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Abstract

Over the past �	 years� the practical requirement for e
cient data compression al�

gorithms has generated a large volume of research covering the whole spectrum from

practically implementable algorithms to deep theoretical results� One prominent ex�

ample is the Lempel�Ziv algorithm for lossless data compression� Not only is it imple�

mented on most computers used today� but also� attempts to analyze its performance

have provided new problems in probability� information theory and ergodic theory�

whose solutions reveal a series of interesting results about the entropy and the recur�

rence structure of stationary processes�

The main problems considered in this thesis are those of determining the asymp�

totic behavior of waiting times and recurrence times in stationary processes� These

questions are motivated primarily by their important applications in data compression

and the analysis of string matching algorithms in DNA sequence analysis� In partic�

ular� solving the waiting times problem also allowed us to solve a long�standing open

problem in data compression� That of �nding a practical extension of the Lempel�Ziv

coding algorithm for lossy compression�

This thesis is divided into three parts� In the �rst part we generalize one of the

central theoretical results in source coding theory� We prove a natural generalization

of the celebrated Shannon�McMillan�Breiman theorem �as well as its subsequent re�

�nements by Ibragimov and by Philipp and Stout� for real�valued processes and for

the case when distortion is allowed� These results are inspired by� and provide the key

technical ingredient in� our asymptotic analysis of recurrence and waiting times� in

the second part� The main probabilistic tools used in establishing them are uniform

almost�sure approximation� powerful techniques from large deviations� and classical

second�moment blocking arguments�

In the second part we consider the problem of waiting times between stationary
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processes� We show that waiting times grow exponentially with probability one and�

that their rate is given by the solution to an explicit variational problem in terms of

the entropies of the underlying processes� Moreover� we show that� properly scaled�

the deviations of the waiting times from their limiting exponent are asymptotically

Gaussian �with a limiting variance explicitly identi�ed�� and we prove �ner theorems

�e�g�� a law of the iterated logarithm and an almost sure invariance principle� that

provide the exact rate of convergence in the above limit theorems� Corresponding

results are proved for recurrence times� and dual results are stated and proved for

certain longest�match lengths between stationary processes�

Finally� in the third part� we use the insight gained by the waiting times results

to �nd a practical extension of the Lempel�Ziv scheme for the case of lossy data com�

pression� We propose a new lossy version of the so�called Fixed�Database Lempel�Ziv

coding algorithm� which is of complexity 
comparable� to that of the corresponding

lossless scheme� and we prove that its compression performance is �asymptotically�

optimal�
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Chapter �

Introduction

The central problem considered in this thesis is� loosely speaking� that of understand�

ing the behavior of long pattern occurrences in realizations of random processes in

discrete time� A typical question we will be asking is the following� Suppose we

observe the outcome of a binary random process� how long does it take until a cer�

tain pattern of zeros and ones �rst appears� Questions of this type arise naturally

in several areas� sometimes because of their theoretical interest and sometimes in

applications� Here are four representative examples�

i� Poincar�e recurrence� Here one asks questions about the reappearance of an

initial pattern generated by the process� Does it always reappear� When it

does� how long does it take� This problem and its rami�cations are important

in the study of dynamical systems in ergodic theory� In Chapter � we will ask

what happens when we look for longer and longer such initial patterns  how

much longer do we have to wait each time�

ii� String matching� Given two �nite strings that are generated independently by

the same process� what is the length of their longest common �contiguous� sub�

string� This question arises in DNA sequence matching and in string searching

algorithms in computer science� As we will see in Chapters � and �� there is a

natural 
duality� relationship between questions about longest�match lengths�

and questions about the �rst occurrence of random patterns�

iii� Typicality� In a long realization of a stationary ergodic process there are 
typ�

ical� patterns that tend to appear often and 
atypical� ones that only appear

�
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rarely� This observation was made by Shannon in his landmark ���� paper !��"�

What is the length and the relative frequency of typical patterns� In Chapter �

we generalize Shannon�s original answers for these questions to real�valued �or

more general� processes� and also to the case when distortion is allowed in the

patterns�

iv� Data compression� Shannon�s observation of typical patterns provides a pre�

cise way to quantify how much structure there is in a 
message� produced by

a random 
source�� How can we take advantage of this structure to do 
com�

pression�� i�e�� to describe long messages e
ciently� The celebrated Lempel�Ziv

family of data compression algorithms is based on exploiting this structure� In

Chapter 	 we extend this idea further to the case of lossy data compression�

This list is by no means exhaustive� Several related questions are mentioned in

Section ��� below�

As we shall see later� there is a common theme at the heart of all these prob�

lems  a strong connection between the geometry along a single realization and the

probabilistic structure of the underlying process that produced it� in particular� with

the entropy of that process� We can interpret this connection in the 
big picture� by

saying that it provides yet another snapshot of the sample�path picture of stochastic

processes� added to the many other such properties that have come to form a major

part of the foundation of modern probability theory over the past 	� years�

��� The Question of Recurrence

In order to get a better idea of the �avor of our problems and the ideas involved

in solving them� we present here a concrete example of a question that is tackled in

detail in Chapter �� We will try to illustrate three points� ��� the motivation for the

problem and the intuition underlying the analysis� ��� the natural way in which the

entropy enters when we calculate probabilities of patterns along a realization� ��� the

connection between pattern matching and data compression�



���� THE QUESTION OF RECURRENCE �

����� Recurrence and Entropy

Suppose we observe a doubly�in�nite realization x � �� � � � x��� x�� x�� x�� � � �� pro�

duced by a stationary ergodic process X � fXn � n � Zg� which takes values in a

�nite alphabet A� Write xji for the substring of x between positions i and j

xji
�
��xi� xi��� � � � � xj�� �� � i � j � ��

and similarly Xj
i for the vector of random variables �Xi� Xi��� � � � � Xj�� For a �xed

integer n we consider the pattern xn� � �x�� x�� � � � � xn� formed by the �rst n symbols

produced by X� and we ask how far back into the past one has to look before seeing

the same pattern appear again� More precisely� we de�ne Rn� the recurrence time for

xn� � as the �rst position k � � for which x�k�n�k�� � xn� �

Rn � inffk � � � x�k�n�k�� � xn�g�

If we increase the length of the pattern we are looking for� then� clearly� the time

we have to wait will increase� which implies that for every �xed realization x the

recurrence time Rn increases with n� Our main question here is� How fast does Rn

increase�

To gain some intuition we �rst try to understand what happens in the simplest

case� Suppose X is a sequence of independent and identically distributed �i�i�d��

binary random variables� with each Xn � � with probability p� or Xn � � with

probability �� � p�� Below we show an example of a realization from X� with two

recurring strings x�� and x
�
� and corresponding recurrence times R� � �� and R� � ���

� � � � � � � �
� �z �

R����

� � � � � � �

R����
z �� �

� � � � � � � � � � � � � �

x
�

�

z �� �

� � � ��
� �z �

x�
�

� � �

Conditional on the value of x�� say x� � �� the distribution of the recurrence time R�

is exponential� with mean ��p� Thus� R� is concentrated around the reciprocal of the

probability of the recurring symbol and has exponential tails away from its mean�

What about Rn for general n� Although its distribution is more complicated in

this case� it is not hard to show that conditional on the recurring pattern xn� � the
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mean of Rn is still equal to the reciprocal of the probability of that pattern

E�Rn jXn
� � xn� � �

�

P �xn� �
� �����

where P denotes the distribution of X� Now what is this probability� If n is large�

there will be roughly np ones and n���p� zeros in xn� � so that P �xn� � � pnp���p�n���p��
Since this decays exponentially with n it suggests that� at least on the average� Rn

increases exponentially with n� Moreover� looking at the exponent of decay of P �xn� ��

we see that

� �

n
logP �xn�� � � �

n
log
�
pnp��� p�n���p�

�
� H� �����

where� H � �p log p� ��� p� log��� p� is the entropy rate of the process X� This�

then� suggests that Rn increases exponentially with a rate in the exponent given by

the entropy rate of X and� indeed� it is probably not very surprising that the above

informal argument can easily be made rigorous to show that

lim
n��

�

n
logRn � H a�s� �����

What is somewhat remarkable� though� is that each one of the above steps is

essentially valid in full generality  for every �nite�valued stationary ergodic process�

A theorem of Kac from ���� !��" says that ����� remains verbatim true for every

stationary ergodic X � This can be used to conclude �not trivially  see Theorem ���

in Chapter �� that the asymptotic behavior of Rn is the same as that of ��P �Xn
� �� in

that

lim
n��

�
�

n
logRn � �

n
log

�

P �Xn
� �

�
� lim

n��
�

n
log !RnP �Xn

� �" � � a�s�� �����

and the Shannon�McMillan�Breiman theorem !��" states that ����� also remains true

in this case

lim
n��

� �

n
logP �Xn

� � � H a�s� ���	�

�Here and throughout this thesis log denotes the logarithm taken to base �� and log
e
denotes the

natural logarithm�
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where the entropy rate H of X is now de�ned by H
�
� limnE!� logP �X� jX�

�n"�

Combining ����� and ���	� we recover ����� in complete generality�

����� Second�Order Results

After seeing that the rate in the exponent of the recurrence times Rn converges� with

probability one� to a constant �the entropy rate H�� there is a natural sequence of

further questions we would like to ask� including�

i� What is the rate of convergence to the H in ������

ii� What is the asymptotic distribution of the deviations away from H�

iii� What is the variance of these deviations�

The way we will answer these questions in Chapter � is by re�ning the steps we took

in the strategy that gave us ������ The main intuition we gained there was that� in

a strong asymptotic sense� Rn� the recurrence time for the pattern Xn
� is close to

the reciprocal of the probability P �Xn
� � of that pattern� First we will show that the

formal connection between Rn and ��P �Xn
� � given in ����� can be strengthened to

lim
n��

�p
n
log!RnP �Xn

� �" � � a�s� �����

Then� looking at � logP �Xn
� � a little more carefully and assuming for a moment that

X is i�i�d�� we see that � logP �Xn
� � can be rewritten as an ordinary random walk

� logP �Xn
� � �

nX
i��

!� logP �Xi�"� �����

so that its asymptotic behavior can be described in detail by the classical limit the�

orems for partial sums of i�i�d� random variables� For example� combining equations

����� and ����� with the classical central limit theorem immediately yields

logRn � nHp
n

D�� N��� ��� �����
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with �� � Var�� logP �X���� answering our questions �ii� and �iii� above !

D�� �

denotes convergence in distribution"� This can be viewed as a central�limit�theorem�

type re�nement to the strong�law�of�large�numbers statement of ������ Similarly� a

simple application of the law of the iterated logarithm gives

lim sup
n��

logRn � nHp
�n loge loge n

� � a�s�� �����

providing the pointwise rate of convergence in ����� and answering question �i��

In Chapters � and � we show that the independence assumption can be signi��

cantly relaxed� and the same strategy works for a large class of processes with memory�

����� Recurrence and Data Compression

How did the question of the asymptotic behavior of Rn �rst arise�

In ����� in an attempt to understand the exact compression performance of some

variants of the Lempel�Ziv data compression algorithm� Wyner and Ziv !��" discovered

the connection between recurrence times and entropy described in ������ One of the

central ideas in their paper was� instead of considering the actual algorithms directly�

to introduce and analyze an idealized coding scenario� a simple version of which we

describe below�

Suppose an encoder and a decoder� me and you� say� have been communicating

for a long time so that presently we share a very long� in fact in�nitely long� common

database X�
�� � �� � � � X��� X�� produced by some stationary ergodic 
source� X�

My task as the encoder is to describe to you the 
message� Xn
� consisting of the next

n symbols produced by X� and I want to �nd a way to utilize somehow the 
common

information� X�
�� we share in order to describe Xn

� more e
ciently�

My idea is� rather than describing Xn
� to you directly� I will look in the database

X�
��� �nd the �rst position Rn where a copy of the message Xn

� appears� and tell

you that position� From this information you can easily recover Xn
� by looking in the

database and reading o� the string �X�Rn��� X�Rn��� � � � � X�Rn�n��

Is this a good idea� Since all I have to tell you is Rn� my description consists of

approximately logRn bits �in general it takes about log k bits to describe an integer

k�� and from this you can recover a message of length n symbols� giving a compression
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ratio of approximately
logRn

n
bits per symbol�

As we saw in ����� this ratio converges to the entropy rate of X� implying that the

compression performance of this simple�minded scheme is asymptotically optimal�

Although of no practical use in itself� this result provides the main technical ingre�

dient in proving the optimality of the so�called Sliding�Window Lempel�Ziv algorithm

!��"!��"� probably the most popular compression algorithm in use today� Moreover�

Wyner and Ziv�s idea of reducing the study of a practical algorithm to that of an

idealized coding scenario was a very signi�cant contribution to our intuitive under�

standing of the workings of several Lempel�Ziv schemes� Since then� this reduction

has been exploited by a number of authors and has ultimately lead not only to a

better understanding of the existing methods� but also to several new� practical data

compression algorithms�

In Section ����� below we will push this connection a little further� we will dis�

cuss extensions of the Lempel�Ziv idea to lossy data compression� and motivate our

subsequent results in Chapter 	�

��� Three More Questions

Next we outline three more questions that are addressed later in this thesis� and we

highlight some of our relevant results from Chapters � 	�

����� Waiting Times

Consider the following variation of the recurrence times problem� Instead of asking

how long it takes before the �rst reappearance of the initial pattern generated by some

random process� we ask how long it takes before the �rst approximate appearance of

a random pattern generated independently by a di�erent process�

For the sake of simplicity� consider two i�i�d� binary processes X � fXn � n � Zg
and Y � fYn � n � Zg� with distributions P and Q� respectively� We will measure

the closeness between �nite realizations fromX and Y by the proportion of positions
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where they agree� so we de�ne the Hamming distortion between xn� and yn� by

�n�x
n
� � y

n
� � �

�

n

nX
i��

Ifxi � yig� xn� � y
n
� � f�� �gn� n � �� ������

where Ifxi � yig is the indicator function of the event fxi � yig� For any binary

string xn� and any distortion level D � !�� �" we let B�xn� � D� denote the distortion�ball

of radius D around xn� �

B�xn� � D� � fyn� � f�� �gn � �n�x
n
� � y

n
� � � Dg�

Given two realizations of X and Y and a D � !�� �"� our quantity of interest here is

the waiting time Wn�D� until a D�close version of xn� �rst appears somewhere in y�� �

Wn�D� � inf fk � � � yk�n��k � B�xn� � D�g�

Intuitively� it seems natural to expect that the asymptotic behavior of Wn�D� as

n�� would not be very di�erent from that of Rn� so we ask� To what extent does

Wn�D� behave like Rn�

In Chapter � this question is addressed �and answered�� and the analysis follows

essentially the same strategy as the one employed to analyze the behavior of Rn�

i� First� we prove that the waiting time Wn�D� until we �nd a D�close match for

Xn
� can be approximated by the reciprocal of the probability Q�B�Xn

� � D�� of

�nding such a match �see Theorem ���� Chapter ���

logWn�D� � � logQ�B�Xn
� � D���

ii� Then we show that� asymptotically� � logQ�B�Xn
� � D�� behaves as a random

walk �Theorems ��� and ��	� Chapter ��� just like � logP �Xn
� � did in the case

of Rn�

Although these two steps closely parallel the corresponding recurrence times results

in ����� and ������ the techniques used to prove them had to be di�erent in this case�

One of the di
culties can be spotted easily from the fact that we cannot expand

� logQ�B�Xn
� � D�� as random walk like we did with � logP �Xn

� � in ������ In fact�
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it is not even clear a priori that � logQ�B�Xn
� � D�� will have the same asymptotic

behavior as � logP �Xn
� ��

Chapter � is devoted to showing that the same behavior does indeed persist� in

that the probabilities Q�B�Xn
� � D�� decay exponentially and their deviations from

the limiting exponent are asymptotically those of a random walk� These results

provide natural generalizations of the Shannon�McMillan�Breiman theorem and its

re�nements to general processes �taking more than a discrete set of values� and to

the case when distortion is allowed�

Combining� as before� �i� and �ii� with the classical limit theorems for partial sums

of i�i�d� random variables we obtain analogs of ������ ����� and ������ From the strong

law of large numbers it follows that the waiting times Wn�D� increase exponentially

with probability one�

lim
n��

�

n
logWn�D� � R�P�Q�D� a�s�� ������

where the rate in the exponent R�P�Q�D� can be explicitly identi�ed as the solution

to a variational problem in terms of the entropies of X and Y � Similarly� using the

central limit theorem and the law of the iterated logarithm we get analogs for �����

and ������ respectively�

����� Lossy Data Compression

In many engineering applications where large amounts of data are to be stored or

transmitted� compression is an important component� Often� in order to reduce the

storage or transmission requirements� we are willing to tolerate a certain amount of

error in the reconstructed data  for example� think of a large image database where

each image is compressed by a factor of� say� 	���� and can be recovered not perfectly�

but with a small amount of visual distortion� The following question will be addressed

in Chapter 	� Is there an easy way to extend the Lempel�Ziv idea to the case when

distortion is allowed� to obtain a practical lossy compression scheme based on pattern

matching�

The great success of the Lempel�Ziv family of algorithms has been mainly due

to two reasons� First� they are low complexity algorithms that can be simply imple�

mented �they are� for example� implemented on almost every personal computer in



�� CHAPTER �� INTRODUCTION

use today�� Since e
cient string matching has been very well studied by computer

scientists over the past several decades� there are� by now� a number of very e
cient

algorithms that can be readily used in the context of compression�

The second reason for their practical success is that Lempel�Ziv schemes are uni�

versal  they assume essentially zero prior knowledge about the distribution of the

source to be compressed� The trick they employ to overcome this lack of knowledge

comes down to the idea of using the message itself as a codebook� For example� in

the idealized coding scenario described in relation to recurrence times �Section �����

above�� we assumed that the encoder and decoder shared an in�nitely long database

that had the same distribution as the source� and that the next part of the message

was described by a pointer into that database�

There is� therefore� an implicit assumption that plays a key role in the success of

these compression algorithms� namely� that the optimal �lossless� description of some

random message is in terms of a codebook with the same distribution as the message

itself� Unfortunately� this assumption is not true in the lossy case� and one is forced

to consider codebooks generated according to di�erent distributions�

To understand the situation better we follow Wyner and Ziv�s example !��" and

turn to an idealized coding scenario� Consider an encoder and a decoder sharing a

common in�nite database Y �
� � �Y�� Y�� � � ��� generated by some i�i�d� binary process

Y with distribution Q� Suppose that the encoder�s task is to communicate a message

Xn
� � generated by a di�erent i�i�d� binary processX of distribution P � to the decoder�

within some prescribed distortionD �with respect� say� to Hamming distortion f�ng as
de�ned in �������� The encoder�s strategy is� as before� to look through the database

until the �rst time when a D�close match of Xn
� is found� and then tell the decoder the

position Wn�D� of this �rst match� To describe Wn�D� it takes roughly logWn�D�

bits� so the compression achieved by this simple code equals

logWn�D�

n
bits per symbol�

As we saw in ������� this converges to R�P�Q�D�� so di�erent choices of the database

distribution yield di�erent limiting compression ratios� The bad news here is that�

unlike in the case of lossless compression� R�P�Q�D� is not in general minimized by

choosing the database to be of the same distribution as the source� i�e�� taking Q � P �

On the other hand� the optimal compression ratio for X with respect to Hamming
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distortion at level D �given by the rate�distortion function R�D� of X� satis�es

