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Abstract

Over the past 25 years, the practical requirement for efficient data compression al-
gorithms has generated a large volume of research covering the whole spectrum from
practically implementable algorithms to deep theoretical results. One prominent ex-
ample is the Lempel-Ziv algorithm for lossless data compression: Not only is it imple-
mented on most computers used today, but also, attempts to analyze its performance
have provided new problems in probability, information theory and ergodic theory,
whose solutions reveal a series of interesting results about the entropy and the recur-

rence structure of stationary processes.

The main problems considered in this thesis are those of determining the asymp-
totic behavior of waiting times and recurrence times in stationary processes. These
questions are motivated primarily by their important applications in data compression
and the analysis of string matching algorithms in DNA sequence analysis. In partic-
ular, solving the waiting times problem also allowed us to solve a long-standing open
problem in data compression: That of finding a practical extension of the Lempel-Ziv

coding algorithm for lossy compression.

This thesis is divided into three parts. In the first part we generalize one of the
central theoretical results in source coding theory: We prove a natural generalization
of the celebrated Shannon-McMillan-Breiman theorem (as well as its subsequent re-
finements by Ibragimov and by Philipp and Stout) for real-valued processes and for
the case when distortion is allowed. These results are inspired by, and provide the key
technical ingredient in, our asymptotic analysis of recurrence and waiting times, in
the second part. The main probabilistic tools used in establishing them are uniform
almost-sure approximation, powerful techniques from large deviations, and classical

second-moment blocking arguments.

In the second part we consider the problem of waiting times between stationary



processes. We show that waiting times grow exponentially with probability one and,
that their rate is given by the solution to an explicit variational problem in terms of
the entropies of the underlying processes. Moreover, we show that, properly scaled,
the deviations of the waiting times from their limiting exponent are asymptotically
Gaussian (with a limiting variance explicitly identified), and we prove finer theorems
(e.g., a law of the iterated logarithm and an almost sure invariance principle) that
provide the exact rate of convergence in the above limit theorems. Corresponding
results are proved for recurrence times, and dual results are stated and proved for
certain longest-match lengths between stationary processes.

Finally, in the third part, we use the insight gained by the waiting times results
to find a practical extension of the Lempel-Ziv scheme for the case of lossy data com-
pression. We propose a new lossy version of the so-called Fixed-Database Lempel-Ziv
coding algorithm, which is of complexity “comparable” to that of the corresponding
lossless scheme, and we prove that its compression performance is (asymptotically)

optimal.

vi
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Chapter 1

Introduction

The central problem considered in this thesis is, loosely speaking, that of understand-

ing the behavior of long pattern occurrences in realizations of random processes in

discrete time. A typical question we will be asking is the following: Suppose we

observe the outcome of a binary random process; how long does it take until a cer-

tain pattern of zeros and ones first appears? Questions of this type arise naturally

in several areas, sometimes because of their theoretical interest and sometimes in

applications. Here are four representative examples.

i.

ii.

iii.

Poincaré recurrence. Here one asks questions about the reappearance of an
initial pattern generated by the process. Does it always reappear? When it
does, how long does it take? This problem and its ramifications are important
in the study of dynamical systems in ergodic theory. In Chapter 3 we will ask
what happens when we look for longer and longer such initial patterns — how

much longer do we have to wait each time?

String matching. Given two finite strings that are generated independently by
the same process, what is the length of their longest common (contiguous) sub-
string? This question arises in DNA sequence matching and in string searching
algorithms in computer science. As we will see in Chapters 3 and 4, there is a
natural “duality” relationship between questions about longest-match lengths,

and questions about the first occurrence of random patterns.

Typicality. In a long realization of a stationary ergodic process there are “typ-

ical” patterns that tend to appear often and “atypical” ones that only appear
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rarely. This observation was made by Shannon in his landmark 1948 paper [62].
What is the length and the relative frequency of typical patterns? In Chapter 2
we generalize Shannon’s original answers for these questions to real-valued (or
more general) processes, and also to the case when distortion is allowed in the

patterns.

iv. Data compression. Shannon’s observation of typical patterns provides a pre-
cise way to quantify how much structure there is in a “message” produced by

2

a random “source.” How can we take advantage of this structure to do “com-

)

pression,” i.e., to describe long messages efficiently? The celebrated Lempel-Ziv
family of data compression algorithms is based on exploiting this structure. In

Chapter 5 we extend this idea further to the case of lossy data compression.

This list is by no means exhaustive. Several related questions are mentioned in

Section 1.3 below.

As we shall see later, there is a common theme at the heart of all these prob-
lems — a strong connection between the geometry along a single realization and the
probabilistic structure of the underlying process that produced it, in particular, with
the entropy of that process. We can interpret this connection in the “big picture” by
saying that it provides yet another snapshot of the sample-path picture of stochastic
processes, added to the many other such properties that have come to form a major
part of the foundation of modern probability theory over the past 50 years.

1.1 The Question of Recurrence

In order to get a better idea of the flavor of our problems and the ideas involved
in solving them, we present here a concrete example of a question that is tackled in
detail in Chapter 3. We will try to illustrate three points: (1) the motivation for the
problem and the intuition underlying the analysis; (2) the natural way in which the
entropy enters when we calculate probabilities of patterns along a realization; (3) the

connection between pattern matching and data compression.
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1.1.1 Recurrence and Entropy

Suppose we observe a doubly-infinite realization @ = (...,z 1, zo, 21, Z2,...) pro-
duced by a stationary ergodic process X = {X,, ; n € Z}, which takes values in a
finite alphabet A. Write x‘z for the substring of  between positions ¢ and j

A

xg:(xiaxi—l-la"'axj)a _OOSZS.] SOO,
and similarly X{ for the vector of random variables (X;, X;i1,...,X;). For a fixed
integer n we consider the pattern z7 = (xq, @9, ..., x,) formed by the first n symbols

produced by X, and we ask how far back into the past one has to look before seeing
the same pattern appear again. More precisely, we define R,,, the recurrence time for

a7, as the first position k& > 1 for which z =} 1 = a7

R, = inf{k>1 : a7} =2}

If we increase the length of the pattern we are looking for, then, clearly, the time
we have to wait will increase, which implies that for every fixed realization x the
recurrence time R,, increases with n. Our main question here is: How fast does R,

mcrease?

To gain some intuition we first try to understand what happens in the simplest
case. Suppose X is a sequence of independent and identically distributed (i.i.d.)
binary random variables, with each X, = 1 with probability p, or X,, = 0 with
probability (1 — p). Below we show an example of a realization from X, with two

recurring strings z{ and 2% and corresponding recurrence times Ry = 14 and Rs = 26.

R4:14 HZ%
—~N= —~N=
021206110111010010001101011000101
5= @}

Conditional on the value of z, say ;1 = 1, the distribution of the recurrence time R;
is exponential, with mean 1/p. Thus, R; is concentrated around the reciprocal of the

probability of the recurring symbol and has exponential tails away from its mean.

What about R, for general n? Although its distribution is more complicated in

this case, it is not hard to show that conditional on the recurring pattern z7, the
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mean of R, is still equal to the reciprocal of the probability of that pattern

1

Bl X7 = a1) = 5 (1.1)

where P denotes the distribution of X. Now what is this probability? If n is large,
there will be roughly np ones and n(1—p) zeros in 27, so that P(x7) ~ p™(1—p)"1=7),
Since this decays exponentially with n it suggests that, at least on the average, R,
increases exponentially with n. Moreover, looking at the exponent of decay of P(z7),
we see that

| 1 .
——log P(a}) & ——log (p" (1 - p)"" ") = H, (1.2)

where! H = —plogp — (1 — p) log(1 — p) is the entropy rate of the process X. This,
then, suggests that R,, increases exponentially with a rate in the exponent given by
the entropy rate of X and, indeed, it is probably not very surprising that the above

informal argument can easily be made rigorous to show that

nlggo % logR, = H as. (1.3)

What is somewhat remarkable, though, is that each one of the above steps is

essentially valid in full generality — for every finite-valued stationary ergodic process:

A theorem of Kac from 1947 [34] says that (1.1) remains verbatim true for every

stationary ergodic X. This can be used to conclude (not trivially — see Theorem 3.1

in Chapter 3) that the asymptotic behavior of R, is the same as that of 1/P(X7), in
that

1 1 1
lim |—logR, — —log ——=| = lim —log[R,P(X])] =0 as., (1.4)
n n

n—o0

and the Shannon-McMillan-Breiman theorem [13] states that (1.2) also remains true

in this case

1
lim ——log P(X]') = H aus. (1.5)

n—oo N

Here and throughout this thesis log denotes the logarithm taken to base 2, and log, denotes the
natural logarithm.
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where the entropy rate H of X is now defined by H = lim,, E[—log P(X, | X?,].
Combining (1.4) and (1.5) we recover (1.3) in complete generality!

1.1.2 Second-Order Results

After seeing that the rate in the exponent of the recurrence times R,, converges, with
probability one, to a constant (the entropy rate H), there is a natural sequence of

further questions we would like to ask, including:

i. What is the rate of convergence to the H in (1.3)7
ii. What is the asymptotic distribution of the deviations away from H?

iii. What is the variance of these deviations?

The way we will answer these questions in Chapter 3 is by refining the steps we took
in the strategy that gave us (1.3). The main intuition we gained there was that, in
a strong asymptotic sense, R,, the recurrence time for the pattern X7 is close to
the reciprocal of the probability P(X7) of that pattern. First we will show that the

formal connection between R,, and 1/P(X7) given in (1.4) can be strengthened to

1
lim —log[R,P(X])] = 0 aus. (1.6)
n—oo n
Then, looking at —log P(XT) a little more carefully and assuming for a moment that

X isii.d., we see that —log P(X]') can be rewritten as an ordinary random walk

n

—log P(XT) = ) [~ log P(X})], (1.7)
i=1
so that its asymptotic behavior can be described in detail by the classical limit the-
orems for partial sums of i.i.d. random variables. For example, combining equations
(1.6) and (1.7) with the classical central limit theorem immediately yields

1 n — nH
log ft —nH 25 N(0,0%) (1.8)
Vn
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with 02 = Var(—log P(X;)), answering our questions (ii) and (iii) above [* Py
denotes convergence in distribution]. This can be viewed as a central-limit-theorem-
type refinement to the strong-law-of-large-numbers statement of (1.3). Similarly, a
simple application of the law of the iterated logarithm gives

log R, —nH
lim sup o8 e a.s., (1.9)

n—oo 4/2nlog,log, n

providing the pointwise rate of convergence in (1.3) and answering question (i).

In Chapters 2 and 3 we show that the independence assumption can be signifi-

cantly relaxed, and the same strategy works for a large class of processes with memory.

1.1.3 Recurrence and Data Compression

How did the question of the asymptotic behavior of R,, first arise?

In 1989, in an attempt to understand the exact compression performance of some
variants of the Lempel-Ziv data compression algorithm, Wyner and Ziv [69] discovered
the connection between recurrence times and entropy described in (1.3). One of the
central ideas in their paper was, instead of considering the actual algorithms directly,
to introduce and analyze an idealized coding scenario, a simple version of which we
describe below.

Suppose an encoder and a decoder, me and you, say, have been communicating
for a long time so that presently we share a very long, in fact infinitely long, common
database X°_ = (..., X 1, X;) produced by some stationary ergodic “source” X.
My task as the encoder is to describe to you the “message” X' consisting of the next
n symbols produced by X, and I want to find a way to utilize somehow the “common
information” X° _ we share in order to describe X' more efficiently.

My idea is, rather than describing X7 to you directly, [ will look in the database
X, find the first position R, where a copy of the message X" appears, and tell
you that position. From this information you can easily recover X" by looking in the
database and reading off the string (X_p, 11, X g, 192,.--, X_Rr,1n)-

Is this a good idea? Since all I have to tell you is R,,, my description consists of
approximately log R, bits (in general it takes about logk bits to describe an integer

k), and from this you can recover a message of length n symbols, giving a compression
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ratio of approximately
log R,

n

bits per symbol.

As we saw in (1.3) this ratio converges to the entropy rate of X, implying that the
compression performance of this simple-minded scheme is asymptotically optimal!

Although of no practical use in itself, this result provides the main technical ingre-
dient in proving the optimality of the so-called Sliding-Window Lempel-Ziv algorithm
[84][71], probably the most popular compression algorithm in use today. Moreover,
Wyner and Ziv’s idea of reducing the study of a practical algorithm to that of an
idealized coding scenario was a very significant contribution to our intuitive under-
standing of the workings of several Lempel-Ziv schemes. Since then, this reduction
has been exploited by a number of authors and has ultimately lead not only to a
better understanding of the existing methods, but also to several new, practical data
compression algorithms.

In Section 1.2.2 below we will push this connection a little further; we will dis-
cuss extensions of the Lempel-Ziv idea to lossy data compression, and motivate our

subsequent results in Chapter 5.

1.2 Three More Questions

Next we outline three more questions that are addressed later in this thesis, and we

highlight some of our relevant results from Chapters 2-5.

1.2.1 Waiting Times

Consider the following variation of the recurrence times problem: Instead of asking
how long it takes before the first reappearance of the initial pattern generated by some
random process, we ask how long it takes before the first approximate appearance of
a random pattern generated independently by a different process.

For the sake of simplicity, consider two i.i.d. binary processes X = {X,, ; n € Z}
and Y = {Y,, ; n € Z}, with distributions P and @, respectively. We will measure

the closeness between finite realizations from X and Y by the proportion of positions
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where they agree, so we define the Hamming distortion between z} and y} by

p xlayl - Zj{xz — Y 7 xrlla y? € {Oal}na n 2 ]-7 (110)

where I{x; = y;} is the indicator function of the event {x; = y;}. For any binary
string 7 and any distortion level D € [0, 1] we let B(z}, D) denote the distortion-ball

of radius D around z7:
B(at, D) = {y? € {0,1}" : pn(af,yr) < D}.

Given two realizations of X and Y and a D € [0, 1], our quantity of interest here is

the waiting time W, (D) until a D-close version of z first appears somewhere in 3{°:
W.(D) = inf{k >1:yt ' € B(z},D)}.

Intuitively, it seems natural to expect that the asymptotic behavior of W, (D) as
n — oo would not be very different from that of R,, so we ask: To what extent does
W, (D) behave like R,?

In Chapter 4 this question is addressed (and answered), and the analysis follows

essentially the same strategy as the one employed to analyze the behavior of R,,:

i. First, we prove that the waiting time W, (D) until we find a D-close match for
X7 can be approximated by the reciprocal of the probability Q(B(X7, D)) of
finding such a match (see Theorem 4.1, Chapter 4):

logW,, (D) ~ —log Q(B(XY, D)).

ii. Then we show that, asymptotically, —log Q(B(X7, D)) behaves as a random
walk (Theorems 2.4 and 2.5, Chapter 2), just like —log P(X7) did in the case
of R,,.

Although these two steps closely parallel the corresponding recurrence times results
n (1.6) and (1.7), the techniques used to prove them had to be different in this case.
One of the difficulties can be spotted easily from the fact that we cannot expand
—log Q(B(X7, D)) as random walk like we did with —log P(X7) in (1.7). In fact,
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it is not even clear a priori that —log Q(B(X7", D)) will have the same asymptotic
behavior as —log P(X7).

Chapter 2 is devoted to showing that the same behavior does indeed persist, in
that the probabilities Q(B(X}, D)) decay exponentially and their deviations from
the limiting exponent are asymptotically those of a random walk. These results
provide natural generalizations of the Shannon-McMillan-Breiman theorem and its
refinements to general processes (taking more than a discrete set of values) and to
the case when distortion is allowed.

Combining, as before, (i) and (ii) with the classical limit theorems for partial sums
of i.i.d. random variables we obtain analogs of (1.3), (1.8) and (1.9): From the strong
law of large numbers it follows that the waiting times W, (D) increase exponentially

with probability one,

1
lim —logW, (D) = R(P,Q,D) as., (1.11)

n—oo N,
where the rate in the exponent R(P,Q, D) can be explicitly identified as the solution
to a variational problem in terms of the entropies of X and Y. Similarly, using the
central limit theorem and the law of the iterated logarithm we get analogs for (1.8)

and (1.9), respectively.

1.2.2 Lossy Data Compression

In many engineering applications where large amounts of data are to be stored or
transmitted, compression is an important component. Often, in order to reduce the
storage or transmission requirements, we are willing to tolerate a certain amount of
error in the reconstructed data — for example, think of a large image database where
each image is compressed by a factor of, say, 50:1, and can be recovered not perfectly,
but with a small amount of visual distortion. The following question will be addressed
in Chapter 5: Is there an easy way to extend the Lempel-Ziv idea to the case when
distortion is allowed, to obtain a practical lossy compression scheme based on pattern
matching?

The great success of the Lempel-Ziv family of algorithms has been mainly due
to two reasons. First, they are low complexity algorithms that can be simply imple-

mented (they are, for example, implemented on almost every personal computer in
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use today). Since efficient string matching has been very well studied by computer
scientists over the past several decades, there are, by now, a number of very efficient
algorithms that can be readily used in the context of compression.

The second reason for their practical success is that Lempel-Ziv schemes are uni-
versal — they assume essentially zero prior knowledge about the distribution of the
source to be compressed. The trick they employ to overcome this lack of knowledge
comes down to the idea of using the message itself as a codebook. For example, in
the idealized coding scenario described in relation to recurrence times (Section 1.1.3
above), we assumed that the encoder and decoder shared an infinitely long database
that had the same distribution as the source, and that the next part of the message
was described by a pointer into that database.

There is, therefore, an implicit assumption that plays a key role in the success of
these compression algorithms, namely, that the optimal (lossless) description of some
random message is in terms of a codebook with the same distribution as the message
itself. Unfortunately, this assumption is not true in the lossy case, and one is forced
to consider codebooks generated according to different distributions.

To understand the situation better we follow Wyner and Ziv’s example [69] and
turn to an idealized coding scenario: Consider an encoder and a decoder sharing a
common infinite database Y™ = (Y7, Y5,...), generated by some i.i.d. binary process
Y with distribution ). Suppose that the encoder’s task is to communicate a message
X7, generated by a different i.i.d. binary process X of distribution P, to the decoder,
within some prescribed distortion D (with respect, say, to Hamming distortion {p,} as
defined in (1.10)). The encoder’s strategy is, as before, to look through the database
until the first time when a D-close match of X7 is found, and then tell the decoder the
position W,,(D) of this first match. To describe W, (D) it takes roughly log W, (D)

bits, so the compression achieved by this simple code equals

log W,,(D)
n

bits per symbol.

As we saw in (1.11), this converges to R(P, @, D), so different choices of the database
distribution yield different limiting compression ratios. The bad news here is that,
unlike in the case of lossless compression, R(P,Q, D) is not in general minimized by
choosing the database to be of the same distribution as the source, i.e., taking () = P.

