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with, for example, neural nets. The same numerical search
methods are applicable for both of these model structures.
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Nonparametric Entropy Estimation
for Stationary Processesand Random

Fields, with Applications to English Text
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Yu. M. Suhov, and A. J. Wyner,Member, IEEE

Abstract—We discuss a family of estimators for the entropy rate
of a stationary ergodic process and prove their pointwise and mean
consistency under a Doeblin-type mixing condition. The estimators are
Cesàro averages of longest match-lengths, and their consistency follows
from a generalized ergodic theorem due to Maker. We provide examples
of their performance on English text, and we generalize our results to
countable alphabet processes and to random fields.

Index Terms—Entropy rate, entropy of English, pattern matching,
universal data compression.

I. INTRODUCTION

Since the mid 1980’s, a lot of work has been done in relating the
entropy rate of a stationary ergodic process to the geometry along
a single realization. The entropy rate is almost surely an asymptotic
lower bound on the per-symbol description length when the process is
losslessly encoded, and several universal data compression algorithms
are known that actually achieve it. In particular, the Lempel–Ziv [31]
algorithm attains the entropy lower bound when it is applied to almost
every realization of a stationary ergodic source.

A straightforward approach for estimating the entropy rate of an
unknown source would be to run a universal coding algorithm on a
long segment of the source output. The resulting compression ratio
can be used as an upper bound for the entropy. If the data segment is
long enough for the algorithm to converge, then the compression
ratio is a good estimate for the source entropy. But like for the
ergodic theorem, also for data compression there is no universal rate
of convergence [21], [23]. Moreover, few of the known universal
coding algorithms have been shown to achieve the entropy limit in
the pointwise sense, and of those, not all are feasible to implement.

In practice, it is often found that universal compression algorithms
converge rather slowly, and other approaches, tailored to the specific
application at hand, are often employed. After all, estimating the
entropy is a simpler task, at least in principle, than compressing an
unknown source to the entropy limit.

Wyner and Ziv [29], motivated in part by the problem of providing
a pointwise asymptotic analysis of the Lempel–Ziv algorithm, re-
vealed some deep connections between the entropy rate of a stationary
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ergodic process and the asymptotic behavior of longest match-lengths
along a process realization: LetX = fXig be a random process with
values in a finite alphabetA. A process realization is an element
x = (xi)i2ZZZ of the two-sided sequence spaceX = AZZZ , and
Xi(x) = xi is its ith coordinate. Fori � j, Xj

i denotes the string
(Xi; Xi+1; � � � ; Xj). For our purposes, the process distribution is a
probability measureP on the Borel�-field onX . We assume thatP
is invariant under the usual shift transformationTx = (xi+1)i2ZZZ , so
that fXig is stationary, and we also assume ergodicity. The entropy
rate of the process is defined as

H = E �logP X0 j X
�1
�1 :

Forn � 1 let Ln denote the minimum lengthk such that the string
Xk�1
0 that starts at time0 does not appear as a continuous substring

within the pastX�1
�n. Alternatively,Ln is obtained by adding1 to

the longest match-length

Ln = 1 +max l : 0 � l � n;Xl�1
0 = X�j+l�1

�j

for somel � j � n :

Wyner and Ziv [29] showed that, for every ergodic process,Ln

grows like (logn)=H in probability, and Ornstein and Weiss [15]
later refined this to pointwise convergence,

Ln

logn
!

1

H
a.s. (1)

where H is the entropy rate offXig (logarithms are to base2
throughout this correspondence).

At about the same time, Grassberger [9] suggested an interesting
entropy estimator based on average match-lengths. Shields [22]
proved the consistency of Grassberger’s estimator for independent
and identically distributed (i.i.d.) processes and mixing Markov
chains. Kontoyiannis and Suhov [11] extended this to a wider class
of stationary processes, and recently Quas [20] extended it further to
certain processes with infinite alphabets and to random fields.

In this correspondence we introduce three entropy estimators, a),
b) and c) below, that are formally similar to the one suggested by
Grassberger, but which, due to their stationary nature, are much
easier to analyze. We establish their pointwise consistency using
methods with a familiar information-theoretic flavor (Section III),
and we discuss generalizations to random fields (Section IV) and
processes with countably infinite alphabets (Section V). We also
provide examples of their performance in estimating the entropy of
English text, and we compare our results to those obtained using a
variety of different techniques (Section II).

Given an instanti and a positive integern, our main quantity of
interest is�n

i (X) = Ln(T
iX), the length of the shortest substring

Xi+k�1
i starting at positioni that does not appear as a contiguous

substring of the previousn symbolsXi�1
i�n.

