large-scale effects lusmaller than in the MRC method. Moreover, the increase of
cannot compensate for small-scale effects [6]. network capacity by using antenna diversity is significant.
Without loss of generality, we fix the number of antenna el- In the case of correlated small-scale fading effects, we find
ments at the base station As We assume that a linear min-that in general the gains of transmission power control and of
imum-mean square error (MMSE) filter is applied to despreativersity combining are coupled (made precise in Theorem 4.1).
the received signal at each antednand the antenna outputsHowever, when the noise level diminishes to zero, using MRC
are combined linearly. That is, the receiver is a concatenationresults in the “decoupling” of the gains and achieves the same
a bank of temporal MMSE filters and a linear spatial combinediversity gain as in the case of independent small-scale fading.
The focus of this paper is on large systems with déttnumber The intuition behind this fact is that CDMA systems are inter-
of users) andV (processing gain) going to infinity while the ference-limited and correlated interferences across the antennas
ratiow = K/N is held fixed. We assume that a power contratan be whitened.
mechanism adjusts the transmission power as a function of thén related work, it was proposed in [12] to employ antenna
estimated large-scale fading. This model is applicable to maasrays at the base station to increase the network capacity of
systems. For example, it is applicable to large systems wilDMA systems. Reference [12] assumed a matched filter for
signal-to-interference ratio (SIR) driven power control becauseach user angerfect instantaneous power contfok intracell
in large systems, the SIR (attained by the MMSE receiver) carsers, that is, all the users within one cell have the same received
responding to unit received power converges to a constant [2@wer at any instant. Recent work [5] studied the network ca-
and, hence, the main task of power control is then to adjust egucity region with and without power constraints for CDMA
user’s transmission power to combat the fading it experiencegstems with antenna arrays. In [5], it was assumed that per-
It is also applicable to systems wigtower balancing21]. fect knowledge of the fading effects is available to construct
We study the performance of a single-cell CDMA systemeceivers with various degrees of complexity. In [15], an iter-
with power control and space diversity. In our analysis, we astive algorithm was developed that jointly updates transmission
sume that large-scale fading effects are known to the receivergdwers and beamforming weights so that it converges to the
though they are realizations of random variables. This is becaisiatly optimal beamforming and power vector. Reference [23]
large-scale fading effects remain roughly unchanged over th@xtended the above idea to joint power control and optimal fil-
sands of information symbols. We assume throughout that tteging in both temporal and spatial domains. The algorithms in
small-scale fading effects are independent across different usbrth [15] and [23] assumed fixed channel gains (fading effects).
We consider two contrasting cases—independent and correlafdey feature distinguishing our work from the previous ones is
small-scale fading effects across the antennas for each uteat we explicitly take into account the different time scales of
Among the many diversity combining schemes, this paper ftie large-scale and small-scale fading effects and impose more
cuses mainly on the maximum ratio combining (MRC) methodealistic assumptions on the fading effects and, hence, on power
which requires perfect knowledge of the desired user’'s smatintrol and diversity combining.
scale fading effects. We focus on the MRC method because itAn outline of the rest of this paper is given as follows. The
gives the best performance among all possible linear combinaext section contains our model description for the channel and
and serves as abenchmark. We also present results on the pesignals, and the assumptions on the side information of fading
mance of the selection combining (SC) method, which appea&ffects. We also describe the receiver structure. In Sections Il
to be the simplest to implement [8]. The SC method choosasd IV, we study system performance for independent and cor-
the branch with the highest SIR and does not require explicglated small-scale fading effects, respectively. We then address
information of fading effects, making it more amendable to inthe problems of transmission power allocation in Section V. To
plementation even in a highly mobile communication systemillustrate our results, we provide some numerical examples in
In the case of independent small-scale fading effects, our ection VI. Finally, we draw our conclusions in Section VII.
sults on the SIR show that there is a clear separation between
the gains of transmission power control and of diversity com-
bining (in a sense to be made clear in Theorem 3.1). Because of
this separation, the two gains are additive (in decibels), and fhe Channel and Signal Models

diversity combining behaves the same here as in a single-useh a mobile wireless communication system, users encounter
system with antenna arrays. Based on the above results, we chath large-scale fading and small-scale fading. As described in
acterize the Pareto-optimal (minimum) transmission power a8, Ch. 2], large-scale fading effects reflect the variation of the
location for the following two cases: perfect and noisy knowlocal average signal, and are well modeled as positive random
edge of the desired user’s large-scale fading effects. We find thatiables. For simplicity, we quantize the large-scale fading into
using antenna diversity leads to significant gains for the trangf levelsh; > hy > ... > hjs > 0, which naturally captures

the salient features of practical systems that employ discrete

1A similar but simpler analysis can also be carried through when match@ﬁ‘anneI estimates. We assume that all the users experience in-

filters or decorrelators are employed. dependently and identically distributed (i.i.d.) large-scale fading

Il. SYSTEM MODELS
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Fig. 1. Simplified diagram of the wireless link of a CDMA system with  yariance 1, that isE[|si,|?] = 1. We further assume that
antennas. Thg, s represent large-scale fading effects, anddthes represent [EH ) |4] <
small-scale fading effects. Sin 0.