On the other hand, the optimal compression ratio for X with respect to Hamming
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distortion at level D (given by the rate-distortion function R(D) of X) satisfies
R(D) = inf R(P.Q. D)

so that the problem is that we do not know a priori how to choose the best database
distribution in order to minimize R(P, @, D).

In Chapter 5 we describe a new lossy version of Lempel-Ziv coding that gets
around this problem by maintaining not just one, but multiple databases at the
encoder and the decoder, and chooses which one to use at each stage in a “greedy”
manner. The new algorithm is demonstrated to have asymptotically optimal compres-
sion performance (Theorem 5.2), and we argue that its complexity and redundancy

characteristics are comparable to those of its lossless counterpart.

1.2.3 Match Lengths and DNA Template Matching

In the analysis of DNA or protein sequences the following problem is of interest:
Suppose we have a template (X1, X5,...) and a long but finite database sequence
Y = (Y, Ya,...,Y,). What is the length of the longest initial portion X{ of the
template that matches within distortion D somewhere in the database? By a “match”
here we mean that there exists a contiguous substring Yﬁ’f of the database such that

the distortion between X! and Yfff is at most D, with respect to, say, Hamming
distortion. Given two realizations of the processes X and Y producing the above

template and database, respectively, we write L,,(D) for this maximal match-length:
L, (D) =sup{¢>1 : yﬁf € B(z!, D), forsome j =0,1,...,m —1}.

Intuitively it seems that there is some connection between the match lengths L,, (D)
and the waiting times W, (D). We would expect that the database length m is
essentially the same as the waiting time for (Xy,..., Xy, (py), that is, if n = L,,(D)
then W, (D) should be approximately equal to m, and vice versa. Taking this analogy
a step further, we might be tempted to replace m by W, (D) and n by L,,(D) in our
asymptotic results about waiting times, and hope that they remain valid.

We will see in detail in Chapters 3 and 4, that this intuition is essentially correct

but it is not trivial to justify. For example, replacing m by W, (D) and n by L,,(D)
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in (1.11) we obtain (see Theorem 4.2 in Chapter 4)

) logm
%1_1;%0 D) R(P,Q,D) aus. (1.12)

Similarly, all second-order results about W, (D) give us corresponding results for

L, (D), providing a complete picture of the asymptotic behavior of L,, (D).

1.3 History

Some general remarks about the history of the results we have been discussing are
in order here. More detailed references to specific or more recent results are given at
appropriate points in the subsequent chapters.

In ergodic theory, the question of what we called Poincaré recurrence was first
raised by Poincaré in 1899 [59]. A very nice exposition of the long history of the
results that followed, and also of the connection with the infamous H-theorem of
Boltzmann, are presented in Petersen’s text [55]. Kac’s theorem was proved in 1947
[34]; alternative proofs can be found in [55][69].

Within probability theory, recurrence properties have been very important since
at least as far back as the late 1930’s. Doeblin and Harris both identified recurrence
as the key concept in analyzing the asymptotic behavior of Markov processes; see
Meyn and Tweedie’s book [48] for a modern exposition. In particular, the idea of ap-
proximating the waiting time for an event by the reciprocal of its probability appears
already in Doeblin’s work on continued fractions in 1940 [24], in Bellman and Harris’
(1951) work on the Ehrenfest model [10], and also in Harris’ (1952) paper [31] on
recurrence in Markov chains. At the cost of more restrictive assumptions, these au-
thors go a step further and essentially show that the distribution of the waiting time
for a rare event A is approximately exponential, with mean equal to the probability
of A. Recent work in this direction is reported by Galves and Schmitt [27] who also
provide an extensive list of references.

Closer to our approach, the use of —log P(X7) or a similar random walk as an
approximating sequence was employed by Ibragimov [32] and by Philipp and Stout
[57, Chapter 9] in proving refinements to the Shannon-McMillan-Breiman theorem; by

Barron [7] in proving the Shannon source coding theorem in the almost sure sense; and
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by Algoet and Cover [2] in an elementary proof of the Shannon-McMillan-Breiman
theorem.

The notion of typicality was introduced by Shannon in his famous 1948 paper [62]
that founded the field of information theory. Our calculation of the probability of
a typical sequence that lead to equation (1.2) was taken, essentially verbatim, from
the discussion preceding Theorem 3 in [62]. There, Shannon showed that for every

stationary ergodic Markov chain X with a finite number of states,

1
——log P(X]) — H in probability. (1.13)
n

McMillan [47] showed that (1.13) holds for every stationary ergodic process, and
Breiman [13] strengthened McMillan’s result to the almost sure convergence result
we saw in (1.5). Meanwhile, first Yushkevich [77] in 1953 and then Ibragimov [32] in
his well-known 1962 paper proved a central limit theorem refinement of (1.13). More
on the history of further work in this direction is given in Chapter 2.

Turning to applications, the first explicit connection between match lengths and
entropy seems to have been made in 1985 by Pittel [58], whose results are phrased
in terms of path lengths in random trees. Aldous and Shields [1] pointed out the
relationship between randomly growing trees and data compression, and Szpankowski
[66] made explicit the equivalence between match lengths along random sequences and
feasible paths in random trees.

Recurrence times in relation to data compression first appeared in Willems’ work
[67] and also in Wyner and Ziv’s 1989 paper [69], where they (implicitly) introduced
the idealized coding scenario we saw in Section 1.1.3. Wyner and Ziv [69] discovered
(1.3) and the corresponding result for waiting times (without distortion), and these
were formally established by Ornstein and Weiss [53] and by Shields [63], respec-
tively, using methods from ergodic theory. Extensive references to subsequent work
of refining and generalizing these results are given in Chapters 3 and 4.

In connection with DNA sequence analysis, results about asymptotics of match
lengths arising from string matching problems can found in the work of Karlin and
Ost [35], Pevzner, Borodovsky and Mironov [56], Arratia and Waterman [5], and
Dembo, Karlin and Zeitouni [20]. Some of these results can be viewed as natural
generalizations of the classical Erdos-Rényi laws of large numbers, as discussed by

Arratia, Gordon and Waterman in [4]. Finally we mention that related questions
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about string searching algorithms in computer science have been studied by Guibas

and Odlyzko [29] and Jacquet and Szpankowski [33], among many others.

1.4 About This Thesis

1.4.1 Theory and Applications

Our initial motivation for this work was to gain a better understanding of the work-
ings of the Lempel-Ziv family of data compression algorithms. Our introduction to
the problem was through Wyner and Ziv’s 1989 paper [69]; there, they isolated two
very interesting theoretical questions (the questions about the asymptotic behavior of
recurrence and waiting times), and demonstrated that the performance of the practi-
cal algorithms can be determined from the answers to these questions. Subsequently,
researchers in several communities outside information theory found these problems
also to be of theoretical interest and expanded on Wyner and Ziv’s work. In the pro-
cess of generalizing the original results to the case when distortion is allowed, further
theoretical questions arose which led to the generalizations of the Shannon-McMillan-
Breiman theorem and its refinements that we present in Chapter 2. These results, in
turn, provided the intuition that was missing in order to solve an important practical
problem, that of finding a practical extension of the Lempel-Ziv idea to the case of
lossy compression — see Chapter 5.

In summary, a real practical application gave rise to some interesting theoretical

questions, whose solutions may have significant impact in practice.

1.4.2 Organization

The rest of the thesis is organized as follows.

In Chapter 2 we describe the Shannon-McMillan-Breiman theorem, its refinements
(by Yushkevich [77], Ibragimov [32], and Philipp and Stout [57]), and their general-
izations to the case when distortion is allowed (by Luczak and Szpankowski [45], Yang
and Kieffer [75], and Dembo and Kontoyiannis [21]).

In Chapter 3 we address the problem of recurrence times in stationary processes,
and we show the asymptotic behavior of the recurrence times R,, can be deduced from
that of the random walk — log P(X7"). This, combined with the results presented in
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Chapter 2, gives us a complete asymptotic description of R,. Corresponding results
are proved for certain longest match-lengths M, along a realization, by exploiting a
nice duality relationship between R, and M,,.

Chapter 4 contains analogous results about waiting times, both with and without
distortion. We first show that the behavior of the waiting times W, (D) can be
deduced from that of the ()-probabilities of distortion balls B(X7, D), and then we
apply our results from Chapter 2 to read-off the asymptotics of W, (D). Again,
corresponding results are proved for the match lengths L,,(D) via duality.

In Chapter 5 we address the problem of finding an extension of the Lempel-
Ziv data compression algorithm that has asymptotically optimal compression perfor-
mance, and is also implementable in practice. We introduce a new lossy variant of
Lempel-Ziv, we prove its asymptotic optimality, and we argue that its complexity
and redundancy characteristics are comparable to those of its lossless counterpart.

The contributions of this thesis are briefly summarized in Chapter 6, where we
also mention some promising future research directions.

Finally in Appendix A we give the proofs of some of the more technical results
from Chapters 2-5.

1.5 Notation

Here we state some notation and definitions that will remain in effect throughout this
thesis. Although most of these are repeated (at least once) somewhere else, we also

collect them here for easy reference.

e X = {X, ; n € Z} denotes a stationary process with values in some space
(A, A), and distribution determined by the measure P on the product space
(A, A®).

e Similarly, Y = {Y,, ; n € Z} denotes a stationary process with values in some
space (A, A), and distribution determined by the measure Q on (A, A>).
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For integers —oo <17 < j < oo, we denote by Xg the vector of random variables
(Xi, Xit1,...,X;). Similarly, for a sequence (z,)nez of elements from a set A,

x{ denotes the part of the sequence between positions ¢ and j.

x denotes an infinite realization & = x°,_ € A* of the process X; similarly, y

denotes a realization y = y*_ € A® of Y.

“log” denotes the logarithm taken to base 2, and “log,” denotes the natural

logarithm.

H(X)é — >, P(x)log P(z) denotes the entropy (in bits) of the discrete random
variable X, distributed according to the probability mass function P.

H(P) denotes the entropy rate (in bits) of the process X with distribution P,

and is defined by

H(P) = lim ~ H(X™).

n—oo N

If X is stationary then, equivalently, H(P) = lim, E[—log P(X,|X_})].

H(PJ||Q) denotes the relative entropy (in bits) between the two probability
measures P and (), and is defined by

[ dPlog %, when 4 @ exists

00, otherwise.

H(P|Q) ={

I(X; Y)éH(P(X,y) | Px x Py) denotes the mutual information (in bits) between
the random variables X and Y, where Px and Py denote the marginals of X

and Y, respectively, and P(x y is their joint distribution.

p is some fixed measurable function p: A x A — [0,00), and {p,} is a sequence

of single-letter distortion measures p, : A" x A" — [0, 00) defined by
Pn xlayl prwyz a??EAn, y?EAnanzl

R(D) is the rate-distortion function (in bits) of the process X, with respect to

the sequence of distortion measures {p,} and at distortion level D; it is defined
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by
1
R(D) = lim — inf I(X];Y)")

n—00 1, TEQn

where Q,, is the space of all joint distributions 7, for (X7, Y}"), such that
[ pulat, yP)dm, (27, y7) < D and the X{-marginal of 7, is the same as the
original distribution of X7

e H.(X), H(P), H.(P||Q), I.(X;Y) and R.(D) denote the entropy, entropy rate,
relative entropy, mutual information and rate-distortion function in nats rather
than in bits, i.e., they have the same definitions as the corresponding functionals
without the subscript e, but with the logarithms to base 2 replaced with natural

logarithms.



18

CHAPTER 1.

INTRODUCTION



Chapter 2

The Shannon-McMillan-Breiman
Theorem, GGeneralizations, and

Refinements

In this chapter we collect several theoretical results that we will need in later parts
of this thesis. In Section 2.1 we present the Shannon-McMillan-Breiman theorem
and its refinements, and in Section 2.2 we give their generalizations to the case when

distortion is allowed.

2.1 Known Results

Shannon’s 1948 landmark paper [62] contains a remarkably deep observation about
“typical” patterns in random processes. Speaking of realizations of long sequences
XN = (X1, X, ..., Xy) generated by a stationary, ergodic, finite-state Markov chain,

“©

Shannon writes, . it is possible for most purposes to treat the long sequences as

though there were just 2N of them, each with a probability 2~ 7V .7 Mathematically,

this fact is formalized by the statement
1 . e
——log P(X]) — H in probability, (2.1)
n

where H is the entropy rate of the Markov chain {X,} (cf. [62, Theorem 3]).

In general, let X = {X,, ; n € Z} be a stationary ergodic process, with values in

19
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the finite set A called the alphabet of X, and with distribution determined by some
probability measure P on the space (A%, A%), where A® is the o-field generated
by finite-dimensional cylinders. In its general form, (2.1) is known as the Shannon-

McMillan-Breiman theorem.

Theorem 2.1 (Shannon-McMillan-Breiman Theorem [62][47][13])

For every finite-valued stationary ergodic process X,

1
——log P(X]") - H a.s. (2.2)
n

where H is the entropy rate of the process X, defined by

HZ H(P)Z lim E[-log P(Xy| X))
n—o00
Using the same approach as Breiman [13], Chung [15] in 1961 generalized (2.2) to
stationary ergodic processes X with countable alphabets, under the assumption that

In case of Markov chains it is not hard to see why (2.2) is true. We can expand

1 . 1 <& 1. P(X]|Xp)
—ElogP(Xl) = E;[—logP(XﬁXi_l)]—i—ﬁlogW
1 — . 1 -
= ﬁ;f(Xi—l)JrEC(Xo)a (2.3)

where X, = (X,, X,41) forms a new Markov chain X = {X, = (X,, X,41) ; n € Z}
with state-space T = {(a,b) € A x A : P(X; = b| Xy = a) > 0}, the func-
tion f : T — R is defined by f(a,b) = —logP(X; = b|Xy = a), and C(-) is
defined by C(a,b)2log[P(X; = b|Xy = a)/P(X, = b)], for (a,b) € T. There-
fore (2.3) says that —log P(X]') behaves like the sequence of partial sums of a
bounded function of a Markov chain, up to a bounded term. Since X is station-
ary and ergodic so is X, and the ergodic theorem implies (2.2) upon observing that
Ef(X;) = E[-log P(X,| X,)] = H, the entropy rate of X.

Shortly after Shannon’s paper, Yushkevich in 1953 [77], prompted by a question
raised by Kolmogorov, observed that normalizing —log P(X7") by 1/n instead of n
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and applying the central limit theorem for Markov chains yields

_logp(\)g) — 2 N0, 0), (2.4)

where

1
o? = lim —Var(—log P(X]")). (2.5)

n—-oo N
[« 2, » denotes convergence in distribution.] Yushkevich’s central limit theorem (2.4)
was later extended by Ibragimov [32] to more general stationary ergodic processes by
noticing that when the “memory” of the process X decays fast enough, — log P(X7)

still behaves like the partial sum of a stationary process, i.e.,

n n

—%logP(X{’) = %Z[—logP(XﬂXf_l)] ~ %Z[—logP(X”X:é)].

i=1 i=1

Essentially the same idea was used by Philipp and Stout [57, Chapter 9] in proving
an almost sure invariance principle for —log P(X7): Define a continuous time process
{p(t) ; t > 0} by letting p(t) = 0 for ¢t € [0,1) and p(t) = [ log P(Xlw) — |t]H]
for t > 1. To quantify the rate at which the memory of X decays we define several

mixing coefficients

Yn) = max E ‘ log P(Xp = a| X=1) — log P(Xy = a| X7} (2.6)
a(n) = sup{|P(CNB)—P(C)P(B)| : Bea(X",), Cea(XX)} (2.7)
¢(n) = sup{|P(C|B)—P(C)| : Bea(X",), C€a(X2X)}. (2.8)

If a(n) — 0 as n — oo X is called strongly mixing or a-mixing; similarly, if ¢(n) — 0
as n — oo X is called ¢-mixing; see [12] for an extensive discussion of the properties
of various mixing conditions of this form. The coefficients v(n) were introduced by
Ibragimov [32] and they measure how well X can be approximated by finite-order
Markov chains.

Theorem 2.2 (Phillip and Stout [57])

For every finite-valued stationary ergodic Markov chain X :
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(i) The following series converges:

o = E[-log P(Xo| X_1) - HJ’

+ QZE —log P(Xo| X_1) — H)(=log P(X},| Xs_1) — H)].  (2.9)

(ii) If 0® > 0, then there exists a standard Brownian motion {B(t) ; t > 0} such that
p(t) — oB(t) = o(\/t) a.s. (2.10)

(1ii) Moreover, (i) and (ii) remain true if the ergodic Markov chain assumption is
replaced by the assumptions that a(n) = O(n %% and v(n) = O(n™8), with o>
replaced by

o = E[-logP(Xo|X_L)—- H?

+ 2 Z E[(—log P(Xo| X=L) — H)(—log P(X, | X* 1y — H)]. (2.11)

k=1

As usual, we interpret (ii) as saying that, without changing its distribution, p(¢)
can be redefined on a richer probability space that contains a Brownian motion { B(t)}
such that (2.10) holds.

The numerous corollaries that can be derived from almost sure invariance prin-
ciples like the one in (2.10) are well-known and include the central limit theorem
(CLT), the law of the iterated logarithm (LIL), as well as their infinite dimensional,
functional counterparts (see, e.g., Strassen’s original paper [65], or [57, Chapter 1]).
Several of these corollaries will be explicitly stated in Chapters 3 and 4, when we
actually use (2.10) to obtain corresponding results for waiting times and recurrence
times.

In the case of Markov chains the expressions for o2 in (2.5), (2.9) and (2.11), of
course, all coincide; Yushkevich gave the following characterization of the degenerate
case 02 = 0. We supply a proof of a slightly stronger result in the Appendix, by

generalizing a formula of Fréchet [26].

Theorem 2.3 (Yushkevich [77], Kontoyiannis [39])
Let X be a finite-valued stationary ergodic Markov chain, with entropy rate H.
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The variance o® defined by (2.5) is equal to zero if and only if every string x" that
starts and ends in some fized state a € A, has probability, conditional on x1 = a,

either zero or q", for some constant q depending on X.

Finally, we will also need the following variation on Theorem 2.2. Let ) be a
stationary Markov measure on the same space as P, and assume that for all n large
enough, the finite-dimensional marginals P, of P are dominated by the corresponding

marginals @), of
P, < @, eventually. (2.12)

The relative entropy rate between P and () is given by

-1
H(P|Q) £ lim Ep {log P(X°|X")] .

Q(Xo|X_,)

and we define a continuous time process {¢(t) ; ¢ > 0} by letting ¢(¢) = 0 for ¢ € [0,1)
and ¢(t) = [~ log Q(X") — [t](H(P) + H(P||Q))] for t > 1.

