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ergodic process and the asymptotic behavior of longest match-lengttishout (DC), 1/H is still an asymptotic lower bound for the
along a process realization: L&t = { X;} be a random process with estimates in a) and b).

values in a finite alphabetl. A process realization is an element

x = (x;);ez of the two-sided sequence spade = AZ, and
X;(z) = =; is its ith coordinate. Foi < j, X/ denotes the string

(X, X1, -+, X;). For our purposes, the process distribution is a

probability measuré® on the Borels-field on.X'. We assume thaP
is invariant under the usual shift transformatibr = (z;+1)icz, SO

that { X, } is stationary, and we also assume ergodicity. The entropy

rate of the process is defined as
H=E{-logP(Xo | X_1)}.

Forn > 1 let L,, denote the minimum length such that the string

XE~1 that starts at tim@ does not appear as a continuous substring

within the pastX ~!. Alternatively, L,, is obtained by adding to
the longest match-length

Ln=14max{l:0<1<n, Xt = X:J?H*I
for somel < j < n}.

Wyner and Ziv [29] showed that, for every ergodic proceks,

grows like (logn)/H in probability, and Ornstein and Weiss [15]

later refined this to pointwise convergence,

L, 1
— as. 1
logn_>H as @

where H is the entropy rate of X;} (logarithms are to base
throughout this correspondence).

At about the same time, Grassberger [9] suggested an interesting
entropy estimator based on average match-lengths. Shields [22]
proved the consistency of Grassberger's estimator for independent
and identically distributed (i.i.d.) processes and mixing Markov
chains. Kontoyiannis and Suhov [11] extended this to a wider class
of stationary processes, and recently Quas [20] extended it further to3)

certain processes with infinite alphabets and to random fields.

In this correspondence we introduce three entropy estimators, a),
b) and c) below, that are formally similar to the one suggested by
Grassberger, but which, due to their stationary nature, are much
easier to analyze. We establish their pointwise consistency using
methods with a familiar information-theoretic flavor (Section Ill),
and we discuss generalizations to random fields (Section V) and4)
processes with countably infinite alphabets (Section V). We also
provide examples of their performance in estimating the entropy of
English text, and we compare our results to those obtained using a

variety of different techniques (Section II).
Given an instant and a positive integef, our main quantity of

interest isAM(X) = Ln(TiX), the length of the shortest substring
X+ starting at position that does not appear as a contiguous

substring of the previous symbols X _1.

Theorem 1: Let { X;} be a stationary ergodic process with entropy

rate H > 0. Then

: AT .
a) lim, ;3 o = 7 as.andinl’,
1=
n Al . 1
b) lim, ; 3 -5 = & as.andinl’,
=2
¢) lim, L 35 A = 4 dinl!
im, - >0 = 7 as.andinl’,

log n
| =3

provided the‘following condition holds.

Doeblin Condition (DC): There exists an integer> 1 and a real
number3 € (0,1) such that,

forall zo € A, P{Xo =0 | X__} <3, with probability one.

Remarks
1) Applications Entropy estimators similar to the one in a) have

already appeared in the literature [4], [5], [8], [10], [27]. They
were applied to experimental data in order to determine the
entropy rate of the underlying process, and were demonstrated
to be very efficient, even when fed with very limited amounts
of data. So part of our motivation is to provide a more general
and precise analysis of these practical algorithms.
The Doeblin ConditionThe Doeblin Condition was originally
introduced in the analysis of Markov chains [7]. In the context
of this correspondence, (DC) was first introduced by Kon-
toyiannis and Suhov [11], where its properties are discussed
in greater detail. Here we note that (DC) holds for i.i.d.
processes, for ergodic Markov chains of any order, and also
for certain non-Markov processes. Our present formulation of
(DC), introduced by Quas [20], is equivalent to that in [11]
when the alphabet is finite, and has the additional advantage of
being applicable to processes with countably infinite alphabets.
In practice, (DC) is not a fierce restriction. What (DC)
requires is that, after some numbeof time steps, everything
is possible again with positive probability, independently of
whatever may have occurred in the past. This is certainly
satisfied by natural languages, and it is highly plausible for
most sources of data encountered in practice. Observe also that
(DC) is satisfied by any stationary ergodic process observed
through a discrete memoryless channel which transforms any
letter of the alphabet to any other letter, with nonzero (but arbi-
trarily small) probability. For example, i, } is a stationary
ergodic binary process add., } is an i.i.d. noise sequence with
P{e, = 1} = p, then the dithered process; = &; +¢; mod 2
satisfies (DC) withy = 1 and 3 = max{p,1 — p}.
Without the Doeblin ConditianWithout assuming (DC), the
estimates in a) and b) can still be used to provide lower-bound
estimates for the entropy. Notice that these bounds are in the
opposite direction from the ones provided by universal coding
algorithms, so that, even if (DC) does not hold, we can use
either a) or b) in conjunction with a data compression algorithm
to estimate upper and lower bounds for the process entropy.
Interpretation The match-length\]" can be thought of as the
length of the next phrase to be encoded by the sliding-window
Lempel-Ziv algorithm [30] when the window size is. In
fact, the entropy estimator in a) above is a special case of the
sliding-window estimator [8] defined by