Theorem 1: Let fXig be a stationary ergodic process with entropy
rate H > 0. Then

a) limn
1
n

n

i=1

�

logn
= 1

H
a.s. and inL1;

b) limn
1
n

n

i=2

�

log i
= 1

H
a.s. and inL1;

c) limn
1
n

n

i=1

�

logn
= 1

H
a.s. and inL1;

provided the following condition holds.

Doeblin Condition (DC): There exists an integerr � 1 and a real
number� 2 (0; 1) such that,

for all x0 2 A; P X0 = x0 j X
�r
�1 � �; with probability one.

Without (DC), 1=H is still an asymptotic lower bound for the
estimates in a) and b).

Remarks

1) Applications: Entropy estimators similar to the one in a) have
already appeared in the literature [4], [5], [8], [10], [27]. They
were applied to experimental data in order to determine the
entropy rate of the underlying process, and were demonstrated
to be very efficient, even when fed with very limited amounts
of data. So part of our motivation is to provide a more general
and precise analysis of these practical algorithms.

2) The Doeblin Condition: The Doeblin Condition was originally
introduced in the analysis of Markov chains [7]. In the context
of this correspondence, (DC) was first introduced by Kon-
toyiannis and Suhov [11], where its properties are discussed
in greater detail. Here we note that (DC) holds for i.i.d.
processes, for ergodic Markov chains of any order, and also
for certain non-Markov processes. Our present formulation of
(DC), introduced by Quas [20], is equivalent to that in [11]
when the alphabet is finite, and has the additional advantage of
being applicable to processes with countably infinite alphabets.

In practice, (DC) is not a fierce restriction. What (DC)
requires is that, after some numberr of time steps, everything
is possible again with positive probability, independently of
whatever may have occurred in the past. This is certainly
satisfied by natural languages, and it is highly plausible for
most sources of data encountered in practice. Observe also that
(DC) is satisfied by any stationary ergodic process observed
through a discrete memoryless channel which transforms any
letter of the alphabet to any other letter, with nonzero (but arbi-
trarily small) probability. For example, iff�ng is a stationary
ergodic binary process andf�ng is an i.i.d. noise sequence with
Pf�n = 1g = p, then the dithered processXi = �i+�i mod2
satisfies (DC) withr = 1 and� = maxfp; 1� pg.

3) Without the Doeblin Condition: Without assuming (DC), the
estimates in a) and b) can still be used to provide lower-bound
estimates for the entropy. Notice that these bounds are in the
opposite direction from the ones provided by universal coding
algorithms, so that, even if (DC) does not hold, we can use
either a) or b) in conjunction with a data compression algorithm
to estimate upper and lower bounds for the process entropy.

4) Interpretation: The match-length�n
i can be thought of as the

length of the next phrase to be encoded by the sliding-window
Lempel–Ziv algorithm [30] when the window size isn. In
fact, the entropy estimator in a) above is a special case of the
sliding-window estimator [8] defined by

Ĥk;n =
1

k

k

i=1

�n
i

logn
(2)

where k (as well asn) are freely chosen positive integers.
From a) we learn that (2) is almost surely consistent fork = n
tending to infinity. Also, it is a consequence of the ergodic
theorem thatĤk;n is almost surely consistent if we first let
k ! 1 and thenn ! 1, provided that

E[Ln=(logn)] = 1=H + o(1):

This is true for stationary ergodic Markov sources [28] and, by
(6) of Theorem 10 below combined with (1) it is also true for
all stationary ergodic processes satisfying (DC).

Similarly, �i
i is the length of the phrase that would be en-

coded next by the Lempel–Ziv algorithm [31] with knowledge
of the pastXi�1

0 . From (1) and stationarity it follows that,
for any fixed indexi, �n

i = logn! 1=H with probability one,
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TABLE I
ENTROPY ESTIMATES BASED ON A SINGLE MATCH. THE WINDOW-LENGTH n IS EQUAL TO 100 000 CHARACTERS, THE

TEXT IS JANE AUSTEN’S NOVEL Mansfield Park, AND THE SEGMENT OF THE TEXT THAT IS BEING MATCHED IS

“ . . . tea when you and your mamma went out of the room . . .”

and also that�n

n= logn! 1=H in probability. Theorem 1 says
that, when (DC) holds, the Cesàro means of these quantities
also converge to1=H, with probability one.

5) Maker’s Generalized Ergodic Theorem: The proof of Theorem
1 is based on the fact that, under (DC), we can invoke a
generalized ergodic theorem due to Maker [14] and conclude
that the Ces̀aro averages in Theorem 1 are pointwise consistent
estimates for1=H. Maker’s theorem includes, as a special case,
Breiman’s ergodic theorem, which was used in [3] to prove
the Shannon–McMillan–Breiman theorem. In the Appendix
we present a simplified proof of Maker’s generalized ergodic
theorem, and some extensions that are used in Sections III and
IV.