Proposition 2.1
Let X be a finite-valued stationary ergodic process, and () be a stationary Markov
measure satisfying (2.12).

(i) We have

~logQ(X]) > H(P) + H(P|Q) P as

(ii) If X is also a Markov process then the following limit exists

o = = lim Varp(—log Q(X7)). (2.13)

(iii) If, moreover, o® > 0, there exists a standard Brownian motion {B(t) ; t > 0}
such that

q(t) — oB(t) = o(\/1) a.s. (2.14)
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Proof of Proposition 2.1: Part (i) follows from Barron’s generalized Shannon-
McMillan-Breiman theorem [8]. Parts (i) and (ii7) follow by an application of The-
orem 10.1 of Philipp and Stout [57] to the sequence

—logQ(XT) —n(H(P) + H(P||Q)) =

S 0(%,) ~ B8] + [og QX)) — (H(P) + H(PIQ))] (219
where g : T — R is the function g(a,b) = [—logQ(X;11 = b|X; = a)]. Since

Eg(X;) = H(P)+ H(PJ||Q) and ¢ is bounded, the right hand side of (2.15) is equal
(up to a bounded term) to the partial sum of a zero-mean, bounded function of a
Markov chain. O

2.2 Allowing Distortion

As we saw in the introduction, when we consider “approximate matches” or “matches
with distortion” between patterns generated by different processes, the quantity that
naturally replaces —log P(X7) is —log Q(B(X7, D)). Here, we will see how the
asymptotic results for — log P(X]) presented in the previous section generalize to the
case of —log Q(B(X7, D)).

Little has been done in this direction. Recently, Luczak and Szpankowski [45]
showed that, when A and A are finite sets, (1/n)log Q(B(X", D)) converges to some
constant R with probability one, and Yang and Kieffer [75] identified R as the solution
to a variational problem in terms of relative entropy (see Theorem 2.4 below). Neither
of these papers considered the problem of determining the second-order asymptotic
properties of —log Q(B(X7], D)), and they also left open the question of whether
analogous results can be established for processes taking values in general spaces A,
A. Here, we address both of these issues. The novelty in our approach is the use of
large deviations techniques to relate the Q-probability of the ball B(X}", D) around
the random center X' to an associated random walk induced by X7

The typical scenario we will encounter in Chapters 4 and 5 consists of two sta-
tionary ergodic processes X = {X,, ; n € Z} and Y = {Y,, ; n € Z} with possi-
bly different alphabets: Suppose X and Y take values in the Polish (= complete,
seperable, metric) spaces (A%, A4%) and (12100,/10"), and are distributed according
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to the probability measures P and (), respectively. Given a measurable function
p:AX A [0,00), the distortion between finite strings z7 € A™ and y} € A s

measured by:

n

n n 1
plat vi) = = > plwi ). (2.16)
i=1
For 27 € A" and D > 0 we write B(z7, D) for the ball of radius D around z7,
B(x},D) ={y; € A" : p(a7,y1) < D}.
Throughout this section we will assume, for simplicity, that () is a product mea-

sure, and write (0, for its one-dimensional marginal. Let

A .
Dmin - EPl[eYSlilglf p(Xl’Yi)]

>

Da.v EP(XIaYi)

and assume that

D, ox = esssup p(X1,Y1) € (Dmin, ).
(X1,Y1)

Since X is stationary and ergodic, if we take D > D,, then by the ergodic theorem
Q(B(X7],D)) — 1 with P—probability one, whereas Q(B(X], D)) = 0 eventually
P—almost surely for any D < Dy;,. Therefore, of interest is the range of distortions
D between Dy, and D,,, where Q(B(X7, D)) decays exponentially in a nontrivial
manner.

Although the structure of —log Q(B(XT, D)) is no longer that of a random walk,
our next two results show that we can relate —log Q(B(X7, D)) to a different random
walk on the same probability space, which arises from a functional of the empirical
measure P, = n ! Y i, dx, induced on A by X7'. Theorem 2.4 is proved in Section 2.3

and Theorem 2.5 is proved in Section 2.4.

Theorem 2.4
Let X be a stationary ergodic process, Q) be a product measure, and assume
D € (Dwin, Day). Then

~

—log Q(B(XT,D)) —nR(P,) = o(v/n) P—a.s. (2.17)
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where R(P,) = R(P,,Q1, D) is defined by the following variational problem:
R(PQuD) = inf [ H(O(I2)|Q:())dP,(x) 219

where the infimum is taken over all probability measures © on A X A such that the
A-marginal of © is P, and [ p(z,y)dO(z,y) < D.

A slightly different way to write R(pn, (1, D) that will be useful in Chapter 5 is
R(P,, @1, D) = inf[I(X;Y)+ H(Q}|Q1)], (2.19)

where the infimum is over all random variables (X,Y") with values in A x A, such
that X ~ P, Ep(X,Y) < D, and @} denotes the marginal of Y. Yet another
characterization of R(Pn, (1, D) is given by Proposition 2.2 in the next section.

Our first use of Theorem 2.4 is to prove the following generalization of Theo-

rem 2.1. Its proof is given in Section 2.3.

Corollary 2.1 (Shannon-McMillan-Breiman Theorem with distortion)

Let X be a stationary ergodic process, let () be a product measure, and assume

~

D € (Dmwin, Day). Then, R(P,) — R(P1) almost surely, and hence
1
- logQ(B(XT, D)) = R(P1,Q1,D) a.s. (2.20)

(As we already mentioned in the beginning of this section, in the finite-alphabet
case (2.20) was proved in [45][75].) Next, we investigate the behavior of the deviations

of R(P,) about its asymptotic mean R(P;) of order y/n. For any probability measure
pon Aand any A € R, let

8 = f1ogd [ enaqun b duo

Write A() = Ap,(-) when p = P, Ay(-) = As,(+) for any x € A, and define the
function A : R x A — [0, 00) by

B z) 2 (loge) {Ax(A) _ / A (NP, (x')] | (2.21)
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Theorem 2.5 provides an explicit approximation of \/n[R(P,) — R(P;)] by a random
walk induced by X7.

Theorem 2.5

Let X be a stationary process with a-mizing coefficients satisfying > a(n) < oo,
let Q be a product measure, and D € (Duin, Day). Then for some A\ = A(D) < 0 such
that A'(\) = D,

n[R(P,) — R(P)]+ > h(M X)) = o(vn) a.s. (2.22)

=1

where h is defined by (2.21).

We now easily see from Theorems 2.4 and 2.5 that the asymptotic behavior of
—log Q(B(XT], D)) is exactly that of a random walk

[~ log Q(B(X}, D)) = nR(P,,Q1, D)) + Y h(Xi Xi) = o(vn) as.  (223)

where h is a bounded and centered function of the X;’s. The following is an immediate

consequence of combining (2.23) with well-known CLT results (see, for example, [54,
Theorem 1.7]).

Corollary 2.2 (CLT)
Let X be a stationary process with a-mizing coefficients satisfying > a(n) < oo,
let Q be a product measure, and D € (Dmin, Day). Then, for X = X(D), the following

series CONVETGES

o = Ep {h(}; X1)%} +2§:Ep{h()\;X1)h()\;Xk)}, (2.24)

where h is defined by (2.21). Moreover, when o* > 0,

—ee QUL PN =) 2, vo,0%),
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and the sequence of processes

{#g%?;temﬂg, n>1

converges in distribution to standard Brownian motion, where q(t; D) = 0 fort € [0,1)
and q(t; D) = [~ log Q(B(X;", D)) — [t|R(P,, @1, D)] for t > 1.

Similarly, Corollary 2.3 is a consequence of (2.23) combined with the LIL [61].

Corollary 2.3 (LIL)

Let X be a stationary process with a-mizing coefficients satisfying > a(n) < oo,
let Q be a product measure, and D € (D, Day). Then, for 0? > 0 as in (2.24), with
P—probability one, the set of limit points of the sequence

n>3

~ 105 Q(B(X?. D) — nR(P)

coincides with the interval [—o, o). Moreover, with P—probability one, the sequence

of sample paths

q(nt; D)
\/2n log, log, n

s relatively compact in the topology of uniform convergence, and the set of its limit

;témi&, n >3,

points is the collection of all absolutely continuous functions r: [0,1] — R, such that
r(0) =0 and fol(dr/dt)zdt <o

Finally, the next Corollary generalizes Theorem 2.2; it follows from (2.23) and an

almost sure invariance principle proved by Philipp and Stout [57, Theorem 4.1].

Corollary 2.4 (Almost sure invariance principle)

Let X be a stationary process with ¢p-mizing coefficients satisfying > ¢(n) < oo,
let Q be a product measure, and D € (Dwyin, Day). Then, with 0 > 0 as in (2.24),
there ezists a Brownian motion {B(t) ; t > 0} such that

q(t; D) —oB(t) = o(\t) P — a.s. (2.25)
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2.3 Large Deviations

In this section we give the proofs of Theorem 2.4 and Corollary 2.1.

First we state in Lemma 2.1 some useful technical facts that will be needed in the
later proofs, and then we state the alternative characterization of the rate function
R in terms of relative entropy in Proposition 2.2. Their proofs are given in the
Appendix.

Lemma 2.1

Let 11 and v be arbitrary probability measures on A and fl, respectively. Let

Db = /essinfp(a:,Y) du(z)

Y~v
Dy = / p(z,y) du(z)dv(y)
Dhv = esssup p(X,Y)
(X,Y)~pxv

and for \,x € R define

M) = [1os, ([ @enaniy ) aute)

and its Fenchel-Legendre transform

A}, () = sup[Ax — Ay, (A)].
’ AER

v : :
Assume 0 < D> < DY < DRV < 0o. Then

min

(1) (A (M < ADEE

max”

(#1) Ay € C=, A, ,(0) = D&Y, A, (A) >0 for all A\ € R, and A}, ,(\) | Dy as

av 7 min

A — —00.

(#11) For each D € (Diyi,, DY), there exists a unique A < 0 such that A}, ,(\) = D

and A}, (D) = AD — Ay, (X). Therefore, A}, (D) is finite, continuous and
decreasing for D € (Dt DY),

min?

(iv) For p-almost any x € A, A5, , € C* and its derivatives are uniformly bounded

over p-almost aoll x € A and all A in a compact subset of R.
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Proposition 2.2
In the notation of Lemma 2.1 with p and v being arbitrary probability measures
on A and A, respectively, and D € (D DR ) we have,

R.(p,v,D) = (log,2)R(u,v,D) = A; (D)

where Re(p, v, D) is defined as in (2.18), but with relative entropy in nats instead of
bits.

Proof of Theorem 2.4. In order to simplify the notation, we will prove the
statement of the theorem in terms of natural logarithms rather than logarithms to

base 2, i.e., we will show that
—log, Q(B(XT, D)) —nR.(P,) = o(y/n) P—as. (2.26)
Let D& = [ p(x,y) dP,(x)dQ; (y), so that, by the ergodic theorem
D& — D,, P—as. (2.27)

Similarly let D) = Ep [essinfy, p(X1,Y7)], so that

min

D(n)

min

— Dyin P — ass. (2.28)

Given a realization of the X process such that both (2.27) and (2.28) hold, for n
large enough the given D will be strictly between Dﬁrﬁ)n and D). Therefore, by
Lemma 2.1 we can choose, for each n, a negative )\, such that A'Pn()\n) =D,
A}y (D) = AD — Ap (M), and A% (A,) > 0. We similarly choose A < 0 such that

A'(\) = D, and we claim that
Ap > A P —as. (2.29)

To see this suppose, for example, that limsup,,_, A, < A—¢, for some € > 0, so that,

eventually, \, < A —¢/2. Then by the ergodic theorem and the strict monotonicity
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of A" we get a contradiction:

D = limsupA’ (\,) < limsupAj (A —¢€/2) = Tim n~ ZA' A—¢€/2)

n—00 " n—00

= AN\ - 6/2) < A'()\) = D.
The case liminf, ,,, A, > A is ruled out similarly.

Before moving to the main part of the proof, we also show that
Al;:,n()\n) —A"(A) >0 P—as. (2.30)

Since

n

A%, (An) = A"(N)] < = ZW — Ay, (NI + %ZA’;@(A)—A"(A), (2.31)

i=1
we can bound the first term above, for any € > 0 and n large enough, by

esssup [\, (An) — A%, ()| < [An = Alesssup  sup A% (£)]

X1 X1 A—e<é<A+e

and this converges to zero, by (2.29) and Lemma 2.1. As for the second term of

(2.31), by the ergodic theorem it converges to zero, P—almost surely.

Now we choose and fix a realization & of X such that the statements (2.27),
(2.28), (2.29) and (2.30) all hold. Define ¢; = p(x;, i), Tn = S0, G, and T), = T,,/n,
with g, denoting the law of (. With a slight abuse of notation we write P, for
the (non-random, since x7 is fixed) empirical measure induced by z7 on A. In this
notation, Q(B(z", D)) = Pr(T}, < D), and, if we define

J, = "2 "pr(T, < D),

then in view of Proposition 2.2 and (2.26) the statement of the theorem can be

rephrased as

log, J,, = o(yv/n) P —as. (2.32)
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The upper-bound part of (2.32) follows from

J, = e"A}’"(D)E{l{TA <D}} < 5D p {enAn(Tn—D)}

— WD) Dl g {6AnTn} -1

(by the choice of A, and the definition of A ).

Turning to the proof of the lower bound, suppose n is large enough so that A,

exists, and define a new probability measure v, by

dvy, , ., a
i (21) = exp {)\n Z'ZZ - nA}sn()\n)} :

=1

Let "
G _ZhlG — Budl

nA% (An)

n
,  when (' ~ v,

It is easy to see that (G, is the partial sum of zero mean random variables, normalized
so that Var(G,) = 1. Observe that when (] is distributed according to v,

Aﬁ’n”()\n)
n

D

T, =D — G,

so that we can expand

Joo= PO, {1 e s o)
= FE, {HG@O}@A” VA, () G"}

7/871\/5 Gn }

v

E,, {1{0<Gn<6}6
> e PViPr, (0 < G, < 6), (2.33)

for any ¢ > 0, where 3, = =\, /A (\;) > 0 and 3, = O(1), by (2.29) and (2.30).

Since the random variables (; are uniformly bounded, and also Alzgn (An) is bounded
away from zero by (2.30), it is easy to check that the Lindeberg condition for the CLT
is satisfied by G, from which it follows that Pr, (0 < G,, < ) — p > 0 as n — oo.
Now choose M > 0 large enough so that M — (3, is bounded away from zero, and get
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from (2.33) that
liminf log, [eM\/E‘SJn] > log p > —o0,

n—0o0
ie.,

hggg)lf Vvn {M(SJrTlogeJ} —00

from which we conclude that

> — .

IITEI_I)IOE)lf \/_ log, J,, Mo
Since 0 > 0 was arbitrary and M > 0 was chosen independent of 9, letting ¢ | 0
completes the proof. O

Proof of Corollary 2.1. The result (2.20) immediately follows from Theorem 2.4,
provided we show that R(P,) — R(P,) almost surely, or, equivalently (by Proposi-
tion 2.2), that A;gn(D) — A*(D) almost surely. Recall that for all n large enough
A}n(D) = AD — Ap (M) and A*(D) = AD — A(]), as in the proof of Theorem 2.4,
where A, — A almost surely by (2.29). So we only have to show that A (A\,) — A(A),

which comes from an obvious adaptation of the derivation of (2.30). 0

2.4 Uniform Approximation

Proof of Theorem 2.5. Let XA and {\,} be chosen as in the beginning of the proof
of Theorem 2.4, so that, in particular, A*(A\) = AD — A(\) and A"(\) > 0. By the
continuity of A” we can choose constants 6,7 > 0 such that A”(\ + 6) > n whenever
0] < 6. Also, from (2.29), we can pick N = N(X7°) < oo P—almost surely, such that
|An — Al <6 foralln > N.

In view of Proposition 2.2, it suffices to show that

Vi {[Ap, (D) = A(D)] = [AQY) = Ap, (V]} = 0. (2.34)

From the definition of A}, and our choice of N, A}, (D) is given by the supremum of
[0D — Ap (0)] over all 0 € (A—0, A+ ), so (2.34) is the same as

Vnsup [0D —Ap (0+X) +Ap (A)] — 0. (2.35)
|0]<d



34 CHAPTER 2. SMB THEOREM, GENERALIZATIONS, REFINEMENTS

Since this supremum is always non-negative (take § = 0), (2.35) is equivalent to

n

1
liminf /7 inf — 6.X,) — £(0,X,)] >0, 2.
gggwm%nZ]ﬂ,) F0,X:)] >0 (2.36)
where f(6,x) = Ay (A+6)—(A\+0)D. By Taylor’s theorem we can expand the function
g(0) =n"1>", f(0,X;) around 0 = 0, to obtain

%zn;[f(e, Xi) = (0, X)) = 04, + %QBn(e) : (2.37)

where A, = n7' Y0 (0, X;) and B,(0) = £ 3" | f"(&, X;) for some &,(6) such
that |£,] < .

The family of functions {f”(&,) ; £ € (=4, 0)} is uniformly bounded and equicon-
tinuous (by Lemma 2.1), so by the uniform ergodic theorem (see, for example, [60,
Section 6]),

n

LS 16 X0 - Epf(6, X))

n <
=1

sup —0 P—a.s.

§l<o

Therefore, P—almost surely, by the choice of ¢,

lim inf inf g5 B, (0)
n— o0

n

> lim inf { inf Epf"(£,X1) — sup ! Zf”(gaXi) — Epf"(§, X1)

}

n—00 |El<é l€]<d n p—
> inf Epf'(€, X)) = inf A"(A+€)>75>0. (2.38)
1€]<d |€]<d

By our choice of A, we have Epf'(0,X;) = A'(\) = D = 0, so A, is the partial
sum corresponding to the zero-mean stationary process {f'(0,X,) ; n > 1}. Since
> a(n) < oo and the random variables f'(0, X;) are bounded, the LIL [61] implies
that \/nA?2 — 0 P—almost surely. Since the infimum over || < ¢ of the right side
of (2.37) is bounded below by —AZ2/infjg s B,(f), combining this with (2.38) gives
(2.36) and completes the proof. 0



Chapter 3

Recurrence in Stationary Processes

3.1 Introduction and Main Results

As we have seen in the introduction, recurrence properties are important in the study
of stationary processes in probability theory, and dynamical systems in ergodic theory.
In this chapter we investigate the asymptotic behavior of recurrence times for finite-
valued stationary processes, under various mixing conditions.