S B. Channel Side Information
\r,\g:)r:edsiztrzltzutgznl;g{]%-gcgré]}a_di:gt7m = 1., M, whereg ~We assume that linear filtering is applied to the received
We consider the uplink of a single-cell symbol-synchrono@gnal_ at eac_h antenn_a, and thgn the ar_‘te””a outputs are _Ilnearly
CDMA system. As in [5], [12], [23], we assunfeequency-flat combmed.l Fig. 2 depicts atyp.lcal receiver structpre with linear
fading. Fig. 1 depicts a simplified diagram of the wireless ”n[gmporal f|lters fqllowed by a linear spatial combiner. (The
of a CDMA system withl, antennas. Because large-scale fadin%fe combm_er welghtmg_factors.) . .
is due to large obstacles (such as terrain and buildings) betw eiNe _con5|der user 1 without loss of generahty._ We impose the
transmitter and receiver, we assume that each user’s large-s gwing assumptions on knowledge of the fading effects.
effects are identical across the antennas. The received signdfc1) Transmitter 1 has no information about the interferers’
before filtering at the/th antenna can be written as large-scale and small-scale fading effects;
(C2) Receiver 1 has knowledge of the interferers’ large-
K scale fading effects but no knowledge of the inter-
Ve =" arey/T(Gr)grbrsi +ne (1) ferers’ small-scale fading effects;
k=1 (C3) Transmitter 1 has knowledge of the large-scale fading
effects of user 1 but not its small-scale fading effects;
(C4) Receiver 1 has knowledge of the large-scale fading ef-
fects of user 1. The information of small-scale fading
effects available at Receiver 1 depends on a specific

where
are kth user’'s (normalized) small-scale fading in #ik
diversity channel and has a distributi@aV (0, 1);2
Ik kth user’s large-scale fading;

. system.

Gk estimator ofgy; . . . . S .

%“(A ) kth user's trg\lhsmission power; The reasoning behind (C1) is that, typically, side information

by Ik Lth user's transmitted informa{ion symbol; at the transmitter is obtained via a feedback channel, and

st kth user's spreading signature; it is .unreallsnc to provide mu_ch |_nformat_|on via feedb_ack.

e proper complex white Gaussian noise with positivgve impose (C2) because it is difficult, if not impossible,
variancen or multiuser receivers (e.g., MMSE filters) to adapt to the

In (1), sk is identical for allL diversity channels because fadin hort.-term changes of interference structurg; however, '.t 'S
is frequency-flat (see also [5], [12], and [23]). As noted befor ossible t(_) incorporate the large-scale fading effects since
we assume here that a power control mechanism adjusts remain roughly unchanged Over a range of thousands
transmission power as a function of the estimated Iarge-sc@e'nformatlon ,symbols._ A.S ment|one_d before, we assume
fading (denoted a&'(gx)). Then, one important question to as at each users trans_mlssmn. power is allotted b"?‘sed on the
is what is a good way to allot the transmission power. We clapannel side information available at the transmitter. Thus,

orae on i s n Secton v e he st (C3). e s anamssor pover
We assume that théis are independent proper com- cer e er'ence)gskiar Ta-sé:élé7 fad' ith Pe al %’] s
plex random variables witliE[b,] = 0 and E[|bx]?] = 1. u Xpert g fngnth g equ b |

The model for random signatures is as follows [20 fansmission power Is allotted &, = T(hym), yv_hereT 1S
ome fixed mapping. We assume that fhs are i.i.d., which
implies that theT'(g; )s are i.i.d. as well.

2We useCN(0, 1) to denote a proper complex Gaussian distribution with In a practical communication system due to time-varying
covariance 1 (see [13] for the definitions of proper complex random variables). ’

s .
Proper complex random variables are also knoweiraslarly symmetriccom- .C)nar_mel Cond't'o_ns' fe_edb&?Ck .errors ?‘nd delays are often
plex random variables. inevitable, resulting noisy side information about large-scale
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fading at the transmitter. For future convenience, define for For convenience, define
m,n € {1,...,M}

aé[a117a127"'7a1L]t7 dé[dl,dg,...,dL]t
P 2 Plg = hy | g = ho} (2) andforl=1,...,L
that is, P{™™ represents the error probability when the actual )
large-scale fading i&,, but the estimate indicates that the large- Tk = Z arer/T(Gr) grbrst M I L
scale fading i%,,, with m # n. We further note that in (C4), dif-
ferent assumptions on the side information of small-scale fading IT(LA[) =5 M{lné
effects lead to different diversity combining methods. (1\) A V)

(N)
MAI £ + I .
C. Linear MMSE Filter, Linear Combiner, and Concatenation-l-he output of any linear combiner has the following form:
We focus on the receiver that consists of a bank of temporal

MMSE filters and a linear spatial combiner. More specifically, L

a linear MMSE filter is applied to the received signal at each de”

antenna. We note that conditions (C2) and (C4) indicate that the z

signatures and large-scale fading effects of the interferers but not 1 (N)

the small-scale fading effects of the interferers, are available at ;_:1 diase/T(G1)gbust My sy +1 C)

the MMSE filters. The MMSE filters outputs are then combined
via a spatial combiner. In particular, we are interested in th
following two cases. In the first case, the receiver has knowled )
of the small-scale fading effects of the desired user, and com Z 1 9L, -
the MMSE filter outputs to maximize the SIR; in contrast, in ItiS €asy to show that the desired signal power is
the second case, the receiver has no knowledge of this, and does
selection combining. Uy = T(g1)gil(d, a)|* |s{" M} 81| (4)

We note that if the receiver had knowledge of small-scale
fading of all the users in all thé diversity channels, the cor- Where(-, -) denotes the standard inner produdEih. According
responding linear MMSE receiver would be different from tht the assumptions (C2) and (CC4), receiver 1 has knowledge of
one considered here. However, observe that the large dimen@iihe users’ large-scale fading effects. We further assume that
(N L) of the signals may incur possibly very high computationdgceiver 1 has knowledge of thes andZ’(gx)gs [20], [25].
complexity, making the linear (end-to-end) MMSE receiver dif-€t E; denote the conditional expectation given the above in-
ficult to implement. Thus, we confine ourselves to the receivé@rmation and the interferers’ small-scale fading effects. Then,
proposed above, which is more practica”y appea“ng_ the instantaneous interference power ina SymbOl interval is