R�D� � inf
Q
R�P�Q�D�

so that the problem is that we do not know a priori how to choose the best database

distribution in order to minimize R�P�Q�D��

In Chapter 	 we describe a new lossy version of Lempel�Ziv coding that gets

around this problem by maintaining not just one� but multiple databases at the

encoder and the decoder� and chooses which one to use at each stage in a 
greedy�

manner� The new algorithm is demonstrated to have asymptotically optimal compres�

sion performance �Theorem 	���� and we argue that its complexity and redundancy

characteristics are comparable to those of its lossless counterpart�

����� Match Lengths and DNA Template Matching

In the analysis of DNA or protein sequences the following problem is of interest�

Suppose we have a template �X�� X�� � � �� and a long but �nite database sequence

Y m
� � �Y�� Y�� � � � � Ym�� What is the length of the longest initial portion X�

� of the

template that matches within distortion D somewhere in the database� By a 
match�

here we mean that there exists a contiguous substring Y j��
j�� of the database such that

the distortion between X�
� and Y j��

j�� is at most D� with respect to� say� Hamming

distortion� Given two realizations of the processes X and Y producing the above

template and database� respectively� we write Lm�D� for this maximal match�length�

Lm�D� � supf� � � � yj��j�� � B�x��� D�� for some j � �� �� � � � � m� �g�

Intuitively it seems that there is some connection between the match lengths Lm�D�

and the waiting times Wn�D�� We would expect that the database length m is

essentially the same as the waiting time for �X�� � � � � XLm�D��� that is� if n � Lm�D�

then Wn�D� should be approximately equal tom� and vice versa� Taking this analogy

a step further� we might be tempted to replace m by Wn�D� and n by Lm�D� in our

asymptotic results about waiting times� and hope that they remain valid�

We will see in detail in Chapters � and �� that this intuition is essentially correct

but it is not trivial to justify� For example� replacing m by Wn�D� and n by Lm�D�



�� CHAPTER �� INTRODUCTION

in ������ we obtain �see Theorem ��� in Chapter ��

lim
m��

logm

Lm�D�
� R�P�Q�D� a�s� ������

Similarly� all second�order results about Wn�D� give us corresponding results for

Lm�D�� providing a complete picture of the asymptotic behavior of Lm�D��

��� History

Some general remarks about the history of the results we have been discussing are

in order here� More detailed references to speci�c or more recent results are given at

appropriate points in the subsequent chapters�

In ergodic theory� the question of what we called Poincar�e recurrence was �rst

raised by Poincar�e in ���� !	�"� A very nice exposition of the long history of the

results that followed� and also of the connection with the infamous H�theorem of

Boltzmann� are presented in Petersen�s text !		"� Kac�s theorem was proved in ����

!��"� alternative proofs can be found in !		"!��"�

Within probability theory� recurrence properties have been very important since

at least as far back as the late �����s� Doeblin and Harris both identi�ed recurrence

as the key concept in analyzing the asymptotic behavior of Markov processes� see

Meyn and Tweedie�s book !��" for a modern exposition� In particular� the idea of ap�

proximating the waiting time for an event by the reciprocal of its probability appears

already in Doeblin�s work on continued fractions in ���� !��"� in Bellman and Harris�

���	�� work on the Ehrenfest model !��"� and also in Harris� ���	�� paper !��" on

recurrence in Markov chains� At the cost of more restrictive assumptions� these au�

thors go a step further and essentially show that the distribution of the waiting time

for a rare event A is approximately exponential� with mean equal to the probability

of A� Recent work in this direction is reported by Galves and Schmitt !��" who also

provide an extensive list of references�

Closer to our approach� the use of � logP �Xn
� � or a similar random walk as an

approximating sequence was employed by Ibragimov !��" and by Philipp and Stout

!	�� Chapter �" in proving re�nements to the Shannon�McMillan�Breiman theorem� by

Barron !�" in proving the Shannon source coding theorem in the almost sure sense� and
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by Algoet and Cover !�" in an elementary proof of the Shannon�McMillan�Breiman

theorem�

The notion of typicality was introduced by Shannon in his famous ���� paper !��"

that founded the �eld of information theory� Our calculation of the probability of

a typical sequence that lead to equation ����� was taken� essentially verbatim� from

the discussion preceding Theorem � in !��"� There� Shannon showed that for every

stationary ergodic Markov chain X with a �nite number of states�

� �

n
logP �Xn

� �� H in probability� ������

McMillan !��" showed that ������ holds for every stationary ergodic process� and

Breiman !��" strengthened McMillan�s result to the almost sure convergence result

we saw in ���	�� Meanwhile� �rst Yushkevich !��" in ��	� and then Ibragimov !��" in

his well�known ���� paper proved a central limit theorem re�nement of ������� More

on the history of further work in this direction is given in Chapter ��

Turning to applications� the �rst explicit connection between match lengths and

entropy seems to have been made in ���	 by Pittel !	�"� whose results are phrased

in terms of path lengths in random trees� Aldous and Shields !�" pointed out the

relationship between randomly growing trees and data compression� and Szpankowski

!��" made explicit the equivalence between match lengths along random sequences and

feasible paths in random trees�

Recurrence times in relation to data compression �rst appeared in Willems� work

!��" and also in Wyner and Ziv�s ���� paper !��"� where they �implicitly� introduced

the idealized coding scenario we saw in Section ������ Wyner and Ziv !��" discovered

����� and the corresponding result for waiting times �without distortion�� and these

were formally established by Ornstein and Weiss !	�" and by Shields !��"� respec�

tively� using methods from ergodic theory� Extensive references to subsequent work

of re�ning and generalizing these results are given in Chapters � and ��

In connection with DNA sequence analysis� results about asymptotics of match

lengths arising from string matching problems can found in the work of Karlin and

Ost !�	"� Pevzner� Borodovsky and Mironov !	�"� Arratia and Waterman !	"� and

Dembo� Karlin and Zeitouni !��"� Some of these results can be viewed as natural

generalizations of the classical Erd#os�R�enyi laws of large numbers� as discussed by

Arratia� Gordon and Waterman in !�"� Finally we mention that related questions
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about string searching algorithms in computer science have been studied by Guibas

and Odlyzko !��" and Jacquet and Szpankowski !��"� among many others�

��� About This Thesis

����� Theory and Applications

Our initial motivation for this work was to gain a better understanding of the work�

ings of the Lempel�Ziv family of data compression algorithms� Our introduction to

the problem was through Wyner and Ziv�s ���� paper !��"� there� they isolated two

very interesting theoretical questions �the questions about the asymptotic behavior of

recurrence and waiting times�� and demonstrated that the performance of the practi�

cal algorithms can be determined from the answers to these questions� Subsequently�

researchers in several communities outside information theory found these problems

also to be of theoretical interest and expanded on Wyner and Ziv�s work� In the pro�

cess of generalizing the original results to the case when distortion is allowed� further

theoretical questions arose which led to the generalizations of the Shannon�McMillan�

Breiman theorem and its re�nements that we present in Chapter �� These results� in

turn� provided the intuition that was missing in order to solve an important practical

problem� that of �nding a practical extension of the Lempel�Ziv idea to the case of

lossy compression  see Chapter 	�

In summary� a real practical application gave rise to some interesting theoretical

questions� whose solutions may have signi�cant impact in practice�

����� Organization

The rest of the thesis is organized as follows�

In Chapter � we describe the Shannon�McMillan�Breiman theorem� its re�nements

�by Yushkevich !��"� Ibragimov !��"� and Philipp and Stout !	�"�� and their general�

izations to the case when distortion is allowed �by $Luczak and Szpankowski !�	"� Yang

and Kie�er !�	"� and Dembo and Kontoyiannis !��"��

In Chapter � we address the problem of recurrence times in stationary processes�

and we show the asymptotic behavior of the recurrence times Rn can be deduced from

that of the random walk � logP �Xn
� �� This� combined with the results presented in
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Chapter �� gives us a complete asymptotic description of Rn� Corresponding results

are proved for certain longest match�lengths Mm along a realization� by exploiting a

nice duality relationship between Rn and Mm�

Chapter � contains analogous results about waiting times� both with and without

distortion� We �rst show that the behavior of the waiting times Wn�D� can be

deduced from that of the Q�probabilities of distortion balls B�Xn
� � D�� and then we

apply our results from Chapter � to read�o� the asymptotics of Wn�D�� Again�

corresponding results are proved for the match lengths Lm�D� via duality�

In Chapter 	 we address the problem of �nding an extension of the Lempel�

Ziv data compression algorithm that has asymptotically optimal compression perfor�

mance� and is also implementable in practice� We introduce a new lossy variant of

Lempel�Ziv� we prove its asymptotic optimality� and we argue that its complexity

and redundancy characteristics are comparable to those of its lossless counterpart�

The contributions of this thesis are brie�y summarized in Chapter �� where we

also mention some promising future research directions�

Finally in Appendix A we give the proofs of some of the more technical results

from Chapters � 	�

��� Notation

Here we state some notation and de�nitions that will remain in e�ect throughout this

thesis� Although most of these are repeated �at least once� somewhere else� we also

collect them here for easy reference�

� X � fXn � n � Zg denotes a stationary process with values in some space

�A�A�� and distribution determined by the measure P on the product space

�A��A���

� Similarly� Y � fYn � n � Zg denotes a stationary process with values in some

space � �A� �A�� and distribution determined by the measure Q on � �A�� �A���
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� For integers �� � i � j � �� we denote by Xj
i the vector of random variables

�Xi� Xi��� � � � � Xj�� Similarly� for a sequence �xn�n�Z of elements from a set A�

xji denotes the part of the sequence between positions i and j�

� x denotes an in�nite realization x � x��� � A� of the process X � similarly� y

denotes a realization y � y��� � �A� of Y �

� 
log� denotes the logarithm taken to base �� and 
loge� denotes the natural

logarithm�

� H�X�
�
��Px P �x� logP �x� denotes the entropy �in bits� of the discrete random

variable X� distributed according to the probability mass function P �

� H�P � denotes the entropy rate �in bits� of the process X with distribution P �

and is de�ned by

H�P � � lim
n��

�

n
H�Xn

� ��

If X is stationary then� equivalently� H�P � � limn E!� logP �X� jX��
�n�"�

� H�PkQ� denotes the relative entropy �in bits� between the two probability

measures P and Q� and is de�ned by

H�PkQ� �

� R
dP log dP

dQ
� when dP

dQ
exists

�� otherwise�

� I�X�Y �
�
�H�P�X�Y �kPX	PY � denotes the mutual information �in bits� between

the random variables X and Y � where PX and PY denote the marginals of X

and Y � respectively� and P�X�Y � is their joint distribution�

� � is some �xed measurable function � � A	 �A� !����� and f�ng is a sequence

of single�letter distortion measures �n � An 	 �An � !���� de�ned by

�n�x
n
� � y

n
� � �

�

n

nX
i��

��xi� yi�� xn� � An� yn� � �An� n � ��

� R�D� is the rate�distortion function �in bits� of the process X� with respect to

the sequence of distortion measures f�ng and at distortion level D� it is de�ned
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by

R�D� � lim
n��

�

n
inf

�n�Qn

I�Xn
� �Y

n
� �

where Qn is the space of all joint distributions �n for �Xn
� � Y

n
� �� such thatR

�n�x
n
� � y

n
� �d�n�x

n
� � y

n
� � � D and the Xn

� �marginal of �n is the same as the

original distribution of Xn
� �

� He�X�� He�P �� He�PkQ�� Ie�X�Y � and Re�D� denote the entropy� entropy rate�

relative entropy� mutual information and rate�distortion function in nats rather

than in bits� i�e�� they have the same de�nitions as the corresponding functionals

without the subscript e� but with the logarithms to base � replaced with natural

logarithms�
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Chapter �

The Shannon�McMillan�Breiman

Theorem� Generalizations� and

Re�nements

In this chapter we collect several theoretical results that we will need in later parts

of this thesis� In Section ��� we present the Shannon�McMillan�Breiman theorem

and its re�nements� and in Section ��� we give their generalizations to the case when

distortion is allowed�

��� Known Results

Shannon�s ���� landmark paper !��" contains a remarkably deep observation about


typical� patterns in random processes� Speaking of realizations of long sequences

XN
� � �X�� X�� � � � � XN� generated by a stationary� ergodic� �nite�state Markov chain�

Shannon writes� �� � � it is possible for most purposes to treat the long sequences as

though there were just �HN of them� each with a probability ��HN �� Mathematically�

this fact is formalized by the statement

� �

n
logP �Xn

� �� H in probability� �����

where H is the entropy rate of the Markov chain fXng �cf� !��� Theorem �"��

In general� let X � fXn � n � Zg be a stationary ergodic process� with values in

��
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the �nite set A called the alphabet of X � and with distribution determined by some

probability measure P on the space �A��A��� where A� is the ���eld generated

by �nite�dimensional cylinders� In its general form� ����� is known as the Shannon�

McMillan�Breiman theorem�

Theorem ��� 
Shannon�McMillan�Breiman Theorem �
�����������

For every �nite�valued stationary ergodic process X�

� �

n
logP �Xn

� �� H a�s� �����

where H is the entropy rate of the process X � de�ned by

H
�
� H�P �

�
� lim

n��
E!� logP �X� jX��

�n�"�

Using the same approach as Breiman !��"� Chung !�	" in ���� generalized ����� to

stationary ergodic processes X with countable alphabets� under the assumption that

H�X�� ���

In case of Markov chains it is not hard to see why ����� is true� We can expand

� �

n
logP �Xn

� � �
�

n

nX
i��

!� logP �Xi jXi���" �
�

n
log

P �X� jX��

P �X��

�
�

n

nX
i��

f� %Xi��� �
�

n
C� %X��� �����

where %Xn � �Xn� Xn��� forms a new Markov chain �X � f %Xn � �Xn� Xn��� � n � Zg
with state�space T � f�a� b� � A 	 A � P �X� � b jX� � a� � �g� the func�

tion f � T � R is de�ned by f�a� b� � � logP �X� � b jX� � a�� and C�
� is

de�ned by C�a� b�
�
� log !P �X� � b jX� � a��P �X� � b�"� for �a� b� � T � There�

fore ����� says that � logP �Xn
� � behaves like the sequence of partial sums of a

bounded function of a Markov chain� up to a bounded term� Since X is station�

ary and ergodic so is �X� and the ergodic theorem implies ����� upon observing that

Ef� %Xi� � E!� logP �X� jX��" � H� the entropy rate of X �

Shortly after Shannon�s paper� Yushkevich in ��	� !��"� prompted by a question

raised by Kolmogorov� observed that normalizing � logP �Xn
� � by

p
n instead of n



���� KNOWN RESULTS ��

and applying the central limit theorem for Markov chains yields

� logP �Xn
� �� nHp
n

D�� N��� ���� �����

where

�� � lim
n��

�

n
Var�� logP �Xn

� ��� ���	�

!

D�� � denotes convergence in distribution�" Yushkevich�s central limit theorem �����

was later extended by Ibragimov !��" to more general stationary ergodic processes by

noticing that when the 
memory� of the process X decays fast enough� � logP �Xn
� �

still behaves like the partial sum of a stationary process� i�e��

� �

n
logP �Xn

� � �
�

n

nX
i��

!� logP �Xi jX i��
� �" � �

n

nX
i��

!� logP �Xi jX i��
���"�

Essentially the same idea was used by Philipp and Stout !	�� Chapter �" in proving

an almost sure invariance principle for � logP �Xn
� �� De�ne a continuous time process

fp�t� � t � �g by letting p�t� � � for t � !�� �� and p�t� � !� logP �X
btc
� � � btcH"

for t � �� To quantify the rate at which the memory of X decays we de�ne several

mixing coe
cients


�n� � max
a�A

E
��� logP �X� � a jX��

���� logP �X� � a jX��
�n�
��� �����

��n� � sup
�jP �C � B�� P �C�P �B�j � B � ��X�

���� C � ��X�
n �
�

�����

��n� � sup
�jP �CjB�� P �C�j � B � ��X�

���� C � ��X�
n �
�
� �����

If ��n�� � as n��X is called strongly mixing or ��mixing� similarly� if ��n�� �

as n�� X is called ��mixing� see !��" for an extensive discussion of the properties

of various mixing conditions of this form� The coe
cients 
�n� were introduced by

Ibragimov !��" and they measure how well X can be approximated by �nite�order

Markov chains�

Theorem ��� 
Phillip and Stout �����

For every �nite�valued stationary ergodic Markov chain X�
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	i
 The following series converges�

�� � E!� logP �X� jX����H"�

� �
�X
k��

E!�� logP �X� jX����H��� logP �Xk jXk����H�"� �����

	ii
 If �� � �� then there exists a standard Brownian motion fB�t� � t � �g such that

p�t�� �B�t� � o�
p
t� a�s� ������

	iii
 Moreover� 	i
 and 	ii
 remain true if the ergodic Markov chain assumption is

replaced by the assumptions that ��n� � O�n�		
� and 
�n� � O�n����� with ��

replaced by

�� � E!� logP �X� jX��
����H"�

� �
�X
k��

E!�� logP �X� jX��
����H��� logP �Xk jXk��

�� ��H�"� ������

As usual� we interpret �ii� as saying that� without changing its distribution� p�t�

can be rede�ned on a richer probability space that contains a Brownian motion fB�t�g
such that ������ holds�

The numerous corollaries that can be derived from almost sure invariance prin�

ciples like the one in ������ are well�known and include the central limit theorem

�CLT�� the law of the iterated logarithm �LIL�� as well as their in�nite dimensional�

functional counterparts �see� e�g�� Strassen�s original paper !�	"� or !	�� Chapter �"��

Several of these corollaries will be explicitly stated in Chapters � and �� when we

actually use ������ to obtain corresponding results for waiting times and recurrence

times�

In the case of Markov chains the expressions for �� in ���	�� ����� and ������� of

course� all coincide� Yushkevich gave the following characterization of the degenerate

case �� � �� We supply a proof of a slightly stronger result in the Appendix� by

generalizing a formula of Fr�echet !��"�

Theorem ��� 
Yushkevich ����� Kontoyiannis �����

Let X be a �nite�valued stationary ergodic Markov chain� with entropy rate H�
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The variance �� de�ned by 	���
 is equal to zero if and only if every string xn��
� that

starts and ends in some �xed state a � A� has probability� conditional on x� � a�

either zero or qn� for some constant q depending on X�

Finally� we will also need the following variation on Theorem ���� Let Q be a

stationary Markov measure on the same space as P � and assume that for all n large

enough� the �nite�dimensional marginals Pn of P are dominated by the corresponding

marginals Qn of Q

Pn � Qn eventually� ������

The relative entropy rate between P and Q is given by

H�PkQ�
�
� lim

n��
EP

�
log

P �X� jX��
�n�

Q�X� jX��
�n�

�
�

and we de�ne a continuous time process fq�t� � t � �g by letting q�t� � � for t � !�� ��

and q�t� � !� logQ�X
btc
� �� btc�H�P � �H�PkQ��" for t � ��

Proposition ���

Let X be a �nite�valued stationary ergodic process� and Q be a stationary Markov

measure satisfying 	��
�
�

	i
 We have

� �

n
logQ�Xn

� �� H�P � �H�PkQ� P � a�s�

	ii
 If X is also a Markov process then the following limit exists

�� � � lim
n��

VarP �� logQ�Xn
� ��� ������

	iii
 If� moreover� �� � �� there exists a standard Brownian motion fB�t� � t � �g
such that

q�t�� �B�t� � o�
p
t� a�s� ������
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Proof of Proposition ��
� Part �i� follows from Barron�s generalized Shannon�

McMillan�Breiman theorem !�"� Parts �ii� and �iii� follow by an application of The�

orem ���� of Philipp and Stout !	�" to the sequence

� logQ�Xn
� �� n�H�P � �H�PkQ�� �

n��X
i��

!g� %Xi�� Eg� %Xi�" � !�logQ�X��� �H�P � �H�PkQ��" ����	�

where g � T � R is the function g�a� b� � !� logQ�Xi�� � b jXi � a�"� Since

Eg� %Xi� � H�P � �H�PkQ� and g is bounded� the right hand side of ����	� is equal

�up to a bounded term� to the partial sum of a zero�mean� bounded function of a

Markov chain� �

��� Allowing Distortion

As we saw in the introduction� when we consider 
approximate matches� or 
matches

with distortion� between patterns generated by di�erent processes� the quantity that

naturally replaces � logP �Xn
� � is � logQ�B�Xn

� � D��� Here� we will see how the

asymptotic results for � logP �Xn
� � presented in the previous section generalize to the

case of � logQ�B�Xn
� � D���

Little has been done in this direction� Recently� $Luczak and Szpankowski !�	"

showed that� when A and �A are �nite sets� ���n� logQ�B�Xn
� � D�� converges to some

constant R with probability one� and Yang and Kie�er !�	" identi�ed R as the solution

to a variational problem in terms of relative entropy �see Theorem ��� below�� Neither

of these papers considered the problem of determining the second�order asymptotic

properties of � logQ�B�Xn
� � D��� and they also left open the question of whether

analogous results can be established for processes taking values in general spaces A�
�A� Here� we address both of these issues� The novelty in our approach is the use of

large deviations techniques to relate the Q�probability of the ball B�Xn
� � D� around

the random center Xn
� to an associated random walk induced by Xn

� �

The typical scenario we will encounter in Chapters � and 	 consists of two sta�

tionary ergodic processes X � fXn � n � Zg and Y � fYn � n � Zg with possi�

bly di�erent alphabets� Suppose X and Y take values in the Polish �� complete�

seperable� metric� spaces �A��A�� and � �A�� �A��� and are distributed according
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to the probability measures P and Q� respectively� Given a measurable function

� � A 	 �A � !����� the distortion between �nite strings xn� � An and yn� � �An is

measured by�

��xn� � y
n
� � �

�

n

nX
i��

��xi� yi�� ������

For xn� � An and D � � we write B�xn� � D� for the ball of radius D around xn� �

B�xn� � D� � fyn� � �An � ��xn� � y
n
� � � Dg�

Throughout this section we will assume� for simplicity� that Q is a product mea�

sure� and write Q� for its one�dimensional marginal� Let

Dmin
�
� EP�!ess inf

Y��Q�

��X�� Y��"

Dav
�
� E��X�� Y��

and assume that

Dmax
�
� ess sup

�X��Y��

��X�� Y�� � �Dmin����

Since X is stationary and ergodic� if we take D � Dav then by the ergodic theorem

Q�B�Xn
� � D�� � � with P�probability one� whereas Q�B�Xn

� � D�� � � eventually

P�almost surely for any D � Dmin� Therefore� of interest is the range of distortions

D between Dmin and Dav� where Q�B�Xn
� � D�� decays exponentially in a nontrivial

manner�

Although the structure of � logQ�B�Xn
� � D�� is no longer that of a random walk�

our next two results show that we can relate � logQ�B�Xn
� � D�� to a di�erent random

walk on the same probability space� which arises from a functional of the empirical

measure �Pn � n��
Pn

i�� �Xi
induced on A by Xn

� � Theorem ��� is proved in Section ���

and Theorem ��	 is proved in Section ����

Theorem ���

Let X be a stationary ergodic process� Q be a product measure� and assume

D � �Dmin� Dav�� Then

� logQ�B�Xn
� � D��� nR� �Pn� � o�

p
n� P � a�s� ������
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where R� �Pn� � R� �Pn� Q�� D� is de�ned by the following variational problem�

R� �Pn� Q�� D� � inf

Z
H�&�
jx�kQ��
��d �Pn�x� ������

where the in�mum is taken over all probability measures & on A 	 �A such that the

A�marginal of & is �Pn and
R
��x� y� d&�x� y� � D�

A slightly di�erent way to write R� �Pn� Q�� D� that will be useful in Chapter 	 is

R� �Pn� Q�� D� � inf! I�X�Y � �H�Q�
�kQ�� "� ������

where the in�mum is over all random variables �X� Y � with values in A 	 �A� such

that X 
 �Pn� E��X� Y � � D� and Q�
� denotes the marginal of Y � Yet another

characterization of R� �Pn� Q�� D� is given by Proposition ��� in the next section�

Our �rst use of Theorem ��� is to prove the following generalization of Theo�

rem ���� Its proof is given in Section ����

Corollary ��� 
Shannon�McMillan�Breiman Theorem with distortion�

Let X be a stationary ergodic process� let Q be a product measure� and assume

D � �Dmin� Dav�� Then� R� �Pn�� R�P�� almost surely� and hence

� �

n
logQ�B�Xn

� � D��� R�P�� Q�� D� a�s� ������

�As we already mentioned in the beginning of this section� in the �nite�alphabet

case ������ was proved in !�	"!�	"�� Next� we investigate the behavior of the deviations

of R� �Pn� about its asymptotic mean R�P�� of order
p
n� For any probability measure

� on A and any 
 � R� let

���
� �

Z
loge

�Z
e���x�y�dQ��y�

	
d��x��

Write ��
� � �P��
� when � � P�� �x�
� � ��x�
� for any x � A� and de�ne the

function h � R 	 A� !���� by

h�
� x�
�
� �log e�

�
�x�
��

Z
�x��
�dP��x

��
�
� ������
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Theorem ��	 provides an explicit approximation of
p
n!R� �Pn��R�P��" by a random

walk induced by Xn
� �

Theorem ���

Let X be a stationary process with ��mixing coe�cients satisfying
P

��n� ���

let Q be a product measure� and D � �Dmin� Dav�� Then for some 
 � 
�D� � � such

that ���
� � D�

n!R� �Pn�� R�P��" �

nX
i��

h�
�Xi� � o�
p
n� a�s� ������

where h is de�ned by 	���

�

We now easily see from Theorems ��� and ��	 that the asymptotic behavior of

� logQ�B�Xn
� � D�� is exactly that of a random walk

!� logQ�B�Xn
� � D��� nR�P�� Q�� D�" �

nX
i��

h�
�Xi� � o�
p
n� a�s� ������

where h is a bounded and centered function of theXi�s� The following is an immediate

consequence of combining ������ with well�known CLT results �see� for example� !	��

Theorem ���"��

Corollary ��� 
CLT�

Let X be a stationary process with ��mixing coe�cients satisfying
P

��n� ���

let Q be a product measure� and D � �Dmin� Dav�� Then� for 
 � 
�D�� the following

series converges

�� � EP

�
h�
�X��

�
�
� �

�X
k��

EP fh�
�X��h�
�Xk�g � ������

where h is de�ned by 	���

� Moreover� when �� � ��

� logQ�B�Xn
� � D��� nR�P��p
n

D�� N��� ����
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and the sequence of processes�
q�nt�D�

�
p
n

� t � !�� �"

	
� n � �

converges in distribution to standard Brownian motion� where q�t�D� � � for t � !�� ��

and q�t�D� � !� logQ�B�X
btc
� � D��� btcR�P�� Q�� D�" for t � ��

Similarly� Corollary ��� is a consequence of ������ combined with the LIL !��"�

Corollary ��� 
LIL�

Let X be a stationary process with ��mixing coe�cients satisfying
P

��n� ���

let Q be a product measure� and D � �Dmin� Dav�� Then� for �
� � � as in 	����
� with

P�probability one� the set of limit points of the sequence�
� logQ�B�Xn

� � D��� nR�P��p
�n loge loge n



� n � �

coincides with the interval !��� �"� Moreover� with P�probability one� the sequence

of sample paths �
q�nt�D�p

�n loge loge n
� t � !�� �"



� n � ��

is relatively compact in the topology of uniform convergence� and the set of its limit

points is the collection of all absolutely continuous functions r � !�� �"� R� such that

r��� � � and
R �

�
�dr�dt��dt � ���

Finally� the next Corollary generalizes Theorem ���� it follows from ������ and an

almost sure invariance principle proved by Philipp and Stout !	�� Theorem ���"�

Corollary ��� 
Almost sure invariance principle�

Let X be a stationary process with ��mixing coe�cients satisfying
P

��n� ���

let Q be a product measure� and D � �Dmin� Dav�� Then� with �� � � as in 	����
�

there exists a Brownian motion fB�t� � t � �g such that

q�t�D�� �B�t� � o�
p
t� P � a�s� ����	�
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��� Large Deviations

In this section we give the proofs of Theorem ��� and Corollary ����

First we state in Lemma ��� some useful technical facts that will be needed in the

later proofs� and then we state the alternative characterization of the rate function

R in terms of relative entropy in Proposition ���� Their proofs are given in the

Appendix�

Lemma ���

Let � and � be arbitrary probability measures on A and �A� respectively� Let

D���
min �

Z
ess inf
Y��

��x� Y � d��x�

D���
av �

Z
��x� y� d��x�d��y�

D���
max � ess sup

�X�Y �����
��X� Y �

and for 
� x � R de�ne

�����
� �

Z
loge

�Z
e���x�y�d��y�

�
d��x�

and its Fenchel�Legendre transform

������x� � sup
��R

!
x� �����
�"�

Assume � � D���
min � D���

av � D���
max ��� Then

�i� j�����
�j � j
jD���
max�

�ii� ���� � C�� �������� � D���
av � �������
� � � for all 
 � R� and ������
� � D���

min as


� ���

�iii� For each D � �D���
min� D

���
av �� there exists a unique 
 � � such that ������
� � D

and ������D� � 
D � �����
�� Therefore� ������D� is �nite� continuous and

decreasing for D � �D���
min� D

���
av ��

�iv� For ��almost any x � A� ��x�� � C� and its derivatives are uniformly bounded

over ��almost all x � A and all 
 in a compact subset of R�
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Proposition ���

In the notation of Lemma ��
 with � and � being arbitrary probability measures

on A and �A� respectively� and D � �D���
min� D

���
av 
� we have�

Re��� ��D� � �loge ��R��� ��D� � ������D�

where Re��� ��D� is de�ned as in 	��
�
� but with relative entropy in nats instead of

bits�

Proof of Theorem ���� In order to simplify the notation� we will prove the

statement of the theorem in terms of natural logarithms rather than logarithms to

base �� i�e�� we will show that

� logeQ�B�Xn
� � D��� nRe� �Pn� � o�

p
n� P � a�s� ������

Let D
�n�
av �

R
��x� y� d �Pn�x�dQ��y�� so that� by the ergodic theorem

D
�n�
av � Dav P � a�s� ������

Similarly let D
�n�
min � E �Pn

!ess infY� ��X�� Y��"� so that

D
�n�
min � Dmin P � a�s� ������

Given a realization of the X process such that both ������ and ������ hold� for n

large enough the given D will be strictly between D
�n�
min and D

�n�
av � Therefore� by

Lemma ��� we can choose� for each n � a negative 
n such that ���Pn�
n� � D�

���Pn�D� � 
nD � � �Pn
�
n�� and ����Pn�
n� � �� We similarly choose 
 � � such that

���
� � D� and we claim that


n � 
 P � a�s� ������

To see this suppose� for example� that lim supn�� 
n � 
� �� for some � � �� so that�

eventually� 
n � 
 � ���� Then by the ergodic theorem and the strict monotonicity
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of �� we get a contradiction�

D � lim sup
n��

���Pn�
n� � lim sup
n��

���Pn�
� ���� � lim
n��

n��
nX
i��

��Xi
�
� ����

� ���
� ���� � ���
� � D�

The case lim infn�� 
n � 
 is ruled out similarly�

Before moving to the main part of the proof� we also show that

����Pn�
n�� ����
� � � P � a�s� ������

Since

j����Pn�
n�� ����
�j � �

n

nX
i��

j���Xi
�
n�� ���Xi

�
�j �
����� �n

nX
i��

���Xi
�
�� ����
�

����� � ������

we can bound the �rst term above� for any � � � and n large enough� by

ess sup
X�

j���X�
�
n�� ���X�

�
�j � j
n � 
j ess sup
X�

sup
���			���

j����X�
���j

and this converges to zero� by ������ and Lemma ���� As for the second term of

������� by the ergodic theorem it converges to zero� P�almost surely�

Now we choose and �x a realization x of X such that the statements �������

������� ������ and ������ all hold� De�ne �i � ��xi� Yi�� Tn �
Pn

i�� �i� and
�Tn � Tn�n�

with �n denoting the law of �n� � With a slight abuse of notation we write �Pn for

the �non�random� since xn� is �xed� empirical measure induced by xn� on A� In this

notation� Q�B�xn� � D�� � Pr� �Tn � D�� and� if we de�ne

Jn � e
n
��Pn

�D�
Pr� �Tn � D��

then in view of Proposition ��� and ������ the statement of the theorem can be

rephrased as

loge Jn � o�
p
n� P � a�s� ������
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The upper�bound part of ������ follows from

Jn � e
n
��Pn

�D�
E
n
�f �Tn	Dg

o
� e

n
��Pn
�D�

E
n
en�n�

�Tn�D�
o

� e
n�
��Pn

�D���nD�
E
�
e�nTn

�
� �

�by the choice of 
n and the de�nition of � �Pn
��

Turning to the proof of the lower bound� suppose n is large enough so that 
n

exists� and de�ne a new probability measure �n by

d�n
d�n

�zn� � � exp

�

n

nX
i��

zi � n� �Pn
�
n�



�

Let

Gn � �
Pn

i��!�i � E�n�i"q
n����Pn�
n�

� when �n� 
 �n�

It is easy to see that Gn is the partial sum of zero mean random variables� normalized

so that Var�Gn� � �� Observe that when �n� is distributed according to �n�

�Tn
D
� D �

r
� �Pn

���
n�
n

Gn�

so that we can expand

Jn � e
n
��Pn

�D�
E�n

n
�f �Tn	Dge

�n�n �Tn�n
 �Pn
��n�
o

� E�n

�
�fGn
�ge

�n
q
n
���Pn

��n�Gn

	
� E�n

n
�f�
Gn
�ge

��npnGn

o
� e��n

p
n�Pr�n�� � Gn � ��� ������

for any � � �� where �n � �
n
q

����Pn�
n� � � and �n � O���� by ������ and �������

Since the random variables �i are uniformly bounded� and also ����Pn�
n� is bounded

away from zero by ������� it is easy to check that the Lindeberg condition for the CLT

is satis�ed by Gn� from which it follows that Pr�n�� � Gn � �� � � � � as n ���

Now choose M � � large enough so that M � �n is bounded away from zero� and get
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from ������ that

lim inf
n��

loge

h
eM

p
n�Jn

i
� log � � ���

i�e��

lim inf
n��

p
n

�
M� �

�p
n
loge Jn

�
� ��

from which we conclude that

lim inf
n��

�p
n
loge Jn � �M��

Since � � � was arbitrary and M � � was chosen independent of �� letting � � �

completes the proof� �

Proof of Corollary ��
� The result ������ immediately follows from Theorem ����

provided we show that R� �Pn� � R�P�� almost surely� or� equivalently �by Proposi�

tion ����� that ���Pn�D� � ���D� almost surely� Recall that for all n large enough

���Pn�D� � 
nD � � �Pn
�
n� and ���D� � 
D � ��
�� as in the proof of Theorem ����

where 
n � 
 almost surely by ������� So we only have to show that � �Pn
�
n�� ��
��

which comes from an obvious adaptation of the derivation of ������� �

��� Uniform Approximation

Proof of Theorem ���� Let 
 and f
ng be chosen as in the beginning of the proof

of Theorem ���� so that� in particular� ���
� � 
D � ��
� and ����
� � �� By the

continuity of ��� we can choose constants �� � � � such that ����
 � �� � � whenever

j�j � �� Also� from ������� we can pick N � N�X�
� � �� P�almost surely� such that

j
n � 
j � � for all n � N �

In view of Proposition ���� it su
ces to show that

p
n
n
!���Pn�D�� ���D�"� !��
�� � �Pn

�
�"
o
� �� ������

From the de�nition of ���Pn and our choice of N � ���Pn�D� is given by the supremum of

!�D � � �Pn
���" over all � � �
� �� 
� ��� so ������ is the same as

p
n sup
j�j
�



�D � � �Pn

�� � 
� � � �Pn
�
�
�� �� ����	�
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Since this supremum is always non�negative �take � � ��� ����	� is equivalent to

lim inf
n��

p
n inf
j�j
�

�

n

nX
i��

!f���Xi�� f��� Xi�" � � � ������

where f��� x� � �x�
�����
���D� By Taylor�s theorem we can expand the function

g��� � n��
Pn

i�� f���Xi� around � � �� to obtain

�

n

nX
i��

!f���Xi�� f��� Xi�" � �An �
��

�
Bn��� � ������

where An � n��
Pn

i�� f
���� Xi� and Bn��� � �

n

Pn
i�� f

����n� Xi� for some �n��� such

that j�nj � ��

The family of functions ff ����� 
� � � � ���� ��g is uniformly bounded and equicon�

tinuous �by Lemma ����� so by the uniform ergodic theorem �see� for example� !���

Section �"��

sup
j	j
�

����� �n
nX
i��

f �����Xi�� EPf
�����X��

������ � P � a�s�

Therefore� P�almost surely� by the choice of ��

lim inf
n��

infj�j
� Bn���

� lim inf
n��

�
inf
j	j
�

EPf
�����X��� sup

j	j
�

����� �n
nX
i��

f �����Xi�� EPf
�����X��

�����



� inf
j	j
�

EPf
�����X�� � inf

j	j
�
����
� �� � � � � � ������

By our choice of 
� we have EPf
���� X�� � ���
� � D � �� so An is the partial

sum corresponding to the zero�mean stationary process ff ���� Xn� � n � �g� SinceP
��n� � � and the random variables f ���� Xi� are bounded� the LIL !��" implies

that
p
nA�

n � � P�almost surely� Since the in�mum over j�j � � of the right side

of ������ is bounded below by �A�
n� infj�j
� Bn���� combining this with ������ gives

������ and completes the proof� �



Chapter �

Recurrence in Stationary Processes

��� Introduction and Main Results

As we have seen in the introduction� recurrence properties are important in the study

of stationary processes in probability theory� and dynamical systems in ergodic theory�

In this chapter we investigate the asymptotic behavior of recurrence times for �nite�

valued stationary processes� under various mixing conditions�

As before� let X � fXn � n � Zg be a stationary ergodic process with values

in a �nite alphabet A and distribution determined by the probability measure P on

�A��A��� where A� is the ���eld generated by �nite�dimensional cylinders� Given

a realization x fromX� our main quantity of interest here is the recurrence time Rn

de�ned as the �rst time until the opening string xn� recurs in the past of x�

Rn � inf fk � � � x�k�n�k�� � xn�g

There has been a lot of work on calculating the exact asymptotic behavior of

Rn� Wyner and Ziv !��"� motivated by coding problems in information theory� drew

a deep connection between recurrence times and the entropy rate of the underlying

process� They proved that Rn grows exponentially with n and that the limiting rate is

equal to the entropy rate H � H�P � � limn E!� logP �X� jX��
�n�" of X� Speci�cally�

they showed that for stationary ergodic processes ���n� logRn converges to H in

probability� and they suggested that this also holds in the almost sure sense� Indeed�

this was later established by Ornstein and Weiss !	�" who showed that for stationary