As before, let X = {X,, ; n € Z} be a stationary ergodic process with values
in a finite alphabet A and distribution determined by the probability measure P on
(A, A*), where A% is the o-field generated by finite-dimensional cylinders. Given
a realization  from X, our main quantity of interest here is the recurrence time R,

defined as the first time until the opening string =7 recurs in the past of x:
R, = inf{k>1: 27} =2}

There has been a lot of work on calculating the exact asymptotic behavior of
R,. Wyner and Ziv [69], motivated by coding problems in information theory, drew
a deep connection between recurrence times and the entropy rate of the underlying
process. They proved that R, grows exponentially with n and that the limiting rate is
equal to the entropy rate H = H(P) = lim,, E[—1log P(X,| X_,)] of X. Specifically,
they showed that for stationary ergodic processes (1/n)log R, converges to H in
probability, and they suggested that this also holds in the almost sure sense. Indeed,
this was later established by Ornstein and Weiss [53] who showed that for stationary

35
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ergodic processes
1
—logR, - H as. (3.1)
n

In their analysis, Wyner and Ziv used a theorem of Kac from [34] which can be
phrased as follows: If X is stationary ergodic, then for any opening string =7 we have
E(R, | X} = 21) = 1/P(2}). This provides a strong formal connection between R,
and H: Taking logarithms of both sides in Kac’s theorem, dividing by n and applying

the Shannon-McMillan-Breiman theorem yields
.1 1
lim —log E(R, | X]') =lim —log[l/P(X})]=H as. (3.2)
n n n n

We can therefore rephrase the Wyner-Ziv-Ornstein-Weiss result (3.1) by saying that
they strengthened (3.2) by removing the conditional expectation

1 1
lim —log R, =lim —log[l/P(X]")]=H as. (3.3)
n n n n

The crucial observation here is that (3.3) can be thought of as a strong approximation
result between log R,, and —log P(X7):

log[R,P(X])] = o(n) as. (3.4)
Our first result is a sharper form of (3.4).

Theorem 3.1 (Strong approximation)
Let X be a finite-valued stationary ergodic process, and {c(n)} an arbitrary se-

quence of non-negative constants such that Zn?‘c(”) < 00. We have,

(1) log[R,P(X7)] < ¢(n) eventually a.s.
(i) log[R,P(XT|X2,)] > —c(n) eventually a.s.

Theorem 3.1 is proved Section 3.2. Notice that it suffices to take ¢(n) > 3logn
in order to satisfy the condition Y n27“" < oco. In particular, taking c(n) = en®
in Theorem 3.1 and letting € | 0 we obtain the following Corollary (proved in Sec-
tion 3.2).
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Corollary 3.1

(a) For every finite-valued stationary ergodic process X,
log[R,P(XT])] = o(n) a.s.
(b) If, moreover, > v(n) < oo then for any > 0
log[R,P(X™M)] = o(n?) a.s.
Recall that the coefficients y(n) were defined in (2.6) in Section 2.1, by

y(n) = maj(E|logP(X0—a|X 1) —logP(Xg=al|X_,)|,
ac

and the a—mixing coefficients defined in (2.7) by
a(n) = sup {|P(CNB) - P(C)P(B)| : Beo(X",), Ce€a(X>)}.

We can now use Corollary 3.1 to read off the exact asymptotic behavior of log R,
from that of —log P(X]"). As we saw in the previous chapter, if X is ergodic, the
Shannon-McMillan-Breiman theorem says that (—1/n)log P(X}') converges almost
surely to H, and combining this with Corollary 3.1 we get (3.1). If X is a Markov
chain or, more generally, if it satisfies certain conditions on the rate of decay of a(n)
and y(n), then — log P(X7') behaves like the partial sum sequence of a strongly mixing
stationary process, so it satisfies a central limit theorem (CLT), a law of the iterated
logarithm (LIL), their infinite dimensional (functional) counterparts, as well as an
almost sure invariance principle. Combining Theorem 2.2 with Corollary 3.1 gives
us an almost sure invariance principle for log R,: Define a continuous-time process

{R(t) ; t > 0} by letting R(t) = 0 for ¢t € [0,1) and R(t) = [log R|;) — [t] H] for t > 1.

Theorem 3.2 (Almost sure invariance principle)
Let X be a finite-valued stationary ergodic Markov chain, and let o? be defined as

o’ = E[—logP(X0|X 1) — HJ?

+ QZE —log P(Xo| X_1) — H)(—log P(X},| Xy_1) — H)).
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(i) If % > 0, then there exists a standard Brownian motion {B(t) ; t > 0} such that
R(t) —oB(t) = o(V/t) a.s.

(ii) Moreover, (i) remains true if the ergodic Markov chain assumption is replaced by
the assumptions that a(n) = O(n=3%%) and v(n) = O(n™®), and o? is replaced by the
expression in (2.11).

[t is now a routine matter (see, e.g., [57, Chapter 1]) to obtain from the almost

sure invariance principle of Theorem 3.2 the second-order asymptotic behavior of R,,:

Corollary 3.2
Under the assumptions of Theorem 3.2, if 0% > 0:

(1) CLT:
loan—nH i} N(O,l)
ovn

Moreover, the sequence of processes

{im\/g;te[o,l]}, n>1,

converges in distribution to standard Brownian motion.

(17) LIL: With probability one, the set of limit points of the sequence

| n — nH
{ og R n }, n> 3.

v/2nlog, log, n

coincides with the interval [—o,0]. Moreover, with probability one, the sequence of

R(nt
(n) L te0,1]y, n>3,
o+/2nlog,log, n

15 relatively compact in the topology of uniform convergence, and the set of its limit

sample paths

points is the collection of all absolutely continuous functions r: [0,1] — R, such that

r(0) =0 and [ (dr/dt)?dt < 1.

Remark. Recall that, at least in the case of Markov chains, a characterization of

the degenerate case 02 = 0 was provided in Chapter 2 by Theorem 2.3.
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3.1.1 Match Lengths

The story of the asymptotics of R, can equivalently be told in terms of match lengths
along a realization. Given a realization  from X, we define M, as the length n of
the longest string x7 starting at x; that also appears starting somewhere else in the

. ., . 0 .
previous m positions xZ,, :

M,, = sup{n >1 : 2} = xigfln, for some j=1,2,...,m}.
Following Wyner and Ziv [69] we observe that there is a nice duality between recur-

rence times and match lengths, in that
M,, >n ifand only if R, <m. (3.5)

Consequently, all asymptotic results about R, can be translated into corresponding
results about M,,. For example, the almost sure convergence of (1/n)log R, to H is
equivalent to

M, 1

— a.s. 3.6
logm_>H a5 (36)

The CLT and LIL for log R,, (Corollary 3.2) translate to:

Corollary 3.3

Under the assumptions of Theorem 3.2:

(i) CLT:
M, — logm >
oA — N(0,1
oH=3/2\/logm (0,1)
(17) LIL:

logm
M,, — & _,

a.s.

lim su
n—>oop oH-3/2,/21log mlog, log, logm

3.1.2 Earlier Work

In addition to the historical remarks in Section 1.3, we provide a few comments and
references to more recent work and closely related results.

Wyner and Ziv discovered the result in (3.1), which was formally established by
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Ornstein and Weiss [53] using methods from ergodic theory. In the Markov case,
A.J. Wyner [72] used the Chen-Stein method for Poisson approximation and Markov
coupling to prove a one-dimensional CLT for waiting times, and he also remarked
that his methods can be modified to prove the one-dimensional CLT for R,, in Corol-
lary 3.2 (7). In the memoryless case, Louchard and Szpankowski [44] and Jacquet and
Szpankowski [33] proved implicit first- and second-order results for recurrence times,
by exploiting a connection between match lengths in realizations of memoryless pro-
cesses and feasible paths in random trees. We also mention that the first-order results
abour recurrence times and match lengths were extended to processes with countably
infinite alphabets and to random fields in several dimensions by Kontoyiannis et al.
in [42].

The approach introduced in this chapter provides a natural probabilistic frame-
work for studying the asymptotic behavior of R,,. From Theorem 3.1 and Corollary 3.1
we can deduce strong results that were not previously known, as well as new proofs
of several known results. Moreover, Theorem 3.1 tells us why these results are true;
because, in a strong pointwise sense, the recurrence time is asymptotically equal to
the reciprocal of the probability of the recurring string.

3.2 Strong Approximation

We deduce Corollary 3.1 from Theorem 3.1 and give the proof of Theorem 3.1.

Proof of Corollary 3.1. For part (b) let 8 > 0 arbitrary. Since 3" n2-"" < oo for
any € > 0, from (z) and (i7) of Theorem 1 we get

1
limsup — log [R,P(X])] < 0 as. (3.7)
n—oo T
and o1 o0
hggg)lf e log[R,P(X{|X2)] > 0 as, (3.8)

so it suffices to show that

log P(X}) —log P(X7'| X°) = O(1) as. (3.9)
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First, expanding,

| log P(X{) —log P(X{'| X°2,) | < D [ log P(X; | X{™') — log P(X; | X3) |,

i=1
and then taking expectations,

E|log P(X}) — log P(X' | X25)| < D 7(0)-
=1

Now Y2 (i) < oo implies (3.9).

For part (a), taking 3 = 1 in equations (3.7) and (3.8) above, we see that it suffices
to show

SRS

[log P(XT]) —log P(X]'| X° )] = 0 as. (3.10)

By the Shannon-McMillan-Breiman theorem, the first term converges almost surely to
—H, and the second term equals (1/n) Y7 [—log P(X;| X".!)], which converges to
E[—log P(Xy | X_L)] = lim, E[—log P(X,| X_})] = H almost surely, by the ergodic
theorem and the definition of H. This proves (3.10) and completes the proof. O

Proof of Theorem 3.1. Part (i). Given an arbitrary positive constant K, by

Markov’s inequality and Kac’s theorem,

E(R, | X?=ay) 1

P(R,>K|X"=2z") < — :

for any opening sequence z7 with non-zero probability. Since P(z7) is constant with

respect to the conditional measure P(-| X7 = 27), we can let K = 2¢" /P(27) to get
P(log[R,P(X7)] > c(n) | X} =27) = P (R, >2"/P(a}) | X] =a}) < 27

Averaging over all opening patterns 27 € A", P(log[R,P(XT)] > ¢(n)) < 27¢ and
the Borel-Cantelli lemma gives (7).
Part (7). We now condition on the infinite past X° _ instead of the opening string

X7. Fix any 2°  and consider

P {log[Ry (X)P(XT | X2 )] < —c(n) | X2 g = a0} =
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9—c(n)
n n . n_ .n 0 0 — .0
P {zl € A" : P(XT =27|X2,) < Rt ) ‘ X2 x_oo},

— 00

where * denotes concatenation of strings. If we let G,, = G,,(z° ) denote the set
{(fean: P |a".) < 20 /R, (0« )}
then the above probability can be written as

Y Plrlay) < ) 270/Ry (el ¢ o)

< 270 3" /R, (a0 x 27). (3.11)

2 EAn

0
—00

R, (2% * 2) = 4, so the sum in (3.11) is bounded above by

Since x is fixed, for each j > 1 there is exactly one string z" from A" with

sn

Y YRy v 2) < Y 1/j < Cn,

Z?EA” 7j=1
for some positive constant C', where s = |A| is the cardinality of A. Therefore,
Plog[RaP(X] | X0,0)] < —c(n)| X2, = a0,) < Cn2=),

and since this bound is independent of 2% __ and summable over n, from the Borel-

oo

Cantelli lemma we deduce (i7). O

Remark. In the proof of (i7), only the stationarity (and not the ergodicity) of X

was used.



Chapter 4

Waiting Times Between Stationary

Processes

4.1 Motivation

In this chapter, we consider a more general version of the recurrence times problem
addressed in Chapter 3. We ask how long it takes before a random pattern generated
by some process X first appears in a realization of a (possibly different) process Y.
Going a step further, we allow for distortion in the patterns, and we ask for the first
“approximate” appearance of a random pattern, within some prescribed accuracy.
To be precise, we consider two stationary processes X = {X,, ; n € Z} and
Y = {Y, ; n € Z} taking values in the Polish (= complete, seperable, metric) spaces
(A, A*) and (A*, A®), and distributed according to the probability measures P
and @), respectively. To measure “closeness,” we fix a nonnegative measurable func-
tion p on A x A, and define the distortion between two finite strings z? € A" and

yp € A" by
n n 1 -
p(@t, yr) = n Zp(%‘:yi)-
i=1
For 7 € A™ and D > 0, we write B(z7, D) for the ball of radius D around z7:
B(z}, D) = {yi € A" : p(a?,y}) < D}.

43
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Given D > 0 and two independent realizations x, y from X and Y, respectively, our
main quantity of interest here is the waiting time W, (D) until a D-close version of

x first appears in y°:
W.(D) = inf{k >1:yt" ' € B(z},D)}.

In the special case when we look for exact matches (corresponding to taking D = 0
and p being Hamming distortion), we omit the D and write W), instead of W, (D).

The asymptotic behavior of waiting times has been studied extensively and very
actively during the past ten years, motivated primarily by important applications in
the areas of data compression, DNA sequence analysis, and string matching algo-
rithms in computer science. Some examples of these applications were discussed in
Chapter 1. In Chapter 5 we will see how the results we obtain here can be interpreted
in the context of data compression (Section 5.2.1), and also how they can be extended
to prove the optimality of a new data compression algorithm (Section 5.2.2).

Before we move on to our own results, in the next section we briefly describe what

is already known in this area.

4.1.1 Earlier Work

In its simplest form, the problem of the asymptotic behavior of waiting times first
appeared in Wyner and Ziv’s work on data compression [69]: X and Y were assumed
to have the same distribution over the same finite alphabet, and no distortion was
allowed. In that case, Wyner and Ziv showed that (1/n)log W, converges, in prob-
ability, to the entropy rate H of X. Moreover, they suggested that the same result

holds in the almost sure sense,
1
—logW,, = H as. (4.1)
n

and this was later established by Shields [63] using ideas and methods from ergodic
theory. These results were extended further, first by Nobel and Wyner [51] who
showed that the convergence in probability holds for processes that are a-mixing
with a certain rate, and then by Marton and Shields [46] who proved that (4.1) holds

for the class of weak Bernoulli processes. Shields [63] also provided a counter-example
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to show that (4.1) does not hold in the general ergodic case. Finally, a CLT-refinement
to (4.1) was discovered by A.J. Wyner in his Ph.D. thesis [72], where he used Poisson
approximation to prove that, when X is a finite-state, stationary ergodic Markov
chain,
logWo —nH 2, N 7).
ovn

Much less is known in the case when distortion is allowed. Recently, Luczak
and Szpankowski [45] showed that, for processes X and Y with a finite alphabet,
(1/n)log W,,(D) converges to some constant R with probability one. Independently
and around the same time Yang and Kieffer [75] also proved the same result, and
they identified the constant R as the solution to a variational problem in terms of
relative entropy (see Theorem 2.4 in Chapter 2, or Corollary 4.7 below).

In this chapter we introduce a natural probabilistic framework which gives us a
unified strategy for greatly generalizing and extending these recent results, and also
allows us to recover most of the known asymptotic results for waiting times in full

generality.

4.1.2 The Strong Approximation Framework

The gist of the approach we took in Chapter 3 to understand recurrence times was to
realize that the time R, until a match for the pattern X7 is found is approximately
equal to the reciprocal of the probability P(X7) of this pattern. Our main idea
here is to extend this intuition to the case of waiting times: We claim that the time
W, (D) until a D-close match for the pattern X7 appears can be approximated by
the reciprocal of the probability Q(B(X7, D)) of finding such a match:

1

WulP) ~ BT D)

This claim is made precise in our first result, Theorem 4.1, which enables us to
deduce the asymptotic properties of the waiting times W,,(D) from the corresponding
properties of the probabilities Q(B(X}, D)). In view of Chapter 2 and the detailed
study of Q(B(X7, D)) it contains, this is a very pleasant position to be in!

The power of this formulation is amply demonstrated in the next three subsections,

where we state nine non-trivial, immediate corollaries of Theorem 4.1, providing a
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complete description of the asymptotic behavior of W, (D).

Theorem 4.1 (Strong approximation)

Let X be a stationary ergodic process, let' Y be a stationary process with ¢-
mizing coefficients that satisfy > ¢p(n) < oo, and assume that Q(B(X}, D)) > 0,
eventually P—almost surely. For any sequence of nonnegative constants {c(n)} such
that Y ne=“™ < oo we have,

|log[W,.(D)Q(B(X7,D))]| < ¢(n) eventually P x Q—a.s.

[Recall from (2.8) of Chapter 2 that the ¢-mixing coefficients of the process Y ~ @
are defined by ¢(n) = sup {|Q(C|B) — Q(C)| : Beo(Y",), C € a(Y,®)}]
Taking ¢(n) = ey/n in Theorem 4.1 and letting € | 0 we obtain

log I,.(D) — log[1/Q(B(XT, D))] = o(v/n) P xQ—as. (4.2)

Now we can combine (4.2) with the various results of Chapter 2 about Q(B(X7T, D))
to harvest the fruits of our labor there, in the form of a series of interesting corollaries

about waiting times.

4.2 Waiting Times Results

We consider three separate cases.

4.2.1 Waiting Times With No Distortion

When X and Y have the same distribution P and take values in the same finite
alphabet A, it is clear that Q(B(X7, D)) is just P(X7]), and, of course, P(X]") > 0
with P—probability one. Therefore, we can apply Theorem 4.1, and rewrite (4.2) as

logW,, —log[1/P(XT])] = o(v/n) P x P —as. (4.3)

Combining this with the Shannon-McMillan-Breiman theorem (Theorem 2.1):
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Corollary 4.1 (SLLN; Marton & Shields [46])

Let X and'Y be finite-valued stationary processes, with the same distribution P,
entropy rate H, and ¢-mizing coefficients that satisfy > ¢(n) < co. We have,

1
—logW,, - H P x P—a.s.
n

Similarly, combining (4.3) with the almost sure invariance principle of Theo-
rem 2.2, gives us an almost sure invariance principle for W,,. Define a continuous-time
process {w(t) ; t > 0} by w(t) =0, t € [0,1), and w(t) = [logW, — [t|H], t > 1.
Recall that the a- and ~-mixing coefficients for X ~ P were defined in (2.7) and
(2.6) by a(n) = sup{|P(CNB)—P(C)P(B)| : Beo(X’,), C €c(X)} and
v(n) = maxeq E|log P(Xo = a|X_L) —log P(X, = a| X_})|, respectively

Corollary 4.2 (Almost sure invariance principle)
Suppose X and Y are finite-valued stationary ergodic Markov chains with the
same distribution P and entropy rate H, and let o* be defined as in (2.9):

o’ = E[—logP(X0|X 1) — HJ?

+ QZE —log P(Xo| X_1) — H)(—log P(X},| Xy_1) — H)).

(i) If 0 > 0, then there exists a standard Brownian motion {B(t) ; t > 0} such that
w(t) —oB(t) = o(\t) a.s.