gk,n:lz ‘i/ 2)

where k& (as well asn) are freely chosen positive integers.
From a) we learn that (2) is almost surely consistentifet n
tending to infinity. Also, it is a consequence of the ergodic
theorem thatf, , is almost surely consistent if we first let
k — oo and thenn — oo, provided that

E[L,/(logn)] =1/H + o(1).

This is true for stationary ergodic Markov sources [28] and, by
(6) of Theorem 1 below combined with (1) it is also true for
all stationary ergodic processes satisfying (DC).

Similarly, A is the length of the phrase that would be en-
coded next by the Lempel-Ziv algorithm [31] with knowledge
of the pastX;~'. From (1) and stationarity it follows that,
for any fixed index, A /logn — 1/H with probability one,
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TABLE |
ENTROPY ESTIMATES BASED ON A SINGLE MATCH. THE WINDOW-LENGTH n |s EQuAL TO 100 000 GIARACTERS, THE
TexT Is JANE AusTEN'S NoveL Mansfield Park AND THE SEGMENT OF THE TEXT THAT |s BEING MATCHED |s
“...tea when you and your mamma went out of the room T

Matching position 7 | Match Length L, (T"z) | Entropy Estimate | Matching Phrase—‘

100,000 4 4.152 "tea "

100,003 11 1.510 " when you a"

100,006 8 2.076 "en you a"

100,009 7 2.373 "you and"

100,012 12 1.384 " and your ma"
and also that\}, /log n — 1/H in probability. Theorem 1 says TABLE I
that, when (DC) holds, the Ca means of these quantitieSENTROPY ESTIMATES BASED ON AVERAGE MATCH-LENGTHS USING ESTIMATOR
also converge td /H, with probability one. (3) witH VARYING WiNDOW SizeS. THE TEXT |s THE FOUR JANE AUSTEN NOVELS

5) Maker's Generalized Ergodic Theoreffhe proof of Theorem Mansfield Park, Northanger Abbey, Persuasiarp Sense and Sensibility

1 is based on the fact that, under (DC), we can invoke a Window Size n | H, [Total Data length

generalized ergodic theorem due to Maker [14] and conclude 100 5.356 300
that the Ce&ro averages in Theorem 1 are pointwise consistent :
estimates foil / H. Maker's theorem includes, as a special case, 500 2.047 1,500
Breiman’s ergodic theorem, which was used in [3] to prove 1.000 2.009 2 500
the Shannon-McMillan—-Breiman theorem. In the Appendix -
we present a simplified proof of Maker's generalized ergodic 5,000 1.997 10,500
theorem, and some extensions that are used in Sections Il and 10,000 1.937 20,500
V. , 50,000 | 1.886 100,500
6) A Word of Caution Theorem 1 says that the Gee averages .

of the quantitiesA”/logn and of the quantities\!/log 100,000 1.841 200,500
converge with probability one, but Pittel [19] and Szpankowski 300,000 1.774 600,500
[24] haye shown tha_t the quantitids; / log n themgelves kegp 500,000 1.794 1,000,500
fluctuating. Interpreting\;, as the length of a feasible path in a
suffix tree they identify two natural constarf® and H, with 700,000 1.769 1,400,500
H, > H > H., and they show that, under certain mixing 1,000,000 1.761 2,000,500
conditions 1,181 850 1.749 | 2,364,200

1 .. An . Ay 1

— = liminf < lim sup = — as.
1 n ogn n logn H,

depend heavily on the choice of the exact position in the text where
II. APPLICATIONS TO ENGLISH TEXT we look for a match, and hence they would fluctuate a lot (cf. Remark

