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Abstract—In a mobile wireless system, fading effects can be clas-
sified into large-scale (long-term) effects and small-scale (short-
term) effects. We use transmission power control to compensate
for large-scale fading and exploit receiver antenna (space) diver-
sity to combat small-scale fading. We show that the interferences
across the antennas are jointly Gaussian in a large system, and then
characterize the signal-to-interference ratio for both independent
and correlated (across the antennas) small-scale fading cases. Our
results show that when each user’s small-scale fading effects are
independent across the antennas, there is a clear separation be-
tween the gains of transmission power control and diversity com-
bining, and the two gains are additive (in decibels). When each
user’s small-scale fading effects are correlated across the antennas,
we observe that, in general, the gains of transmission power con-
trol and diversity combining are coupled. However, when the noise
level diminishes to zero, using maximum ratio combining “decou-
ples” the gains and achieves the same diversity gain as in the inde-
pendent case. We then characterize the Pareto-optimal (minimum)
transmission power allocation for the cases of perfect and noisy
knowledge of the desired user’s large-scale fading effects. We find
that using antenna diversity leads to significant gains for the trans-
mission power.

Index Terms—CDMA, large-scale fading, maximum ratio com-
bining, MMSE, power control, selection combining, small-scale
fading, space diversity.

I. INTRODUCTION

I N A MOBILE RADIO communication system, signal
fading may severely degrade the system performance,

and is a dominant source of impairment. Fading arises from
randomly-delayed scattering, reflecting, and diffracting of
electromagnetic waves in a random medium. According
to their time scales, fading effects can be classified into
two categories (as has been verified experimentally [14]):
large-scale (long-term) effects and small-scale (short-term)
effects. Large-scale fading is on the order of seconds, while
small-scale fading is on the order of milliseconds. A more
detailed description of fading effects is given in the following
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(see also [6], [8], and [14]). Large-scale effects include 1)
distance-related attenuation and 2) slow-shadowing fading,
which is due to the terrain, buildings, and other obstacles that
lie between the transmitter and receiver. Large-scale effects
cause relatively slow variations in the (mean) signal strength
as a mobile user moves through space. Large-scale fading is
usually modeled as a log-normally distributed random variable.
Small-scale effects are due to the scattering and/or reflections
of the transmitted signals off surrounding objects. Small-scale
effects may cause rapid and large swings in signal strength and
are superimposed on top of the large-scale effects. Small-scale
fading is typically modeled as a complex Gaussian random
variable.

In current mobile wireless systems, the main traffic is
typically voice and its transmission rate is around ten Kb/s,
which implies that large-sale fading may remain constant over a
region spanning thousands of information symbols. Hence, it is
reasonable to assume that reliable estimates of large-sale fading
are available. Future wireless systems are expected to be able
to accommodate multimedia traffic and the data transmission
rate will be much higher. Therefore, in these systems even
small-scale fading may change little in the duration of many
information symbols, which implies that it is also possible to
get reliable side information about small-scale fading in such
cases. Thus motivated, we assume in this paper that estimates
of each user’s large-scale fading are available at both its
transmitter and receiver, and knowledge of small-scale fading
depends on a specific communication scenario. For example, in
a highly mobile communication system, it is more reasonable
to assume only partial side information about small-scale
fading available whereas, in a fixed wireless communication
scenario, it is still possible to get reasonably reliable estimates
of small-scale fading [17].

Little attention has been paid to the study of the system per-
formance in a multiple time-scale fading environment. Our aim
in this paper is to provide some first steps along this line. We
consider a single-cell code-division multiple access (CDMA)
system, and our strategy is to use transmission power control
to compensate for large-scale fading (including shadowing and
distance-related attenuation) and to exploit antenna arrays to
combat small-scale fading. The underlying rationale is as fol-
lows. Antenna arrays can provide space diversity to reduce the
depth of fades and/or the fade duration caused by small-scale
fading, by supplying the receiver with multiple replicas of the
transmitted signal that have passed through different diversity
channels [8], [18], [22]. Because all the receiver antennas are
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placed at the same base station, large-scale fading affects all
the diversity channels more or less identically [8]. Therefore,
we build on transmission power control to combat large-scale
fading. In fact, practical power control algorithms can often re-
spond quickly enough to compensate for large-scale effects but
cannot compensate for small-scale effects [6].