(ii) Moreover, (i) remains true if the ergodic Markov chain assumption is replaced by
the assumptions that a(n) = O(n™%%), 3" ¢(n) < oo, and v(n) = O(n™®), and o>
replaced by the expression in (2.11).

As in the case of recurrence times in Chapter 3, from the above almost sure
invariance principle we immediately conclude that log W, satisfies a central limit

theorem, a law of the iterated logarithm, and their functional counterparts:

Corollary 4.3
Under the assumptions of Corollary 4.2, if 02 > 0:
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(1) CLT:
1 —nH
logWo =l o, g 1)
ovn

Moreover, the sequence of processes

{igg;temJG, n>1,

converges in distribution to standard Brownian motion.

(17) LIL: With probability one, the set of limit points of the sequence

| n— nH
{ og W, n }, n> 3.

v/2nlog, log, n

coincides with the interval [—o,0]. Moreover, with probability one, the sequence of

t
w(nt) L te0,1]y, n>3,
o+/2nlog,log. n

15 relatively compact in the topology of uniform convergence, and the set of its limit

sample paths

points is the collection of all absolutely continuous functions r: [0,1] — R, such that
r(0) =0 and [ (dr/dt)?dt < 1.

[As we already mentioned, in the Markov case, the one-dimensional version of the
CLT in (¢) was proved by A.J. Wyner in his Ph.D. thesis [72].]

4.2.2 Waiting Times Between Different Processes

Now suppose that the processes X and Y take values in the same finite alphabet,
but they have different distributions given by the measures P and (), respectively.
Throughout this section we assume that, for all n large enough, the finite dimensional

marginals of X are dominated by the corresponding marginals of Y,
P, <€ @, eventually,

otherwise the waiting times WW,, will be infinite with positive probability. This assump-
tion clearly implies that Q(B(X], D)) = Q(X7]) > 0, eventually P—almost surely, so
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we can invoke Theorem 4.1 to get, via (4.2), that

logW,, — log[1/Q(XT)] = o(v/n) P xQ —a.s. (4.4)

The behavior of the waiting times can now be deduced from combining this with

Proposition 2.1.

Corollary 4.4 (SLLN)
Let X be a finite-valued stationary ergodic process with distribution P, 'Y be
a stationary ergodic Markov chain with distribution @), and assume that P, < @,

eventually. We have,
1
- logW,, = H(P)+ H(P||Q) a.s.

where H(P) is the entropy rate of X, and H(P||Q) is the relative entropy rate between
X andY,

-1
H(P|Q) £ lim Ep {log P(X°|X")] .

Q(Xo|X_,)

Corollary 4.5 (Almost sure invariance principle)

Let X and'Y be finite-valued stationary ergodic Markov chains with distribution
P and Q, respectively, assume that P, < Q, eventually, and let 02 be defined as in
equation (2.13):

o? = = lim Varp(—log Q(X7)). (4.5)
n—o0
If 02 > 0, then there exists a standard Brownian motion {B(t) ; t > 0} such that
w(t) —oB(t) = o(vt) a.s.

where {w(t) ; t > 0} is the continuous-time process defined by letting w(t) = 0 for
t€[0,1) and w(t) = [logWy, — [t](H(P)+ H(P||Q))] fort > 1.

As before, this immediately implies:

Corollary 4.6
Under the assumptions of Corollary 4.5, the CLT and LIL (and their functional
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counterparts) of Corollary 4.8 remain valid in this case, with o defined as in (4.5),

H replaced by [H(P) + H(P||Q)], and w(-) replaced by w(-).

4.2.3 Waiting Times Allowing Distortion

Next we turn to the most interesting case, the case when distortion is allowed. As in

Chapter 2, we define

A
Dupiw = E 1 inf X7Y
P[‘}Sf;lgl p(X1,Y1)]

>

Dav Ep(Xh)/l)a

and we assume that

D \ax 2 esssup p(X1,Y1) € (Dmin, 00).
(X1,Y1)
For simplicity, we will also assume throughout this section that the process Y is
a sequence of independent and identically distributed random variables (an “i.i.d.
process” ).

Since X is stationary ergodic, if D < Dy, we will have W,,(D) = oo, eventually
almost surely, by the ergodic theorem. Similarly, if D > D,, then W, (D) = 1, even-
tually almost surely. We, therefore, concentrate on the range of interesting distortion
values between Dy, and D,y,, where W, (D) increases exponentially. In that range we
have Q(B(XT, D)) > 0, eventually P—almost surely, so we can apply Theorem 4.1.
Our first result comes from combining (4.2) with Corollary 2.1 and (2.19):

Corollary 4.7 (SLLN)
Let X be a stationary ergodic process, Y be and i.i.d. process, and assume
D € (Dwin, Day). We have,

1
EIOan(D) — R(Pl,Ql,D) PXQ—(L.S.
where

R(P,Q1, D) = inf / H(O(12)|Q1()dPu(x) = [ I(X;Y) + H(Q,|Q)] (4.6)
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where the infimum is taken over all random variables (X,Y") such that Ep(X,Y) < D,
X ~ Py, © denotes the conditional distribution of Y given X and Y ~ Q.

(Recall that an alternative characterization of R(Py, )1, D) was given in Proposi-
tion 2.2.) Before moving on to the corresponding second-order results, we recall from

Chapter 2 the averaged logarithmic moment generating function A(-),

A0 = [1os.{ [ o900, } ara),

the function h(-;-) defined by

) £ g { [ 9aau(0)} - togeracy (17)

and that for any D € (Dyy, Day) we can choose a A = A(D) < 0 such that A'(\) = D
(by Lemma 2.1). Now we can combine (4.2) with Corollaries 2.2, and 2.3, to obtain
the CLT and LIL for the waiting times W, (D):

Corollary 4.8
Let X be a stationary process with a-mizing coefficients satisfying > a(n) < oo
and let Y be an i.i.d. process. Given D € (D, Day), let 0% be defined as in (2.24),

0’ = Ep{h(A(D); X))’} +2>_ Ep{h(MD); X1)h(A(D); Xx)} , (4.8)

with h given by (4.7). If 0® > 0, we have:
(i) CLT:

log Wn(D\)/ﬁ— nR(Py) N N(0,0?).

Moreover, the sequence of processes

{%;te[o,ﬂ}, n>1

converges in distribution to standard Brownian motion, where {w(t; D) ; t > 0} is
the continuous-time process defined by letting w(t; D) = 0 fort € [0,1) and w(t; D) =
log Wy (D) — [t]R(Py, Qq, D)] fort > 1.
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(17) LIL: With P x Q—probability one, the set of limit points of the sequence

n>3

log W (D) — nR(P)
v/ 2nlog, log, n ’

coincides with the interval [—o,0]. Moreover, with P x Q—probability one, the se-

quence of sample paths

w(nt; D)
\/2n log, log, n

15 relatively compact in the topology of uniform convergence, and the set of its limit

;tG[U,ll}, n >3,

points is the collection of all absolutely continuous functions r: [0,1] — R, such that
r(0) = 0 and [, (dr/dt)?dt < o”.

Finally, combining (4.2) and Corollary 2.4, yields:

Corollary 4.9 (Almost sure invariance principle)

Let X be a stationary process with ¢-mizing coefficients satisfying > ¢(n) < oo
and let Y be an i.i.d. process. Given D € (D, Day), let 02 be defined as in (4.8).
If 02 > 0, then there exists a standard Brownian motion {B(t) ; t > 0} such that

w(t; D) — oB(t) = o(V/t) a.s.

4.3 Match Lengths Results

As in the case of recurrence times, here also the waiting times story can equivalently
be told in terms of match lengths between realizations: Given an integer m > 1, a
distortion level D, and two independent realizations « and y from the processes X
and Y, respectively, we look for the longest string x¢ that matches, within distortion

D, somewhere in y". The length L,,(D) of this longest match is of interest here:
Ln(D) = sup{n >1 : y§:+n_1 € B(z},D), forsome j=1,2,...,m}.

When no distortion is allowed, we omit the D and write L,, instead of L,,(D).
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As we discussed in Chapter 1 (Section 1.2.3), intuitively we expect that there is
some sort of relationship between match lengths and waiting times; it seems plausible
that long match lengths should imply short waiting times, and vice versa. In this
section we show that this intuition can be made precise, and that we can use it to
translate our waiting times results into corresponding results for match lengths. Note,
however, that when we allow for matches with distortion, the duality relationship
between W, (D) and L,,(D) becomes a more complex one, so that there is some work
to be done in the “translation” from W, (D) to L, (D).

Let us begin again with simplest case. Suppose that no distortion is allowed, and
the processes X and Y have the same distribution P over the same finite alphabet
A. Here the duality between L,, and W, is manifested in precisely the same way as

in the context of recurrence times (cf. (3.5)):
L, >n ifand only if W, <m. (4.9)

Therefore, just as in Section 3.1.1, all asymptotic results about waiting times imme-

diately give us corresponding results about match lengths:

Corollary 4.10 (Match lengths without distortion)
Under the assumptions of Corollary 4.1, we have:
(i) SLLN:

L, 1
- — P XxXP—a.s.
logm H

where H = H(P) is the entropy rate of X. Moreover, under the assumptions Corol-
lary 4.3 we have:
(i) CLT:

(iii) LIL:

lim sup a —oH3? PxP-as
m—c0 \/2 logm log, log, logm
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where o* is defined by (2.11).

We note that the almost sure convergence in (i) was discovered by Wyner and Ziv
[69], and, in the Markov case, the CLT in (iz) was first proved by A.J. Wyner in his
Ph.D. thesis [72].

Now, if X and Y have different distributions given by the measures P and @),
respectively, over the finite alphabet A:

Corollary 4.11 (Match lengths between different processes)
Under the assumptions of of Corollary 4.4 we have:
(i) SLLN:
L, 1

— =
logm H

P xQ — a.s.

where H 2 H(P) + H(P||Q). Moreover, under the assumptions of Corollary 4.6 we

have:

(i) CLT:
L. — log~m > ) s
= __H 2, N(0,02H7?)
Viegm ’
(11i) LIL:
L, — am _
lim sup a —oH3? PxQ-as

m—00 \/2 logm log, log, logm
where o? is defined by (4.5).

Coming back to the general case, suppose that the processes X ~ P and Y ~ @)
take values in the general alphabets A and A, respectively, and that nonzero distortion
is allowed (we still assume that X, Y and the distortion measure p are defined as in
Section 4.2.3, above). Here, although the general intuition of the duality relationship
between waiting times and match length remains true, its mathematical form has to
be modified to:

L,(D)>n ifand only if [W,(D)<m for some k > n]. (4.10)
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The reason why here we need to consider all possible waiting times Wy (D), k > n, is
that, unlike the case of no distortion, here the sequence {Wy(D) ; k > n} is no longer
monotonically increasing, as can be seen from the following simple binary example:

If we let p be Hamming distortion, and set D = 0.4, then for the realizations

y* = 1010011 -

we have Wy(D) = 4 but W3(D) = 1.
The relationship (4.10) is exploited in Section 4.5 to show how we can still recover
the asymptotic behavior of L,,(D) from that of W, (D):

Theorem 4.2 (Match lengths with distortion)

Under the assumptions of of Corollary 4.7 we have:
(i) SLLN:

L..(D) 1
_> J—
logm R

P xQ — a.s.

where R = R(P;,Q1, D). Moreover, under the assumptions of Corollary 4.8 we have:
(i) CLT:

(iii) LIL:

Lm D) — logm
lim sup (D) R = oR3? PxQ-—as.
m—00 \/2 log m log, log, logm

where o? is defined by (4.8).
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4.4 Strong Approximation

Proof of Theorem 4.1. Write P for the product measure P x @), and for each integer
m>1let G, ={x: Q(B(z},D)) >0 for all n > m}. For the upper bound we use

a standard second-moment blocking argument.

Choose and fix any integer m > 1, pick an arbitrary & € G,,, and let n > m be
large enough so that ¢“™ > n+1. Let K > n+1 and write S, = Zy:(é(n) I,,(j), where
I,,(7) is the indicator function of {YJ%ZLI) € B(z},D)} and V(K,n) = [(K — 1)/n].

Then

0 on B Varg(Sy)
P(W,(D) > K| X! =2") < Q(S, =0) < (E;W (4.11)
By stationarity,
EqSn = [V(K,n) +1]Q(B(a7, D)), (4.12)
and Eq(1,(0)1,(j)) < Q(B(a2f, D))[#((j — 1)n + 1) + Q(B(a7, D))], so that
V(K,n
Varg(S,) = Z Covo(In(j)1n(k))
< [V(K,n)+1Q(B(z?,D)) |1+2 Z (G—Dn+1)|.(4.13)
Writing ® =1+ 2> ¢(k) and substituting (4.12) and (4.13) in (4.11) we get
P(W,(D) > K| X" = ) (I) (4.14)

[V(K,n) +1]Q(B(at, D))

Choosing K = ‘™ /Q(B(x%, D)) we have [V (K,n) + 1]Q(B(x}, D)) > e“™ /2n, and
(4.14) yields

P(log[W, (D)Q(B(X™,D))] > ¢(n) | X* = 27) < 2&ne~™.

Since the above bound is uniform over * € G,,, and summable, by the Borel-Cantelli
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lemma we obtain that, for P x Q— almost all (z,y) € G,,, X Ao,
log[W,,(D)Q(B(z}, D))] < ¢(n) eventually. (4.15)

For the lower bound, observe that for an any constant K > 1 and any x € G,,,

LK]
P(W.(D) < K| X7 =2}) <) QO/*" " € B(a},D)) < KQ(B(«], D). (4.16)

j=1

Since W,(D) > 1, this inequality holds also for K € [0,1]. In particular, setting
K = e /Q(B(at, D)) gives

P(log[W,(D)Q(B(XT, D))] < —c(n) | X} = af) < e ™,

and summing this over n, by the Borel-Cantelli lemma we get that, for P x ()— almost
all (z,y) € Gy, X Ao,

log[Wy(D)Q(B(XY{, D))] > —c(n) eventually. (4.17)

Finally, combining (4.15) and (4.17) with the assumption that P {U,,G,,} = 1 com-
pletes the proof. O

4.5 Duality: Match Lengths

Let R denote R(Pi,Q1,D), and define, for n > 1, T,(D) = infy>, Wi(D), and
T.(D) = min,<g<o, Wi(D). The duality relationship (4.10) between W, (D) and
L,,(D) can be restated as:

Ln(D)>n <= T,(D)<m. (4.18)

When combined with Lemma 4.1 below, (4.18) allows us to deduce (i), (i) and (i)

in Theorem 4.2 from corresponding results for 7, (D), namely, in the notation and

under the corresponding assumptions of Theorem 4.2:

log Tn(D)
n

(") — R PxQ@-—as.
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log T, (D) —
(i) 08 Tn(D) =1l 2. no o2

B

log T,(D) —
(i13") lim inf —2 (D) —nk = —0 PXxQ@-—as.

n—oo \/2n log, log, n

Lemma 4.1
Assume that X is stationary ergodic, Y is an i.i.d. process, and D € (Dpin, Day).
Then T, (D) =T, (D), eventually P x Q-almost surely.

Proof of Lemma 4.1. Note that T,,(D) < T, (D) < W, (D), and that whenever
Ty (D) > W, (D), we have T,,(D) = T,(D). Therefore, if we can show
P 4R
liminfn =" log Ty, (D) > 3 P xQ—as. (4.19)

n—o0

then, by Corollary 4.7, T,,(D) = T,,(D) eventually P x Q-almost surely.

For any z{® € A*, any positive integer m, and any n large enough, by the union
bound and (4.16) we have

P(Ton(D) <m|X{°=15°) < > P(Wi(D) <m|Xf =ab)
k>2n

m Y Q(B(a},D)). (4.20)

k>2n

IN

Since, by Corollary 2.1, limy,_,o k' log Q(B(X¥, D)) = —R, with P—probability one,

we must have

supk'log Q(B(z}, D)) < —3R/4 eventually P—a.s.
k>n

Substituting this in (4.20) with m = exp(4Rn/3) gives
P(Ty, (D) < exp(4Rn/3) | X® = 2°) < Ce /%  eventually P—a.s.
for some fixed C' < oo, and by the Borel-Cantelli lemma,

Ty, (D) > exp(4Rn/3) eventually P x Q)—a.s.
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implying (4.19) and the conclusion of the Lemma. O

Proof of Theorem 4.2. As already stated, it suffices to prove (i') — (ii"). To this

end, first observe that combining Theorem 4.1 and Theorem 2.4,

1 .
liminf — min |logWy(D) —kR(FP)| > 0 P xQ —a.s. (4.21)

n—oo N n<k<2n
and from Corollary 2.1 it follows that

1 .
— min kR(P;) - R P Xx(@ —as. (4.22)

n n<k<2n

By (4.21) and (4.22) we have

1 1 ~ 1 R
—log T, (D) > — min |logWy(D) — kR(Py)| + — min kR(FP;) — R,

n n n<k<2n n n<k<2n

with P x Q—probability one. Since T,,(D) < W, (D), the corresponding upper bound
also holds by Corollary 4.7, proving (i').

Next let € > 0 arbitrary, so that in the notation of Corollary 4.7,

v v

o - (o) il <=5}

For any 6 > 0 and n large enough this is bounded above by

]P){1<;ltr<1{+5 {w(nt;D) w(n;D)}S 6}

P{logfn(D) _ log W, (D) < —e} _

o\vn ovn o
t; D ; D
ov/n ovn o
where K = 0R/(20). By the functional CLT of Corollary 4.8 (extended in the obvious
way to t € [0,2]), the first term of (4.23) converges to Pr{infi<;<; B, < —€/o} as

n — oo, where {B;} is standard Brownian motion, and this can be made arbitrarily

—HP’{ inf

140<t<2

small by taking § small enough. Similarly for any C' > 0 the second term in (4.23)
is asymptotically bounded above by Pr{info<;<; B; < —C'} which can also be made
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arbitrarily small by taking C' large enough. Combining these with the fact that
T,.(D) < W, (D) implies that [log T,,(D) — log W,,(D)] = o(/n) in probability, which,
together with part (i) of Corollary 4.8, gives (i7').

We similarly obtain (i7i") by applying the functional LIL instead of the functional

CLT: Set s, = 04/2nlog, log, n noting that,
{w(nt; D)  w(n; D) N <LntJ — n) R] .