6) A Word of Caution: Theorem 1 says that the Cesàro averages
of the quantities�n

i = logn and of the quantities�i

i= log i
converge with probability one, but Pittel [19] and Szpankowski
[24] have shown that the quantities�n

n= logn themselves keep
fluctuating. Interpreting�n

n as the length of a feasible path in a
suffix tree they identify two natural constantsH1 andH2 with
H1 > H > H2, and they show that, under certain mixing
conditions

1

H1

= lim inf
n

�n

n

logn
< lim sup

n

�n

n

logn
=

1

H2

a.s.

II. A PPLICATIONS TO ENGLISH TEXT

In this section we present numerical results for the performance of
our estimators when applied to English text data. We also provide a
heuristic discussion that motivates the results and offers an alternative
derivation for the form of these estimators.

Our experiments were done on Jane Austen’s four novelsMansfield
Park, Northanger Abbey, Persuasion, and Sense and Sensibility, a
total of 2 364 200 characters, converted to 27-character text (26
letters plus space). We use this text to demonstrate the convergence
properties of our methods. We show that our estimators are very
efficient even for small sample sizes and claim that they offer a
significant improvement over the universal estimators that are based
on the corresponding versions of Lempel–Ziv coding algorithms (cf.
Remark 4) in Section I).

For example, using estimator a) from Theorem 1, we obtain an
estimate of 1.777 bits per character (bpc) based on a sample of about
75 000 words from the novelMansfield Parkby Jane Austen (the first
23 chapters, about 400 000 characters), a rather modest sample size.

A. Experimental Results

A naive approach to the problem of estimating the entropy of a
given text would be to use the Wyner–Ziv–Ornstein–Weiss result
(1), which says thatLn= logn converges to1=H for any stationary
ergodic process. But it is intuitively clear that such estimates would

TABLE II
ENTROPY ESTIMATES BASED ON AVERAGE MATCH-LENGTHS, USING ESTIMATOR

(3) WITH VARYING WINDOW SIZES. THE TEXT IS THEFOUR JANE AUSTENNOVELS

Mansfield Park, Northanger Abbey, Persuasion, AND Sense and Sensibility

depend heavily on the choice of the exact position in the text where
we look for a match, and hence they would fluctuate a lot (cf. Remark
6) in Section I). Indeed, this behavior is demonstrated by the results
shown in Table I.

In accordance with standard statistical methodology, what we
would want to do in order to decrease the fluctuations of these
estimates is to calculate match-lengths�n

i (x) = Ln(T
ix) at several

positionsi along the “text,”x and take averages. This should reduce
the variance of the estimates, but also introduce more systematic error
for finite values ofn (increase the bias). Since the bias eventually
decreases with increasingn, it is natural to calculate match-lengths
into the largest available cache of past observations. The entropy
estimators of Theorem 1 parts b) and c) both form averages of match
lengths for values ofi ranging from1 to n, partly explaining our
choice of the estimator implicit in a) instead of b) or c).

Theorem 1 part a) says that the corresponding entropy estimates

Ĥn =
1

n

n

i=1

Ln(T
ix)

logn

�1

(3)

are consistent, provided the underlying process satisfies (DC). (A
similar case can be made for the estimators in parts b) and c) of
Theorem 1.) Using (3) we obtained the results shown in Table II.

B. Comparison with Universal Coding Algorithms

Here we compare the performance of our estimators with that of the
corresponding Lempel–Ziv coding schemes (cf. Remark 4) in Section
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I). In particular, we argue that we get a significant improvement in
performance, at the price of assuming the extra condition (DC).

For the purposes of comparison, we begin by recalling the Sliding-
Window Lempel–Ziv (SWLZ) coding algorithm (or, rather, a slightly
idealized version of it). Suppose that the encoder and the decoder both
have available to them the previousn characters of the text,x0

�n+1,
which we call the “window” of lengthn, and the encoder’s task is
to describe the nextn charactersxn1 to the decoder. SWLZ operates
as follows.