A linear MMSE filter is applied to de-spread the received 1

signal at each antenna. The MMSE filter at antehisahe one [, UI(N)
K
> <Z 7, apy e, VT (Gr, ) gry Ory 57 M s,

ereI(A) = I(A )1 +Z3" with IlE?A)I Ez 1 d*IlEIAI cand

minimizing

E [|cfn - blﬂ ave, s, T(G)gn, k=1, .. .,K} . ot 2
(It turns out that in a large system, there is no need to kagw + dZSf’Mfllnel>
for the construction of the MMSE filter [25].) It can be shown
that the linear MMSE filters for all the diversity channels share K . .
the following common form [25]c = scalar- M *s;, where > e, a3 0, VT (1) 91, V%, 51 M 51
ko=2

M; 2 K 7)) grskst +nl. As pointed out in [25] (also
indicated by Theorems 3.1 and 4.1 below), the SIR is the key o

parameter that governs the performance in a large system. Since + dg,ny, M12 S1 (5)
any (positive) scaled version of linear MMSE filters results in

the same SIR, we process the received signals at all the antennas

with M;'s; (which is a scaled version of the MMSE filter).where M, 2 Z,ﬂ = T(Gr, gk, s, 57 + nl and My,
Then, the output of the linear filter in thigh diversity channel 252:2 T (i ) Ghy Sk Skz + nl. Combining (4) and (5), the SIR
IS can be expressed as follows:

1173

K SIR™ — 74 (e o) 0; 81|
Te = Zake\/mkafIMflsk +S{IMI_1W' LT UI(N }
k=1

(6)
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[Il. CASE OFINDEPENDENTSMALL -SCALE FADING interferences reveals that from the viewpoints of detection and
nnel capacity, the SIR is of fundamental interest. We provide
proof of Theorem 3.1 in the following.
Proof: The proof of part (a) makes use of the
Cramér-Wold Theorem [2, Th. 29.4] and the dependent
P{p="Tnh,} = Wn,Pe("’m), m,n€{l,...,M}. central limit theorem in [10]. LeZ = [#1, 22, ..., z1]' denote
' a proper Gaussian random vector with m@&and covariance
We need the following lemmas to establish our main resufatrixI. By the Cramér—Wold Theorem, it suffices to show for
(the proofs of these lemmas have been relegated to the Apyd = [di.ds, ....d]" in CF, Y7, diZ") converges in
pendix). distribution to3"7._, d%z. To this end, define
Lemma 3.1:The empirical distribution of {T(g1)g1, .
....T(0K )9} converges weakly (a& — o) to F, with  / - _
robatiy o e Yo h 12 D dtaneTRmbisi M s, k=2, K.
=1

A simple application of the Glivenko—Cantelli Theorem

proves the above lemma. (N) K (V) L er(N) (N) (N)
i i henZy i = oty andd {7 =Ty +In
th;i?&??;i?:/:;’; izS'?ng;iitﬂ;&l'ur::;? ?stﬁzowp is straightforward to see thdt™) is proper. In what fol-
Lot ol g b Y 100, 0 lows, we first show thaf[liﬁgl has a limiting proper complex

unique positive solution to the following fixed point equatio'baussian distribution. Definy , as thes-algebra generated
[20], [25] ' "

by {téN), e ,téN)}, that is

In this section, we assume that each user’s small-scale fadfﬁg1
effects are independent across different antennad: | denote
the discrete probability distribution with

1

/30 = ES) .
ntafy e A

7 / ; 7
() FAf7kéJ(tgA),...,t£A)), ]{;:2,,[(

Hyp—2 : m .
Moreover,s;” M, s, converges in probability t&-050/91. 1 is clear that the triangular arrajt"'} is a martingale dif-

Lgmma 3.2 ference array with respect {oFy 1 }. Thus, based on [10], it
) suffices to verify that the following three conditions are satis-
fied.
Hap—1_ |4 Gy .
E [|51 Mj 5k| } < W 1) maxo<p<k |t§f\‘)| is bounded inL, norm.

2) maxa<i<s [t | converges to 0 in probability a¥ —
where( is a constant independent Bf. ) 2<kic [ty g P v

i) Supposeaxs, andaxe, are independent for an§y # 3) ;,{;2 |t§eN)|2—Ez \de[2s7 (M — M 2)s, converges
£2,£1,£2 € {1, e, L} Then for¢, 75 KQ, to 0in probability asv — oo,
K Although more complicated, the proof of the above three con-
sTM;t [Z ane, azéQT(gk)gkskskH] Mits; 0. ditions essentially follows the same line as that of [25, Th. 3.1].
k=2 We omit the details here.
It is easy to show that'" has a limiting proper complex

li) For £ =1,..., L, we have that Gaussian distribution, and thé,iﬁ;)l andZ{" are uncorrelated.