Sn Sn Sn

log T, (D) _ log W, (D) ot

Sn Sn 1<t<2

For any 0 > 0 and n large enough this is bounded below by

1<t<146 Sn Sn T 146<t<2 Sn Sn Sn

min{ g [w(nt; D) w(n; D)} g [w(nt; D)  w(m; D)] N KO'\/QTL}
By the functional LIL of Corollary 4.8 (extended in the obvious way to t € [0, 2]),
the first term in the above minimum is asymptotically P x @-almost surely bounded
below by
inf inf [r(t) —r(1)] > =V,

T 1<t<146

where the outermost infimum is taken over all absolutely continuous functions r with
[(dr/dt)?dt <1 and 7(0) = 0. Similarly, with P x Q—probability one,

liminf inf w(nt; D) _ w(n; D) >inf inf [r(t) —r(1)] > —V1 -4,

n—oo 146<t<2 Sn Sn r 146<t<2

so that the second term in the above minimum converges to +oo with probability

one, and, hence,

log T, (D 1 D
lim inf 08 n( ) Oan( )

n—oo g4/2nlog, log, n N o+/2nlog,log, n

Letting 6 | 0, recalling that T, (D) < W, (D) and applying part (i) of Corollary 4.8

gives (7i1’) and completes the proof. O

> V5§ PxQ-—as.



Chapter 5

Efficient, Universal, Lossy Data

Compression

In this chapter we bring together many of the ideas we encountered in the previous
four chapters, in order to tackle an important practical problem in data compression
— that of finding an efficient extension of the celebrated Lempel-Ziv algorithm to the
case of lossy compression. As we will see, the waiting times results of Chapter 4

provide the key insight for our proposed solution.

In the next section we give a general introduction to the problem and we briefly
review some of the relevant literature. In Section 5.2 we recall (from Sections 1.1.3
and 1.2.2) the connection between waiting times and Lempel-Ziv coding. We interpret
the waiting times results of Chapter 4 in this framework and show that they can
be extended (Theorem 5.1) to achieve optimal compression in the lossy case. This
motivates us to introduce, in the following section, a new practical lossy compression
algorithm. In Section 5.3 the algorithm is described in detail, and our main result of
this chapter (Theorem 5.2) is stated, establishing its asymptotic optimality. The proof
of Theorem 5.2 is given in Section 5.4, and it is based, in part, on Theorem 5.1. In
Section 5.5 we discuss some implementation issues and present brief simulation results
illustrating the performance of the algorithm. In Section 5.6 we describe extensions
along several directions, and in Section 5.7 we give the proofs of the theoretical results
from Sections 5.2 and 5.4.

61
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5.1 Introduction: Data Compression

Over the past 25 years, the practical requirement for efficient data compression meth-
ods has become apparent in almost every engineering application where large amounts
of data are transmitted or stored.

In applications where the data needs to be perfectly reconstructed from its com-
pressed form (lossless coding), the most prominent example of a successful prac-
tical scheme is probably the Lempel-Ziv data compression algorithm: Some vari-
ation of the original algorithm [84][85] can be found on virtually every personal
computer in use today. Although in terms of compression performance they have
been shown to be asymptotically optimal and to achieve optimality universally over
several general classes of data sources (i.e., without prior knowledge of the source)
[84][82][85][70][53][71], their practical success is perhaps mainly due to the fact that
they provide low-complexity algorithms that offer themselves to easy on-line imple-
mentations. (A comprehensive introduction to several lossless Lempel-Ziv schemes
and their implementations is given in the recent text [30]; see also [9] for numerous
variants.)

On the other hand, there are several applications in which the requirement for
perfect reconstruction of the data can be relaxed (lossy coding), for example, when
images are transmitted over the World Wide Web. In this case the story has been
somewhat less successful. From rate-distortion theory [11] we know that one can
achieve a sometimes dramatic improvement in compression by allowing some amount,
of error in the reconstructed data. In fact, it has been demonstrated that there exist
universal algorithms for lossy data compression that asymptotically achieve optimal
performance, and, moreover, there are explicit constructions of such universal codes;
see [36], the references therein, and the more recent work of Zhang and Wei [80][81].
Typically, these constructions either involve exhaustive searches over the space of all
possible codebooks (as, for example, in [83] and [52]), or are of exponential complexity
at the encoder and therefore cannot be realistically implemented in practice (as in [50]
and [74]). More practical algorithms have been recently proposed by Yang, Zhang and
Berger [76], who suggest a way to circumvent the exponential encoding complexity of
earlier schemes (party expanding on the ideas of Muramatsu and Kanaya [50]).

Motivated by the success of the lossless Lempel-Ziv schemes, several attempts

were made to extend them to the case of lossy coding, most notably by Morita and
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Kobayashi [49] and by Steinberg and Gutman [64]. Unfortunately, these schemes have
strictly suboptimal compression performance, as we will see in Section 5.2.

In this chapter we propose a new extension of Lempel-Ziv coding to the lossy case:
In Section 5.3 we present a universal algorithm for encoding memoryless sources at a
fixed distortion level, which arises as a generalization of the Fixed-Database Lempel-
Ziv (FDLZ) lossless compression algorithm [70]. In the following four sections we show
that its compression performance is asymptotically optimal with respect to bounded
single-letter distortion measures and argue that it is of reasonable encoding complex-
ity: On the one hand, in its naive implementation this algorithm has complexity of the
same order as the corresponding implementations of the lossless FDLZ, and, on the
other hand, there is a wealth of efficient approximate string matching algorithms that
allow more practical implementations (see [18][3][6][17] and the references therein).

In terms of its compression performance, a heuristic argument given in Section 5.5
suggests that the algorithm’s redundancy rate is of the same order as the redundancy
of its lossless counterpart (FDLZ), and we also present simulation results that agree
well with this rate.

The main novelty of our approach is that, instead of doing the encoding with
respect to a database generated by the same distribution as the data, the encoder is
allowed to have multiple databases simultaneously available, and to adaptively choose
which one to use at each step in a “greedy” way. As the database length grows,
the number of available databases also grows so that, in effect, codebooks are gener-
ated according to all possible reproduction distributions. By controlling the rate at
which the number of databases grows, we can make sure that reasonable complexity
is maintained at the encoder while at the same time the set of possible codebook
distributions is refined to cover an asymptotically dense set.

The reason why this algorithm compresses optimally is intuitively clear: We know
from rate-distortion theory that, unlike in the case of lossless coding, when distortion
is allowed, the optimal codebook distribution is typically different from the distri-
bution of the source. The most straightforward way to fix this mismatch between a
fixed database and the optimum one is to maintain multiple databases at the encoder
and decoder so that a good enough match can always be found. In this way, two

objectives are simultaneously achieved:

(1) Universality; the same algorithm with the same set of databases works for any
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memoryless source.

(i7) Reasonable complexity; like FDLZ in the lossless case, what makes this algo-
rithm attractive for applications is that it provides a sequence of suboptimal
coding schemes, indexed by the database length and the number of available
databases, that offers a handle on the complexity /redundancy trade-off: Using
few, short databases, we get efficient, easily implementable algorithms, with
high redundancy. On the other hand, increasing the length and the number
of databases, provides algorithms whose compression performance can be made
arbitrarily close to being optimal at the cost of increasing the encoding com-

plexity.

As discussed in Chapter 1 (Sections 1.1.3 and 1.2.2), Wyner and Ziv [69] showed
that several variants of Lempel-Ziv coding can be analyzed by studying an idealized
coding scenario in terms of waiting times. This connection between data compression
and waiting times has been exploited by a number of authors since then, including
[70][71][64][66][68], among many others (it is also described in detail in [37]). In the
next section we follow along the same path. We introduce an idealized coding scenario
and interpret the waiting times results of Chapter 4 in that context. This interpreta-
tion suggests a natural generalization of the idealized coding scheme, corresponding
to a new result about waiting times (Theorem 5.1). This result, in turn, motivates the
new practical algorithm introduced in Section 5.3, and its optimality is established
in Section 5.4 using Theorem 5.1.

It is worth noting here that the overall strategy for proving the algorithm’s opti-
mality is, by now, a familiar one: First, the waiting times of Section 5.2 are approxi-
mated by a sequence of large deviation probabilities (Lemma 5.1). Then the exponent
of decay of these probabilities is identified using large deviations (Lemma 5.2), giving
us the exponent of growth of the waiting times. Finally, using duality, this waiting
times result is translated into a result about match lengths (Corollary 5.3), and this
provides the main ingredient in the proof of Theorem 5.2.

Before moving on to the new results, a few words about some earlier work are in
order here. The notion of using multiple codebooks for source coding is well-known in
information theory, although multiple codebook algorithms typically involve a train-
ing stage or a large search over (essentially) all possible codebooks. For example,

Chou, Effros and Gray’s [14] vector-quantization interpretation of universal lossy



5.2. LEMPEL-ZIV CODING AND WAITING TIMES 65

source codes is in terms of two-pass (or “two-stage”) weighted universal codes. An-
other family of two-pass lossy compression algorithms is that of empirically designed
vector quantizers, discussed by Linder, Lugosi and Zeger [43] among others. (More
pointers to the large literature on vector quantization can be found in the recent
review paper by Gray and Neuhoff [28].) Preliminary results from a work closer in

spirit to our approach were recently reported by Zamir and Rose in [78][79].

5.2 Lempel-Ziv Coding and Waiting Times

The first extensions of the Lempel-Ziv algorithm to the lossy case [49][64] had sug-
gested using a database of the same distribution as the source, but, as it was recently
shown [45][75][21], these schemes generally achieve strictly suboptimal compression.

In this section we illustrate how their performance can be understood by studying
an idealized coding scenario in terms of waiting times and show how this idealized

scenario can be modified to achieve asymptotically optimal compression.

5.2.1 The Idealized Coding Scenario

Let X = {X,,; n > 1} be a memoryless source with values in the source alphabet
A, where A is a Polish (= complete, seperable, metric) space equipped with its Borel
o-field A. The word “source” in this chapter is used interchangeably with the phrase

“and “memoryless” means that the distribution of X is determined

“random process,’
by specifying that the random variables {X,} are independent and identically dis-
tributed (i.i.d.) according to some fixed measure p on (A, A). As before, we write P
for the measure on (A%, .4%°) describing the distribution of X, so that here P = p.
We write & = {x,, ; n > 1} for an infinite realization generated by X, and we refer
to « (or any subsequence of it) as a message produced by the source X.

Suppose now that an encoder and a decoder both have available to them an infinite
“database” Y = {Y, ; n > 1} taking values in the finite set A, the reproduction
alphabet. We assume that Y is also memoryless, and its distribution () is determined
by the probability mass function (p.m.f.) ¢ on A.

The encoder’s task is to describe the message X{" produced by X to the decoder,

within some prescribed distortion D. As in Chapters 2 and 4, distortion here is
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measured with respect to a sequence {p,} of single-letter distortion measures,
xlayl ZP xzayl xTIL € Ana y? € An, (51)

for some fixed p: A x A — [0, 00).

In order to take advantage of the common information Y, the encoder looks for
the first position W in the database where X7 appears within distortion D, and
communicates W to the decoder. Formally,

W (D) = inf{k>1: V"' c B(X" D)},

n

where, as before, B(X}", D) denotes the ball of distortion-radius D, centered at X7

B(X, D)= {yr € A : p, (X", y?) < D}.

W+n—1
YW

From this information the decoder can easily recover the string , which is

guaranteed to be within distortion D of X7'.

Since [25][71] it takes approximately log W bits to describe an integer W, the rate

of this code is, to first order

_ log WT(LQ)(D)
- n

bits per symbol.

As we saw in Chapter 4 (Corollary 4.7 and equation (4.6)), this ratio converges to
R(p,q, D) with probability one, where

R(p,q.D) = inf / H(O(|2)ll¢())dp(x) (5.2)
f 1 XY)"‘H(QH‘J)] (5.3)

= 1in

with the infimum taken over all random variables (X, Y") taking values in A x A, such
that X ~ p, Ep(X,Y) < D, © denoting the conditional distribution of Y given X,
and ¢' denoting the marginal of Y.

How good is this rate? Recall that the best possible rate, the rate-distortion
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function R(D) of X with respect to {p,}, is given by
R(D) = inf I(X;Y) (5.4)

where the infimum is taken over the same class of random variables (X,Y") as in the
definition of R(p, ¢, D) above. Comparing (5.3) with (5.4) it is immediately clear that
the asymptotic rate R(p, ¢, D) of this idealized code is generally strictly suboptimal.
On the other hand, it is not hard to see that

R(D) = il;f R(p,q, D) (5.5)

where the infimum is over all p.m.f.s ¢ on A, so that, intuitively, the problem is that
we do not know a priori how to choose the “right” database distribution that achieves
the infimum in (5.5).

The main idea behind the algorithm we will describe in Section 5.3, is to use
multiple databases: In the waiting times framework this corresponds to generating
one memoryless database for each n-type on A, and encode using the “best” database,
i.e., the one for which X" has the shortest waiting time. The additional coding cost
incurred is that of identifying which database was used, but since there are only

polynomially many n-types, this extra cost is asymptotically negligible.

5.2.2 Waiting Times with Multiple Databases

Given an integer k, a p.m.f. ¢ on A is called a k-type, if, for every y € A, q(y) is of

the form j/k for some nonnegative integer j < k.

Let {s(n)} be a nondecreasing sequence of positive integers. For each n, let S(n)
be the number of s(n)-types on A and write ¢, 1< j < S(n), for each one of these
s(n)-types. Assume that for each n we have S(n) processes Y 1 < j < S(n),
where Y is independent of X and distributed i.i.d. according to ¢@¥). For each j
let Wygj)(D) be the waiting time until X7 appears in Y within distortion D,
WD) = inf{i>1: V9, vY,... v )e B(X}, D)},

n A +n
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and write W*(D) for the shortest one of these waiting times,

WD) = min WY(D).
1<j<S(n)
Theorem 5.1 (Waiting Times)
Let 0 < D < pmax. If s(n) = n for all n, we have

log Wy (D)

lim sup < R(D) a.s.

n—oo
Moreover, this remains true for any nondecreasing integer sequence s(n) — oo as

n — oQ.

Before the proof of the theorem, we need to introduce some notation and defini-
tions. First, let R.(D) denote the rate-distortion function of X in nats rather than
bits, and similarly write R, (p,q, D) for the function defined as in (5.2) but with rela-
tive entropy in nats rather than in bits, i.e., with H(:||-) replaced by H.(-||-). Equation
(5.5) is equivalent to

IMD)zgf&m%D%

and we write ¢* for the p.m.f. on A that achieves the infimum. [The fact that there
does exist an achieving ¢* is easy to see: Let {g,} be a sequence of p.m.f.s such
that R.(p,qn, D) — R.(D). Since the simplex of p.m.f.s on A is compact set (in
the Euclidean topology induced by R4l), {g,} has a convergent subsequence {¢.}
with ¢/, — some ¢*. But R.(p,q,D) is continuous in ¢ (this follows easily from
Proposition 2.2 and Lemma 2.1 of Section 2.3), and {¢,,} is a subsequence of {¢,} so
we must have R.(D) = R.(p,q*, D).]

For each n sufficiently large, we can choose an s(n)-type g, on A such that

~

|A] i
n(y) — ¢ (y)] < —, for all A, 5.6
|an(y) q@ﬂ_ﬂm or all y € (5.6)
and ¢,(y) > 0 for all y € A (this is outlined in the Appendix). From now and until
the end of this section we assume that n is large enough so that ¢, can be chosen as
above. Write W, (D) for the waiting time until a D-close version of X" appears in

the Y-process distributed according to ¢,, and write Q™ for the product measure
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(2) on (A®, A>), where A® is the o-field on A® generated by finite-dimensional

cylinders.

Proof of Theorem 5.1: Theorem 5.1 follows by combining Lemmas 5.1 and 5.2,
below, together with the trivial observation that W) (D) < W, (D) with probability
one. Lemma 5.1 shows that, asymptotically, the waiting time Wn(D) for a D-close
match of X7 into Y ~ Q™ cannot be significantly larger than the reciprocal of
the probability Q™ (B(X7?, D)) of the event that such a match occurs. Its proof
parallels those of the corresponding strong approximation theorems in Chapters 3
and 4 (Theorems 3.1 and 4.1).

Lemma 5.1 (Strong Approximation)

1
lim sup — log[W,,(D)Q™ (B(X],D))] <0 a.s.
n—oo T
Lemma 5.2 is a large deviations result; it will follow by an application of the Gértner-
Ellis Theorem [22, Theorem 2.3.6].

Lemma 5.2 (Large Deviations)

lim infl log Q™ (B(X], D)) > —R(D) a.s.

n—-oo N

Lemmas 5.1 and 5.2 are proved in Sections 5.7.1 and 5.7.2, respectively. O

5.3 Description of the Algorithm

After some preliminary definitions, we describe the compression algorithm in its sim-
plest form, and we state our first result, Theorem 5.2, which establishes its asymptotic
optimality. The algorithm is a lossy source coding scheme for encoding memoryless
sources at a fixed distortion level, with respect to single-letter distortion measures.
Extensions of the use of the algorithm to more general situations are discussed in
Section 5.6.

We follow the notation introduced in the previous section: Let X = {X,, ; n > 1}
be a memoryless source with distribution P = p> on the the alphabet A, where

A is a Polish space and A is its Borel o-field. Also let A denote the reproduction
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alphabet and assume that it is finite (the extension to general alphabets is discussed
in Section 5.6). Distortion will be measured with respect to a sequence {p,} of single-
letter distortion measures, defined as in (5.1), with respect to a fixed, nonnegative
(measurable) function p : A x A — [0,00). Given D > 0 and a string 27 € A", we
write, as before, B(z%, D) for the the p,—ball of radius D around z}. Without loss

of generality, throughout this chapter we assume, as usual [11], that

sup min p(z, y) =0 (5.7)
r€A yeA

and we also assume that p is bounded on the support of the source, i.e.,

ME max esssup p(X,y) < oo. (5.8)
yeA X~p

Define
Prmax zir;f / p(z,y)dp(z)dq(y)

where the infimum is taken over all p.m.f.s ¢ on A, and assume that Pmax > 0. Finally,
given D > 0, we write R(D) for the rate-distortion function of X with respect to
{pn}, defined by (5.4). It is easy to check that R(D) = 0 for D > pmax, SO we restrict

our attention to the interesting range of allowable distortion values D € (0, pmax)-

5.3.1 The Algorithm

Let XY = (X1, X, ..., Xy) be a message of length NV generated by some memoryless
source X of unknown distribution p on A, and let a distortion level D € (0, pmax) be
fixed. Let {¢(m)} be a nondecreasing sequence of integers, write T'(m) for the number

of t(m)-types on A, and recall [19] that T'(m) is roughly polynomial in #(m)
T(m) < [t(m) + 1], (5.9)

For each m, we describe an encoding algorithm that uses T'(m) databases of length
m. So let us choose and fix an m for now. Assume that the encoder and decoder

both have access to T'(m) memoryless databases

YW iid. ~ ¢
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Y2 iid. ~q?

yOm)  jid. g

where each database has the same length m, they are all generated independently
of the message XV, and each one is i.i.d. according to a t(m)-type ¢¥) on A, for
1 < j <T(m). Figure 1 shows schematically the set of all ¢(m)-types for the specific
choice of t(m) = [logm].