�	
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ergodic processes

�

n
logRn � H a�s� �����

In their analysis� Wyner and Ziv used a theorem of Kac from !��" which can be

phrased as follows� IfX is stationary ergodic� then for any opening string xn� we have

E�Rn jXn
� � xn� � � ��P �xn� �� This provides a strong formal connection between Rn

and H� Taking logarithms of both sides in Kac�s theorem� dividing by n and applying

the Shannon�McMillan�Breiman theorem yields

lim
n

�

n
logE�Rn jXn

� � � lim
n

�

n
log!��P �Xn

� �" � H a�s� �����

We can therefore rephrase the Wyner�Ziv�Ornstein�Weiss result ����� by saying that

they strengthened ����� by removing the conditional expectation

lim
n

�

n
logRn � lim

n

�

n
log!��P �Xn

� �" � H a�s� �����

The crucial observation here is that ����� can be thought of as a strong approximation

result between logRn and � logP �Xn
� ��

log!RnP �Xn
� �" � o�n� a�s� �����

Our �rst result is a sharper form of ������

Theorem ��� 
Strong approximation�

Let X be a �nite�valued stationary ergodic process� and fc�n�g an arbitrary se�

quence of non�negative constants such that
P

n��c�n� ��� We have�

�i� log!RnP �Xn
� �" � c�n� eventually a�s�

�ii� log!RnP �Xn
� jX�

���" � �c�n� eventually a�s�

Theorem ��� is proved Section ���� Notice that it su
ces to take c�n� � � logn

in order to satisfy the condition
P

n��c�n� � �� In particular� taking c�n� � �n�

in Theorem ��� and letting � � � we obtain the following Corollary �proved in Sec�

tion �����
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Corollary ���

�a� For every �nite�valued stationary ergodic process X�

log!RnP �Xn
� �" � o�n� a�s�

�b� If� moreover�
P


�n� �� then for any � � �

log!RnP �Xn
� �" � o�n�� a�s�

Recall that the coe
cients 
�n� were de�ned in ����� in Section ���� by


�n� � max
a�A

E j logP �X� � a jX��
���� logP �X� � a jX��

�n�j�

and the ��mixing coe
cients de�ned in ����� by

��n� � sup
�jP �C �B�� P �C�P �B�j � B � ��X�

���� C � ��X�
n �
�
�

We can now use Corollary ��� to read o� the exact asymptotic behavior of logRn

from that of � logP �Xn
� �� As we saw in the previous chapter� if X is ergodic� the

Shannon�McMillan�Breiman theorem says that ����n� logP �Xn
� � converges almost

surely to H� and combining this with Corollary ��� we get ������ If X is a Markov

chain or� more generally� if it satis�es certain conditions on the rate of decay of ��n�

and 
�n�� then � logP �Xn
� � behaves like the partial sum sequence of a strongly mixing

stationary process� so it satis�es a central limit theorem �CLT�� a law of the iterated

logarithm �LIL�� their in�nite dimensional �functional� counterparts� as well as an

almost sure invariance principle� Combining Theorem ��� with Corollary ��� gives

us an almost sure invariance principle for logRn� De�ne a continuous�time process

fR�t� � t � �g by letting R�t� � � for t � !�� �� and R�t� � !logRbtc�btcH" for t � ��

Theorem ��� 
Almost sure invariance principle�

Let X be a �nite�valued stationary ergodic Markov chain� and let �� be de�ned as

in 	���
�

�� � E!� logP �X� jX����H"�

� �
�X
k��

E!�� logP �X� jX����H��� logP �Xk jXk����H�"�
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	i
 If �� � �� then there exists a standard Brownian motion fB�t� � t � �g such that

R�t�� �B�t� � o�
p
t� a�s�

	ii
 Moreover� 	i
 remains true if the ergodic Markov chain assumption is replaced by

the assumptions that ��n� � O�n�		
� and 
�n� � O�n����� and �� is replaced by the

expression in 	��


�

It is now a routine matter �see� e�g�� !	�� Chapter �"� to obtain from the almost

sure invariance principle of Theorem ��� the second�order asymptotic behavior of Rn�

Corollary ���

Under the assumptions of Theorem ���� if �� � ��

�i� CLT�
logRn � nH

�
p
n

D�� N��� ��

Moreover� the sequence of processes�
R�nt�

�
p
n

� t � !�� �"

	
� n � ��

converges in distribution to standard Brownian motion�

�ii� LIL� With probability one� the set of limit points of the sequence�
logRn � nHp
�n loge loge n



� n � ��

coincides with the interval !��� �"� Moreover� with probability one� the sequence of

sample paths �
R�nt�

�
p

�n loge loge n
� t � !�� �"



� n � ��

is relatively compact in the topology of uniform convergence� and the set of its limit

points is the collection of all absolutely continuous functions r � !�� �"� R� such that

r��� � � and
R �

�
�dr�dt��dt � ��

Remark� Recall that� at least in the case of Markov chains� a characterization of

the degenerate case �� � � was provided in Chapter � by Theorem ����
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����� Match Lengths

The story of the asymptotics of Rn can equivalently be told in terms of match lengths

along a realization� Given a realization x from X� we de�ne Mm as the length n of

the longest string xn� starting at x� that also appears starting somewhere else in the

previous m positions x��m���

Mm � supfn � � � xn� � x�j�m�j�� � for some j � �� �� � � � � mg�

Following Wyner and Ziv !��" we observe that there is a nice duality between recur�

rence times and match lengths� in that

Mm � n if and only if Rn � m� ���	�

Consequently� all asymptotic results about Rn can be translated into corresponding

results about Mm� For example� the almost sure convergence of ���n� logRn to H is

equivalent to

Mm

logm
� �

H
a�s� �����

The CLT and LIL for logRn �Corollary ���� translate to�

Corollary ���

Under the assumptions of Theorem ����

�i� CLT�
Mm � logm

H

�H�	
�plogm

D�� N��� ��

�ii� LIL�

lim sup
n��

Mm � logm
H

�H�	
�p� logm loge loge logm
� � a�s�

����� Earlier Work

In addition to the historical remarks in Section ���� we provide a few comments and

references to more recent work and closely related results�

Wyner and Ziv discovered the result in ������ which was formally established by
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Ornstein and Weiss !	�" using methods from ergodic theory� In the Markov case�

A�J� Wyner !��" used the Chen�Stein method for Poisson approximation and Markov

coupling to prove a one�dimensional CLT for waiting times� and he also remarked

that his methods can be modi�ed to prove the one�dimensional CLT for Rn in Corol�

lary ��� �i�� In the memoryless case� Louchard and Szpankowski !��" and Jacquet and

Szpankowski !��" proved implicit �rst� and second�order results for recurrence times�

by exploiting a connection between match lengths in realizations of memoryless pro�

cesses and feasible paths in random trees� We also mention that the �rst�order results

abour recurrence times and match lengths were extended to processes with countably

in�nite alphabets and to random �elds in several dimensions by Kontoyiannis et al�

in !��"�

The approach introduced in this chapter provides a natural probabilistic frame�

work for studying the asymptotic behavior ofRn� From Theorem ��� and Corollary ���

we can deduce strong results that were not previously known� as well as new proofs

of several known results� Moreover� Theorem ��� tells us why these results are true�

because� in a strong pointwise sense� the recurrence time is asymptotically equal to

the reciprocal of the probability of the recurring string�

��� Strong Approximation

We deduce Corollary ��� from Theorem ��� and give the proof of Theorem ����

Proof of Corollary ��
� For part �b� let � � � arbitrary� Since
P

n���n
�

�� for

any � � �� from �i� and �ii� of Theorem � we get

lim sup
n��

�

n�
log !RnP �Xn

� �" � � a�s� �����

and
lim inf
n��

�

n�
log !RnP �Xn

� jX�
���" � � a�s�� �����

so it su
ces to show that

logP �Xn
� �� logP �Xn

� jX�
��� � O��� a�s� �����



���� STRONG APPROXIMATION ��

First� expanding�

j logP �Xn
� �� logP �Xn

� jX�
��� j �

nX
i��

j logP �Xi jX i��
� �� logP �Xi jX i��

��� j�

and then taking expectations�

Ej logP �Xn
� �� logP �Xn

� jX�
n���j �

nX
i��


�i��

Now
P�

i�� 
�i� �� implies ������

For part �a�� taking � � � in equations ����� and ����� above� we see that it su
ces

to show

�

n



logP �Xn

� �� logP �Xn
� jX�

���
�� � a�s� ������

By the Shannon�McMillan�Breiman theorem� the �rst term converges almost surely to

�H� and the second term equals ���n�
Pn

i��!� logP �Xi jX i��
���"� which converges to

E!� logP �X� jX��
���" � limnE!� logP �X� jX��

�n�" � H almost surely� by the ergodic

theorem and the de�nition of H� This proves ������ and completes the proof� �

Proof of Theorem ��
� Part �i�� Given an arbitrary positive constant K� by

Markov�s inequality and Kac�s theorem�

P �Rn � K jXn
� � xn� � �

E�Rn jXn
� � xn� �

K
�

�

K P �xn� �
�

for any opening sequence xn� with non�zero probability� Since P �xn�� is constant with

respect to the conditional measure P �
 jXn
� � xn� �� we can let K � �c�n��P �xn�� to get

P � log!RnP �Xn
� �" � c�n� jXn

� � xn� � � P
�
Rn � �c�n��P �xn� � jXn

� � xn�
� � ��c�n��

Averaging over all opening patterns xn� � An� P � log!RnP �Xn
� �" � c�n� � � ��c�n�� and

the Borel�Cantelli lemma gives �i��

Part �ii�� We now condition on the in�nite past X�
�� instead of the opening string

Xn
� � Fix any x��� and consider

P
�
log!Rn�X�P �Xn

� jX�
���" � �c�n� jX�

�� � x���
�
�
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P

�
zn� � An � P �Xn

� � zn� jX�
��� �

��c�n�

Rn�x��� � zn� �
���� X�

�� � x���

	
�

where � denotes concatenation of strings� If we let Gn � Gn�x
�
��� denote the set�

zn� � An � P �zn� j x���� � ��c�n��Rn�x
�
�� � zn� �

�
�

then the above probability can be written asX
zn� �Gn

P �zn� j x���� �
X
zn� �Gn

��c�n��Rn�x
�
�� � zn� �

� ��c�n�
X
zn� �An

��Rn�x
�
�� � zn� �� ������

Since x��� is �xed� for each j � � there is exactly one string zn� from An with

Rn�x
�
�� � zn� � � j� so the sum in ������ is bounded above by

X
zn� �An

��Rn�x
�
�� � zn� � �

snX
j��

��j � Cn�

for some positive constant C� where s � jAj is the cardinality of A� Therefore�

P � log!RnP �Xn
� jX�

���" � �c�n� jX�
�� � x���� � Cn��c�n��

and since this bound is independent of x��� and summable over n� from the Borel�

Cantelli lemma we deduce �ii�� �

Remark� In the proof of �ii�� only the stationarity �and not the ergodicity� of X

was used�



Chapter �

Waiting Times Between Stationary

Processes

��� Motivation

In this chapter� we consider a more general version of the recurrence times problem

addressed in Chapter �� We ask how long it takes before a random pattern generated

by some process X �rst appears in a realization of a �possibly di�erent� process Y �

Going a step further� we allow for distortion in the patterns� and we ask for the �rst


approximate� appearance of a random pattern� within some prescribed accuracy�

To be precise� we consider two stationary processes X � fXn � n � Zg and

Y � fYn � n � Zg taking values in the Polish �� complete� seperable� metric� spaces

�A��A�� and � �A�� �A��� and distributed according to the probability measures P

and Q� respectively� To measure 
closeness�� we �x a nonnegative measurable func�

tion � on A 	 �A� and de�ne the distortion between two �nite strings xn� � An and

yn� � �An by

��xn� � y
n
� � �

�

n

nX
i��

��xi� yi��

For xn� � An and D � �� we write B�xn� � D� for the ball of radius D around xn� �

B�xn� � D� � fyn� � �An � ��xn� � y
n
� � � Dg�

��



�� CHAPTER 	� WAITING TIMES BETWEEN STATIONARY PROCESSES

Given D � � and two independent realizations x� y fromX and Y � respectively� our

main quantity of interest here is the waiting time Wn�D� until a D�close version of

xn� �rst appears in y�� �

Wn�D� � inf fk � � � yk�n��k � B�xn� � D�g�

In the special case when we look for exact matches �corresponding to taking D � �

and � being Hamming distortion�� we omit the D and write Wn instead of Wn�D��

The asymptotic behavior of waiting times has been studied extensively and very

actively during the past ten years� motivated primarily by important applications in

the areas of data compression� DNA sequence analysis� and string matching algo�

rithms in computer science� Some examples of these applications were discussed in

Chapter �� In Chapter 	 we will see how the results we obtain here can be interpreted

in the context of data compression �Section 	������ and also how they can be extended

to prove the optimality of a new data compression algorithm �Section 	������

Before we move on to our own results� in the next section we brie�y describe what

is already known in this area�

����� Earlier Work

In its simplest form� the problem of the asymptotic behavior of waiting times �rst

appeared in Wyner and Ziv�s work on data compression !��"� X and Y were assumed

to have the same distribution over the same �nite alphabet� and no distortion was

allowed� In that case� Wyner and Ziv showed that ���n� logWn converges� in prob�

ability� to the entropy rate H of X � Moreover� they suggested that the same result

holds in the almost sure sense�

�

n
logWn � H a�s� �����

and this was later established by Shields !��" using ideas and methods from ergodic

theory� These results were extended further� �rst by Nobel and Wyner !	�" who

showed that the convergence in probability holds for processes that are ��mixing

with a certain rate� and then by Marton and Shields !��" who proved that ����� holds

for the class of weak Bernoulli processes� Shields !��" also provided a counter�example



	��� MOTIVATION �	

to show that ����� does not hold in the general ergodic case� Finally� a CLT�re�nement

to ����� was discovered by A�J� Wyner in his Ph�D� thesis !��"� where he used Poisson

approximation to prove that� when X is a �nite�state� stationary ergodic Markov

chain�
logWn � nH

�
p
n

D�� N��� ���

Much less is known in the case when distortion is allowed� Recently� $Luczak

and Szpankowski !�	" showed that� for processes X and Y with a �nite alphabet�

���n� logWn�D� converges to some constant R with probability one� Independently

and around the same time Yang and Kie�er !�	" also proved the same result� and

they identi�ed the constant R as the solution to a variational problem in terms of

relative entropy �see Theorem ��� in Chapter �� or Corollary ��� below��

In this chapter we introduce a natural probabilistic framework which gives us a

uni�ed strategy for greatly generalizing and extending these recent results� and also

allows us to recover most of the known asymptotic results for waiting times in full

generality�

����� The Strong Approximation Framework

The gist of the approach we took in Chapter � to understand recurrence times was to

realize that the time Rn until a match for the pattern Xn
� is found is approximately

equal to the reciprocal of the probability P �Xn
� � of this pattern� Our main idea

here is to extend this intuition to the case of waiting times� We claim that the time

Wn�D� until a D�close match for the pattern Xn
� appears can be approximated by

the reciprocal of the probability Q�B�Xn
� � D�� of �nding such a match�

Wn�D� � �

Q�B�Xn
� � D��

�

This claim is made precise in our �rst result� Theorem ���� which enables us to

deduce the asymptotic properties of the waiting timesWn�D� from the corresponding

properties of the probabilities Q�B�Xn
� � D��� In view of Chapter � and the detailed

study of Q�B�Xn
� � D�� it contains� this is a very pleasant position to be in�

The power of this formulation is amply demonstrated in the next three subsections�

where we state nine non�trivial� immediate corollaries of Theorem ���� providing a
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complete description of the asymptotic behavior of Wn�D��

Theorem ��� 
Strong approximation�

Let X be a stationary ergodic process� let Y be a stationary process with ��

mixing coe�cients that satisfy
P

��n� � �� and assume that Q�B�Xn
� � D�� � ��

eventually P�almost surely� For any sequence of nonnegative constants fc�n�g such

that
P

ne�c�n� �� we have�

j log!Wn�D�Q�B�Xn
� � D��"j � c�n� eventually P 	Q�a�s�

!Recall from ����� of Chapter � that the ��mixing coe
cients of the process Y 
 Q

are de�ned by ��n� � sup
�jQ�CjB��Q�C�j � B � ��Y �

���� C � ��Y�
n �
�
�"

Taking c�n� � �
p
n in Theorem ��� and letting � � � we obtain

logWn�D�� log!��Q�B�Xn
� � D��" � o�

p
n� P 	Q� a�s� �����

Now we can combine ����� with the various results of Chapter � about Q�B�Xn
� � D��

to harvest the fruits of our labor there� in the form of a series of interesting corollaries

about waiting times�

��� Waiting Times Results

We consider three separate cases�

����� Waiting Times With No Distortion

When X and Y have the same distribution P and take values in the same �nite

alphabet A� it is clear that Q�B�Xn
� � D�� is just P �Xn

� �� and� of course� P �Xn
� � � �

with P�probability one� Therefore� we can apply Theorem ���� and rewrite ����� as

logWn � log!��P �Xn
� �" � o�

p
n� P 	 P � a�s� �����

Combining this with the Shannon�McMillan�Breiman theorem �Theorem �����



	��� WAITING TIMES RESULTS ��

Corollary ��� 
SLLN� Marton � Shields ��
��

Let X and Y be �nite�valued stationary processes� with the same distribution P �

entropy rate H� and ��mixing coe�cients that satisfy
P

��n� ��� We have�

�

n
logWn � H P 	 P�a�s�

Similarly� combining ����� with the almost sure invariance principle of Theo�

rem ���� gives us an almost sure invariance principle forWn� De�ne a continuous�time

process fw�t� � t � �g by w�t� � �� t � !�� ��� and w�t� � !logWbtc � btcH"� t � ��

Recall that the �� and 
�mixing coe
cients for X 
 P were de�ned in ����� and

����� by ��n� � sup
�jP �C �B�� P �C�P �B�j � B � ��X�

���� C � ��X�
n �
�

and


�n� � maxa�A Ej logP �X� � a jX��
���� logP �X� � a jX��

�n�j� respectively

Corollary ��� 
Almost sure invariance principle�

Suppose X and Y are �nite�valued stationary ergodic Markov chains with the

same distribution P and entropy rate H� and let �� be de�ned as in 	���
�

�� � E!� logP �X� jX����H"�

� �
�X
k��

E!�� logP �X� jX����H��� logP �Xk jXk����H�"�

	i
 If �� � �� then there exists a standard Brownian motion fB�t� � t � �g such that

w�t�� �B�t� � o�
p
t� a�s�

	ii
 Moreover� 	i
 remains true if the ergodic Markov chain assumption is replaced by

the assumptions that ��n� � O�n�		
��
P

��n� � �� and 
�n� � O�n����� and ��

replaced by the expression in 	��


�

As in the case of recurrence times in Chapter �� from the above almost sure

invariance principle we immediately conclude that logWn satis�es a central limit

theorem� a law of the iterated logarithm� and their functional counterparts�

Corollary ���

Under the assumptions of Corollary ���� if �� � ��
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�i� CLT�
logWn � nH