. . . 6).in Section 1). Indeed, this behavior is demonstrated by the results
In this section we present numerical results for the performances fown in Table |

our estimators when applied to English text data. We also provide A accordance with standard statistical methodology, what we

heuristic discussion that motivates the results and offers an alternag\\/oeuld want to do in order to decrease the fluctuations of these

estimates is to calculate match-lengths(x) = L, (T'x) at several

: - ositionsi along the “text,”z and take averages. This should reduce
Park, Northanger AbbeyPersuasion and Sense and Sensibiljitya P > g S . g .
variance of the estimates, but also introduce more systematic error

total of 2364200 characters, converted to 27-character text (or finite values ofn (increase the bias). Since the bias eventually

letters plus space). We use this text to demonstrate the convergegé:greases with increasing it is natural to calculate match-lengths

E;fci)g::]t'l[ezvgfn Ofl;rr r;rﬁgqlloc'i;mwlee Ss?zoevi t:r?é Zﬁginfs?hrgftfht a(r)?fe\ﬁrri(o the largest available cache of past observations. The entropy
L : P . X y eséimators of Theorem 1 parts b) and c¢) both form averages of match

significant improvement over the universal estimators that are ba?engths for values of ranging from1 to », partly explaining our

on the corre_spondlng versions of Lempel-Ziv coding algorithms (Cchoice of the estimator implicit in a) instead of b) or c).
Remark 4) in Section I).

. . . Theorem 1 part a) says that the corresponding entropy estimates
For example, using estimator a) from Theorem 1, we obtain an P ) say P g Py

estimate of 1.777 bits per character (bpc) based on a sample of about N [1 "\ L, (T'2)

derivation for the form of these estimators.
Our experiments were done on Jane Austen'’s four ndvelssfield

75000 words from the novélansfield Parkby Jane Austen (the first Hy = n Z logn )
=1 -

23 chapters, about 400 000 characters), a rather modest sample size. ) ) ) o
are consistent, provided the underlying process satisfies (DC). (A

similar case can be made for the estimators in parts b) and c) of

Theorem 1.) Using (3) we obtained the results shown in Table 1.
A naive approach to the problem of estimating the entropy of a

given text would be to use the Wyner—Ziv—Ornstein-Weiss resf Comparison with Universal Coding Algorithms
(1), which says thaf.,,/logn converges td/H for any stationary = Here we compare the performance of our estimators with that of the
ergodic process. But it is intuitively clear that such estimates woutdrresponding Lempel-Ziv coding schemes (cf. Remark 4) in Section

A. Experimental Results
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). In particular, we argue that we get a significant improvement in TABLE I

performance, at the price of assuming the extra condition (DC). ENTROPY ESTIMATES BASED ON OUR ESTIMATOR H, FROM
For the purposes of comparison, we begin by recalling the Sliding- ~ THEOREM 1 PART ), ON THE EXPRESSIONIT,, in (5), AND ON

Window Lempel-Ziv (SWLZ) coding algorithm (or, rather, a slightly THE COMPRESSIONRATIO I, ACHIEVED BY SWLZ

idealized version of it). Suppose that the encoder and the decoder both Window Size n | HSWLZ | H, H,

have available to them the previouscharacters of the text;“_,,+h 100 5449 29.455 | 2.356

which we call the “window” of length:, and the encoder's task is i i :

to describe the nexi characterse’ to the decoder. SWLZ operates 500 3.838 2.295 | 2.047

as follows. 1,000 3570 | 2212 | 2.009
The encoder calculates the length= A}, and then describes

the phrase.mA in two stages: First,A is described; this takes 5,000 3.153 2.145 1.997

log(A) + C'loglog(A) bits. Then the encoder either describes the 10,000 2.974 2.046 | 1.937

position in the window where the match occurs plus the last character 50,000 2747 | 1.962 | 1.886

xa, Or the actual phrase? in binary, whichever of the two is

shorter (plus a one-bit flag to say which of the two was used). So the 100,000 2.693 1891 | 1.841

description length of:? (in bits) is 300,000 2.661 1.823 | 1.774

log (AI")—I—O loglog (A;’)—l—min {log n+[log 27], [A;’ log 27—‘ }—i—l. 500,000 2.666 1.846 | 1.794