The encoder calculates the length� = �n
1 , and then describes

the phrasex�1 in two stages: First,� is described; this takes
log(�) + C log log(�) bits. Then the encoder either describes the
position in the window where the match occurs plus the last character
x�, or the actual phrasex�1 in binary, whichever of the two is
shorter (plus a one-bit flag to say which of the two was used). So the
description length ofx�1 (in bits) is

log �n
1 +C log log �n

1 +min logn+dlog 27e; �n
1 log 27 +1:

Having describedx�1 , the encoder shifts the window byi = �n
1

places to the right, and then repeats the above process to encode the
next phrase

x
i+�

i+1 :

Then the window is shifted again, and the same process is repeated
until the entire stringxn1 has been encoded. This encoding scheme
produces a sequence of positions1 = i1 < i2 < � � � < iJ where
the successive phrases begin, and the overall description length for
xn1 can be written as

J

j=1

log �n
i + C log log �n

i

+min logn+ dlog 27e; �n
1 log 27 + 1

whereJ in the total number of phrases. Since

n =

J

j=1

�n
i

the number of bits per character used to describexn1 can be written
as (4) at the bottom of this page.

We could use (4) to obtain an upper bound, but in practice such
bounds tend to overestimate the entropy (see Table III), especially
for small values of the window lengthn. In order to get lower (and
hence better) estimates, we drop all of the terms in the numerator of
(4) except the leadinglogn term, and set

~Hn =
J logn
J

j=1

�n
i

=
1

J

J

j=1

Ln(T
i x)

logn

�1

: (5)

We no longer know that~Hn converges toH, but we do know that the
estimates it produces will be significantly lower than those produced
by (4). Now if instead of looking at matches along the subsequence
fijg, we look at all positionsi = 1; 2; � � � ; n alongxn1 , then, setting

TABLE III
ENTROPY ESTIMATES BASED ON OUR ESTIMATOR ^Hn FROM

THEOREM 1 PART a), ON THE EXPRESSION ~Hn in (5), AND ON

THE COMPRESSIONRATIO HSWLZ
n ACHIEVED BY SWLZ

J = n, reduces~Hn in (5) to Ĥn in (3), and from Theorem 1 we
know that, under (DC),̂Hn indeed converges to the entropy rate.

In Table III we compare the performance of our estimatorĤn

with that of the expression~Hn in (5), and with the compression ratio
achieved by SWLZ.

We point out that there are many other, perhaps more suitable,
choices of the the number of phrasesk in (2). In applications, one
must consider restrictions on the available data as well as particular
source characteristics, like changing source statistics. This point is
certainly true for English text, and it is a possible explanation for the
increase in the entropy estimate observed for the largest value of the
window size given in the final entry of Table III (it is likely that,
as the window grows, differences in vocabulary across chapters have
the effect of slightly elevating the entropy).

The estimator we use here is (2) withk = n; since we expect its
variance to decrease likeO(1=k) and the bias likeO(1= logn), it is
likely that the number of phrasesk does not need to be as large asn,
and may in fact be quite a bit smaller. Indeed, the proof of Theorem
1 can easily be extended to prove the consistency ofĤk;n for k being
linear inn. It is an open problem to determine the most general way
in which k andn can tend to infinity whileHk;n remains consistent.

C. Other Methods

The problem of estimating the entropy of English text has a
long history. The most successful methods almost always involve
a training stage or some sort of preprocessing of the data. (There is
extensive literature that deals with language and text modeling, and
several special-purpose algorithms that provide very good estimates;
see, for example, Teahan and Cleary [25] and the references therein.)
The best results to date are those reported by Teahan and Cleary [26],
using PPM-related methods. They obtain an estimate of 1.603 bpc
for the complete works of Jane Austen (over 4 000 000 characters),
and then use training in conjunction with an alphabet enlargement
technique (“bigram encoding”) to improve this to 1.48 bpc. Although
our results may not be as accurate as those obtained by the best
known techniques, they do have several advantages which make them
applicable to a wide range of problems rather than just to English text:

J

j=1

log �n
i + C log log �n

i +min logn+ dlog 27e; �n
1 log 27 + 1

J

j=1

�n
i

: (4)
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they do not require prior training or preprocessing of the data, they do
not assume that the underlying source belongs to some presupposed
parametric class, they have relatively good performance for small
data sets, and they are very easy to implement in practice.

III. PROOF OF THEOREM 1

In this section we prove Theorem 1 by invoking Maker’s gener-
alized ergodic theorem (discussed and proved in the Appendix). In
fact, we prove a slightly stronger result.

Theorem 10: Let fXig be a stationary ergodic process with en-
tropy rateH > 0. Then

a) limn
1
n

n

i=1

�

logn
= 1

H
a.s. and inL1;

b) limn
1
n

n

i=2

�

log i
= 1

H
a.s. and inL1;

c) limn
1
n

n

i=1

�

logn = 1
H a.s. and inL1;

provided the random variablesLn= logn areL1-dominated

E sup
n

Ln

logn
<1: (6)

Without (6),1=H is still an asymptotic lower bound for the estimates
in a) and b).

And then we also check that (DC) implies (6).