K Thus, 2™ = Y iz™ = TN + 7™ has a limiting
st M [Zﬂakd? — 1)T(§k)gksks£1] M;ts; 0. proper complex Gaussian distribution. Then, it remains to cal-
k=2 culate the variance af™). Since thezs are independent, we
have that

We are now ready to present our first main result.
Theorem 3.1:Suppose that each user's small-scale fadirh% UI(N)

effects across different antennas are independent. Théhas

]

o0, K

a) The interferences across the antennad) = =Erq Y. > dide,ane, ape, TG gnlorl” | s My sy, g

[z ™ 28V, have a limiting proper complex 00y k=2

Gaussian distributio®N(0, 5I);
b) + 37 |dest M M| 5

. d,a)|? !
SIR™ 2 7o) a8 l(d, (8)
' (61)an oo |d|? Using Lemma 3.2, it can be shown that

wheref3, is the unique positive solution to (7). o
We note that the convergence in part (a) is in the weak sensBEr UI } -
that is, the joint distribution of the interferences at the output of

the antennas converges weakly to a proper complex Gaussif |d|? ZT(ék)gk |s{IM,_13k 2 n US{{MI_QSI 2.0
measure_N(0, 5,I). More importantly, the Gaussianity of the < T
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which yields Diversity combining is used to improve the mean SIR and
) reduce the dynamic range of the signal strength [8], [14], which

E; UIU\’) } — Z |de|?sH M sy Lo (9) indicates that the mean and variance of the SIR are important

7 performance measures. Since large-scale fading effects may

remain constant over thousands of information symbols, it is
of more interest to study the “local” mean and variance of the

2l p 2 SIR. (Roughly speaking, “local” here refers to the duration
} - Z el in which the large-scale fading effects remain constant.) The
“local” mean and variance of the SIR corresponds to finding
thus concluding the proof of part (a). the conditional mean and variance Bf.,. given T(g1)g;.

The proof of part (b) follows by Combining (6), (7), and @). Using (10), we have that

We observe from part (b) of Theorem 3.1 that the limiting SIR
expression can be factorized into two componefitgy; )g: o Ell'wee | T(91)91] = LT(G1)91P0
and|(d, a)|?/|d|?. Clearly,T’(g,)g1 3 is a function of only the var(Loee | T(01)91) = L(T(81)9150)2. (12)
large-scale fading effects and hence depends only on transmis-
sion power control; in contrasi(d, a)|?/|d|? is is a weighted
sum of the small-scale fading effects of user 1 and hence
pends only on diversity combining schemes. Thus, there is aFor the system output, the ideal selection diversity combiner
clearseparationbetween the gains of transmission power cor¢hooses, during each “instant”, the signal from the filter that has
trol and diversity combining, and more importantly, the twéhe largest SIR [8], [18]. In practice, the antenna signals could
gains areadditive(in decibels). Because of this separation, diP€ sampled, e.g., and the best one is sent to the decoder.
versity combining behaves the same here as in a single-useDefine a ) 2 max,(|ar¢|?). It can easily be shown
system with antenna arrays, and its gain depends on the gl the SIR achieved by SC (denoted Bs) is simply
information of the desired user’s small-scale fading effects. I'sc = 7'(g1)g150a(L)-

Heuristically, the above result tells us that in a large system,As in the MRC method, we are interested in the “local” mean
the SIR is approximately’(4,)g13|(d, a)|?/|d|*>. Henceforth, and variance of's.. The calculation boils down to computing
we use the above limiting expression to analyze two diversitiye mean and variance af;,,. The following result is useful in

It then follows that

E; UI(N)

i

c?e‘— Selection Combining

combining schemes—MRC and SC. the calculation [1, Ch. 3]
A. Maximum Ratio Combinin = D
. 9 R apy =y —— (13)
Part (a) in Theorem 3.1 establishes that the joint distribution 0 L—y

of the overall interferences at the output of the antennas ) o )

converges weakly to a proper complex Gaussian meastifgere the Djs are exponentlally distributed mdepen(_:ient
CN(0, BoI), which implies that the traditional MRC method igandom variables with megnSlUsmg (13), we can readily
the best linear combiner (see, e.g., [14, Ch. 8]). MRC requirgdlculate the mean and varianceupf) [8, Ch. 5]

information about they,'s [8]. Given thea, ,'s, the principle of I I

MRC is to weight the outputs of the linear filters appropriately E [a)] = Z 17 var (a(r)) = Z iQ
and sum them up to maximize the SIR. A simple application = =
of the Cauchy—Schwartz Inequality shows that the choice of

d that maximizes the SIR ig = coais,l = 1,...,L, where Then, itis straightforward to see that
eo € Cis some nonzero constant [8, Ch. 5]. The SIR is then of L
the following form E[lee | T(51)01] = T(1) 9150 Z 7
=1
Fmrc it T(!}l )glﬁOX (10) ! L 1
N o N 2 +
whereX denotesy ., |a;¢|?. It is straightforward to see that var(l'se [7(g1)g1) = (L(31)g1/%) Zl 2 (14)
Jj=

2

E a

X ~ Gamma(L,1).
We note that the MRC choig# (under the right choice af;) Comparing (12) and (14), we conclude that the mean of the
also minimizes the mean-square error SIR in the MRC methodl',,,.) is larger than tha{T';.) in the
SC method. Moreover, ak increases! ... grows linearly in
L " L while I';. grows approximately at the rate bfg L.. From a
Z dire = by theoretical viewpoint, given a realization@fMRC and SC are
=t essentially equivalent to taking|a||2)? and (||a]|1)?, respec-
Indeed, for a giver, there exists a functional relationship befively. It is clear thatal|; is always greater than or equal to
tween the MMSE (over all the antennas) and the SIR (denot|1, which explains why... is always larger thafi,... How-
as MSIR) attained by the MRC method [9]: ever, we note that the variance of the SIR in the SC method is
smaller than that in the MRC method.