Without loss of generality, we fix the number of antenna el-
ments at the base station as. We assume that a linear min-
imum-mean square error (MMSE) filter is applied to despread
the received signal at each antenna,1 and the antenna outputs
are combined linearly. That is, the receiver is a concatenation of
a bank of temporal MMSE filters and a linear spatial combiner.
The focus of this paper is on large systems with both(number
of users) and (processing gain) going to infinity while the
ratio is held fixed. We assume that a power control
mechanism adjusts the transmission power as a function of the
estimated large-scale fading. This model is applicable to many
systems. For example, it is applicable to large systems with
signal-to-interference ratio (SIR) driven power control because,
in large systems, the SIR (attained by the MMSE receiver) cor-
responding to unit received power converges to a constant [20]
and, hence, the main task of power control is then to adjust each
user’s transmission power to combat the fading it experiences.
It is also applicable to systems withpower balancing[21].

We study the performance of a single-cell CDMA system
with power control and space diversity. In our analysis, we as-
sume that large-scale fading effects are known to the receiver al-
though they are realizations of random variables. This is because
large-scale fading effects remain roughly unchanged over thou-
sands of information symbols. We assume throughout that the
small-scale fading effects are independent across different users.
We consider two contrasting cases—independent and correlated
small-scale fading effects across the antennas for each user.
Among the many diversity combining schemes, this paper fo-
cuses mainly on the maximum ratio combining (MRC) method,
which requires perfect knowledge of the desired user’s small-
scale fading effects. We focus on the MRC method because it
gives the best performance among all possible linear combiners
and serves as a benchmark. We also present results on the perfor-
mance of the selection combining (SC) method, which appears
to be the simplest to implement [8]. The SC method chooses
the branch with the highest SIR and does not require explicit
information of fading effects, making it more amendable to im-
plementation even in a highly mobile communication system.

In the case of independent small-scale fading effects, our re-
sults on the SIR show that there is a clear separation between
the gains of transmission power control and of diversity com-
bining (in a sense to be made clear in Theorem 3.1). Because of
this separation, the two gains are additive (in decibels), and the
diversity combining behaves the same here as in a single-user
system with antenna arrays. Based on the above results, we char-
acterize the Pareto-optimal (minimum) transmission power al-
location for the following two cases: perfect and noisy knowl-
edge of the desired user’s large-scale fading effects. We find that
using antenna diversity leads to significant gains for the trans-

1A similar but simpler analysis can also be carried through when matched
filters or decorrelators are employed.

mission power. For example, there is nearly a six-dB gain for
the transmission power allocation with four versus two receiver
antennas when the MRC method is used and the loadis mod-
erate; the gain in the SC method is still pronounced although it
is smaller than in the MRC method. Moreover, the increase of
network capacity by using antenna diversity is significant.

In the case of correlated small-scale fading effects, we find
that in general the gains of transmission power control and of
diversity combining are coupled (made precise in Theorem 4.1).
However, when the noise level diminishes to zero, using MRC
results in the “decoupling” of the gains and achieves the same
diversity gain as in the case of independent small-scale fading.
The intuition behind this fact is that CDMA systems are inter-
ference-limited and correlated interferences across the antennas
can be whitened.

In related work, it was proposed in [12] to employ antenna
arrays at the base station to increase the network capacity of
CDMA systems. Reference [12] assumed a matched filter for
each user andperfect instantaneous power controlfor intracell
users, that is, all the users within one cell have the same received
power at any instant. Recent work [5] studied the network ca-
pacity region with and without power constraints for CDMA
systems with antenna arrays. In [5], it was assumed that per-
fect knowledge of the fading effects is available to construct
receivers with various degrees of complexity. In [15], an iter-
ative algorithm was developed that jointly updates transmission
powers and beamforming weights so that it converges to the
jointly optimal beamforming and power vector. Reference [23]
extended the above idea to joint power control and optimal fil-
tering in both temporal and spatial domains. The algorithms in
both [15] and [23] assumed fixed channel gains (fading effects).
A key feature distinguishing our work from the previous ones is
that we explicitly take into account the different time scales of
the large-scale and small-scale fading effects and impose more
realistic assumptions on the fading effects and, hence, on power
control and diversity combining.

An outline of the rest of this paper is given as follows. The
next section contains our model description for the channel and
signals, and the assumptions on the side information of fading
effects. We also describe the receiver structure. In Sections III
and IV, we study system performance for independent and cor-
related small-scale fading effects, respectively. We then address
the problems of transmission power allocation in Section V. To
illustrate our results, we provide some numerical examples in
Section VI. Finally, we draw our conclusions in Section VII.