Lemma 1: Let fXig be a stationary process. If (DC) holds, then

PfLn > kg � n�bk=rc; k � 1 (7)

and the random variablesLn= logn areL1-dominated.

Proof of Theorem 10: Recall thatLn= logn! 1=H with prob-
ability one and invoke Maker’s generalized ergodic theorem. As-
sertion a) follows from Theorem 4 in the Appendix by setting
gn;i = Ln= logn, whereas b) follows by settinggn;i = Li= log i.
(Similarly for the one-sided counterparts to a) and b)).

We can deduce c) from b) as follows. Letli = �i
i and observe

that by b)

1

n

l2
log 2

+ � � �+
ln

logn
!

1

H
a.s. and inL1: (8)

If 0 < � < 1 and �n � i � n, then0 � logn � log i � log(1=�)
and hence

0 �
li

log i
�

li
logn

� �n
li

log i

where�n = � log �= logn. It follows that

0 �
1

n

l2
log 2

+ � � �+
ln

logn
�

l2 + � � �+ ln
n logn

� �
1

�n

l2
log 2

+ � � �+
l�n

log(�n)
+

�n
n

l2
log 2

+ � � �+
ln

logn
:

Letting n!1 and using (8), we may conclude that for any� > 0

0 � lim
n

1

n

l2
log 2

+ � � �+
ln

logn
�

l2 + � � �+ ln
n logn

� �:

The limit must vanish, and this fact in combination with (8) yields
c), sinceli = �i

i.

Proof of Lemma 1:This follows along the lines of [11, proof
of Lemma 3.1]. First we prove thatLn has exponentially vanishing
tails. If Ln > k then Xk�1

0 appears as a substringX�j+k�1
�j of

X�1
�n, for somek � j � n. Therefore,

PfLn > kg �
k�j�n

P Xk�1
0 = X�j+k�1

�j

� (n� k + 1) max
k�j�n

P Xk�1
0 = X�j+k�1

�j : (9)

Write xk for (x0; � � � ; xk�1) and observe that

P Xk�1
0 = X�j+k�1

�j

=

x 2A

P Xk�1
0 = xk j X�j+k�1

�j = xk P X�j+k�1
�j = xk :

Using (DC)

P Xk�1
0 = xk X�j+k�1

�j = xk

� P Xrt = xrt; 0 � t < bk=rc X�j+k�1
�j = xk

�

bk=rc

t=0

P Xrt = xrt X�j+k�1
�j = xk; Xrs = xrs; 0 � s < t

� �bk=rc:

It follows that

PfXk�1
0 = X�j+k�1

�j g � �bk=rc:

Substituting this bound in (9) above we obtain (7). It is now a routine
calculation to verify theL1-domination of the random variables
Ln= logn. Indeed, let
=(� log �)=(2r) and observe that fork�4r
we have

bbk lognc=rc � (k logn)=r � 1� 1=r � (k logn)=(2r):

Consequently, forK � 4r

E sup
n�2

Ln

logn
=

1

0

P sup
n�2

Ln

logn
> k dk

� K +
1

K n�2

PfLn > k logng dk

� K +
n�2

1

K

n�bbk lognc=rc dk

� K +
n�2

1

K

n�(k logn)=(2r) dk

= K +
n�2

1

K

n1�
k dk

= K +
n�2

n1�
K


 lnn
:

The sum is finite if the constantK is chosen so thatK > 2=
:

IV. GENERALIZATION TO RANDOM FIELDS

We generalize our results to random fields on the integer latticeZZZd.
Such a random field is a family of random variablesfXu : u 2 ZZZdg
indexed byd-dimensional integer vectorsu = (u1; � � � ; ud). We
assume that allXu take values in a finite setA. The process
distribution is a stationary ergodic probability measureP on the
product space

X = fAu : u 2 ZZZdg

where eachAu is a copy ofA. If x = fxu : u 2 ZZZdg is a realization
in X , thenXu(x) = xu is the coordinate at positionu. For a subset



1324 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 3, MAY 1998

Fig. 1. Example ofLn in two dimensions.