Having described:), the encoder shifts the window by = A7
places to the right, and then repeats the above process to encodefthe y, reducesH,, in (5) to H, in (3), and from Theorem 1 we

next phrase know that, under (DC)H,, indeed converges to the entropy rate.
AT In Table Il we compare the performance of our estimatby
Figr - with that of the expressiofl,, in (5), and with the compression ratio

Then the window is shifted again, and the same process is reped&ieved by SWLZ. _
until the entire strings? has been encoded. This encoding scheme W& Point out that there are many other, perhaps more suitable,
produces a sequence of positiohs= i; < iy < --- < i; where choices of the the number of phrasesn (2). In applications, one

the successive phrases begin, and the overall description IengthWSt consider restrictions on the available data as well as particular
#7 can be written as source characteristics, like changing source statistics. This point is

certainly true for English text, and it is a possible explanation for the
! n n increase in the entropy estimate observed for the largest value of the
Z [log (A7) + Clloglog (A)) window size given in the final entry of Table Ill (it is likely that,
=t as the window grows, differences in vocabulary across chapters have
+min {logn + [log 27]. [A{'log 2T} + 1] the effect of slightly elevating the entropy).
The estimator we use here is (2) with= n; since we expect its
variance to decrease lik@(1/k) and the bias likeD(1/logn), it is
J N likely that the number of phrasésdoes not need to be as largergs
n= ZA'?j and may in fact be quite a bit smaller. Indeed, the proof of Theorem
7=t 1 can easily be extended to prove the consistencf}m for k being
the number of bits per character used to describecan be written linear inn. It is an open problem to determine the most general way
as (4) at the bottom of this page. in which k andn can tend to infinity whileH ,, remains consistent.
We could use (4) to obtain an upper bound, but in practice such
bounds tend to overestimate the entropy (see Table Ill), especially Other Methods
for small values of the window length. In order to get lower (and
hence better) estimates, we drop all of the terms in the numeratorI
(4) except the leadingpg n term, and set

where J in the total number of phrases. Since

F’he problem of estimating the entropy of English text has a

o) . .

ong history. The most successful methods almost always involve
a training stage or some sort of preprocessing of the data. (There is

7 o= Jlogn extensive literature that deals with language and text modeling, and
Y N several special-purpose algorithms that provide very good estimates;
]; Aij see, for example, Teahan and Cleary [25] and the references therein.)
1 The best results to date are those reported by Teahan and Cleary [26],

) using PPM-related methods. They obtain an estimate of 1.603 bpc
for the complete works of Jane Austen (over 4000000 characters),
and then use training in conjunction with an alphabet enlargement

We no longer know thall,, converges td, but we do know that the technique (“bigram encoding”) to improve this to 1.48 bpc. Although

estimates it produces will be significantly lower than those producedr results may not be as accurate as those obtained by the best

by (4). Now if instead of looking at matches along the subsequenkeown techniques, they do have several advantages which make them

{i;}, we look at all positiong = 1,2,---,n alongz7, then, setting applicable to a wide range of problems rather than just to English text:

7 -
|1 L,(T"z)
o |:J Z logn

7j=1

[log (Al"]) + C'loglog (Al"]) + min{ logn + [log 277, [A’f log 27—‘} + 1]

J
j=1

7 (4)
> AL
=1 7
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they do not require prior training or preprocessing of the data, they do Proof of Lemma 1: This follows along the lines of [11, proof
not assume that the underlying source belongs to some presuppasfeoemma 3.1]. First we prove thdt, has exponentially vanishing
parametric class, they have relatively good performance for smadlls. If L, > k then X ~! appears as a substrin@:}“‘"1 of
data sets, and they are very easy to implement in practice. X~} for somek < j < n. Therefore,

PIL > 1€ X PG =X
ll. PROOF OF THEOREM 1 k<i<n '

In this section we prove Theorem 1 by invoking Maker’s gener- < (n—k+1) max p{X[ﬁ‘—l = X:;Jr" 1} 9)
k<j<n

alized ergodic theorem (discussed and proved in the Appendix). In 2%
fact, we prove a slightly stronger result. Write 2* for (x¢,---,24_1) and observe that

Theorem 1. Let {X,;} be a stationary ergodic process with enp{ XEt X:]Hk*l}
tropy rate H > 0. Then

k=1 __ -—jtk— . +k—1 _ _k
A - S P{Xg T =2t | XTI =M p{x T = 0t
a) lim, - Z foanw = 77 as.andil’, ok e Ak
noo Using (DC
b) lim, L z ljgfi =L as.andil’, gk(,l ) e
- P{Xg '=a"|X_! ="}
c) lim, - Z i = & as. and i, < P{Xp =20, 0 <t < |k/r] | XTI =24
provided the random variables, / log n are L'-dominated < Lﬁjp{ X | x itk oy 0<s< t}
< Xop = e | X5 =T, Ars = Trs, US S
Ln t=0 !
E{sgp m} < oc. (6) < ﬂtlc/rJ_

Without (6),1/H is still an asymptotic lower bound for the estlmatesIt follows that

in a) and b). P{X(I;:—1 _ X:;'H“_]} < /3|_1,~/,»J.