II. SYSTEM MODELS

A. Channel and Signal Models

In a mobile wireless communication system, users encounter
both large-scale fading and small-scale fading. As described in
[8, Ch. 2], large-scale fading effects reflect the variation of the
local average signal, and are well modeled as positive random
variables. For simplicity, we quantize the large-scale fading into

levels , which naturally captures
the salient features of practical systems that employ discrete
channel estimates. We assume that all the users experience in-
dependently and identically distributed (i.i.d.) large-scale fading
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Fig. 1. Simplified diagram of the wireless link of a CDMA system withL
antennas. Theg s represent large-scale fading effects, and thea s represent
small-scale fading effects.

with distribution , where
represents the large-scale fading.

We consider the uplink of a single-cell symbol-synchronous
CDMA system. As in [5], [12], [23], we assumefrequency-flat
fading. Fig. 1 depicts a simplified diagram of the wireless link
of a CDMA system with antennas. Because large-scale fading
is due to large obstacles (such as terrain and buildings) between
transmitter and receiver, we assume that each user’s large-scale
effects are identical across the antennas. The received signal
before filtering at the th antenna can be written as

(1)

where
th user’s (normalized) small-scale fading in theth

diversity channel and has a distribution ;2

th user’s large-scale fading;
estimator of ;

th user’s transmission power;
th user’s transmitted information symbol;
th user’s spreading signature;

proper complex white Gaussian noise with positive
variance .

In (1), is identical for all diversity channels because fading
is frequency-flat (see also [5], [12], and [23]). As noted before,
we assume here that a power control mechanism adjusts the
transmission power as a function of the estimated large-scale
fading (denoted as ). Then, one important question to ask
is what is a good way to allot the transmission power. We elab-
orate on this issue in Section V.

We assume that the s are independent proper com-
plex random variables with and .
The model for random signatures is as follows [20]:

2We use (0; 1) to denote a proper complex Gaussian distribution with
covariance 1 (see [13] for the definitions of proper complex random variables).
Proper complex random variables are also known ascircularly symmetriccom-
plex random variables.

Fig. 2. Receiver structure with linear filters followed by a linear combiner.

, where the s are i.i.d.
proper complex random variables with zero mean and co-
variance 1, that is, . We further assume that

.

B. Channel Side Information

We assume that linear filtering is applied to the received
signal at each antenna, and then the antenna outputs are linearly
combined. Fig. 2 depicts a typical receiver structure with linear
temporal filters followed by a linear spatial combiner. (Thes
are combiner weighting factors.)

We consider user 1 without loss of generality. We impose the
following assumptions on knowledge of the fading effects.

(C1) Transmitter 1 has no information about the interferers’
large-scale and small-scale fading effects;

(C2) Receiver 1 has knowledge of the interferers’ large-
scale fading effects but no knowledge of the inter-
ferers’ small-scale fading effects;

(C3) Transmitter 1 has knowledge of the large-scale fading
effects of user 1 but not its small-scale fading effects;

(C4) Receiver 1 has knowledge of the large-scale fading ef-
fects of user 1. The information of small-scale fading
effects available at Receiver 1 depends on a specific
system.

The reasoning behind (C1) is that, typically, side information
at the transmitter is obtained via a feedback channel, and
it is unrealistic to provide much information via feedback.
We impose (C2) because it is difficult, if not impossible,
for multiuser receivers (e.g., MMSE filters) to adapt to the
short-term changes of interference structure; however, it is
possible to incorporate the large-scale fading effects since
they remain roughly unchanged over a range of thousands
of information symbols. As mentioned before, we assume
that each user’s transmission power is allotted based on the
channel side information available at the transmitter. Thus,
under the assumption (C3), theth user’s transmission power
is determined by . More specifically, when a
user experiences large-scale fadingwith equal to , its
transmission power is allotted as , where is
some fixed mapping. We assume that thes are i.i.d., which
implies that the s are i.i.d. as well.

In a practical communication system, due to time-varying
channel conditions, feedback errors and delays are often
inevitable, resulting noisy side information about large-scale
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fading at the transmitter. For future convenience, define for

(2)

that is, represents the error probability when the actual
large-scale fading is but the estimate indicates that the large-
scale fading is with . We further note that in (C4), dif-
ferent assumptions on the side information of small-scale fading
effects lead to different diversity combining methods.