�
p
n

D�� N��� ��

Moreover� the sequence of processes�
w�nt�

�
p
n

� t � !�� �"

	
� n � ��

converges in distribution to standard Brownian motion�

�ii� LIL� With probability one� the set of limit points of the sequence�
logWn � nHp
�n loge loge n



� n � ��

coincides with the interval !��� �"� Moreover� with probability one� the sequence of

sample paths �
w�nt�

�
p

�n loge loge n
� t � !�� �"



� n � ��

is relatively compact in the topology of uniform convergence� and the set of its limit

points is the collection of all absolutely continuous functions r � !�� �"� R� such that

r��� � � and
R �

�
�dr�dt��dt � ��

!As we already mentioned� in the Markov case� the one�dimensional version of the

CLT in �i� was proved by A�J� Wyner in his Ph�D� thesis !��"�"

����� Waiting Times Between Di�erent Processes

Now suppose that the processes X and Y take values in the same �nite alphabet�

but they have di�erent distributions given by the measures P and Q� respectively�

Throughout this section we assume that� for all n large enough� the �nite dimensional

marginals of X are dominated by the corresponding marginals of Y �

Pn � Qn eventually�

otherwise the waiting timesWn will be in�nite with positive probability� This assump�

tion clearly implies that Q�B�Xn
� � D�� � Q�Xn

� � � �� eventually P�almost surely� so
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we can invoke Theorem ��� to get� via ������ that

logWn � log!��Q�Xn
� �" � o�

p
n� P 	Q� a�s� �����

The behavior of the waiting times can now be deduced from combining this with

Proposition ����

Corollary ��� 
SLLN�

Let X be a �nite�valued stationary ergodic process with distribution P � Y be

a stationary ergodic Markov chain with distribution Q� and assume that Pn � Qn

eventually� We have�

�

n
logWn � H�P � �H�PkQ� a�s�

where H�P � is the entropy rate ofX� and H�PkQ� is the relative entropy rate between

X and Y �

H�PkQ�
�
� lim

n��
EP

�
log

P �X� jX��
�n�

Q�X� jX��
�n�

�
�

Corollary ��� 
Almost sure invariance principle�

Let X and Y be �nite�valued stationary ergodic Markov chains with distribution

P and Q� respectively� assume that Pn � Qn eventually� and let �� be de�ned as in

equation 	��
�
�

�� � � lim
n��

VarP �� logQ�Xn
� ��� ���	�

If �� � �� then there exists a standard Brownian motion fB�t� � t � �g such that

%w�t�� �B�t� � o�
p
t� a�s�

where f %w�t� � t � �g is the continuous�time process de�ned by letting %w�t� � � for

t � !�� �� and %w�t� � !logWbtc � btc�H�P � �H�PkQ��" for t � ��

As before� this immediately implies�

Corollary ��


Under the assumptions of Corollary ���� the CLT and LIL 	and their functional
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counterparts
 of Corollary ��� remain valid in this case� with �� de�ned as in 	���
�

H replaced by !H�P � �H�PkQ�"� and w�
� replaced by %w�
��

����� Waiting Times Allowing Distortion

Next we turn to the most interesting case� the case when distortion is allowed� As in

Chapter �� we de�ne

Dmin
�
� EP�!ess inf

Y��Q�

��X�� Y��"

Dav
�
� E��X�� Y���

and we assume that

Dmax
�
� ess sup

�X��Y��

��X�� Y�� � �Dmin����

For simplicity� we will also assume throughout this section that the process Y is

a sequence of independent and identically distributed random variables �an 
i�i�d�

process���

Since X is stationary ergodic� if D � Dmin we will have Wn�D� � �� eventually

almost surely� by the ergodic theorem� Similarly� if D � Dav then Wn�D� � �� even�

tually almost surely� We� therefore� concentrate on the range of interesting distortion

values between Dmin and Dav� where Wn�D� increases exponentially� In that range we

have Q�B�Xn
� � D�� � �� eventually P�almost surely� so we can apply Theorem ����

Our �rst result comes from combining ����� with Corollary ��� and �������

Corollary ��� 
SLLN�

Let X be a stationary ergodic process� Y be and i�i�d� process� and assume

D � �Dmin� Dav�� We have�

�

n
logWn�D� � R�P�� Q�� D� P 	Q�a�s�

where

R�P�� Q�� D� � inf

Z
H�&�
jx�kQ��
��d �Pn�x� � inf! I�X�Y � �H�Q�

�kQ�� " �����
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where the in�mum is taken over all random variables �X� Y � such that E��X� Y � � D�

X 
 P�� & denotes the conditional distribution of Y given X and Y 
 Q�
��

�Recall that an alternative characterization of R�P�� Q�� D� was given in Proposi�

tion ����� Before moving on to the corresponding second�order results� we recall from

Chapter � the averaged logarithmic moment generating function ��
��

��
� �

Z
loge

�Z
e���x�y�dQ��y�

	
dP��x��

the function h�
� 
� de�ned by

h�
� x�
�
� log

�Z
e���x�y�dQ��y�

	
� �log e���
�� �����

and that for any D � �Dmin� Dav� we can choose a 
 � 
�D� � � such that ���
� � D

�by Lemma ����� Now we can combine ����� with Corollaries ���� and ���� to obtain

the CLT and LIL for the waiting times Wn�D��

Corollary ���

Let X be a stationary process with ��mixing coe�cients satisfying
P

��n� ��
and let Y be an i�i�d� process� Given D � �Dmin� Dav�� let �

� be de�ned as in 	����
�

�� � EP

�
h�
�D��X��

�
�
� �

�X
k��

EP fh�
�D��X��h�
�D��Xk�g � �����

with h given by 	���
� If �� � �� we have�

�i� CLT�
logWn�D�� nR�P��p

n

D�� N��� ����

Moreover� the sequence of processes�
w�nt�D�

�
p
n

� t � !�� �"

	
� n � �

converges in distribution to standard Brownian motion� where fw�t�D� � t � �g is

the continuous�time process de�ned by letting w�t�D� � � for t � !�� �� and w�t�D� �

!logWbtc�D�� btcR�P�� Q�� D�" for t � ��
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�ii� LIL� With P 	Q�probability one� the set of limit points of the sequence�
logWn�D�� nR�P��p

�n loge loge n



� n � �

coincides with the interval !��� �"� Moreover� with P 	 Q�probability one� the se�

quence of sample paths�
w�nt�D�p
�n loge loge n

� t � !�� �"



� n � ��

is relatively compact in the topology of uniform convergence� and the set of its limit

points is the collection of all absolutely continuous functions r � !�� �"� R� such that

r��� � � and
R �

�
�dr�dt��dt � ���

Finally� combining ����� and Corollary ���� yields�

Corollary ��� 
Almost sure invariance principle�

Let X be a stationary process with ��mixing coe�cients satisfying
P

��n� ��
and let Y be an i�i�d� process� Given D � �Dmin� Dav�� let �

� be de�ned as in 	���
�

If �� � �� then there exists a standard Brownian motion fB�t� � t � �g such that

w�t�D�� �B�t� � o�
p
t� a�s�

��� Match Lengths Results

As in the case of recurrence times� here also the waiting times story can equivalently

be told in terms of match lengths between realizations� Given an integer m � �� a

distortion level D� and two independent realizations x and y from the processes X

and Y � respectively� we look for the longest string x�� that matches� within distortion

D� somewhere in ym� � The length Lm�D� of this longest match is of interest here�

Lm�D� � supfn � � � yj�n��j � B�xn� � D�� for some j � �� �� � � � � mg�

When no distortion is allowed� we omit the D and write Lm instead of Lm�D��
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As we discussed in Chapter � �Section ������� intuitively we expect that there is

some sort of relationship between match lengths and waiting times� it seems plausible

that long match lengths should imply short waiting times� and vice versa� In this

section we show that this intuition can be made precise� and that we can use it to

translate our waiting times results into corresponding results for match lengths� Note�

however� that when we allow for matches with distortion� the duality relationship

between Wn�D� and Lm�D� becomes a more complex one� so that there is some work

to be done in the 
translation� from Wn�D� to Lm�D��

Let us begin again with simplest case� Suppose that no distortion is allowed� and

the processes X and Y have the same distribution P over the same �nite alphabet

A� Here the duality between Lm and Wn is manifested in precisely the same way as

in the context of recurrence times �cf� ���	���

Lm � n if and only if Wn � m� �����

Therefore� just as in Section ������ all asymptotic results about waiting times imme�

diately give us corresponding results about match lengths�

Corollary ���� 
Match lengths without distortion�

Under the assumptions of Corollary ��
� we have�

	i
 SLLN�

Lm
logm

� �

H
P 	 P � a�s�

where H � H�P � is the entropy rate of X� Moreover� under the assumptions Corol�

lary ��� we have�

	ii
 CLT�

Lm � logm
Hp

logm

D�� N��� ��H�	�

	iii
 LIL�

lim sup
m��

Lm � logm
Hp

� logm loge loge logm
� �H�	
� P 	 P � a�s�
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where �� is de�ned by 	��


�

We note that the almost sure convergence in �i� was discovered by Wyner and Ziv

!��"� and� in the Markov case� the CLT in �ii� was �rst proved by A�J� Wyner in his

Ph�D� thesis !��"�

Now� if X and Y have di�erent distributions given by the measures P and Q�

respectively� over the �nite alphabet A�

Corollary ���� 
Match lengths between di�erent processes�

Under the assumptions of of Corollary ��� we have�

	i
 SLLN�

Lm
logm

� �
%H

P 	Q� a�s�

where %H
�
� H�P � �H�PkQ�� Moreover� under the assumptions of Corollary ��� we

have�

	ii
 CLT�

Lm � logm
�Hp

logm

D�� N��� �� %H�	�

	iii
 LIL�

lim sup
m��

Lm � logm
�Hp

� logm loge loge logm
� � %H�	
� P 	Q� a�s�

where �� is de�ned by 	���
�

Coming back to the general case� suppose that the processes X 
 P and Y 
 Q

take values in the general alphabets A and �A� respectively� and that nonzero distortion

is allowed �we still assume that X� Y and the distortion measure � are de�ned as in

Section ������ above�� Here� although the general intuition of the duality relationship

between waiting times and match length remains true� its mathematical form has to

be modi�ed to�

Lm�D� � n if and only if !Wk�D� � m for some k � n"� ������
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The reason why here we need to consider all possible waiting times Wk�D�� k � n� is

that� unlike the case of no distortion� here the sequence fWk�D� � k � ng is no longer

monotonically increasing� as can be seen from the following simple binary example�

If we let � be Hamming distortion� and set D � ���� then for the realizations

x�� � � � � 
 
 

y�� � � � � � � � � 
 
 


we have W��D� � � but W	�D� � ��

The relationship ������ is exploited in Section ��	 to show how we can still recover

the asymptotic behavior of Lm�D� from that of Wn�D��

Theorem ��� 
Match lengths with distortion�

Under the assumptions of of Corollary ��� we have�

	i
 SLLN�

Lm�D�

logm
� �

R
P 	Q� a�s�

where R � R�P�� Q�� D�� Moreover� under the assumptions of Corollary ��� we have�

	ii
 CLT�

Lm�D�� logm
Rp

logm

D�� N��� ��R�	�

	iii
 LIL�

lim sup
m��

Lm�D�� logm
Rp

� logm loge loge logm
� �R�	
� P 	Q� a�s�

where �� is de�ned by 	���
�
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��� Strong Approximation

Proof of Theorem ��
� Write P for the product measure P 	Q� and for each integer

m � � let Gm � fx � Q�B�xn� � D�� � � for all n � mg� For the upper bound we use

a standard second�moment blocking argument�

Choose and �x any integer m � �� pick an arbitrary x � Gm� and let n � m be

large enough so that ec�n� � n��� Let K � n�� and write Sn �
PV �K�n�

j�� In�j�� where

In�j� is the indicator function of fY �j���n
jn�� � B�xn� � D�g and V �K� n� � b�K � ���nc�

Then

P�Wn�D� � K jXn
� � xn� � � Q�Sn � �� � VarQ�Sn�

�EQSn��
� ������

By stationarity�

EQSn � !V �K� n� � �"Q�B�xn� � D��� ������

and EQ�In���In�j�� � Q�B�xn� � D��!���j � ��n� �� �Q�B�xn� � D��"� so that

VarQ�Sn� �

V �K�n�X
j�k��

CovQ�In�j�In�k��

� !V �K� n� � �"Q�B�xn� � D��

��� � �

V �K�n�X
j��

���j � ��n� ��

�� � ������
Writing ' � � � �

P
��k� and substituting ������ and ������ in ������ we get

P�Wn�D� � K jXn
� � xn� � � '

!V �K� n� � �"Q�B�xn� � D��
� ������

Choosing K � ec�n��Q�B�xn� � D�� we have !V �K� n� � �"Q�B�xn� � D�� � ec�n���n� and

������ yields

P�log!Wn�D�Q�B�Xn
� � D��" � c�n� jXn

� � xn� � � �'ne�c�n��

Since the above bound is uniform over x � Gm and summable� by the Borel�Cantelli
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lemma we obtain that� for P 	Q� almost all �x�y� � Gm 	 �A��

log!Wn�D�Q�B�xn� � D��" � c�n� eventually� ����	�

For the lower bound� observe that for an any constant K � � and any x � Gm�

P�Wn�D� � K jXn
� � xn� � �

bKcX
j��

Q�Y j�n��
j � B�xn� � D�� � K Q�B�xn� � D��� ������

Since Wn�D� � �� this inequality holds also for K � !�� �"� In particular� setting

K � e�c�n��Q�B�xn� � D�� gives

P�log!Wn�D�Q�B�Xn
� � D��" � �c�n� jXn

� � xn� � � e�c�n��

and summing this over n� by the Borel�Cantelli lemma we get that� for P	Q� almost

all �x�y� � Gm 	 �A��

log!Wn�D�Q�B�Xn
� � D��" � �c�n� eventually� ������

Finally� combining ����	� and ������ with the assumption that P f�mGmg � � com�

pletes the proof� �

��� Duality� Match Lengths

Let R denote R�P�� Q�� D�� and de�ne� for n � �� Tn�D� � infk
nWk�D�� and
%Tn�D� � minn	k	�nWk�D�� The duality relationship ������ between Wn�D� and

Lm�D� can be restated as�

Lm�D� � n �� Tn�D� � m � ������

When combined with Lemma ��� below� ������ allows us to deduce �i�� �ii� and �iii�

in Theorem ��� from corresponding results for %Tn�D�� namely� in the notation and

under the corresponding assumptions of Theorem ����

�i��
log %Tn�D�

n
� R P 	Q� a�s�
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�ii��
log %Tn�D�� nRp

n
D�� N��� ���

�iii�� lim inf
n��

log %Tn�D�� nRp
�n loge loge n

� �� P 	Q� a�s�

Lemma ���

Assume that X is stationary ergodic� Y is an i�i�d� process� and D � �Dmin� Dav��

Then Tn�D� � %Tn�D�� eventually P 	Q�almost surely�

Proof of Lemma ��
� Note that Tn�D� � %Tn�D� � Wn�D�� and that whenever

T�n�D� � Wn�D�� we have Tn�D� � %Tn�D�� Therefore� if we can show

lim inf
n��

n�� logT�n�D� � �R

�
P 	Q� a�s� ������

then� by Corollary ���� Tn�D� � %Tn�D� eventually P 	Q�almost surely�

For any x�� � A�� any positive integer m� and any n large enough� by the union

bound and ������ we have

P�T�n�D� � m jX�
� � x�� � �

X
k
�n

P�Wk�D� � m jXk
� � xk��

� m
X
k
�n

Q�B�xk� � D��� ������

Since� by Corollary ���� limk�� k�� logQ�B�Xk
� � D�� � �R� with P�probability one�

we must have

sup
k
n

k�� logQ�B�xk�� D�� � ��R�� eventually P�a�s�

Substituting this in ������ with m � exp��Rn��� gives

P�T�n�D� � exp��Rn��� jX�
� � x�� � � Ce�nR

 eventually P�a�s�

for some �xed C ��� and by the Borel�Cantelli lemma�

T�n�D� � exp��Rn��� eventually P 	Q�a�s�
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implying ������ and the conclusion of the Lemma� �

Proof of Theorem ���� As already stated� it su
ces to prove �i��  �iii��� To this

end� �rst observe that combining Theorem ��� and Theorem ����

lim inf
n��

�

n
min

n	k	�n

h
logWk�D�� kR� �Pk�

i
� � P 	Q� a�s� ������

and from Corollary ��� it follows that

�

n
min

n	k	�n
kR� �Pk� � R P 	Q� a�s� ������

By ������ and ������ we have

�

n
log %Tn�D� � �

n
min

n	k	�n

h
logWk�D�� kR� �Pk�

i
�

�

n
min

n	k	�n
kR� �Pk� � R�

with P 	Q�probability one� Since %Tn�D� � Wn�D�� the corresponding upper bound

also holds by Corollary ���� proving �i���

Next let � � � arbitrary� so that in the notation of Corollary ����

P

�
log %Tn�D�p

n
� logWn�D�p

n
� ��
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P
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w�nt�D�

�
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� w�n�D�

�
p
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�
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�
p
n

�
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�
� � �
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�

For any � � � and n large enough this is bounded above by

P

�
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�	t	���

�
w�nt�D�

�
p
n

� w�n�D�

�
p
n

�
� � �
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�
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���	t	�

�
w�nt�D�

�
p
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� w�n�D�

�
p
n

�
� � �

�
�K

p
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� ������

where K � �R������ By the functional CLT of Corollary ��� �extended in the obvious

way to t � !�� �"�� the �rst term of ������ converges to Prfinf�	t	� Bt � ����g as

n��� where fBtg is standard Brownian motion� and this can be made arbitrarily

small by taking � small enough� Similarly for any C � � the second term in ������

is asymptotically bounded above by Prfinf�	t	�Bt � �Cg which can also be made
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arbitrarily small by taking C large enough� Combining these with the fact that
%Tn�D� � Wn�D� implies that !log %Tn�D�� logWn�D�" � o�

p
n� in probability� which�

together with part �i� of Corollary ���� gives �ii���

We similarly obtain �iii�� by applying the functional LIL instead of the functional