1

MSIR = MMSE - L (11) 3The D;s are called normalized spacings of the order statistics [1, Ch. 3].




1282 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 19, NO. 7, JULY 2001

IV. CASE OF CORRELATED SMALL -SCALE FADING b)

In the preceding sections, the analysis has been premised ) P X (d, a)[2
upon the assumption that each user’s small-scale fading effects SIR;™ — T(g1)g1 5 dEWd (16)
at various antennas are independent. There will be cases where
this is difficult to achieve, e.g., because of insufficient antenrighe proof of Theorem 4.1 follows essentially the same line as
spacing. In what follows, we consider a more realistic scenait@at of Theorem 3.1.
where each user's small-scale fading effects are correlatedased on the limiting SIR expression givenin (16), itis inter-
across the antennas at the base station. In such scenari€gling to note that in the case where small-scale fading effects
is natural to ask whether it is possible to achieve the sar@ge correlated across the antennas, the separation between the
diversity gain as in the independent case, and if so when. Tgins of power control and diversity combining no longer exists.
answer is yes, and indeed when the noise level diminishesTiais is because the gain of diversity combining dependgvan
zero, using MRC leads to the same diversity gain as in tMédich is a function of3y, and/3, is determined by transmission
independent case. However, to achieve the same diversity g@ipyer control. Therefore, in general, the gains of transmission
the correlation among the small-scale fading effects does ing@@wer control and diversity combining aceupled
extra processing complexity. To be more specific, we begin ) _ o
with the following lemma. We assume thBfa;, ax,] does A. Maximum Ratio Combining

not depend ot and usefiy, ¢, to denotet[aj, axs,]- Part (a) in Theorem 4.1 establishes that the joint distribu-
Lemma 4.1:Suppose thaE[|ax, [*|axe,|?] < oo where tion of the overall interference at the output of the antennas
£1,43 € {1,...,L}. Then, for anyl; # £, converges weakly to a proper complex Gaussian measure
i CN(0, SoW). When each user’s small-scale fading effects are
Har—1 _x p Har—1 correlated across the antennas, in gen®¥als not diagonal,
kz=2 ST Mp ke, ane TG gesisi My, which implies that the traditional MRC method is no longer the
K best linear combiner. Instead, the MRC principle leadsriew
— Ry 4, ZSfolT(ék)ngkS;?Mflsl Lo combiner in the correlated small-scale fading case. It is worth
e noting that (11) still holds, and the MRC approach and the

i MMSE criterion still lead to the same optimal linear combiner.
The proof of Lemma 4.1 follows the same line as that of part (b) By definition, MRC choosed to maximize the SIR. Observe

in Lemma 3.2. _ that the maximization of the SIR boils down to the following
Define the complex covariance farby optimization problem:

o R 1 4122 )
R2 - 2 dect dfwd -
L1 e efined = . Then the optimization problem in can
R 1 Defined = W'/2d. Thenth b 17
Using Lemma 4.1, it can easily be shown that be written as
) &Hw—l/Qaan—l/Q& 18
€, |00 ] ~ 20 (0720 — il i) ms
— pdfdst M;2s, Lo Appealing to [7, p. 176], it follows that the maximum
of the objective function is the largest eigenvalue of
Combining the above with (6), we obtain that W~1/2aa"W~1/2 and is achieved whet is the eigenvector
T (B021(d. ) 2 corresponding td; . Because the matri —1/2aaf W—1/2 is
SIRgN) . (91)91(50)[(d, a)| . (15) ofrank 1 (except whea = 0, which happens with probability
2dHRA ( By +n2e ) — dHgn2 zero), we have that
Mam U
For convenience, define A = trace(W™2aal’W—1/2) = af W~ 1ta
al 9 9o hich b Hermit dratic form | | d
W2 (2(8 +1==)R—n—21]. which bears a Hermitian quadratic form in complex random
Bo an an variables. To characterize the distribution’af we follow [18]
(Note thatW is positive definite.) We now have the following®"d further impose that is a proper complex random vector.
result. Thenby[13, Th. 1], the probability density functionzois given
Theorem 4.1:Suppose that each user’s small-scale fading &y
fects are correlated across the antennas, with covariance matrix 1 = .
R. Then, asN — oo, r fla) = T det(2R) exp{—a” (2R) "a}.
a) The interferences across the antenn#s) = _ o
(N) I(N) I(N) t have a limitin roper complex V\_llthou_tloss_, of generality, we assume henceforth thatno d_e?ermmls_,t_lclmear
;7,1 L I g prop PIEX relationship exists among any of the,’s, and hencd is Hermitian positive

Gaussian distributio®N(0, 5o W); definite [18].
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The moment generating function ok; is G, (¢) = isreasonably high, a large portion of the diversity effectiveness
Elexp(tA1)], where the expectation is taken with respeatill be retained even when significant correlations exist, as in a
to f(a). (Because); is complex Gaussianiz,, () exists.) single-user system [8], [18].

Appealing to [18, Appendex B}, (¢) can be shown to be

1 V. TRANSMISSION POWER ALLOCATION

G (1) = det(I — 2(RH(W)=1)" In this section, we study the allocation of transmission power
based on the side information about large-scale fading. Our de-

After some algebra, we get that sired allocation is to make transmission power consumption as
1 low as possible while keeping all the users’ QoS requirements

Gy (t) = (19) satisfied. Recall that from the viewpoints of detection and
HéLzl <1 _ t+) channel capacity, the SIR is the key performance measure for
fot (1-2%) QoS requirements. Because of the randomness of the received
where thess are eigenvalues of the mateR. powers and signatures, the SIR is random as well. Also observe
Based on (19), we can use the inverse Laplace transform[f t large-sale fading may remain constant over thousands of
obtain the probability density function 0§ . In particular, we Information symbols, which possibly span dozens of frames.
are interested in the case where the noise level diminishes Qerefore we adopt the following probabilistic model for the
zero(n = 0). In this high SNR region, the moment generatln{;l ers’ QoS requirements [11], [24]
function of A\; can further be simplified to

Gn() =1 -t " 20
n ()= ( ) (20) where~ is thetarget SIRandp, € [0,1),k =1,...,K.