And then we also check that (DC) implies (6). Substituting this bound in (9) above we obtain (7). It is now a routine
calculation to verify theL'-domination of the random variables
L,./logn. Indeed, lety=(—log 3)/(2r) and observe that fdr > 4r
we have
[|klogn|/r] > (klogn)/r —1—1/r > (klogn)/(2r).
Consequently, fork > 4r
Proof of Theorem 1 Recall thatZ,, / log n — 1/H with prob- I oo L,
E{ ~ }:/ P{Sup > A}dk
n>2 10% n 0 n>2 10!5‘, n

Lemma 1: Let { X} be a stationary process. If (DC) holds, then
P{L, >k} <npg™ k>1 )

and the random variablek,, / log n are L'-dominated.

ability one and invoke Maker's generalized ergodic theorem. As- sup
sertion a) follows from Theorem 4 in the Appendix by setting

gn,i = Ln/logn, whereas b) follows by setting,; = L;/log:. <K+ / ZP{L,L > klogn} dk
(Similarly for the one-sided counterparts to a) and b)). - !

i < n>2
We can deduce c) from b) as follows. Let= A; and observe ol
that by b) <K+ Z/ ngttetes il gy,
n>2
Tl pp VoL as andin! ®) <K+ 3 [T aptrsnsen g
n \ log2 logn H h ' = = i
If 0 <e< landen < i < n, then0 < logn — logi < log(1/e) =K+ Z/ w7k qg
and hence nso
1 ~ K
l; l; l;
< 7 _ 7 < 671 7 —_ IX +
0= logi logn — logi ngZ ylnn
whereé, = —loge/logn. It follows that The sum is finite if the constart is chosen so thak™ > 2/7. O
0< 1 <172 L ) _bt 4l IV. GENERALIZATION TO RANDOM FIELDS
log2 logn nlogn We generalize our results to random fields on the integer laftice
Ei( L T len ) bn. < l2 4ot In ) Such a random field is a family of random variables., : « € Z‘}
en \ log 2 log(en) n \log2 logn indexed byd-dimensional integer vectors = (uq,---,uq). We

assume that allX, take values in a finite setd. The process
distribution is a stationary ergodic probability measureon the
product space

. 1 12 ln ]z-i- +]n
0<1 — - : | |
= {n <10g2 oot log ﬂ) nlogn } = X=|[{Au:ue Zd}

The limit must vanish, and this fact in combination with (8) yieldshere eachd., is a copy ofA. If » = {z. 1 u € Z%} is a realization
C), sincel; = A;. O in X, thenX.(z) = z, is the coordinate at positiom. For a subset

Letting n — oo and using (8), we may conclude that for ang 0
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N A |
n=6 |
L
T 1 0o [1o0 :
e . .01 0 i1 f1 1 Lp=Le=3 i
1 o 0 o o of (-r,-r) -r
0 0 1 0 0 1f S
... T o 1 o 1} / /
0 |1 1] 0 .0 1  -Cn) 4

* * Fig. 2. Example of the conditioning region for (dDC) in two dimensions.

n_r6 _ _
Fig. 1. Example ofL,, in two dimensions. A14—1\(5,3)—2

U C Z" let Xu(x) = (xu)uev. For any vectorw € Z°, let Tox
denote the realization with coordinates

Xu(Tor) = Xygo() = Tyto.

We say thatXyy occurs at position if Xp = X,40. 11 0
Foru,w € Z* let

[, w)={v e Z":u; <v; <w, forall j}.

u-Cny L L1900 1;
Thed-dimensional cube with side is defined, for any integer > 1, . .
as the cartesian produfd, &)* . .
Clky={ue2Z":0<u; <kforall j}. Fig. 3. Example ofA” in two dimensions.