U � ZZZd let XU (x) = (xu)u2U . For any vectorv 2 ZZZd, let Tvx
denote the realization with coordinates

Xu(Tvx) = Xu+v(x) = xu+v :

We say thatXU occurs at positionv if XU = Xv+U .
For u; w 2 ZZZd let

[u; w) = fv 2 ZZZd : uj � vj < wj for all jg:

Thed-dimensional cube with sidek is defined, for any integerk � 1,
as the cartesian product[0; k)d

C(k) = fu 2 ZZZd : 0 � uj < k for all jg:

We defineLn here as the analogous quantity to the match-lengthLn
in one dimension:Ln is the minimum value ofk such thatX�C(k)
does not occur anywhere in�C(n) except at position000

Ln=inffk � 1 : X�C(k) 6=X�u�C(k) for someu2C(n); u 6=000g:

Fig. 1 shows an example ofL6 for a binary random field in two
dimensions. We also define a dual quantity, the recurrence timeRk,
as the minimum value ofn such that the blockX�C(k) occurs at
some position other than position000 inside�C(n)

Rk=inffn�1 : X�C(k)=X�u�C(k) for someu2C(n); u 6=000g:

Notice thatRk andLn are related by the following relationship:

Ln � k iff Rk > n: (10)

Applying a result of Ornstein and Weiss [16] to the reflected field
fX�ug, we see that

logRd
k

kd
! H a.s. (11)

and from the duality relationship (10) it follows immediately that

Ldn
lognd

!
1

H
a.s. (12)

Note thatkd, nd, Rd
k, andLdn are the volumes of cubes with sides

k, n, Rk, andLn, respectively.
We now introduce a Doeblin-type condition for random fields

fXu : u 2 ZZZdg:

Fig. 2. Example of the conditioning region for (dDC) in two dimensions.

Fig. 3. Example of�nu in two dimensions.

d-Dimensional Doeblin Condition (dDC):There exists an integer
r � 1 and a real number� 2 (0; 1) such that, for allx0 2 A

P X0 = x0 j X
�r
�1 � �; a.s.

In the d-dimensional case, the “past”X�r�1 is defined as the family
of random variablesXu with index vectorsu = (u1; � � � ; ud) such
that (du=re; � � � ; du=re) lexicographically precedes000 = (0; � � � ; 0)
in ZZZd. In particular, ifr = 1 thenX�r�1 = fXu : u 2 ZZZd; u � 000g
is the part of the random field that lexicographically precedesX0 in
a generalized raster scan. Fig. 2 shows the two-dimensional region
X�r�1 when d = 2 and r = 5.

We can now study the analog of Theorem 1 for random fields. For
n � 1 and any vectoru = (u1; � � � ; ud) inZZZd, let�n

u(x) = Ln(Tux)
denote the smallest integerk such that the blockXu�C(k) does not
occur within the translated cubeu�C(n) except at positionu. Fig. 3
shows an example of�n

u for a two-dimensional binary random field.

Theorem 2: Let fXu : u 2 ZZZdg be a stationary ergodic random
field with entropy rateH > 0. Then

lim inf
n!1

u2C(n)

�n
u

d

nd lognd
�

1

H
a.s.

If the sequencefLdn= logn
dg isL1-dominated, in particular, if (dDC)

holds, then

u2C(n)

�n
u

d

nd lognd
!

1

H
a.s. and inL1:
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Proof: Recall thatLdn= logn
d ! 1=H almost surely asn !

1. If (dDC) holds, thensupnL
d
n= logn

d is integrable by Lemma 2.
The stated results follow by applying Theorem 5 in the Appendix to
gn;u = Ldn= logn

d.

Lemma 2: Let fXu : u 2 ZZZdg be a stationary random field. If
(dDC) holds, then

PfLn > kg � nd�bk=rc ; k � 1

and the sequence of random variablesfLdn= logn
dg is L1-dominated

E sup
n

Ldn
lognd

<1:

Proof: The proof of Lemma 2 parallels that of Lemma 1. To get
the desired bound on the tail probability ofLn, recall that the event
fLn > kg occurs if there is at least one match for a cube with volume
kd within a larger cube with volumend. The number of positions
where a match can occur is no more thannd, and the probability of a
match of volumekd at any position may be bounded by the product
of conditional probabilities atbk=rcd lattice points that are regularly
spaced a distancer apart in each dimension. By (dDC), each term
in the product is bounded by� since it is a weighted average of
conditional probabilities given patterns that appeared earlier in the
chain rule expansion, at least a distancer away in each dimension.

To proveL1-domination, we follow the same steps as in the proof
of Lemma 1, with the obvious modifications. If
 = (� log �)=(2r)d

then forK � (4r)d=d, we obtain

E sup
n�2

Ldn
lognd

=
1

0

P sup
n�2

Ldn
lognd

> k dk

� K +
n�2

1

K

nd(1�
k) dk

= K +
n�2

nd(1�
K)


 lnnd
:

This is finite ifK > (1 + d�1)=
.