C. Linear MMSE Filter, Linear Combiner, and Concatenation

We focus on the receiver that consists of a bank of temporal
MMSE filters and a linear spatial combiner. More specifically,
a linear MMSE filter is applied to the received signal at each
antenna. We note that conditions (C2) and (C4) indicate that the
signatures and large-scale fading effects of the interferers but not
the small-scale fading effects of the interferers, are available at
the MMSE filters. The MMSE filters outputs are then combined
via a spatial combiner. In particular, we are interested in the
following two cases. In the first case, the receiver has knowledge
of the small-scale fading effects of the desired user, and combine
the MMSE filter outputs to maximize the SIR; in contrast, in
the second case, the receiver has no knowledge of this, and does
selection combining.

We note that if the receiver had knowledge of small-scale
fading of all the users in all the diversity channels, the cor-
responding linear MMSE receiver would be different from the
one considered here. However, observe that the large dimension

of the signals may incur possibly very high computational
complexity, making the linear (end-to-end) MMSE receiver dif-
ficult to implement. Thus, we confine ourselves to the receiver
proposed above, which is more practically appealing.

A linear MMSE filter is applied to de-spread the received
signal at each antenna. The MMSE filter at antennais the one
minimizing

(It turns out that in a large system, there is no need to know
for the construction of the MMSE filter [25].) It can be shown
that the linear MMSE filters for all the diversity channels share
the following common form [25]: scalar , where

. As pointed out in [25] (also
indicated by Theorems 3.1 and 4.1 below), the SIR is the key
parameter that governs the performance in a large system. Since
any (positive) scaled version of linear MMSE filters results in
the same SIR, we process the received signals at all the antennas
with (which is a scaled version of the MMSE filter).
Then, the output of the linear filter in theth diversity channel
is

For convenience, define

and for

The output of any linear combiner has the following form:

(3)

where with and

.
It is easy to show that the desired signal power is

(4)

where denotes the standard inner product in. According
to the assumptions (C2) and (CC4), receiver 1 has knowledge of
all the users’ large-scale fading effects. We further assume that
receiver 1 has knowledge of thes and s [20], [25].
Let denote the conditional expectation given the above in-
formation and the interferers’ small-scale fading effects. Then,
the instantaneous interference power in a symbol interval is

(5)

where and
. Combining (4) and (5), the SIR

can be expressed as follows:

(6)
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III. CASE OFINDEPENDENTSMALL -SCALE FADING

In this section, we assume that each user’s small-scale fading
effects are independent across different antennas. Letdenote
the discrete probability distribution with

We need the following lemmas to establish our main results
(the proofs of these lemmas have been relegated to the Ap-
pendix).

Lemma 3.1:The empirical distribution of
converges weakly (as ) to with

probability one.
A simple application of the Glivenko–Cantelli Theorem

proves the above lemma.
Based on Lemma 3.1, using [19, Th. 1.1] it can be shown

that converges in probability to , where is the
unique positive solution to the following fixed point equation
[20], [25]

(7)

Moreover, converges in probability to .
Lemma 3.2:

i)

where is a constant independent of.
ii) Suppose and are independent for any

. Then for

iii) For , we have that

We are now ready to present our first main result.
Theorem 3.1:Suppose that each user’s small-scale fading

effects across different antennas are independent. Then, as
,

a) The interferences across the antennas,
, have a limiting proper complex

Gaussian distribution ;
b)

(8)

where is the unique positive solution to (7).
We note that the convergence in part (a) is in the weak sense,

that is, the joint distribution of the interferences at the output of
the antennas converges weakly to a proper complex Gaussian
measure . More importantly, the Gaussianity of the

interferences reveals that from the viewpoints of detection and
channel capacity, the SIR is of fundamental interest. We provide
the proof of Theorem 3.1 in the following.

Proof: The proof of part (a) makes use of the
Cramér–Wold Theorem [2, Th. 29.4] and the dependent
central limit theorem in [10]. Let denote
a proper Gaussian random vector with meanand covariance
matrix . By the Cramér–Wold Theorem, it suffices to show for
any in converges in
distribution to . To this end, define

Then , and .
It is straightforward to see that is proper. In what fol-
lows, we first show that has a limiting proper complex
Gaussian distribution. Define as the -algebra generated
by , that is

It is clear that the triangular array is a martingale dif-
ference array with respect to . Thus, based on [10], it
suffices to verify that the following three conditions are satis-
fied.

1) is bounded in norm.
2) converges to 0 in probability as

.
3) converges

to 0 in probability as .
Although more complicated, the proof of the above three con-
ditions essentially follows the same line as that of [25, Th. 3.1].
We omit the details here.