It then follows that that\; has a distributiorGamma(L,1). N what follows, we calculat@{SIRy > 7| gk = hm}. Be-
Combining (20) and Theorem 4.1 leads to the following resu§@use closed-form solutions seem unattainable when each user’s
Theorem 4.2:(Correlated fading and MRC: SIR) When thesmall-scale fading effects are correlated across antennas and

P{SIRk2’7|gk:hnl}2pa7 m:]-va (22)

noise level diminishes to zefg = 0), asN — oo 7 > 0, and also whem = 0 using MRC leads to the same SIR
as in the independent case, we focus on the independent case in
SIRY\HLC L (609180 X (21) the following. We treat systems with MRC and SC separately.

To facilitate the notation, in the following, we ugeto denote

whereX ~ Gamma(L, 1). Moreover, the optimal combining the large-scale fading of user 1 afits estimate.

vectors share the common foryR ~1a, wheree, € Cissome  Without loss of generality, suppose = h.,, that is, the

nonzero constant. channel estimate of the large-scale fading indicates that the de-
The physical implications of this result are as follows. Iisired user is in state:, and hence, the transmission power is

the high SNR regiorin = 0), the MRC approach used in theZ},. In the MRC method, the SIR i#,,950X, where X ~

presence of correlated small-scale fading can still achieve themma(L, 1). Therefore, we have that

same diversity gain as in the independent case. That is to say,

even when the small-scale fading is correlated across the an- P, = P{ngﬁoX > 7] =hn}t

tennas, the MRC approach is as effective as in the independent _p { X > _ }

case. Moreover, using MRC leads to the “decoupling” of the o mgﬁO o

gains of transmission power control and diversity combining.

The underlying reasoning behind Theorem 4.2 is that CDMA = P{ 2X2L > mgﬁo =hn } (23)

systems are interference-limited and correlated interference
may be whitened. Indeed, whep = 0, the optimization where 7, is a Chi-squared random variable wi2i. degrees
problem in (18) reduces to of freedom. On the other hand, in the SC method, the SIR is
JHR- 2 R-1/2d TmgPoary. It then follows that
max

decr d”d . P = P{ngﬁoa(r) > v|G=hn}

Then, the solution to the above problem is given by - p{a(L) =h, }

d = ¢ R Y2a, wheree; € C is some nonzero con- mgﬁo

stant. Thus we have thdt= ¢; R~*a. Intuitively, we can first L

useR~! to whitenthe correlated interference, and then apply =1- <1 - eXP( mgﬁo)) (24)

the traditional MRC method as in the independent case.

As pointed out in [8, Ch. 5] and [18, Ch. 10], when selection We study two cases, one with perfect side information, the
combining is adopted, it does not appear that one can handtker with noisy side information, although the latter is more
analytically more than two antennas> 2. We also note thatin general than the former. The main reason for presenting them
the presence of background noise, closed-form solutions seseparately is that the case with perfect side information provides
hard to attain for either MRC or SC. However, based on oargood contrast to the case with noisy side information and helps
preceding analysis, one can expect that when the users’ ShlRd up the results.
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A. Perfect Side Information of Large-Scale Fading That is, theT,,,s are chosen to minimize the mean square dif-

grence between the effective target SIR and the SIR achieved

In this subsection, we assume that the estimation of Iarg{) - " !
scale fading is perfect, that i§,= ¢ always. y using thel’,,s (in dB). We note that in the case where the

1) Maximum Ratio CombiningBased on (23), to keep all side-information about the large-scale fading is perfect, we can

the users’ SIR requirements satisfied it suffices to have make.7,, precisely zero by allotting thé,,s according to (27).
After some algebra, we obtain that tfig,s minimizing the
2 i i ions:
TohfBo > ’Y Com=1,....M (25) JmS are the solution to the following set of equations:
2L Pa
2y hom,

m=1

whereX3, , is the cutoff point forx3, with right-hand tail ~ Zmhmfo = pee Mo (31)

probability p,, .
Using (7), we have that fon = 1,..., M

XQQLJ)Q lE[g | g = h’rn]7

When the side information about the large-scale fading is noisy,

Tohom Bo is the unique positive solution to the following fixed point
LnhmfBo = i T, (26)  equation:
M+ Qi T T g

Then, it follows that the Pareto-optimal solution (i.e., optimal in Bo = 1 — )
the sense of component-wise minimization of #gs) is [20], n+aYM_ M ﬁifgh
[25] mltn 0

2vn Define form = 1,...,.M

R X2
T,n:#;;, m=1,..., M. (27) 5 ;
1 “z e T2V B mre 2 )27 }m .

. X5 e [9 | g= hm]
We note that the received powers at all the states are the same,
that is A1hy = Tohs = - =Thypy.