CLT� Set sn � �
p

�n loge loge n noting that�

log %Tn�D�

sn
� logWn�D�

sn
� inf

�	t	�

�
w�nt�D�

sn
� w�n�D�

sn
�

�bntc � n

sn

�
R

�
�

For any � � � and n large enough this is bounded below by

min

�
inf

�	t	���

�
w�nt�D�

sn
� w�n�D�

sn

�
� inf

���	t	�

�
w�nt�D�

sn
� w�n�D�

sn

�
�
K�

p
�n

sn




By the functional LIL of Corollary ��� �extended in the obvious way to t � !�� �"��

the �rst term in the above minimum is asymptotically P 	Q�almost surely bounded

below by

inf
r

inf
�	t	���

!r�t�� r���" � �
p
��

where the outermost in�mum is taken over all absolutely continuous functions r withR �
�
�dr�dt��dt � � and r��� � �� Similarly� with P 	Q�probability one�

lim inf
n��

inf
���	t	�

�
w�nt�D�

sn
� w�n�D�

sn

�
� inf

r
inf

���	t	�
!r�t�� r���" � �p�� ��

so that the second term in the above minimum converges to �� with probability

one� and� hence�

lim inf
n��

log %Tn�D�

�
p

�n loge loge n
� logWn�D�

�
p

�n loge loge n
� �

p
� P 	Q� a�s�

Letting � � �� recalling that %Tn�D� � Wn�D� and applying part �ii� of Corollary ���

gives �iii�� and completes the proof� �



Chapter �

E�cient� Universal� Lossy Data

Compression

In this chapter we bring together many of the ideas we encountered in the previous

four chapters� in order to tackle an important practical problem in data compression

 that of �nding an e
cient extension of the celebrated Lempel�Ziv algorithm to the

case of lossy compression� As we will see� the waiting times results of Chapter �

provide the key insight for our proposed solution�

In the next section we give a general introduction to the problem and we brie�y

review some of the relevant literature� In Section 	�� we recall �from Sections �����

and ������ the connection between waiting times and Lempel�Ziv coding� We interpret

the waiting times results of Chapter � in this framework and show that they can

be extended �Theorem 	��� to achieve optimal compression in the lossy case� This

motivates us to introduce� in the following section� a new practical lossy compression

algorithm� In Section 	�� the algorithm is described in detail� and our main result of

this chapter �Theorem 	��� is stated� establishing its asymptotic optimality� The proof

of Theorem 	�� is given in Section 	��� and it is based� in part� on Theorem 	��� In

Section 	�	 we discuss some implementation issues and present brief simulation results

illustrating the performance of the algorithm� In Section 	�� we describe extensions

along several directions� and in Section 	�� we give the proofs of the theoretical results

from Sections 	�� and 	���

��
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��� Introduction� Data Compression

Over the past �	 years� the practical requirement for e
cient data compression meth�

ods has become apparent in almost every engineering application where large amounts

of data are transmitted or stored�

In applications where the data needs to be perfectly reconstructed from its com�

pressed form �lossless coding�� the most prominent example of a successful prac�

tical scheme is probably the Lempel�Ziv data compression algorithm� Some vari�

ation of the original algorithm !��"!�	" can be found on virtually every personal

computer in use today� Although in terms of compression performance they have

been shown to be asymptotically optimal and to achieve optimality universally over

several general classes of data sources �i�e�� without prior knowledge of the source�

!��"!��"!�	"!��"!	�"!��"� their practical success is perhaps mainly due to the fact that

they provide low�complexity algorithms that o�er themselves to easy on�line imple�

mentations� �A comprehensive introduction to several lossless Lempel�Ziv schemes

and their implementations is given in the recent text !��"� see also !�" for numerous

variants��

On the other hand� there are several applications in which the requirement for

perfect reconstruction of the data can be relaxed �lossy coding�� for example� when

images are transmitted over the World Wide Web� In this case the story has been

somewhat less successful� From rate�distortion theory !��" we know that one can

achieve a sometimes dramatic improvement in compression by allowing some amount

of error in the reconstructed data� In fact� it has been demonstrated that there exist

universal algorithms for lossy data compression that asymptotically achieve optimal

performance� and� moreover� there are explicit constructions of such universal codes�

see !��"� the references therein� and the more recent work of Zhang and Wei !��"!��"�

Typically� these constructions either involve exhaustive searches over the space of all

possible codebooks �as� for example� in !��" and !	�"�� or are of exponential complexity

at the encoder and therefore cannot be realistically implemented in practice �as in !	�"

and !��"�� More practical algorithms have been recently proposed by Yang� Zhang and

Berger !��"� who suggest a way to circumvent the exponential encoding complexity of

earlier schemes �party expanding on the ideas of Muramatsu and Kanaya !	�"��

Motivated by the success of the lossless Lempel�Ziv schemes� several attempts

were made to extend them to the case of lossy coding� most notably by Morita and
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Kobayashi !��" and by Steinberg and Gutman !��"� Unfortunately� these schemes have

strictly suboptimal compression performance� as we will see in Section 	���

In this chapter we propose a new extension of Lempel�Ziv coding to the lossy case�

In Section 	�� we present a universal algorithm for encoding memoryless sources at a

�xed distortion level� which arises as a generalization of the Fixed�Database Lempel�

Ziv �FDLZ� lossless compression algorithm !��"� In the following four sections we show

that its compression performance is asymptotically optimal with respect to bounded

single�letter distortion measures and argue that it is of reasonable encoding complex�

ity� On the one hand� in its naive implementation this algorithm has complexity of the

same order as the corresponding implementations of the lossless FDLZ� and� on the

other hand� there is a wealth of e
cient approximate string matching algorithms that

allow more practical implementations �see !��"!�"!�"!��" and the references therein��

In terms of its compression performance� a heuristic argument given in Section 	�	

suggests that the algorithm�s redundancy rate is of the same order as the redundancy

of its lossless counterpart �FDLZ�� and we also present simulation results that agree

well with this rate�

The main novelty of our approach is that� instead of doing the encoding with

respect to a database generated by the same distribution as the data� the encoder is

allowed to have multiple databases simultaneously available� and to adaptively choose

which one to use at each step in a 
greedy� way� As the database length grows�

the number of available databases also grows so that� in e�ect� codebooks are gener�

ated according to all possible reproduction distributions� By controlling the rate at

which the number of databases grows� we can make sure that reasonable complexity

is maintained at the encoder while at the same time the set of possible codebook

distributions is re�ned to cover an asymptotically dense set�

The reason why this algorithm compresses optimally is intuitively clear� We know

from rate�distortion theory that� unlike in the case of lossless coding� when distortion

is allowed� the optimal codebook distribution is typically di�erent from the distri�

bution of the source� The most straightforward way to �x this mismatch between a

�xed database and the optimum one is to maintain multiple databases at the encoder

and decoder so that a good enough match can always be found� In this way� two

objectives are simultaneously achieved�

�i� Universality� the same algorithm with the same set of databases works for any
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memoryless source�

�ii� Reasonable complexity� like FDLZ in the lossless case� what makes this algo�

rithm attractive for applications is that it provides a sequence of suboptimal

coding schemes� indexed by the database length and the number of available

databases� that o�ers a handle on the complexity(redundancy trade�o�� Using

few� short databases� we get e
cient� easily implementable algorithms� with

high redundancy� On the other hand� increasing the length and the number

of databases� provides algorithms whose compression performance can be made

arbitrarily close to being optimal at the cost of increasing the encoding com�

plexity�

As discussed in Chapter � �Sections ����� and ������� Wyner and Ziv !��" showed

that several variants of Lempel�Ziv coding can be analyzed by studying an idealized

coding scenario in terms of waiting times� This connection between data compression

and waiting times has been exploited by a number of authors since then� including

!��"!��"!��"!��"!��"� among many others �it is also described in detail in !��"�� In the

next section we follow along the same path� We introduce an idealized coding scenario

and interpret the waiting times results of Chapter � in that context� This interpreta�

tion suggests a natural generalization of the idealized coding scheme� corresponding

to a new result about waiting times �Theorem 	���� This result� in turn� motivates the

new practical algorithm introduced in Section 	��� and its optimality is established

in Section 	�� using Theorem 	���

It is worth noting here that the overall strategy for proving the algorithm�s opti�

mality is� by now� a familiar one� First� the waiting times of Section 	�� are approxi�

mated by a sequence of large deviation probabilities �Lemma 	���� Then the exponent

of decay of these probabilities is identi�ed using large deviations �Lemma 	���� giving

us the exponent of growth of the waiting times� Finally� using duality� this waiting

times result is translated into a result about match lengths �Corollary 	���� and this

provides the main ingredient in the proof of Theorem 	���

Before moving on to the new results� a few words about some earlier work are in

order here� The notion of using multiple codebooks for source coding is well�known in

information theory� although multiple codebook algorithms typically involve a train�

ing stage or a large search over �essentially� all possible codebooks� For example�

Chou� E�ros and Gray�s !��" vector�quantization interpretation of universal lossy
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source codes is in terms of two�pass �or 
two�stage�� weighted universal codes� An�

other family of two�pass lossy compression algorithms is that of empirically designed

vector quantizers� discussed by Linder� Lugosi and Zeger !��" among others� �More

pointers to the large literature on vector quantization can be found in the recent

review paper by Gray and Neuho� !��"�� Preliminary results from a work closer in

spirit to our approach were recently reported by Zamir and Rose in !��"!��"�

��� Lempel�Ziv Coding and Waiting Times

The �rst extensions of the Lempel�Ziv algorithm to the lossy case !��"!��" had sug�

gested using a database of the same distribution as the source� but� as it was recently

shown !�	"!�	"!��"� these schemes generally achieve strictly suboptimal compression�

In this section we illustrate how their performance can be understood by studying

an idealized coding scenario in terms of waiting times and show how this idealized

scenario can be modi�ed to achieve asymptotically optimal compression�

����� The Idealized Coding Scenario

Let X � fXn � n � �g be a memoryless source with values in the source alphabet

A� where A is a Polish �� complete� seperable� metric� space equipped with its Borel

���eld A� The word 
source� in this chapter is used interchangeably with the phrase


random process�� and 
memoryless� means that the distribution ofX is determined

by specifying that the random variables fXng are independent and identically dis�

tributed �i�i�d�� according to some �xed measure p on �A�A�� As before� we write P

for the measure on �A��A�� describing the distribution of X� so that here P � p��

We write x � fxn � n � �g for an in�nite realization generated by X� and we refer

to x �or any subsequence of it� as a message produced by the source X�

Suppose now that an encoder and a decoder both have available to them an in�nite


database� Y � fYn � n � �g taking values in the �nite set �A� the reproduction

alphabet� We assume that Y is also memoryless� and its distribution Q is determined

by the probability mass function �p�m�f�� q on �A�

The encoder�s task is to describe the message Xn
� produced by X to the decoder�

within some prescribed distortion D� As in Chapters � and �� distortion here is
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measured with respect to a sequence f�ng of single�letter distortion measures�

�n�x
n
� � y

n
� �

�
�

�

n

nX
i��

��xi� yi�� xn� � An� yn� � �An� �	���

for some �xed � � A	 �A� !�����

In order to take advantage of the common information Y � the encoder looks for

the �rst position W in the database where Xn
� appears within distortion D� and

communicates W to the decoder� Formally�

W �Q�
n �D� � inf fk � � � Y k�n��

k � B�Xn
� � D�g�

where� as before� B�Xn
� � D� denotes the ball of distortion�radius D� centered at Xn

� �

B�Xn
� � D� � fyn� � �An � �n�X

n
� � y

n
� � � Dg�

From this information the decoder can easily recover the string Y W�n��
W � which is

guaranteed to be within distortion D of Xn
� �

Since !�	"!��" it takes approximately logW bits to describe an integer W � the rate

of this code is� to �rst order

� logW
�Q�
n �D�

n
bits per symbol�

As we saw in Chapter � �Corollary ��� and equation ������� this ratio converges to

R�p� q�D� with probability one� where

R�p� q�D� � inf

Z
H�&�
jx�kq�
��dp�x� �	���

� inf !I�X�Y � �H�q�kq�" �	���

with the in�mum taken over all random variables �X� Y � taking values in A	 �A� such

that X 
 p� E��X� Y � � D� & denoting the conditional distribution of Y given X�

and q� denoting the marginal of Y �

How good is this rate� Recall that the best possible rate� the rate�distortion
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function R�D� of X with respect to f�ng� is given by

R�D� � inf I�X�Y � �	���

where the in�mum is taken over the same class of random variables �X� Y � as in the

de�nition of R�p� q�D� above� Comparing �	��� with �	��� it is immediately clear that

the asymptotic rate R�p� q�D� of this idealized code is generally strictly suboptimal�

On the other hand� it is not hard to see that

R�D� � inf
q

R�p� q�D� �	�	�

where the in�mum is over all p�m�f�s q on �A� so that� intuitively� the problem is that

we do not know a priori how to choose the 
right� database distribution that achieves

the in�mum in �	�	��

The main idea behind the algorithm we will describe in Section 	��� is to use

multiple databases� In the waiting times framework this corresponds to generating

one memoryless database for each n�type on �A� and encode using the 
best� database�

i�e�� the one for which Xn
� has the shortest waiting time� The additional coding cost

incurred is that of identifying which database was used� but since there are only

polynomially many n�types� this extra cost is asymptotically negligible�

����� Waiting Times with Multiple Databases

Given an integer k� a p�m�f� q on �A is called a k�type� if� for every y � �A� q�y� is of

the form j�k for some nonnegative integer j � k�

Let fs�n�g be a nondecreasing sequence of positive integers� For each n� let S�n�

be the number of s�n��types on �A and write q�j�� � � j � S�n�� for each one of these

s�n��types� Assume that for each n we have S�n� processes Y �j�� � � j � S�n��

where Y �j� is independent of X and distributed i�i�d� according to q�j�� For each j

let W
�j�
n �D� be the waiting time until Xn

� appears in Y �j� within distortion D�

W �j�
n �D� � inf fi � � � �Y

�j�
i � Y

�j�
i��� � � � � Y

�j�
i�n��� � B�Xn

� � D�g�
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and write W �
n�D� for the shortest one of these waiting times�

W �
n�D� � min

�	j	S�n�
W �j�

n �D��

Theorem ��� 
Waiting Times�

Let � � D � �max� If s�n� � n for all n� we have

lim sup
n��

logW �
n�D�

n
� R�D� a�s�

Moreover� this remains true for any nondecreasing integer sequence s�n� � � as

n���

Before the proof of the theorem� we need to introduce some notation and de�ni�

tions� First� let Re�D� denote the rate�distortion function of X in nats rather than

bits� and similarly write Re�p� q�D� for the function de�ned as in �	��� but with rela�

tive entropy in nats rather than in bits� i�e�� withH�
k
� replaced by He�
k
�� Equation
�	�	� is equivalent to

Re�D� � inf
q

Re�p� q�D��

and we write q� for the p�m�f� on �A that achieves the in�mum� !The fact that there

does exist an achieving q� is easy to see� Let fqng be a sequence of p�m�f�s such

that Re�p� qn� D� � Re�D�� Since the simplex of p�m�f�s on �A is compact set �in

the Euclidean topology induced by Rj �A j�� fqng has a convergent subsequence fq�ng
with q�n � some q�� But Re�p� q�D� is continuous in q �this follows easily from

Proposition ��� and Lemma ��� of Section ����� and fq�ng is a subsequence of fqng so

we must have Re�D� � Re�p� q
�� D��"

For each n su
ciently large� we can choose an s�n��type qn on �A such that

jqn�y�� q��y�j � j �Aj
s�n�

� for all y � �A� �	���

and qn�y� � � for all y � �A �this is outlined in the Appendix�� From now and until

the end of this section we assume that n is large enough so that qn can be chosen as

above� Write fWn�D� for the waiting time until a D�close version of Xn
� appears in

the Y �process distributed according to qn� and write Q �n� for the product measure



���� DESCRIPTION OF THE ALGORITHM ��

�qn�
� on � �A�� �A��� where �A� is the ���eld on �A� generated by �nite�dimensional

cylinders�

Proof of Theorem ��
� Theorem 	�� follows by combining Lemmas 	�� and 	���

below� together with the trivial observation that W �
n�D� � fWn�D� with probability

one� Lemma 	�� shows that� asymptotically� the waiting time fWn�D� for a D�close

match of Xn
� into Y 
 Q �n� cannot be signi�cantly larger than the reciprocal of

the probability Q �n��B�Xn
� � D�� of the event that such a match occurs� Its proof

parallels those of the corresponding strong approximation theorems in Chapters �

and � �Theorems ��� and �����

Lemma ��� 
Strong Approximation�

lim sup
n��

�

n
log!fWn�D�Q �n��B�Xn

� � D��" � � a�s�

Lemma 	�� is a large deviations result� it will follow by an application of the G#artner�

Ellis Theorem !��� Theorem �����"�

Lemma ��� 
Large Deviations�

lim inf
n��

�

n
logQ �n��B�Xn

� � D�� � �R�D� a�s�

Lemmas 	�� and 	�� are proved in Sections 	���� and 	����� respectively� �

��� Description of the Algorithm

After some preliminary de�nitions� we describe the compression algorithm in its sim�

plest form� and we state our �rst result� Theorem 	��� which establishes its asymptotic

optimality� The algorithm is a lossy source coding scheme for encoding memoryless

sources at a �xed distortion level� with respect to single�letter distortion measures�

Extensions of the use of the algorithm to more general situations are discussed in

Section 	���

We follow the notation introduced in the previous section� LetX � fXn � n � �g
be a memoryless source with distribution P � p� on the the alphabet A� where

A is a Polish space and A is its Borel ���eld� Also let �A denote the reproduction
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alphabet and assume that it is �nite �the extension to general alphabets is discussed

in Section 	���� Distortion will be measured with respect to a sequence f�ng of single�
letter distortion measures� de�ned as in �	���� with respect to a �xed� nonnegative

�measurable� function � � A 	 �A � !����� Given D � � and a string xn� � An� we

write� as before� B�xn� � D� for the the �n�ball of radius D around xn� � Without loss

of generality� throughout this chapter we assume� as usual !��"� that

sup
x�A

min
y� �A

��x� y� � � �	���

and we also assume that � is bounded on the support of the source� i�e��

M
�
� max

y� �A
ess sup
X�p

��X� y� ��� �	���

De�ne

�max � inf
q

Z
��x� y�dp�x�dq�y�

where the in�mum is taken over all p�m�f�s q on �A� and assume that �max � �� Finally�

given D � �� we write R�D� for the rate�distortion function of X with respect to

f�ng� de�ned by �	���� It is easy to check that R�D� � � for D � �max� so we restrict

our attention to the interesting range of allowable distortion values D � ��� �max��

����� The Algorithm

Let XN
� � �X�� X�� � � � � XN� be a message of length N generated by some memoryless

source X of unknown distribution p on A� and let a distortion level D � ��� �max� be

�xed� Let ft�m�g be a nondecreasing sequence of integers� write T �m� for the number

of t�m��types on �A� and recall !��" that T �m� is roughly polynomial in t�m�

T �m� � !t�m� � �"j
�Aj� �	���

For each m� we describe an encoding algorithm that uses T �m� databases of length

m� So let us choose and �x an m for now� Assume that the encoder and decoder

both have access to T �m� memoryless databases

Y
���
� � Y

���
� � � � � � Y ���

m i�i�d� 
 q���
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Y
���
� � Y

���
� � � � � � Y ���

m i�i�d� 
 q���

���

Y �T �m��
� � Y �T �m��

� � � � � � Y �T �m��
m i�i�d� 
 q�T �m��

where each database has the same length m� they are all generated independently

of the message XN
� � and each one is i�i�d� according to a t�m��type q�j� on �A� for

� � j � T �m�� Figure � shows schematically the set of all t�m��types for the speci�c

choice of t�m� � dlogme�

Simplex of distributions
    on the reproduction 

        alphabet

m

distributions
Database

Width = 1/  log     

q(j)

Figure 	��� The set of all dlogme�types� corresponding to the vertices of a uniform
grid of width ��dlogme placed on the simplex of p�m�f�s on �A�

We can either assume that these databases are available to the encoder and de�

coder before the coding process begins� or that they are generated at the encoder and

transmitted to the decoder using an overhead of

dmT �m� log j �Aje bits� �	����
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The encoding algorithm is as follows� First� the encoder calculates the length of

the longest match of an initial portion of the message� within distortion D� in any

one of the databases� Let Lm���D� denote the length of this longest match�

Lm���D� �

maxfk � � � �k��Y
�j�
i � � � � � Y

�j�
i�k���� X

k
� � � D for some i � m� k � �� j � T �m�g

and let Z��� denote the initial phrase of length Lm���D� in XN
� �

Z��� ���X�� X�� � � � � XLm���D���

Observe that Lm���D� � � by assumption �	���� Then the encoder describes to the

decoder�

�a� the length Lm���D�� this takes at most C log�Lm���D� � �� bits� where C is a

constant �cf� !�	"!��"��

�b� the index j of the database in which this longest match was found� this takes

dlogT �m�e bits�
�c� the position i in database j where the match occurs� this takes dlogme bits�

Clearly� from �a�� �b� and �c� the decoder can easily recover the string

�Z��� � �Y
�j�
i � Y

�j�
i��� � � � � Y

�j�
i�Lm���D�����

which is within distortion D of Z���� The description length of �a�� �b� and �c� is

bounded above by

C log�Lm���D� � �� � logT �m� � logm� � bits� �	����

Alternatively� �Z��� can be described by �rst describing its length Lm���D� as before�

and then describing �Z��� directly using

dLm���D� log j �Aje bits� �	����

The encoder uses whichever one of the two descriptions is shorter� together with a

one�bit �ag to indicate which one was chosen� Therefore� from �	����� �	���� and



���� DESCRIPTION OF THE ALGORITHM ��

�	���� the length of the description of Z��� is bounded above by

min fC� log�Lm���D� � �� � C� log�t�m� � �� � logm� C	Lm���D�g bits� �	����

for some �xed constants C�� C�� and C	� independent of m� N � and of the message

XN
� �

After Z��� has been described within distortion D� the same process is repeated to

encode the rest of the message� The encoder �nds the length Lm���D� of the longest

string starting at position �Lm���D���� in XN
� that matches within distortion D into

any one of the databases� and describes

Z��� ���XLm���D���� XLm���D���� � � � � XLm���D��Lm���D��

to the decoder by repeating the above steps�

The algorithm is terminated� in the natural way� when the entire string XN
� has

been exhausted� At that point� XN
� has been parsed into )m � )m�X

N
� � D� distinct

phrases Z�k�� each of length Lm�k�D��

XN
� � Z���Z��� 
 
 
Z��m��

with the possible exception of the last phrase� which may be shorter� Since each

substring Z�k� is described within distortion D� also the concatenation of all the

reproduction strings�
�Z��� �Z��� 
 
 
 �Z��m��

will be within distortion D of XN
� �

Let �m�X
N
� � � �m�X

N
� � D� denote the overall description length for XN

� using this

algorithm� From �	���� and �	����� �m�X
N
� � D� is bounded above by

dmT �m� log j �Aje

�
�mX
k��

min fC� log�Lm�k�D� � �� � C� log�t�m� � �� � logm� C	Lm�k�D�g bits� �	����

The following result establishes the asymptotic optimality of the algorithm by showing

that� for long messages �N ���� the expected compression ratio achieved does not
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exceed the rate�distortion function R�D�� as m tends to in�nity� In fact� a somewhat

stronger result is proved� namely� that for �almost� any message emitted by the source�

the compression ratio achieved� averaged over all possible databases� is asymptotically

no larger than R�D�� Theorem 	�� is proved in Section 	�����

Theorem ��� 
Algorithm Optimality�

Let � � D � �max� If the rate at which the databases are re�ned is t�m� � dlogme�
we have

lim sup
m��

lim sup
N��

E

�
�m�X

N
� � D�

N

���XN
�

	
� R�D� a�s�� �	��	�

and� therefore�

lim sup
m��

lim sup
N��

E

�
�m�X

N
� � D�

N

	
� R�D�� �	����

Moreover� 	��
�
 and 	��
�
 remain valid for any choice of t�m� such that t�m���
while �log t�m��� logm� �� as m���

Remark� The case of lossless compression can be regarded as a special case of

the above algorithm� where the encoder looks for exact matches between the source

and the database� In fact� implicit in the proof of Theorem 	�� is a proof that

the compression ratio achieved by the lossless FDLZ algorithm !��" applied to a

memoryless source X converges to the entropy rate H of X� for almost all source

messages�

Corollary ��� 
Strong Optimality of Lossless FDLZ�

Let X be a discrete memoryless source of entropy rate H� and let %�m�X
N
� � denote

the description length for XN
� using the FDLZ algorithm� We have�

lim sup
m��

lim sup
N��

E

�
%�m�X

N
� �

N

���XN
�



� H a�s�

��� Algorithm Optimality

We use the waiting times results of Section 	�� to prove Theorem 	��� establishing

the optimality of the algorithm�
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First we observe that� as we already saw in Chapter �� there is a duality relation�

ship between waiting times and match lengths� Here� since we only need to prove

an upper bound for the waiting times W �
n�D�� it su
ces to state this duality in one

direction�

W �
n�D� � m� n� � � Lm���D� � n� �	����

Strictly speaking� since the de�nitions of W �
n�D� and Lm���D� depend on the choices

of the underlying sequences fs�i�g and ft�j�g� respectively� we should say that� If

W �
n�D� de�ned with respect to a �xed sequence fs�i�g satis�es W �

n�D� � m� n � ��

then� Lm���D� de�ned with respect to a di�erent sequence ft�j�g such that s�n� � t�m�

satis�es Lm���D� � n�

Using �	���� we can now easily translate the asymptotic upper bound for W �
n�D�

of Theorem 	�� to an asymptotic lower bound for Lm���D��

Corollary ��� 
Match Lengths�

Let � � D � �max� If t�m��� as m��� we have

lim inf
m��

Lm���D�

logm
� �

R�D�
a�s�

The proof of Corollary 	�� is a straightforward but tedious calculation� and there�

fore omitted here� The optimality of the algorithm �proof of Theorem 	�� below�

essentially follows from the fact that the match lengths grow like �logm��R�D�� This

is similar� at least in spirit� to the lossless case� where the optimality of FDLZ follows

from the fact that the lengths Lm of the longest exact matches grow like �logm��H�

Unfortunately� the elegant combinatorial argument used by Wyner and Ziv in !��"!��"

no longer works when distortion is allowed� For that reason� in the proof of Theo�

rem 	�� we need a stronger bound on the �conditional� lower tails of Lm���D��

Corollary ��� 
Tails of Match Lengths�

Let � � D � �max� If t�m��� as m��� then for any � � � we have

�logm� Pr

�
Lm���D� � logm

R�D� � �

��� X�
�

	
� � a�s�

Corollary 	�� is proved in Section 	�����
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��� Redundancy� Complexity� Implementation

Perhaps the most attractive feature of the algorithm is that it provides an active

handle in balancing the trade�o� of complexity vs� redundancy� depending on the

requirements of particular applications� This trade�o� is discussed in some detail

below� a heuristic argument is presented suggesting that� if the rate at which that

databases are being re�ned is chosen appropriately� then the redundancy of the algo�

rithm is of the same order as that of the lossless FDLZ� �To be precise� 
redundancy�

here means the di�erence between the expected compression ratio achieved by the

algorithm� and the entropy of the source being encoded�� This heuristic rate is also

con�rmed by brief simulation results presented in Section 	�	���

����� The Complexity�Redundancy Trade�o�

There are three 
terms� contributing to the redundancy of the algorithm� due to

three di�erent reasons�

�i� Finite�length databases� Since the databases used by the algorithm are �nite� we

expect that the compression will not be optimal even if we encode with respect

to a database with the optimal distribution� As with FDLZ in the lossless case�

we expect that the penalty incurred by using a database of �nite length m will

be of the order of

O

�
log logm

logm

�
�

The main ingredient in deriving this rate for FDLZ !��" is the fact that the

expectations of the exact match lengths Lm grow like �logm��H � O���� We

expect that the same behavior persists in the case when distortion is allowed�

and that when only one database of distribution Q � q� is used� we have

ELm�D� �
logm

R�p� q�D�
�O���� as m��

�under some regularity assumptions on the distortion measure ��� This should

not come as surprise� particularly in view of the match length results of Chap�

ter � where it is demonstrated that� in addition to their �rst�order behavior� all
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of the second�order properties of Lm�D� are exactly analogous to those obtained

in the lossless case �compare Corollary ���� with Theorem ��� in Section �����

�ii� Several databases� If the rate t�m� at which the databases are re�ned is poly�

nomial in �logm�� then the coding cost of identifying which database was used

is also of the order of

O

�
log logm

logm

�
�

This can be veri�ed easily by reading through the proof of Theorem 	�� in

Section 	����� and it is also intuitively clear since we use O�log logm� bits to

identify one of the databases each time we describe a string of length O�logm��

In general� if t�m� grows at a di�erent rate� the contribution to the redundancy

is of the order of �log t�m��� logm�

�iii� Wrong database� Finally� there is an error associated with the fact that for

�nite m the optimal database is �typically� not included among the databases

currently available to the algorithm� so that the data is encoded with respect to a

�logm��type approximation to the optimal database� In the idealized scenario

of Section 	����� this corresponds to comparing the exponent of Q �n��B�Xn
� � D��

with that of �q��n�B�Xn
� � D��� and �	��� indicates that this di�erence should be

O��� with probability one� Therefore� it is plausible to expect an additional

redundancy term of order

O

�
�

logm

�
�

Combining �i� �ii� and �iii� suggests that the leading term in the redundancy of the

algorithm is of the order of �log logm�� logm� just like in the lossless case !��"� In

particular� it should now be clear why the choice t�m� � dlogme was singled out in

Theorem 	��� because it makes the contribution of �ii� comparable to that of �i��

����� Implementation and Simulation Results

As stated in Theorem 	��� the algorithm converges to optimality as long as the rate

t�m� at which the databases are re�ned tends to in�nity� while �log t�m��� logm

tends to zero� More generally� from the proof of Theorem 	�� it is clear that any
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asymptotically dense set of database distributions will work� as long as the number

T �m� of available databases of length m does not grow too fast� namely� as long as

�logT �m��� logm tends to zero as m � �� So� in practice� we have the freedom to

choose any set of database distributions that �t the speci�c application better� instead

of uniformly covering all possible distributions �as shown in Figure ��� For example�

prior knowledge about the distribution of the source can easily be incorporated into

the structure of the algorithm�

To illustrate its performance� we chose the simple example of lossy compression of a

binary memoryless source with respect to Hamming distortion� We pseudo�randomly

generated binary Bernoulli����� data� and implemented the algorithm as described in

Section 	����� with some minor practical modi�cations �described below��

Figure � shows its compression performance on a sequence of 	����� bits� with

the distortion level D set to ����� and for a total of �	 databases of lengths m �

��� ���� � � � � ��� bits each� For reference� we note that typical values of m in current

implementations of lossless versions of Lempel�Ziv are around m � ��� bits �for

example� m corresponding to the window�size used by LZ�� as implemented in the

Unix command gzip� see !��"��

As in several current implementations of lossless versions of Lempel�Ziv coding� we

set a maximum possible match length of ��� bits� With this restriction we can describe

the Lm���D��s using a �xed � bits rather than the C log�Lm���D���� bits suggested in

Section 	����� We also mention that� although we did not go to great e�orts in order

to optimize the speed of our implementation� there is extensive literature devoted

to approximate string matching algorithms� Implementation details and algorithmic

issues relating to e
cient� approximate string�matching are discussed in the text !��"�

and� in the context of data compression� in !�"!�"!��"�

��	 Extensions

A Fixed�Rate Version

We informally outline how the algorithm can be modi�ed to provide �xed�rate lossy

compression for memoryless sources� The main di�erence is that instead of looking

for the longest match with distortion smaller than a �xed D� here we look for the

most accurate match with length greater than some �xed length M �
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Figure 	��� Compression performance on a memoryless Bernoulli����� source� with
respect to Hamming distortion and D � ����� The compression ratios achieved by
the algorithm for di�erent database sizes m are denoted by ���� the ideal compression
ratio �rate�distortion function� is shown as �x�� the performance suggested by the
heuristic argument in Section 	�	��� namely� R�D� �C�log logm�� logm� is shown as
a solid line� with the constant C � ��	� empirically �tted to the data�

Let R be the target rate� and recall from �	���� that a string of length L in the

message that matches somewhere in one of the databases� can be encoded using

�m�L�
�
� minfC� log�L� �� � C� log�t�m� � �� � logm� C	Lg bits� �	����

To guarantee an encoding rate below R bits per symbol� we consider initial strings XL
�

of the message XN
� of lengths L large enough so that �m�L��L � R� i�e�� L �Mm�R�

where

Mm�R�
�
� min

�
� � L � m �

�m�L�

L
� R

	
�since �m�L��L is nonincreasing in L� having L �Mm�R� implies �m�L��L � R�� Of

all such strings XL
� � choose the one that matches somewhere into one of the databases
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with minimal distortion� let

Dm���R� �

minf�L�XL
� � �Y

�j�
i � � � � � Y

�j�
i�L���� � Mm�R� � L � m� i � m� L� �� j � T �m�g�

and write �m���R� for the achieving L in the above de�nition� Then the initial string

in XN
� of length �m���R� �Mm�R� can be encoded� within distortion Dm���R�� using

�m��m���R��

�m���R�
� R bits pre symbol� �	����

The same process can be repeated iteratively until the entire message has been en�

coded� yielding a total of ) substrings of XN
� � of lengths ai

�
��m�i�R�� and corre�

sponding description�lengths bi
�
��m��m�i�R��� By �	���� and the log�sum inequality

!��� Theorem �����" it follows that

log

�P�
i�� aiP�
i�� bi

�
�
�

�X
i��

ai

��� �X
i��

�
ai log

ai
bi

�
� logR�

so the overall encoding rate of XN
� is

P�
i�� aiP�
i�� bi

� R bits per symbol�

Now let us look at the distortion achieved� From the de�nition of �m it is clear

that the dominant term in the right hand side of �	���� is the �logm��term� which

means that� for large m� �m�L��L � �logm��L and Mm�R� � �logm��R� Therefore�

Dm���R� is the minimal distortion that can be achieved between the source and any

one of the databases by strings of lengths longer than �logm��R� But from Corol�

lary 	�� we know that there exist D�close matches of length at least �logm��R�D��

which suggests that

lim sup
m��

Dm���R� � D�R� a�s�� �	����

with D�R� denoting the distortion�rate function of the source� So� in the same way

that Corollary 	�� is the essential ingredient in proving Theorem 	��� it is plausible
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that the optimality of the above scheme �i�e�� that the overall description of the mes�

sage XN
� is asymptotically within distortion D�R�� will similarly follow from �	�����

Sources with Memory

A simple inspection of the proofs immediately reveals that all the results from Sec�

tions 	��� and 	�� remain true in the case when the assumption thatX is memoryless

is replaced with the assumption that it is a stationary ergodic process� In particular�

the asymptotic compression ratio achieved by the algorithm is equal to the �rst�order

approximation to its rate�distortion function� which is� in general� larger than the

rate�distortion function itself�

Unbounded Distortion Measures

The assumption that � is bounded is merely a technical assumption that can be sig�

ni�cantly relaxed at the price of more complex proofs� We expect that the algorithm

optimality� as well as the waiting times results of Section 	��� remain valid for a

much more general class of distortion measures� satisfying only some mild moment

conditions�

General Reproduction Alphabets

As already mentioned in Section 	�	� the algorithm optimality does not depend on the

exact form of the database�distributions chosen� as long as ��� they are asymptotically

dense� and ��� their number T �m� satis�es �logT �m��� logm� � as m��� In the

case of general reproduction alphabets� the algorithm can be extended in a straightfor�

ward way� by including several databases uniformly covering the space of all possible

reproduction distributions� Such asymptotically dense �nite covers should be possi�

ble to construct in a systematic manner� at least as long as the space of database

distributions is 
compact�� in a natural sense�
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��
 Proofs

����� Proof of Lemma ���

Fix D � ��� �max�� write �Pn for the empirical measure induced by Xn
� on A�

�Pn �
�

n

nX
i��

�Xi
�

and de�ne

D
�n�
min � E �Pn

!min
y� �A

��X� y�"�

Recall that the s�n��types qn were chosen such that qn�y� � � for all y � �A� so that

by �	��� we have

D
�n�
min �

�

n

nX
i��

min
y� �A

��Xi� y� � sup
x�A

min
y� �A

��x� y� � ��

i�e�� D
�n�
min � � for all n� Therefore� D � D

�n�
min� and so

Q �n��B�Xn
� � D�� � � P � a�s� �	����

Let Gr denote the collection of all in�nite realizations x from X that satisfy� for all

n � r� Q �n��B�xn� � D�� � �� so that

P ��rGr� � � �	����

by �	����� Choose and �x any r � �� pick x � Gr and � � � arbitrary� and let K � �

be a �xed constant� For any n � r large enough so that en� � ��n� ��� we have

P 	 Q �n�ffWn�D� � K jXn
� � xn�g

� Q �n�

�
Y

�i���n
in�� �� B�xn� � D�� for all i � �� �� � � � �

�
K � �

n

�	
�


�� Q �n��B�xn� � D��

�bK��
n c



���� PROOFS ��

�since fWn�D� � � by de�nition we need not consider values of K � ��� Letting

K � �n��Q �n��B�xn� � D�� above� and noting that ��� z�R � ���Rz� for all z � ��� ��

and R � �� yields

P 	 Q �n�

�
�

n
log!fWn�D�Q �n��B�xn� � D��" � �

���Xn
� � xn�

	

�
��Q �n��B�xn� � D��

���� �n�

Q �n�
�B�xn� �D��

� �

n

��������

�
�
�n� � Q �n��B�xn� � D��

n
� Q �n��B�xn� � D��

���
� �n��n�� �	����

By the Borel�Cantelli Lemma it now follows that

lim sup
n��

�

n
log!fWn�D�Q �n��xn� � D�" � � for P 	 Q �n� �almost all �x�y� � Gr 	 �A��

and combining this with �	���� completes the proof� �

����� Proof of Lemma ���

To avoid cumbersome notation� we prove Lemma 	�� in terms of natural logarithms

instead of logarithms taken to base �� i�e�� we will show that

lim inf
n��

�

n
loge Q

�n��B�Xn
� � D�� � �Re�D� a�s� �	����

Proof of Lemma ���� For all xn� � An and 
 � R de�ne

�xn�
�
� � loge

�Z
e��n�x

n
� �y

n
� ��qn�

n�dyn� �

	
so that� by expanding �n as a sum and using independence�

�

n
�xn�

�
n� �
�

n

nX
i��

fn�xi��
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where

fn�x� � loge

�Z
e���x�y�dqn�y�

�
� x � A�

If we de�ne f�
� on A like fn�
�� but with qn replaced with q�� then����� �n�Xn
�
�
n�� �

n

nX
i��

f�Xi�

����� � �

n

nX
i��

jfn�Xi�� f�Xi�j

� ess sup
X�

jfn�X��� f�X��j
� ess sup

X�

j log�� � �n�X���j�

where

�n�x� �

P
y� �A!qn�y�� q��y�"e���x�y�P

y� �A q
��y�e���x�y�

�

But from �	��� and �	����

j�n�x�j � j �Aj
s�n�

e�j�jM � � for p�almost all x � A�

which implies that ����� �n�Xn
�
�
n�� �

n

nX
i��

f�Xi�

������ � a�s� �	��	�

Also� since � is bounded �by assumption�� so is f � and by the ergodic theorem

�

n

nX
i��

f�Xi�� E�f�X��� � �p�q��
� a�s� �	����

From �	��	� and �	���� we get that

�

n
�Xn

�
�
n�� �p�q��
� a�s�

From this combined with Lemma ��� it follows that we can apply the G#artner�Ellis