It is easy to show that has a limiting proper complex
Gaussian distribution, and that and are uncorrelated.
Thus, has a limiting
proper complex Gaussian distribution. Then, it remains to cal-
culate the variance of . Since the s are independent, we
have that

Using Lemma 3.2, it can be shown that
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which yields

(9)

It then follows that

thus concluding the proof of part (a).
The proof of part (b) follows by Combining (6), (7), and (9).
We observe from part (b) of Theorem 3.1 that the limiting SIR

expression can be factorized into two components:
and . Clearly, is a function of only the
large-scale fading effects and hence depends only on transmis-
sion power control; in contrast, is is a weighted
sum of the small-scale fading effects of user 1 and hence de-
pends only on diversity combining schemes. Thus, there is a
clearseparationbetween the gains of transmission power con-
trol and diversity combining, and more importantly, the two
gains areadditive(in decibels). Because of this separation, di-
versity combining behaves the same here as in a single-user
system with antenna arrays, and its gain depends on the side
information of the desired user’s small-scale fading effects.

Heuristically, the above result tells us that in a large system,
the SIR is approximately . Henceforth,
we use the above limiting expression to analyze two diversity
combining schemes—MRC and SC.

A. Maximum Ratio Combining

Part (a) in Theorem 3.1 establishes that the joint distribution
of the overall interferences at the output of the antennas
converges weakly to a proper complex Gaussian measure

, which implies that the traditional MRC method is
the best linear combiner (see, e.g., [14, Ch. 8]). MRC requires
information about the ’s [8]. Given the ’s, the principle of
MRC is to weight the outputs of the linear filters appropriately
and sum them up to maximize the SIR. A simple application
of the Cauchy–Schwartz Inequality shows that the choice of

that maximizes the SIR is , where
is some nonzero constant [8, Ch. 5]. The SIR is then of

the following form

(10)

where denotes . It is straightforward to see that
.

We note that the MRC choice(under the right choice of )
also minimizes the mean-square error

Indeed, for a given , there exists a functional relationship be-
tween the MMSE (over all the antennas) and the SIR (denoted
as MSIR) attained by the MRC method [9]:

(11)

Diversity combining is used to improve the mean SIR and
reduce the dynamic range of the signal strength [8], [14], which
indicates that the mean and variance of the SIR are important
performance measures. Since large-scale fading effects may
remain constant over thousands of information symbols, it is
of more interest to study the “local” mean and variance of the
SIR. (Roughly speaking, “local” here refers to the duration
in which the large-scale fading effects remain constant.) The
“local” mean and variance of the SIR corresponds to finding
the conditional mean and variance of given .
Using (10), we have that

(12)

B. Selection Combining

For the system output, the ideal selection diversity combiner
chooses, during each “instant”, the signal from the filter that has
the largest SIR [8], [18]. In practice, the antenna signals could
be sampled, e.g., and the best one is sent to the decoder.

Define . It can easily be shown
that the SIR achieved by SC (denoted as ) is simply

.
As in the MRC method, we are interested in the “local” mean

and variance of . The calculation boils down to computing
the mean and variance of . The following result is useful in
the calculation [1, Ch. 3]

(13)

where the s are exponentially distributed independent
random variables with mean 1.3 Using (13), we can readily
calculate the mean and variance of [8, Ch. 5]

Then, it is straightforward to see that

(14)

Comparing (12) and (14), we conclude that the mean of the
SIR in the MRC method is larger than that in the
SC method. Moreover, as increases, grows linearly in

while grows approximately at the rate of . From a
theoretical viewpoint, given a realization of, MRC and SC are
essentially equivalent to taking and , respec-
tively. It is clear that is always greater than or equal to

, which explains why is always larger than . How-
ever, we note that the variance of the SIR in the SC method is
smaller than that in the MRC method.

3TheD s are called normalized spacings of the order statistics [1, Ch. 3].



1282 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 19, NO. 7, JULY 2001

IV. CASE OFCORRELATED SMALL -SCALE FADING

In the preceding sections, the analysis has been premised
upon the assumption that each user’s small-scale fading effects
at various antennas are independent. There will be cases where
this is difficult to achieve, e.g., because of insufficient antenna
spacing. In what follows, we consider a more realistic scenario
where each user’s small-scale fading effects are correlated
across the antennas at the base station. In such scenario, it
is natural to ask whether it is possible to achieve the same
diversity gain as in the independent case, and if so when. The
answer is yes, and indeed when the noise level diminishes to
zero, using MRC leads to the same diversity gain as in the
independent case. However, to achieve the same diversity gain,
the correlation among the small-scale fading effects does incur
extra processing complexity. To be more specific, we begin
with the following lemma. We assume that does
not depend on and use to denote .