It is worth noting that the?,, ....S can be interpreted as the

2) Selection CombmlngTo fuliill the SIR requirements in gfective target SIf the noisy side information case. Since
the SC method, we use (24) to obtain

v

Trnhrn 3 2 )
fo=Z In(1 — (1 — P,)L/L)

Along the same lines as in the MRC method, it can be shown

that the Pareto-optimal solution for thg,s is =

Plg=hn,§g=hn}
P{g=hm}
7I'nP€(,7n7n)

Zi\lzl 7TnP€(,rn7n)

1
—lim In(1—(1—P)!/7) , m=1,....,.M. (29)
11—« 1

Y=In(1—-(1-Pa)"/ ") it then follows that3,, m:c can be expressed (in decibels) as

Trn =

B. Noisy Side Information of Large-Scale Fading 2y
ﬁrn mrc — 1010%10 X + 10 10810 h’"’

Recall that in a more realistic communication system, due 2L pe
to time-varying channel conditions, feedback errors and delays EM b PR
are often inevitable. In this case, the side information about — 10log,;( =21 X (32)
large-scale fading might be noisy. In this subsection, we study Donet ke
the problems of transmission power allocation under these con-
ditions. Note that for statem, the effect of the estimation
1) Maximum Ratio CombiningBased on (23), it is de- €fror of large- scale fading is quantlfled byolog b, —
sirable to allocate the transmission power for each state sd&iog@f L P s n)/ Zn 1 Tn b o n))

that~ /T, g/ is “close” to (1/2)X22Lp Note from (25) that It can be shown that the desired solut|on for thgs is the
2v/ XQLp can be interpreted as theffective target SIRn  Pareto-optimal solution to the following set of inequalities
the perfect side information case. (In practice, SIR is usually

expressed in decibels (dB).) When the side information is B aee < Tohm

noisy, however, a closed-form solution fpy, seems difficult ’ - n+ az, Z . 7 P, < T by, |

(if not impossible) to obtain so we cannot usg as a basis e L

for the allocation of thd’,,,s. Observing that large-scale fading =1....,M.

may vary over a range more than 60 dB [8, Ch. 2], we choose
the MMSE criterion instead; that is, tHE,,s are chosen to The optimal allocation for th&,,s is therefore
minimize
1B, mrc
h.m

(o)
T I Ten, B mre
I D e

m=1,...,M. (30) m=1,...,M. (33)

7

2
— 10 10g10(ng/30)> g = h"’n ’ Tnl
2L,pa

2y
Im =E <1010g g
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=
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Fig. 3. Tihi/n versus target SIR in the MRC methad,= 0.5. Fig. 4. Tihy/n versusy in both the MRC and SC methods, = 0.75.

2) Selection CombiningSimilar to the argumentin the pre- 3 , -
. . 2 — L=1, Pa=0.9
ceding subsection, we choose thigs to minimize o8t --- L=2, Pa=0.9
< +  L=4, Pa=0.9
,y £26- < o L=1,Pa=0.75
JIm = || 10log - < . x L=2,Pa=0.75
10 (1 — (1 - P)YE) 2.4 “a, L= + L=4,Pa=0.75
) i o - o L=1,Pa=05
X 22f +, Tl o L=2,Pa=05
10log1o(Tmgfo) | |G =hm|, m=1,...,M. (34) +, [T, 4 L=4,Pa=05

Define, form =1,..., M

-

/3 é ’7 hrn .
T n(1— (1 — POYEYE[g| § = hum)

Capacity per degree of freedo

o =
A o o N

XXX Xy

X

-
N
T
o
o
[u}
o
.o
o
=]
[
=]
X
x
x
x
X
x
x
x
X

Then, it can be shown that l _Z_E—ngzggwa
~y 13 4 5 6 7 8
Brm,sc = 101og o — (1= (1= P/ + 10logyg hm TargetSIR  (dB)
Zi\f:l hanPe(,m’n) Fig. 5. Network capacity versus target SIR in the MRC method.
- 10109;10 M (m,n)
n=1 W"PG'

and the Pareto-optimal allocation for tiig,s is given by

noisy side information of large-scale fading on the transmission
power allocation is illustrated in Fig. 7.

In our numerical example, the model for the large-scale
fading is based on a histogram of excess path loss measured

1B sc
T, = P — , in New Providence, NJ [8, p. 119]. (We note that the measure-
1—ay St mele o Lalma ments were taken at 11.2 GHZ, which indicates that fading
m :’1,1...,M. (35) there was more severe than in current CDMA systems.) For
simplicity, we quantize the large-scale fading into six levels as
follows:
VI. NUMERICAL RESULTS hy=—-27dB, hy=-30dB, hsy=—33dB,
In this section, we provide a humerical example to illustrate hy =-36dB, h;=-39dB, hg=—40dB,

ourresults. Our objectives are threefold. First, we use Figs. 3and . o
4toillustrate the significant gains for the transmission power &tnd the corresponding distribution is
location by using space diversity. Recall that thgs span over

a wide region but th&’,,4,,,s have the same order of magni-
tude. Therefore, we pldf 4, /7 (instead off1) as a function of

~. Our next objective is to show the impact of space diversity on
the system feasibility, as in Figs. 5 and 6. Finally, the impact of

P{g=h} =01,
P{g=hs} =02,
P{g=h} =02,
P{g=he} =0.1.
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25 ' ' ' " — L2 MRC we can obtain that the network capacities in the MRC and SC
== L=4. MRC methods are
N L=2, SC (MRC) ay,c = 1+ XZ /2 users per unit processing
S == 1=4,5C gain;
e =1—In(l1—(1-PFP, users per unit pro-
J SC 1—In(1—(1—P)¥E t
cessing gain.

As is evident in Figs. 5 and 6, the increase of network capacity
is significant, especially when the users’ SIR requirements are
not stringent. Moreover, the increase of the network capacity in
the MRC method is more significant than that in the SC method.
When users’ SIR requirements become more stringent, the in-
crease of the network capacity in both MRC and SC methods
decreases.