We defineL,, here as the analogous quantity to the match-lerigth
in one dimensionZL,, is the minimum value ok such thatX_ g,
does not occur anywhere irnC'(n) except at positior)

d-Dimensional Doeblin Condition (dDC)There exists an integer
r > 1 and a real numbet € (0,1) such that, for allzg € A

L,=inf{k >1: X_cuy#X_u_c for someueC(n), u#0}. P{Xo=uw | XZ} <3, as.

Fig. 1 shows an example dfs for a binary random field in two In the d-dimensional case, the “pasR " is defined as the family
dimensions. We also define a dual quantity, the recurrence Bme of random variablesY, with index vectorsu = (u1,---,uq) Such
as the minimum value of such that the blockY_c(;, occurs at that([u/r],---,[u/r]) lexicographically precede8 = (0,---,0)
some position other than positiéhinside —C'(n) in Z. In particular, ifr = 1 thenX " = {X, : u € Z%,u < 0}
is the part of the random field that lexicographically precefigsn
Riy=inf{n>1: X_cuy=X_._cwu for somevueC(n),u#£0}.  a generalized raster scan. Fig. 2 shows the two-dimensional region
X~. whend = 2 andr = 5.

Notice thatR; and L, are related by the following relationship: We can now study the analog of Theorem 1 for random fields. For
n > 1and any vecton = (u1,---,uq)in Z%, letAl(z) = L,(T.x)
L, <k iff Ry > n. (10) denote the smallest integérsuch that the blockX', () does not

occur within the translated cube- C(n) except at positiom. Fig. 3
Applying a result of Ornstein and Weiss [16] to the reflected fielghows an example of;; for a two-dimensional binary random field.

{X—u}, we see that Theorem 2: Let {X,, : u € Z*} be a stationary ergodic random

field with entropy rateH > 0. Then

d
loif“’ — H as. (12)
| > o(an)!
and from the duality relationship (10) it follows immediately that lminf Y€€V S B a.s.
n—sc n?logn? T H
L 1
lognd ~ H as. 12) it the sequencéL? /log n?} is L'-dominated, in particular, if (dDC)
holds, then
Note thatk?, n?, RY, and LY are the volumes of cubes with sides
k, n, Ry, and L,,, respectively. > (AZ)d
We now introduce a Doeblin-type condition for random fields uec(n) R % a.s. and inL'.

{(X.:we 2 nlog nt
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Proof: Recall thatL? /logn? — 1/H almost surely ass —  If the integrability condition (16) is satisfied (in particular, if (dDC)
occ. If (dDC) holds, thersup,, LY / log n” is integrable by Lemma 2. holds), then
The stated results follow by applying Theorem 5 in the Appendix to nd
In,u = L(rlz/log n. U i Z (Au) 1 a.s. and inL' (14)

- - . i nd log 7(u) T H

Lemma 2: Let {X, : u € Z*} be a stationary random field. If _ueCtn)

(dDC) holds, then H
d (a2

P{L, >k} <n'g"*/ " k>1 wEC(n) L

ndlognd H

a.s. and inL'. (15)

and the sequence of random variabjég / log n?} is L'-dominated
Proof: Recall thatL.2 / log 7 (u) — 1/ H asinf(u1, - - -, ua) — o0

E{sup i} 50, while v remains in the secta$®. Assertions (13) and (14) follow by

n lognd settinggn . = L% /log w(u) and invoking Theorem 5 in the Appen-
Proof: The proof of Lemma 2 parallels that of Lemma 1. To gegix. Finally, (15) follows from (14) by a multivariate generalization

the desired bound on the tail probability bf,, recall that the event Of the technique in Theorem 1. =

{Ln >k} occurs if there is at least one match for a cube with volume | emma 3: Suppose{ X} is a stationary random field. If (dDC)
k? within a larger cube with volume“. The number of positions po|ds. then

where a match can occur is no more theh and the probability of a
match of volumek? at any position may be bounded by the product P{L, < k} < 7(u) ﬁ“‘/”d, k>1
of conditional probabilities atk/r | lattice points that are regularly
spaced a distance apart in each dimension. By (dDC), each terngnd
in the product is bounded by since it is a weighted average of { 7d }
E “ oo

conditional probabilities given patterns that appeared earlier in the
chain rule expansion, at least a distamcaway in each dimension.