Lemma 4.1:Suppose that where
. Then, for any

The proof of Lemma 4.1 follows the same line as that of part (b)
in Lemma 3.2.

Define the complex covariance forby

...
...

...

Using Lemma 4.1, it can easily be shown that

Combining the above with (6), we obtain that

(15)

For convenience, define

(Note that is positive definite.) We now have the following
result.

Theorem 4.1:Suppose that each user’s small-scale fading ef-
fects are correlated across the antennas, with covariance matrix

. Then, as ,

a) The interferences across the antennas,
, have a limiting proper complex

Gaussian distribution ;

b)

(16)

The proof of Theorem 4.1 follows essentially the same line as
that of Theorem 3.1.

Based on the limiting SIR expression given in (16), it is inter-
esting to note that in the case where small-scale fading effects
are correlated across the antennas, the separation between the
gains of power control and diversity combining no longer exists.
This is because the gain of diversity combining depends on,
which is a function of , and is determined by transmission
power control. Therefore, in general, the gains of transmission
power control and diversity combining arecoupled.

A. Maximum Ratio Combining

Part (a) in Theorem 4.1 establishes that the joint distribu-
tion of the overall interference at the output of the antennas
converges weakly to a proper complex Gaussian measure

. When each user’s small-scale fading effects are
correlated across the antennas, in generalis not diagonal,
which implies that the traditional MRC method is no longer the
best linear combiner. Instead, the MRC principle leads to anew
combiner in the correlated small-scale fading case. It is worth
noting that (11) still holds, and the MRC approach and the
MMSE criterion still lead to the same optimal linear combiner.

By definition, MRC chooses to maximize the SIR. Observe
that the maximization of the SIR boils down to the following
optimization problem:

(17)

Define . Then the optimization problem in (17) can
be written as

(18)

Appealing to [7, p. 176], it follows that the maximum
of the objective function is the largest eigenvalue of

, and is achieved when is the eigenvector
corresponding to . Because the matrix is
of rank 1 (except when , which happens with probability
zero), we have that

which bears a Hermitian quadratic form in complex random
variables. To characterize the distribution of, we follow [18]
and further impose that is a proper complex random vector.
Then by [13, Th. 1], the probability density function ofis given
by4

4Without loss of generality, we assume henceforth that no deterministic linear
relationship exists among any of thea ’s, and henceR is Hermitian positive
definite [18].
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The moment generating function of is
, where the expectation is taken with respect

to . (Because is complex Gaussian, exists.)
Appealing to [18, Appendex B], can be shown to be

After some algebra, we get that

(19)

where the s are eigenvalues of the matrix .
Based on (19), we can use the inverse Laplace transform to

obtain the probability density function of . In particular, we
are interested in the case where the noise level diminishes to
zero . In this high SNR region, the moment generating
function of can further be simplified to

(20)

It then follows that that has a distribution .
Combining (20) and Theorem 4.1 leads to the following result.

Theorem 4.2:(Correlated fading and MRC: SIR) When the
noise level diminishes to zero , as

(21)

where . Moreover, the optimal combining
vectors share the common form , where is some
nonzero constant.

The physical implications of this result are as follows. In
the high SNR region , the MRC approach used in the
presence of correlated small-scale fading can still achieve the
same diversity gain as in the independent case. That is to say,
even when the small-scale fading is correlated across the an-
tennas, the MRC approach is as effective as in the independent
case. Moreover, using MRC leads to the “decoupling” of the
gains of transmission power control and diversity combining.
The underlying reasoning behind Theorem 4.2 is that CDMA
systems are interference-limited and correlated interference
may be whitened. Indeed, when , the optimization
problem in (18) reduces to

Then, the solution to the above problem is given by
, where is some nonzero con-

stant. Thus we have that . Intuitively, we can first
use to whiten the correlated interference, and then apply
the traditional MRC method as in the independent case.

As pointed out in [8, Ch. 5] and [18, Ch. 10], when selection
combining is adopted, it does not appear that one can handle
analytically more than two antennas . We also note that in
the presence of background noise, closed-form solutions seem
hard to attain for either MRC or SC. However, based on our
preceding analysis, one can expect that when the users’ SNR

is reasonably high, a large portion of the diversity effectiveness
will be retained even when significant correlations exist, as in a
single-user system [8], [18].