Theorem !��� Theorem �����" along �almost� every realization of X� to obtain that�
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with P �probability one�

lim inf
n��

�

n
loge Q

�n��B�Xn
� � D��

� lim inf
n��

�

n
loge P 	 Q �n�

�
�

n

nX
i��

��Xi� Y
�n�
i � � D

���Xn
�



� � inf

z����D�
��p�q��z� �by the G#artner�Ellis Theorem�

� ���p�q��D� �by Lemma ����

� �Re�p� q
�� D� �by Proposition ����

� �Re�D�� �by the de�nition of q��

and this proves �	���� and the Lemma� �

����� Proof of Corollary ���

We follow the notation in the proofs of Theorem 	�� and Lemma 	���

Let � � � be given� Pick one of the �almost all� realizations x of X such that

x � �rGr� and also the result of Lemma 	�� holds� By Lemma 	��� we can choose N�

�depending on x� large enough so that

�

n
logQ �n��B�xn� � D�� � �R�D�� �

�
for all n � N�� �	����

Then� by the duality relationship �	���� and the fact that W �
n�D� � fWn�D��

Pr

�
Lm���D� � logm

R�D� � �

���X � x

	
� P 	 Q �n�

nfWn�D� � m� n� �
���X � x

o
� P 	 Q �n�

�
logfWn�D�

n
� log�m� n� ��

n

���X � x




where n � d�logm���R�D� � ��e� If we take m large enough� say m � M�� so that



�� CHAPTER �� EFFICIENT� UNIVERSAL� LOSSY DATA COMPRESSION

n � N� and !log�m� n� ��"�n � R�D� � ���� then this is bounded above by

P	Q �n�

�
logfWn�D�

n
� R�D� �

�

�

���X � x



�

P	Q �n�

�
log!fWn�D�Q �n��B�xn� � D��"

n
� R�D� �

logQ �n��B�xn� � D��

n
�
�

�

���X � x



and by �	���� this is bounded above by

P 	 Q �n�

�
log!fWn�D�Q �n��B�xn� � D��"

n
� �

�

���X � x



�

Finally take m � M� su
ciently large to make the corresponding n large enough so

that the bound �	���� from the proof of Lemma 	�� applies� Combining �	���� with

the above bounds yields

Pr

�
Lm���D� � logm

R�D� � �

���X � x

	
� �n���n
� � �m�� logm�

for some �xed constants �� � � �� since this argument holds for P �almost any x� the

result of Corollary 	�� follows� �

����� Proof of Theorem ���

Let � � � be given� and choose and �x one of the �almost all� realizations x ofX such

that Corollary 	�� holds� Recall that the encoding algorithm parses up XN
� into )m

distinct words Z�k�� each of length Lm�k�D�� Let n � �logm���R�D� � ��� Following

!��"� we assume� without loss of generality� that n is an integer� and that the last

phrase in the parsing of XN
� is complete� i�e��

Z��m� has length Lm��m�D��

We call a phrase Z�k� short if its length satis�es Lm�k�D� � n� otherwise Z�k� is called

long�

We break the upper bound �	���� for the description length �m�X
N
� � into three
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parts�

�m�X
N
� � � dmT �m� log j �Aje � C	

X
k� Z�k� is short

Lm�k�D�

�
X

k� Z�k� is long

!C� log�Lm�k�D� � �� � C� log�t�m� � �� � logm"� �	����

The �rst term is non�random and independent of N � so that dividing by N and

letting N � � it tends to zero� For the second term� after taking its conditional

expectation� it can be bounded above as�

E

�
C	

X
k� Z�k� is short

Lm�k�D�
���XN

�




� C	
logm

R�D� � �
E

� X
k� Z�k� is short

IfLm�k�D�	ng
���XN

�




� C� logmN Pr

�
Lm���D� � logm

R�D� � �

��� XN
�

	
�

where the �rst inequality follows from the de�nition of being 
short�� the constant

C� � C	��R�D����� IF denotes the indicator function of the event F � and the second

inequality follows by considering not just all k�s� but all the possible positions on XN
�

where a short match can occur� We can now divide by N � let N � �� and apply

Corollary 	�� to see that the conditional expectation of the second term in �	���� also

converges to zero� P �almost surely�

Finally� we analyze the third  and dominant  term in �	����� By the assumptions

of Theorem 	��� for all m large enough �independently of N and XN
� � we have

C�
log t�m�

logm
� �� �	����

From now and until the end of the proof we assume that m is large enough for �	����

to hold� Also� let )�
m be the number of long phrases Z�k�� Since each long Z�k� has

length Lm�k�D� � n� we must have

)�
mn � N� �	����



�� CHAPTER �� EFFICIENT� UNIVERSAL� LOSSY DATA COMPRESSION

Now� as in the lossless case !��"� we can bound above the third term in �	���� by

C�)
�
m

X
k� Z�k� is long

�
�

)�
m

log�Lm�k�D� � ��

�
� )�

m

�
� � C�

log t�m�

logm

�
logm�

which� applying Jensen�s inequality and �	����� is bounded above by

C�)
�
m log

�� �

)�
m

X
k� Z�k� is long

�Lm�k�D� � ��

�A � )�
m�� � �� logm

�a�

� C�)
�
m log

�
� �

N

)�
m

�
� )�

m�� � �� logm

�b�

� C�N
)�
m

N
log

�
� �

N

)�
m

�
�

N

n
�� � �� logm

�c�

� C�N
�

n
log�� � n� � N�� � ���R�D� � ��

�d�
� N

�
�R�D� � ���� � �� � C�

log logm

logm

�
�

where �a� follows by the fact that the sum of the lengths of long phrases cannot

exceed N � �b� follows from �	����� �c� follows from �	���� together with the fact that

the function x log�� � ��x� is increasing for all x � �� and �d� follows from the

de�nition of n in terms of m� with C� � �C��R�D� � ��� Combining this with the

fact that the �rst two terms in �	���� vanish� immediately yields

lim sup
m��

lim sup
N��

E

�
�m�X

N
� � D�

N

���XN
�

	
� �R�D� � ���� � �� a�s�

and since � � � was arbitrary we get �	��	�� Finally� �	���� follows from �	��	� and

Fatou�s lemma� �



Chapter 	

Concluding Remarks

We summarize the main contributions of this thesis in Section ���� and in Section ���

we brie�y discuss some promising directions along which the results presented in

Chapters � 	 may be extended�

	�� Summary of Contributions

The two main contributions of this thesis are 	i
 the strong approximation framework

for analyzing the asymptotic behavior of recurrence and waiting times �Chapters � ���

and 	ii
 the new lossy version of the Lempel�Ziv algorithm presented in Chapter 	�

Strong approximation

In general terms� we can think of recurrence and waiting times as hitting times for

certain rare events� For example� given a random pattern �X�� X�� � � � � Xn� generated

by some process X� the waiting time Wn�D� is the time until the �rst occurrence of

the rare event that a D�close version of �X�� X�� � � � � Xn� appears in a realization of

a di�erent process Y � The approach taken in Chapters � and � can be summarized

by saying that these waiting times �or recurrence times� can be approximated by

the reciprocal of the probability of the rare event at hand� In the above example�

Wn�D� can be approximated by the reciprocal of the probability Q�B�Xn
� � D�� of

the event that a D�close match for �X�� X�� � � � � Xn� occurs in Y � More precisely� in

��
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Theorem ��� we showed that� with probability one� the di�erence

logWn�D� � log

�
�

Q�B�Xn
� � D��

�
does not grow faster than O�logn� as n � �� and� therefore� the asymptotic be�

havior of the waiting times Wn�D� can be deduced from that of the probabilities

Q�B�Xn
� � D��� which were studied extensively in Chapter � using techniques from

large deviations�

This strategy of �rst approximating waiting times �or recurrence times� by ap�

propriate large deviation probabilities and then using large deviations to determine

exactly how these probabilities decay� provides a natural uni�ed framework for de�

ducing various asymptotic results� In Chapters � and � it allowed us to prove a series

of strong new results� and it also allowed us to recover most of the known results in

this area�

The strong approximation idea was introduced in !��" in the context of recurrence

and waiting times without distortion� There� asymptotic results were proved by

utilizing the Shannon�McMillan�Breiman theorem and its classical re�nements by

Yushkevich !��"� Ibragimov !��"� and Philipp and Stout !	�"� In !��" it was extended

to the case of waiting times allowing distortion� and in !��" the same strategy was

employed to prove the waiting times results of Chapter 	 that led to establishing the

optimality of a new lossy data compression algorithm�

Lossy Lempel�Ziv coding

In Chapter 	 we proposed a solution to a long�standing open problem in data com�

pression� We introduced a new lossy version of the Lempel�Ziv data compression al�

gorithm� for encoding memoryless sources at a �xed distortion level� This algorithm

is easily implementable in practice  preliminary simulation results were presented in

Section 	�	�� demonstrating its performance on binary data� We also proved �Theo�

rem 	��� that its compression is asymptotically optimal with respect to single�letter

distortion measures� This was done by �rst studying an idealized coding scenario

in terms of waiting times and then using the corresponding waiting times results to

prove the optimality of the practical scheme�
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	�� Extensions and Future Directions

Theory

There are several natural questions to ask about the theoretical results presented in

Chapters � �� and they point to several directions for generalizations� three of which

are mentioned below�

First� we note that most of the results from Chapters � and � can be extended

to the general case of weakly dependent processes� The main tools will again be

provided by the theory of large deviations and uniform pointwise approximation� but

the characterization of the limiting rate function R�P�Q�D� will be in terms of an

in�nite�dimensional variational problem�

Second� the strong approximation approach of Chapters � and � naturally extends

to random �elds on the integer lattice �as well as to several� more general group

actions�� although new subtleties arise in this case regarding the conditional structure

of the measures and their mixing rates�

Finally� it is interesting to ask if there are simple analogs of the results in Chap�

ters �� � and � in the case of continuous�time processes� We expect that for reasonably

rich classes of stationary ergodic processes �such as 
nice� classes of exponentially

mixing di�usions�� there will be natural counterparts to most of the results in Chap�

ters � ��

Applications

In the case of lossless compression� the classical re�nements to the Shannon�McMillan�

Breiman theorem were used in !��" to prove second�order lossless source coding theo�

rems� Similarly� we expect that the corresponding results in the case when distortion

is allowed �Corollaries ���� ��� and ���� can be used to prove second�order re�nements

to Shannon�s lossy source coding theorem�

In terms of practical data compression� it is important to determine how successful

the algorithm presented in Chapter 	 can be when applied to real data� In Chapter 	

we showed that this algorithm has several desirable theoretical properties� and cur�

rently we are testing to see how e�ectively it can be put to practical use� The limits

of its applicability will essentially be determined by how e
ciently we can implement

the string�matching part of the algorithm�
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As a speci�c application� we are interested in seeing how this scheme can be

combined with existing methods �such as transform coding� to yield e
cient image

compression� Preliminary results in this direction seem promising�

In closing� we mention that we are currently in the process of providing !��" a modi�

�cation of the Fixed�Database Lempel�Ziv algorithm� di�erent from the one presented

in Chapter 	� which achieves optimal compression for a wide class of processes with

memory�



Appendix A

Some Technical Points

A�� Proof of Theorem ���

Here we prove the following strengthened version of Theorem ���� �� � � if and

only if all the nonzero transition probabilities from state a to state b are of the form

��Hva�vb� for some positive constants va� a � A� Theorem ��� follows from this with

q � ��H �

We begin by deriving a generalization of a formula due to Fr�echet !��" for the

asymptotic variance of Markov chains� Let Z � fZn � n � Zg be a stationary ir�

reducible aperiodic Markov chain with �nite state�space T� stationary distribution

�qi�i�T � and kth order transition probabilities �q
�k�
ij �i�j�T � Let f be a real�valued func�

tion on T and write *f�
� for f�
�� Ef�X��� De�ne

+� � lim
n��

�

n
Var

�
nX
i��

*f�Zi�

�
� E� *f�Z���

� � �
�X
k��

E� *f�Z�� *f�Zk����

�
X
j�T

*f�j��qj � �
�X
k��

X
i�j�T

qiq
�k�
ij

*f�i� *f�j�� �A���

Letting sij �
P�

k��

h
q
�k�
ij � qj

i
�� �for i� j � T �� the second term above becomes

�
X
i�j

qisij *f�i� *f�j� � �
X
i

qi *f�i��i�

��
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where �i �
P

j sij
*f�j� �for j � T �� and substituting this in �A��� gives

+� �
X
i

qi


*f�i� � �i

�� �X
i

qi�
�
i �

X
j

qj

�X
i

qji� *f�i� � �i�
� � ��j

�
� �A���

Expanding� X
i

qji�i �
X
i

qji
X
m

sim *f�m�

�
X
m

*f�m�
X
i

qji
X
k
�

�q
�k�
im � qm�

�
X
m

*f�m�
X
k
�

�q
�k���
jm � qm�

�
X
m

*f�m�

�X
k
�

�q�k�jm � qm�� �qjm � qm�

�
�
X
m

sjm *f�m��
X
m

qjm *f�m�

� �j �
X
m

qjm *f�m�� �A���

so that X
i

qji� *f�i� � �i�
� �

X
i

qji!� *f�i� � �i � �j� � �j"
�

�
X
i

qji!� *f�i� � �i � �j�
� � ��j "� �A���

since by �A��� the cross terms vanish�X
i

qji��j� *f�i� � �i � �j� � ��j

�X
i

qji *f�i�� �j �
X
i

qji�i

�

� ��j

�X
i

qji *f�i�� �j � �j �
X
m

qjm *f�m�

�
� ��

Substituting �A��� into �A��� and interchanging i and j yields

+� �
X
j

qj
X
i

qji� *f�i� � �i � �j�
�� �A�	�
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which is the generalization of Fr�echet�s formula for the variance�

Now consider the chain �X de�ned in Section ���� For all a� b � A we write

pa � P �X� � a� and pab � P �X� � b jX� � a�� so that �X has stationary distribution

�qab� � �papab� and transition probabilities �qab�cd� � ��bcpcd�� Let f be de�ned as in

Section ���� Since here �ab � �b is independent of a� using �A�	� we get

�� �
X

�a�b��T
papab

X
�c�d��T

�bcpcd� *f�c� d� � �cd � �ab�
�

�
X

�a�b��T
papab

X
d�A�pbd��

pbd� *f�b� d� � �d � �b�
��

For any �b� d� � T we have pbd � �� so �� � � if and only if

*f�b� d� � �b � �b� for all �b� d� � T�

and the result stated in the beginning of this section follows upon setting va
�
����a�

a � A� �

A�� Proof of Lemma ���

Part �i� follows immediately from the de�nitions of ���� and D���
max�

For part �ii�� First� since all the random variables involved in the de�nition of

���� are bounded� its di�erentiability with respect to 
 can be checked easily using

the dominated convergence theorem� In particular� we can di�erentiate under the

integral sign to obtain

������
� �
Z �R

��x� y�e���x�y�d��y�R
e���x�z�d��z�

�
d��x�

and for 
 � � this gives �������� � D���
av � Di�erentiating once more�

�������
� �
Z �R

���x� y�e���x�y�d��y�
R
e���x�y�d��y�� �R ��x� y�e���x�y�d��y����R
e���x�z�d��z�

��
�
d��x�

and this is easily seen to be nonnegative for any 
 by applying H#older�s inequality

to the numerator of the integrand� Moreover� since we assume D���
min � D���

av � ��x� y�
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is not almost surely constant� and the above expression is strictly positive� Next we

outline a standard calculation which shows that ������
� � D���
min as 
 � ��� For

any �xed x � A let �x � ess infY�� ��x� Y �� and� given � � � arbitrary� de�ne

Bx��� � fy � �A � ��x� y� � �x � �g�

so that ��Bx���� � �� Then�

������
� �
Z

d��x�

Z
Bx���

d��y�
��x� y�e���x�y�R
e���x�z�d��z�

�

Z
d��x�

Z
�A�Bx���

d��y�
��x� y�e���x�y�R
e���x�z�d��z�

� �A���

where the integral over � �A�Bx���� is bounded above by

Dmax

�R
�A�Bx���

d��y�e����x�y���x�R
Bx��
��

d��y�e����x�y���x�

�
� Dmax

�
�� �A�Bx����e

��

��Bx������e��
�

�
� Ce��
� �A���

where C is a nonnegative constant� independent of 
� Therefore� by the dominated

convergence theorem the second term in �A��� converges to � as 
� ��� Similarly�

the integral over Bx��� in �A��� is easily seen to be bounded below byR
Bx��
��

d��y���x� y�e���x�y�R
Bx��
��

d��y�e���x�y� �
R
�A�Bx���

d��y�e���x�y�
� �x

�
� �

R
�A�Bx���

d��y�e���x�y�R
Bx��
��

d��y�e���x�y�

���

� �x

�
� �

�� �A� Bx����e
��

��Bx������e��
�

���
�

which is seen to converge to �x as 
 � ��� Observing that that the integral over

Bx��� in �A��� bounded above by ��x���� combining this with the above lower bound�

and letting � � �� implies that the integral over Bx��� in �A��� converges to �x� This� in

turn� together with �A���� �A���� and the de�nition of �x� shows that �
�
����
�� D���

min

as 
� ���

Part �iii� is a straightforward application of �ii� and elementary calculus�
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For part �iv�� the in�nite di�erentiability of

��x���
� � loge

�Z
e���x�y�d��y�

�
with respect to 
 is established by a standard application of the dominated conver�

gence theorem and induction� and the boundedness of the derivatives follows easily

from the boundedness of �� �

A�� Proof of Proposition ���

It su
ces to show that Re��� ��D� � ������D�� i�e��

inf

Z
He�&�
jx�k��
��d��x� � sup

��R
!
x� �����
�" �A���

where the in�mum is taken over all probability measures & on A 	 �A such that the

A�marginal of & is � and
R
��x� y� d&�x� y� � D�

By Lemma ��� we may �x 
 � � for which the supremum on the right side of

�A��� is achieved� Consider the probability measure & de�ned by

d&�x� y�

d�	 �
�

e���x�y�R
e���x�z�d��z�

in the left side of �A���� The A�marginal of & is ��
R
��x� y�d&�x� y� � ������
� � D�

andZ
He�&�
jx�k��
��d��x� � 
D �

Z
loge

�Z
e���x�y�d��y�

�
d��x� � ������D��

so the left side of �A��� is no greater than ������D�� To prove the reverse inequality

we recall that for any probability measure & and any bounded measurable function

� � �A� R�

He�&�
jx�k��
�� �
Z

��y�d&�yjx�� loge

�Z
e��y�d��y�

	
�c�f� !��� Lemma ������"�� In particular� choosing ��
� � 
��x� 
� and integrating both



�� APPENDIX A� SOME TECHNICAL POINTS

sides with respect to � yields the required inequality and completes the proof� �

A�� Choice of s�n��types

Since s�n��� and it is nondecreasing� for all n large enough we have

s�n� � j �Ajmaxf��q��y� � y � �A with q��y� � �g�

Then pick yo � �A with q��yo� � �� and de�ne

qn�y� �

�� �!
ds�n�q��y�e

s�n�
if y �� yo and q��y� � �

�
s�n�

if q��y� � �

��Py� �A� y ��yo qn�y� if y � yo�

It is now trivial to check that qn has the required properties�
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