Estimating the Entropy Rate of Spike Trains
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1 Introduction timators based on two data compression algorithms,
the Lempel-Ziv algorithm (LZ) and the Context Tree

Information-theoretic methods have been widely¥eighting method (CTW). Specifically, we consider

used in neuroscience, in the broad effort to anwo LZ-based entropy estimators and one based

lyze and understand the fundamental informatiogn the CTW. The first LZ-based method has been

processing tasks performed by the brain. In thesédely and very successfully used in many appli-

studies, the entropy has been adopted as the meations, and the other one is a hew estimator with

measure for quantifying the amount of informatiogome novel and more desirable statistical properties.

transmitted between neurons, via the spike traim®e CTW-based estimator is based in the work of

they generate. One of the first and most importaillems et al [13][14][15] and it has also been con-

goals is to identify appropriate methods that can Isédered in [1][3].

used to quantify the amount of information that gets

communicated by spike trains, or, in other words, to

estimate the entropy of spike trains recorded fro@ Results

live animals.

So far, the most commonly used entropyae demonstrate that the LZ- and CTW-based es-
estimation technique has been the so-called “plugmators naturally incorporate dependencies in the
in” (or maximum-likelihood) estimator and its var-data at much larger time scales than the plug-in, and
ious modifications. This method consists of essetirat they are consistent (in the statistical sense) for a
tially calculating the empirical frequencies of allvide class of data types generated from distributions
words of a fixed length in the data, and then esthat may posses arbitrarily long memory.
mating the “true” entropy of the underlying signal as The Lempel-Ziv algorithm [17][18] is a universal
the entropy of this empirical distribution; see, e.gdata compression scheme that achieves the (optimal)
[10][5][12][6][9]. For computational reasons, thentropy lower bound when applied to data generated
plug-in estimator cannot go beyond word lengths @f; anystationary ergodic process. As the conditions
about 10 or 20, and hence it does not take into asf stationarity and ergodicity are very weak (and in
count the potential longer time dependencies in tBeme sense minimal), they appear well-suited for
signal. neural data, as we have mopriori bound on the

Here we examine the performance of entropy egngth of the memory in the data, and in fact the very



length of this memory is one of the objects we intengrocesses the plug-in is as good as any other method,
to study. for processes with longer memory the plug-in is
The main gist in the workings of the LempeI-Zi\,mUCh worse than the both the LZ estimators and
algorithm was revealed by Wyner and Ziv in [16]the CTW, because of undersampling problem. In
where they studied the connection between the dact, the CTW estimator is uniformly better than the
tropy of a process and the |Ongest match-|engtﬁg’]er estimators, for both short and relatiVEly |0ng
along a process realization. Roughly speaking, tR€€mory processes. Its fast convergence rate outper-
match_|engths measure the |ength of the |ongé§fm5 the LZ-based estimators, and its ablllty to al-
string starting in a fixed position in the data whickPW for longer memory makes it more accurate than
re-appears in a given window somewhere else in thte plug-in.
same data. Intuitively, the longer the match-lengths,
the more regularity there is in the data, and hence
the smaller the entropy (and the more efficient tI{§ Experimental Results
compression). Partly motivated by this connection,
a number of entropy estimators have been proposgd next apply these methods to neural data. Our
since then and have been applied to many differefifta come from two multi-electrode arrays im-
kinds of data; for examples see [8][2] and the refefjanted on a monkey’s primary motor cortex (MI)
ences therein. Here we use two entropy estimate{isd dorsal premotor cortex (PMd). The arrays si-
based on match-lengths, one described in [2], angh@itaneously recorded neural activity from 29 dif-
new one. We study their theoretical properties, Werent neurons. A Plexon acquisition system was
apply them to neuronal data, and we present a syged to collect the neural signal, and the units were
tematic simulation study of their statistical properispike-sorted using Plexon’s Offline Sorter. The mon-
ties. key was not engaged in any task when the data were
The CTW [13][14][15] is another universal com-collected, and the size of the data is approximately
pression algorithm for tree sources, which has tlaa hour. A detailed description of recording tech-
additional advantage that it also gives as its outiques is given in [4].
put a statistical distribution for the data it com- OQur results on neural data show that the CTW
presses. Like the Lempel-Ziv algorithm, the CTWjives somewnhat lower estimates than the plug-in, de-
also achieves the entropy lower bound, and in spspite the fact that the the bias of the plug-in estima-
cial cases it is shown to achieve the best possilig is negative whereas that of the CTW is positive.
redundancy rate as determined in [7]. In particulaThis suggests that the CTW estimates are more reli-
its redundancy can be bounded abawéormlyover able, and it strongly indicates that the CTW’s smaller
all data sequences of arbitrary length, which meanslues come from the fact that does indeed find
that the same thing can be said for the bias of the tenger-term dependencies in the datésing the two
sulting entropy estimation algorithm. This is clearly z-based estimators we find that one gives results
very valuable information to have when this algosystematically higher and one systematically lower
rithm is used in practice. Here we study an entroplat those of the plug-in.
estimator based on the CTW, implemented in a man-As mentioned above, from the CTW algorithm

ner similar to that described in [3]. we can also obtain an explicit statistical model for
To compare the performance of various metlhe data. In this study we looked extensively at the
ods, we apply these entropy estimators on simresulting “maximum a posteriori probability tree”
lated data, generated from homogeneous Poissoadels, as described in [11], which give the best
processes, Markov chains of various orders, hiddén a certain sense) tree models that can be fit to the
Markov models (HMMs), and renewal and Markovdata at hand. From the results we clearly see that
renewal processes. For most of these models, the spike-train data exhibit long-range dependencies
true entropy rate can be calculated in closed forgmuch longer that the 10- or 20-millisecond win-
Our analysis shows that, whereas for short-mematpw captured by most earlier studies). We also find



that perhaps the most relevant modeling “paramg7] J. Rissanen. Universal Coding, information, predic-

ter” for estimating the entropy of these spike trains

is the inter-spike-interval (ISl) distribution. This of-
fers another possible explanation for why the plug!8l

in method and its variants may not produce satis-

factory results. Furthermore, a detailed analysis df!

how the entropy estimates behave as the tree de
allowed in the CTW varies, suggests that it is nats
ural to think that spike trains have, generally speak-

ing, slowly varying firing rates, and that the firing

rate is strongly related with the Fano factor, whicnl]

describes the variability of the spike trains.

4

Conclusions

Overall, we find that the CTW is a significantly bet-

ter estimator that either the plug-in-based or the LZ-
based methods, and also that it is a more appror{?i:—”
ate one for neuronal data. Its convergence rate is
fast, and it exhibits a strong ability to model long:

. Lo 14
memory statistical properties in the data. Moreover, ]

it offers an actual probabilistic model for the data,

which can be used to read off important statisticgls
properties of spike trains that go well beyond the en-

tropy estimation task.
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