V. TRANSMISSIONPOWER ALLOCATION

In this section, we study the allocation of transmission power
based on the side information about large-scale fading. Our de-
sired allocation is to make transmission power consumption as
low as possible while keeping all the users’ QoS requirements
satisfied. Recall that from the viewpoints of detection and
channel capacity, the SIR is the key performance measure for
QoS requirements. Because of the randomness of the received
powers and signatures, the SIR is random as well. Also observe
that large-sale fading may remain constant over thousands of
information symbols, which possibly span dozens of frames.
Therefore, we adopt the following probabilistic model for the
users’ QoS requirements [11], [24]

(22)

where is thetarget SIR, and .
In what follows, we calculate . Be-

cause closed-form solutions seem unattainable when each user’s
small-scale fading effects are correlated across antennas and

, and also when using MRC leads to the same SIR
as in the independent case, we focus on the independent case in
the following. We treat systems with MRC and SC separately.
To facilitate the notation, in the following, we useto denote
the large-scale fading of user 1 andits estimate.

Without loss of generality, suppose , that is, the
channel estimate of the large-scale fading indicates that the de-
sired user is in state , and hence, the transmission power is

. In the MRC method, the SIR is , where
. Therefore, we have that

(23)

where is a Chi-squared random variable with degrees
of freedom. On the other hand, in the SC method, the SIR is

. It then follows that

(24)

We study two cases, one with perfect side information, the
other with noisy side information, although the latter is more
general than the former. The main reason for presenting them
separately is that the case with perfect side information provides
a good contrast to the case with noisy side information and helps
build up the results.
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A. Perfect Side Information of Large-Scale Fading

In this subsection, we assume that the estimation of large-
scale fading is perfect, that is, always.

1) Maximum Ratio Combining:Based on (23), to keep all
the users’ SIR requirements satisfied it suffices to have

(25)

where is the cutoff point for with right-hand tail
probability .

Using (7), we have that for

(26)

Then, it follows that the Pareto-optimal solution (i.e., optimal in
the sense of component-wise minimization of thes) is [20],
[25]

(27)

We note that the received powers at all the states are the same,
that is, .

2) Selection Combining:To fulfill the SIR requirements in
the SC method, we use (24) to obtain

(28)

Along the same lines as in the MRC method, it can be shown
that the Pareto-optimal solution for the s is

(29)

B. Noisy Side Information of Large-Scale Fading

Recall that in a more realistic communication system, due
to time-varying channel conditions, feedback errors and delays
are often inevitable. In this case, the side information about
large-scale fading might be noisy. In this subsection, we study
the problems of transmission power allocation under these con-
ditions.

1) Maximum Ratio Combining:Based on (23), it is de-
sirable to allocate the transmission power for each state such
that is “close” to . Note from (25) that

can be interpreted as theeffective target SIRin
the perfect side information case. (In practice, SIR is usually
expressed in decibels (dB).) When the side information is
noisy, however, a closed-form solution for seems difficult
(if not impossible) to obtain so we cannot use as a basis
for the allocation of the s. Observing that large-scale fading
may vary over a range more than 60 dB [8, Ch. 2], we choose
the MMSE criterion instead; that is, the s are chosen to
minimize

(30)

That is, the s are chosen to minimize the mean square dif-
ference between the effective target SIR and the SIR achieved
by using the s (in dB). We note that in the case where the
side-information about the large-scale fading is perfect, we can
make precisely zero by allotting the s according to (27).

After some algebra, we obtain that the s minimizing the
s are the solution to the following set of equations:

(31)

When the side information about the large-scale fading is noisy,
is the unique positive solution to the following fixed point

equation:

Define for

It is worth noting that the s can be interpreted as the
effective target SIRin the noisy side information case. Since

it then follows that can be expressed (in decibels) as

(32)

Note that for state , the effect of the estimation
error of large-scale fading is quantified by

.
It can be shown that the desired solution for thes is the

Pareto-optimal solution to the following set of inequalities

The optimal allocation for the s is therefore

(33)
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Fig. 3. T h =� versus target SIR in the MRC method,� = 0:5.