What is said in Theorem 1 about the Ces`aro averages of�i
i= log i

can also be generalized to the random field case. For any nonnegative
integer vectoru 2 ZZZd

+ let

Lu = inffk � 1 : X�C(k) does not occur in(�u;000] except at000g:

Pick 0 < � < 1, and observe thatlog(�n)d � lognd. Let

�(u) =
j

uj

denote the volume of the rectangle[000; u). If u 2 [�n; n)d then
log �(u) � lognd andL�n � Lu � Ln. By (12)

Ldu
log �(u)

!
1

H
a.s.

as u ! 1 in the sectorfu 2 ZZZd
+ : minj uj � �maxj ujg. The

shifted random variable�u
u(x) = Lu(Tux) is equal to the minimum

value ofk such that the cubeXu�C(k) fails to occur in the rectangle
(000; u] except at positionu.

Theorem 3: Let fXu : u 2 ZZZdg be a stationary ergodic random
field with entropy rateH > 0. Then

lim inf
n!1

1

nd
u2C(n)

min u �2

�u
u

d

log �(u)
�

1

H
a.s. (13)

If the integrability condition (16) is satisfied (in particular, if (dDC)
holds), then

1

nd
u2C(n)

min u �2

�u
u

d

log �(u)
!

1

H
a.s. and inL1 (14)

u2C(n)

�u
u

d

nd lognd
!

1

H
a.s. and inL1: (15)

Proof: Recall thatLdu= log �(u)!1=H asinf(u1; � � � ; ud)!1
while u remains in the sectorS�. Assertions (13) and (14) follow by
settinggn;u = Ldu= log �(u) and invoking Theorem 5 in the Appen-
dix. Finally, (15) follows from (14) by a multivariate generalization
of the technique in Theorem 1.

Lemma 3: SupposefXug is a stationary random field. If (dDC)
holds, then

PfLu < kg � �(u)�bk=rc ; k � 1

and

E sup
u:min u �2

Ldu
log �(u)

<1: (16)

Proof: We mimic the proof of Lemma 2, but replace the volume
nd of the cube[0; n)d by the volume�(u) of the rectangle[000; u).
To proveL1-domination, observe that

E sup
u:min u �K

Ldu
log �(u)

=
1

0

P sup
u:min u �K

Ldu
log �(u)

> k

� K +
u:min u �K

�(u)1�
K


 ln�(u)

� K +
1



1�i�d u �K

u1�
Kj

is finite whenK is large, and thatLu<K whenminj uj< K:

V. INFINITE ALPHABETS

In this section we generalize our results from Sections III and IV
to processes and random fields with countably infinite alphabets. The
proofs of Theorems 1, 2, and 3, as well as those of the corresponding
lemmas, carry oververbatim whenA is countable. We only need
to show that in the case of countably infinite alphabets (12) remains
valid. This, in turn, will follow from (11). In the following proposition
we show that this is indeed the case.

Proposition: Let fXug be a stationary ergodic random field with
entropy rateH, and assume thatEf� logP (X0)g is finite. Then

logRd
k

kd
! H a.s.

Proof: Assume, without loss of generality, thatA is the set of
nonnegative integers. For any fixedm � 2 we may lump the symbols
m;m + 1; � � � into a single supersymbol and define

X(m)
u =

Xu; if 0 � Xu < m
m; if Xu � m:

The random fieldfX(m)
u g is also stationary ergodic, and its entropy

rateH(m) increases to the entropy rateH of the random fieldfXug
asm ! 1 (see Pinsker [18, Ch. 7] for a general discussion). Let
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R
(m)
k be defined in terms offX(m)

u g in the same way asRk was
defined in terms offXug. ThenRk � R

(m)
k , so

lim inf
k

1

kd
logRd

k � lim
k

1

kd
logR

(m)
k = H

(m) a.s.

SinceH(m) increases toH asm! 1, we may conclude that

lim inf
k

1

kd
logRd

k � H a.s. (17)

On the other hand, Ornstein and Weiss [16] have shown that in
the finite alphabet case

lim sup
k

1

kd
logRd

k � H a.s. (18)

Their argument [16] is also valid in the infinite alphabet case,
provided the Shannon–McMillan–Breiman theorem holds for the
random fieldfXug. According to Ornstein and Weiss [17], this is
indeed true ifEf�logP (X0)g is finite.

Combining (17) and (18) completes the proof.

APPENDIX

Breiman [3] developed a generalized ergodic theorem and used
it to prove pointwise convergence in what is now called the Shan-
non–McMillan–Breiman theorem. See also Barron [2] for a one-sided
version and Algoet [1] for other applications. It turns out that
Breiman’s generalization is a special case of an older and more
general ergodic theorem due to Maker [14]. We prove the one-sided
version and then generalize it to random fields. See also Krengel [13,
Theorem 7.5, p. 66].