To proveL'-domination, we follow the same steps as in the proof
of Lemma 1, with the obvious modifications.Af= (- log 3)/(27)*
then for K > (4r)%/d, we obtain

(16)

sup
’LLZIIliIlj u g >2 log Tr(“’)

Proof: We mimic the proof of Lemma 2, but replace the volume
n? of the cube[0,n)? by the volumer(u) of the rectangld0, ).
To prove L'-domination, observe that

L’d ges) Ld
Elsup —2— & = P<su "> kydk d 00 d
{nZI‘; log nd } /0 {nzg log nd } E{ sup Lu} = / P{ sup L) > k}
0 u

OO 21 wimin; u; > K 10!%”(”) wimin ; u; > K 10!% ﬁ(
<K+ Z/ n =) g () =7
s I3 T S

~vIn 7 (u)

d(1—vK) wimin; u; > K

n
=K LA
b Z ~1n nd

"= <K+ % H Z 'u,}_”K

This is finite if K > (14+d 1) /~. O Ti<i<d \u, =K

What is said in Theorem 1 about the @asaverages aki/logi is finite whenk is large, and thal, < K whenmin; u; < K. O
can also be generalized to the random field case. For any nonnegative

integer vectoru € Z7 let V. INFINITE ALPHABETS
L, =inf{k > 1: X_) does not occur iri—u, 0] except a}. In this section we generalize our results from Sections Il and 1V
to processes and random fields with countably infinite alphabets. The
Pick 0 < ¢ < 1, and observe thdbg(en)! ~ logn”. Let proofs of Theorems 1, 2, and 3, as well as those of the corresponding
lemmas, carry overerbatimwhen A is countable. We only need
m(u) = Hu] to show that in the case of countably infinite alphabets (12) remains

valid. This, in turn, will follow from (11). In the following proposition
denote the volume of the rectangl@®, «). If u € [en,n)* then Wwe show that this is indeed the case.

" ~/ & d / . . . . .
logm(u) ~ logn® and Len < Ly < Ln. By (12) Proposition: Let {X,,} be a stationary ergodic random field with

Ll 1 entropy rate, and assume thaf {—log P(X,)} is finite. Then

— as.
log w(u) T H loe R
Ogd k L H as.
asu — oc in the sector{u € Z% : min, u; > emax; u;}. The k
shifted random variabld.;; () = L. () is equal to the minimum Proof: Assume, without loss of generality, thakt is the set of
value ofk such that the cub&’, ¢, fails to occur in the rectangle nonnegative integers. For any fixed> 2 we may lump the symbols
(0,u] except at position:. m,m + 1,--- into a single supersymbol and define
Theorem 3: Let { X, : u € Z%} be a stationary ergodic random (m) X, f0<X,<m
field with entropy rateH > 0. Then X, = { m. if X, > m.
1 ) )y : : :
liminf — Z — _ > — as. (13) The random field{ X"’} is also stationary ergodic, and its entropy
nTee i ogm(u) ~ H rate H") increases to the entropy raf& of the random field{ X, }

min; u; =2 asm — oo (see Pinsker [18, Ch. 7] for a general discussion). Let
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R{™ be defined in terms of X{™} in the same way a®; was
defined in terms of X..}. Then Ry, > Rﬁfh), S0

The pointwise convergence in b) follows by application of a) to
both ¢, ; and —g,,;. To prove convergence ifi*, observe that by
the mean ergodic theorem

LS~ yr) = Blg T} in Il

.1 d . 1 (m)¢ m
11mk1nf X log Ry, > hllgn X log R, =H™ as. 1
T 1<i<n

(20)

Since H™ increases tdd asm — oo, we may conclude that ) N )
By assumption,g.; — ¢ and |gn,; — g| is L -dominated, so

E|gn,i—g| — 0asn,i — > by the dominated convergence theorem.
It follows by stationarity that

1
lim inf - log R{>H as. (17)

On the other hand, Ornstein and Weiss [16] have shown that in

1 i i
the finite alphabet case L= D> gnilThe) = g(T'a)

1<i<n
. 1 d e
11mksup k—dlog R, < H as. (18) < 1 Z Elgno(T'z) — g(T'2)|
Their argument [16] is also valid in the infinite alphabet case, llslsn
provided the Shannon-McMillan-Breiman theorem holds for the = > Elgni—gl—0 asn— oc. (21)
random field{ X, }. According to Ornstein and Weiss [17], this is 1<i<n
indeed true ifE{—log P(Xo)} is finite. The L' convergence follows from (20) and (21) and the triangle
Combining (17) and (18) completes the proof. O inequality. |