Simplex of distributions
on the reproduction
Database alphabet

distributions

| =——=|

Width = 1/ llog m1

Figure 5.1: The set of all [logm]-types, corresponding to the vertices of a uniform
grid of width 1/[logm] placed on the simplex of p.m.f.s on A.

We can either assume that these databases are available to the encoder and de-
coder before the coding process begins, or that they are generated at the encoder and

transmitted to the decoder using an overhead of

[mT(m)log|A|] bits. (5.10)
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The encoding algorithm is as follows: First, the encoder calculates the length of
the longest match of an initial portion of the message, within distortion D, in any
one of the databases. Let L, (D) denote the length of this longest match,

Lm,l (D) =

max{k > 1 : pk((Y;(j),...,Y-(j)

), XT) < Dforsomei <m—k+1, j<T(m)}

and let Z() denote the initial phrase of length L,, (D) in X} :
ZW 2 (X1, Xay oy Xpp()-

Observe that L, (D) > 1 by assumption (5.7). Then the encoder describes to the

decoder:

(a) the length L,,;(D); this takes at most C'log(Ly,1(D) + 1) bits, where C is a
constant (cf. [25][71]);

(b) the index j of the database in which this longest match was found; this takes
[log T'(m)] bits;

(¢) the position ¢ in database j where the match occurs; this takes [logm] bits.

Clearly, from (a), (b) and (¢) the decoder can easily recover the string

©)
AR A YiiLm,l(D)—1)7

which is within distortion D of Z(). The description length of (a), (b) and (c) is
bounded above by

Clog(Ly1 (D) + 1) +logT(m) +logm+2 bits. (5.11)

Alternatively, Z() can be described by first describing its length Ly,1(D) as before,
and then describing Z() directly using

[Lmi(D)log|A]]  bits. (5.12)

The encoder uses whichever one of the two descriptions is shorter, together with a

one-bit flag to indicate which one was chosen. Therefore, from (5.11), (5.12) and
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(5.9), the length of the description of Z) is bounded above by
min {C log(Ly,1 (D) + 1) + Cylog(t(m) + 1) + logm, Cs3L,, (D)}  bits, (5.13)

for some fixed constants C', Cs, and C5, independent of m, N, and of the message
XN,

After ZW has been described within distortion D, the same process is repeated to
encode the rest of the message: The encoder finds the length L,, o(D) of the longest
string starting at position (L,,1(D)+1) in X}V that matches within distortion D into

any one of the databases, and describes

A
z® = (XL (D)1 XLpr(D)425 - - s XLy (D)L a(D))

to the decoder by repeating the above steps.

The algorithm is terminated, in the natural way, when the entire string XV has
been exhausted. At that point, X has been parsed into II,, = I, (X}, D) distinct
phrases Z*) each of length L, (D),

with the possible exception of the last phrase, which may be shorter. Since each
substring Z®*) is described within distortion D, also the concatenation of all the

reproduction strings,

A~

JAOAONS .Z(Hm),
will be within distortion D of X{V.

Let £,,(X) = ¢,,(X}Y, D) denote the overall description length for X}V using this
algorithm. From (5.10) and (5.13), £,,(X{¥, D) is bounded above by

[m T (m) log |A[]
I

+ " min {Cy log(Lm k(D) + 1) + Cylog(t(m) + 1) + logm, C3Lynx(D)} bits. (5.14)
k=1

The following result establishes the asymptotic optimality of the algorithm by showing

that, for long messages (N — 00), the expected compression ratio achieved does not
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exceed the rate-distortion function R(D), as m tends to infinity. In fact, a somewhat
stronger result is proved, namely, that for (almost) any message emitted by the source,
the compression ratio achieved, averaged over all possible databases, is asymptotically
no larger than R(D). Theorem 5.2 is proved in Section 5.7.4.

Theorem 5.2 (Algorithm Optimality)
Let 0 < D < pmax- If the rate at which the databases are refined is t(m) = [logm],

we have
l (XN, D
limsuplim sup F {M ‘X{V} < R(D) a.s., (5.15)
m—00 N—o0 N
and, therefore,
l (XN, D
lim sup lim sup E{M} < R(D). (5.16)
m—00 N—o0 N

Moreover, (5.15) and (5.16) remain valid for any choice of t(m) such that t(m) — oo
while (logt(m))/logm — 0, as m — oo.

Remark. The case of lossless compression can be regarded as a special case of
the above algorithm, where the encoder looks for exact matches between the source
and the database. In fact, implicit in the proof of Theorem 5.2 is a proof that
the compression ratio achieved by the lossless FDLZ algorithm [70] applied to a
memoryless source X converges to the entropy rate H of X, for almost all source

messages:

Corollary 5.1 (Strong Optimality of Lossless FDLZ)
Let X be a discrete memoryless source of entropy rate H, and let Em(X{V) denote
the description length for XN using the FDLZ algorithm. We have:

C (XN
lim sup lim sup E{ (X7) ‘XIN} < H a.s.

m—00 N—oo N

5.4 Algorithm Optimality

We use the waiting times results of Section 5.2 to prove Theorem 5.2, establishing

the optimality of the algorithm.
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First we observe that, as we already saw in Chapter 4, there is a duality relation-
ship between waiting times and match lengths. Here, since we only need to prove
an upper bound for the waiting times W*(D), it suffices to state this duality in one
direction:

Wy(D)<m—-—n+1 = Ly,(D)>n. (5.17)

n

Strictly speaking, since the definitions of W} (D) and Ly, ;(D) depend on the choices
of the underlying sequences {s(i)} and {¢(j)}, respectively, we should say that: If
W¥(D) defined with respect to a fized sequence {s(i)} satisfies W(D) < m —n + 1,
then, Ly, 1(D) defined with respect to a different sequence {t(j)} such that s(n) = t(m)
satisfies Ly, 1 (D) > n.

Using (5.17) we can now easily translate the asymptotic upper bound for W) (D)
of Theorem 5.1 to an asymptotic lower bound for L,, (D):

Corollary 5.2 (Match Lengths)
Let 0 < D < pmax. If t(m) — 00 as m — oo, we have
Ly1(D) 1

lim inf > .8.
BT logm — R(D) 6.5

The proof of Corollary 5.2 is a straightforward but tedious calculation, and there-
fore omitted here. The optimality of the algorithm (proof of Theorem 5.2 below)
essentially follows from the fact that the match lengths grow like (logm)/R(D). This
is similar, at least in spirit, to the lossless case, where the optimality of FDLZ follows
from the fact that the lengths L,, of the longest exact matches grow like (logm)/H.
Unfortunately, the elegant combinatorial argument used by Wyner and Ziv in [69][71]
no longer works when distortion is allowed. For that reason, in the proof of Theo-

rem 5.2 we need a stronger bound on the (conditional) lower tails of L, (D).

Corollary 5.3 (Tails of Match Lengths)
Let 0 < D < pmax- If t(m) — 00 as m — oo, then for any € > 0 we have

logm

(logm) Pr {Lm,l(D) < R(D) + ¢

Xfo} — 0 a.s.

Corollary 5.3 is proved in Section 5.7.3.
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5.5 Redundancy, Complexity, Implementation

Perhaps the most attractive feature of the algorithm is that it provides an active
handle in balancing the trade-off of complexity vs. redundancy, depending on the
requirements of particular applications. This trade-off is discussed in some detail
below; a heuristic argument is presented suggesting that, if the rate at which that
databases are being refined is chosen appropriately, then the redundancy of the algo-
rithm is of the same order as that of the lossless FDLZ. (To be precise, “redundancy”
here means the difference between the expected compression ratio achieved by the
algorithm, and the entropy of the source being encoded.) This heuristic rate is also

confirmed by brief simulation results presented in Section 5.5.2.

5.5.1 The Complexity-Redundancy Trade-off

There are three “terms” contributing to the redundancy of the algorithm, due to

three different reasons:

(1) Finite-length databases. Since the databases used by the algorithm are finite, we
expect that the compression will not be optimal even if we encode with respect
to a database with the optimal distribution. As with FDLZ in the lossless case,

we expect that the penalty incurred by using a database of finite length m will

be of the order of
O <loglogm> .
logm

The main ingredient in deriving this rate for FDLZ [73] is the fact that the
expectations of the exact match lengths L,, grow like (logm)/H + O(1). We
expect that the same behavior persists in the case when distortion is allowed,

and that when only one database of distribution ) = ¢ is used, we have

logm

ELn(D) = 35 0. D)

+0(1), asm — o0
(under some regularity assumptions on the distortion measure p). This should
not come as surprise, particularly in view of the match length results of Chap-

ter 4 where it is demonstrated that, in addition to their first-order behavior, all
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of the second-order properties of L,,(D) are exactly analogous to those obtained

in the lossless case (compare Corollary 4.10 with Theorem 4.2 in Section 4.3).

(i7) Several databases. If the rate t(m) at which the databases are refined is poly-

nomial in (logm), then the coding cost of identifying which database was used

0 (log log m) ‘
logm

This can be verified easily by reading through the proof of Theorem 5.2 in

is also of the order of

Section 5.7.4, and it is also intuitively clear since we use O(loglogm) bits to
identify one of the databases each time we describe a string of length O(logm).
In general, if ¢(m) grows at a different rate, the contribution to the redundancy

is of the order of (logt(m))/logm.

(i4i) Wrong database. Finally, there is an error associated with the fact that for
finite m the optimal database is (typically) not included among the databases
currently available to the algorithm, so that the data is encoded with respect to a
(log m)—type approximation to the optimal database. In the idealized scenario
of Section 5.2.1, this corresponds to comparing the exponent of Q™ (B(X7, D))
with that of (¢*)"(B(XT, D)), and (5.6) indicates that this difference should be
O(1) with probability one. Therefore, it is plausible to expect an additional

o( : )
logm

Combining (i) (4) and (4ii) suggests that the leading term in the redundancy of the

redundancy term of order

algorithm is of the order of (loglogm)/logm, just like in the lossless case [73]. In
particular, it should now be clear why the choice ¢(m) = [logm] was singled out in

Theorem 5.2; because it makes the contribution of (i) comparable to that of (7).

5.5.2 Implementation and Simulation Results

As stated in Theorem 5.2, the algorithm converges to optimality as long as the rate
t(m) at which the databases are refined tends to infinity, while (log¢(m))/logm

tends to zero. More generally, from the proof of Theorem 5.2 it is clear that any
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asymptotically dense set of database distributions will work, as long as the number
T(m) of available databases of length m does not grow too fast, namely, as long as
(logT'(m))/logm tends to zero as m — 0o. So, in practice, we have the freedom to
choose any set of database distributions that fit the specific application better, instead
of uniformly covering all possible distributions (as shown in Figure 1). For example,
prior knowledge about the distribution of the source can easily be incorporated into
the structure of the algorithm.

To illustrate its performance, we chose the simple example of lossy compression of a
binary memoryless source with respect to Hamming distortion. We pseudo-randomly
generated binary Bernoulli(0.4) data, and implemented the algorithm as described in
Section 5.3.1, with some minor practical modifications (described below).

Figure 2 shows its compression performance on a sequence of 524288 bits, with
the distortion level D set to 0.22, and for a total of 15 databases of lengths m =
29 210 218 bits each. For reference, we note that typical values of m in current
implementations of lossless versions of Lempel-Ziv are around m = 2 bits (for
example, m corresponding to the window-size used by LZ77 as implemented in the
Unix command gzip; see [30]).

As in several current implementations of lossless versions of Lempel-Ziv coding, we
set a maximum possible match length of 128 bits. With this restriction we can describe
the Ly, 1(D)’s using a fixed 7 bits rather than the C'log(Ly,1(D)+1) bits suggested in
Section 5.3.1. We also mention that, although we did not go to great efforts in order
to optimize the speed of our implementation, there is extensive literature devoted
to approximate string matching algorithms: Implementation details and algorithmic
issues relating to efficient, approximate string-matching are discussed in the text [18],

and, in the context of data compression, in [3][6][17].

5.6 Extensions

A Fixed-Rate Version

We informally outline how the algorithm can be modified to provide fixed-rate lossy
compression for memoryless sources. The main difference is that instead of looking
for the longest match with distortion smaller than a fixed D, here we look for the

most accurate match with length greater than some fixed length M.
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Heuristic (=) versus observed (*) performance
0.45 T T T T

0.4E 4

035 B

bits—per-symbol
o o
e o N o
ol N o w
T T T T
Il Il Il Il

4
.
T
|

©
o
a
T
I

o

9 10 11 12 13 14 15 16 17 18
logm

Figure 5.2: Compression performance on a memoryless Bernoulli(0.4) source, with
respect to Hamming distortion and D = 0.22. The compression ratios achieved by
the algorithm for different database sizes m are denoted by (x); the ideal compression
ratio (rate-distortion function) is shown as (x); the performance suggested by the
heuristic argument in Section 5.5.1, namely, R(D) + C(loglogm)/logm, is shown as
a solid line, with the constant C' &~ 0.53 empirically fitted to the data.

Let R be the target rate, and recall from (5.13) that a string of length L in the

message that matches somewhere in one of the databases, can be encoded using
Um(L) 2 min{C) log(L + 1) + Cylog(t(m) + 1) +logm, CsL}  bits.  (5.18)

To guarantee an encoding rate below R bits per symbol, we consider initial strings X
of the message X1V of lengths L large enough so that v,,(L)/L < R, i.e., L > M,,(R)
where

Mm(R)émin{lngm : 7’Z}mT(L)<R}

(since ¢y, (L)/L is nonincreasing in L, having L > M,,(R) implies ¢,,,(L)/L < R). Of

all such strings X1, choose the one that matches somewhere into one of the databases
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with minimal distortion; let

Dy (R) =
min{p, (XF, (7, ... YY)t Mp(R) < L<m, i <m—L+1,j<T(m)},

and write A, ;(R) for the achieving L in the above definition. Then the initial string
in X}V of length A, 1(R) > M,,(R) can be encoded, within distortion D,,(R), using

wm (Am,l (R))

< R bits pre symbol. 5.19
Ma(B) S pre sy (5.19)

The same process can be repeated iteratively until the entire message has been en-
coded, yielding a total of I substrings of X[V, of lengths aiéAm,i(R), and corre-
sponding description-lengths bié@Dm(Am,i(R)). By (5.19) and the log-sum inequality
[16, Theorem 2.7.1] it follows that

ZH a; I Lo .
i=1 Qi Z
log [m] < (Z ai) Z <ai log b_z) < logR,

=1 =1

so the overall encoding rate of X}V is

Zz'nzl @i

m < R bits per symbol.

Now let us look at the distortion achieved. From the definition of ), it is clear
that the dominant term in the right hand side of (5.18) is the (logm)-term, which
means that, for large m, ¢,,,(L)/L =~ (logm)/L and M,,(R) ~ (logm)/R. Therefore,
D,,1(R) is the minimal distortion that can be achieved between the source and any
one of the databases by strings of lengths longer than (logm)/R. But from Corol-
lary 5.2 we know that there exist D-close matches of length at least (logm)/R(D),
which suggests that

limsup Dy, 1(R) < D(R) as., (5.20)

m—»00

with D(R) denoting the distortion-rate function of the source. So, in the same way

that Corollary 5.2 is the essential ingredient in proving Theorem 5.2, it is plausible
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that the optimality of the above scheme (i.e., that the overall description of the mes-

sage X|' is asymptotically within distortion D(R)) will similarly follow from (5.20).

Sources with Memory

A simple inspection of the proofs immediately reveals that all the results from Sec-
tions 5.2, and 5.4 remain true in the case when the assumption that X is memoryless
is replaced with the assumption that it is a stationary ergodic process. In particular,
the asymptotic compression ratio achieved by the algorithm is equal to the first-order
approximation to its rate-distortion function, which is, in general, larger than the
rate-distortion function itself.

Unbounded Distortion Measures

The assumption that p is bounded is merely a technical assumption that can be sig-
nificantly relaxed at the price of more complex proofs. We expect that the algorithm
optimality, as well as the waiting times results of Section 5.2, remain valid for a
much more general class of distortion measures, satisfying only some mild moment

conditions.

General Reproduction Alphabets

As already mentioned in Section 5.5, the algorithm optimality does not depend on the
exact form of the database-distributions chosen, as long as (1) they are asymptotically
dense, and (2) their number 7'(m) satisfies (logT'(m))/logm — 0 as m — oco. In the
case of general reproduction alphabets, the algorithm can be extended in a straightfor-
ward way, by including several databases uniformly covering the space of all possible
reproduction distributions. Such asymptotically dense finite covers should be possi-
ble to construct in a systematic manner, at least as long as the space of database

distributions is “compact,” in a natural sense.
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5.7 Proofs

5.7.1 Proof of Lemma 5.1

Fix D € (0, pmax), write P, for the empirical measure induced by X Ton A,

1 n

and define
pr = Ep [mlnp(X y)]-

min
ycA

Recall that the s(n)-types g, were chosen such that ¢,(y) > 0 for all y € A, so that
by (5.7) we have

DI(:l)n = Zmlnp Xi,y) < supminp(z,y) = 0,
i—1 YEA rEA ycA

ie., D™ — 0 for all n. Therefore, D > D™ and so

Q™ (B(X},D)) >0 P —as. (5.21)

Let GG, denote the collection of all infinite realizations @ from X that satisfy, for all
n>r, QM (B(x}, D)) > 0, so that

P(U,G,) =1 (5.22)

by (5.21). Choose and fix any r > 1, pick « € G, and € > 0 arbitrary, and let K > 1

be a fixed constant. For any n > r large enough so that " > 2(n + 1), we have

P x QW {W,(D) > K |X —xl}

K—-1

= [1-qm(B@r, D))
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(since WH(D) > 1 by definition we need not consider values of K < 1). Letting
K =27/Q™ (B(z?, D)) above, and noting that (1 — z)® < 1/(Rz) for all z € (0,1)
and R > 0, yields

P x Qi {% log[IV,(D)Q™ (B(a}, D))] > | X = }
- gne 11t
< |@v (B ) | L) }
- ne n n -1
< M — Q( )iB(qu)) —Qm (B(a:rf,D))}
< 202, (5.23)

By the Borel-Cantelli Lemma it now follows that

lim sup — log[W (D)Q™ (27, D)] <0 for P x Q™ -almost all (z,y) € G, x A®,

n—oo T

and combining this with (5.22) completes the proof. O

5.7.2 Proof of Lemma 5.2

To avoid cumbersome notation, we prove Lemma 5.2 in terms of natural logarithms

instead of logarithms taken to base 2, i.e., we will show that

l1m1nf logeQ J(B(X],D)) > —R.(D) as. (5.24)

n—00

Proof of Lemma 5.2: For all 27 € A™ and A € R define

Aar ) = tog { [ ety |

so that, by expanding p, as a sum and using independence,

1 n
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where

fulz) = log, (/ e"p(w’y)dqn(y)> . T €A

If we define f(-) on A like f,(-), but with ¢, replaced with ¢*, then

1 1 AN
SAxp () = =A< = DX — (X))
i=1 i=1
< essXsup|fn(X1) — [(X1)|
< esssup |log(1 + €,(X1))],
X3

where

S e iltn(y) — a (y)]eM @)
S ead ey

() =

But from (5.6) and (5.8),
A
len ()] < ueQWM — 0 for p-almost all z € A,

s(n)

which implies that
1 1<
~Axp () =~ z_; f(X)|—=0 as. (5.25)
Also, since p is bounded (by assumption), so is f, and by the ergodic theorem
1 n
i Z f(X) = E(f(X1)) = Apg-(A)  as. (5.26)
i=1
From (5.25) and (5.26) we get that
1
ﬁAX{L ()\n) — Ap,q* ()\) a.s.