2) Selection Combining:Similar to the argument in the pre-
ceding subsection, we choose thes to minimize

(34)

Define, for

Then, it can be shown that

and the Pareto-optimal allocation for the s is given by

(35)

VI. NUMERICAL RESULTS

In this section, we provide a numerical example to illustrate
our results. Our objectives are threefold. First, we use Figs. 3 and
4 to illustrate the significant gains for the transmission power al-
location by using space diversity. Recall that thes span over
a wide region but the s have the same order of magni-
tude. Therefore, we plot (instead of ) as a function of

. Our next objective is to show the impact of space diversity on
the system feasibility, as in Figs. 5 and 6. Finally, the impact of

Fig. 4. T h =� versus� in both the MRC and SC methods,p = 0:75.

Fig. 5. Network capacity versus target SIR in the MRC method.

noisy side information of large-scale fading on the transmission
power allocation is illustrated in Fig. 7.

In our numerical example, the model for the large-scale
fading is based on a histogram of excess path loss measured
in New Providence, NJ [8, p. 119]. (We note that the measure-
ments were taken at 11.2 GHZ, which indicates that fading
there was more severe than in current CDMA systems.) For
simplicity, we quantize the large-scale fading into six levels as
follows:

dB dB dB

dB dB dB

and the corresponding distribution is
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Fig. 6. Network capacity versus target SIR in both the MRC and SC methods,
P = 0:75.

Fig. 7. T h =� versus target SIR in the MRC method,m = 1; . . . ; 6.

We assume that the estimation error probability is given by

Figs. 3 and 4 show plots of as a function of the target
SIR and the load (the number of users per unit processing
gain), respectively. Several observations are worth noting. First,
there is nearly a six-dB gain for the transmission power allo-
cation with four versus two receiver antennas when the MRC
method is used and the loadis moderate; the gain in the SC
method is still pronounced although smaller. Second, when the
system load is high, the gain for transmission power allocation
is even higher. Third, the gain with four versus two receiver an-
tennas is higher than that with two versus one receiver antennas.

To illustrate the impact of diversity combining on the system
feasibility, we consider the case where the side information
about the large-scale fading is perfect. Following [20] and [24],

we can obtain that the network capacities in the MRC and SC
methods are

users per unit processing
gain;

users per unit pro-
cessing gain.

As is evident in Figs. 5 and 6, the increase of network capacity
is significant, especially when the users’ SIR requirements are
not stringent. Moreover, the increase of the network capacity in
the MRC method is more significant than that in the SC method.
When users’ SIR requirements become more stringent, the in-
crease of the network capacity in both MRC and SC methods
decreases.

Fig. 7 is used to show the impact of noisy side information of
large-scale fading on the transmission power allocation. Again,
we plot (instead of ) against because is a
constant. We observe that in the case of perfect side information
the values of are equal for all , and in the case of
noisy side information, the values of are spread out
around that in the perfect side information case. The spread is
small and is about one dB, which indicates that adopting the
MMSE criterion leads to desirable power allocation. We also
note that the more severe the large-scale fading, the smaller the
values of .

VII. CONCLUSION

In this work, we focused primarily on the performance
of large CDMA systems in a multiple time-scale flat fading
environment. In particular, we established that the interferences
across the antennas are jointly Gaussian in a large system, and
characterized the SIR for both MRC and SC methods. Still,
we believe that our study can be extended to models with
frequency-selective small-scale fading. For the adaptive im-
plementation of diversity combining, there is a large literature
covering this topic in the context of narrowband systems [3],
[15]. Assuming fixed channel gains (fading effects), a recent
work [23] has addressed the problem of joint power control,
multiuser detection, and diversity combining in a CDMA
system. The development of adaptive algorithms for joint
power control, multiuser detection, and diversity combining
in a (multiple time-scale) fading environment remains open.
Another important issue is the feasibility of power control in a
multi-cell setting where the side information about the fading
is noisy, as is typically the case in a practical system. We are
currently exploiting a recent result [4] on perturbations of the
Perron–Frobenius eigenvalues to study this problem.

APPENDIX

PROOF OFLEMMA 3.2

Part (i) follows from [25, Lemma 4.3]. In what follows, we
prove Parts (ii) and (iii).

Proof of Part (ii): Because and are independent
for any , it is clear that



ZHANG et al.: UNIFIED SPATIAL DIVERSITY COMBINING AND POWER ALLOCATION 1287

Using Chebyshev’s Inequality, it suffices to show that as

For convenience, we define . Observe that5

(36)

where (a) follows from the fact that each of these expectations
is nonzero only when , and (b) results from Part (i).

Proof of Part (iii): It is easy to show that

By the conditional variance formula [16, p. 51], we have that

(37)

where the last steps follows from (36). Therefore, as

thus completing the proof.

5The expectation in different lines may be taken over different random ele-
ments.
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