Theorem 4 (Maker):Let T be a measure preserving transforma-
tion of a probability space(X ;B; P ) and letI denote the�-field
of invariant events. Letfgn;ign;i�1 be a two-dimensional array of
real-valued random variables.

a) If Efinfn;i gn;ig > �1 andg = lim infn;i!1 gn;i, then

lim inf
n;i!1

1

n
1�i�n

gn;i(T
i
x) � Efg j Ig a.s.

b) If supn;i jgn;ij is integrable andgn;i ! g almost surely as
n; i ! 1, then

1

n
1�i�n

gn;i(T
i
x)! Efg j Ig a.s. and inL1

:

Proof: To prove a), pick some integerk � 0 and consider the
random variable

gk = inf
n;i�k

gn;i:

If n � k, thengn;i � g1 for i � 1 andgn;i � gk for i � k, hence

1�i�n

gn;i(T
i
x) �

1�i<k

g1(T
i
x) +

k�i�n

gk(T
i
x): (19)

Dividing both sides byn and taking thelim inf asn ! 1, we see
that

lim inf
n

1

n
1�i�n

gn;i(T
i
x) � Efgk j Ig a.s.

by the pointwise ergodic theorem. Nowg1 = infn;i gn;i has expec-
tationEfg1g > �1 andgk increases tog, soEfgk j Ig increases
to Efg j Ig by the monotone convergence theorem. Sincek was
arbitrary this completes the proof of a).

The pointwise convergence in b) follows by application of a) to
both gn;i and�gn;i. To prove convergence inL1, observe that by
the mean ergodic theorem

1

n
1�i�n

g(T ix)! Efg j Ig in L
1
: (20)

By assumption,gn;i ! g and jgn;i � gj is L1-dominated, so
Ejgn;i�gj ! 0 asn; i!1 by the dominated convergence theorem.
It follows by stationarity that

E
1

n
1�i�n

gn;i(T
i
x)� g(T ix)

�
1

n
1�i�n

Ejgn;i(T
i
x)� g(T ix)j

=
1

n
1�i�n

Ejgn;i � gj ! 0 asn!1: (21)

The L1 convergence follows from (20) and (21) and the triangle
inequality.

Maker’s theorem can be generalized to random fields. A compre-
hensive treatment of ergodic theorems for random fields is provided
in Krengel [13, Ch. 6].

Let fTu : u 2 ZZZ
d
+g be an Abelian semigroup of measure

preserving transformations of the probability space(X ;B; P ). Given
a random variableX, we consider the random fieldfXu : u 2 ZZZd+g
whereXu(x) = X(Tux). If g is an integrable random variable then

1

nd
u2C(n)

g(Tux) ! Efg j Ig a.s. and inL1

whereI is the �-field of invariant events andC(n) = [0; n)d is
the cube with side lengthn. Given 0 < � < 1, the cubeC(n) can
be partitioned into the cubeC�(n) = [�n; n)d and its complement
D�(n) = C(n)nC�(n). Note thatC�(n) is contained in the sector

S
� = fu 2 ZZZd+ : min

j
uj � �max

j
ujg:

For any integern � 0 and any nonnegative integer vectoru 2 ZZZd+
let gn;u be a real-valued random variable defined on(X ;B; P ). For
0 < � < 1 and k � 1 let

g
�
k = inf

inf(n;u ;���;u )�k
u2S

gn;u:

As k increases, the infimum is taken over smaller sets and increases
to g� = limk g

�
k. If now � # 0 theng� decreases to a limit

g = lim
�#0

g
�
:

Theorem 5:

a) Suppose the familyfgn;u : n 2 ZZZ+; u 2 ZZZ
d
+g is bounded

below by an integrable random variableg0, and let g =
lim�#0 limk g

�
k as above. Then

lim inf
n!1

1

nd
u2C(n)

gn;u(Tux) � Efg j Ig a.s.

b) Suppose that for any0 < � < 1, gn;u ! g almost surely as
n; u1; � � � ; ud !1 while u = (u1; � � � ; ud) stays in the sector
S�. If the family fgn;ug is L1-dominated, then

1

nd
u2C(n)

gn;u(Tux) ! Efg j Ig a.s. and inL1
:

Proof: Pick some0 < � < 1 and k � 1 and observe that for
large n, n� � k and

u2C(n)

gn;u(Tux) �
u2D (n)

g0(Tux) +
u2C (n)

g
�
k(Tux):
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Dividing by nd and taking thelim inf asn ! 1, we obtain

lim inf
n

1

nd
u2C(n)

gn;u(Tux) � (1� (1� �)d)Efg0 j Ig

+ (1� �)dE g
�
k j I a.s.

The right-hand side increases to

(1� (1� �)d)Efg0 j Ig+ (1� �)dEfg� j Ig

ask !1. Letting �& 0 yields a). Part b) can also be proved as in
the one-dimensional case.
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