From this combined with Lemma 2.1 it follows that we can apply the Gartner-Ellis
Theorem [22, Theorem 2.3.6] along (almost) every realization of X, to obtain that,
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with P-probability one,

1
lim inf — log, Q™ (B(XT, D))

n—oo N

— liminfZlog, P x @ d X zn: p(X:, Y™y < D ‘ X7
n—oo N € n Py T o

> - zei(%,fD) Aj . (2) (by the Gértner-Ellis Theorem)

= —A; (D) (by Lemma 2.1)

= —R.(p,q¢",D) (by Proposition 2.2)

= —R.(D), (by the definition of ¢*)

and this proves (5.24) and the Lemma. O

5.7.3 Proof of Corollary 5.3

We follow the notation in the proofs of Theorem 5.1 and Lemma 5.1.

Let € > 0 be given. Pick one of the (almost all) realizations & of X such that
x € U,G,, and also the result of Lemma 5.2 holds. By Lemma 5.2, we can choose Ny

(depending on ) large enough so that

1
2 log Q™ (B(a7, D)) > —R(D) — i for all n > Nj. (5.27)
n

Then, by the duality relationship (5.17) and the fact that W(D) < W, (D),
Pr {Lm,I(D) < _logm

< — X::c}
R(D)+¢
< PxQ® {WH(D)zm—nH‘X:m}

_ pxg® {loan(D) > log(m —n +1) ‘X:m}

n n

where n = [(logm)/(R(D) + €)]. If we take m large enough, say m > M, so that
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n > Np and [log(m —n +1)]/n > R(D) + €¢/2, then this is bounded above by

px@tm{sz(DH%‘X:w} <

n

n n

P {mg[Wn(D)@m BEtDI g, 0BYVBELD) o] m}
2

and by (5.27) this is bounded above by

IR

n

P x Q) {logm(m@m (BEHD)] | € | 5 _ m} |

Finally take m > M, sufficiently large to make the corresponding n large enough so
that the bound (5.23) from the proof of Lemma 5.1 applies. Combining (5.23) with
the above bounds yields

logm

Pr {Lm,l(D) < m

X = az} < MmNt < qm P log m,

for some fixed constants «, 3 > 0; since this argument holds for P-almost any @, the

result of Corollary 5.3 follows. a

5.7.4 Proof of Theorem 5.2

Let € > 0 be given, and choose and fix one of the (almost all) realizations & of X such
that Corollary 5.3 holds. Recall that the encoding algorithm parses up X1 into II,,
distinct words Z®) each of length L,, (D). Let n = (logm)/(R(D) + ¢). Following
[70], we assume, without loss of generality, that n is an integer, and that the last

phrase in the parsing of X is complete, i.e.,
Z"m) has length Ly, 1, (D).

We call a phrase Z®) short if its length satisfies L, x(D) < n; otherwise Z®) is called
long.
We break the upper bound (5.14) for the description length £,,(X{) into three
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parts:

ln(X7) < [mT(m)logl|A]] +Cs > Lyi(D)
k: Z(*) is short

+ Z [C11og(Lm k(D) + 1) + Cylog(t(m) + 1) + logm]. (5.28)
k: Z(k) is long

The first term is non-random and independent of N, so that dividing by N and
letting N — oo it tends to zero. For the second term, after taking its conditional

expectation, it can be bounded above as:

E {03 S LD ‘X{V}

k: Z(®) is short

logm
< C3 R(D) + ¢ E{ Z (L., 1(D)<n} X{V}
k: z(®) is short

< CylogmN Pr{Lm,I(D) < % ‘ X{V} ,
where the first inequality follows from the definition of being “short,” the constant
Cy = C3/(R(D)+¢), Ir denotes the indicator function of the event F', and the second
inequality follows by considering not just all k’s, but all the possible positions on X}V
where a short match can occur. We can now divide by N, let N — oo, and apply
Corollary 5.3 to see that the conditional expectation of the second term in (5.28) also

converges to zero, P-almost surely.

Finally, we analyze the third — and dominant — term in (5.28). By the assumptions

of Theorem 5.2, for all m large enough (independently of N and X%) we have

logt(m)

02 < €. (529)

logm

From now and until the end of the proof we assume that m is large enough for (5.29)
to hold. Also, let IT’. be the number of long phrases Z). Since each long Z*) has
length L, (D) > n, we must have

' n < N. (5.30)
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Now, as in the lossless case [70], we can bound above the third term in (5.28) by

1 logt
C\IT,,, Z [H—, log(Lm k(D) + 1)] + 11, (1 + Cy Olig(::)> logm,

k: Z®) is long = ™

which, applying Jensen’s inequality and (5.29), is bounded above by

1
C11T) log T Z (Lng(D)+1) | +II,(1+¢€)logm

!/
™ k: (k) is long

(a) N

< 11, log <1+H—,> + I, (1 +¢€) logm
(b) I N N

< N—21 1+ — —(1 1

< ¢ Nog<+mn>—|—n(+e)ogm
(¢) 1

< CINE log(1+n) + N(1+€)(R(D) +¢)

—
=

loglogm
= N {(R(D) +e)(1+e€) + CE’W] ,
where (a) follows by the fact that the sum of the lengths of long phrases cannot
exceed N; (b) follows from (5.30); (¢) follows from (5.30) together with the fact that
the function xlog(l + 1/x) is increasing for all x > 0; and (d) follows from the
definition of n in terms of m, with C5 = 2C,(R(D) + €). Combining this with the
fact that the first two terms in (5.28) vanish, immediately yields

{Zm(XlN,

D
limsuplimsup F N ) ‘ X{V} < (R(D)+¢)(l+¢€) as.

m— o0 N—00

and since € > 0 was arbitrary we get (5.15). Finally, (5.16) follows from (5.15) and
Fatou’s lemma. O



Chapter 6
Concluding Remarks

We summarize the main contributions of this thesis in Section 6.1, and in Section 6.2
we briefly discuss some promising directions along which the results presented in

Chapters 2-5 may be extended.

6.1 Summary of Contributions

The two main contributions of this thesis are (i) the strong approximation framework
for analyzing the asymptotic behavior of recurrence and waiting times (Chapters 2-4);

and (ii) the new lossy version of the Lempel-Ziv algorithm presented in Chapter 5.

Strong approximation

In general terms, we can think of recurrence and waiting times as hitting times for
certain rare events. For example, given a random pattern (X, X, ..., X,,) generated
by some process X, the waiting time W, (D) is the time until the first occurrence of
the rare event that a D-close version of (X7, X»,...,X,,) appears in a realization of
a different process Y. The approach taken in Chapters 3 and 4 can be summarized
by saying that these waiting times (or recurrence times) can be approximated by
the reciprocal of the probability of the rare event at hand. In the above example,
W, (D) can be approximated by the reciprocal of the probability Q(B(X}, D)) of
the event that a D-close match for (X7, Xo,...,X,,) occurs in Y. More precisely, in

89
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Theorem 4.1 we showed that, with probability one, the difference

1
log W, (D) — log [—n]
Q(B(XT, D))
does not grow faster than O(logn) as n — oo, and, therefore, the asymptotic be-
havior of the waiting times W, (D) can be deduced from that of the probabilities
Q(B(X7, D)), which were studied extensively in Chapter 2 using techniques from

large deviations.

This strategy of first approximating waiting times (or recurrence times) by ap-
propriate large deviation probabilities and then using large deviations to determine
exactly how these probabilities decay, provides a natural unified framework for de-
ducing various asymptotic results: In Chapters 3 and 4 it allowed us to prove a series
of strong new results, and it also allowed us to recover most of the known results in

this area.

The strong approximation idea was introduced in [39] in the context of recurrence
and waiting times without distortion. There, asymptotic results were proved by
utilizing the Shannon-McMillan-Breiman theorem and its classical refinements by
Yushkevich [77], Ibragimov [32], and Philipp and Stout [57]. In [21] it was extended
to the case of waiting times allowing distortion, and in [41] the same strategy was
employed to prove the waiting times results of Chapter 5 that led to establishing the

optimality of a new lossy data compression algorithm:

Lossy Lempel-Ziv coding

In Chapter 5 we proposed a solution to a long-standing open problem in data com-
pression: We introduced a new lossy version of the Lempel-Ziv data compression al-
gorithm, for encoding memoryless sources at a fixed distortion level. This algorithm
is easily implementable in practice — preliminary simulation results were presented in
Section 5.5.2 demonstrating its performance on binary data. We also proved (Theo-
rem 5.2) that its compression is asymptotically optimal with respect to single-letter
distortion measures. This was done by first studying an idealized coding scenario
in terms of waiting times and then using the corresponding waiting times results to

prove the optimality of the practical scheme.
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6.2 Extensions and Future Directions

Theory

There are several natural questions to ask about the theoretical results presented in
Chapters 2—4, and they point to several directions for generalizations, three of which
are mentioned below.

First, we note that most of the results from Chapters 2 and 4 can be extended
to the general case of weakly dependent processes. The main tools will again be
provided by the theory of large deviations and uniform pointwise approximation, but
the characterization of the limiting rate function R(P,Q, D) will be in terms of an
infinite-dimensional variational problem.

Second, the strong approximation approach of Chapters 3 and 4 naturally extends
to random fields on the integer lattice (as well as to several, more general group
actions), although new subtleties arise in this case regarding the conditional structure
of the measures and their mixing rates.

Finally, it is interesting to ask if there are simple analogs of the results in Chap-
ters 2, 3 and 4 in the case of continuous-time processes. We expect that for reasonably
rich classes of stationary ergodic processes (such as “nice” classes of exponentially
mixing diffusions), there will be natural counterparts to most of the results in Chap-
ters 2-4.

Applications

In the case of lossless compression, the classical refinements to the Shannon-McMillan-
Breiman theorem were used in [38] to prove second-order lossless source coding theo-
rems. Similarly, we expect that the corresponding results in the case when distortion
is allowed (Corollaries 2.1, 2.2 and 2.3) can be used to prove second-order refinements
to Shannon’s lossy source coding theorem.

In terms of practical data compression, it is important to determine how successful
the algorithm presented in Chapter 5 can be when applied to real data. In Chapter 5
we showed that this algorithm has several desirable theoretical properties, and cur-
rently we are testing to see how effectively it can be put to practical use. The limits
of its applicability will essentially be determined by how efficiently we can implement

the string-matching part of the algorithm.
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As a specific application, we are interested in seeing how this scheme can be
combined with existing methods (such as transform coding) to yield efficient image
compression. Preliminary results in this direction seem promising.

In closing, we mention that we are currently in the process of providing [40] a modi-
fication of the Fixed-Database Lempel-Ziv algorithm, different from the one presented
in Chapter 5, which achieves optimal compression for a wide class of processes with

memory.



Appendix A

Some Technical Points

A.1 Proof of Theorem 2.3

Here we prove the following strengthened version of Theorem 2.3: ¢? = 0 if and
only if all the nonzero transition probabilities from state a to state b are of the form
2 "y, /vy, for some positive constants v,, a € A. Theorem 2.3 follows from this with
qg=2"1.

We begin by deriving a generalization of a formula due to Fréchet [26] for the
asymptotic variance of Markov chains. Let Z = {Z,, ; n € Z} be a stationary ir-
reducible aperiodic Markov chain with finite state-space T, stationary distribution
(¢i)ier, and kth order transition probabilities (qg.c))i,jeT. Let f be a real-valued func-

tion on T and write f(-) for f(-) — Ef(X;). Define
2* = lim % Var (le f(Z») = 242 Z F(Z4))
= Y f0) QJ_'_QZZ%QU FOFG). (A1)

JET k=11i,jeT

Letting s;; = > ;2 [qw qj] < oo (for i,j € T'), the second term above becomes

22stz]f _22%
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where 6; = si;f(j) (for j € T), and substituting this in (A.1) gives

= Z‘Ji [f(l) + 9i]2 — Z%‘g? = Z‘J]’ Z%z(f(z) +6;)* — 9]2' . (A2)

Expanding,
Z it = Z Qji Z Ssz
= Zf ZQﬂZ qu_Qm)
' k>1
= Zf Z (5" = Gm)
k>1
= Z Fm) 1365 = gm) = (@ — @)
k>1
= Z Symf Z q]mf
= 9 - Z%mf (AS)
so that

Z%z(f(z) +6,)° = Z%z[(f(l) +0; — 0;) + 0;]°

since by (A.3) the cross terms vanish:
Z 3;i20;(f(i) +0; — 0;) = 20, (Z ;i f (i) — 0; + Z %i@)
= 20, (Z gjif (i) — 0; +0; — Z Qjmf(m)> =
Substituting (A.4) into (A.2) and interchanging 7 and j yields

= Z%’Z(Jﬁ(f(i) +6; — 6;)%, (A-5)
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which is the generalization of Fréchet’s formula for the variance.

Now consider the chain X defined in Section 2.1. For all a,b € A we write
po = P(X1 =a) and p,, = P(X; = b| Xy = a), so that X has stationary distribution
(¢ab) = (Papap) and transition probabilities (gap,cq) = (dpePed). Let f be defined as in
Section 2.1. Since here 6,, = 6, is independent of a, using (A.5) we get

02 = Z PaPab Z 6bcpcd C d + gcd 9 )
(a,b)eT (c,d)eT
= > paba >, pea(fbd)+0,—0,)
(a b eT dEA:ppg>0

For any (b,d) € T we have pyg > 0, so o2 = 0 if and only if
F(b,d) =0, — 0,, forall (b,d) €T,

and the result stated in the beginning of this section follows upon setting v, 2 2 0a
ac A O

A.2 Proof of Lemma 2.1

Part (i) follows immediately from the definitions of A, , and D&” .

For part (ii): First, since all the random variables involved in the definition of
A, are bounded, its differentiability with respect to A can be checked easily using
the dominated convergence theorem. In particular, we can differentiate under the

integral sign to obtain

(z, An(z:y) dy

and for A = 0 this gives A}, (0) = D#;". Differentiating once more,

dp(z)

" [ P (z,y)e Ar(@9) dy (y fe)"”"ydl/ (fpa:y )@Y dy(y ))
A = /[ (fe/\/””’z dV(Z)) ]

and this is easily seen to be nonnegative for any A by applying Holder’s inequality

: : (214 v
to the numerator of the integrand. Moreover, since we assume D! < DtV p(z,y)
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is not almost surely constant, and the above expression is strictly positive. Next we

outline a standard calculation which shows that A, ,(A\) — Dj as A — —oo. For

any fixed x € A let a,, = essinfy., p(z,Y), and, given € > 0 arbitrary, define

~

Bule) = {y€ A : pla,y) < as+e),

so that v(B;(e)) > 0. Then,
. ) e (@)
Mo = [ [ )RR
p(, y)e o)
+ /dﬂ(ﬂﬁ) /ABz(e) dV(y)m, (A.6)

where the integral over (A — B,(e)) is bounded above by

A_ dl/(y)e/\(p(wry)fam
Do [fA B (e)

Np(oy)—a )) < Diax /(A = Ba(g)e
me(E/Z) du (y)epley)-a

v(By(€/2))er/?

< e (A)

where C' is a nonnegative constant, independent of A. Therefore, by the dominated
convergence theorem the second term in (A.6) converges to 0 as A — —oo. Similarly,
the integral over B,(¢) in (A.6) is easily seen to be bounded below by

B —1
wa E/z (?J)P(ﬂﬁ y)ertey) - [i B )ere(@y)
me(E/Z v(y)eey) + [ .0 WY )err(@y) me ) (y)e)\p(:v )
B —1
I/(A - Bm(e))e/\f
> a, |1 ,
=0T B

which is seen to converge to a, as A — —oo. Observing that that the integral over
B,(€) in (A.6) bounded above by (c +¢€), combining this with the above lower bound,
and letting € | 0, implies that the integral over B, (€) in (A.6) converges to a,. This, in
turn, together with (A.6), (A.7), and the definition of a, shows that A), ,(\) — Dii

as A — —oo.

Part (ii7) is a straightforward application of (i7) and elementary calculus.
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For part (iv), the infinite differentiability of

Aso(N) = log, ( / eAf’(m’y)du(y))

with respect to A is established by a standard application of the dominated conver-
gence theorem and induction, and the boundedness of the derivatives follows easily

from the boundedness of p. a

A.3 Proof of Proposition 2.2

It suffices to show that R.(u,v, D) = A (D), ie.,

1nf/H (:|2)||lv(-))dp(x) = sup[Az — A, (N)] (A.8)

AER

where the infimum is taken over all probability measures © on A x A such that the
A-marginal of © is p and [ p(z,y) dO(z,y) < D.
By Lemma 2.1 we may fix A < 0 for which the supremum on the right side of
(A.8) is achieved. Consider the probability measure © defined by
dO(z,y) e (:y)

duxv — [eM©dy(z)

in the left side of (A.8). The A-marginal of © is p, [ p(z,y)dO(z,y) = A}, ,(A) = D,

/ HAO)vO)dnte) = 2D~ [1og, | [ )| dute) = 43,.(D).

so the left side of (A.8) is no greater than Aj (D). To prove the reverse inequality

we recall that for any probability measure © and any bounded measurable function

o: A= R,
HAOCI() = [ stdenie) -tog.{ [ e}

(c.f. [23, Lemma 3.2.13]). In particular, choosing ¢(-) = Ap(z, -) and integrating both
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sides with respect to p yields the required inequality and completes the proof. O

A.4 Choice of s(n)-types
Since s(n) — oo and it is nondecreasing, for all n large enough we have
s(n) > |Almax{1/¢*(y) : y € A with ¢*(y) > 0}.
Then pick y, € A with q*(y,) > 0, and define
) if y # y, and ¢*(y) > 0

w(y) =1 if ¢*(y) =0
1— ZyeA, Y#Yo an(y) iy =y,

It is now trivial to check that g, has the required properties.
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