Maker's theorem can be generalized to random fields. A compre-
hensive treatment of ergodic theorems for random fields is provided

Breiman [3] developed a generalized ergodic theorem and usadKrengel [13, Ch. 6].
it to prove pointwise convergence in what is now called the Shan-Let {T, u € Zi} be an Abelian semigroup of measure
non-McMillan—Breiman theorem. See also Barron [2] for a one-sidgaleserving transformations of the probability spadge 5, P). Given
version and Algoet [1] for other applications. It turns out thaa random variableX', we consider the random fieldY,, : v € Z%4}
Breiman’s generalization is a special case of an older and mamere X, (x) = X (T,x). If g is an integrable random variable then
general ergodic theorem due to Maker [14]. We prove the one-sided 1
version and then generalize it to random fields. See also Krengel [13, nd
Theorem 7.5, p. 66].

APPENDIX

Z g(Tux) — BE{g| T} as.andinl'
u€eC(n)
where7 is the o-field of invariant events and’'(n) = [0,n)" is

Theorem 4 (Maker):Let T be a measure preserving transformat-he cube with side length. Given0 < ¢ < 1, the cubeC(n) can

tion of a probability spacéX’, B, P) and letZ denote thes-field
of invariant events. Le{g. :}.,i>1 be a two-dimensional array of
real-valued random variables.

a) If E{inf,,; gn:} > —oo andg = liminf, ;— gn,i, then

1 v
liminf — E gn,i(T"z) > E{g|Z} as.
e L S,

b) If sup, ,lgn.i| is integrable andy, ; — g almost surely as
n,i — oo, then

1

n

> gni(T'2) = E{g| I} as.and inL'.
1<i<n

Proof: To prove a), pick some integér > 0 and consider the
random variable

gr = inf g, ;.
nisk ot

If n >k, theng,,; > ¢ fori > 1 andg,, > gr fori > k, hence

Y eniTa) 2 Y T+ Y ge(T').

1<i<n 1<i<k k<i<n

(19)

Dividing both sides by: and taking thdim inf asn — oc, we see
that

1 .
liminf = wi(T'x) > E{ge | T} as.
1111"111 - Z Gn.i( J‘) 2 {gl | } a.s

S 1<i<n

by the pointwise ergodic theorem. Nayy = inf,, ; g..,; has expec-
tation E{¢g,} > —oco andg; increases t@, so E{g. | Z} increases
to E{g | Z} by the monotone convergence theorem. Sihceas
arbitrary this completes the proof of a).

be partitioned into the cub€“(n) = [En,n)d and its complement
De(n) = C(n)\C*(n). Note thatC*(n) is contained in the sector

d .
S ={ueZi: min u, > € max ujt.

For any integer > 0 and any nonnegative integer vectoE Zi
let g, be a real-valued random variable defined(én 3, P). For
0<e<landk > 1 let

gk inf g
inf(n,uq, - ug)>k e

u€eSe
As k increases, the infimum is taken over smaller sets and increases

to g¢ = limy g;. If now € | 0 theng® decreases to a limit
g =lim g¢°.
€lo
Theorem 5:
a) Suppose the familfg, ., : » € Z,,u € Z1} is bounded
below by an integrable random variablg, and let g
lim o limy, g;, as above. Then
oo 1 .
hmlr}f s Z gnu(Tux) > E{g|ZI} as.

n—oo

uw€C(n)
b) Suppose that for an§ < € < 1, g, — g almost surely as
N, U1, -, ug — oo Whilew = (uq,--+,uq) stays in the sector

S¢. If the family {g..,.} is L'-dominated, then
1 . .
i Z gnu(Tuz) — E{g|Z} as.andinL'.
uel(n)

Proof: Pick somel < ¢ < 1 andk > 1 and observe that for
large n, ne > k and

Yo gnaTur) = Y go(Tux)+ Y gil(Tua).

ueC(n) u€D(n) u€eC<(n)
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Dividing by n? and taking thdim inf asn — oo, we obtain [15]
P | d 1
11mnmf i Z Inu(Tur) > (1= (1= YE{go | T} [16]

u€C(n)
+(1-e'E{gi | T} as. [17]
The right-hand side increases to [18]
(1—(1—e))E{go | T} + (1 - "E{g" | T}
[19]

ask — oo. Lettinge N\, 0 yields a). Part b) can also be proved as in

the one-dimensional case.
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