Fig. 7 is used to show the impact of noisy side information of
large-scale fading on the transmission power allocation. Again,
we plot7,,, k., /7 (instead ofT;,,) againsty because,,, /7 is a
constant. We observe that in the case of perfect side information
Fig. 6. Network capacity versus target SIR in both the MRC and SC methothe values ofl},, 4., /n are equal for alln, and in the case of

Capacity per degree of freedom
)

—_

5 6
Target SIR (dB)

P. = 0.75. noisy side information, the values @, %, /n are spread out
around that in the perfect side information case. The spread is
8 L=1, Pa=0.75 , L=4, Pa=0.75 small and is about one dB, which indicates that adopting the
— perfect — perfect MMSE criterion leads to desirable power allocation. We also
7l T ﬁf; ] sl * m:; note that the more severe the large-scale fading, the smaller the
- m=3 - m=3 values ofT},, hpn /7.
16 m=4 5/ + m=4
el o o _ Lo o VII. CONCLUSION
%, %, In this work, we focused primarily on the performance
£14} £ 3 of large CDMA systems in a multiple time-scale flat fading
=5 £ environment. In particular, we established that the interferences
13| 5ot across the antennas are jointly Gaussian in a large system, and
characterized the SIR for both MRC and SC methods. Still,
12r 2 1r s we believe that our study can be extended to models with
By o frequency-selective small-scale fading. For the adaptive im-
1 455’ 0 < plementation of diversity combining, there is a large literature
10 K ; S ‘ covering this topic in the context of narrowband systems [3],
0 5 10 - 5 10 [15]. Assuming fixed channel gains (fading effects), a recent
Target SIR  (dB) Target SIR  (dB) work [23] has addressed the problem of joint power control,

multiuser detection, and diversity combining in a CDMA
system. The development of adaptive algorithms for joint
power control, multiuser detection, and diversity combining
We assume that the estimation error probability is given by in a (multiple time-scale) fading environment remains open.
0.1, |m—n|=1 Anot'her impo'rtant issue is thg fegsibility qf power control ir) a

Pimn) — {0 ’ m—n| > 1 multi-cell setting where the side information about the fading
’ ’ is noisy, as is typically the case in a practical system. We are

Figs. 3 and 4 show plots @f, h; /7 as a function of the target currently exploi_ting a recent result [4] on perturbations of the
SIR v and the loady (the number of users per unit processingerron—Frobenius eigenvalues to study this problem.
gain), respectively. Several observations are worth noting. First,
there is nearly a six-dB gain for the transmission power allo- APPENDIX
cation with four versus two receiver antennas when the MRC PROOF OFLEMMA 3.2
method is used and the loadis moderate; the gain in the SC .
method is still pronounced although smaller. Second, when thepart (0) follqws fror_n__ [25, Lemma 4.3]. In what follows, we
L . - .prove Parts (ii) and (iii).
system load is high, the gain for transmission power allocatioh . .
; . 4 L . Proof of Part (ii): Becauseu,, anday,, are independent
is even higher. Third, the gain with four versus two receiver an- o ! 2
Lo . . forany?, # 45, itis clear that
tennas is higher than that with two versus one receiver antennas.
To illustrate the impact of diversity combining on the system K
feasibility, we consider the case where the side information [ " s [Z axe, aZ@T(ék)ngka] Ml—lsll —0.

about the large-scale fading is perfect. Following [20] and [24], e

Fig. 7. T.,.h../n versus target SIR in the MRC method, = 1,...,6.
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Using Chebyshev’s Inequality, it suffices to show that\as—
>0

K

—1 * ~ H
sy My Z ane, e, T(Gr) grsisy,
k=2

E — 0,

M;ts;

For convenience, we defirg 2 MAXy, o I htn. Observe that [1]

K 2 (2]

EQ |sfM;t Zaulaz[zT(gk)gkskskH Mits,

[3]
k=2
K )
=E Y a0k, T(or)gn, st My s, | 4]
k1=2
K , [5]
: j{: @y, Ot T(Ghs ) Ghs |51 M 51, |
Ko=2 (6]
@ [ s
= Z(T(ﬁk)gk)Q |stf M s
k=2 [7]
v K ) c .
< (T(gk)gk)2N21 1 18]
k=2 7 [9]
L K(Tya
- NIt [10]
0 36
- (36) 1]

where (a) follows from the fact that each of these expectations
is nonzero only whet; = k-, and (b) results from Part (i)

Proof of Part (iii): Itis easy to show that [12]

K

E sy M7 (D (arel® = DT(ar)grswsy, | My s1| =0.
k=2

[13]

(14]

K

X 2
var ZT(gk)gkﬂade - 1) |3{{MI 13k|
k=2

(15]

[16]
(17]

K

By the conditional variance formula [16, p. 51], we have that
~ _ 2
=E |var ZT(gk)gk(|aM|2 -1 |s{{MI lsk|
k=2

S)
K

~ _ 2
+var | E | > T(n)gr(lare]® — 1) |7 M7 s ]| S [18]

. k=2 [19]
2%

_ - 2| Has—1_ |4

—kZ:Q(T(gk)gk) |31 M; 5k| [20]
— 0 (37)

[21]

where the last steps follows from (36). ThereforeMas— oo, 22
K P

sy Mt Z(|au|2 — DT (@) grswsy | Mytsy — 0

k=2 [23]

thus completing the proof. 24
5The expectation in different lines may be taken over different random ele-
ments.
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